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Chapter 3

Pseudorandom Generators

In this chapter we discuss pseudorandom generators. Loosely speaking, these are efficient
deterministic programs which expand short randomly selected seeds into much longer “pseu-
dorandom” bit sequences. Pseudorandom sequences are defined as computationally indis-
tinguishable from truly random sequences by efficient algorithms. Hence, the notion of
computational indistinguishability (i.e., indistinguishability by efficient procedures) plays a
pivotal role in our discussion of pseudorandomness. Furthermore, the notion of computa-
tional indistinguishability, plays a key role also in subsequent chapters, and in particular in
the discussion of secure encryption, zero-knowledge proofs, and cryptographic protocols.

In addition to definitions of pseudorandom distributions, pseudorandom generators, and
pseudorandom functions, the current chapter contains constructions of pseudorandom gen-
erators (and pseudorandom functions) based on various types of one-way functions. In
particular, very simple and efficient pseudorandom generators are constructed based on the
existence of one-way permutations.

3.1 Motivating Discussion

The nature of randomness has attracted the attention of many people and in particular of
scientists in various fields. We believe that the notion of computation, and in particular of
efficient computation, provides a good basis for understanding the nature of randomness.

3.1.1 Computational Approaches to Randomness

One computational approach to randomness has been initiated by Solomonov and Kol-
mogorov in the early 1960’s (and rediscovered by Chaitin in the early 1970’s). This approach
is “ontological” in nature. Loosely speaking, a string, s, is considered Kolmogorov-random
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if its length (i.e., |s|) equals the length of the shortest program producing s. This shortest
program may be considered the “simplest” “explanation” to the phenomenon described by
the string s. Hence, the string, s, is considered Kolmogorov-random if it does not posses a
simple explanation (i.e., an explanation which is substantially shorter than |s|). We stress
that one cannot determine whether a given string is Kolmogorov-random or not (and more
generally Kolmogorov-complexity is a function that cannot be computed). Furthermore,
this approach seems to have no application to the issue of “pseudorandom generators”.

An alternative computational approach to randomness is presented in the rest of this
chapter. In contrast to the approach of Kolmogorov, the new approach is behavioristic
in nature. Instead of considering the “explanation” to a phenomenon, we consider the
phenomenon’s effect on the environment. Loosely speaking, a string is considered pseu-
dorandom if no efficient observer can distinguish it from a uniformly chosen string of the
same length. The underlying postulate is that objects that cannot be told apart by efficient
procedures are considered equivalent, although they may be very different in nature (e.g.,
have fundamentally different (Kolmogorov) complexity). Furthermore, the new approach
naturally leads to the concept of a pseudorandom generator, which is a fundamental concept
with lots of practical applications (and in particular to the area of cryptography).

3.1.2 A Rigorous Approach to Pseudorandom Generators

The approach to pseudorandom generators, presented in this book, stands in contrast to
the heuristic approach which is still common in discussions concerning “pseudorandom gen-
erators” which are being used in real computers. The heuristic approach consider “pseu-
dorandom generators” as programs which produce bit sequences “passing” several specific
statistical tests. The choice of statistical tests, to which these programs are subjected,
is quite arbitrary and lacks a systematic foundation. Furthermore, it is possible to con-
struct efficient statistical tests which foil the “pseudorandom generators” commonly used
in practice (and in particular distinguish their output from a uniformly chosen string of
equal length). Consequently, before using a “pseudorandom generator”, in a new applica-
tion (which requires “random” sequences), extensive tests have to be conducted in order to
detect whether the behaviour of the application when using the “pseudorandom generator”
preserves its behaviour when using a “true source of randomness”. Any modification of the
application requires new comparison of the “pseudorandom generator” against the “ran-
dom source”, since the non-randomness of the “pseudorandom generator” may badly effect
the modified application (although it did not effect the original application). Furthermore,
using such a “pseudorandom generator” for “cryptographic purposes” is highly risky, since
the adversary may try to exploit the known weaknesses of the “pseudorandom generator”.

In contrast the concept of pseudorandom generators, presented below, is a robust one.
By definition these pseudorandom generators produce sequences which look random to any
efficient observer. It follows that the output of a pseudorandom generator may be used
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instead of “random sequences” in any efficient application requiring such (i.e., “random”)
sequences.

3.2 Computational Indistinguishability

The concept of efficient computation leads naturally to a new kind of equivalence between
objects. Objects are considered to be computationally equivalent if they cannot be told apart
by any efficient procedure. Considering indistinguishable objects as equivalent is one of the
basic paradigms of both science and real-life situations. Hence, we believe that the notion
of computational indistinguishability is fundamental.

Formulating the notion of computational indistinguishability is done, as standard in
computational complexity, by considering objects as infinite sequences of strings. Hence,
the sequences, {2, },en and {y,}.en, are said to be computational indistinguishable if no
efficient procedure can tell them apart. In other words, no efficient algorithm, D, can accept
infinitely many a,,’s while rejecting their y-counterparts (i.e., for every efficient algorithm
D and all sufficiently large n’s it holds that D accepts ,, iff D accepts y,,). Objects which
are computationally indistinguishable in the above sense may be considered equivalent as
far as any practical purpose is concerned (since practical purposes are captured by efficient
algorithms and those can not distinguish these objects).

The above discussion is naturally extended to the probabilistic setting. Furthermore,
as we shall see, this extension yields very useful consequences. Loosely speaking, two
distributions are called computationally indistinguishable if no efficient algorithm can tell
them apart. Given an efficient algorithm, D, we consider the probability that D accepts
(e.g., outputs 1 on input) a string taken from the first distribution. Likewise, we consider
the probability that D accepts a string taken from the second distribution. If these two
probabilities are close, we say that D does not distinguish the two distributions. Again,
the formulation of this discussion is with respect to two infinite sequences of distributions
(rather than with respect to two fixed distributions). Such sequences are called probability
ensembles.

3.2.1 Definition

Definition 3.1 (ensembles): Let I be a countable index set. An ensemble indexed by [ is
a sequence of random variables indexed by I. Namely, X = {X,;}icr, where the X;’s are
random variables, is an ensemble indexed by I.

We will use either N or a subset of {0, 1}* as the index set. Typically, in our applications,
an ensemble of the form X = {X,} . has each X, ranging over strings of length n,
whereas an ensemble of the form X = {X, },,ef0,11+ Will have each X, ranging over strings
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of length |w|. In the rest of this chapter, we will deal with ensembles indexed by N,
whereas in other chapters (e.g., in the definition of secure encryption and zero-knowledge)
we will deal with ensembles indexed by strings. To avoid confusion, we present variants
of the definition of computational indistinguishability for each of these two cases. The
two formulations can be unified if one associates the natural numbers with their unary
representation (i.e., associate N and {1":n€N}).

Definition 3.2 (polynomial-time indistinguishability):
1. variant for ensembles indexed by IN: Two ensembles, X dof { X}, ew and Y dof
{Yn}ne]Nf are indistinguishable in polynomial-time if for every probabilistic polynomial-
time algorithm, D, every polynomial p(-), and all sufficiently large n’s

1
|Prob (D(X,,,1")=1) — Prob (D(V,,1")=1)| < —
p(n)
2. variant for ensembles indexed by a set of strings 5: Two ensembles, X def {Xw} wes

and Y & {Yw}wes, are indistinguishable in polynomial-time if for every probabilistic

polynomial-time algorithm, D, every polynomial p(-), and all sufficiently long w’s
1
p(lw])

|Prob (D(X,, w)=1) — Prob (D(V,,w)=1)| <

The probabilities in the above definition are taken over the corresponding random vari-
ables X; (or Y;) and the internal coin tosses of algorithm D (which is allowed to be a
probabilistic algorithm). The second variant of the above definition will play a key role in
subsequent chapters, and further discussion of it is postponed to these places. In the rest of
this chapter we refer only to the first variant of the above definition. The string 1™ is given
as auxiliary input to algorithm D in order to make the first variant consistent with the sec-
ond one, and in order to make it more intuitive. However, in typical cases, where the length
of X,, (resp. Y,) and n are polynomialy related (i.e., | X,| < poly(n) and n < poly(|X,]|))
and can be computed one from the other in poly(n)-time, giving 1" as auziliary input is
redundant.

The following mental experiment may be instructive. For each o € {0, 1}*, consider the
probability, hereafter denoted d(«), that algorithm D outputs 1 on input a. Consider the
expectation of d taken over each of the two ensembles. Namely, let di(n) = Exp(d(X,,)) and
dy(n) = Exp(d(Y,)). Then, X and Y are said to be indistinguishable by D if the difference
(function) A(n) def |di(n) — da(n)]| is negligible in n. A few examples may help to further
clarify the definition.

Consider an algorithm, D, which obliviously of the input, flips a 0-1 coin and outputs
its outcome. Clearly, on every input, algorithm )y outputs 1 with probability exactly one
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half, and hence does not distinguish any pair of ensembles. Next, consider an algorithm,
Dy, which outputs 1 if and only if the input string contains more zeros than ones. Since
Dy can be implemented in polynomial-time, it follows that if X and Y are polynomial-time
indistinguishable then the difference |Prob(w(X,) < %) — Prob(w(Y,,) < %)| is negligible
(in n), where w(a) denotes the number of 1’s in the string a. Similarly, polynomial-time
indistinguishable ensembles must exhibit the same “profile” (up to negligible error) with
respect to any “string statistics” which can be computed in polynomial-time. However,
it is not required that polynomial-time indistinguishable ensembles have similar “profiles”
with respect to quantities which cannot be computed in polynomial-time (e.g., Kolmogorov

Complexity or the function presented right after Proposition 3.3).

3.2.2 Relation to Statistical Closeness

Computational indistinguishability is a refinement of a traditional notion from probability

theory. We call two ensembles X def {Xn},eN and Y def Y.}, e, statistically close if their
statistical difference is negligible, where the statistical difference (also known as variation
distance) of X and Y is defined as the function

A(n) © 37 [Prob(X, =a) — Prob(Y, =a)|

Clearly, if the ensembles X and Y are statistically close then they are also polynomial-time
indistinguishable (see Exercise 5). The converse, however, is not true. In particular

Proposition 3.3 There ewist an ensemble X = {X,}, N so that X is not statistically

close to the uniform ensemble, U def {Un}ne]Nf yet X and U are polynomial-time indis-

tinguishable. Furthermore, X,, assigns all its probability mass to at most 2™? strings (of
length n).

Recall that U, is uniformly distributed over strings of length n. Although X and U are
polynomial-time indistinguishable, one can define a function f:{0,1}*— {0,1} so that f
has average 1 over X while having average almost 0 over U (e.g., f(z) = 1 if and only if =
is in the range of X'). Hence, X and U have different “profile” with respect to the function
f, yet f is (necessarily) impossible to compute in polynomial-time.

Proof: We claim that, for all sufficiently large n, there exist a random variable X,,, dis-
tributed over some set of at most 27/2 strings (each of length n), so that for every circuit,
C.,, of size (i.e., number of gates) 2/% it holds that

[Prob(C(U,)=1) — Prob(C(X,)=1)| < 27"/8
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The proposition follows from this claim, since polynomial-time distinguishers (even prob-
abilistic ones - see Exercise 6) yield polynomial-size circuits with at least as big a distin-
guishing gap.

The claim is proven using a probabilistic argument (i.e., a counting argument). Let

C,, be some fixed circuit with n inputs, and let p, % Prob(C,(U,) = 1). We select,
independently and uniformly 27/2 strings, denoted s1, ..., 55n/2, in {0,1}". Define random
variables (;’s so that ¢; = C,(s;) (these random variables depend on the random choices of
the corresponding s;’s). Using Chernoff Bound, we get that

on/2

1 n —n n
Prob (|Pn ~ ez Z Gl > Q—n/S) < 2722 /2.9-n/4 <272 /4
=1

Since there are at most 22"* different circuits of size (number of gates) 2"/8, it follows that
there exists a sequence of sq,...,55n2 € {0,1}", so that for every circuit C,, of size 2n/8 it

holds that

on/2

1 —n
[Prob(Co(Un)=1) = oo ; Colsi)] < 277/3

Letting X, equal s; with probability 2=7/2, for every 1<i<2"2 the claim follows. [N

3.2.3 Indistinguishability by Repeated Experiments

By Definition 3.2, two ensembles are considered computationally indistinguishable if no
efficient procedure can tell them apart based on a single sample. We shall now show that
“efficiently constructible” computational indistinguishable ensembles cannot be (efficiently)
distinguished even by examining several samples. We start by presenting definitions of
“indistinguishability by sampling” and “efficiently constructible ensembles”.

Definition 3.4 (indistinguishability by sampling): Two ensembles, X def {Xut,ew and

y {Yn}ne]Nf are indistinguishable by polynomial-time sampling if for every probabilistic
polynomial-time algorithm, D, every two polynomials m(-) and p(-), and all sufficiently large
n’s
Prob (D(XV, ..., X" =1) — Prob (D(Y,V, ..., vy =1) | « —
[Prob (D )=1) (1 =) 1< oo
where ngl) through szm) and Yn(l) through Yn(m), are independent random variables with
each Xﬁf) identical to X,, and each Yn(l) identical to Y.
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Definition 3.5 (efficiently constructible ensembles): An ensemble, X def { X}, W, is said
to be polynomial-time constructible if there exists a probabilistic polynomial time algorithm
S so that for every n, the random variables S(1™) and X,, are identically distributed.

Theorem 3.6 Let X {Xut,ew and Y dof Y}, W be two polynomial-time con-

structible ensembles, and suppose that X and Y are indistinguishable in polynomial-time.
Then X and Y are indistinguishable by polynomial-time sampling.

An alternative formulation of Theorem 3.6 proceeds as follows. For every ensemble Z def
{Zu},cw and every polynomial m(-) define the m(-)-product of Z as the ensemble

{(Zél), v Zém(n)))}nem, where the fo)’s are independent copies of Z,. Theorem 3.6 as-
serts that if the ensembles X and Y are polynomial-time indistinguishable, and each is
polynomial-time constructible, then, for every polynomial m(-), the m(-)-product of X and
the m(-)-product of X are polynomial-time indistinguishable.

The information theoretic analogue of the above theorem is quite obvious: if two ensem-
bles are statistically close then also their polynomial-products must be statistically close
(since the statistical difference between the m-products of two distributions is bounded by
m times the distance between the individual distributions). Adapting the proof to the com-
putational setting requires, as usual, a “reducibility argument”. This argument uses, for
the first time in this book, the hybrid technique. The hybrid technique plays a central role
in demonstrating the computational indistinguishability of complex ensembles, constructed
based on simpler (computational indistinguishable) ensembles. Subsequent application of
the hybrid technique will involve more technicalities. Hence, the reader is urged not to skip
the following proof.

Proof: The proof is by a “reducibility argument”. We show that the existence of an
efficient algorithm that distinguishes the ensembles X and Y using several samples, implies
the existence of an efficient algorithm that distinguishes the ensembles X and Y using a
single sample. The implication is proven using the following argument, which will be latter
called a “hybrid argument”.

Suppose, to the contradiction, that there is a probabilistic polynomial-time algorithm
D, and polynomials m(-) and p(-), so that for infinitely many n’s it holds that

def 1
A(n) € [Prob (D(XWM, ..., X™)=1) = Prob (D(YV, ..., Y™ =1) | > —
(n) & |Prob (D )=1) (1 1=1)1> s
where m % m(n), and the Xﬁf)’s and Yn(i)’s are as in Definition 3.4. In the sequel, we will
derive a contradiction by presenting a probabilistic polynomial-time algorithm, D', that

distinguishes the ensembles X and Y (in the sense of Definition 3.2).
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For every k, 0 <k <m, we define the hybrid random variable H¥ as a (m-long) sequence
consisting of k£ independent copies of X,, and m — k independent copies of Y,,. Namely,
Hj’j C126f (X7(L1)7 ety X7(1k)7 Y?’gk-l—l)? tety Y?’gm))
where X?gl) through Xﬁbk) and Yn(k+ ) through Y( ™) , are independent random variables with
each Xﬁf) identical to X, and each Y() 1dent1cal to Y,,. Clearly, H" = Xﬁb ), ...,Xﬁbm),
whereas Hg = YTEI), ...,Yr(bm).

By our hypothesis, algorithm D can distinguish the extreme hybrids (i.e., H? and H™).
As the total number of hybrids is polynomial in n, a non-negligible gap between (the
“accepting” probability of D on) the extreme hybrids translates into a non-negligible gap
between (the “accepting” probability of D on) a pair of neighbouring hybrids. It follows
that D, although not “designed to work on general hybrids”, can distinguish a pair of
neighbouring hybrids. The punch-line is that, algorithm D can be easily modified into an
algorithm D’ which distinguishes X and Y. Details follow.

We construct an algorithm D’ which uses algorithm D as a subroutine. On input «
(supposedly in the range of either X,, or Y},), algorithm D’ proceeds as follows. Algorithm
D', first selects k uniformly in the set {0,1,...,m—1}. Using the efficient sampling algorithm
for the ensemble X, algorithm D’ generates k independent samples of X,,. These samples
are denoted z! 2*. Likewise, using the efficient sampling algorithm for the ensemble Y,
algorithm D’ generates m — k — 1 independent samples of ¥, denoted y**+2, ..., y™. Finally,
algorithm D’ invokes algorithm D and halts with output D(z',...,2%, a, yk“, e y™).

Clearly, D’ can be implemented in probabilistic polynomial-time. It is also easy to verify
the following claims.

Claim 3.6.1:
Prob(D'(X,)=1) = —ZProb (HFY=1)
and
m—1
Prob(D/(Y,)=1) = — 3 Prob(D(H¥)=1)
m k=0

Proof: By construction of algorithm D’, we have
D'(a)= DXV, ., X o, y+2) vy m)
Using the definition of the hybrids H?”, the claim follows. O

Claim 3.6.2;

|Prob(D'(X,)=1) — Prob(D'(V,)=1)| =
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Proof: Using Claim 3.6.1 for the first equality, we get

|Prob(D'(X,)=1) — Prob(D'(Y,)=1)|

| Y Prob(D(HEM)=1) — Prob(D(H})=1)]
k=0

1
= % - |Prob(D(HI")=1) — Prob(D(H?)=1)|
A(n)

m

~~

The last equality follows by observing that H" = Xﬁbl), ...,Xém) and H? = Yn(l), ...,Yr(bm),
and using the definition of A(n). O

Since by our hypothesis A(n) > ﬁ, for infinitely many n’s, it follows that the probabilistic

polynomial-time algorithm D’ distinguishes X and Y in contradiction to the hypothesis of
the theorem. Hence, the theorem follows. [

It is worthwhile to give some thought to the hybrid technique (used for the first time in the
above proof). The hybrid technique constitutes a special type of a “reducibility argument”
in which the computational indistinguishability of complex ensembles is proven using the
computational indistinguishability of basic ensembles. The actual reduction is in the other
direction: efficiently distinguishing the basic ensembles is reduced to efficiently distinguish-
ing the complex ensembles, and hybrid distributions are used in the reduction in an essential
way. The following properties of the construction of the hybrids play an important role in
the argument:

1. Extreme hybrids collide with the complex ensembles: this property is essential since
what we want to prove (i.e., indistinguishability of the complex ensembles) relates to
the complex ensembles.

2. Neighbouring hybrids are easily related to the basic ensembles: this property is es-
sential since what we know (i.e., indistinguishability of the basic ensembles) relates
to the basic ensembles. We need to be able to translate our knowledge (specifically
computational indistinguishability) of the basic ensembles to knowledge (specifically
computational indistinguishability) of any pair of neighbouring hybrids. Typically, it
is required to efficiently transform strings in the range of a basic hybrid into strings in
the range of a hybrid, so that the transformation maps the first basic distribution to
one hybrid and the second basic distribution to the neighbouring hybrid. (In the proof
of Theorem 3.6, the hypothesis that both X and Y are polynomial-time constructible
is instrumental for such efficient transformation.)
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3. The number of hybrids is small (i.e. polynomial): this property is essential in order
to deduce the computational indistinguishability of extreme hybrids from the compu-
tational indistinguishability of neighbouring hybrids.

We remark that, in the course of an hybrid argument, a distinguishing algorithm refer-
ring to the complex ensembles is being analyzed and even executed on arbitrary hybrids.
The reader may be annoyed of the fact that the algorithm “was not designed to work on
such hybrids” (but rather only on the extreme hybrids). However, “an algorithm is an
algorithm” and once it exists we can apply it to any input of our choice and analyze its
performance on arbitrary input distributions.

3.2.4 Pseudorandom Ensembles

A special, yet important, case of computationally indistinguishable ensembles is the case in
which one of the ensembles is uniform. Ensembles which are computational indistinguishable
from the a uniform ensemble are called pseudorandom. Recall that U,, denotes a random
variable uniformly distributed over the set of strings of length m. The ensemble {U,} i
is called the standard uniform ensemble. Yet, it will be convenient to call uniform also
ensembles of the form {Uj(,)}, ., where [ is a function on natural numbers.

Definition 3.7 (pseudorandom ensembles): Let U def Ui } e be a uniform ensemble,

and X {Xn},eW be an ensemble. The ensemble X is called pseudorandom if X and U

are indistinguishable in polynomial-time.

We stress that | X,,| is not necessarily n (whereas |U,,| = m). In fact, with high proba-
bility | X,| equals I(n)).

In the above definition, as in the rest of this book, pseudorandomness is a shorthand
for “pseudorandomness with respect to polynomial-time”.

3.3 Definitions of Pseudorandom Generators

Pseudorandom ensembles, defined above, can be used instead of uniform ensemble in any ef-
ficient application without noticeable degradation in performance (otherwise the efficient ap-
plication can be transformed into an efficient distinguisher of the supposedly-pseudorandom
ensemble from the uniform one). Such a replacement is useful only if we can generate pseudo-
random ensembles at a cheaper cost than required to generate a uniform ensemble. The cost
of generating an ensemble has several aspects. Standard cost considerations are reflected
by the time and space complexities. However, in the context of randomized algorithms, and
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in particular in the context of generating probability ensembles, a major cost consideration
is the quantity and quality of the randomness source used by the algorithm. In particular,
in many applications (and especially in cryptography), it is desirable to generate pseudo-
random ensembles using as little randomness as possible. This leads to the definition of a
pseudorandom generator.

3.3.1 * A General Definition of Pseudorandom Generators

Definition 3.8 (pseudorandom generator): A pseudorandom generator is a deterministic
polynomial-time algorithm, G, satisfying the following two conditions:

1. expansion: for every s € {0,1}* it holds that |G(s)| > |s|.

2. pseudorandomness: the ensemble {G(Uy,)}, N is pseudorandom.

The input, s, to the generator is called its seed. It is required that a pseudorandom
generator G always outputs a string longer than its seed, and that G’s output, on a uniformly
chosen seed, is pseudorandom. In other words, the output of a pseudorandom generator, on
a uniformly chosen seed, must be polynomial-time indistinguishable from uniform, although
it cannot be uniform (or even statistically close to uniform). To justify the last statement
consider a uniform ensemble {Ul(n)}ne]N that is polynomial-time indistinguishable from the
ensemble {G(U,)}, . (such a uniform ensemble must exist by the pseudorandom property
of (). We first claim that [(n) > n, since otherwise an algorithm that on input 1" and a
string o outputs 1 if and only if || > n will distinguish G(U,,) from Uy, (as |G(U,)| > n
by the expansion property of ). It follows that I(n) > n 4+ 1. We next bound from below
the statistical difference between G(U,,) and Uy, as follows

Z |Prob(Uy(ny=2) — Prob(G(U,)=z)| > Z |Prob(Uy(ny =2) — Prob(G(U,) =)
x z¢{G(s):s€{0,1}7}
— (Ql(n) — 2. 9—l(n)

v
N | —

It can be shown, see Exercise 8, that all the probability mass of G/(U,,), except for a
negligible (in n) amount, is concentrated on strings of the same length and that this length
equals [(n), where {G(U,)}, . is polynomial-time indistinguishable from {Uj(,)}, - For
simplicity, we consider in the sequel, only pseudorandom generators (& satisfying |G(z)| =

I[(|x]) for all a’s.
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3.3.2 Standard Definition of Pseudorandom Generators

Definition 3.9 (pseudorandom generator - standard definition): A pseudorandom generator
s a deterministic polynomial-time algorithm, G, satisfying the following two conditions:

1. expansion: there exists a function | : N — N so that [(n) > n for alln € N, and
|G(s)| = {(]|s]) for all s € {0,1}*.
The function l is called the expansion factor of (5.

2. pseudorandomness (as above): the ensemble {G(Uy)}, . s pseudorandom.

Again, we call the input to the generator a seed. The expansion condition requires
that the algorithm G maps n-bit long seeds into [(n)-bit long strings, with I(n) > n. The
pseudorandomness condition requires that the output distribution, induced by applying
algorithm G to a uniformly chosen seed, is polynomial-time indistinguishable from uniform
(although it is not statistically close to uniform - see justification in previous subsection).

The above definition says little about the expansion factor /:IN+— N. We merely know
that for every n it holds that I(n) > n + 1, that I(n) < poly(n), and that I(n) can be
computed in time polynomial in n. Clearly, a pseudorandom generator with expansion
factor I(n) = n 4 1 is of little value in practice, since it offers no significant saving in coin
tosses. Fortunately, as shown in the subsequent subsection, even pseudorandom generators
with such small expansion factor can be used to construct pseudorandom generators with
any polynomial expansion factor. Hence, for every two expansion factors, /1 : IN+— N and
l;:N— 1N, that can be computed in poly(n)-time, there exists a pseudorandom generator
with expansion factor [y if and only if there exists a pseudorandom generator with expansion

factor [;. This statement is proven by using a pseudorandom generator with expansion

factor l1(n) e 11 to construct, for every polynomial p(-), a pseudorandom generator

with expansion factor p(n). Note that a pseudorandom generator with expansion factor

li(n) 1 % + 1 can be derived from any pseudorandom generator (even from one in the

general sense of Definition 3.8).

3.3.3 Increasing the Expansion Factor of Pseudorandom Generators

Given a pseudorandom generator, GGy, with expansion factor l1(n) = n + 1, we construct a
pseudorandom generator G with polynomial expansion factor, as follows.

Construction 3.10 Let Gy a deterministic polynomial-time algorithm mapping strings of
length n into strings of length n+1, and let p(-) be a polynomial. Define G(s) = oy« ap(js);
where sg def s, the bit o; is the first bit of G1(s;—1), and s; is the |s|-bit long suffiz of G1(si-1),
for every 1<i<p(|s]). (i.e., o;8; = G1(s;-1))



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS 97

Hence, on input s, algorithm G applies Gy for p(|s|) times, each time on a new seed.
Applying G4 to the current seed yields a new seed (for the next iteration) and one extra
bit (which is being output immediately). The seed in the first iteration is s itself. The
seed in the i*! iteration is the |s|-long suffix of the string obtained from ( in the previous
iteration. Algorithm G outputs the concatenation of the “extra bits” obtained in the p(]s|)
iterations. Clearly, G is polynomial-time computable and expands inputs of length n into
output strings of length p(n).

Theorem 3.11 Let G, p(+), and G be as in Construction 3.10 (above). Then, if Gy is a
pseudorandom generator then so is G.

Intuitively, the pseudorandomness of GG follows from that of G; by replacing each application
of G1 by a random process which on input s outputs os, where ¢ is uniformly chosen in
{0,1}. Loosely speaking, the indistinguishability of a single application of the random
process from a single application of (7 implies that polynomially many applications of
the random process are indistinguishable from polynomially many applications of G'. The
actual proof uses the hybrid technique.

Proof: The proofis by a “reducibility argument” . Suppose, to the contradiction, that G is
not a pseudorandom generator. It follows that the ensembles {G(Uy)}, g and {Up(n)}, W
are not polynomial-time indistinguishable. We will show that it follows that the ensembles
{G1(Un)}, e and {Upq1}, g are not polynomial-time indistinguishable, in contradiction
to the hypothesis that (G1 is a pseudorandom generator with expansion factor l1(n) = n+ 1.
The implication is proven, using the hybrid technique.

For every k, 0 < k < p(n), we define a hybrid H]’j(n) as follows. First we define, for

every k, a function ¢¥ : {0,1}" — {0,1}* by letting ¢%(z) L (the empty string) and

gkti(z) = ogk(y), where o is the first bit of G'y(2) and y is the n-bit long suffix of G (z)
(i.e., oy = Gy(x)). Namely, for every k < p(|z|), the string g¥(z) equals the k-bit long

prefix of G(z). Define the random variable H]’j(n)

chosen k-bit long string and the random variable ¢g?(")=*(T,,). Namely

resulting by concatenating a uniformly

ik, €Uk o®)
where U,gl) and Uéz) are independent random variables (the first uniformly distributed over
{0,1}* and the second uniformly distributed over {0,1}"). Intuitively, the hybrid H]’j(n)
consists of the k-bit long prefix of U,(,,) and the (p(n) — k)-bit long suffix of G/(X,,), where
X, is obtained from U,, by applying G for k times each time to the n-bit long suffix of the
previous result. However, the later way of looking at the hybrids is less convenient for our
purposes.
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At this point it is clear that H]?(n) equals G'(U,,), whereas H;;((S)) equals Up (). It follows
that if an algorithm D can distinguish the extreme hybrids then D can also distinguish
two neighbouring hybrids, since the total number of hybrids is polynomial in n and a non-
negligible gap between the extreme hybrids translates into a non-negligible gap between
some neighbouring hybrids. The punch-line is that, using the structure of neighbouring
hybrids, algorithm D can be easily modified to distinguish the ensembles {G1(Uy)}, N

and {Uy11}, - Details follow.

The core of the argument is the way in which the distinguishability of neighbouring
hybrids relates to the distinguishability of G(U,) from U, 1. As stated, this relation stems
from the structure of neighbouring hybrids. Let us, thus, take a closer look at the hybrids
H]’j(n) and Hj(‘;;, for some 0 <k <p(n)— 1. To this end, define a function f™:{0,1}"
{0,1}™ by letting f°(2) def ) and FmH(z) def 0g™(y), where z = oy with o €{0, 1}.
Claim 3.11.1:

LHN = UM prm=k(X, 41), where X,41 = Gy (U?).

2. H]’f(ﬁ = ,gl)fp(”)_k(YnH), where Y, 11 = Uﬁ_)l.

Proof:

1. By definition of the functions ¢” and f™, we have ¢"(z) = f™(G1(z)). Using the
definition of the hybrid H]’j(n), it follows that

1y = U 0 = U R Guu))

2. On the other hand, by definition f™*(oy) = 0g™(y), and using the definition of the
hybrid Hj(‘;;, we get

E+1 _ (1)
Hp(—s = Ui

n

) = 0 O
O

Hence distinguishing G1(U,,) from U,4; is reduced to distinguishing the neighbouring hy-
brids (i.e. H]’j(n) and Hj(‘i;), by applying fP()~* to the input, padding the outcome (in
front of) by a uniformly chosen string of length k&, and applying the hybrid-distinguisher to

the resulting string. Further details follow.

We assume, to the contrary of the theorem, that G is not a pseudorandom generators.
Suppose that D is a probabilistic polynomial-time algorithm so that for some polynomial
q(-) and for infinitely many n’s it holds that

A(n) & |Prob(D(G(U,) = 1) = Prob(D(Upn) =1)| > ﬁ
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We derive a contradiction by constructing a probabilistic polynomial-time algorithm, D’,
that distinguishes G1(U,,) from U, 1.

Algorithm D’ uses algorithm D as a subroutine. On input o € {0,1}"*+1, algorithm D’
operates as follows. First, D’ selects an integer k uniformly in the set {0,1,...,p(n) — 1},
next D’ selects # uniformly in {0,1}*, and finally D’ halts with output D(3fP("~*(a)),
where fP(")=F ig as defined above.

Clearly, D’ can be implemented in probabilistic polynomial-time (in particular fr(n)=Fk

is computed by applying G1 polynomially many times). It is left to analyze the performance
of D’ on each of the distributions G1(U,) and Up,4;.

Claim 3.11.2:

p(n)-1
Prob(D/(G(U))=1) = o 7 Prob(D(H ) =)

k=0

and | Pt
Prob(D'(Up41)=1) = — > Prob(D(H}}})=1)

p(n) =

Proof: By construction of D’ we get, for every a € {0,1}"+!,

p

Prob(D'(a)=1) —(L nz: Prob(D(Uf"™*(a))=1)

Using Claim 3.11.1, our claim follows. O

Let d*(n) denote the probability that D outputs 1 on input taken from the hybrid H]’j(n)

(ie., d*(n) = ef Prob(D(H ( )= 1)). Recall that H]?(n) equals G(U,,), whereas H;;((S)) equals
Up(ny- Hence, d°(n) = Prob(D(G(U,)) = 1), A" (n) = Prob(D(Upyn)) = 1), and A(n) =

|d°(n) — @™ (n)|. Combining these facts with Claim 3.11.2, we get,

1

[Prob(D'(G1(Uy))=1) = Prob(D'(Upga)=1)| = ﬁ'l Y d¥(n) = d"(n)]
|d°(n) — d”()(n)]
p(n)
_ A(n)
p(n)

Recall that by our (contradiction) hypothesis A(n) > ﬁ, for infinitely many n’s.
Contradiction to the pseudorandomness of Gy follows. |
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3.3.4 The Significance of Pseudorandom Generators

Pseudorandom generators have the remarkable property of being efficient “amplifiers/expanders
of randomness”. Using very little randomness (in form of a randomly chosen seed) they pro-
duce very long sequences which look random with respect to any efficient observer. Hence,
the output of a pseudorandom generator may be used instead of “random sequences” in
any efficient application requiring such (i.e., “random”) sequences. The reason being that
such an application may be viewed as a distinguisher. In other word, if some efficient algo-
rithm suffers noticeable degradation in performance when replacing the random sequences

it uses by pseudorandom one, then this algorithm can be easily modified into a distinguisher
contradicting the pseudorandomness of the later sequences.

The generality of the notion of a pseudorandom generator is of great importance in
practice. Once you are guaranteed that an algorithm is a pseudorandom generator you
can use it in every efficient application requiring “random sequences” without testing the
performance of the generator in the specific new application.

The benefits of pseudorandom generators to cryptography are innumerable (and only
the most important ones will be presented in the subsequent chapters). The reason that
pseudorandom generators are so useful in cryptography is that the implementation of all
cryptographic tasks requires a lot of “high quality randomness”. Thus, producing, ex-
changing and sharing large amounts of “high quality random bits” at low cost is of primary
importance. Pseudorandom generators allow to produce (resp., exchange and/or share)
poly(n) pseudorandom bits at the cost of producing (resp., exchanging and/or sharing)
only n random bits!

A key property of pseudorandom sequences, that is used to justify the use of such
sequences in cryptography, is the unpredictability of the sequence. Loosely speaking, a
sequence is unpredictable if no efficient algorithm, given a prefix of the sequence, can guess
its next bit with an advantage over one half that is not negligible. Namely,

Definition 3.12 (unpredictability): An ensemble {X,} 1 is called unpredictable in polynomial-
time if for every probabilistic polynomial-time algorithm A and every polynomial p(-) and
for all sufficiently large n’s

1 4 1

2 p(n)

where next 4(x) returns the i 4+ 15 bit of x if A on input (1", z) reads only i < |x| of the bits
of , and returns a uniformly chosen bit otherwise (i.e. in case A read the entire string x).

Prob(A(1", X,,) =next4(1", X,,)) <

Clearly, pseudorandom ensembles are unpredictable in polynomial-time (see Exercise 14).
It turns out that the converse holds as well. Namely, only pseudorandom ensembles are
unpredictable in polynomial-time (see Exercise 15).
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3.3.5 A Necessary Condition for the Existence of Pseudorandom Gener-
ators

Up to this point we have avoided the question of whether pseudorandom generators exist at
all. Before saying anything positive, we remark that a necessary condition to the existence
of pseudorandom generators is the existence of one-way function. Jumping ahead, we wish
to reveal that this necessary condition is also sufficient: hence, pseudorandom generators
exist if and only if one-way functions exist. At this point we only prove that the existence
of pseudorandom generators implies the existence of one-way function. Namely,

Proposition 3.13 Let G be a pseudorandom generator with expansion factor l(n) = 2n.

Then the function f:{0,1}*—{0,1}* defined by letting f(x,y) def G(z), for every |z|=y|,
s a strongly one-way function.

Proof: Clearly, f is polynomial-time computable. It is left to show that each probabilistic
polynomial-time algorithm invert f with only negligible probability. We use a “reducibility
argument”. Suppose, on the contrary, that A is a probabilistic polynomial-time algorithm
which for infinitely many n’s inverts f on f(Us,) with success probability at least m.
We will construct a probabilistic polynomial-time algorithm, D, that distinguishes Usg,, an
G(U,) on these n’s and reach a contradiction.

The distinguisher D uses the inverting algorithm A as a subroutine. On input a €
{0,1}*, algorithm D uses A in order to try to get a preimage of o under f. Algorithm D
then checks whether the string it obtained from A is indeed a preimage and halts outputting
1 in case it is (otherwise it outputs 0). Namely, algorithm A computes § — A(a), and
outputs 1 if f(5) = @ and 0 otherwise.

By our hypothesis, for some polynomial p(-) and infinitely many n’s,

1
Prob(f(A(f(Uzn))) = f(Uzn)) > p(n)

By f’s construction the random variable f(Us, ) equals G(U, ), and therefore Prob(D(G(U,))=

1) > ﬁ. On the other hand, by f’s construction at most 2" different 2n-bit long strings

have a preimage under f. Hence, Prob( f(A(Usy))=Usy,) < 27", It follows that for infinitely
many n’s

|Prob(D(G(U,))=1) — Prob(D(Us,)=1)| > — — — >

which contradicts the pseudorandomness of G. |
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3.4 Constructions based on One-Way Permutations

In this section we present constructions of pseudorandom generator based on one-way per-
mutations. The first construction has a more abstract flavour, as it uses a single length
preserving 1-1 one-way function (i.e., a single one-way permutation). The second construc-
tion utilizes the same underlying ideas to present practical pseudorandom generators based
on collections of one-way permutations.

3.4.1 Construction based on a Single Permutation

By Theorem 3.11 (see Subsection 3.3.3), it suffices to present a pseudorandom generator
expanding n-bit long seeds into n + 1-bit long strings. Assuming that one-way permuta-
tions (i.e., 1-1 length preserving functions) exist, such pseudorandom generators can be
constructed easily. We remind the reader that the existence of one-way permutation im-
plies the existence of one-way permutation with corresponding hard-core predicates. Thus,
it suffices to prove the following

Theorem 3.14 Let f be a length-preserving 1-1 (strongly one-way) function, and let b
be a hard-core predicate for f. Then the algorithm G, defined by G(s) def f(s)b(s), is a

pseudorandom generator.

Intuitively, the ensemble { f(U,)b(U,)}, N is pseudorandom since otherwise b(U,,) can
be efficiently predicted from f(U,). The proof merely formalizes this intuition.

Proof: We use a “reducibility argument”. Suppose, on the contrary, that there exists
an efficient algorithm D which distinguishes G(U,) from U,4q. Recalling that G(U,) =
f(U,)b(U,,) and using the fact that f induces a permutation on {0,1}", we deduce that algo-
rithm D distinguishes f(U,,)b(U,,) from f(U,)U;. It follows that D distinguishes f(U,)b(U,,)
from f(U,)b(U,), where b(x) is the complement bit of b(z) (i.e., b(z) ef {0,1}-b(2)). Hence,
algorithm D provides a good indication of b(U,) from f(U,), and can be easily modified
into an algorithm guessing b(U,,) from f(U,,), in contradiction to the hypothesis that b is a

hard-core predicate of f. Details follows.

We assume, on the contrary, that there exists a probabilistic polynomial-time algorithm
D and a polynomial p(-) so that for infinitely many n’s

|Prob(D(G(U,))=1) — Prob(D(U,41)=1)| > ]ﬁ

Assume, without loss of generality, that for infinitely many n’s it holds that

A(n) ® (Prob(D(G(U,))=1) — Prob(D(Ups1)=1)) > ]ﬁ
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We construct a probabilistic polynomial-time algorithm, A, for predicting b(z) from
f(z). Algorithm A uses the algorithm D as a subroutine. On input y (equals f(z) for some
), algorithm A proceeds as follows. First, A selects uniformly ¢ € {0,1}. Next, A applies
D to yo. Algorithm A halts outputting o if D(yo) = 1 and outputs the complement of o,
denoted @, otherwise.

Clearly, A works in polynomial-time. It is left to evaluate the success probability of
algorithm A. We evaluate the success probability of A by considering two complementary
events. The event we consider is whether or not “on input x algorithm A selects o so that

o=b(z)".
Claim 3.14.1:

Prob(A(f(U,))=b(U,)| e =b(U,)) = Prob(D(f(
Prob(A(f(U,))=b(Uy,)|c#b(U,)) = 1— Prob(D

=

n)b(Un))
FU)b(U))=1)

(
—
~—

~~

where b(z)=1{0,1} — b(x).
Proof: By construction of A,
Prob(A(f(U) =b(Un) |0 =b(U)) = Prob(D(f(Un)o)=1] o =b(U},))
= Prob(D(f(U,)b(U,))=1]|0=b(U,))
= Prob(D(f(U,)b(U,))=1)

where the last equality follows since D’s behavior is independent of the value of . Likewise,

Prob(A(f(Un))=b(Un) |0 #b(Uy)) = Prob(D(f(Un)o)=0|o=0bU,))
= Prob(D(f(Un)b(U,))=0|0=b(Uy))
= 1 Prob(D(f(U,)b(U,))=1)

The claim follows. O
Claim 3.14.2:

Prob(D(f(U)b(U,))=1) = Prob(D(G(U,))=1)
Prob(D(F(U)b(U,))=1) = 2-Prob(D(Uns1)=1) — Prob( D(f(U,)b(U,))=1)

Proof: By definition of G, we have G(U,) = f(U,)b(U,), and the first claim follows. To
justify the second claim, we use the fact that f is a permutation over {0,1}", and hence
f(U,,) is uniformly distributed over {0, 1}". It follows that U, 41 can be written as f(U,,)U;.
We get

Prob(D(U, 1) = 1) = DOPU U =1) ;r Prob(D(f(Ua)b(U,)) = 1)
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and the claim follows. O
Combining Claims 3.14.1 and 3.14.2, we get

Prob(A(f(U))=b(U)) = Prob(o=b(,))- Prob(A(f(Us))=b(U) | o =b(U,))
+Prob(a #b(U,)) - Prob(A(f(U,))=b(Un) | o #b(U))
)+ 1= Prob(D(f(U)b(Uy))=1))

- %-(Prob(D(f(Un) (Un))=1)+
= % + (Prob(D(G(U,))=1) = Prob(D(Up41)=1))
= %—|—A(n)

Since A(n) > ﬁ for infinitely many n’s, we derive a contradiction and the theorem follows.

3.4.2 Construction based on Collections of Permutations

We now combine the underlying ideas of Construction 3.10 (of Subsection 3.3.3) and Theo-
rem 3.14 (above) to present a construction of pseudorandom generators based on collections
of one-way permutations. Let (I, D, I') be a triplet of algorithms defining a collection of one-
way permutations (see Section 2.4.2). Recall that I(1",r) denotes the output of algorithm
I on input 1™ and coin tosses r. Likewise, D(i,s) denotes the output of algorithm D on
input ¢ and coin tosses s. The reader may assume, for simplicity, that |r|=|s|=n. Actually,
this assumption can be justified in general - see Exercise 13. However, in many applications
it is more natural to assume that |r|=|s|=¢(n) for some fixed polynomial ¢(-). We remind
the reader that Theorem 2.15 applies also to collections of one-way permutations.

Construction 3.15 Let (I, D, F) be a triplet of algorithms defining a strong collection of
one-way permutations, and let B be a hard-core predicate for this collection. Let p(-) be an
arbitrary polynomial. Define G(r,s) = oy« 0p(y), where 1 def I(1™,7), so def D(i,s), and
for every 1<j<p(|s|) it holds that 6; = B(s;_1) and s; = fi(s;-1).

On seed (r,s), algorithm G first uses r to determine a permutation f; over D; (i.e.,
i — I(1%,7)). Secondly, algorithm G uses s to determine a “starting point”, sg, in D;.
For simplicity, let us shorthand f; by f. The essential part of algorithm G is the repeated
application of the function f to the starting point sg and the extraction of a hard-core
predicate for each resulting element. Namely, algorithm G computes a sequence of elements
81y ey Sp(n), Where s; = f(s;_y) for every j (i.e., s; = f(j)(so), where f() denotes j suc-
cessive applications of the function f). Finally, algorithm G outputs the string oy - - “Op(n)>
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where 0; = B(s;_1). Note that o; is easily computed from s;_4 but is a “hard to approxi-
mate” from s; = f(s;_1). The pseudorandomness property of algorithm & depends on the
fact that G does not output the intermediate s;’s. (In the sequel, we will see that out-
putting the last element, namely s,,), does not hurt the pseudorandomness property.) The
expansion property of algorithm G depends on the choice of the polynomial p(-). Namely,
the polynomial p(-) should be larger than the polynomial 2¢(-) (where 2¢(n) equals the total
length of 7 and s corresponding to I(1™)).

Theorem 3.16 Let (I, D, F), B, p(-), and G be as in Construction 3.15 (above), so that
p(n) > 2q(n) for all n’s. Suppose that for every i in the range of algorithm I, the random
variable D(1) is uniformly distbuted over the set D;. Then G is a pseudorandom generator.

Theorem 3.16 is an immediate corollary of the following proposition.

Proposition 3.17 Let n and t be integers. For every i in the range of I(1") and every
z in D;, define G;4(x) = o1 ---0y, where sg dof x, s; = fi(])(x) (fU) denotes j successive
applications of the function f) and 6; = B(s;_1), for every 1 <j<t. Let (I, D, F) and B be
as in Theorem 3.16 (above), I, be a random variable representing 1(1"), and X, = D(I,)
be a random wvariable depending on I,. Then, for every polynomial p(-), the ensembles

{1y G 1y oo (Xo)s FENX Y, ol and {(Lny Upgnys SEUV (X)), o are polynomial-time

indistinguishable.

Hence, the distinguishing algorithm gets, in addition to the p(n)-bit long sequence to be
examined, also the index ¢ chosen by G (in the first step of G’s computation) and the last s;
(i.e., s (n)) computed by . Even with this extra information it is infeasible to distinguish

Gjmp(n)(Xn) = G(l”UQq(n)) from U,y

Proof Outline: The proof follows the proofs of Theorems 3.11 and 3.14 (of Subsection 3.3.3
and the current subsection, resp.). First, the statement is proven for p(n) = 1 (for all n’s).
This part is very similar to the proof of Theorem 3.14. Secondly, observe that the random
variable X, has distribution identical to the random variable f1 (X, ), even conditioned on
I, = i (of every ¢). Finally, assuming the validity of the case p(-) = 1, the statement is
proven for every polynomial p(-). This part is analogous to the proof of Theorem 3.11: one
has to construct hybrids so that the k" hybrid starts with an element 7 in the support of I,,,
followed by k random bits, and ends with G; ,,,)—x(X,) and ff(n)_k(Xn), where X,, = D(i).
The reader should be able to complete the argument.

Proposition 3.17 and Theorem 3.16 remain valid even if one relaxes the condition concerning
the distribution of D(7), and only requires that D(7) is statistically close (as a function in
|i]) to the uniform distribution over D;.
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3.4.3 Practical Constructions

As an immediate application of Construction 3.15, we derive pseudorandom generators
based on either of the following assumptions

o The Intractability of the Discrete Logarithm Problem: The genertor is based on the fact
that it is hard to predict, given a prime P, a primitive element G in the multiplicative
group mod P, and an element Y of the group, whether there exists 0 <a < P/2 so that
Y = G¥ mod P. In other words, this bit constitues a hard-core for the DLP collection
(of Subsection 2.4.3).

o The difficulty of inverting RSA: The genertor is based on the fact that the least
significant bit constitues a hard-core for the RSA collection.

o The Intractability of Factoring Blum Integers: The genertor is based on the fact that
the least significant bit constitues a hard-core for the Rabin collection, when viewed
as a collection of permutations over the quadratic residues of Blum integers (see
Subsection 2.4.3).

We ellaborate on the last example since it offers the most efficient implementation and
yet is secure under a widely believed intractability assumption. The generator uses its seed
in order to generate a composite number, N, which is the product of two relatively large
primes.

¥ PROVIDE DETAILS ABOVE. MORE EFFICIEN HEURISTIC BELOW...

3.5 * Construction based on One-Way Functions

It is known that one-way functions exist if and only if pseudorandom generators exist.
However, the known construction which transforms arbitrary one-way functions into pseu-
dorandom generators is impractical. Furthermore, the proof that this construction indeed
yields pseudorandom generators is very complex and unsuitable for a book of the current
nature. Instead, we refrain to present some of the ideas underlying this construction.

3.5.1 Using 1-1 One-Way Functions

Recall that if f is a 1-1 length-preserving one-way function and b is a corresponding hard-

core predicate then G/(s) ef f(s)b(s) constitutes a pseudorandom generator. Let us relax the
condition imposed on f and assume that f is a 1-1 one-way function (but is not necessarily
length preserving). Without loss of generality, we may assume that there exists a polynomial
p(-) so that |f(z)| = p(|z|) for all z’s. In case f is not length preserving, it follows that
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p(n) > n. At first glance, one may think that we only benefit in such a case since f by
itself has an expanding property. The impression is misleading since the expanded strings
may not “look random”. In particular, it may be the case that the first bit of f(x) is
zero for all ’s. More generally, f(U,) may be easy to distinguish from Up(n) (otherwise
f itself constitutes a pseudorandom generator). Hence, in the general case, we need to
get rid of the expansion property of f since it is not accompanied by a “pseudorandom”
property. In general, we need to shrink f(U, ) back to length < n so that the shrunk result
induces uniform distribution. The question is how to efficiently carry on this process (i.e., of
shrinking f(2) back to length |z|, so that the shrunk f(U,) induces a uniform distribution
on {0,1}").

Suppose that there exists an efficiently computable function h so that fj,(z) def h(f(z))
is length preserving and 1-1. In such a case we can let G/(s) ef h(f(s))b(s), where b is a
hard-core predicate for f, and get a pseudorandom generator. The pseudorandomness of &G
follows from the observation that if b is a hard-core for f it is also a hard-core for f, (since
an algorithm guessing b(z) from h(f(x)) can be easily modified so that it guesses b(z) from
f(2), by applying h first). The problem is that we “know nothing about the structure” of
f and hence are not guaranteed that h as above does exist. An important observation is
that a uniformly selected hashing function will have approximately the desired properties.
Hence, hashing functions play a central role in the construction, and consequently we need
to discuss these functions first.

Hashing Functions

The following terminology relating to hashing functions is merely an ad-hoc terminology
(which is not a standard one). Let S7* be a set of strings representing functions mapping
n-bit strings to m-bit strings. In the sequel we freely associate the strings in 57" with the
functions that they represent. Let H* be a random variable uniformly distributed over the
set 57", We call ST a hashing family if it satisfies the following three conditions:

1. 87" is a pairwise independent family of mappings: for every @ # y € {0,1}", the
random variables H(z) and H"(y) are independent and uniformly distributed in
{0,1}.

2. §™ has succinet representation: S = {0, 1}Pelylem),

3. 57 can be efficiently evaluated: there exists a polynomial-time algorithm that, on

input a representation of a function, h (in S7), and a string = € {0, 1}", returns h(z).

A widely used hashing family is the set of affine transformations mapping n-dimensional
binary vectors to m-dimensional ones (i.e., transformations affected by multiplying the n-
dimensional vector by an n-by-m binary matrix and adding an m-dimensional vector to
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the result). A hashing family with more succinct representation is obtained by considering
only the transformations affected by Toeplitz matrices (i.e., matrices which are invariant
along the diagonals). For further details see Exercise 16. Following is a lemma, concerning
hashing functions, that is central to our application (as well as to many applications of
hashing functions in complexity theory). Loosely speaking, the lemma asserts that most
h’s in a hashing family have h(X,) distributed almost uniformly, provided X, does not
assign too much probability mass to any single string.

Lemma 3.18 Let m < n be integers, ST" be a hashing family, and b and 6 be two reals so
that b < n and 6 > 9=, Suppose that X,, is a random variable distributed over {0,1}"

so that for every x it holds that Prob(X,=2) < 270, Then, for every a € {0,1}™, and for
all but a 2=C=m)§=2 fraction of the h’s in S™, it holds that

n’

Prob(h(X,)=a) € (1 £46)-27"

A function h not satisfying Prob(h(X,)=a) € (1 £6)-27™ is called bad (for o and the
random variable X,). Averaging on all h’s we have Prob(h(X,)= a) equal 2=™. Hence
the lemma bounds the fraction of h’s which deviate from the average value. Typically we

shall use § % o—*5= < 1 (making the deviation from average equal the fraction of bad
h’s). Another useful choice is § > 1 (which yields an even smaller fraction of bad h’s, yet
badness has only a “lower bound interpretation”, i.e. Prob(h(X,)=a) < (14 6)-27™).

Proof: Fix an arbitrary random variable X, ., satisfying the conditions of the lemma, and

an arbitrary a € {0,1}"™. Denote w, def Prob(X, =2). For every h we have

Prob(h(X,)=a) = Z wyCu(h)

where (.(h) equal 1if h(z) = o and 0 otherwise. Hence, we are interested in the probability,
taken over all possible choices of h, that |27 — 5" w,(.(h)| > 627™. Looking at the (,’s
as random variables defined over the random variable H", it is left to show that

2—(b—m)
Prob (|2_m — Zwlfﬂ >4 - Q_m) > %

This is proven by applying Chebyshev’s Inequality, using the fact that the (,.’s are pairwise
independent, and that ¢, equals 1 with probability 2= (and 0 otherwise). (We also take
advantage on the fact that w, < 2_6.) Namely,

Prob |2_m — waCx| > 6 . 2_m S M
p (6-27m)
Y2 "Wl
62 . 2—2m
2-m9=b
S 62 . 2—2m
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The lemma follows. I}

Constructing “Almost” Pseudorandom Generators

Using any 1-1 one-way function and any hashing family, we can take a major step towards
constructing a pseudorandom generator.

Construction 3.19 Let f:{0,1}*—{0,1}* be a function satisfying | f(z)|=p(|x|) for some
polynomial p(-) and all x’s. For any integer function | :N— N, let g:{0,1}*—{0,1}* be a
function satisfying |g(z)| = l(|z])+1, and gl

p(n)
and h € S;(;l)(n), define

be a hashing family. For every x € {0,1}"

G, h) (R f(2)), b, g())
Clearly, |G(x, h)| = (Je|—I(|2]) + |A] + (I(jz[)+1) = |2| + |h] + 1.

Proposition 3.20 Let f, [, g and G be as above. Suppose that f is 1-to-1 and g is a
hard-core function of f. Then, for every probabilistic polynomial-time algorithm A, every
polynomial p(-), and all sufficiently large n’s

n 1
IProb(A(G(U,, Ug))=1) — Prob(A(Up k1) =1)] < 275" + o
where k is the length of the representation of the hashing functions in S;(;l)(n).

The proposition can be extended to the case in which the function f is polynomial-to-1
(instead of 1-to-1). Specifically, let f satisfy |f=1f(2)| < ¢(|z|), for some polynomial ¢(-)
and all sufficiently long a’s. The modified proposition asserts that for every probabilistic
polynomial-time algorithm A, every polynomial p(-), and all sufficiently large n’s

_ l{n)—logs g(n)
3

|Prob(A(G (U, Ug))=1) — Prob(A(U,4541)=1)| < 2 + —

1
p(n)
where k is as above.

In particular, the above proposition holds for functions I(-) of the form I(n) def clog,n,

where ¢ > 0 is a constant. For such functions [, every one-way function (can be easily
modified into a function which) has a hard-core ¢ as required in the proposition’s hypothesis
(see Subsection 2.5.3). Hence, we get very close to constructing a pseudorandom generator.
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Proof Sketch: We first note that

G = (HAF00), B, g(U)

Un—l—k—l—l = (Un—l(n) 9 Hn_l(n)v Ul(n)—l—l)

p(n)

We consider the hybrid (H;(;l)(n)(f(Un)), i)

p(n)
sequence of the following two claims.

Claim 3.20.1: The ensembles

(3P T, g (U))) em

, Ul(n)—l—l)' The proposition is a direct con-

and l l
(D PO, ™, Uy i)Yol
are polynomial-time indistinguishable.

Proof Idea: Use a “reducibility argument”. If the claim does not hold then contradiction to
the hypothesis that ¢ is a hard-core of f is derived. O

Claim 3.20.2: The statistical difference between the random variables

(H" O FU)), B, Uy 1)

p(n) p(n)

and

(Un—l(n) 9 Hn_l(n)v Ul(n)—l—l)

p(n)
is bounded by 2-4n)/3,
Proof Idea: Use the hypothesis that S;(;l)(n) is a hashing family, and apply Lemma 3.18. O
Since the statistical difference is a bound on the ability of algorithms to distinguish, the
proposition follows. Il

Applying Proposition 3.20

Once the proposition is proven we consider the possibilities of applying it in order to con-
struct pseudorandom generators. We stress that applying Proposition 3.20, with length
function [(-), requires having a hard-core function ¢ for f with |g(x)| = {(|z|)+ 1. By The-
orem 2.17 (of Subsection 2.5.3) such hard-core functions exist practically for all one-way
functions, provided that [(-) is logarithmic (actually, Theorem 2.17 asserts that such hard-
cores exist for a modification of any one-way function which preserves its 1-1 property).
Hence, combining Theorem 2.17 and Proposition 3.20, and using a logarithmic length func-
tion, we get very close to constructing a pseudorandom generator. In particular, for every

polynomial p(-), using {(n) def 5 log, p(n), we can construct a deterministic polynomial-time
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algorithm expanding n-bit long seeds into (n+1)-bit long strings so that no polynomial-time
algorithm can distinguish the output strings from uniformly chosen ones, with probability
greater than ﬁ (except for finitely many n’s). Yet, this does not imply that the output is
pseudorandom (i.e., that the distinguishing gap is smaller than any polynomial fraction).
A final trick is needed (since we cannot use [(-) bigger than any logarithmic function). In
the sequel we present two alternative ways for obtaining a pseudorandom generator from
the above construction.

The first alternative is to use Construction 3.10 (of Subsection 3.10) in order to increase
the expansion factor of the above algorithms. In particular, for every integer k, we con-
struct a deterministic polynomial-time algorithm expanding n-bit long seeds into n>-bit long
strings so that no polynomial-time algorithm can distinguish the output strings from uni-
formly chosen ones, with probability greater than nl—k (except for finitely many n’s). Denote
these algorithms by G, G, ..., and construct a pseudorandom generator GG by letting

G(s) & Gi(s1) @ Gal(s2) B Grelap) (S2s]))

where @ denotes bit-by-bit exclusive-or of strings, s152 - Sk(s)) = S, ls;| = % + 1, and

k(n) dof n. Clearly, |G(s)| = k(|s|) - (k(||55||))3 = |s|?. The pseudorandomness of G follows

by a “reducibility argument”. (The choice of the function k is rather arbitrary, and any
unbounded function k(-) satisfying k(n) < n*/* will do.)

The second alternative is to apply Construction 3.19 to the function f defined by

d def
f(xlv"'vxn) = f($1)f($n)
where |21| = -+ = |z,| = n. The benefit in applying Construction 3.19 to the function f is

that we can use {(n?) et 1, and hence Proposition 3.20 yields that GG is a pseudorandom
generator. All that is left is to show that f has a hard core function which maps n?-bit
strings into n-bit strings. Assuming that b is a hard-core predicate of the function f, we
can construct such a hard-core function for f. Specifically,

Construction 3.21 Let f:{0,1}*—{0,1}* and b:{0,1}*—{0,1}. Define

def

far) - f(zn)
b(a1)---b(wn)

jal)
g |

where |z1| = -+ = |a,| = n.

Proposition 3.22 Let f and b be as above. If b is a hard-core predicate of f then § is a
hard-core function of f.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

112 CHAPTER 3. PSEUDORANDOM GENERATORS

Proof Idea: Use the hybrid technique. The 7 hybrid is

(FWD, .o, 0, (U0, o, bUD), UF Y, 0f)
Use a reducibility argument (as in Theorem 3.14 of Subsection 3.4.1) to convert a distin-
guishing algorithm into one predicting b from f. |l

Using either of the above alternatives, we get

Theorem 3.23 If there exist 1-1 one-way functions then pseudorandom generators exist
as well.

The entire argument can be extended to the case in which the function f is polynomial-to-1
(instead of 1-to-1). Specifically, let f satisfy |f~! f(z)| < ¢(]z|), for some polynomial ¢(-) and
all sufficiently long 2’s. Then if f is one-way then (either of the above alternatives yields
that) pseudorandom generators exists. Proving the statement using the first alternative
is quite straightforward given the discussion proceeding Proposition 3.20. In proving the
statement using the second alternative apply Construction 3.19 to the function f with

I[(n?) . (1+1logy q(n)) — 1. This requires showing that f has a hard core function which
maps n2-bit strings into n(1+1log, ¢(n))-bit strings. Assuming that g is a hard-core function
of the function f, with |g(z)| = 1 + log, q(|2|), we can construct such a hard-core function
for f. Specifically,

(@1, ) = g(x1) - g(2,)

where |z¢| = -+ = |z,| = n.

3.5.2 Using Regular One-Way Functions

The validity of Proposition 3.20 relies heavily on the fact that if f is 1-1 then f(U, ) main-
tains the “entropy” of U, in a strong sense (i.e., Prob( f(U,,)=a) < 27" for every a). In this
case, it was possible to shrink f(U/,) and get almost uniform distribution over {0, 1},
As stressed above, the condition may be relaxed to requiring that f is polynomial-to-1 (in-
stead of 1-to-1). In such a case only logarithmic loss of “entropy” occurs, and such a loss
can be compensated by an appropriate increase in the range of the hard-core function. We
stress that hard-core functions of logarithmic length (i.e., satisfying |g(z)| = O(log|z|)) can
be constructed for any one-way function. However, in general, the function f may not be
polynomial-to-1 and in particular it can map exponentially many images to the same range

element. If this is the case then applying f to U, yields a great loss in “entropy”, which

cannot be compensated using the above methods. For example, if f(z,y) def f(z)oll, for

o]

|z|=y|, then Prob(f(U,)=a) > 272 for some a’s. In this case, achieving uniform distri-
bution from f(U,) requires shrinking it to length ~ n/2. In general, we cannot compensate



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.5. * CONSTRUCTION BASED ON ONE-WAY FUNCTIONS 113

for these lost bits since f may not have a hard-core with such huge range (i.e., a hard-core
g satisfying |g(a)| = |g—|) Hence, in this case, the above methods fail for constructing an
algorithm that expands its input into a longer output. A new idea is needed, and indeed
presented below.

The idea is that, in case f maps different preimages into the same image y, we can
augment y by the index of the preimage, in the set f~'(y), without damaging the hardness-

to-invert of f. Namely, we define F(z) def f(z)-idxy(2), where idxs(2) denotes the index
(say by lexicographic order) of z in the set {2’ : f(2')= f(2)}. We claim that inverting F
is not substantially easier than inverting f. This claim can be proven by a “reducibility
argument”. Given an algorithm for inverting F we can invert f as follows. On input y
(supposedly in the range of f(U,)), we first select m uniformly in {1,...,n}, next select ¢
uniformly in {1, ...,2™}, and finally try to invert /' on (y,4). When analyzing this algorithm,
consider the case i = [log, |f~1(y)|].

The function F suggested above does preserve the hardness-to-invert of f. The problem
is that it does not preserve the easy-to-compute property of f. In particular, for general
[ it is not clear how to compute idx¢(z) (i.e., the best we can say is that this task can be
performed in polynomial space). Again, hashing functions come to the rescue. Suppose, for
example that f is 2™-to-1 on strings of length n. Then, we can set idxs(z) = (H,", H'(z)),
obtaining “probabilistic indexing” of the set of preimages. We stress that applying the
above trick requires having a good estimate for the size of the set of preimages (of a given
image). That is, given @ it should be easy to compute |f~! f(z)|. A simple case where such
an estimate can be handy is the case of regular functions.

Definition 3.24 (Regular functions): A function f:{0,1}* — {0,1}* is called regular if
there exists an integer function m : N — N so that for all sufficiently long x € {0,1}* it
holds

[ F(2)=F) A fe] =[]} | = 27D

For simplicity, the reader may further assume that there exists an algorithm that on input
n computes m(n) in poly(n)-time. As we shall see, in the end of this subsection, one can
do without this assumption. For sake of simplicity (of notation), we assume in the sequel

that if f(x)=f(y) then |z|=|y].

Construction 3.25 Let f:{0,1}*—{0,1}* be a regular function with m(|z|) = log, | f~1 f(2)]

n)—I(n

for some integer function m(-). Let [: N — N be an integer function, and Sy’ be a

hashing family. For every x € {0,1}" and h € S;n(n)_l(n), define

Fa,h) € (f(2), h(z), )
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If f can be computed in polynomial-time and m(n) can be computed from n in poly(n)-
time, then F' can be computed in polynomial-time. We now show that if f is a regular
one-way function, then F is “hard to invert”. Furthermore, if (-) is logarithmic then F' is
“almost 1-17.

Proposition 3.26 Let f, m, [ and F be as above. Suppose that there exists an algorithm
that on input n computes m(n) in poly(n)-time. Then,

1. Fis “almost” 1-1:

Prob (|F_1F(UH,H7T(”)_Z(”))| > 2[(n)+1) < 2_1(2_")

(Recall that H” denotes a random variable uniformly distributed over S%.)

2. F “preserves” the one-wayness of f:
If f is strongly (resp. weakly) one-way then so is F.

Proof Sketch: Part (1) is proven by applying Lemma 3.18, using the hypothesis that
S;n(n)_l(n) is a hashing family. Part (2) is proven using a “reducibility argument” . As-
suming, to the contradiction, that there exists an efficient algorithm A that inverts I’ with
unallowable success probability, we construct an efficient algorithm A’ that inverts f with
unallowable success probability (reaching contradiction). For sake of concreteness, we con-
sider the case in which f is strongly one-way, and assume to the contradiction that algorithm
A inverts F' on F(Un,H%n(n)_l(n)) with success probability ¢(n), so that ¢(n) > m for

infinitely many n’s. Following is a description of A’.

On input y (supposedly in the range of f(U,)), algorithm A’ repeats the following
experiment for poly(e(”—n)) many times. Algorithm A’ selects uniformly h € S;n(n)_l(n)
a € {0,11(M)=1") " and initiates A on input (y,a, h). Algorithm A’ sets x to be the n-bit
long prefix of A(y,a,h), and outputs = if y = f(z). Otherwise, algorithm A’ continues to
the next experiment.

and

Clearly, algorithm A’ runs in polynomial-time, provided that e(n) > We now

1
poly(n) -
evaluate the success probability of A’. For every possible input, y, to algorithm A’, we

consider a random variable X, uniformly distributed in f~!(y). Let 6(y) denote the success
probability of algorithm A on input (y, HX(X,), HY), where nd:ef|y| and kd:efm(n) —(n).
Clearly, Exp(6(f(U,))) = ¢(n), and Prob(é(f(Un))>E(§)) > E(z—n) follows. We fix an arbitrary
y € {0,1}" so that 6(y) > @ We prove the following technical claim.

Claim 3.26.1: Let n, k and X, be as above. Suppose that B is a set of pairs, and

§ < Prob((HF(X,), HY) € B)



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.5. * CONSTRUCTION BASED ON ONE-WAY FUNCTIONS 115
Then,
k 64
PI’Ob((Uk,Hn)EB) > m

Using this claim, it follows that the probability that A" inverts f on y in a single iteration
is at least (%31)4-%. We reach a contradiction (to the one-wayness of f), and the proposition
follows. All that is left is to prove Claim 3.26.1. The proof, given below, is rather technical.

We stress that the fact that m(n) can be computed from n does not play an essential role
in the reducibility argument (as it is possible to try all possible values of m(n)).

Claim 3.26.1 is of interest for its own sake. However, its proof provides no significant
insights and may be skipped without significant damage (especially by readers that are
more interested in cryptography than in “probabilistic analysis”).

Proof of Claim 3.26.1: We first use Lemma 3.18 to show that only a “tiny” fraction of
the hashing functions in §* can map “large” probability mass into “small” subsets. Once
this is done, the claim is proven by dismissing those few bad functions and relating the
two probabilities, appearing in the statement of the claim, conditioned on the function not
being bad. Details follow.

We begin by bounding the fraction of the hashing functions that map “large” probability
mass into “small” subsets. We say that a function h € §¥ is (T, A)-expanding if there exists
a set R C {0,1}* of cardinality A -2* so that Prob(h(X,) € R)) > (T 4 1) - A. In other
words, h maps to some set of density A a probability mass 7"+ 1 times the density of the
set. Qur first goal is to prove that at most % of the h’s are (?Tk, %)—expanding. In other
words, only % of the function map to some set of density % a probability mass of more
than %.

We start with a related question. We say that a € {0,1}* is t-overweighted by the
function A if Prob(h(X,)=a)) > (t+1)-27%. A function h € S¥ is called (¢, p)-overweighting
if there exists a set R C {0, 1}* of cardinality p2* so that each a € R is t-overweighted by A.
(Clearly, if h is (¢, p)-overweighting then it is also (¢, p)-expanding, but the converse is not
necessarily true.) We first show that at most a # fraction of the h’s are (¢, p)-overweighting.

The proof is given in the rest of this paragraph. Recall that Prob(X,=z) < 27", for every

z. Using Lemma 3.18, it follows that each a € {0,1}* is t-overweighted by at most a ¢~2

fraction of the h’s. Assuming, to the contradiction, that more than a # fraction of the

h’s are (t, p)-overweighting, we construct a bipartite graph by connecting each of these h’s
with the &’s that it {-overweights. Contradiction follows by observing that there exists an
@. ok

. . P
a which is connected to more than t2p2k =% |5¥| of the h’s.

We now relate the expansion and overweighting properties. Specifically, if b is (T, A)-

expanding then there exists an integer i € {1, ..., k} so that h is (7-2°7!, %)—overweighting.
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Hence, at most a

Zk: 1 oM
L7 A STTA
fraction of the A’s can be (T, A)-expanding. It follows that at most % of the h’s are (352—2k, %)—
expanding.
We call i honest if it is not (22, %2—expanding. Hence, if h is honest and Prob(h(X,,) €
R) > % then R has density at least ele_k' Concentrating on the honest h’s, we now eval-

uate the probability that (a,h) hits B, when «a is uniformly chosen. We call h good if
Prob((h(X,),h) € B) > . Clearly, the probability that H” is good is at least £, and the
probability H” is both good and honest is at least g. Denote by G the set of these h’s (i.e., h’s
which are both good and honest). Clearly, for every i € G we have Prob((h(X,,),h)€ B) > £
(since h is good) and Prob((Uy,h)€ B) > % (since f is honest). Using Prob(HFeG) > &,
the claim follows. O

Applying Proposition 3.26

It is possible to apply Construction 3.19 to the function resulting from Construction 3.25,
and the statement of Proposition 3.20 still holds with minor modifications. Specifically, Con-
struction 3.19 is applied with {(-) twice the function (i.e., the {(-)) used in Construction 3.25,

and the bound in Proposition 3.20 is 3 - P (instead of 2_@). The argument leading
to Theorem 3.23, remains valid as well. Furthermore, we may even waive the requirement
that m(n) can be computed (since we can construct functions F,, for every possible value
of m(n)). Finally, we note that the entire argument holds even if the definition of regular
functions is relaxed as follows.

Definition 3.27 (Regular functions - revised definition): A function f:{0,1}*—{0,1}" is
called regular if there exists an integer function m’: N — N and a polynomial ¢(-) so that
for all sufficiently long x € {0,1}* it holds

27 < [y« Jlo)=F} < alfa]) - 270

When using these (relaxed) regular functions in Construction 3.25, set m(n) ef m/(n). The

resulting function I will have a slightly weaker “almost” 1-1 property. Namely,

Prob (| F~ F(U,, BP0 > g(n) - 2100+1) < 975

The application of Construction 3.19 will be modified accordingly. We get

Theorem 3.28 If there exist reqular one-way functions then pseudorandom generators exist
as well.
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3.5.3 Going beyond Regular One-Way Functions

The proof of Proposition 3.26 relies heavily on the fact that the one-way function f is
regular (at least in the weak sense). Alternatively, Construction 3.25 needs to be modified
so that different hashing families are associated to different 2 € {0,1}". Furthermore, the
argument leading to Theorem 3.23 cannot be repeated unless it is easy to compute the
cardinality of set f~'(f(x)) given x. Note that this time we cannot construct functions
F,, for every possible value of [log,|f~!(y)|] since none of the functions may satisfy the
statement of Proposition 3.26. Again, a new idea is needed.

A key observation is that although the value of log, | f~1(f(2))| may vary for different

z € {0,1}", the value m(n) ef Exp(log, | f~1(f(U,))]) is unique. Furthermore, the function
f defined by

- def

flar, ey xy2) = flz1), ..., f(z,2)

where |z1|=|z,2| =n, has the property that all but a negligible fraction of the domain reside
in preimage sets with logarithm of cardinality not deviating too much from the expected
value. Specifically, let m(n?) ef Exp(log, |f_1(7(Un3))|) Clearly, m(n®) = n%-m(n). Using
Chernoff Bound, we get

Prob (abs (m(n?’) —log, |7_1(T(Un3))|) > nz) <277

2

Suppose we apply Construction 3.25 to f setting {(n?) 4f 12, Denote the resulting

function by F. Suppose we apply Construction 3.19 to F setting this time {(n?) defon? 1.
Using the ideas presented in the proofs of Propositions 3.20 and 3.26, one can show that
if the n3-bit to {(n®) 4+ 1-bit function used in Construction 3.19 is a hard-core of F then
the resulting algorithm constitutes a pseudorandom generator. Yet, we are left with the
problem of constructing a huge hard-core function, G, for the function F. Specifically,
|G(2)] has to equal 2|z|3, for all 2’s. A natural idea is to define G analogously to the way
g is defined in Construction 3.21. Unfortunately, we do not know how to prove the validity
of this construction (when applied to F'), and a much more complicated construction is
required. This construction does use all the above ideas in conjunction with additional
ideas not presented here. The proof of validity is even more complex, and is not suitable
for a book of the current nature. We thus conclude this section by merely stating the result
obtained.

Theorem 3.29 If there exist one-way functions then pseudorandom generators exist as
well.
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3.6 Pseudorandom Functions

Pseudorandom generators enable to generate, exchange and share a large number of pseu-
dorandom values at the cost of a much smaller number of random bits. Specifically, poly(n)
pseudorandom bits can be generated, exchanged and shared at the cost of n (uniformly cho-
sen bits). Since any efficient application uses only a polynomial number of random values,
providing access to polynomially many pseudorandom entries seems sufficient. However,
the above conclusion is too hasty, since it assumes implicitly that these entries (i.e., the
addresses to be accessed) are fixed beforehand. In some natural applications, one may need
to access addresses which are determined “dynamically” by the application. For exam-
ple, one may want to assign random values to (poly(n) many) n-bit long strings, produced
throughout the application, so that these values can be retrieved at latter time. Using pseu-
dorandom generators the above task can be achieved at the cost of generating » random bits
and storing poly(n) many values. The challenge, met in the sequel, is to achieve the above
task at the cost of generating and storying only n random bits. The key to the solution is
the notion of pseudorandom functions. In this section we define pseudorandom functions
and show how to efficiently implement them. The implementation uses as a building block
any pseudorandom generator.

3.6.1 Definitions

Loosely speaking, pseudorandom functions are functions which cannot be distinguished from
truly random functions by any efficient procedure which can get the value of the function at
arguments of its choice. Hence, the distinguishing procedure may query the function being
examined at various points, depending possibly on previous answers obtained, and yet can
not tell whether the answers were supplied by a function taken from the pseudorandom
ensemble (of functions) or from the uniform ensemble (of function). Hence, to formalize the
notion of pseudorandom functions we need to consider ensembles of functions. For sake of
concreteness we consider in the sequel ensembles of length preserving functions. FExtensions
are discussed in Exercise 21.

Definition 3.30 (function ensembles): A function ensemble is a sequence F' = {F,.} |
of random wvariables, so that the random variable F,, assumes values in the set of functions
mapping n-bit long strings to n-bit long strings. The uniform function ensemble, denoted
H = {Hn}ne]Nf has H, uniformly distributed over the set of functions mapping n-bit long
strings to n-bit long strings.

To formalize the notion of pseudorandom functions we use (probabilistic polynomial-
time) oracle machines. We stress that our use of the term oracle machine is almost identical
to the standard one. One deviation is that the oracle machines we consider have a length
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preserving function as oracle rather than a Boolean function (as is standard in most cases
in the literature). Furthermore, we assume that on input 1” the oracle machine only makes
queries of length n. These conventions are not really essential (they merely simplify the
exposition a little).

Definition 3.31 (pseudorandom function ensembles): A function ensemble, ' = {F,}, N
s called pseudorandom if for every probabilistic polynomial-time oracle machine M, every
polynomial p(-) and all sufficiently large n’s

Fa(1"y=1) = Pro Hpny = L
|Prob(M*(1")=1) — Prob(M "~ (1") 1)|<p(n)

where H = {H,}, N s the uniform function ensemble.

Using techniques similar to those presented in the proof of Proposition 3.3 (of Subsec-
tion 3.2.2), one can demonstrate the existence of pseudorandom function ensembles which
are not statistically close to the uniform one. However, to be of practical use, we need
require that the pseudorandom functions can be efficiently computed.

Definition 3.32 (efficiently computable function ensembles): A function ensemble, ' =
{Fn}ne]Nf is called efficiently computable if the following two conditions hold

1. (efficient indexing): There exists a probabilistic polynomial time algorithm, I, and a
mapping from strings to functions, ¢, so that ¢(1(1")) and F, are identically dis-
tributed.

We denote by f; the {0,1}"—{0,1}" function assigned to i (i.e., f; def (1))

2. (efficient evaluation): There exists a probabilistic polynomial time algorithm, V, so

that V(i,z) = fi(z).

In particular, functions in an efficiently computable function ensemble have relatively
succinct representation (i.e., of polynomial rather than exponential length). It follows that
efficiently computable function ensembles may have only exponentially many functions (out
of the double-exponentially many possible functions).

Another point worthy of stressing is that pseudorandom functions may (if being ef-
ficiently computable) be efficiently evaluated at given points, provided that the function
description is give as well. However, if the function (or its description) is not known (and
it is only known that it is chosen from the pseudorandom ensemble) then the value of the
function at a point cannot be approximated (even in a very liberal sense and) even if the
values of the function at other points is also given.

In the rest of this book we consider only efficiently computable pseudorandom functions.
Hence, in the sequel we sometimes shorthand such ensembles by calling them pseudorandom
functions.
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3.6.2 Construction

Using any pseudorandom generator, we construct a (efficiently computable) pseudorandom
function (ensemble).

Construction 3.33 Let G be a deterministic algorithm expanding inputs of length n into
strings of length 2n. We denote by Go(s) the |s|-bit long prefiz of G(s), and by G1(s) the
|s|-bit long suffiz of G(s) (i.e., G(s) = Go(s)G1(s)). For every s € {0,1}", we define a
function f;:{0,1}"—{0,1}" so that for every oy,...,0,€{0,1}

o1y 0,) E G (- (Goy(Goy(5)) )

Let F,, be a random variable defined by uniformly selecting s € {0,1}" and setting F,, = f;.
Finally, let F'={F,} . be our function ensemble.

Pictorially, the function fs is defined by n-step walks down a full binary tree of depth n
having labels on the vertices. The root of the tree, hereafter referred to as the level 0 vertex
of the tree, is labelled by the string s. If an internal node is labelled r then its left child
is labelled Go(r) whereas its right child is labelled G1(7). The value of fi(z) is the string
residing in the leaf reachable from the root by a path corresponding to string z, when the
root is labelled by s. The random variable F), is assigned labelled trees corresponding to
all possible 2" labellings of the root, with uniform probability distribution.

A function, operating on n-bit strings, in the ensemble constructed above can be specified
by n bits. Hence, selecting, exchanging and storing such a function can be implemented at
the cost of selecting, exchanging and storing a single n-bit string.

Theorem 3.34 Let G and F be as in Construction 3.33, and suppose that G is a pseudoran-
dom generator. Then F is an efficiently computable ensemble of pseudorandom functions.

Proof: Clearly, the ensemble F'is efficiently computable. To prove that F'is pseudorandom
we use the hybrid technique. The k*® hybrid will be assigned functions which result by
uniformly selecting labels for the vertices of the k*" (highest) level of the tree and computing
the labels of lower levels as in Construction 3.33. The 0-hybrid will correspond to the
random variable F), (since a uniformly chosen label is assigned to the root), whereas the
n-hybrid will correspond to the uniform random variable H,, (since a uniformly chosen label
is assigned to each leaf). It will be shown that an efficient oracle machine distinguishing
neighbouring hybrids can be transformed into an algorithm that distinguishes polynomially
many samples of G(U,) from polynomially many samples of Us,. Using Theorem 3.6 (of
Subsection 3.2.3), we derive a contradiction to the hypothesis (that G is a pseudorandom
generator). Details follows.
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For every k, 0 <k<n, we define a hybrid distribution H* (assigned as values functions
f:{0,1}" — {0,1}") as follows. For every si,sz,...,59x € {0,1}", we define a function
Js1rsge 110, 137—{0,1}" so that

def
f517~~~752k (0102 T Un) = ng(' e (G0k+2(G0k+1(8idx(0k"'01))) e )

where idx(a) is index of a in the standard lexicographic order of strings of length |a|. (In
the sequel we take the liberty of associating the integer idx(«) with the string a.) Namely,
f50k7...751k (z) is computed by first using the k-bit long prefix of z to determine one of the
s;’s, and next using the (n — k)-bit long suffix of 2 to determine which of the functions G
and G to apply at each remaining stage. The random variable HF* is uniformly distributed
over the above (2”)2k possible functions. Namely,

fo def
H, = fU,(Ll),...,U,(fk)

where Uéj)’s are independent random variables each uniformly distributed over {0, 1}".

At this point it is clear that H? is identical to F},, whereas H? is identical to H,,. Again,
as usual in the hybrid technique, ability to distinguish the extreme hybrids yields ability to
distinguish a pair of neighbouring hybrids. This ability is further transformed (as sketched
above) so that contradiction to the pseudorandomness of (' is reached. Further details
follow.

We assume, in contradiction to the theorem, that the function ensemble F is not pseu-
dorandom. It follows that there exists a probabilistic polynomial-time oracle machine, M,
and a polynomial p(-) so that for infinitely many n’s

A(n) & [Prob( M (1")=1) — Prob(M"(1")=1)| > Zﬁ
Let #(-) be a polynomial bounding the running time of M(1") (such a polynomial exists
since M is polynomial-time). It follows that, on input 17, the oracle machine M makes
at most t(n) queries (since the number of queries is clearly bounded by the running time).
Using the machine M, we construct an algorithm D that distinguishes the #(-)-product of
the ensemble {G(U,)}, . from the ¢(-)-product of the ensemble {Uz,}, g as follows.

On input ay, ...,a; € {0, 1}?" (with ¢ = #(n)), algorithm D proceeds as follows. First, D
selects uniformly & € {0,1,...,n — 1}. This random choice, hereafter called the checkpoint,
and is the only random choice made by D itself. Next, algorithm D invokes the oracle
machine M (on input 1) and answers M’s queries as follows. The first query of machine
M, denoted ¢y, is answered by

ng(' : '(G0k+2(PCTk+1 (al))) o )
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where ¢; = 01 -+ -0, and Py(a) denotes the n-bit prefix of a (and Pj(«) denotes the n-bit
suffix of @). In addition, algorithm D records this query (i.e., ¢1). Subsequent queries are
answered by first checking if their k-bit long prefix equals the k-bit long prefix of a previous
query. In case the k-bit long prefix of the current query, denoted g¢;, is different from the
k-bit long prefixes of all previous queries, we associate this prefix a new input string (i.e.,
a;). Namely, we answer query ¢; by

ng(' o (G0k+2(PCTk+1 (042))) o )

where ¢; = 01---0,. In addition, algorithm D records the current query (i.e., ¢;). The
other possibility is that the k-bit long prefix of the i*P query equals the k-bit long prefix of
some previous query. Let j be the smallest integer so that the k-bit long prefix of the ith
query equals the k-bit long prefix of the j*h query (by hypothesis j < i). Then, we record
the current query (i.e., ¢;) but answer it using the string associated with query ¢;. Namely,
we answer query ¢; by

ng(' o (G0k+2(PCTk+1 (Oé]))) o )

where ¢; = 01 - - - 0,. Finally, when machine M halts, algorithm D halts as well and outputs
the same output as M.

Pictorially, algorithm D answers the first query by first placing the two halves of ay
in the corresponding children of the tree-vertex reached by following the path from the
root corresponding to oy ---0k. The labels of all vertices in the subtree corresponding to
o1 -- -0y are determined by the labels of these two children (as in the construction of F').
Subsequent queries are answered by following the corresponding paths from the root. In
case the path does not pass through a (k + 1)-level vertex which has already a label, we
assign this vertex and its sibling a new string (taken from the input). For sake of simplicity,
in case the path of the i query requires a new string we use the i*" input string (rather
than the first input string not used so far). In case the path of a new query passes through
a (k + 1)-level vertex which has been labelled already, we use this label to compute the
labels of subsequent vertices along this path (and in particular the label of the leaf). We
stress that the algorithm does not necessarily compute the labels of all vertices in a subtree
corresponding to oy - - - o (although these labels are determined by the label of the vertex
corresponding to oy - - - 0y), but rather computes only the labels of vertices along the paths
corresponding to the queries.

Clearly, algorithm D can be implemented in polynomial-time. It is left to evaluate its
performance. The key observation is that when the inputs are taken from the ¢(n)-product
of G(U,) and algorithm D chooses k as the checkpoint then M behaves exactly as on the
k™™ hybrid. Likewise, when the inputs are taken from the t(n)-product of Uy, and algorithm
D chooses k as the checkpoint then M behaves exactly as on the k + 1°¢ hybrid. Namely,

Claim 3.34.1: Let n be an integer and ¢ ef t(n). Let K be a random variable describing
the random choice of checkpoint by algorithm D (on input a ¢-long sequence of 2n-bit long
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strings). Then for every k€{0,1,...,n— 1}

n

Prob (D(G(UMW), .., GUD)=1|K=k) = Prob(M™(1")=1)
Prob (D(U), ... US))=1|K=k) = Prob (M (1")=1)

2n

where the U\’ and UQ(i)’s are independent random variables uniformly distributed over
{0,1}™ and {0,1}%7, respectively.

The above claim is quite obvious, yet a rigorous proof is more complex than one realizes at
first glance. The reason being that M’s queries may depend on previous answers it gets,
and hence the correspondence between the inputs of D and possible values assigned to the
hybrids is less obvious than it seems. To illustrate the difficulty consider a n-bit string which
is selected by a pair of interactive processes, which proceed in n iterations. At each iteration
the first party chooses a new location, based on the entire history of the interaction, and
the second process sets the value of this bit by flipping an unbiased coin. It is intuitively
clear that the resulting string is uniformly distributed, and the same holds if the second
party sets the value of the chosen locations using the outcome of a coin flipped beforehand.
In our setting the situation is slightly more involved. The process of determining the string
is terminated after & < n iterations and statements are made of the partially determined
string. Consequently, the situation is slightly confusing and we feel that a detailed argument
is required.

Proof of Claim 3.34.1: We start by sketching a proof of the claim for the extremely simple
case in which M’s queries are the first ¢ strings (of length n) in lexicographic order. Let
us further assume, for simplicity, that on input aq, ..., ay, algorithm D happens to choose
checkpoint k so that ¢+ = 25+, In this case the oracle machine M is invoked on input
1™ and access to the function f517,,,752k+1, where s, 14, = Py(a;) for every j < 2k and
o € {0,1}. Thus, if the inputs to D are uniformly selected in {0,1}?" then M is invoked
with access to the &+ 15° hybrid random variable (since in this case the s;’s are independent
and uniformly distributed in {0,1}"). On the other hand, if the inputs to D are distributed
as G(U,) then M is invoked with access to the k" hybrid random variable (since in this
case f517...752k+1 = fT17...7T2k where the r;’s are seeds corresponding to the a;’s).

For the general case we consider an alternative way of defining the random variable
H", for every 0 <m < n. This alternative way is somewhat similar to the way in which
D answers the queries of the oracle machine M. (We use the symbol m instead of & since
m does not necessarily equal the checkpoint, denoted k, chosen by algorithm D.) This
way of defining H* consists of the interleaving of two random processes, which together
first select at random a function ¢ : {0,1}™ — {0,1}", that is later used to determine a
function f:{0,1}"— {0,1}". The first random process, denoted p, is an arbitrary process
(“given to us from the outside”), which specifies points in the domain of g. (The process
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p corresponds to the queries of M, whereas the second process corresponds to the way A
answers these queries.) The second process, denoted 1, assigns uniformly selected n-bit
long strings to every new point specified by p, thus defining the value of ¢ on this point.
We stress that in case p specifies an old point (i.e., a point for which g is already defined)
then the second process does nothing (i.e., the value of ¢ at this point is left unchanged).
The process p may depend on the history of the two processes, and in particular on the
values chosen for the previous points. When p terminates the second process (i.e., 1) selects
random values for the remaining undefined points (in case such exist). We stress that the
second process (i.e., 1) is fixed for all possible choices of a (“first”) process p. The rest of
this paragraph gives a detailed description of the interleaving of the two random processes
(and may be skipped). We consider a randomized process p mapping sequences of n-bit
strings (representing the history) to single m-bit strings. We stress that p is not necessarily
memoryless (and hence may “remember” its previous random choices). Namely, for every
fixed sequence vy, ...,v;€{0,1}", the random variable p(v1, ..., v;) is (arbitrarily) distributed
over {0,1}"™U{L} where L is a special symbol denoting termination. A “random” function
g:{0,1}™—{0,1}" is defined by iterating the process p with the random process ¢ defined
below. Process 1 starts with g which is undefined on every point in its domain. At the *P
iteration o lets p; def p(v1,...,v;_1) and, assuming p; # L, sets v; def v; if p; = p; for some
J < i and lets v; be uniformly distributed in {0,1}" otherwise. In the latter case (i.e., p; is
new and hence ¢ is not yet defined on p;), v sets g(p;) def v; (in fact g(p;)=g(p;)=v;=v;
also in case p; = p; for some j < ¢). When p terminates, i.e., p(vy,...,v7) = L for some
T, v completes the function ¢ (if necessary) by choosing independently and uniformly in
{0, 1}" values for the points at which ¢ is undefined yet. (Alternatively, we may augment
the process p so that it terminates only after specifying all possible m-bit strings.)

Once a function g is totally defined, we define a function f9:{0,1}"+—{0,1}" by

def
floroy-0n) = Gop (- (Gopyy (Goyyy (9(0) - 01))) - )
The reader can easily verify that f9 equals f,om), ... 4am) (as defined in the hybrid construc-
tion above). Also, one can easily verify that the above random process (i.e., the interleaving
of ¢ with any p) yields a function ¢ that is uniformly distributed over the set of all possible
functions mapping m-bit strings to n-bit strings. It follows that the above described ran-

dom process yields a result (i.e., a function) that is distributed identically to the random
variable H".

Suppose now that the checkpoint chosen by D equals k and that D’s inputs are inde-
pendently and uniformly selected in {0,1}?". In this case the way in which D answers the
M’s queries can be viewed as placing independently and uniformly selected n-bit strings
as the labels of the (k4 1)-level vertices. It follows that the way in which D answers M’s
queries corresponds to the above described process with m = k + 1 (with M playing the
role of p and A playing the role of /). Hence, in this case M is invoked with access to the
k + 1% hybrid random variable.
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Suppose, on the other hand, that the checkpoint chosen by D equals k and that D’s
inputs are independently selected so that each is distributed identically to G/(U,). In this
case the way in which D answers the M’s queries can be viewed as placing independently
and uniformly selected n-bit strings as the labels of the k-level vertices. It follows that the
way in which D answers the M’s queries corresponds to the above described process with
m = k. Hence, in this case M is invoked with access to the k** hybrid random variable. O

Using Claim 3.34.1, it follows that
= A(n)

" n

[Prob (D(GUD), ..., GUM)=1) — Prob (D(ULY, ... Uf))=1)
which, by the contradiction hypothesis is greater than m, for infinitely many n’s. Using
Theorem 3.6, we derive a contradiction to the hypothesis (of the current theorem) that &
is a pseudorandom generator, and the current theorem follows. [l

3.7 * Pseudorandom Permutations

In this section we present definitions and constructions for pseudorandom permutations.
Clearly, pseudorandom permutations (over huge domains) can be used instead of pseudo-
random functions in any efficient application, yet pseudorandom permutation offer the extra
advantage of having unique preimages. This extra advantage may be useful sometimes, but
not always (e.g., it is not used in the rest of this book). The construction of pseudorandom
permutation uses pseudorandom functions as a building block, in a manner identical to the
high level structure of the DES. Hence, the proof presented in this section can be viewed
as a supporting the DES’s methodology of converting “randomly looking” functions into
“randomly looking” permutations. (The fact that in the DES this methodology is applied
to functions which are not “randomly looking” is not of our concern here.)

3.7.1 Definitions

We start with the definition of pseudorandom permutations. Loosely speaking a pseudo-
random ensemble of permutations is defined analogously to a pseudorandom ensemble of
functions. Namely,

Definition 3.35 (permutation ensembles): A permutation ensemble is a sequence P =
{Pu},eN of random variables, so that the random variable P, assumes values in the set
of permutations mapping n-bit long strings to n-bit long strings. The uniform permutation
ensemble, denoted K = {Kn}ne]Nf has K, uniformly distributed over the set of permutations
mapping n-bit long strings to n-bit long strings.
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Every permutation ensemble is a function ensemble. Hence, the definition of an effi-
ciently computable permutation ensemble is obvious (i.e., it is derived from the definition
of an efficiently computable function ensemble). Pseudorandom permutations are defined
as computationally indistinguishable from the uniform permutation ensemble.

Definition 3.36 (pseudorandom permutation ensembles): A permutation ensemble, P =
{Pn}ne]Nf is called pseudorandom if for every probabilistic polynomial-time oracle machine
M, every polynomial p(-) and all sufficiently large n’s

1

Pnriny — Pro Kn/iqn — -
Prob(M " (17)= 1) = Prob(M*"(1") = 1)] < o

where K = {K,,} . i the uniform permutation ensemble.

The fact that P is a pseudorandom permutation ensemble rather then just being a
pseudorandom function ensemble cannot be detected in poly(n)-time by an observer given
oracle access to P,. This fact steams from the observation that the uniform permutation
ensemble is polynomial-time indistinguishable from the uniform function ensemble. Namely,

Proposition 3.37 The uniform permutation ensemble (i.e., K = {K,} ) constitules a
pseudorandom function ensemble.

Proof Sketch: The probability that an oracle machine detects a collision in the oracle-
function, when given access to H,, is bounded by % - 27", where ¢ denotes the number of
queries made by the machine. Conditioned on not finding such a collision, the answers of
H,, are indistinguishable from those of K,. Finally, using the fact that a polynomial-time
machine can ask at most polynomially many queries, the proposition follows. [

Hence, using pseudorandom permutations instead of pseudorandom functions has reasons
beyond the question of whether a computationally restricted observer can detect the dif-
ference. Typically, the reason is that one wants to be guaranteed of the uniqueness of
preimages. A natural strengthening of this requirement is to require that, given the de-
scription of the permutation, the (unique) preimage can be efficiently found.

Definition 3.38 (efficiently computable and invertible permutation ensembles): A permu-
tation ensemble, P = {Pn}ne]Nf is called efficiently computable and invertible if the following
three conditions hold

1. (efficient indexing): There exists a probabilistic polynomial time algorithm, I, and
a mapping from strings to permutation, ¢, so that ¢(1(1")) and P, are identically
distributed.
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2. (efficient evaluation): There exists a probabilistic polynomial time algorithm, V, so

that V(i,z) = fi(z), where (as before) f; def (1),

3. (efficient inversion): There exists a probabilistic polynomial time algorithm, N, so that

N(i,e) = [T (@) (ic. [i(N(i,2))=2).

Items (1) and (2) are guaranteed by the definition of an efficiently computable permuta-
tion ensemble. The additional requirement is stated in item (3). In some settings it makes
sense to augment also the definition of a pseudorandom ensemble by requiring that the
ensemble cannot be distinguished from the uniform one even when the observer gets access
to two oracles: one for the permutation and the other for its inverse.

Definition 3.39 (strong pseudorandom permutations): A permutation ensemble, P =
{Pn}ne]Nf s called strongly pseudorandom if for every probabilistic polynomial-time oracle
machine M, every polynomial p(-) and all sufficiently large n’s

_ P 1
IProb(MFm " (1) =1) — Prob( MEmEx" (17)=1)| < o
pLn

where M59 can ask queries to both of its oracles (e.g., query (1,q) is answered by f(q),
whereas query (2,q) is answered by g(q)).

3.7.2 Construction

The construction of psendorandom permutation uses pseudorandom functions as a building
block, in a manner identical to the high level structure of the DES. Namely,

Construction 3.40 Let f:{0,1}"—{0,1}". For every x,y € {0,1}", we define

DES;(2,4) < (y,2 @ f(y))

where x @ y denotes the bit-by-bit exclusive-or of the binary strings x and y. Likewise, for

ooy f1:{0,1}7"—{0,1}", we define
def
DESft7~~~7f1($7 y) = DESft7~~~7f2(DESf1 (xv y))

For every function ensemble I = {Fn}ne]Nf and every function t: N — N, we define the

Sfunction ensemble DESH™ by letting DESY™ < pig where t = t(n) and
Fn nEN

n FO D
the quf) ’s are independent copies of the random variable F,.
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Theorem 3.41 Let F,,, t(-), and DES%:) be as in Construction 3.40 (above). Then, for ev-

ery polynomial-time computable function t(-), the ensemble {DES%:)}RGN is an efficiently
computable and invertible permutation ensemble. Furthermore, if F = {Fn}nEN s a pseu-
dorandom function ensemble then the ensemble {DES%W,}TLEIN— 1s pseudorandom, and the
ensemble {DES4Fn } el 18 strongly pseudorandom.

Clearly, the ensemble {DES%:)}RGN is efficiently computable. The fact that it is a
permutation ensemble, and furthermore one with efficient inverting algorithm, follows from
the observation that for every z,y€{0,1}"

DES; sero DESs(2,y)) = DESj,ero(y, 2@ f(y))
DES;(z @ f(y),z)
(y,(x® f(y) D fy))
(z,y)

where zero(z) % 0% for all z€{0,1}".

To prove the pseudorandomness of {DES%ﬂ }ne]N (resp., strong pseudorandomness of
{DES4Fn}ne]N) it suffices to prove the pseudorandomness of {DES? JnelN (Tesp., strong
pseudorandomness of {DES%IH}HEN). The reason being that if, say, {DES%IW}HEN is pseu-
dorandom while {DES%W,}TLEIN— is not, then one can derive a contradiction to the pseudo-
randomness of the function ensemble F' (i.e., a hybrid argument is used to bridge between
the three copies of H, and the three copies of F},). Hence, Theorem 3.41 follows from

Proposition 3.42 {DES%W}HEN is pseudorandom, whereas {DES}I;IW}HEN is strongly pseu-
dorandom.

Proof Sketch: We start by proving that {DES%IH}HE]N is pseudorandom. Let Py, def

DES? , and Ky, be the random variable uniformly distributed over all possible
Hy, nEN

permutation acting on {0,1}?". We prove that for every oracle machine, M, that, on input
17, asks at most m queries, it holds that

2m
27’L

|Prob(MT2n(17)=1) — Prob( M2 (17)=1)| <

Let ¢; = (LY, RY), with |L9] =|RY| =n, denote the random variable representing the it
query of M when given access to oracle Py,. Recall that Po, = DES ) ,2) ), where the
H 7(1j Vs are three independent random variables each uniformly distributed over the functions

acting on {0,1}". Let R¥*! o L¥ @Hékﬂ)(Rf) and L1 ef RE, for k=0,1,2. We assume,
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without loss of generality, that M never asks the same query twice. We define the following
a random variable (,, representing the event “there exists i < j <m and k€ {1,2} so that
Rf = R?” (namely, “on input 1™ and access to oracle Py, two of the m first queries of M
satisfy the relation Rf = Rf) Using induction on m, the reader can prove concurrently the
following two claims (see guidelines below).

Claim 3.42.1: Given —(,,, we have the R?’s uniformly distributed over {0,1}" and the L?’s
uniformly distributed over the n-bit strings not assigned to previous L;”s. Namely, for every
at, e, 0y €40, 137

1 m
Prob (/\;Zl(R?Iai) | —|Cm) = (2—n)
whereas, for every distinct 3y, ..., 3, €{0,1}"
C 1
Prob (AL (L7 =6:) | ~n ) = [] 57—
( ) 2t =it
Claim 3.42.2: 5
m

Prob (Cm—l—l | _'Cm) < 2_n

Proof Idea: The proof of Claim 3.42.1 follows by observing that the R?’s are determined

by applying the random function H7g3) to different arguments (i.e., the R?’s), whereas the

(2)

L? = R?’s are determined by applying the random function H,” to different arguments
(i.e., the R!’s) and conditioning that the R?’s are different. The proof of Claim 3.42.2
follows by considering the probability that an-l—l = RF, for some i <m and k€ {1,2}. Say
that RY=R? ., then certainly (by recalling ¢; # ¢y41) we have

RI=1) & HV(R) =1y & HI(RD ALY & HM(R) )= R4y
On the other hand, say that R?# R) ;| then
Prob (Rzl :R}n-l—l) = Prob (Hél)(R?) © HD(R) 4)=17 © L9n+1) =27
Furthermore, if R} # R, then
Prob (RZQ =R3n+1) = Prob (Héz)(Rzl) & HP (R, )=R) @ R?n-l—l) =27"
Hence, both claims follow. O

Combining the above claims, we conclude that Prob({,,) < gb—j, and furthermore, given that
Cm is false, the answers of Py, have left half uniformly chosen among all n-bit strings not
appearing as left halves in previous answers, whereas the right half uniformly distributed
among all n-bit strings. On the other hand, the answers of Kg, are uniformly distributed
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among all 2n-bit strings not appearing as previous answers. Hence, the statistical difference
between the distribution of answers in the two cases (i.e., answers by Py, or by Kg,) is

bounded by 227712. The first part of the proposition follows.

The proof that {DES}I;IW }ne]N is strongly pseudorandom is more complex, yet uses es-
sentially the same ideas. In particular, the event corresponding to (,, is the disjunction of
four types of events. Events of the first type are of the form RF = R? for k€{2,3}, where
g = (L9, RY) and ¢; = (L?, R?) are queries of the forward direction. Similarly, events of the
second type are of the form RF = R? for k€ {2,1}, where ¢; = (L}, R}) and ¢; = (L?,R?)
are queries of the backwards direction. Events of the third type are of the form R = R? for
ke{2,3}, where ¢; = (LY, R?) is of the forward direction, ¢; = (L?, R?) is of the backward
direction, and j < ¢. Similarly, events of the fourth type are of the form Rf = R? for
ke{2,1}, where ¢; = (L}, R}) is of the forward direction, ¢; = (L?, R?) is of the backward
direction, and j < 2. As before, one bounds the probability of event (,,,, and bounds the

statistical distance between answers by K3, and answers by {DES}I;IW }ne]N given that ¢, is
false. I}

3.8 Miscellaneous

3.8.1 Historical Notes

The notion of computational indistinguishable ensembles was first presented by Goldwasser
and Micali (in the context of encryption schemes) [GM82]. In the general setting, the notion
first appears in Yao’s work which is also the origin of the definition of pseudorandomness
[Y82]. Yao also observed that pseudorandom ensembles can be very far from uniform, yet
our proof of Proposition 3.3 is taken from [GK89a].

Pseudorandom generators were introduced by Blum and Micali [BM82], who defined
such generators as producing sequences which are unpredictable. Blum and Micali proved
that such pseudorandom generators do exist assuming the intractability of the discrete
logarithm problem. Furthermore, they presented a general paradigm, for constructing
pseudorandom generators, which has been used explicitly or implicitly in all subsequent
developments. Other suggestions for pseudorandom generators were made soon after by
Goldwasser et. al. [GMT82] and Blum et. al. [BBS82]. Consequently, Yao proved that
the existence of any one-way permutation implies the existence of pseudorandom generators
[Y82]. Yao was the first to characterize pseudorandom generators as producing sequences
which are computationally indistinguishable from uniform. He also proved that this char-
acterization of pseudorandom generators is equivalent to the characterization of Blum and
Micali [BM82].

Generalizations to Yao’s result, that one-way permutations imply pseudorandom gen-
erators, were proven by Levin [L85] and by Goldreich et. al. [GKL88], culminating with
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the result of Hastad et. al. [H90,ILL89] which asserts that pseudorandom generators exist
if and only if one-way functions exist. The constructions presented in Section 3.5 follow
the ideas of [GKL88] and [ILL89]. These constructions make extensive use of universals
hashing functions, which were introduced by Carter and Wegman [CW] and first used in
complexity theory by Sipser [S82].

Pseudorandom functions were introduced and investigated by Goldreich et. al. [GGM84].
In particular, the construction of pseudorandom functions based on pseudorandom genera-
tors is taken from [GGM84]. Pseudorandom permutations were defined and constructed by
Luby and Rackoff [LR86], and our presentation follows their work.

Author’s Note: Pseudorandom functions have many applications to cryptog-
raphy, some of them were to be presented in other chapters of the book (e.g., on
signatures and encryption). As these chapters were not written, the reader is
referred to [GGM84b] and [G87b,089].

The hybrid method originates from the work of Goldwasser and Micali [GM82]. The
terminology is due to Leonid Levin.

3.8.2 Suggestion for Further Reading

Section 3.5 falls short of presenting the construction of Hastad et. al. [HILL], not to mention
proving its validity. Unfortunately, the proof of this fundamental theorem, asserting that
pseudorandom generators exist if one-way functions exist, is too complicated to fit in a
book of the current nature. The interested reader is thus referred to the original paper of
Hastad et. al. [HILL] (which combines the results in [H90,ILL89]) and to Luby’s book
[L94book].

Simple pseudorandom generators based on specific intractability assumptions are pre-
sented in [BM82,BBS82,ACGS84,VV84,K88]. In particular, [ACGS84] presents pseudoran-
dom generators based on the intractability of factoring, whereas [K88] presents pseudoran-
dom generators based on the intractability of discrete logarithm problems. In both cases,
the major step is the construction of hard-core predicates for the corresponding collections
of one-way permutations.

Proposition 3.3 presents a pair of ensembles which are computational indistinguishable
although they are statistically far apart. One of the two ensembles is not constructible in
polynomial-time. Goldreich showed that a pair of polynomial-time constructible ensembles
having the above property (i.e., being both computationally indistinguishable and having a
non-negligibly statistical difference) exists if and only if one-way functions exist [G90ipl].

Author’s Note: G90ipl has appeared in IPL, Vol. 34, pp. 277-281.

Readers interested in Kolmogorov complexity are referred to [WHAT?]
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3.8.3 Open Problems

Although Hastad et. al. [HILL] showed how to construct pseudorandom generators given
any one-way function, their construction is not practical. The reason being that the “qual-
ity” of the generator on seeds of length n is related to the hardness of inverting the given
function on inputs of length < ¢/n. We believe that presenting an efficient transformation
of arbitrary one-way functions to pseudorandom generators is one of the most important
open problems of the area.

An open problem of more practical importance is to try to present even more efficient
pseudorandom generators based on the intractability of specific computational problems
like integer factorization. For further details see Subsection 2.7.3.

3.8.4 Exercises

Exercise 1: computational indistinguishability is preserved by efficient algorithms: Let
{Xn},eN and {Y,} . be two ensembles that are polynomial-time indistinguish-
able, and let A be a probabilistic polynomial-time algorithm. Prove that the ensembles
{A(Xn)}, e and {A(Y,)}, . are polynomial-time indistinguishable.

Exercise 2: statistical closeness is preserved by any function: Let {X,,} g and {Y,.}
be two ensembles that are statistically close, and let f:{0,1}*— {0, 1}* be a function.
Prove that the ensembles {f(X,)}, . and {f(Yn)}, N are statistically close.

Exercise 3: Prove that for every I € BPP and every pair of polynomial-time indistin-
guishable ensembles, {X,} . and {Y,} ., it holds that the function
Ap(n) % |Prob (X, € L) — Prob (Y, €L)|
is negligible in n.
It is tempting to think the the converse holds as well, but we don’t know if it
does; note that {X,} and {Y,,} may be distinguished by a probabilitic algorithm,
but not by a deterministic one. In such a case, which language should we define?

For example, suppose that A is a probabilistic polynomial-time algorithm and let
def

L= {z:Prob(A(x)=) > 1}, then L is not necessarily in BPP.

Exercise 4: An equivalent formulation of statistical closeness: In the non-computational
setting both the above and its converse are true and can be easily proven. Namely,
prove that two ensembles, {X,} g and {Y,} ., are statistically close if and only
if for every set S C {0, 1}*,

Ag(n) % |Prob (X, €5) — Prob (Y, €9)]

is negligible in n.
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Exercise 5: statistical closeness implies computational indistinguishability: Prove that if
two ensembles are statistically close then they are polynomial-time indistinguishable.
(Guideline: use the result of the previous exercise, and define for every function

F{0, 11— 40,1} aset S; % {a: fa)=1}.)

Exercise 6: computational indistinguishability by circuits - probabilism versus determin-

ism: Let {X,}, . and {Y,}, . be two ensembles, and C def {Cn}, cw be a family

of probabilistic polynomial-size circuits. Prove that there exists a family of (deter-

ministic) polynomial-size circuits, D def {Dn}, W, so that for every n
Ap(n) 2 Ac(n)
where

Ap(n) % |[Prob(D,(X,))=1) — Prob(D,(Y,))=1)]
Ac(n) % |Prob(C,(X,))=1) — Prob (Cp(Y,))=1)]

Exercise 7: computational indistinguishability by circuits - single sample versus several
samples: We say that the ensembles X = {X,,} - and YV = {Y,} [ are indistin-
guishable by polynomial-size circuits if for every family, {C,,}, . of (deterministic)
polynomial-size circuits, for every polynomial p(-) and all sufficiently large n’s

1
|Prob (C),(X,,))=1) — Prob (C,,(Y,))=1)| < —
p(n)
Prove that X and Y are indistinguishable by polynomial-size circuits if and only if their
m(-)-products are indistinguishable by polynomial-size circuits, for every polynomial
(Guideline: X and Y need not be polynomial-time constructible! Yet, a “good choice”
of #',...,, 2% and y**2, ..., y™ may be “hard-wired” into the circuit.)

Exercise 8: On the general definition of a pseudorandom generator: Let GG be a pseudo-

random generator (by Definition 3.8), and let {Uy,,)}, . be polynomial-time indis-
tinguishable from {G(U,)}, - Prove that the probability that G(U,) has length
not equal to [(n) is negligible (in n).
(Guideline: Consider an algorithm that for some polynomial p(-) proceeds as follows.
On input 1" and a string to be tested a, the algorithm first samples G(U,,) for p(n)
times and records the length of the shortest string found. Next the algorithm outputs
1 if and only if « is longer than the length recorded.)

Exercise 9: Consider a modification of Construction 3.10, where s;0; = G1(s;-1) is used
instead of 0;5; = G'1(s;_1). Provide a simple proof that the resulting algorithm is also
pseudorandom.

(Guideline: don’t modify the proof of Theorem 3.11, but rather modify G itself.)
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Exercise 10: Let GG be a pseudorandom generator, and A be a polynomial-time computable
permutation (over strings of the same length). Prove that G’ and G” defined by

G'(s) ef h(G(s)) and G"(s) ef G/(h(s)) are both pseudorandom generators.

Exercise 11: Let GG be a pseudorandom generator, and h be a permutation (over strings
of the same length) that is not necessarily polyonimial-time computable.

1. Is G’ defined by G'(s) ef h(G(s)) necessarily a pseudorandom generator?
2. Is G” defined by G"(s) ef

G/(h(s)) necessarily a pseudorandom generator?
(Guideline: you may assume that there exist one-way permutations.)

Exercise 12: Alternative construction of pseudorandom generators with large expansion
factor: Let (1 be a pseudorandom generator with expansion factor I(n) = n + 1, and

let p(-) be a polynomial. Define GG(s) to be the result of applying G iteratively p(]s|)

times on s (i.e., G(s) ef Gf“sb(s) where GY(s) ' s and Gitt ef G1(Gi(s))). Prove

that GG is a pseudorandom generator. What are the advantages of using Construction
3.107

Exercise 13: Sequential Pseudorandom Generator: A oracle machine is called a sequen-
tial observer if its queries constitute a prefix of the natural numbers. Namely, on
input 1™, the sequential observer makes queries 1,2, 3, .... Consider the following two
experiments with a sequential observer having input 1”:

1. The observer’s queries are answered by independent flips of an unbiased coin.

2. The observer’s queries are answered as follows. First a random seed, s, of length
n is uniformly chosen. The i*h query is answered by the rightmost (i.e., the ith)
bit of ¢! (s), where ¢! is defined as in the proof of Theorem 3.11.

Prove that a probabilistic polynomial-time observer cannot distinguish the two ex-
periments, provided that G used in the construction is a pseudorandom generator.
Namely, the difference between the probability that the observer outputs 1 in the first
experiment and the probability that the observer outputs 1 in the second experiment
is a negligible function (in n).

Exercise 14: pseudorandomness implies unpredictability: Prove that all pseudorandom en-
sembles are unpredictable (in polynomial-time).
(Guideline: Given an efficient predictor show how to construct an efficient distin-
guisher of the pseudorandom ensemble from the uniform one.)

Exercise 15: unpredictability implies unpredictability: Let X — {Xn}nEN be an ensemble
such that there exists a function [: N — N so that X,, ranges over string of length
[(n), and I(n) can be computed in time poly(n). Prove that if X is unpredictable (in
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polynomial-time) then it is pseudorandom.

(Guideline: Given an efficient distinguisher of X from the uniform ensemble {Uy,)}, N
show how to construct an efficient predictor. The predictor randomly selects k €
{0,...,I(n) — 1} reads only the first £ bits of the input, and applies D to the string
resulting by augmenting the k-bit long prefix of the input with {(n) — k uniformly cho-
sen bits. If D answers 1 then the predictor outputs the first of these random bits else
the predictor outputs the complementary value. Use a hybrid technique to evaluate
the performance of the predictor. Extra hint: an argument analogous to that of the
proof of Theorem 3.14 has to be used as well.)

Exercise 16: Construction of Hashing Families:

1. Consider the set 57" of functions mapping n-bit long strings into m-bit strings as
follows. A function h in 57" is represented by an n-by-m binary matrix A, and
an m-dimensional binary vector b. The n-dimensional binary vector z is mapped
by the function h to the m-dimensional binary vector resulting by multiplying z
by A and adding the vector b to the resulting vector (i.e., h(z) = 2 A+ b). Prove
that 57" so defined constitutes a hashing family (as defined in Section 3.5).

2. Repeat the above item when the n-by-m matrices are restricted to be Toeplitz
matrices. An n-by-m Toeplitz matriz, T = {T; ;}, satisfies T; ; = T4 ;41 for all

4,7
Note that binary n-by-m Toeplitz matrices can be represented by strings of length

n+m — 1, where as representing arbitrary n-by-m binary matrices requires strings of
length n - m.

Exercise 17: Another Hashing Lemma: Let m, n, ST, b, X,, and é be as in Lemma 3.18.

Prove that, for every set S C {0,1}™, and for all but a 2~ (b=mtlog; [51) §=2 fraction of
the A’s in 57", it holds that

Prob(h(X,)€S5) € (14+6)- '2%'

(Guideline: follow the proof of Lemma 3.18, defining (,(h) = 1 if h(z) € S and 0
otherwise.)

Exercise 18: Yet another Hashing Lemma: Let m, n, and ST be as above. Let B C {0,1}"

and S C {0,1}™ be sets, and let b def log, |B| and s def log, |5]. Prove that, for all
but a % - 672 fraction of the ’s in S, it holds that

H{z eB:h(z)es)if e (1+6)-(|B]-]5])

(Guideline: Define a random variable X,, that is uniformly distributed over B.)
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Exercise 19: Failure of an alternative construction of pseudorandom functions: Consider
a construction of a function ensemble where the functions in F;, are defined as follows.
For every s € {0,1}", the function f; is defined so that

Fol@) € Gy (- (Goy(Gay (2)) )

where s = 01 ---0,, and GG, is as in Construction 3.33. Namely the roles of # and s in
Construction 3.33 are switched (i.e., the root is labelled z and the value of f; on z is
obtained by following the path corresponding to the index s). Prove that the resulting
function ensemble is not necessarily pseudorandom (even if (G is a pseudorandom
generator).

(Guideline: Show, first, that if pseudorandom generators exist then there exists a
pseudorandom generator ¢ satisfying G/(0™) = 0*".)

Exercise 20: Pseudorandom Generators with Direct Access: A direct access pseudorandom
generator is a deterministic polynomial-time algorithm, G, for which no probabilistic
polynomial-time oracle machine can distinguish the following two cases:

1. New queries of the oracle machine are answered by independent flips of an unbi-
ased coin. (Repeating the same query yields the same answer.)

2. First, a random “seed”, s, of length n is uniformly chosen. Next, each query, g,
is answered by G(s,q).

The bit G(s,4) may be thought of as the *" bit in a bit sequence corresponding to
the seed s, where i is represented in binary. Prove that the existence of (regular)
pseudorandom generators implies the existence of pseudorandom generators with di-
rect access. Note that modifying the current definition, so that only unary queries
are allowed, yields an alternative definition of a sequential pseudorandom generator
(presented in Exercise 13 above). Evaluate the advantage of direct access pseudoran-
dom generators over sequential pseudorandom generators in settings requiring direct
access only to bits of a polynomially long pseudorandom sequence.

Exercise 21: other types of pseudorandom functions: Define pseudorandom predicate en-
sembles so that the random variable F),, ranges over arbitrary Boolean predicates
(i.e., functions in the range of F, are defined on all strings and have the form
f+{0,1}* — {0,1}). Assuming the existence of pseudorandom generators, con-
struct efficiently computable ensembles of pseudorandom Boolean functions. Same
for ensembles of functions in which each function in the range of F,, operates on the
set of all strings (i.e., has the form f:{0,1}*— {0,1}*).
(Guideline: Use a modification of Construction 3.33 in which the building block is a
pseudorandom generator expanding strings of length n into strings of length 3n.)

Exercise 22: An alternative definition of pseudorandom functions: For sake of simplicity
this exercise is stated in terms of ensembles of Boolean functions as presented in
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the previous exercise. We say that a Boolean function ensemble, F = {Fn}ne]Nv is
unpredictable if for every probabilistic polynomial-time oracle machine, M, for every
polynomial p(-) and for all sufficiently large n’s

Fo 2 g Fo i 1 1

Prob(corr™(M"(1"))) < 5 +p(n)
where M*™ assumes values of the form (z,0) € {0,1}"*! so that z is not a query
appearing in the computation M, and corr/(x,0)is defined as the predicate “f(z) =
o”. Intuitively, after getting the value of f on points of its choice, the machine M
outputs a new point and tries to guess the value of f on this point. Assuming that
F = {Fn}nEN is efficiently computable, prove that F is pseudorandom if and only if
F is unpredictable.
(Guideline: A pseudorandom function ensemble is unpredictable since the uniform
function ensemble is unpredictable. For the other direction use ideas analogous to
those used in Exercise 14.)

Exercise 23: Another alternative definition of pseudorandom functions: Repeat the above
exercise when modifying the definition of unpredictability so that the oracle machine
gets & € {0,1}" as input and after querying the function f on other points of its choice,
the machine outputs a guess for f(z). Namely, we require that for every probabilistic
polynomial-time oracle machine, M, that does not query the oracle on its own input,
for every polynomial p(-), and for all sufficiently large n’s

Prob( M (U,)=F,(U,)) <

Exercise 24: Let F), and DES}, be as in Construction 3.40. Prove that, regardless of
the choice of the ensemble F' = {F,} _p, the ensemble DES%H is not pseudorandom.
Similarly, prove that the ensemble DES%W is not strongly pseudorandom.

(Guideline: Start by showing that the ensemble DES}, is not pseudorandom.)
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Chapter 4

Encryption Schemes

In this chapter we discuss the well-known notions of private-key and public-key encryption
schemes. More importantly, we define what is meant by saying that such schemes are secure.
We then turn to some basic constructions. We show that the widely used construction of a
“stream cipher” yields a secure (private-key) encryption, provided that the “key sequence” is
generated using a pseudorandom generator. Public-key encryption schemes are constructed
based on any trapdoor one-way permutation. Finally, we discuss dynamic notions of security
such as robustness against chosen ciphertext attacks and nonmalleability.

#Plan

\input{enc-set}}) The basic setting: private-key, public-key,...
\input{enc-sec}’) Definitions of Security (semantic/indistinguishable)
\input{enc-eqv}%} Equivalence of the two definitions

\input{enc-prg}ti/ Private-Key schemes based on Pseudorandom Generators
\input{enc-pk}%%% Constrictions of Public-Key Encryption Schemes
\input{enc-str}i) Stronger notions of security (chosen msg, ‘‘malleable’’)
\input{enc-misc}), As usual: History, Reading, Open, Exercises
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Chapter 5

Digital Signatures and Message
Authentication

The difference between message authentication and digital signatures is analogous to the
difference between private-key and public-key encryption schemes. In this chapter we define
both type of schemes and the security problem associated to them. We then present several
constructions. We show how to construct message authentication schemes using pseudoran-
dom functions, and how to construct signature schemes using one-way permutations (which
do not necessarily have a trapdoor).

hPlan
\input{sg-def}/ %/ Definitions of Unforgable Signatures
heviiii i and Message Authentication

\input{sg-aut}}%4/% Construction of Message Authentication
\input{sg-con1}}) Construction of Signatures by [NY]

heviiii i tools: one-time signature, aut-trees, one-way hashing
\input{sg-hash}/) * Collision-free hashing:
he oo def, construct by clawfree, applications (sign., etc.)

\input{sg-con2}/) * Alternative Construction of Signatures [EGM]
\input{sg-misc}%) As usual: History, Reading, Open, Exercises
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