
Chapter 3Pseudorandom GeneratorsIn this chapter we discuss pseudorandom generators. Loosely speaking, these are e�cientdeterministic programs which expand short randomly selected seeds into much longer \pseu-dorandom" bit sequences. Pseudorandom sequences are de�ned as computationally indis-tinguishable from truly random sequences by e�cient algorithms. Hence, the notion ofcomputational indistinguishability (i.e., indistinguishability by e�cient procedures) plays apivotal role in our discussion of pseudorandomness. Furthermore, the notion of computa-tional indistinguishability, plays a key role also in subsequent chapters, and in particular inthe discussion of secure encryption, zero-knowledge proofs, and cryptographic protocols.In addition to de�nitions of pseudorandom distributions, pseudorandom generators, andpseudorandom functions, the current chapter contains constructions of pseudorandom gen-erators (and pseudorandom functions) based on various types of one-way functions. Inparticular, very simple and e�cient pseudorandom generators are constructed based on theexistence of one-way permutations.Organizaton: Basic discussions, de�ntions and constructions of pseudorandom genera-tors appear in Sections 3.1{3.4: we start with a motivating discussion (Section 3.1), proceedwith a general de�nition of computational indistinguishability (Section 3.2), next presentand discuss de�nitions of pseudorandom generators (Section 3.3), and �nally present somesimple constructions (Section 3.4). More general constructions are discussed in Section 3.5.Pseudorandom functions are de�ned and constructed (out of pseudorandom generators) inSection 3.6. (Pseudorandom permutations are discussed in Section 3.7.)3.1 Motivating DiscussionThe nature of randomness has attracted the attention of many people and in particular ofscientists in various �elds. We believe that the notion of computation, and in particular ofe�cient computation, provides a good basis for understanding the nature of randomness.75

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

76 CHAPTER 3. PSEUDORANDOM GENERATORS3.1.1 Computational Approaches to RandomnessOne computational approach to randomness has been initiated by Solomonov and Kol-mogorov in the early 1960's (and rediscovered by Chaitin in the early 1970's). This approachis \ontological" in nature. Loosely speaking, a string, s, is considered Kolmogorov-randomif its length (i.e., jsj) equals the length of the shortest program producing s. This shortestprogram may be considered the \simplest" \explanation" to the phenomenon described bythe string s. Hence, the string, s, is considered Kolmogorov-random if it does not posses asimple explanation (i.e., an explanation which is substantially shorter than jsj). We stressthat one cannot determine whether a given string is Kolmogorov-random or not (and moregenerally Kolmogorov-complexity is a function that cannot be computed). Furthermore,this approach seems to have no application to the issue of \pseudorandom generators".An alternative computational approach to randomness is presented in the rest of thischapter. In contrast to the approach of Kolmogorov, the new approach is behavioristicin nature. Instead of considering the \explanation" to a phenomenon, we consider thephenomenon's e�ect on the environment. Loosely speaking, a string is considered pseu-dorandom if no e�cient observer can distinguish it from a uniformly chosen string of thesame length. The underlying postulate is that objects that cannot be told apart by e�cientprocedures are considered equivalent, although they may be very di�erent in nature (e.g.,have fundamentally di�erent (Kolmogorov) complexity). Furthermore, the new approachnaturally leads to the concept of a pseudorandom generator, which is a fundamental conceptwith lots of practical applications (and in particular to the area of cryptography).3.1.2 A Rigorous Approach to Pseudorandom GeneratorsThe approach to pseudorandom generators, presented in this book, stands in contrast tothe heuristic approach which is still common in discussions concerning \pseudorandom gen-erators" which are being used in real computers. The heuristic approach consider \pseu-dorandom generators" as programs which produce bit sequences \passing" several speci�cstatistical tests. The choice of statistical tests, to which these programs are subjected,is quite arbitrary and lacks a systematic foundation. Furthermore, it is possible to con-struct e�cient statistical tests which foil the \pseudorandom generators" commonly usedin practice (and in particular distinguish their output from a uniformly chosen string ofequal length). Consequently, before using a \pseudorandom generator", in a new applica-tion (which requires \random" sequences), extensive tests have to be conducted in order todetect whether the behaviour of the application when using the \pseudorandom generator"preserves its behaviour when using a \true source of randomness". Any modi�cation of theapplication requires new comparison of the \pseudorandom generator" against the \ran-dom source", since the non-randomness of the \pseudorandom generator" may badly e�ectthe modi�ed application (although it did not e�ect the original application). Furthermore,using such a \pseudorandom generator" for \cryptographic purposes" is highly risky, sincethe adversary may try to exploit the known weaknesses of the \pseudorandom generator".

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.2. COMPUTATIONAL INDISTINGUISHABILITY 77In contrast the concept of pseudorandom generators, presented below, is a robust one.By de�nition these pseudorandom generators produce sequences which look random to anye�cient observer. It follows that the output of a pseudorandom generator may be usedinstead of \random sequences" in any e�cient application requiring such (i.e., \random")sequences.3.2 Computational IndistinguishabilityThe concept of e�cient computation leads naturally to a new kind of equivalence betweenobjects. Objects are considered to be computationally equivalent if they cannot be told apartby any e�cient procedure. Considering indistinguishable objects as equivalent is one of thebasic paradigms of both science and real-life situations. Hence, we believe that the notionof computational indistinguishability is fundamental.Formulating the notion of computational indistinguishability is done, as standard incomputational complexity, by considering objects as in�nite sequences of strings. Hence,the sequences, fxngn2N and fyngn2N , are said to be computational indistinguishable if noe�cient procedure can tell them apart. In other words, no e�cient algorithm, D, can acceptin�nitely many xn's while rejecting their y-counterparts (i.e., for every e�cient algorithmD and all su�ciently large n's it holds that D accepts xn i� D accepts yn). Objects whichare computationally indistinguishable in the above sense may be considered equivalent asfar as any practical purpose is concerned (since practical purposes are captured by e�cientalgorithms and those can not distinguish these objects).The above discussion is naturally extended to the probabilistic setting. Furthermore,as we shall see, this extension yields very useful consequences. Loosely speaking, twodistributions are called computationally indistinguishable if no e�cient algorithm can tellthem apart. Given an e�cient algorithm, D, we consider the probability that D accepts(e.g., outputs 1 on input) a string taken from the �rst distribution. Likewise, we considerthe probability that D accepts a string taken from the second distribution. If these twoprobabilities are close, we say that D does not distinguish the two distributions. Again,the formulation of this discussion is with respect to two in�nite sequences of distributions(rather than with respect to two �xed distributions). Such sequences are called probabilityensembles.3.2.1 De�nitionDe�nition 3.2.1 (ensembles): Let I be a countable index set. An ensemble indexed by Iis a sequence of random variables indexed by I. Namely, X = fXigi2I, where the Xi's arerandom variables, is an ensemble indexed by I.We will use either N or a subset of f0; 1g� as the index set. Typically, in our applications,an ensemble of the formX = fXngn2N has eachXn ranging over strings of length n, whereasan ensemble of the form X = fXwgw2f0;1g� will have each Xw ranging over strings of length

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

78 CHAPTER 3. PSEUDORANDOM GENERATORSjwj. In the rest of this chapter, we will deal with ensembles indexed by N, whereas in otherchapters (e.g., in the de�nition of secure encryption and zero-knowledge) we will deal withensembles indexed by strings. To avoid confusion, we present variants of the de�nition ofcomputational indistinguishability for each of these two cases. The two formulations can beuni�ed if one associates the natural numbers with their unary representation (i.e., associateN and f1n :n2Ng).De�nition 3.2.2 (polynomial-time indistinguishability):1. variant for ensembles indexed by N: Two ensembles, X def= fXngn2N and Y def=fYngn2N , are indistinguishable in polynomial-time if for every probabilistic polynomial-time algorithm, D, every polynomial p(�), and all su�ciently large n'sjPr (D(Xn; 1n)=1)� Pr (D(Yn; 1n)=1) j < 1p(n)2. variant for ensembles indexed by a set of strings S: Two ensembles, X def= fXwgw2Sand Y def= fYwgw2S, are indistinguishable in polynomial-time if for every probabilisticpolynomial-time algorithm, D, every polynomial p(�), and all su�ciently long w'sjPr (D(Xw; w)=1)� Pr (D(Yw; w)=1) j < 1p(jwj)The probabilities in the above de�nition are taken over the corresponding random vari-ables Xi (or Yi) and the internal coin tosses of algorithm D (which is allowed to be aprobabilistic algorithm). The second variant of the above de�nition will play a key role insubsequent chapters, and further discussion of it is postponed to these places. In the rest ofthis chapter we refer only to the �rst variant of the above de�nition. The string 1n is givenas auxiliary input to algorithm D in order to make the �rst variant consistent with the sec-ond one, and in order to make it more intuitive. However, in typical cases, where the lengthof Xn (resp. Yn) and n are polynomialy related (i.e., jXnj< poly(n) and n < poly(jXnj))and can be computed one from the other in poly(n)-time, giving 1n as auxiliary input isredundant.The following mental experiment may be instructive. For each � 2 f0; 1g�, consider theprobability, hereafter denoted d(�), that algorithm D outputs 1 on input �. Consider theexpectation of d taken over each of the two ensembles. Namely, let d1(n) = E(d(Xn)) andd2(n) = E(d(Yn)). Then, X and Y are said to be indistinguishable by D if the di�erence(function) �(n) def= jd1(n) � d2(n)j is negligible in n. A few examples may help to furtherclarify the de�nition.Consider an algorithm, D1, which obliviously of the input, ips a 0-1 coin and outputsits outcome. Clearly, on every input, algorithm D1 outputs 1 with probability exactly onehalf, and hence does not distinguish any pair of ensembles. Next, consider an algorithm,

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.2. COMPUTATIONAL INDISTINGUISHABILITY 79D2, which outputs 1 if and only if the input string contains more zeros than ones. SinceD2 can be implemented in polynomial-time, it follows that if X and Y are polynomial-time indistinguishable then the di�erence jPr(!(Xn) < n2) � Pr(!(Yn) < n2)j is negligible(in n), where !(�) denotes the number of 1's in the string �. Similarly, polynomial-timeindistinguishable ensembles must exhibit the same \pro�le" (up to negligible error) withrespect to any \string statistics" which can be computed in polynomial-time. However,it is not required that polynomial-time indistinguishable ensembles have similar \pro�les"with respect to quantities which cannot be computed in polynomial-time (e.g., KolmogorovComplexity or the function presented right after Proposition 3.2.3).3.2.2 Relation to Statistical ClosenessComputational indistinguishability is a re�nement of a traditional notion from probabilitytheory. We call two ensembles X def= fXngn2N and Y def= fYngn2N , statistically close if theirstatistical di�erence is negligible, where the statistical di�erence (also known as variationdistance) of X and Y is de�ned as the function�(n) def= 12 �X� jPr(Xn=�)� Pr(Yn=�)jClearly, if the ensembles X and Y are statistically close then they are also polynomial-timeindistinguishable (see Exercise 6). The converse, however, is not true. In particularProposition 3.2.3 There exist an ensemble X = fXngn2N so that X is not statisticallyclose to the uniform ensemble, U def= fUngn2N , yet X and U are polynomial-time indistin-guishable. Furthermore, Xn assigns all its probability mass to at most 2n=2 strings (of lengthn).Recall that Un is uniformly distributed over strings of length n. Although X and U arepolynomial-time indistinguishable, one can de�ne a function f : f0; 1g� 7! f0; 1g so that fhas average 1 over X while having average almost 0 over U (e.g., f(x) = 1 if and only if xis in the range of X). Hence, X and U have di�erent \pro�le" with respect to the functionf , yet f is (necessarily) impossible to compute in polynomial-time.Proof: We claim that, for all su�ciently large n, there exist a random variable Xn, dis-tributed over some set of at most 2n=2 strings (each of length n), so that for every circuit,Cn, of size (i.e., number of gates) 2n=8 it holds thatjPr(Cn(Un)=1)� Pr(Cn(Xn)=1)j < 2�n=8The proposition follows from this claim, since polynomial-time distinguishers (even prob-abilistic ones - see Exercise 7) yield polynomial-size circuits with at least as big a distin-guishing gap.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

80 CHAPTER 3. PSEUDORANDOM GENERATORSThe claim is proven using a probabilistic argument (i.e., a counting argument). Let Cnbe some �xed circuit with n inputs, and let pn def= Pr(Cn(Un)=1). We select, independentlyand uniformly 2n=2 strings, denoted s1; :::; s2n=2, in f0; 1gn. De�ne random variables �i's sothat �i = Cn(si) (these random variables depend on the random choices of the correspondingsi's). Using Cherno� Bound, we get thatPr0@jpn � 12n=2 � 2n=2Xi=1 �ij � 2�n=81A � 2e�2�2n=2�2�n=4 < 2�2n=4Since there are at most 22n=4 di�erent circuits of size (number of gates) 2n=8, it follows thatthere exists a sequence of s1; :::; s2n=2 2 f0; 1gn, so that for every circuit Cn of size 2n=8 itholds that jPr(Cn(Un)=1)� 12n=2 2n=2Xi=1 Cn(si)j < 2�n=8Letting Xn equal si with probability 2�n=2, for every 1� i�2n=2, the claim follows.Proposition 3.2.3 presents a pair of ensembles which are computational indistinguishablealthough they are statistically far apart. One of the two ensembles is not constructible inpolynomial-time (see De�nition 3.2.5 below). Interestingly, a pair of polynomial-time con-structible ensembles having the above property (i.e., being both computationally indistin-guishable and having a non-negligibly statistical di�erence) exists only if one-way functionsexist. Jumping ahead, we note that this necessary condition is also su�cient. (This followsfrom the fact that pseudorandom generators give rise to a polynomial-time constructibleensemble which is computationally indistinguishable from the uniform ensemble and yetstatistically very far from it.)3.2.3 Indistinguishability by Repeated ExperimentsBy De�nition 3.2.2, two ensembles are considered computationally indistinguishable if noe�cient procedure can tell them apart based on a single sample. We shall now show that\e�ciently constructible" computational indistinguishable ensembles cannot be (e�ciently)distinguished even by examining several samples. We start by presenting de�nitions of\indistinguishability by sampling" and \e�ciently constructible ensembles".De�nition 3.2.4 (indistinguishability by sampling): Two ensembles, X def= fXngn2N andY def= fYngn2N , are indistinguishable by polynomial-time sampling if for every probabilisticpolynomial-time algorithm, D, every two polynomials m(�) and p(�), and all su�cientlylarge n's jPr �D(X (1)n ; :::; X (m(n))n)=1�� Pr�D(Y (1)n ; :::; Y (m(n))n)=1� j < 1p(n)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.2. COMPUTATIONAL INDISTINGUISHABILITY 81where X (1)n through X (m)n and Y (1)n through Y (m)n , are independent random variables witheach X (i)n identical to Xn and each Y (i)n identical to Yn.De�nition 3.2.5 (e�ciently constructible ensembles): An ensemble, X def= fXngn2N , issaid to be polynomial-time constructible if there exists a probabilistic polynomial time algo-rithm S so that for every n, the random variables S(1n) and Xn are identically distributed.Theorem 3.2.6 Let X def= fXngn2N and Y def= fYngn2N , be two polynomial-time con-structible ensembles, and suppose that X and Y are indistinguishable in polynomial-time.Then X and Y are indistinguishable by polynomial-time sampling.An alternative formulation of Theorem 3.2.6 proceeds as follows. For every ensembleZ def= fZngn2N and every polynomial m(�) de�ne the m(�)-product of Z as the ensemblef(Z(1)n ; :::; Z(m(n))n)gn2N , where the Z(i)n 's are independent copies of Zn. Theorem 3.2.6 as-serts that if the ensembles X and Y are polynomial-time indistinguishable, and each ispolynomial-time constructible, then, for every polynomial m(�), the m(�)-product of X andthe m(�)-product of X are polynomial-time indistinguishable.The information theoretic analogue of the above theorem is quite obvious: if two ensem-bles are statistically close then also their polynomial-products must be statistically close(see Exercise 5). Adapting the proof to the computational setting requires, as usual, a\reducibility argument". This argument uses, for the �rst time in this book, the hybridtechnique. The hybrid technique plays a central role in demonstrating the computationalindistinguishability of complex ensembles, constructed based on simpler (computationalindistinguishable) ensembles. Subsequent application of the hybrid technique will involvemore technicalities. Hence, the reader is urged not to skip the following proof.Proof: The proof is by a \reducibility argument". We show that the existence of ane�cient algorithm that distinguishes the ensembles X and Y using several samples, impliesthe existence of an e�cient algorithm that distinguishes the ensembles X and Y using asingle sample. The implication is proven using the following argument, which will be lattercalled a \hybrid argument".Suppose, to the contradiction, that there is a probabilistic polynomial-time algorithmD, and polynomials m(�) and p(�), so that for in�nitely many n's it holds that�(n) def= jPr�D(X (1)n ; :::; X (m)n)=1�� Pr �D(Y (1)n ; :::; Y (m)n)=1� j > 1p(n)where m def= m(n), and the X (i)n 's and Y (i)n 's are as in De�nition 3.2.4. In the sequel, we willderive a contradiction by presenting a probabilistic polynomial-time algorithm, D0, thatdistinguishes the ensembles X and Y (in the sense of De�nition 3.2.2).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

82 CHAPTER 3. PSEUDORANDOM GENERATORSFor every k, 0�k�m, we de�ne the hybrid random variable Hkn as a (m-long) sequenceconsisting of k independent copies of Xn and m� k independent copies of Yn. Namely,Hkn def= (X (1)n ; :::; X(k)n ; Y (k+1)n ; :::; Y (m)n)where X (1)n through X (k)n and Y (k+1)n through Y (m)n , are independent random variables witheach X (i)n identical to Xn and each Y (i)n identical to Yn. Clearly, Hmn = X (1)n ; :::; X (m)n ,whereas H0n = Y (1)n ; :::; Y (m)n .By our hypothesis, algorithm D can distinguish the extreme hybrids (i.e., H0n and Hmn).As the total number of hybrids is polynomial in n, a non-negligible gap between (the\accepting" probability of D on) the extreme hybrids translates into a non-negligible gapbetween (the \accepting" probability of D on) a pair of neighbouring hybrids. It followsthat D, although not \designed to work on general hybrids", can distinguish a pair ofneighbouring hybrids. The punch-line is that, algorithm D can be easily modi�ed into analgorithm D0 which distinguishes X and Y . Details follow.We construct an algorithm D0 which uses algorithm D as a subroutine. On input �(supposedly in the range of either Xn or Yn), algorithm D0 proceeds as follows. AlgorithmD0, �rst selects k uniformly in the set f0; 1; :::;m�1g. Using the e�cient sampling algorithmfor the ensemble X , algorithm D0 generates k independent samples of Xn. These samplesare denoted x1; :::; xk. Likewise, using the e�cient sampling algorithm for the ensemble Y ,algorithm D0 generates m� k� 1 independent samples of Yn, denoted yk+2; :::; ym. Finally,algorithm D0 invokes algorithm D and halts with output D(x1; :::; xk; �; yk+2; :::; ym).Clearly, D0 can be implemented in probabilistic polynomial-time. It is also easy to verifythe following claims.Claim 3.2.6.1: Pr(D0(Xn)=1) = 1m m�1Xk=0 Pr(D(Hk+1n)=1)andPr(D0(Yn)=1) = 1m m�1Xk=0 Pr(D(Hkn)=1)Proof: By construction of algorithm D0, we haveD0(�) = D(X (1)n ; :::; X(k)n ; �; Y (k+2)n ; :::; Y (m)n)Using the de�nition of the hybrids Hkn, the claim follows. 2Claim 3.2.6.2: jPr(D0(Xn)=1)� Pr(D0(Yn)=1)j = �(n)m(n)Proof: Using Claim 3.2.6.1 for the �rst equality, we getjPr(D0(Xn)=1)� Pr(D0(Yn)=1)j

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.2. COMPUTATIONAL INDISTINGUISHABILITY 83= 1m � jm�1Xk=0 Pr(D(Hk+1n)=1)� Pr(D(Hkn)=1)j= 1m � jPr(D(Hmn)=1)� Pr(D(H0n)=1)j= �(n)mThe last equality follows by observing that Hmn = X (1)n ; :::; X(m)n and H0n = Y (1)n ; :::; Y (m)n ,and using the de�nition of �(n). 2Since by our hypothesis �(n) > 1p(n) , for in�nitely many n's, it follows that the probabilisticpolynomial-time algorithm D0 distinguishes X and Y in contradiction to the hypothesis ofthe theorem. Hence, the theorem follows.It is worthwhile to give some thought to the hybrid technique (used for the �rst time in theabove proof). The hybrid technique constitutes a special type of a \reducibility argument"in which the computational indistinguishability of complex ensembles is proven using thecomputational indistinguishability of basic ensembles. The actual reduction is in the otherdirection: e�ciently distinguishing the basic ensembles is reduced to e�ciently distinguish-ing the complex ensembles, and hybrid distributions are used in the reduction in an essentialway. The following properties of the construction of the hybrids play an important role inthe argument:1. Extreme hybrids collide with the complex ensembles: this property is essential sincewhat we want to prove (i.e., indistinguishability of the complex ensembles) relates tothe complex ensembles.2. Neighbouring hybrids are easily related to the basic ensembles: this property is es-sential since what we know (i.e., indistinguishability of the basic ensembles) relatesto the basic ensembles. We need to be able to translate our knowledge (speci�callycomputational indistinguishability) of the basic ensembles to knowledge (speci�callycomputational indistinguishability) of any pair of neighbouring hybrids. Typically, itis required to e�ciently transform strings in the range of a basic hybrid into stringsin the range of a hybrid, so that the transformation maps the �rst basic distribu-tion to one hybrid and the second basic distribution to the neighbouring hybrid. (Inthe proof of Theorem 3.2.6, the hypothesis that both X and Y are polynomial-timeconstructible is instrumental for such e�cient transformation.)3. The number of hybrids is small (i.e. polynomial): this property is essential in orderto deduce the computational indistinguishability of extreme hybrids from the compu-tational indistinguishability of neighbouring hybrids.We remark that, in the course of an hybrid argument, a distinguishing algorithm refer-ring to the complex ensembles is being analyzed and even executed on arbitrary hybrids.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

84 CHAPTER 3. PSEUDORANDOM GENERATORSThe reader may be annoyed of the fact that the algorithm \was not designed to work onsuch hybrids" (but rather only on the extreme hybrids). However, \an algorithm is analgorithm" and once it exists we can apply it to any input of our choice and analyze itsperformance on arbitrary input distributions.3.2.4 Pseudorandom EnsemblesA special, yet important, case of computationally indistinguishable ensembles is the case inwhich one of the ensembles is uniform. Ensembles which are computational indistinguishablefrom the a uniform ensemble are called pseudorandom. Recall that Um denotes a randomvariable uniformly distributed over the set of strings of length m. The ensemble fUngn2Nis called the standard uniform ensemble. Yet, it will be convenient to call uniform alsoensembles of the form fUl(n)gn2N , where l is a function on natural numbers.De�nition 3.2.7 (pseudorandom ensembles): Let U def= fUl(n)gn2N be a uniform ensemble,and X def= fXngn2N be an ensemble. The ensemble X is called pseudorandom if X and Uare indistinguishable in polynomial-time.We stress that jXnj is not necessarily n (whereas jUmj = m). In fact, with high proba-bility jXnj equals l(n)).In the above de�nition, as in the rest of this book, pseudorandomness is a shorthandfor \pseudorandomness with respect to polynomial-time".3.3 De�nitions of Pseudorandom GeneratorsPseudorandom ensembles, de�ned above, can be used instead of uniform ensemble in any ef-�cient application without noticeable degradation in performance (otherwise the e�cient ap-plication can be transformed into an e�cient distinguisher of the supposedly-pseudorandomensemble from the uniform one). Such a replacement is useful only if we can generate pseudo-random ensembles at a cheaper cost than required to generate a uniform ensemble. The costof generating an ensemble has several aspects. Standard cost considerations are reectedby the time and space complexities. However, in the context of randomized algorithms, andin particular in the context of generating probability ensembles, a major cost considerationis the quantity and quality of the randomness source used by the algorithm. In particular,in many applications (and especially in cryptography), it is desirable to generate pseudo-random ensembles using as little randomness as possible. This leads to the de�nition of apseudorandom generator.3.3.1 * A General De�nition of Pseudorandom GeneratorsDe�nition 3.3.1 (pseudorandom generator): A pseudorandom generator is a deterministicpolynomial-time algorithm, G, satisfying the following two conditions:

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS 851. expansion: for every s 2 f0; 1g� it holds that jG(s)j > jsj.2. pseudorandomness: the ensemble fG(Un)gn2N is pseudorandom.The input, s, to the generator is called its seed. It is required that a pseudorandomgeneratorG always outputs a string longer than its seed, and thatG's output, on a uniformlychosen seed, is pseudorandom. In other words, the output of a pseudorandom generator, ona uniformly chosen seed, must be polynomial-time indistinguishable from uniform, althoughit cannot be uniform (or even statistically close to uniform). To justify the last statementconsider a uniform ensemble fUl(n)gn2N that is polynomial-time indistinguishable from theensemble fG(Un)gn2N (such a uniform ensemble must exist by the pseudorandom propertyof G). We �rst claim that l(n) > n, since otherwise an algorithm that on input 1n and astring � outputs 1 if and only if j�j > n will distinguish G(Un) from Ul(n) (as jG(Un)j > nby the expansion property of G). It follows that l(n) � n+ 1. We next bound from belowthe statistical di�erence between G(Un) and Ul(n), as followsXx jPr(Ul(n)=x)� Pr(G(Un)=x)j � Xx 62fG(s):s2f0;1gng jPr(Ul(n)=x)� Pr(G(Un)=x)j= (2l(n) � 2n) � 2�l(n)� 12It can be shown, see Exercise 10, that all the probability mass of G(Un), except for anegligible (in n) amount, is concentrated on strings of the same length and that this lengthequals l(n), where fG(Un)gn2N is polynomial-time indistinguishable from fUl(n)gn2N . Forsimplicity, we consider in the sequel, only pseudorandom generators G satisfying jG(x)j =l(jxj) for all x's.3.3.2 Standard De�nition of Pseudorandom GeneratorsDe�nition 3.3.2 (pseudorandom generator - standard de�nition): A pseudorandom gener-ator is a deterministic polynomial-time algorithm, G, satisfying the following two conditions:1. expansion: there exists a function l : N 7! N so that l(n) > n for all n 2 N, andjG(s)j = l(jsj) for all s 2 f0; 1g�.The function l is called the expansion factor of G.2. pseudorandomness (as above): the ensemble fG(Un)gn2N is pseudorandom.Again, we call the input to the generator a seed. The expansion condition requiresthat the algorithm G maps n-bit long seeds into l(n)-bit long strings, with l(n) > n. Thepseudorandomness condition requires that the output distribution, induced by applyingalgorithm G to a uniformly chosen seed, is polynomial-time indistinguishable from uniform(although it is not statistically close to uniform - see justi�cation in previous subsection).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

86 CHAPTER 3. PSEUDORANDOM GENERATORSThe above de�nition says little about the expansion factor l :N 7!N. We merely knowthat for every n it holds that l(n) � n + 1, that l(n) � poly(n), and that l(n) can becomputed in time polynomial in n. Clearly, a pseudorandom generator with expansionfactor l(n) = n + 1 is of little value in practice, since it o�ers no signi�cant saving in cointosses. Fortunately, as shown in the subsequent subsection, even pseudorandom generatorswith such small expansion factor can be used to construct pseudorandom generators withany polynomial expansion factor. Hence, for every two expansion factors, l1 :N 7!N andl2 :N 7!N, that can be computed in poly(n)-time, there exists a pseudorandom generatorwith expansion factor l1 if and only if there exists a pseudorandom generator with expansionfactor l2. This statement is proven by using a pseudorandom generator with expansionfactor l1(n) def= n + 1 to construct, for every polynomial p(�), a pseudorandom generatorwith expansion factor p(n). Note that a pseudorandom generator with expansion factorl1(n) def= n + 1 can be derived from any pseudorandom generator (even from one in thegeneral sense of De�nition 3.3.1).3.3.3 Increasing the Expansion Factor of Pseudorandom GeneratorsGiven a pseudorandom generator, G1, with expansion factor l1(n) = n + 1, we construct apseudorandom generator G with polynomial expansion factor, as follows.Construction 3.3.3 Let G1 a deterministic polynomial-time algorithm mapping strings oflength n into strings of length n+1, and let p(�) be a polynomial. De�ne G(s) = �1 � � ��p(jsj),where s0 def= s, the bit �i is the �rst bit of G1(si�1), and si is the jsj-bit long su�x of G1(si�1),for every 1� i�p(jsj). (i.e., �isi = G1(si�1))Hence, on input s, algorithm G applies G1 for p(jsj) times, each time on a new seed.Applying G1 to the current seed yields a new seed (for the next iteration) and one extrabit (which is being output immediately). The seed in the �rst iteration is s itself. Theseed in the ith iteration is the jsj-long su�x of the string obtained from G1 in the previousiteration. Algorithm G outputs the concatenation of the \extra bits" obtained in the p(jsj)iterations. Clearly, G is polynomial-time computable and expands inputs of length n intooutput strings of length p(n).Theorem 3.3.4 Let G1, p(�), and G be as in Construction 3.3.3 (above). Then, if G1 is apseudorandom generator then so is G.Intuitively, the pseudorandomness ofG follows from that of G1 by replacing each applicationof G1 by a random process which on input s outputs �s, where � is uniformly chosen inf0; 1g. Loosely speaking, the indistinguishability of a single application of the randomprocess from a single application of G1 implies that polynomially many applications ofthe random process are indistinguishable from polynomially many applications of G1. Theactual proof uses the hybrid technique.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS 87Proof: The proof is by a \reducibility argument" . Suppose, to the contradiction, that Gis not a pseudorandom generator. It follows that the ensembles fG(Un)gn2N and fUp(n)gn2Nare not polynomial-time indistinguishable. We will show that it follows that the ensemblesfG1(Un)gn2N and fUn+1gn2N are not polynomial-time indistinguishable, in contradiction tothe hypothesis that G1 is a pseudorandom generator with expansion factor l1(n) = n + 1.The implication is proven, using the hybrid technique.For every k, 0 � k � p(n), we de�ne a hybrid Hkp(n) as follows. First we de�ne, forevery k, a function gkn : f0; 1gn 7! f0; 1gk by letting g0n(x) def= � (the empty string) andgk+1n (x) = �gkn(y), where � is the �rst bit of G1(x) and y is the n-bit long su�x of G1(x)(i.e., �y = G1(x)). Namely, for every k � p(jxj), the string gkn(x) equals the k-bit longpre�x of G(x). De�ne the random variable Hkp(n) resulting by concatenating a uniformlychosen k-bit long string and the random variable gp(n)�k(Un). NamelyHkp(n) def= U (1)k gp(n)�k(U (2)n)where U (1)k and U (2)n are independent random variables (the �rst uniformly distributed overf0; 1gk and the second uniformly distributed over f0; 1gn). Intuitively, the hybrid Hkp(n)consists of the k-bit long pre�x of Up(n) and the (p(n)� k)-bit long su�x of G(Xn), whereXn is obtained from Un by applying G1 for k times each time to the n-bit long su�x of theprevious result. However, the later way of looking at the hybrids is less convenient for ourpurposes.At this point it is clear that H0p(n) equals G(Un), whereas Hp(n)p(n) equals Up(n). It followsthat if an algorithm D can distinguish the extreme hybrids then D can also distinguishtwo neighbouring hybrids, since the total number of hybrids is polynomial in n and a non-negligible gap between the extreme hybrids translates into a non-negligible gap betweensome neighbouring hybrids. The punch-line is that, using the structure of neighbouringhybrids, algorithm D can be easily modi�ed to distinguish the ensembles fG1(Un)gn2N andfUn+1gn2N . Details follow.The core of the argument is the way in which the distinguishability of neighbouringhybrids relates to the distinguishability of G(Un) from Un+1. As stated, this relation stemsfrom the structure of neighbouring hybrids. Let us, thus, take a closer look at the hybridsHkp(n) and Hk+1p(n), for some 0�k� p(n) � 1. To this end, de�ne a function fm : f0; 1gn+1 7!f0; 1gm by letting f0(z) def= � and fm+1(z) def= �gm(y), where z = �y with �2f0; 1g.Claim 3.3.4.1:1. Hkp(n) = U (1)k fp(n)�k(Xn+1), where Xn+1 = G1(U (2)n).2. Hk+1p(n) = U (1)k fp(n)�k(Yn+1), where Yn+1 = U (3)n+1.Proof:

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

88 CHAPTER 3. PSEUDORANDOM GENERATORS1. By de�nition of the functions gm and fm, we have gm(x) = fm(G1(x)). Using thede�nition of the hybrid Hkp(n), it follows thatHkp(n) = U (1)k gp(n)�k(U (2)n) = U (1)k fp(n)�k(G1(U (2)n))2. On the other hand, by de�nition fm+1(�y) = �gm(y), and using the de�nition of thehybrid Hk+1p(n), we getHk+1p(n) = U (1)k+1gp(n)�k�1(U (2)n) = U (1)k fp(n)�k(U (3)n+1)2Hence distinguishing G1(Un) from Un+1 is reduced to distinguishing the neighbouring hy-brids (i.e. Hkp(n) and Hk+1p(n)), by applying fp(n)�k to the input, padding the outcome (in frontof) by a uniformly chosen string of length k, and applying the hybrid-distinguisher to theresulting string. Further details follow.We assume, to the contrary of the theorem, that G is not a pseudorandom generators.Suppose that D is a probabilistic polynomial-time algorithm so that for some polynomialq(�) and for in�nitely many n's it holds that�(n) def= jPr(D(G(Un)=1)� Pr(D(Up(n))=1)j > 1q(n)We derive a contradiction by constructing a probabilistic polynomial-time algorithm, D0,that distinguishes G1(Un) from Un+1.Algorithm D0 uses algorithm D as a subroutine. On input � 2 f0; 1gn+1, algorithm D0operates as follows. First, D0 selects an integer k uniformly in the set f0; 1; :::; p(n)� 1g,next D0 selects � uniformly in f0; 1gk, and �nally D0 halts with output D(�fp(n)�k(�)),where fp(n)�k is as de�ned above.Clearly, D0 can be implemented in probabilistic polynomial-time (in particular fp(n)�k iscomputed by applying G1 polynomially many times). It is left to analyze the performanceof D0 on each of the distributions G1(Un) and Un+1.Claim 3.3.4.2: Pr(D0(G(Un))=1) = 1p(n) p(n)�1Xk=0 Pr(D(Hkp(n))=1)and Pr(D0(Un+1)=1) = 1p(n) p(n)�1Xk=0 Pr(D(Hk+1p(n))=1)Proof: By construction of D0 we get, for every � 2 f0; 1gn+1,Pr(D0(�)=1) = 1p(n) p(n)�1Xk=0 Pr(D(Ukfp(n)�k(�))=1)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS 89Using Claim 3.3.4.1, our claim follows. 2Let dk(n) denote the probability that D outputs 1 on input taken from the hybrid Hkp(n)(i.e., dk(n) def= Pr(D(Hkp(n) = 1)). Recall that H0p(n) equals G(Un), whereas Hp(n)p(n) equalsUp(n). Hence, d0(n) = Pr(D(G(Un))=1), dp(n)(n) = Pr(D(Up(n))=1), and �(n) = jd0(n)�dp(n)(n)j. Combining these facts with Claim 3.3.4.2, we get,jPr(D0(G1(Un))=1)� Pr(D0(Un+1)=1)j = 1p(n) � j p(n)�1Xk=0 dk(n)� dk+1(n)j= jd0(n)� dp(n)(n)jp(n)= �(n)p(n)Recall that by our (contradiction) hypothesis �(n) > 1q(n) , for in�nitely many n's.Contradiction to the pseudorandomness of G1 follows.3.3.4 The Signi�cance of Pseudorandom GeneratorsPseudorandom generators have the remarkable property of being e�cient \ampli�ers/expandersof randomness". Using very little randomness (in form of a randomly chosen seed) they pro-duce very long sequences which look random with respect to any e�cient observer. Hence,the output of a pseudorandom generator may be used instead of \random sequences" inany e�cient application requiring such (i.e., \random") sequences. The reason being thatsuch an application may be viewed as a distinguisher. In other word, if some e�cient algo-rithm su�ers noticeable degradation in performance when replacing the random sequencesit uses by pseudorandom one, then this algorithm can be easily modi�ed into a distinguishercontradicting the pseudorandomness of the later sequences.The generality of the notion of a pseudorandom generator is of great importance inpractice. Once you are guaranteed that an algorithm is a pseudorandom generator youcan use it in every e�cient application requiring \random sequences" without testing theperformance of the generator in the speci�c new application.The bene�ts of pseudorandom generators to cryptography are innumerable (and onlythe most important ones will be presented in the subsequent chapters). The reason thatpseudorandom generators are so useful in cryptography is that the implementation of allcryptographic tasks requires a lot of \high quality randomness". Thus, producing, ex-changing and sharing large amounts of \high quality random bits" at low cost is of primaryimportance. Pseudorandom generators allow to produce (resp., exchange and/or share)poly(n) pseudorandom bits at the cost of producing (resp., exchanging and/or sharing)only n random bits!A key property of pseudorandom sequences, that is used to justify the use of suchsequences in cryptography, is the unpredictability of the sequence. Loosely speaking, a

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

90 CHAPTER 3. PSEUDORANDOM GENERATORSsequence is unpredictable if no e�cient algorithm, given a pre�x of the sequence, can guessits next bit with an advantage over one half that is not negligible. Namely,De�nition 3.3.5 (unpredictability): An ensemble fXngn2N is called unpredictable in polynomial-time if for every probabilistic polynomial-time algorithm A and every polynomial p(�) andfor all su�ciently large n'sPr(A(1n; Xn)=nextA(1n; Xn)) < 12 + 1p(n)where nextA(x) returns the i+1st bit of x if A on input (1n; x) reads only i < jxj of the bitsof x, and returns a uniformly chosen bit otherwise (i.e. in case A read the entire string x).Clearly, pseudorandom ensembles are unpredictable in polynomial-time (see Exercise 16).It turns out that the converse holds as well. Namely, only pseudorandom ensembles areunpredictable in polynomial-time (see Exercise 17).3.3.5 Pseudorandom Generators imply One-Way FunctionsUp to this point we have avoided the question of whether pseudorandom generators exist atall. Before saying anything positive, we remark that a necessary condition to the existenceof pseudorandom generators is the existence of one-way function. Jumping ahead, we wishto reveal that this necessary condition is also su�cient: hence, pseudorandom generatorsexist if and only if one-way functions exist. At this point we only prove that the existenceof pseudorandom generators implies the existence of one-way function. Namely,Proposition 3.3.6 Let G be a pseudorandom generator with expansion factor l(n) = 2n.Then the function f :f0; 1g� 7!f0; 1g� de�ned by letting f(x; y) def= G(x), for every jxj= jyj,is a strongly one-way function.Proof: Clearly, f is polynomial-time computable. It is left to show that each probabilisticpolynomial-time algorithm invert f with only negligible probability. We use a \reducibilityargument". Suppose, on the contrary, that A is a probabilistic polynomial-time algorithmwhich for in�nitely many n's inverts f on f(U2n) with success probability at least 1poly(n) .We will construct a probabilistic polynomial-time algorithm, D, that distinguishes U2n andG(Un) on these n's and reach a contradiction.The distinguisher D uses the inverting algorithm A as a subroutine. On input � 2f0; 1g�, algorithm D uses A in order to try to get a preimage of � under f . Algorithm Dthen checks whether the string it obtained from A is indeed a preimage and halts outputting1 in case it is (otherwise it outputs 0). Namely, algorithm A computes � A(�), andoutputs 1 if f(�) = � and 0 otherwise.By our hypothesis, for some polynomial p(�) and in�nitely many n's,Pr(f(A(f(U2n)))=f(U2n)) > 1p(n)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.4. CONSTRUCTIONS BASED ON ONE-WAY PERMUTATIONS 91By f 's construction the random variable f(U2n) equals G(Un), and therefore Pr(D(G(Un))=1) > 1p(n) . On the other hand, by f 's construction at most 2n di�erent 2n-bit long stringshave a preimage under f . Hence, Pr(f(A(U2n))=U2n) � 2�n. It follows that for in�nitelymany n's jPr(D(G(Un))=1)� Pr(D(U2n)=1)j > 1p(n) � 12n > 12p(n)which contradicts the pseudorandomness of G.3.4 Constructions based on One-Way PermutationsIn this section we present constructions of pseudorandom generator based on one-way per-mutations. The �rst construction has a more abstract avour, as it uses a single lengthpreserving 1-1 one-way function (i.e., a single one-way permutation). The second construc-tion utilizes the same underlying ideas to present practical pseudorandom generators basedon collections of one-way permutations.3.4.1 Construction based on a Single PermutationBy Theorem 3.3.4 (see Subsection 3.3.3), it su�ces to present a pseudorandom generatorexpanding n-bit long seeds into n + 1-bit long strings. Assuming that one-way permuta-tions (i.e., 1-1 length preserving functions) exist, such pseudorandom generators can beconstructed easily. We remind the reader that the existence of one-way permutation im-plies the existence of one-way permutation with corresponding hard-core predicates. Thus,it su�ces to prove the followingTheorem 3.4.1 Let f be a length-preserving 1-1 (strongly one-way) function, and let bbe a hard-core predicate for f . Then the algorithm G, de�ned by G(s) def= f(s)b(s), is apseudorandom generator.Intuitively, the ensemble ff(Un)b(Un)gn2N is pseudorandom since otherwise b(Un) canbe e�ciently predicted from f(Un). The proof merely formalizes this intuition.Proof: We use a \reducibility argument". Suppose, on the contrary, that there existsan e�cient algorithm D which distinguishes G(Un) from Un+1. Recalling that G(Un) =f(Un)b(Un) and using the fact that f induces a permutation on f0; 1gn, we deduce that algo-rithm D distinguishes f(Un)b(Un) from f(Un)U1. It follows thatD distinguishes f(Un)b(Un)from f(Un)b(Un), where b(x) is the complement bit of b(x) (i.e., b(x) def= f0; 1g�b(x)). Hence,algorithm D provides a good indication of b(Un) from f(Un), and can be easily modi�edinto an algorithm guessing b(Un) from f(Un), in contradiction to the hypothesis that b is ahard-core predicate of f . Details follows.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

92 CHAPTER 3. PSEUDORANDOM GENERATORSWe assume, on the contrary, that there exists a probabilistic polynomial-time algorithmD and a polynomial p(�) so that for in�nitely many n'sjPr(D(G(Un))=1)� Pr(D(Un+1)=1)j > 1p(n)Assume, without loss of generality, that for in�nitely many n's it holds that�(n) def= (Pr(D(G(Un))=1)� Pr(D(Un+1)=1)) > 1p(n)We construct a probabilistic polynomial-time algorithm, A, for predicting b(x) fromf(x). Algorithm A uses the algorithm D as a subroutine. On input y (equals f(x) for somex), algorithm A proceeds as follows. First, A selects uniformly � 2 f0; 1g. Next, A appliesD to y�. Algorithm A halts outputting � if D(y�) = 1 and outputs the complement of �,denoted �, otherwise.Clearly, A works in polynomial-time. It is left to evaluate the success probability ofalgorithm A. We evaluate the success probability of A by considering two complementaryevents. The event we consider is whether or not \on input x algorithm A selects � so that� = b(x)".Claim 3.4.1.1:Pr(A(f(Un))=b(Un) j �=b(Un)) = Pr(D(f(Un)b(Un))=1)Pr(A(f(Un))=b(Un) j � 6=b(Un)) = 1� Pr(D(f(Un)b(Un))=1)where b(x)=f0; 1g� b(x).Proof: By construction of A,Pr(A(f(Un))=b(Un) j �=b(Un)) = Pr(D(f(Un)�)=1 j �=b(Un))= Pr(D(f(Un)b(Un))=1 j �=b(Un))= Pr(D(f(Un)b(Un))=1)where the last equality follows since D's behavior is independent of the value of �. Likewise,Pr(A(f(Un))=b(Un) j � 6=b(Un)) = Pr(D(f(Un)�)=0 j �=b(Un))= Pr(D(f(Un)b(Un))=0 j �=b(Un))= 1� Pr(D(f(Un)b(Un))=1)The claim follows. 2Claim 3.4.1.2:Pr(D(f(Un)b(Un))=1) = Pr(D(G(Un))=1)Pr(D(f(Un)b(Un))=1) = 2 � Pr(D(Un+1)=1)� Pr(D(f(Un)b(Un))=1)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.4. CONSTRUCTIONS BASED ON ONE-WAY PERMUTATIONS 93Proof: By de�nition of G, we have G(Un) = f(Un)b(Un), and the �rst claim follows. Tojustify the second claim, we use the fact that f is a permutation over f0; 1gn, and hencef(Un) is uniformly distributed over f0; 1gn. It follows that Un+1 can be written as f(Un)U1.We get Pr(D(Un+1)=1) = Pr(D(f(Un)b(Un))=1) + Pr(D(f(Un)b(Un))=1)2and the claim follows. 2Combining Claims 3.4.1.1 and 3.4.1.2, we getPr(A(f(Un))=b(Un)) = Pr(�=b(Un)) � Pr(A(f(Un))=b(Un) j �=b(Un))+Pr(� 6=b(Un)) � Pr(A(f(Un))=b(Un) j � 6=b(Un))= 12 � �Pr(D(f(Un)b(Un))=1) + 1� Pr(D(f(Un)b(Un))=1)�= 12 + (Pr(D(G(Un))=1)� Pr(D(Un+1)=1))= 12 + �(n)Since �(n) > 1p(n) for in�nitely many n's, we derive a contradiction and the theorem follows.3.4.2 Construction based on Collections of PermutationsWe now combine the underlying ideas of Construction 3.3.3 (of Subsection 3.3.3) and Theo-rem 3.4.1 (above) to present a construction of pseudorandom generators based on collectionsof one-way permutations. Let (I;D; F) be a triplet of algorithms de�ning a collection of one-way permutations (see Section 2.4.2). Recall that I(1n; r) denotes the output of algorithmI on input 1n and coin tosses r. Likewise, D(i; s) denotes the output of algorithm D oninput i and coin tosses s. The reader may assume, for simplicity, that jrj= jsj=n. Actually,this assumption can be justi�ed in general - see Exercise 13. However, in many applicationsit is more natural to assume that jrj= jsj=q(n) for some �xed polynomial q(�). We remindthe reader that Theorem 2.5.2 applies also to collections of one-way permutations.Construction 3.4.2 Let (I;D; F) be a triplet of algorithms de�ning a strong collection ofone-way permutations, and let B be a hard-core predicate for this collection. Let p(�) be anarbitrary polynomial. De�ne G(r; s) = �1 � � ��p(n), where i def= I(1n; r), s0 def= D(i; s), andfor every 1�j�p(jsj) it holds that �j = B(sj�1) and sj = fi(sj�1).On seed (r; s), algorithm G �rst uses r to determine a permutation fi over Di (i.e.,i I(1n; r)). Secondly, algorithm G uses s to determine a \starting point", s0, in Di.For simplicity, let us shorthand fi by f . The essential part of algorithm G is the repeatedapplication of the function f to the starting point s0 and the extraction of a hard-core

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

94 CHAPTER 3. PSEUDORANDOM GENERATORSpredicate for each resulting element. Namely, algorithm G computes a sequence of elementss1; :::; sp(n), where sj = f(sj�1) for every j (i.e., sj = f (j)(s0), where f (j) denotes j successiveapplications of the function f). Finally, algorithm G outputs the string �1 � � ��p(n), where�j = B(sj�1). Note that �j is easily computed from sj�1 but is a \hard to approximate"from sj = f(sj�1). The pseudorandomness property of algorithm G depends on the factthat G does not output the intermediate sj's. (In the sequel, we will see that outputtingthe last element, namely sp(n), does not hurt the pseudorandomness property.) The expan-sion property of algorithm G depends on the choice of the polynomial p(�). Namely, thepolynomial p(�) should be larger than the polynomial 2q(�) (where 2q(n) equals the totallength of r and s corresponding to I(1n)).Theorem 3.4.3 Let (I;D; F), B, p(�), and G be as in Construction 3.4.2 (above), so thatp(n) > 2q(n) for all n's. Suppose that for every i in the range of algorithm I, the randomvariable D(i) is uniformly distbuted over the set Di. Then G is a pseudorandom generator.Theorem 3.4.3 is an immediate corollary of the following proposition.Proposition 3.4.4 Let n and t be integers. For every i in the range of I(1n) and everyx in Di, de�ne Gi;t(x) = �1 � � ��t, where s0 def= x, sj = f (j)i (x) (f (j) denotes j successiveapplications of the function f) and �j = B(sj�1), for every 1�j� t. Let (I;D; F) and B beas in Theorem 3.4.3 (above), In be a random variable representing I(1n), and Xn = D(In)be a random variable depending on In. Then, for every polynomial p(�), the ensemblesf(In; GIn;p(n)(Xn); f (p(n))In (Xn))gn2N and f(In; Up(n); f (p(n))In (Xn))gn2N are polynomial-time in-distinguishable.Hence, the distinguishing algorithm gets, in addition to the p(n)-bit long sequence to beexamined, also the index i chosen by G (in the �rst step of G's computation) and the last sj(i.e., sp(n)) computed by G. Even with this extra information it is infeasible to distinguishGIn;p(n)(Xn) = G(1nU2q(n)) from Up(n).Proof Outline: The proof follows the proofs of Theorems 3.3.4 and 3.4.1 (of Subsec-tion 3.3.3 and the current subsection, resp.). First, the statement is proven for p(n) = 1(for all n's). This part is very similar to the proof of Theorem 3.4.1. Secondly, observe thatthe random variable Xn has distribution identical to the random variable fIn(Xn), evenconditioned on In = i (of every i). Finally, assuming the validity of the case p(�) = 1, thestatement is proven for every polynomial p(�). This part is analogous to the proof of Theo-rem 3.3.4: one has to construct hybrids so that the kth hybrid starts with an element i inthe support of In, followed by k random bits, and ends with Gi;p(n)�k(Xn) and fp(n)�ki (Xn),where Xn = D(i). The reader should be able to complete the argument.Proposition 3.4.4 and Theorem 3.4.3 remain valid even if one relaxes the condition concern-ing the distribution of D(i), and only requires that D(i) is statistically close (as a functionin jij) to the uniform distribution over Di.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.5. * CONSTRUCTION BASED ON ONE-WAY FUNCTIONS 953.4.3 Practical ConstructionsAs an immediate application of Construction 3.4.2, we derive pseudorandom generatorsbased on either of the following assumptions� The Intractability of the Discrete Logarithm Problem: The genertor is based on the factthat it is hard to predict, given a prime P , a primitive element G in the multiplicativegroup mod P , and an element Y of the group, whether there exists 0�x�P=2 so thatY � Gx mod P . In other words, this bit constitues a hard-core for the DLP collection(of Subsection 2.4.3).� The di�culty of inverting RSA: The genertor is based on the fact that the leastsigni�cant bit constitues a hard-core for the RSA collection.� The Intractability of Factoring Blum Integers: The genertor is based on the fact thatthe least signi�cant bit constitues a hard-core for the Rabin collection, when viewedas a collection of permutations over the quadratic residues of Blum integers (seeSubsection 2.4.3).We ellaborate on the last example since it o�ers the most e�cient implementation andyet is secure under a widely believed intractability assumption. The generator uses its seedin order to generate a composite number, N , which is the product of two relatively largeprimes.*** PROVIDE DETAILS ABOVE. MORE EFFICIEN HEURISTIC BELOW...3.5 * Construction based on One-Way FunctionsIt is known that one-way functions exist if and only if pseudorandom generators exist.However, the known construction which transforms arbitrary one-way functions into pseu-dorandom generators is impractical. Furthermore, the proof that this construction indeedyields pseudorandom generators is very complex and unsuitable for a book of the currentnature. Instead, we refrain to present some of the ideas underlying this construction.3.5.1 Using 1-1 One-Way FunctionsRecall that if f is a 1-1 length-preserving one-way function and b is a corresponding hard-core predicate then G(s) def= f(s)b(s) constitutes a pseudorandom generator. Let us relax thecondition imposed on f and assume that f is a 1-1 one-way function (but is not necessarilylength preserving). Without loss of generality, we may assume that there exists a polynomialp(�) so that jf(x)j= p(jxj) for all x's. In case f is not length preserving, it follows thatp(n) > n. At �rst glance, one may think that we only bene�t in such a case since f byitself has an expanding property. The impression is misleading since the expanded stringsmay not \look random". In particular, it may be the case that the �rst bit of f(x) is

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

96 CHAPTER 3. PSEUDORANDOM GENERATORSzero for all x's. More generally, f(Un) may be easy to distinguish from Up(n) (otherwisef itself constitutes a pseudorandom generator). Hence, in the general case, we need toget rid of the expansion property of f since it is not accompanied by a \pseudorandom"property. In general, we need to shrink f(Un) back to length � n so that the shrunk resultinduces uniform distribution. The question is how to e�ciently carry on this process (i.e., ofshrinking f(x) back to length jxj, so that the shrunk f(Un) induces a uniform distributionon f0; 1gn).Suppose that there exists an e�ciently computable function h so that fh(x) def= h(f(x))is length preserving and 1-1. In such a case we can let G(s) def= h(f(s))b(s), where b is ahard-core predicate for f , and get a pseudorandom generator. The pseudorandomness of Gfollows from the observation that if b is a hard-core for f it is also a hard-core for fh (sincean algorithm guessing b(x) from h(f(x)) can be easily modi�ed so that it guesses b(x) fromf(x), by applying h �rst). The problem is that we \know nothing about the structure" off and hence are not guaranteed that h as above does exist. An important observation isthat a uniformly selected hashing function will have approximately the desired properties.Hence, hashing functions play a central role in the construction, and consequently we needto discuss these functions �rst.Hashing FunctionsThe following terminology relating to hashing functions is merely an ad-hoc terminology(which is not a standard one). Let Smn be a set of strings representing functions mappingn-bit strings to m-bit strings. In the sequel we freely associate the strings in Smn with thefunctions that they represent. Let Hmn be a random variable uniformly distributed over theset Smn . We call Smn a hashing family if it satis�es the following three conditions:1. Smn is a pairwise independent family of mappings: for every x 6= y 2 f0; 1gn, therandom variables Hmn (x) and Hmn (y) are independent and uniformly distributed inf0; 1gm.2. Smn has succinct representation: Smn = f0; 1gpoly(n�m).3. Smn can be e�ciently evaluated: there exists a polynomial-time algorithm that, oninput a representation of a function, h (in Smn), and a string x2f0; 1gn, returns h(x).A widely used hashing family is the set of a�ne transformations mapping n-dimensionalbinary vectors to m-dimensional ones (i.e., transformations a�ected by multiplying the n-dimensional vector by an n-by-m binary matrix and adding an m-dimensional vector tothe result). A hashing family with more succinct representation is obtained by consideringonly the transformations a�ected by Toeplitz matrices (i.e., matrices which are invariantalong the diagonals). For further details see Exercise 18. Following is a lemma, concerninghashing functions, that is central to our application (as well as to many applications ofhashing functions in complexity theory). Loosely speaking, the lemma asserts that most

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.5. * CONSTRUCTION BASED ON ONE-WAY FUNCTIONS 97h's in a hashing family have h(Xn) distributed almost uniformly, provided Xn does notassign too much probability mass to any single string.Lemma 3.5.1 Let m < n be integers, Smn be a hashing family, and b and � be two reals sothat b � n and � � 2� b�m2 . Suppose that Xn is a random variable distributed over f0; 1gnso that for every x it holds that Pr(Xn=x) � 2�b. Then, for every � 2 f0; 1gm, and for allbut a 2�(b�m)��2 fraction of the h's in Smn , it holds thatPr(h(Xn)=�) 2 (1� �) � 2�mA function h not satisfying Pr(h(Xn)=�) 2 (1��) �2�m is called bad (for � and the randomvariable Xn). Averaging on all h's we have Pr(h(Xn) = �) equal 2�m. Hence the lemmabounds the fraction of h's which deviate from the average value. Typically we shall use� def= 2� b�m3 � 1 (making the deviation from average equal the fraction of bad h's). Anotheruseful choice is � > 1 (which yields an even smaller fraction of bad h's, yet badness has onlya \lower bound interpretation", i.e. Pr(h(Xn)=�) � (1 + �) � 2�m).Proof: Fix an arbitrary random variable Xn, satisfying the conditions of the lemma, andan arbitrary � 2 f0; 1gm. Denote wx def= Pr(Xn=x). For every h we havePr(h(Xn)=�) =Xx wx�x(h)where �x(h) equal 1 if h(x) = � and 0 otherwise. Hence, we are interested in the probability,taken over all possible choices of h, that j2�m �Px wx�x(h)j > �2�m. Looking at the �x'sas random variables de�ned over the random variable Hmn , it is left to show thatPr j2�m �Xx wx�xj > � � 2�m! > 2�(b�m)�2This is proven by applying Chebyshev's Inequality, using the fact that the �x's are pairwiseindependent, and that �x equals 1 with probability 2�m (and 0 otherwise). (We also takeadvantage on the fact that wx � 2�b.) Namely,Pr j2�m �Xx wx�xj > � � 2�m! � V (Px wx�x)(� � 2�m)2< Px 2�mw2x�2 � 2�2m� 2�m2�b�2 � 2�2mThe lemma follows.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

98 CHAPTER 3. PSEUDORANDOM GENERATORSConstructing \Almost" Pseudorandom GeneratorsUsing any 1-1 one-way function and any hashing family, we can take a major step towardsconstructing a pseudorandom generator.Construction 3.5.2 Let f : f0; 1g� 7! f0; 1g� be a function satisfying jf(x)j = p(jxj) forsome polynomial p(�) and all x's. For any integer function l :N 7!N, let g :f0; 1g� 7!f0; 1g�be a function satisfying jg(x)j = l(jxj) + 1, and Sn�l(n)p(n) be a hashing family. For everyx 2 f0; 1gn and h 2 Sn�l(n)p(n) , de�neG(x; h) def= (h(f(x)); h; g(x))Clearly, jG(x; h)j= (jxj�l(jxj))+ jhj+ (l(jxj)+1) = jxj+ jhj+ 1.Proposition 3.5.3 Let f , l, g and G be as above. Suppose that f is 1-to-1 and g is ahard-core function of f . Then, for every probabilistic polynomial-time algorithm A, everypolynomial p(�), and all su�ciently large n'sjPr(A(G(Un; Uk))=1)� Pr(A(Un+k+1)=1)j < 2� l(n)3 + 1p(n)where k is the length of the representation of the hashing functions in Sn�l(n)p(n) .The proposition can be extended to the case in which the function f is polynomial-to-1(instead of 1-to-1). Speci�cally, let f satisfy jf�1f(x)j < q(jxj), for some polynomial q(�)and all su�ciently long x's. The modi�ed proposition asserts that for every probabilisticpolynomial-time algorithm A, every polynomial p(�), and all su�ciently large n'sjPr(A(G(Un; Uk))=1)� Pr(A(Un+k+1)=1)j < 2� l(n)�log2 q(n)3 + 1p(n)where k is as above.In particular, the above proposition holds for functions l(�) of the form l(n) def= c log2 n,where c > 0 is a constant. For such functions l, every one-way function (can be easilymodi�ed into a function which) has a hard-core g as required in the proposition's hypothesis(see Subsection 2.5.3). Hence, we get very close to constructing a pseudorandom generator.Proof Sketch: We �rst note thatG(UnUk) = (Hn�l(n)p(n) (f(Un)); Hn�l(n)p(n) ; g(Un))Un+k+1 = (Un�l(n); Hn�l(n)p(n) ; Ul(n)+1)We consider the hybrid (Hn�l(n)p(n) (f(Un)); Hn�l(n)p(n) ; Ul(n)+1). The proposition is a direct con-sequence of the following two claims.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.5. * CONSTRUCTION BASED ON ONE-WAY FUNCTIONS 99Claim 3.5.3.1: The ensemblesf(Hn�l(n)p(n) (f(Un)); Hn�l(n)p(n) ; g(Un))gn2Nand f(Hn�l(n)p(n) (f(Un)); Hn�l(n)p(n) ; Ul(n)+1)gn2Nare polynomial-time indistinguishable.Proof Idea: Use a \reducibility argument". If the claim does not hold then contradiction tothe hypothesis that g is a hard-core of f is derived. 2Claim 3.5.3.2: The statistical di�erence between the random variables(Hn�l(n)p(n) (f(Un)); Hn�l(n)p(n) ; Ul(n)+1)and (Un�l(n); Hn�l(n)p(n) ; Ul(n)+1)is bounded by 2�l(n)=3.Proof Idea: Use the hypothesis that Sn�l(n)p(n) is a hashing family, and apply Lemma 3.5.1. 2Since the statistical di�erence is a bound on the ability of algorithms to distinguish, theproposition follows.Applying Proposition 3.5.3Once the proposition is proven we consider the possibilities of applying it in order to con-struct pseudorandom generators. We stress that applying Proposition 3.5.3, with lengthfunction l(�), requires having a hard-core function g for f with jg(x)j = l(jxj) + 1. ByTheorem 2.5.4 (of Subsection 2.5.3) such hard-core functions exist practically for all one-way functions, provided that l(�) is logarithmic (actually, Theorem 2.5.4 asserts that suchhard-cores exist for a modi�cation of any one-way function which preserves its 1-1 property).Hence, combining Theorem 2.5.4 and Proposition 3.5.3, and using a logarithmic length func-tion, we get very close to constructing a pseudorandom generator. In particular, for everypolynomial p(�), using l(n) def= 3 log2 p(n), we can construct a deterministic polynomial-timealgorithm expanding n-bit long seeds into (n+1)-bit long strings so that no polynomial-timealgorithm can distinguish the output strings from uniformly chosen ones, with probabilitygreater than 1p(n) (except for �nitely many n's). Yet, this does not imply that the output ispseudorandom (i.e., that the distinguishing gap is smaller than any polynomial fraction).A �nal trick is needed (since we cannot use l(�) bigger than any logarithmic function). Inthe sequel we present two alternative ways for obtaining a pseudorandom generator fromthe above construction.The �rst alternative is to use Construction 3.3.3 (of Subsection 3.3.3) in order to in-crease the expansion factor of the above algorithms. In particular, for every integer k, weconstruct a deterministic polynomial-time algorithm expanding n-bit long seeds into n3-bit long strings so that no polynomial-time algorithm can distinguish the output strings

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

100 CHAPTER 3. PSEUDORANDOM GENERATORSfrom uniformly chosen ones, with probability greater than 1nk (except for �nitely manyn's). Denote these algorithms by G1; G2; :::, and construct a pseudorandom generator G byletting G(s) def= G1(s1)�G2(s2) � � � �Gk(jsj)(sk(jsj))where � denotes bit-by-bit exclusive-or of strings, s1s2 � � �sk(jsj) = s, jsij = jsjk(jsj) � 1, andk(n) def= 3pn. Clearly, jG(s)j � k(jsj) � (jsjk(jsj))3 = jsj2. The pseudorandomness of G followsby a \reducibility argument". (The choice of the function k is rather arbitrary, and anyunbounded function k(�) satisfying k(n) < n2=3 will do.)The second alternative is to apply Construction 3.5.2 to the function f de�ned byf (x1; :::; xn) def= f(x1) � � �f(xn)where jx1j = � � � = jxnj = n. The bene�t in applying Construction 3.5.2 to the function f isthat we can use l(n2) def= n�1, and hence Proposition 3.5.3 yields that G is a pseudorandomgenerator. All that is left is to show that f has a hard core function which maps n2-bitstrings into n-bit strings. Assuming that b is a hard-core predicate of the function f , wecan construct such a hard-core function for f . Speci�cally,Construction 3.5.4 Let f :f0; 1g� 7!f0; 1g� and b :f0; 1g� 7!f0; 1g. De�nef (x1; :::; xn) def= f(x1) � � �f(xn)g(x1; :::; xn) def= b(x1) � � �b(xn)where jx1j = � � �= jxnj = n.Proposition 3.5.5 Let f and b be as above. If b is a hard-core predicate of f then g is ahard-core function of f .Proof Idea: Use the hybrid technique. The ith hybrid is�f (U (1)n ; :::; U (n)n); b(U (1)n); :::; b(U (i)n); U (i+1)1 ; :::; U (n)1 �Use a reducibility argument (as in Theorem 3.4.1 of Subsection 3.4.1) to convert a distin-guishing algorithm into one predicting b from f .Using either of the above alternatives, we getTheorem 3.5.6 If there exist 1-1 one-way functions then pseudorandom generators existas well.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.5. * CONSTRUCTION BASED ON ONE-WAY FUNCTIONS 101The entire argument can be extended to the case in which the function f is polynomial-to-1(instead of 1-to-1). Speci�cally, let f satisfy jf�1f(x)j < q(jxj), for some polynomial q(�)and all su�ciently long x's. Then if f is one-way then (either of the above alternatives yieldsthat) pseudorandom generators exists. Proving the statement using the �rst alternative isquite straightforward given the discussion proceeding Proposition 3.5.3. In proving thestatement using the second alternative apply Construction 3.5.2 to the function f withl(n2) def= n � (1+ log2 q(n))� 1. This requires showing that f has a hard core function whichmaps n2-bit strings into n(1+log2 q(n))-bit strings. Assuming that g is a hard-core functionof the function f , with jg(x)j = 1 + log2 q(jxj), we can construct such a hard-core functionfor f . Speci�cally, g(x1; :::; xn) def= g(x1) � � �g(xn)where jx1j = � � � = jxnj = n.3.5.2 Using Regular One-Way FunctionsThe validity of Proposition 3.5.3 relies heavily on the fact that if f is 1-1 then f(Un)maintains the \entropy" of Un in a strong sense (i.e., Pr(f(Un) = �) � 2�n for every�). In this case, it was possible to shrink f(Un) and get almost uniform distributionover f0; 1gn�l(n). As stressed above, the condition may be relaxed to requiring that fis polynomial-to-1 (instead of 1-to-1). In such a case only logarithmic loss of \entropy"occurs, and such a loss can be compensated by an appropriate increase in the range of thehard-core function. We stress that hard-core functions of logarithmic length (i.e., satisfyingjg(x)j = O(log jxj)) can be constructed for any one-way function. However, in general, thefunction f may not be polynomial-to-1 and in particular it can map exponentially manyimages to the same range element. If this is the case then applying f to Un yields a greatloss in \entropy", which cannot be compensated using the above methods. For example,if f(x; y) def= f 0(x)0jyj, for jxj= jyj, then Pr(f(Un) =�) � 2� j�j2 for some �'s. In this case,achieving uniform distribution from f(Un) requires shrinking it to length � n=2. In general,we cannot compensate for these lost bits since f may not have a hard-core with such hugerange (i.e., a hard-core g satisfying jg(�)j = j�j2). Hence, in this case, the above methodsfail for constructing an algorithm that expands its input into a longer output. A new ideais needed, and indeed presented below.The idea is that, in case f maps di�erent preimages into the same image y, we canaugment y by the index of the preimage, in the set f�1(y), without damaging the hardness-to-invert of f . Namely, we de�ne F (x) def= f(x) � idxf (x), where idxf (x) denotes the index(say by lexicographic order) of x in the set fx0 : f(x0)= f(x)g. We claim that inverting Fis not substantially easier than inverting f . This claim can be proven by a \reducibilityargument". Given an algorithm for inverting F we can invert f as follows. On input y(supposedly in the range of f(Un)), we �rst select m uniformly in f1; :::; ng, next select iuniformly in f1; :::; 2mg, and �nally try to invert F on (y; i). When analyzing this algorithm,consider the case i = dlog2 jf�1(y)je.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

102 CHAPTER 3. PSEUDORANDOM GENERATORSThe function F suggested above does preserve the hardness-to-invert of f . The problemis that it does not preserve the easy-to-compute property of f . In particular, for generalf it is not clear how to compute idxf (x) (i.e., the best we can say is that this task can beperformed in polynomial space). Again, hashing functions come to the rescue. Suppose, forexample that f is 2m-to-1 on strings of length n. Then, we can set idxf (x) = (Hmn ; Hmn (x)),obtaining \probabilistic indexing" of the set of preimages. We stress that applying theabove trick requires having a good estimate for the size of the set of preimages (of a givenimage). That is, given x it should be easy to compute jf�1f(x)j. A simple case where suchan estimate can be handy is the case of regular functions.De�nition 3.5.7 (Regular functions): A function f : f0; 1g� 7! f0; 1g� is called regular ifthere exists an integer function m :N 7!N so that for all su�ciently long x 2 f0; 1g� it holdsjfy : f(x)=f(y) ^ jxj= jyjgj = 2m(jxj)For simplicity, the reader may further assume that there exists an algorithm that on inputn computes m(n) in poly(n)-time. As we shall see, in the end of this subsection, one cando without this assumption. For sake of simplicity (of notation), we assume in the sequelthat if f(x)=f(y) then jxj= jyj.Construction 3.5.8 Let f :f0; 1g� 7!f0; 1g� be a regular function with m(jxj) = log2 jf�1f(x)jfor some integer function m(�). Let l :N 7!N be an integer function, and Sm(n)�l(n)n be ahashing family. For every x 2 f0; 1gn and h 2 Sm(n)�l(n)n , de�neF (x; h) def= (f(x); h(x); h)If f can be computed in polynomial-time and m(n) can be computed from n in poly(n)-time, then F can be computed in polynomial-time. We now show that if f is a regularone-way function, then F is \hard to invert". Furthermore, if l(�) is logarithmic then F is\almost 1-1".Proposition 3.5.9 Let f , m, l and F be as above. Suppose that there exists an algorithmthat on input n computes m(n) in poly(n)-time. Then,1. F is \almost" 1-1: Pr �jF�1F (Un; Hm(n)�l(n)n)j > 2l(n)+1� < 2� l(n)2(Recall that Hkn denotes a random variable uniformly distributed over Skn.)2. F \preserves" the one-wayness of f :If f is strongly (resp. weakly) one-way then so is F .

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.5. * CONSTRUCTION BASED ON ONE-WAY FUNCTIONS 103Proof Sketch: Part (1) is proven by applying Lemma 3.5.1, using the hypothesis thatSm(n)�l(n)n is a hashing family. Part (2) is proven using a \reducibility argument" . As-suming, to the contradiction, that there exists an e�cient algorithm A that inverts F withunallowable success probability, we construct an e�cient algorithm A0 that inverts f withunallowable success probability (reaching contradiction). For sake of concreteness, we con-sider the case in which f is strongly one-way, and assume to the contradiction that algorithmA inverts F on F (Un; Hm(n)�l(n)n) with success probability �(n), so that �(n) > 1poly(n) forin�nitely many n's. Following is a description of A0.On input y (supposedly in the range of f(Un)), algorithm A0 repeats the followingexperiment for poly(n�(n)) many times. Algorithm A0 selects uniformly h 2 Sm(n)�l(n)n and� 2 f0; 1gm(n)�l(n), and initiates A on input (y; �; h). Algorithm A0 sets x to be the n-bitlong pre�x of A(y; �; h), and outputs x if y = f(x). Otherwise, algorithm A0 continues tothe next experiment.Clearly, algorithm A0 runs in polynomial-time, provided that �(n) > 1poly(n) . We nowevaluate the success probability of A0. For every possible input, y, to algorithm A0, weconsider a random variable Xn uniformly distributed in f�1(y). Let �(y) denote the successprobability of algorithm A on input (y;Hkn(Xn); Hkn), where n def= jyj and k def= m(n) � l(n).Clearly, E(�(f(Un))) = �(n), and Pr(�(f(Un))> �(n)2) > �(n)2 follows. We �x an arbitraryy 2 f0; 1gn so that �(y) > �(n)2 . We prove the following technical claim.Claim 3.5.9.1: Let n, k and Xn be as above. Suppose that B is a set of pairs, and� def= Pr((Hkn(Xn); Hkn)2B)Then, Pr((Uk; Hkn)2B) > �428 � kUsing this claim, it follows that the probability that A0 inverts f on y in a single iterationis at least (�(y)4)4 � 1k . We reach a contradiction (to the one-wayness of f), and the propositionfollows. All that is left is to prove Claim 3.5.9.1. The proof, given below, is rather technical.We stress that the fact that m(n) can be computed from n does not play an essential rolein the reducibility argument (as it is possible to try all possible values of m(n)).Claim 3.5.9.1 is of interest for its own sake. However, its proof provides no signi�cantinsights and may be skipped without signi�cant damage (especially by readers that aremore interested in cryptography than in \probabilistic analysis").Proof of Claim 3.5.9.1: We �rst use Lemma 3.5.1 to show that only a \tiny" fraction ofthe hashing functions in Skn can map \large" probability mass into \small" subsets. Oncethis is done, the claim is proven by dismissing those few bad functions and relating thetwo probabilities, appearing in the statement of the claim, conditioned on the function notbeing bad. Details follow.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

104 CHAPTER 3. PSEUDORANDOM GENERATORSWe begin by bounding the fraction of the hashing functions that map \large" probabilitymass into \small" subsets. We say that a function h 2 Skn is (T;�)-expanding if there existsa set R � f0; 1gk of cardinality � � 2k so that Pr(h(Xn)2R)) � (T +1) ��. In other words,h maps to some set of density � a probability mass T + 1 times the density of the set. Our�rst goal is to prove that at most �4 of the h's are (32k�2 ; �364k)-expanding. In other words, only�4 of the function map to some set of density �364k a probability mass of more than �2 .We start with a related question. We say that � 2 f0; 1gk is t-overweighted by thefunction h if Pr(h(Xn)=�)) � (t+ 1) � 2�k. A function h 2 Skn is called (t; �)-overweightingif there exists a set R � f0; 1gk of cardinality �2k so that each � 2 R is t-overweighted by h.(Clearly, if h is (t; �)-overweighting then it is also (t; �)-expanding, but the converse is notnecessarily true.) We �rst show that at most a 1t2� fraction of the h's are (t; �)-overweighting.The proof is given in the rest of this paragraph. Recall that Pr(Xn= x) � 2�k, for everyx. Using Lemma 3.5.1, it follows that each �2 f0; 1gk is t-overweighted by at most a t�2fraction of the h's. Assuming, to the contradiction, that more than a 1t2� fraction of theh's are (t; �)-overweighting, we construct a bipartite graph by connecting each of these h'swith the �'s that it t-overweights. Contradiction follows by observing that there exists an� which is connected to more than jSknjt2� ��2k2k = 1t2 � jSknj of the h's.We now relate the expansion and overweighting properties. Speci�cally, if h is (T;�)-expanding then there exists an integer i2f1; :::; kg so that h is (T �2i�1; �k�2i)-overweighting.Hence, at most a kXi=1 1(T � 2i�1)2 � �k�2i < 4kT 2 ��fraction of the h's can be (T;�)-expanding. It follows that at most �4 of the h's are (32k�2 ; �364k)-expanding.We call h honest if it is not (32k�2 ; �364k)-expanding. Hence, if h is honest and Pr(h(Xn)2R) � �2 then R has density at least �364k . Concentrating on the honest h's, we now evaluate theprobability that (�; h) hits B, when � is uniformly chosen. We call h good if Pr((h(Xn); h)2B) � �2 . Clearly, the probability that Hkn is good is at least �2 , and the probability Hkn isboth good and honest is at least �4 . Denote by G the set of these h's (i.e., h's which areboth good and honest). Clearly, for every h 2 G we have Pr((h(Xn); h)2B) � �2 (since his good) and Pr((Uk; h)2B) � �364k (since h is honest). Using Pr(Hkn 2G) � �4 , the claimfollows. 2Applying Proposition 3.5.9It is possible to apply Construction 3.5.2 to the function resulting from Construction 3.5.8,and the statement of Proposition 3.5.3 still holds with minor modi�cations. Speci�cally,Construction 3.5.2 is applied with l(�) twice the function (i.e., the l(�)) used in Construc-tion 3.5.8, and the bound in Proposition 3.5.3 is 3 � 2� l(n)6 (instead of 2� l(n)3). The argumentleading to Theorem 3.5.6, remains valid as well. Furthermore, we may even waive the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.5. * CONSTRUCTION BASED ON ONE-WAY FUNCTIONS 105requirement that m(n) can be computed (since we can construct functions Fm for everypossible value of m(n)). Finally, we note that the entire argument holds even if the de�ni-tion of regular functions is relaxed as follows.De�nition 3.5.10 (Regular functions - revised de�nition): A function f :f0; 1g� 7!f0; 1g�is called regular if there exists an integer function m0 :N 7!N and a polynomial q(�) so thatfor all su�ciently long x 2 f0; 1g� it holds2m0(jxj) � jfy : f(x)=f(y)gj � q(jxj) � 2m0(jxj)When using these (relaxed) regular functions in Construction 3.5.8, set m(n) def= m0(n). Theresulting function F will have a slightly weaker \almost" 1-1 property. Namely,Pr �jF�1F (Un; Hm(n)�l(n)n)j > q(n) � 2l(n)+1� < 2� l(n)2The application of Construction 3.5.2 will be modi�ed accordingly. We getTheorem 3.5.11 If there exist regular one-way functions then pseudorandom generatorsexist as well.3.5.3 Going beyond Regular One-Way FunctionsThe proof of Proposition 3.5.9 relies heavily on the fact that the one-way function f isregular (at least in the weak sense). Alternatively, Construction 3.5.8 needs to be modi�edso that di�erent hashing families are associated to di�erent x 2 f0; 1gn. Furthermore, theargument leading to Theorem 3.5.6 cannot be repeated unless it is easy to compute thecardinality of set f�1(f(x)) given x. Note that this time we cannot construct functionsFm for every possible value of dlog2 jf�1(y)je since none of the functions may satisfy thestatement of Proposition 3.5.9. Again, a new idea is needed.A key observation is that although the value of log2 jf�1(f(x))j may vary for di�erentx 2 f0; 1gn, the value m(n) def= E(log2 jf�1(f(Un))j) is unique. Furthermore, the function fde�ned by f(x1; :::; xn2) def= f(x1); :::; f(xn2)where jx1j= jxn2j=n, has the property that all but a negligible fraction of the domain residein preimage sets with logarithm of cardinality not deviating too much from the expectedvalue. Speci�cally, let m(n3) def= E(log2 jf�1(f(Un3))j). Clearly, m(n3) = n2 �m(n). UsingCherno� Bound, we getPr �abs�m(n3)� log2 jf�1(f(Un3))j� > n2� < 2�nSuppose we apply Construction 3.5.8 to f setting l(n3) def= n2. Denote the resultingfunction by F . Suppose we apply Construction 3.5.2 to F setting this time l(n3) def= 2n2�1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

106 CHAPTER 3. PSEUDORANDOM GENERATORSUsing the ideas presented in the proofs of Propositions 3.5.3 and 3.5.9, one can show thatif the n3-bit to l(n3) + 1-bit function used in Construction 3.5.2 is a hard-core of F thenthe resulting algorithm constitutes a pseudorandom generator. Yet, we are left with theproblem of constructing a huge hard-core function, G, for the function F . Speci�cally,jG(x)j has to equal 2jxj 23 , for all x's. A natural idea is to de�ne G analogously to the way gis de�ned in Construction 3.5.4. Unfortunately, we do not know how to prove the validityof this construction (when applied to F), and a much more complicated construction isrequired. This construction does use all the above ideas in conjunction with additionalideas not presented here. The proof of validity is even more complex, and is not suitablefor a book of the current nature. We thus conclude this section by merely stating the resultobtained.Theorem 3.5.12 If there exist one-way functions then pseudorandom generators exist aswell.3.6 Pseudorandom FunctionsPseudorandom generators enable to generate, exchange and share a large number of pseu-dorandom values at the cost of a much smaller number of random bits. Speci�cally, poly(n)pseudorandom bits can be generated, exchanged and shared at the cost of n (uniformly cho-sen bits). Since any e�cient application uses only a polynomial number of random values,providing access to polynomially many pseudorandom entries seems su�cient. However,the above conclusion is too hasty, since it assumes implicitly that these entries (i.e., theaddresses to be accessed) are �xed beforehand. In some natural applications, one may needto access addresses which are determined \dynamically" by the application. For exam-ple, one may want to assign random values to (poly(n) many) n-bit long strings, producedthroughout the application, so that these values can be retrieved at latter time. Using pseu-dorandom generators the above task can be achieved at the cost of generating n random bitsand storing poly(n) many values. The challenge, met in the sequel, is to achieve the abovetask at the cost of generating and storying only n random bits. The key to the solution isthe notion of pseudorandom functions. In this section we de�ne pseudorandom functionsand show how to e�ciently implement them. The implementation uses as a building blockany pseudorandom generator.3.6.1 De�nitionsLoosely speaking, pseudorandom functions are functions which cannot be distinguished fromtruly random functions by any e�cient procedure which can get the value of the function atarguments of its choice. Hence, the distinguishing procedure may query the function beingexamined at various points, depending possibly on previous answers obtained, and yet cannot tell whether the answers were supplied by a function taken from the pseudorandomensemble (of functions) or from the uniform ensemble (of function). Hence, to formalize the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.6. PSEUDORANDOM FUNCTIONS 107notion of pseudorandom functions we need to consider ensembles of functions. For sake ofconcreteness we consider in the sequel ensembles of length preserving functions. Extensionsare discussed in Exercise 23.De�nition 3.6.1 (function ensembles): A function ensemble is a sequence F = fFngn2Nof random variables, so that the random variable Fn assumes values in the set of functionsmapping n-bit long strings to n-bit long strings. The uniform function ensemble, denotedH = fHngn2N , has Hn uniformly distributed over the set of functions mapping n-bit longstrings to n-bit long strings.To formalize the notion of pseudorandom functions we use (probabilistic polynomial-time) oracle machines. We stress that our use of the term oracle machine is almost identicalto the standard one. One deviation is that the oracle machines we consider have a lengthpreserving function as oracle rather than a Boolean function (as is standard in most casesin the literature). Furthermore, we assume that on input 1n the oracle machine only makesqueries of length n. These conventions are not really essential (they merely simplify theexposition a little).De�nition 3.6.2 (pseudorandom function ensembles): A function ensemble, F = fFngn2N ,is called pseudorandom if for every probabilistic polynomial-time oracle machine M , everypolynomial p(�) and all su�ciently large n'sjPr(MFn(1n)=1)� Pr(MHn(1n)=1)j < 1p(n)where H = fHngn2N is the uniform function ensemble.Using techniques similar to those presented in the proof of Proposition 3.2.3 (of Subsec-tion 3.2.2), one can demonstrate the existence of pseudorandom function ensembles whichare not statistically close to the uniform one. However, to be of practical use, we needrequire that the pseudorandom functions can be e�ciently computed.De�nition 3.6.3 (e�ciently computable function ensembles): A function ensemble, F =fFngn2N , is called e�ciently computable if the following two conditions hold1. (e�cient indexing): There exists a probabilistic polynomial time algorithm, I, and amapping from strings to functions, �, so that �(I(1n)) and Fn are identically dis-tributed.We denote by fi the f0; 1gn 7!f0; 1gn function assigned to i (i.e., fi def= �(i)).2. (e�cient evaluation): There exists a probabilistic polynomial time algorithm, V , sothat V (i; x) = fi(x).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

108 CHAPTER 3. PSEUDORANDOM GENERATORSIn particular, functions in an e�ciently computable function ensemble have relativelysuccinct representation (i.e., of polynomial rather than exponential length). It follows thate�ciently computable function ensembles may have only exponentially many functions (outof the double-exponentially many possible functions).Another point worthy of stressing is that pseudorandom functions may (if being ef-�ciently computable) be e�ciently evaluated at given points, provided that the functiondescription is give as well. However, if the function (or its description) is not known (andit is only known that it is chosen from the pseudorandom ensemble) then the value of thefunction at a point cannot be approximated (even in a very liberal sense and) even if thevalues of the function at other points is also given.In the rest of this book we consider only e�ciently computable pseudorandom functions.Hence, in the sequel we sometimes shorthand such ensembles by calling them pseudorandomfunctions.3.6.2 ConstructionUsing any pseudorandom generator, we construct a (e�ciently computable) pseudorandomfunction (ensemble).Construction 3.6.4 Let G be a deterministic algorithm expanding inputs of length n intostrings of length 2n. We denote by G0(s) the jsj-bit long pre�x of G(s), and by G1(s) thejsj-bit long su�x of G(s) (i.e., G(s) = G0(s)G1(s)). For every s 2 f0; 1gn, we de�ne afunction fs :f0; 1gn 7!f0; 1gn so that for every �1; :::; �n2f0; 1gfs(�1�2 � � ��n) def= G�n(� � � (G�2(G�1(s)) � � �)Let Fn be a random variable de�ned by uniformly selecting s 2 f0; 1gn and setting Fn = fs.Finally, let F = fFngn2N be our function ensemble.Pictorially, the function fs is de�ned by n-step walks down a full binary tree of depth nhaving labels on the vertices. The root of the tree, hereafter referred to as the level 0 vertexof the tree, is labelled by the string s. If an internal node is labelled r then its left childis labelled G0(r) whereas its right child is labelled G1(r). The value of fs(x) is the stringresiding in the leaf reachable from the root by a path corresponding to string x, when theroot is labelled by s. The random variable Fn is assigned labelled trees corresponding toall possible 2n labellings of the root, with uniform probability distribution.A function, operating on n-bit strings, in the ensemble constructed above can be speci�edby n bits. Hence, selecting, exchanging and storing such a function can be implemented atthe cost of selecting, exchanging and storing a single n-bit string.Theorem 3.6.5 Let G and F be as in Construction 3.6.4, and suppose that G is a pseu-dorandom generator. Then F is an e�ciently computable ensemble of pseudorandom func-tions.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.6. PSEUDORANDOM FUNCTIONS 109Proof: Clearly, the ensemble F is e�ciently computable. To prove that F is pseudorandomwe use the hybrid technique. The kth hybrid will be assigned functions which result byuniformly selecting labels for the vertices of the kth (highest) level of the tree and computingthe labels of lower levels as in Construction 3.6.4. The 0-hybrid will correspond to therandom variable Fn (since a uniformly chosen label is assigned to the root), whereas then-hybrid will correspond to the uniform random variable Hn (since a uniformly chosen labelis assigned to each leaf). It will be shown that an e�cient oracle machine distinguishingneighbouring hybrids can be transformed into an algorithm that distinguishes polynomiallymany samples of G(Un) from polynomially many samples of U2n. Using Theorem 3.2.6 (ofSubsection 3.2.3), we derive a contradiction to the hypothesis (that G is a pseudorandomgenerator). Details follows.For every k, 0�k�n, we de�ne a hybrid distribution Hkn (assigned as values functionsf : f0; 1gn 7! f0; 1gn) as follows. For every s1; s2; :::; s2k 2 f0; 1gn, we de�ne a functionfs1;:::;s2k :f0; 1gn 7!f0; 1gn so thatfs1;:::;s2k(�1�2 � � ��n) def= G�n(� � �(G�k+2(G�k+1(sidx(�k����1))) � � �)where idx(�) is index of � in the standard lexicographic order of strings of length j�j. (Inthe sequel we take the liberty of associating the integer idx(�) with the string �.) Namely,fs0k ;:::;s1k (x) is computed by �rst using the k-bit long pre�x of x to determine one of thesj 's, and next using the (n� k)-bit long su�x of x to determine which of the functions G0and G1 to apply at each remaining stage. The random variable Hkn is uniformly distributedover the above (2n)2k possible functions. Namely,Hkn def= fU(1)n ;:::;U(2k)nwhere U (j)n 's are independent random variables each uniformly distributed over f0; 1gn.At this point it is clear that H0n is identical to Fn, whereas Hnn is identical to Hn. Again,as usual in the hybrid technique, ability to distinguish the extreme hybrids yields ability todistinguish a pair of neighbouring hybrids. This ability is further transformed (as sketchedabove) so that contradiction to the pseudorandomness of G is reached. Further detailsfollow.We assume, in contradiction to the theorem, that the function ensemble F is not pseu-dorandom. It follows that there exists a probabilistic polynomial-time oracle machine, M ,and a polynomial p(�) so that for in�nitely many n's�(n) def= jPr(MFn(1n)=1)� Pr(MHn(1n)=1)j > 1p(n)Let t(�) be a polynomial bounding the running time of M(1n) (such a polynomial existssince M is polynomial-time). It follows that, on input 1n, the oracle machine M makesat most t(n) queries (since the number of queries is clearly bounded by the running time).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

110 CHAPTER 3. PSEUDORANDOM GENERATORSUsing the machine M , we construct an algorithm D that distinguishes the t(�)-product ofthe ensemble fG(Un)gn2N from the t(�)-product of the ensemble fU2ngn2N as follows.On input �1; :::; �t 2 f0; 1g2n (with t = t(n)), algorithm D proceeds as follows. First, Dselects uniformly k 2 f0; 1; :::; n� 1g. This random choice, hereafter called the checkpoint,and is the only random choice made by D itself. Next, algorithm D invokes the oraclemachine M (on input 1n) and answers M 's queries as follows. The �rst query of machineM , denoted q1, is answered byG�n(� � �(G�k+2(P�k+1(�1))) � � �)where q1 = �1 � � ��n, and P0(�) denotes the n-bit pre�x of � (and P1(�) denotes the n-bitsu�x of �). In addition, algorithm D records this query (i.e., q1). Subsequent queries areanswered by �rst checking if their k-bit long pre�x equals the k-bit long pre�x of a previousquery. In case the k-bit long pre�x of the current query, denoted qi, is di�erent from thek-bit long pre�xes of all previous queries, we associate this pre�x a new input string (i.e.,�i). Namely, we answer query qi byG�n(� � �(G�k+2(P�k+1(�i))) � � �)where qi = �1 � � ��n. In addition, algorithm D records the current query (i.e., qi). Theother possibility is that the k-bit long pre�x of the ith query equals the k-bit long pre�x ofsome previous query. Let j be the smallest integer so that the k-bit long pre�x of the ithquery equals the k-bit long pre�x of the jth query (by hypothesis j < i). Then, we recordthe current query (i.e., qi) but answer it using the string associated with query qj . Namely,we answer query qi by G�n(� � �(G�k+2(P�k+1(�j))) � � �)where qi = �1 � � ��n. Finally, when machineM halts, algorithm D halts as well and outputsthe same output as M .Pictorially, algorithm D answers the �rst query by �rst placing the two halves of �1in the corresponding children of the tree-vertex reached by following the path from theroot corresponding to �1 � � ��k. The labels of all vertices in the subtree corresponding to�1 � � ��k are determined by the labels of these two children (as in the construction of F).Subsequent queries are answered by following the corresponding paths from the root. Incase the path does not pass through a (k + 1)-level vertex which has already a label, weassign this vertex and its sibling a new string (taken from the input). For sake of simplicity,in case the path of the ith query requires a new string we use the ith input string (ratherthan the �rst input string not used so far). In case the path of a new query passes througha (k + 1)-level vertex which has been labelled already, we use this label to compute thelabels of subsequent vertices along this path (and in particular the label of the leaf). Westress that the algorithm does not necessarily compute the labels of all vertices in a subtreecorresponding to �1 � � ��k (although these labels are determined by the label of the vertexcorresponding to �1 � � ��k), but rather computes only the labels of vertices along the pathscorresponding to the queries.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.6. PSEUDORANDOM FUNCTIONS 111Clearly, algorithm D can be implemented in polynomial-time. It is left to evaluate itsperformance. The key observation is that when the inputs are taken from the t(n)-productof G(Un) and algorithm D chooses k as the checkpoint then M behaves exactly as on thekth hybrid. Likewise, when the inputs are taken from the t(n)-product of U2n and algorithmD chooses k as the checkpoint then M behaves exactly as on the k + 1st hybrid. Namely,Claim 3.6.5.1: Let n be an integer and t def= t(n). Let K be a random variable describingthe random choice of checkpoint by algorithm D (on input a t-long sequence of 2n-bit longstrings). Then for every k2f0; 1; :::; n� 1gPr �D(G(U (1)n); :::; G(U (t)n))=1 jK=k� = Pr �MHkn(1n)=1�Pr �D(U (1)2n ; :::; U (t)2n)=1 jK=k� = Pr �MHk+1n (1n)=1�where the U (i)n 's and U (j)2n 's are independent random variables uniformly distributed overf0; 1gn and f0; 1g2n, respectively.The above claim is quite obvious, yet a rigorous proof is more complex than one realizes at�rst glance. The reason being that M 's queries may depend on previous answers it gets,and hence the correspondence between the inputs of D and possible values assigned to thehybrids is less obvious than it seems. To illustrate the di�culty consider a n-bit string whichis selected by a pair of interactive processes, which proceed in n iterations. At each iterationthe �rst party chooses a new location, based on the entire history of the interaction, andthe second process sets the value of this bit by ipping an unbiased coin. It is intuitivelyclear that the resulting string is uniformly distributed, and the same holds if the secondparty sets the value of the chosen locations using the outcome of a coin ipped beforehand.In our setting the situation is slightly more involved. The process of determining the stringis terminated after k < n iterations and statements are made of the partially determinedstring. Consequently, the situation is slightly confusing and we feel that a detailed argumentis required.Proof of Claim 3.6.5.1: We start by sketching a proof of the claim for the extremely simplecase in which M 's queries are the �rst t strings (of length n) in lexicographic order. Letus further assume, for simplicity, that on input �1; :::; �t, algorithm D happens to choosecheckpoint k so that t = 2k+1. In this case the oracle machine M is invoked on input1n and access to the function fs1;:::;s2k+1 , where s2j�1+� = P�(�j) for every j � 2k and� 2 f0; 1g. Thus, if the inputs to D are uniformly selected in f0; 1g2n then M is invokedwith access to the k+1st hybrid random variable (since in this case the sj 's are independentand uniformly distributed in f0; 1gn). On the other hand, if the inputs to D are distributedas G(Un) then M is invoked with access to the kth hybrid random variable (since in thiscase fs1;:::;s2k+1 = fr1 ;:::;r2k where the rj's are seeds corresponding to the �j's).For the general case we consider an alternative way of de�ning the random variableHmn , for every 0�m� n. This alternative way is somewhat similar to the way in which

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

112 CHAPTER 3. PSEUDORANDOM GENERATORSD answers the queries of the oracle machine M . (We use the symbol m instead of k sincem does not necessarily equal the checkpoint, denoted k, chosen by algorithm D.) Thisway of de�ning Hmn consists of the interleaving of two random processes, which together�rst select at random a function g : f0; 1gm 7! f0; 1gn, that is later used to determine afunction f : f0; 1gn 7! f0; 1gn. The �rst random process, denoted �, is an arbitrary process(\given to us from the outside"), which speci�es points in the domain of g. (The process� corresponds to the queries of M , whereas the second process corresponds to the way Aanswers these queries.) The second process, denoted , assigns uniformly selected n-bitlong strings to every new point speci�ed by �, thus de�ning the value of g on this point.We stress that in case � speci�es an old point (i.e., a point for which g is already de�ned)then the second process does nothing (i.e., the value of g at this point is left unchanged).The process � may depend on the history of the two processes, and in particular on thevalues chosen for the previous points. When � terminates the second process (i.e.,) selectsrandom values for the remaining unde�ned points (in case such exist). We stress that thesecond process (i.e.,) is �xed for all possible choices of a (\�rst") process �. The rest ofthis paragraph gives a detailed description of the interleaving of the two random processes(and may be skipped). We consider a randomized process � mapping sequences of n-bitstrings (representing the history) to single m-bit strings. We stress that � is not necessarilymemoryless (and hence may \remember" its previous random choices). Namely, for every�xed sequence v1; :::; vi2f0; 1gn, the random variable �(v1; :::; vi) is (arbitrarily) distributedover f0; 1gm[f?g where ? is a special symbol denoting termination. A \random" functiong :f0; 1gm 7!f0; 1gn is de�ned by iterating the process � with the random process de�nedbelow. Process starts with g which is unde�ned on every point in its domain. At the ithiteration lets pi def= �(v1; :::; vi�1) and, assuming pi 6= ?, sets vi def= vj if pi = pj for somej < i and lets vi be uniformly distributed in f0; 1gn otherwise. In the latter case (i.e., pi isnew and hence g is not yet de�ned on pi), sets g(pi) def= vi (in fact g(pi)= g(pj)= vj= vialso in case pi = pj for some j < i). When � terminates, i.e., �(v1; :::; vT) = ? for someT , completes the function g (if necessary) by choosing independently and uniformly inf0; 1gn values for the points at which g is unde�ned yet. (Alternatively, we may augmentthe process � so that it terminates only after specifying all possible m-bit strings.)Once a function g is totally de�ned, we de�ne a function f g :f0; 1gn 7!f0; 1gn byf g(�1�2 � � ��n) def= G�n(� � �(G�k+2(G�k+1(g(�k � � ��1))) � � �)The reader can easily verify that f g equals fg(0m);:::;g(1m) (as de�ned in the hybrid construc-tion above). Also, one can easily verify that the above random process (i.e., the interleavingof with any �) yields a function g that is uniformly distributed over the set of all possiblefunctions mapping m-bit strings to n-bit strings. It follows that the above described ran-dom process yields a result (i.e., a function) that is distributed identically to the randomvariable Hmn .Suppose now that the checkpoint chosen by D equals k and that D's inputs are inde-pendently and uniformly selected in f0; 1g2n. In this case the way in which D answers the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.6. PSEUDORANDOM FUNCTIONS 113M 's queries can be viewed as placing independently and uniformly selected n-bit stringsas the labels of the (k + 1)-level vertices. It follows that the way in which D answers M 'squeries corresponds to the above described process with m = k + 1 (with M playing therole of � and A playing the role of). Hence, in this case M is invoked with access to thek + 1st hybrid random variable.Suppose, on the other hand, that the checkpoint chosen by D equals k and that D'sinputs are independently selected so that each is distributed identically to G(Un). In thiscase the way in which D answers the M 's queries can be viewed as placing independentlyand uniformly selected n-bit strings as the labels of the k-level vertices. It follows that theway in which D answers the M 's queries corresponds to the above described process withm = k. Hence, in this case M is invoked with access to the kth hybrid random variable. 2Using Claim 3.6.5.1, it follows thatjPr�D(G(U (1)n); :::; G(U (t)n))=1�� Pr�D(U (1)2n ; :::; U (t)2n)=1� j = �(n)nwhich, by the contradiction hypothesis is greater than 1n�p(n) , for in�nitely many n's. UsingTheorem 3.2.6, we derive a contradiction to the hypothesis (of the current theorem) that Gis a pseudorandom generator, and the current theorem follows.3.6.3 A general methodologyAuthor's Note: Ellaborate on the following.The following two-step methodology is useful in many cases:1. Design your scheme assuming that all legitimate users share a random function, f :f0; 1gn 7!f0; 1gn. (The adversaries may be able to obtain, from the legitimate users,the values of f on arguments of their choice, but do not have direct access to f .)This step culminates in proving the security of the scheme assuming that f is indeeduniformly chosen among all possible such functions, while ignoring the question ofhow such an f can be selected and handled.2. Construct a real scheme by replacing the random function by a pseudorandom func-tion. Namely, the legitimate users will share a random/secret seed specifying such apseudorandom function, whereas the adversaries do not know the seed. As before, atmost the adversaries may obtain (from the legitimate users) the value of the functionat arguments of their choice. Finally, conclude that the real scheme (as presentedabove) is secure (since otherwise one could distinguish a pseudorandom function froma truly random one).We stress that the above methodology may be applied only if legitimate users can sharerandom/secret information not known to the adversary (i.e., as is the case in private-keyencryption schemes).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

114 CHAPTER 3. PSEUDORANDOM GENERATORS3.7 * Pseudorandom PermutationsIn this section we present de�nitions and constructions for pseudorandom permutations.Clearly, pseudorandom permutations (over huge domains) can be used instead of pseudo-random functions in any e�cient application, yet pseudorandom permutation o�er the extraadvantage of having unique preimages. This extra advantage may be useful sometimes, butnot always (e.g., it is not used in the rest of this book). The construction of pseudorandompermutation uses pseudorandom functions as a building block, in a manner identical to thehigh level structure of the DES. Hence, the proof presented in this section can be viewedas a supporting the DES's methodology of converting \randomly looking" functions into\randomly looking" permutations. (The fact that in the DES this methodology is appliedto functions which are not \randomly looking" is not of our concern here.)3.7.1 De�nitionsWe start with the de�nition of pseudorandom permutations. Loosely speaking a pseudo-random ensemble of permutations is de�ned analogously to a pseudorandom ensemble offunctions. Namely,De�nition 3.7.1 (permutation ensembles): A permutation ensemble is a sequence P =fPngn2N of random variables, so that the random variable Pn assumes values in the setof permutations mapping n-bit long strings to n-bit long strings. The uniform permutationensemble, denoted K = fKngn2N , has Kn uniformly distributed over the set of permutationsmapping n-bit long strings to n-bit long strings.Every permutation ensemble is a function ensemble. Hence, the de�nition of an e�-ciently computable permutation ensemble is obvious (i.e., it is derived from the de�nitionof an e�ciently computable function ensemble). Pseudorandom permutations are de�nedas computationally indistinguishable from the uniform permutation ensemble.De�nition 3.7.2 (pseudorandom permutation ensembles): A permutation ensemble, P =fPngn2N , is called pseudorandom if for every probabilistic polynomial-time oracle machineM , every polynomial p(�) and all su�ciently large n'sjPr(MPn(1n)=1)� Pr(MKn(1n)=1)j < 1p(n)where K = fKngn2N is the uniform permutation ensemble.The fact that P is a pseudorandom permutation ensemble rather then just being apseudorandom function ensemble cannot be detected in poly(n)-time by an observer givenoracle access to Pn. This fact steams from the observation that the uniform permutationensemble is polynomial-time indistinguishable from the uniform function ensemble. Namely,

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.7. * PSEUDORANDOM PERMUTATIONS 115Proposition 3.7.3 The uniform permutation ensemble (i.e., K = fKngn2N) constitutes apseudorandom function ensemble.Proof Sketch: The probability that an oracle machine detects a collision in the oracle-function, when given access to Hn, is bounded by t2 � 2�n, where t denotes the number ofqueries made by the machine. Conditioned on not �nding such a collision, the answers ofHn are indistinguishable from those of Kn. Finally, using the fact that a polynomial-timemachine can ask at most polynomially many queries, the proposition follows.Hence, using pseudorandom permutations instead of pseudorandom functions has reasonsbeyond the question of whether a computationally restricted observer can detect the dif-ference. Typically, the reason is that one wants to be guaranteed of the uniqueness ofpreimages. A natural strengthening of this requirement is to require that, given the de-scription of the permutation, the (unique) preimage can be e�ciently found.De�nition 3.7.4 (e�ciently computable and invertible permutation ensembles): A permu-tation ensemble, P = fPngn2N , is called e�ciently computable and invertible if the followingthree conditions hold1. (e�cient indexing): There exists a probabilistic polynomial time algorithm, I, anda mapping from strings to permutation, �, so that �(I(1n)) and Pn are identicallydistributed.2. (e�cient evaluation): There exists a probabilistic polynomial time algorithm, V , sothat V (i; x) = fi(x), where (as before) fi def= �(i).3. (e�cient inversion): There exists a probabilistic polynomial time algorithm, N , so thatN(i; x) = f�1i (x) (i.e., fi(N(i; x))=x).Items (1) and (2) are guaranteed by the de�nition of an e�ciently computable permuta-tion ensemble. The additional requirement is stated in item (3). In some settings it makessense to augment also the de�nition of a pseudorandom ensemble by requiring that theensemble cannot be distinguished from the uniform one even when the observer gets accessto two oracles: one for the permutation and the other for its inverse.De�nition 3.7.5 (strong pseudorandom permutations): A permutation ensemble, P =fPngn2N , is called strongly pseudorandom if for every probabilistic polynomial-time oraclemachine M , every polynomial p(�) and all su�ciently large n'sjPr(MPn;P�1n (1n)=1)� Pr(MKn;K�1n (1n)=1)j < 1p(n)where M f;g can ask queries to both of its oracles (e.g., query (1; q) is answered by f(q),whereas query (2; q) is answered by g(q)).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

116 CHAPTER 3. PSEUDORANDOM GENERATORS3.7.2 ConstructionThe construction of pseudorandom permutation uses pseudorandom functions as a buildingblock, in a manner identical to the high level structure of the DES. Namely,Construction 3.7.6 Let f :f0; 1gn 7!f0; 1gn. For every x; y 2 f0; 1gn, we de�neDESf(x; y) def= (y; x� f(y))where x� y denotes the bit-by-bit exclusive-or of the binary strings x and y. Likewise, forf1; :::; ft :f0; 1gn 7!f0; 1gn, we de�neDESft;:::;f1(x; y) def= DESft;:::;f2(DESf1(x; y))For every function ensemble F = fFngn2N , and every function t : N 7! N, we de�ne thefunction ensemble fDESt(n)Fn gn2N by letting DESt(n)Fn def= DESF (t)n ;:::;F (1)n , where t = t(n) andthe F (i)n 's are independent copies of the random variable Fn.Theorem 3.7.7 Let Fn, t(�), and DESt(n)Fn be as in Construction 3.7.6 (above). Then,for every polynomial-time computable function t(�), the ensemble fDESt(n)Fn gn2N is an e�-ciently computable and invertible permutation ensemble. Furthermore, if F = fFngn2N isa pseudorandom function ensemble then the ensemble fDES3Fngn2N is pseudorandom, andthe ensemble fDES4Fngn2N is strongly pseudorandom.Clearly, the ensemble fDESt(n)Fn gn2N is e�ciently computable. The fact that it is apermutation ensemble, and furthermore one with e�cient inverting algorithm, follows fromthe observation that for every x; y2f0; 1gnDESf;zero(DESf (x; y)) = DESf;zero(y; x� f(y))= DESf (x� f(y); x)= (y; (x� f(y))� f(y))= (x; y)where zero(z) def= 0jzj for all z2f0; 1gn.To prove the pseudorandomness of fDES3Fngn2N (resp., strong pseudorandomness offDES4Fngn2N) it su�ces to prove the pseudorandomness of fDES3Hngn2N (resp., strong pseu-dorandomness of fDES4Hngn2N). The reason being that if, say, fDES3Hngn2N is pseudoran-dom while fDES3Fngn2N is not, then one can derive a contradiction to the pseudorandomnessof the function ensemble F (i.e., a hybrid argument is used to bridge between the three copiesof Hn and the three copies of Fn). Hence, Theorem 3.7.7 follows fromProposition 3.7.8 fDES3Hngn2N is pseudorandom, whereas fDES4Hngn2N is strongly pseu-dorandom.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.7. * PSEUDORANDOM PERMUTATIONS 117Proof Sketch: We start by proving that fDES3Hngn2N is pseudorandom. Let P2n def=fDES3Hngn2N , and K2n be the random variable uniformly distributed over all possible per-mutation acting on f0; 1g2n. We prove that for every oracle machine, M , that, on input 1n,asks at most m queries, it holds thatjPr(MP2n(1n)=1)� Pr(MK2n(1n)=1)j � 2m22nLet qi = (L0i ; R0i), with jL0i j= jR0i j=n, denote the random variable representing the ithquery of M when given access to oracle P2n. Recall that P2n = DESH(3)n ;H(2)n ;H(1)n , where theH (j)n 's are three independent random variables each uniformly distributed over the functionsacting on f0; 1gn. Let Rk+1i def= Lki �H (k+1)n (Rki) and Lk+1i def= Rki , for k=0; 1; 2. We assume,without loss of generality, thatM never asks the same query twice. We de�ne the followinga random variable �m representing the event \there exists i< j�m and k2 f1; 2g so thatRki = Rkj " (namely, \on input 1n and access to oracle P2n two of the m �rst queries of Msatisfy the relation Rki = Rkj). Using induction on m, the reader can prove concurrently thefollowing two claims (see guidelines below).Claim 3.7.8.1: Given :�m, we have the R3i 's uniformly distributed over f0; 1gn and the L3i 'suniformly distributed over the n-bit strings not assigned to previous L3j 's. Namely, for every�1; :::; �m2f0; 1gn Pr �^mi=1(R3i =�i) j :�m� = � 12n�mwhereas, for every distinct �1; :::; �m2f0; 1gnPr �^mi=1(L3i =�i) j :�m� = mYi=1 12n � i+ 1Claim 3.7.8.2: Pr (�m+1 j :�m) � 2m2nProof Idea: The proof of Claim 3.7.8.1 follows by observing that the R3i 's are determinedby applying the random function H (3)n to di�erent arguments (i.e., the R2i 's), whereas theL3i = R2i 's are determined by applying the random function H (2)n to di�erent arguments (i.e.,the R1i 's) and conditioning that the R2i 's are di�erent. The proof of Claim 3.7.8.2 followsby considering the probability that Rkm+1 = Rki , for some i� m and k 2 f1; 2g. Say thatR0i =R0m+1 then certainly (by recalling qi 6=qm+1) we haveR1i =L0i �H (1)n (R0i)=L0i �H (1)n (R0j) 6=L0m+1 �H (1)n (R0m+1)=R1m+1On the other hand, say that R0i 6=R0m+1 thenPr �R1i =R1m+1� = Pr�H (1)n (R0i)�H (1)n (R0m+1)=L0i � L0m+1� = 2�n

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

118 CHAPTER 3. PSEUDORANDOM GENERATORSFurthermore, if R1i 6=R1m+1 thenPr �R2i =R2m+1� = Pr �H (2)n (R1i)�H (2)n (R1m+1)=R0i � R0m+1� = 2�nHence, both claims follow. 2Combining the above claims, we conclude that Pr(�m) < m22n , and furthermore, given that�m is false, the answers of P2n have left half uniformly chosen among all n-bit strings notappearing as left halves in previous answers, whereas the right half uniformly distributedamong all n-bit strings. On the other hand, the answers of K2n are uniformly distributedamong all 2n-bit strings not appearing as previous answers. Hence, the statistical di�erencebetween the distribution of answers in the two cases (i.e., answers by P2n or by K2n) isbounded by 2m22n . The �rst part of the proposition follows.The proof that fDES4Hngn2N is strongly pseudorandom is more complex, yet uses es-sentially the same ideas. In particular, the event corresponding to �m is the disjunction offour types of events. Events of the �rst type are of the form Rki = Rkj for k2f2; 3g, whereqi = (L0i ; R0i) and qj = (L0j ; R0j) are queries of the forward direction. Similarly, events of thesecond type are of the form Rki = Rkj for k2f2; 1g, where qi = (L4i ; R4i) and qj = (L4j ; R4j)are queries of the backwards direction. Events of the third type are of the form Rki = Rkj fork2f2; 3g, where qi = (L0i ; R0i) is of the forward direction, qj = (L4j ; R4j) is of the backwarddirection, and j < i. Similarly, events of the fourth type are of the form Rki = Rkj fork2f2; 1g, where qi = (L4i ; R4i) is of the forward direction, qj = (L0j ; R0j) is of the backwarddirection, and j < i. As before, one bounds the probability of event �m, and bounds thestatistical distance between answers by K2n and answers by fDES4Hngn2N given that �m isfalse.3.8 Miscellaneous3.8.1 Historical NotesThe notion of computational indistinguishable ensembles was �rst presented by Goldwasserand Micali (in the context of encryption schemes) [GM82]. In the general setting, the notion�rst appears in Yao's work which is also the origin of the de�nition of pseudorandomness[Y82]. Yao also observed that pseudorandom ensembles can be very far from uniform, yetour proof of Proposition 3.2.3 is taken from [GK89a].Pseudorandom generators were introduced by Blum and Micali [BM82], who de�nedsuch generators as producing sequences which are unpredictable. Blum and Micali provedthat such pseudorandom generators do exist assuming the intractability of the discretelogarithm problem. Furthermore, they presented a general paradigm, for constructingpseudorandom generators, which has been used explicitly or implicitly in all subsequentdevelopments. Other suggestions for pseudorandom generators were made soon after byGoldwasser et. al. [GMT82] and Blum et. al. [BBS82]. Consequently, Yao proved that

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.8. MISCELLANEOUS 119the existence of any one-way permutation implies the existence of pseudorandom generators[Y82]. Yao was the �rst to characterize pseudorandom generators as producing sequenceswhich are computationally indistinguishable from uniform. He also proved that this char-acterization of pseudorandom generators is equivalent to the characterization of Blum andMicali [BM82].Generalizations to Yao's result, that one-way permutations imply pseudorandom gen-erators, were proven by Levin [L85] and by Goldreich et. al. [GKL88], culminating withthe result of Hastad et. al. [H90,ILL89] which asserts that pseudorandom generators existif and only if one-way functions exist. The constructions presented in Section 3.5 followthe ideas of [GKL88] and [ILL89]. These constructions make extensive use of universal2hashing functions, which were introduced by Carter and Wegman [CW] and �rst used incomplexity theory by Sipser [S82].Pseudorandom functions were introduced and investigated by Goldreich et. al. [GGM84].In particular, the construction of pseudorandom functions based on pseudorandom genera-tors is taken from [GGM84].Pseudorandom permutations were de�ned and constructed by Luby and Racko� [LR86],and our presentation follows their work. However, a better presentation which distills thereal structure of the proof (as well as provides related results) has been recently given byNaor and Reingold [NR97].Author's Note: See proceedings of STOC97.The hybrid method originates from the work of Goldwasser and Micali [GM82]. Theterminology is due to Leonid Levin.3.8.2 Suggestion for Further ReadingSection 3.5 falls short of presenting the construction of Hastad et. al. [HILL], not to mentionproving its validity. Unfortunately, the proof of this fundamental theorem, asserting thatpseudorandom generators exist if one-way functions exist, is too complicated to �t in abook of the current nature. The interested reader is thus referred to the original paper ofHastad et. al. [HILL] (which combines the results in [H90,ILL89]) and to Luby's book[L94book].Author's Note: Pseudorandom generators and functions have many applicationsto cryptography, some of them were to be presented in other chapters of thebook (e.g., on signatures and encryption). The annotated list of references(dating 1989) contains several pointers to works which present applications ofpseudorandom functions; e.g., [GGM84b], [G86] and [G87b,O89]. However, inrecent years the list of applications has grown considerably.Simple pseudorandom generators based on speci�c intractability assumptions are pre-sented in [BM82,BBS82,ACGS84,VV84,K88]. In particular, [ACGS84] presents pseudoran-

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

120 CHAPTER 3. PSEUDORANDOM GENERATORSdom generators based on the intractability of factoring, whereas [K88] presents pseudoran-dom generators based on the intractability of discrete logarithm problems. In both cases,the major step is the construction of hard-core predicates for the corresponding collectionsof one-way permutations.Proposition 3.2.3 presents a pair of ensembles which are computational indistinguishablealthough they are statistically far apart. One of the two ensembles is not constructible inpolynomial-time. Goldreich showed that a pair of polynomial-time constructible ensembleshaving the above property (i.e., being both computationally indistinguishable and having anon-negligibly statistical di�erence) exists if and only if one-way functions exist [G90ipl].Author's Note: G90ipl has appeared in IPL, Vol. 34, pp. 277{281.Readers interested in Kolmogorov complexity are referred to [LiVitanyi].Author's Note: The reference is { M. Li and P. Vit�anyi, An Introduction toKolmogorov Complexity and its Applications, Springer-Verlag, 1993.3.8.3 Open ProblemsAlthough Hastad et. al. [HILL] showed how to construct pseudorandom generators givenany one-way function, their construction is not practical. The reason being that the \qual-ity" of the generator on seeds of length n is related to the hardness of inverting the givenfunction on inputs of length < 4pn. We believe that presenting an e�cient transformationof arbitrary one-way functions to pseudorandom generators is one of the most importantopen problems of the area.An open problem of more practical importance is to try to present even more e�cientpseudorandom generators based on the intractability of speci�c computational problemslike integer factorization. For further details see Subsection 2.7.3.3.8.4 ExercisesExercise 1: computational indistinguishability is preserved by e�cient algorithms: LetfXngn2N and fYngn2N be two ensembles that are polynomial-time indistinguishable,and let A be a probabilistic polynomial-time algorithm. Prove that the ensemblesfA(Xn)gn2N and fA(Yn)gn2N are polynomial-time indistinguishable.Exercise 2: statistical closeness is preserved by any function: Let fXngn2N and fYngn2Nbe two ensembles that are statistically close, and let f :f0; 1g� 7!f0; 1g� be a function.Prove that the ensembles ff(Xn)gn2N and ff(Yn)gn2N are statistically close.Exercise 3: Prove that for every L 2 BPP and every pair of polynomial-time indistin-guishable ensembles, fXngn2N and fYngn2N , it holds that the function�L(n) def= jPr (Xn2L)� Pr (Yn2L) j

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.8. MISCELLANEOUS 121is negligible in n.It is tempting to think the the converse holds as well, but we don't know if itdoes; note that fXng and fYng may be distinguished by a probabilitic algorithm,but not by a deterministic one. In such a case, which language should we de�ne?For example, suppose that A is a probabilistic polynomial-time algorithm and letL def= fx : Pr(A(x)=) � 12g, then L is not necessarily in BPP .Exercise 4: An equivalent formulation of statistical closeness: In the non-computationalsetting both the above and its converse are true and can be easily proven. Namely,prove that two ensembles, fXngn2N and fYngn2N , are statistically close if and only iffor every set S � f0; 1g�,�S(n) def= jPr (Xn2S)� Pr (Yn2S) jis negligible in n.Exercise 5: An information theoretic analogue of Theorem 3.2.6: prove that if two ensem-bles are statistically close then also their polynomial-products must be statisticallyclose.Guideline: Show that the statistical di�erence between the m-products of two distri-butions is bounded by m times the distance between the individual distributions.Exercise 6: statistical closeness implies computational indistinguishability: Prove that iftwo ensembles are statistically close then they are polynomial-time indistinguishable.(Hint: use the result of the previous exercise, and de�ne for every function f : f0; 1g� 7! f0; 1g a setSf def= fx : f(x)=1g.)Exercise 7: computational indistinguishability by circuits - probabilism versus determin-ism: Let fXngn2N and fYngn2N be two ensembles, and C def= fCngn2N be a family ofprobabilistic polynomial-size circuits. Prove that there exists a family of (determinis-tic) polynomial-size circuits, D def= fDngn2N , so that for every n�D(n) � �C(n)where �D(n) def= jPr (Dn(Xn))=1)� Pr (Dn(Yn))=1) j�C(n) def= jPr (Cn(Xn))=1)� Pr (Cn(Yn))=1) jExercise 8: computational indistinguishability by circuits - single sample versus severalsamples: We say that the ensembles X = fXngn2N and Y = fYngn2N are indistin-guishable by polynomial-size circuits if for every family, fCngn2N , of (deterministic)polynomial-size circuits, for every polynomial p(�) and all su�ciently large n'sjPr (Cn(Xn))=1)� Pr (Cn(Yn))=1) j < 1p(n)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

122 CHAPTER 3. PSEUDORANDOM GENERATORSProve thatX and Y are indistinguishable by polynomial-size circuits if and only if theirm(�)-products are indistinguishable by polynomial-size circuits, for every polynomialm(�). (Hint: X and Y need not be polynomial-time constructible! Yet, a \good choice" of x1; :::; ; xkand yk+2; :::; ym may be \hard-wired" into the circuit.)Exercise 9: computational indistinguishability { circuits vs algorithms:1. (Easy) Suppose that the ensembles X = fXngn2N and Y = fYngn2N are indis-tinguishable by polynomial-size circuits. Prove that they are computationallyindistinguishable (by probabilistic polynomial-time algorithms).2. (Hard) Show that there exist ensembles which are computationally indistinguish-able (by probabilistic polynomial-time algorithms), but are distinguishable bypolynomial-size circuits.Guideline (for Part 2): Given any function f : f0; 1g� 7! f0; 1g, construct anensemble X = fXngn2N such that each Xn has support of size at most 2 and Pr(f(Xn) =1) � Pr(f(Un) = 1), where Un is uniformly distributed over f0; 1gn. Generalize theargument so that given t such functions, fi's, each Xn has support of size at most t+ 1and Pr(f(Xn) = 1) � Pr(fi(Un) = 1), for each i = 1; :::; t. (Extra hint { consider thet-dimentional vectors (f1(x); :::; ft(x)), for each x 2 f0; 1gn and think of convex hulls.) Astandard diagonalization argument will �nish the job. (In case you did not get it, consult[GM97indist].)Author's Note: See ECCC, TR96-067, 1996.Exercise 10: On the general de�nition of a pseudorandom generator: Let G be a pseudo-random generator (by De�nition 3.3.1), and let fUl(n)gn2N be polynomial-time indis-tinguishable from fG(Un)gn2N . Prove that the probability that G(Un) has length notequal to l(n) is negligible (in n).Guideline: Consider an algorithm that for some polynomial p(�) proceeds as follows.On input 1n and a string to be tested �, the algorithm �rst samples G(Un) for p(n) timesand records the length of the shortest string found. Next the algorithm outputs 1 if andonly if � is longer than the length recorded.Exercise 11: Consider a modi�cation of Construction 3.3.3, where si�i = G1(si�1) is usedinstead of �isi = G1(si�1). Provide a simple proof that the resulting algorithm is alsopseudorandom. (Hint: don't modify the proof of Theorem 3.3.4, but rather modify G1 itself.)Exercise 12: Analogously to Exercise 7 in Chapter 3, refute the following conjecture.For every pseudorandom generatorG, the function G0(s) def= G(s)�s0jG(s)j�jsjis also a pseudorandom generator.Guideline: Let g be a a pseudorandom generator, and consider G de�ned on pairs ofstrings of the same length so that G(r; s) = (r; g(s)).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.8. MISCELLANEOUS 123Exercise 13: Let G be a pseudorandom generator, and h be a polynomial-time computablepermutation (over strings of the same length). Prove that G0 and G00 de�ned byG0(s) def= h(G(s)) and G00(s) def= G(h(s)) are both pseudorandom generators.Exercise 14: Alternative construction of pseudorandom generators with large expansionfactor: Let G1 be a pseudorandom generator with expansion factor l(n) = n+ 1, andlet p(�) be a polynomial. De�ne G(s) to be the result of applying G1 iteratively p(jsj)times on s (i.e., G(s) def= Gp(jsj)1 (s) where G01(s) def= s and Gi+11 def= G1(Gi1(s))). Provethat G is a pseudorandom generator. What are the advantages of using Construction3.3.3?Exercise 15: Sequential Pseudorandom Generator: A oracle machine is called a sequen-tial observer if its queries constitute a pre�x of the natural numbers. Namely, oninput 1n, the sequential observer makes queries 1; 2; 3; :::. Consider the following twoexperiments with a sequential observer having input 1n:1. The observer's queries are answered by independent ips of an unbiased coin.2. The observer's queries are answered as follows. First a random seed, s0, oflength n is uniformly chosen. The ith query is answered by the leftmost bit ofG(si�1) and si is set to equal the n rightmost bits of G(si�1), where G is a �xedpseudorandom generator.Prove that a probabilistic polynomial-time observer cannot distinguish the two exper-iments. Namely, the di�erence between the probability that the observer outputs 1in the �rst experiment and the probability that the observer outputs 1 in the secondexperiment is a negligible function (in n).Exercise 16: Pseudorandomness implies unpredictability: Prove that all pseudorandomensembles are unpredictable (in polynomial-time). (Hint: Given an e�cient predictor showhow to construct an e�cient distinguisher of the pseudorandom ensemble from the uniform one.)Exercise 17: Unpredictability implies pseudorandomness: Let X = fXngn2N be an ensem-ble such that there exists a function l :N 7!N so that Xn ranges over string of lengthl(n), and l(n) can be computed in time poly(n). Prove that if X is unpredictable (inpolynomial-time) then it is pseudorandom.Guideline: The main part of the argument is analogous to the one used in the proof ofTheorem 3.3.4. That is, given an e�cient distinguisher of X from the uniform ensemblefUl(n)gn2N , one shows how to construct an e�cient predictor. The predictor randomlyselects k 2 f0; :::; l(n) � 1g reads only the �rst k bits of the input, and applies D to thestring resulting by augmenting the k-bit long pre�x of the input with l(n) � k uniformlychosen bits. If D answers 1 then the predictor outputs the �rst of these random bits elsethe predictor outputs the complementary value. The hybrid technique is used to evaluatethe performance of the predictor. Extra hint: an argument analogous to that of the proofof Theorem 3.4.1 has to be used as well.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

124 CHAPTER 3. PSEUDORANDOM GENERATORSExercise 18: Construction of Hashing Families:1. Consider the set Smn of functions mapping n-bit long strings into m-bit strings asfollows. A function h in Smn is represented by an n-by-m binary matrix A, andanm-dimensional binary vector b. The n-dimensional binary vector x is mappedby the function h to the m-dimensional binary vector resulting by multiplying xby A and adding the vector b to the resulting vector (i.e., h(x) = xA+ b). Provethat Smn so de�ned constitutes a hashing family (as de�ned in Section 3.5).2. Repeat the above item when the n-by-m matrices are restricted to be Toeplitzmatrices. An n-by-m Toeplitz matrix, T = fTi;jg, satis�es Ti;j = Ti+1;j+1 for alli; j.Note that binary n-by-m Toeplitz matrices can be represented by strings of lengthn+m� 1, where as representing arbitrary n-by-m binary matrices requires strings oflength n �m.Exercise 19: Another Hashing Lemma: Let m, n, Smn , b, Xn and � be as in Lemma 3.5.1.Prove that, for every set S � f0; 1gm, and for all but a 2�(b�m+log2 jSj)��2 fraction ofthe h's in Smn , it holds that Pr(h(Xn)2S) 2 (1� �) � jSj2m(Hint: Follow the proof of Lemma 3.5.1, de�ning �x(h) = 1 if h(x) 2 S and 0 otherwise.)Exercise 20: Yet another Hashing Lemma: Letm, n, and Smn be as above. Let B � f0; 1gnand S � f0; 1gm be sets, and let b def= log2 jBj and s def= log2 jSj. Prove that, for all buta 2mjBj�jSj � ��2 fraction of the h's in Smn , it holds thatjfx 2B : h(x)2S)gj 2 (1� �) � (jBj � jSj)(Hint: De�ne a random variable Xn that is uniformly distributed over B.)Exercise 21: Failure of an alternative construction of pseudorandom functions: Considera construction of a function ensemble where the functions in Fn are de�ned as follows.For every s 2 f0; 1gn, the function fs is de�ned so thatfs(x) def= G�n(� � �(G�2(G�1(x)) � � �)where s = �1 � � ��n, and G� is as in Construction 3.6.4. Namely the roles of xand s in Construction 3.6.4 are switched (i.e., the root is labelled x and the valueof fs on x is obtained by following the path corresponding to the index s). Provethat the resulting function ensemble is not necessarily pseudorandom (even if G is apseudorandom generator).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

3.8. MISCELLANEOUS 125Guideline: Show, �rst, that if pseudorandom generators exist then there exists a pseu-dorandom generator G satisfying G(0n) = 02n.Exercise 22: Pseudorandom Generators with Direct Access: A direct access pseudorandomgenerator is a deterministic polynomial-time algorithm, G, for which no probabilisticpolynomial-time oracle machine can distinguish the following two cases:1. New queries of the oracle machine are answered by independent ips of an unbi-ased coin. (Repeating the same query yields the same answer.)2. First, a random \seed", s, of length n is uniformly chosen. Next, each query, q,is answered by G(s; q).The bit G(s; i) may be thought of as the ith bit in a bit sequence corresponding tothe seed s, where i is represented in binary. Prove that the existence of (regular)pseudorandom generators implies the existence of pseudorandom generators with di-rect access. Note that modifying the current de�nition, so that only unary queriesare allowed, yields an alternative de�nition of a sequential pseudorandom generator(presented in Exercise 15 above). Evaluate the advantage of direct access pseudoran-dom generators over sequential pseudorandom generators in settings requiring directaccess only to bits of a polynomially long pseudorandom sequence.Exercise 23: other types of pseudorandom functions: De�ne pseudorandom predicate en-sembles so that the random variable Fn ranges over arbitrary Boolean predicates(i.e., functions in the range of Fn are de�ned on all strings and have the formf : f0; 1g� 7! f0; 1g). Assuming the existence of pseudorandom generators, con-struct e�ciently computable ensembles of pseudorandom Boolean functions. Samefor ensembles of functions in which each function in the range of Fn operates on theset of all strings (i.e., has the form f : f0; 1g� 7! f0; 1g�).Guideline: Use a modi�cation of Construction 3.6.4 in which the building block is apseudorandom generator expanding strings of length n into strings of length 3n.Exercise 24: An alternative de�nition of pseudorandom functions: For sake of simplicitythis exercise is stated in terms of ensembles of Boolean functions as presented inthe previous exercise. We say that a Boolean function ensemble, F = fFngn2N , isunpredictable if for every probabilistic polynomial-time oracle machine, M , for everypolynomial p(�) and for all su�ciently large n'sPr(corrFn(MFn(1n))) < 12 + 1p(n)where MFn assumes values of the form (x; �) 2 f0; 1gn+1 so that x is not a queryappearing in the computationMFn , and corrf (x; �) is de�ned as the predicate \f(x) =�". Intuitively, after getting the value of f on points of its choice, the machine M

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

126 CHAPTER 3. PSEUDORANDOM GENERATORSoutputs a new point and tries to guess the value of f on this point. Assuming thatF = fFngn2N is e�ciently computable, prove that F is pseudorandom if and only ifF is unpredictable.Guideline: A pseudorandom function ensemble is unpredictable since the uniform func-tion ensemble is unpredictable. For the other direction use ideas analogous to those usedin Exercise 16.Exercise 25: A mistaken \alternative" de�nition of pseudorandom functions: Consider thefollowing de�nition of unpredictability of function ensembles. The predicting oraclemachine, M , is given a uniformly chosen x 2 f0; 1gn as input and should output aguess to f(x), after querying the oracle f on polynomially-many other (than x) pointsof its choice. We require that for every probabilistic polynomial-time oracle machine,M , that does not query the oracle on its own input, for every polynomial p(�), and forall su�ciently large n's Pr(MFn(Un)=Fn(Un)) < 12 + 1p(n)Show that a pseudorandom function ensemble meets this requirement but that, pro-vided pseudorandom functions ensembles exists, there exists a function ensemblewhich is unpredictable in the sense de�ned here although it is not pseudorandom.This exercise contradicts a awed claim (which appeared in earlier versions of thismanuscript). The aw (which constitutes an answer to the current exercise) waspointed out by Omer Reingold.Exercise 26: An unsuccessful attempt to make the above de�nition equivalent to pseudo-randomness function: Suppose that we strengthen the requirement of the previous ex-ercise by allowing the input, x, to be chosen from any polynomial-time constructableensemble. Namely, here we say that a function ensemble, F = fFngn2N , is unpre-dictable if for every probabilistic polynomial-time oracle machine, M , that does notquery the oracle on its own input, for every polynomial-time ensemble fXngn2N , everypolynomial p(�), and for all su�ciently large n'sPr(MFn(Xn)=Fn(Xn)) < 12 + 1p(n)Again, show that this de�nition is a necessary but insu�cient de�nition of pseudo-random function ensembles.Exercise 27: Let Fn and DEStFn be as in Construction 3.7.6. Prove that, regardless ofthe choice of the ensemble F = fFngn2N , the ensemble DES2Fn is not pseudorandom.Similarly, prove that the ensemble DES3Fn is not strongly pseudorandom.Guideline: Start by showing that the ensemble DES1Fn is not pseudorandom.Author's Note: First draft written mainly in 1991.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

