
Chapter 4Zero-Knowledge Proof SystemsIn this chapter we discuss zero-knowledge proof systems. Loosely speaking, such proofsystems have the remarkable property of being convincing and yielding nothing (beyondthe validity of the assertion). The main result presented is a method to generate zero-knowledge proof systems for every language in NP . This method can be implemented usingany bit commitment scheme, which in turn can be implemented using any pseudorandomgenerator. In addition, we discuss more re�ned aspects of the concept of zero-knowledgeand their a�ect on the applicability of this concept.Organization: The basic material is presented in Sections 4.1 through 4.4. In particular,we start with motivation (Section 4.1), then we de�ne and exemplify the notions of inter-active proofs (Section 4.2) and of zero-knowledge (Section 4.3), and �nally we present azero-knowledge proof systems for every language in NP (Section 4.4). Sections dedicatedto advanced topics follow. Unless stated di�erently, each of these advanced sections can beread independently of the others.� In Section 4.5 we present some negative results regarding zero-knowledge proofs.These results demonstrate the \optimality" of the results in Section 4.4, and mo-tivate the variants presented in Sections 4.6 and 4.8.� In Section 4.6 we present a major relaxion of zero-knowledge and prove that it is closedunder parallel composition (which is not the case, in general, for zero-knowledge).� In Section 4.7 we de�ne and discuss (zero-knowledge) proofs of knowledge.� In Section 4.8 we discuss a relaxion of interactive proofs, termed computationallysound proofs (or arguments).� In Section 4.9 we present two constructions of constant-round zero-knowledge systems.The �rst is an interactive proof system whereas the second is an argument system.Subsection 4.8.2 is a prerequisite for the �rst construction; whereas Sections 4.8, 4.7,and 4.6 constitute a prerequisite for the second.127

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

128 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS� In Section 4.10 we discuss non-interactive zero-knowledge proofs. A basic de�nitionin Section 4.6 is a prerequisite for the last result in Section 4.10.� In Section 4.11 we discuss multi-prover proof systems.We conclude, as usual, with a Miscellaneous Section (4.12).4.1 Zero-Knowledge Proofs: MotivationAn archetypical \cryptographic" problem consists of providing mutually distrustful partieswith a means of \exchanging" (predetermined) \pieces of information". The setting consistsof several parties, each wishing to obtain some predetermined partial information concerningthe secrets of the other parties. Yet each party wishes to reveal as little information aspossible about its own secret. To clarify the issue, let us consider a speci�c example.Suppose that all users in a system keep backups of their entire �le system,encrypted using their public-key encryption, in a publicly accessible storagemedia. Suppose that at some point, one user, called Alice, wishes to reveal toanother user, called Bob, the cleartext of one of her �les (which appears in one ofher backups). A trivial \solution" is for Alice just to send the (cleartext) �le toBob. The problem with this \solution" is that Bob has no way of verifying thatAlice really sent him a �le from her public backup, rather than just sendinghim an arbitrary �le. Alice can simply prove that she sends the correct �le byrevealing to Bob her private encryption key. However, doing so, will reveal toBob the contents of all her �les, which is certainly something that Alice doesnot want to happen. The question is whether Alice can convince Bob that sheindeed revealed the correct �le without yielding any additional \knowledge".An analogous question can be phrased formally as follows. Let f be a one-waypermutation, and b a hard-core predicate with respect to f . Suppose that oneparty, A, has a string x, whereas another party, denoted B, only has f(x).Furthermore, suppose that A wishes to reveal b(x) to party B, without yieldingany further information. The trivial \solution" is to let A send b(x) to B, but,as explained above, B will have no way of verifying whether A has really sentthe correct bit (and not its complement). Party A can indeed prove that it sendsthe correct bit (i.e., b(x)) by sending x as well, but revealing x to B is muchmore than what A had originally in mind. Again, the question is whether A canconvince B that it indeed revealed the correct bit (i.e., b(x)) without yieldingany additional \knowledge".In general, the question is whether it is possible to prove a statement without yieldinganything beyond its validity. Such proofs, whenever they exist, are called zero-knowledge,and play a central role (as we shall see in the subsequent chapter) in the construction of\cryptographic" protocols.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.1. ZERO-KNOWLEDGE PROOFS: MOTIVATION 129Loosely speaking, zero-knowledge proofs are proofs that yield nothing (i.e., \no knowl-edge") beyond the validity of the assertion. In the rest of this introductory section, wediscuss the notion of a \proof" and a possible meaning of the phrase \yield nothing (i.e.,no knowledge) beyond something".4.1.1 The Notion of a ProofWe discuss the notion of a proof with the intention of uncovering some of its underlyingaspects.4.1.1.1 A Proof as a �xed sequence or as an interactive processTraditionally in mathematics, a \proof" is a �xed sequence consisting of statements whichare either self-evident or are derived from previous statements via self-evident rules. Actu-ally, it is more accurate to substitute the phrase \self-evident" by the phrase \commonlyagreed". In fact, in the formal study of proofs (i.e., logic), the commonly agreed statementsare called axioms, whereas the commonly agreed rules are referred to as derivation rules.We wish to stress two properties of mathematics proofs:1. proofs are viewed as �xed objects;2. proofs are considered at least as fundamental as their consequence (i.e., the theorem).However, in other areas of human activity, the notion of a \proof" has a much widerinterpretation. In particular, a proof is not a �xed object but rather a process by whichthe validity of an assertion is established. For example, the cross-examination of a witnessin court is considered a proof in law, and failure to answer a rival's claim is considered aproof in philosophical, political and sometimes even technical discussions. In addition, inreal-life situations, proofs are considered secondary (in importance) to their consequence.To summarize, in \canonical" mathematics proofs have a static nature (e.g., they are\written"), whereas in real-life situations proofs have a dynamic nature (i.e., they are es-tablished via an interaction). The dynamic interpretation of the notion of a proof is moreadequate to our setting in which proofs are used as tools (i.e., subprotocols) inside \cryp-tographic" protocols. Furthermore, the dynamic interpretation (at least in a weak sense) isessential to the non-triviality of the notion of a zero-knowledge proof.4.1.1.2 Prover and Veri�erThe notion of a prover is implicit in all discussions of proofs, be it in mathematics or inreal-life situations. Instead, the emphasis is placed on the veri�cation process, or in otherwords on (the role of) the veri�er. Both in mathematics and in real-life situations, proofsare de�ned in terms of the veri�cation procedure. Typically, the veri�cation procedure isconsidered to be relatively simple, and the burden is placed on the party/person supplyingthe proof (i.e., the prover).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

130 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSThe asymmetry between the complexity of the veri�cation and the theorem-provingtasks is captured by the complexity class NP , which can be viewed as a class of proofsystems. Each language L 2 NP has an e�cient veri�cation procedure for proofs of state-ments of the form \x 2 L". Recall that each L 2 NP is characterized by a polynomial-timerecognizable relation RL so thatL = fx : 9y s.t. (x; y)2RLgand (x; y)2RL only if jyj � poly(jxj). Hence, the veri�cation procedure for membershipclaims of the form \x 2 L" consists of applying the (polynomial-time) algorithm for rec-ognizing RL, to the claim (encoded by) x and a prospective proof denoted y. Hence, anyy satisfying (x; y) 2 RL is considered a proof of membership of x 2 L. Hence, correctstatements (i.e., x 2 L) and only them have proofs in this proof system. Note that the ver-i�cation procedure is \easy" (i.e., polynomial-time), whereas coming up with proofs maybe \di�cult".It is worthwhile to stress the distrustful attitude towards the prover in any proof system.If the veri�er trusts the prover then no proof is needed. Hence, whenever discussing a proofsystem one considers a setting in which the veri�er is not trusting the prover and furthermoreis skeptic of anything the prover says.4.1.1.3 Completeness and ValidityTwo fundamental properties of a proof system (i.e., a veri�cation procedure) are its validityand completeness. The validity property asserts that the veri�cation procedure cannot be\tricked" into accepting false statements. In other words, validity captures the veri�erability of protecting itself from being convinced of false statements (no matter what theprover does in order to fool it). On the other hand, completeness captures the ability ofsome prover to convince the veri�er of true statements (belonging to some predeterminedset of true statements). Note that both properties are essential to the very notion of a proofsystem.We remark here that not every set of true statements has a \reasonable" proof systemin which each of these statements can be proven (while no false statement can be \proven").This fundamental fact is given a precise meaning in results such as G�odel's IncompletenessTheorem and Turing's proof of the unsolvability of the Halting Problem. We stress that inthis chapter we con�ne ourself to the class of sets that do have \e�cient proof systems".In fact, Section 4.2 is devoted to discussing and formulating the concept of \e�cient proofsystems". Jumping ahead, we hint that the e�ciency of a proof system will be associatedwith the e�ciency of its veri�cation procedure.4.1.2 Gaining KnowledgeRecall that we have motivated zero-knowledge proofs as proofs by which the veri�er gains\no knowledge" (beyond the validity of the assertion). The reader may rightfully wonder

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.1. ZERO-KNOWLEDGE PROOFS: MOTIVATION 131what is knowledge and what is a gain of knowledge. When discussing zero-knowledge proofs,we avoid the �rst question (which is quite complex), and treat the second question directly.Namely, without presenting a de�nition of knowledge, we present a generic case in which itis certainly justi�ed to say that no knowledge is gained. Fortunately, this \conservative"approach seems to su�ce as far as cryptography is concerned.To motivate the de�nition of zero-knowledge consider a conversation between two par-ties, Alice and Bob. Assume �rst that this conversation is unidirectional, speci�cally Aliceonly talks and Bob only listens. Clearly, we can say that Alice gains no knowledge fromthe conversation. On the other hand, Bob may or may not gain knowledge from the con-versation (depending on what Alice says). For example, if all that Alice says is 1 + 1 = 2then clearly Bob gains no knowledge from the conversation since he knows this fact himself.If, on the other hand, Alice tells Bob a proof of Fermat's Theorem then certainly he gainedknowledge from the conversation.To give a better
avour of the de�nition, we now consider a conversation between Aliceand Bob in which Bob asks Alice questions about a large graph (that is known to both ofthem). Consider �rst the case in which Bob asks Alice whether the graph is Eulerian ornot. Clearly, we say that Bob gains no knowledge from Alice's answer, since he could havedetermined the answer easily by himself (e.g., by using Euler's Theorem which asserts thata graph is Eulerian if and only if all its vertices have even degree). On the other hand, ifBob asks Alice whether the graph is Hamiltonian or not, and Alice (somehow) answersthis question then we cannot say that Bob gained no knowledge (since we do not know ofan e�cient procedure by which Bob can determine the answer by himself, and assumingP 6= NP no such e�cient procedure exists). Hence, we say that Bob gained knowledgefrom the interaction if his computational ability, concerning the publicly known graph, hasincreased (i.e., if after the interaction he can easily compute something that he could nothave e�ciently computed before the interaction). On the other hand, if whatever Bob cane�ciently compute about the graph after interacting with Alice, he can also e�cientlycompute by himself (from the graph) then we say that Bob gained no knowledge from theinteraction. Hence, Bob gains knowledge only if he receives the result of a computation whichis infeasible for Bob. The question of how could Alice conduct this infeasible computation(e.g., answer Bob's question of whether the graph is Hamiltonian) has been ignored so far.Jumping ahead, we remark that Alice may be a mere abstraction or may be in possessionof additional hints, that enables to e�ciently conduct computations that are otherwiseinfeasible (and in particular are infeasible for Bob who does not have these hints). (Yet,these hints are not necessarily \information" in the information theoretic sense as they maybe determined by the common input, but not e�ciently computed from it.)Knowledge vs. information. We wish to stress that knowledge (as discussed above) isvery di�erent from information (in the sense of information theory).� Knowledge is related to computational di�culty, whereas information is not. In theabove examples, there was a di�erent between the knowledge revealed in case Alice

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

132 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSanswers questions of the form \is the graph Eulerian" and the case she answers ques-tions of the form \is the graph Hamilton". From an information theoretic point of viewthere is no di�erence between the two cases (i.e., in both Bob gets no information).� Knowledge relates mainly to publicly known objects, whereas information relatesmainly to objects on which only partial information is publicly known. Consider thecase in which Alice answers each question by
ipping an unbiased coin and tellingBob the outcome. From an information theoretic point of view, Bob gets from Aliceinformation concerning an event. However, we say that Bob gains no knowledge fromAlice, since he can toss coins by himself.4.2 Interactive Proof SystemsIn this section we introduce the notion of an interactive proof system, and present a non-trivial example of such a system (speci�cally to claims of the form \the following twographs are not isomorphic"). The presentation is directed towards the introduction of zero-knowledge interactive proofs. Interactive proof systems are interesting for their own sake,and have important complexity theoretic applications, that are discussed in Chapter 9.4.2.1 De�nitionThe de�nition of an interactive proof system refers explicitly to the two computational tasksrelated to a proof system: \producing" a proof and verifying the validity of a proof. Thesetasks are performed by two di�erent parties, called the prover and the veri�er, which interactwith one another. The interaction may be very simple and in particular unidirectional (i.e.,the prover sends a text, called the proof, to the veri�er). In general the interaction may bemore complex, and may take the form of the veri�er interrogating the prover.4.2.1.1 InteractionInteraction between two parties is de�ned in the natural manner. The only point worthnoting is that the interaction is parameterized by a common input (given to both parties).In the context of interactive proof systems, the common input represents the statementto be proven. We �rst de�ne the notion of an interactive machine, and next the notionof interaction between two such machines. The reader may skip to the next part of thissubsection (titled \Conventions regarding interactive machines") with little loss (if at all).De�nition 4.2.1 (an interactive machine):� An interactive Turing machine (ITM) is a (deterministic) multi-tape Turing machine.The tapes consists of a read-only input-tape, a read-only random-tape, a read-and-write work-tape, a write-only output-tape, a pair of communication-tapes, and a

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.2. INTERACTIVE PROOF SYSTEMS 133read-and-write switch-tape consisting of a single cell initiated to contents 0. Onecommunication-tape is read-only and the other is write-only.� Each ITM is associated a single bit � 2 f0; 1g, called its identity. An ITM is saidto be active, in a con�guration, if the contents of its switch-tape equals the machine'sidentity. Otherwise the machine is said to be idle. While being idle, the state ofthe machine, the location of its heads on the various tapes, and the contents of thewriteable tapes of the ITM is not modi�ed.� The contents of the input-tape is called input, the contents of the random-tape is calledrandom-input, and the contents of the output-tape at termination is called output.The contents written on the write-only communication-tape during a (time) periodin which the machine is active is called the message sent at this period. Likewise,the contents read from the read-only communication-tape during an active period iscalled the message received (at that period). (Without loss of generality the machinemovements on both communication-tapes are only in one direction, say left to right).The above de�nition, taken by itself, seems quite nonintuitive. In particular, one maysay that once being idle the machine never becomes active again. One may also wonderwhat is the point of distinguishing the read-only communication-tape from the input-tape(and respectively distinguishing the write-only communication-tape from the output-tape).The point is that we are never going to consider a single interactive machine, but rather apair of machines combined together so that some of their tapes coincide. Intuitively, themessages sent by an interactive machine are received by a second machine which shares itscommunication-tapes (so that the read-only communication-tape of one machine coincideswith the write-only tape of the other machine). The active machine may become idle bychanging the contents of the shared switch-tape and by doing so the other machine (havingopposite identity) becomes active. The computation of such a pair of machines consists ofthe machines alternatingly sending messages to one another, based on their initial (common)input, their (distinct) random-inputs, and the messages each machine has received so far.De�nition 4.2.2 (joint computation of two ITMs):� Two interactive machines are said to be linked if they have opposite identities, theirinput-tapes coincide, their switch-tapes coincide, and the read-only communication-tape of one machine coincides with the write-only communication-tape of the othermachine, and vice versa. We stress that the other tapes of both machines (i.e., therandom-tape, the work-tape, and the output-tape) are distinct.� The joint computation of a linked pair of ITMs, on a common input x, is a sequenceof pairs. Each pair consists of the local con�guration of each of the machines. In eachsuch pair of local con�gurations, one machine (not necessarily the same one) is activewhile the other machine is idle.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

134 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS� If one machine halts while the switch-tape still holds its identity the we say that bothmachines have halted.At this point, the reader may object to the above de�nition, saying that the individualmachines are deprived of individual local inputs (and observing that they are given indi-vidual and unshared random-tapes). This restriction is removed in Subsection 4.2.3, and infact removing it is quite important (at least as far as practical purposes are concerned). Yet,for a �rst presentation of interactive proofs, as well as for demonstrating the power of thisconcept, we prefer the above simpler de�nition. The convention of individual random-tapesis however essential to the power of interactive proofs (see Exercise 4).4.2.1.2 Conventions regarding interactive machinesTypically, we consider executions when the contents of the random-tape of each machine isuniformly and independently chosen (among all in�nite bit sequences). The convention ofhaving an in�nite sequence of internal coin tosses should not bother the reader since duringa �nite computation only a �nite pre�x is read (and matters). The contents of each of theserandom-tapes can be viewed as internal coin tosses of the corresponding machine (as in thede�nition of ordinary probabilistic machines, presented in Chapter 1). Hence, interactivemachines are in fact probabilistic.Notation: Let A and B be a linked pair of ITMs, and suppose that all possible interactionsof A and B on each common input terminate in a �nite number of steps. We denote byhA;Bi(x) the random variable representing the (local) output of B when interacting withmachine A on common input x, when the random-input to each machine is uniformly andindependently chosen.Another important convention is to consider the time-complexity of an interactive ma-chine as a function of its input only.De�nition 4.2.3 (the complexity of an interactive machine): We say that an interactivemachine A has time complexity t : N 7! N if for every interactive machine B and everystring x, it holds that when interacting with machine B, on common input x, machine Aalways (i.e., regardless of the contents of its random-tape and B's random-tape) halts withint(jxj) steps.We stress that the time complexity, so de�ned, is independent of the contents of themessages that machine A receives. In other word, it is an upper bound which holds for allpossible incoming messages. In particular, an interactive machine with time complexity t(�)reads, on input x, only a pre�x of total length t(jxj) of the messages sent to it.4.2.1.3 Proof systemsIn general, proof systems are de�ned in terms of the veri�cation procedure (which may beviewed as one entity called the veri�er). A \proof" to a speci�c claim is always considered

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.2. INTERACTIVE PROOF SYSTEMS 135as coming from the outside (which can be viewed as another entity called the prover). Theveri�cation procedure itself, does not generate \proofs", but merely veri�es their validity.Interactive proof systems are intended to capture whatever can be e�ciently veri�ed viainteraction with the outside. In general, the interaction with the outside may be verycomplex and may consist of many message exchanges, as long as the total time spent bythe veri�er is polynomial.In light of the association of e�cient procedures with probabilistic polynomial-timealgorithms, it is natural to consider probabilistic polynomial-time veri�ers. Furthermore,the veri�er's verdict of whether to accept or reject the claim is probabilistic, and a boundederror probability is allowed. (The error can of course be decreased to be negligible byrepeating the veri�cation procedure su�ciently many times.) Loosely speaking, we requirethat the prover can convince the veri�er of the validity of valid statement, while nobody canfool the veri�er into believing false statements. In fact, it is only required that the veri�eraccepts valid statements with \high" probability, whereas the probability that it acceptsa false statement is \small" (regardless of the machine with which the veri�er interacts).In the following de�nition, the veri�er's output is interpreted as its decision on whether toaccept or reject the common input. Output 1 is interpreted as `accept', whereas output 0is interpreted as `reject'.De�nition 4.2.4 (interactive proof system): A pair of interactive machines, (P; V), iscalled an interactive proof system for a language L if machine V is polynomial-time and thefollowing two conditions hold� Completeness: For every x 2 LPr (hP; V i(x)=1) � 23� Soundness: For every x 62 L and every interactive machine BPr (hB; V i(x)=1) � 13Some remarks are in place. We �rst stress that the soundness condition refers to allpotential \provers" whereas the completeness condition refers only to the prescribed proverP . Secondly, the veri�er is required to be (probabilistic) polynomial-time, while no re-source bounds are placed on the computing power of the prover (in either completeness orsoundness conditions!). Thirdly, as in the case of BPP , the error probability in the abovede�nition can be made exponentially small by repeating the interaction (polynomially)many times (see below).Every language in NP has an interactive proof system. Speci�cally, let L 2 NP andlet RL be a witness relation associated with the language L (i.e., RL is recognizable inpolynomial-time and L equals the set fx : 9y s.t. jyj = poly(x) ^ (x; y) 2 RLg). Then,

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

136 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSan interactive proof for the language L consists of a prover that on input x 2 L sends awitness y (as above), and a veri�er that upon receiving y (on common input x) outputs1 if jyj = poly(jxj) and (x; y)2RL (and 0 otherwise). Clearly, when interacting with theprescribed prover, this veri�er will always accept inputs in the language. On the other hand,no matter what a cheating \prover" does, this veri�er will never accept inputs not in thelanguage. We point out that in this proof system both parties are deterministic (i.e., makeno use of their random-tape). It is easy to see that only languages in NP have interactiveproof systems in which both parties are deterministic (see Exercise 2).In other words, NP can be viewed as a a class of interactive proof systems in whichthe interaction is unidirectional (i.e., from the prover to the veri�er) and the veri�er isdeterministic (and never errs). In general interactive proofs, both restrictions are waived:the interaction is bidirectional and the veri�er is probabilistic (and may err with some smallprobability). Both bidirectional interaction and randomization seem essential to the powerof interactive proof systems (see further discussion in Chapter 9).De�nition 4.2.5 (the class IP): The class IP consists of all languages having interactiveproof systems.By the above discussion NP � IP. Since languages in BPP can be viewed as having averi�er (that decides on membership without any interaction), it follows that BPP[NP �IP. We remind the reader that it is not known whether BPP � NP .We stress that the de�nition of the class IP remains invariant if one replaced the(constant) bounds in the completeness and soundness conditions by two functions c; s :N 7!N satisfying c(n) < 1� 2�poly(n), s(n) > 2�poly(n), and c(n) > s(n) + 1poly(n) . Namely,De�nition 4.2.6 (generalized interactive proof): Let c; s : N 7! N be functions satisfy-ing c(n) > s(n) + 1p(n), for some polynomial p(�). An interactive pair (P; V) is called a(generalized) interactive proof system for the language L, with completeness bound c(�) andsoundness bound s(�), if� (modi�ed) completeness: For every x 2 LPr (hP; V i(x)=1) � c(jxj)� (modi�ed) soundness: For every x 62 L and every interactive machine BPr (hB; V i(x)=1) � s(jxj)The function g(�), where g(n) def= c(n)�s(n), is called the acceptance gap of (P; V); and thefunction e(�), where e(n) def= maxf1� c(n); s(n)g, is called the error probability of (P; V).Proposition 4.2.7 The following three conditions are equivalent

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.2. INTERACTIVE PROOF SYSTEMS 1371. L 2 IP. Namely, there exists a interactive proof system, with completeness bound 23and soundness bound 13 , for the language L;2. L has very strong interactive proof systems: For every polynomial p(�), there existsan interactive proof system for the language L, with error probability bounded aboveby 2�p(�).3. L has a very weak interactive proof: There exists a polynomial p(�), and a generalizedinteractive proof system for the language L, with acceptance gap bounded below by1=p(�). Furthermore, completeness and soundness bounds for this system, namely thevalues c(n) and s(n), can be computed in time polynomial in n.Clearly either of the �rst two items imply the third one (including the requirement fore�ciently computable bounds). The ability to e�ciently compute completeness and sound-ness bounds is used in proving the opposite (non-trivial) direction. The proof is left as anexercise (i.e., Exercise 1).4.2.2 An Example (Graph Non-Isomorphism in IP)All examples of interactive proof systems presented so far were degenerate (e.g., the in-teraction, if at all, was unidirectional). We now present an example of a non-degenerateinteractive proof system. Furthermore, we present an interactive proof system for a lan-guage not known to be in BPP [NP . Speci�cally, the language is the set of pairs ofnon-isomorphic graphs, denoted GNI .Two graphs, G1=(V1; E1) and G2=(V2; E2), are called isomorphic if there exists a 1-1and onto mapping, �, from the vertex set V1 to the vertex set V2 so that (u; v) 2 E1 if andonly if (�(v); �(u)) 2 E2. The mapping �, if existing, is called an isomorphism between thegraphs.Construction 4.2.8 (Interactive proof system for Graph Non-Isomorphism):� Common Input: A pair of two graphs, G1 = (V1; E1) and G2 = (V2; E2). Suppose,without loss of generality, that V1 = f1; 2; :::; jV1jg, and similarly for V2.� Veri�er's �rst Step (V1): The veri�er selects at random one of the two input graphs,and sends to the prover a random isomorphic copy of this graph. Namely, the veri�erselects uniformly � 2 f1; 2g, and a random permutation � from the set of permutationsover the vertex set V�. The veri�er constructs a graph with vertex set V� and edge setF def= f(�(u); �(v)) : (u; v)2E�gand sends (V�; F) to the prover.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

138 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS� Motivating Remark: If the input graphs are non-isomorphic, as the prover claims,then the prover should be able to distinguish (not necessarily by an e�cient algorithm)isomorphic copies of one graph from isomorphic copies of the other graph. However,if the input graphs are isomorphic then a random isomorphic copy of one graph isdistributed identically to a random isomorphic copy of the other graph.� Prover's �rst Step (P1): Upon receiving a graph, G0 = (V 0; E 0), from the veri�er, theprover �nds a � 2 f1; 2g so that the graph G0 is isomorphic to the input graph G� . (Ifboth � =1; 2 satisfy the condition then � is selected arbitrarily. In case no � 2 f1; 2gsatis�es the condition, � is set to 0). The prover sends � to the veri�er.� Veri�er's second Step (V2): If the message, � , received from the prover equals �(chosen in Step V1) then the veri�er outputs 1 (i.e., accepts the common input).Otherwise the veri�er outputs 0 (i.e., rejects the common input).The veri�er program presented above is easily implemented in probabilistic polynomial-time. We do not known of a probabilistic polynomial-time implementation of the prover'sprogram, but this is not required. We now show that the above pair of interactive machinesconstitutes an interactive proof system (in the general sense) for the language GNI (GraphNon-Isomorphism).Proposition 4.2.9 The language GNI is in the class IP. Furthermore, the programsspeci�ed in Construction 4.2.8 constitute a generalized interactive proof system for GNI.Namely,1. If G1 and G2 are not isomorphic (i.e., (G1; G2) 2 GNI) then the veri�er always accept(when interacting with the prover).2. If G1 and G2 are isomorphic (i.e., (G1; G2) 62 GNI) then, no matter with what ma-chine the veri�er interacts, it rejects the input with probability at least 12 .proof: Clearly, if G1 and G2 are not isomorphic then no graph can be isomorphic to bothG1 and G2. It follows that there exists a unique � such that the graph G0 (received by theprover in Step P1) is isomorphic to the input graph G� . Hence, � found by the prover inStep (P1) always equals � chosen in Step (V1). Part (1) follows.On the other hand, if G1 and G2 are isomorphic then the graph G0 is isomorphic toboth input graphs. Furthermore, we will show that in this case the graph G0 yields noinformation about �, and consequently no machine can (on input G1, G2 and G0) set � sothat it equal �, with probability greater than 12 . Details follow.Let � be a permutation on the vertex set of a graph G= (V;E). Then, we denote by�(G) the graph with vertex set V and edge set f(�(u); �(v)) : (u; v) 2 Eg. Let � be arandom variable uniformly distributed over f1; 2g, and � be a random variable uniformlydistributed over the permutations of the set V . We stress that these two random variable

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.2. INTERACTIVE PROOF SYSTEMS 139are independent. We are interested in the distribution of the random variable �(G�). Weare going to show that, although �(G�) is determined by the random variables � and �,the random variables � and �(G�) are statistically independent. In fact we showClaim 4.2.9.1: If the graphs G1 and G2 are isomorphic then for every graph G0 it holds thatPr (�=1j�(G�)=G0) = Pr (�=2j�(G�)=G0) = 12proof: We �rst claim that the sets S1 def= f� : �(G1) = G0) and S2 def= f� : �(G2) = G0)are of equal cardinality. This follows from the observation that there is a 1-1 and ontocorrespondence between the set S1 and the set S2 (the correspondence is given by theisomorphism between the graphs G1 and G2). Hence,Pr (�(G�)=G0j�=1) = Pr (�(G1)=G0)= Pr (�2S1)= Pr (�2S2)= Pr (�(G�)=G0j�=2)Using Bayes Rule, the claim follows.2Using Claim 4.2.9.1, it follows that for every pair, (G1; G2), of isomorphic graphs and forevery randomized process, R, (possibly depending on this pair) it holds thatPr (R(�(G�))=�) = XG0 Pr (�(G�))=G0) � Pr (R(G0))=�j�(G�)=G0)= XG0 Pr (�(G�))=G0)� Xb2f1;2gPr (R(G0))=b) � Pr (b=�j�(G�)=G0)= XG0 Pr (�(G�))=G0) � Pr (R(G0))2 f1; 2g) � 12� 12with equality in case R always outputs an element in the set f1; 2g. Part (2) of the propo-sition follows.Remarks concerning Construction 4.2.8: In the proof system of Construction 4.2.8,the veri�er always accepts inputs in the language (i.e., the error probability in these casesequals zero). All interactive proof systems we shall consider will share this property. In factit can be shown that every interactive proof system can be transformed into an interactiveproof system (for the same language) in which the veri�er always accepts inputs in the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

140 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSlanguage. On the other hand, as shown in Exercise 5, only languages in NP have interactiveproof system in which the veri�er always rejects inputs not in the language.The fact that GNI 2 IP, whereas it is not known whether GNI 2 NP, is an indi-cation to the power of interaction and randomness in the context of theorem proving. Amuch stronger indication is provided by the fact that every language in PSPACE has aninteractive proof system (in fact IP equals PSPACE). For further discussion see Chapter 9.4.2.3 Augmentation to the ModelFor purposes that will become more clear in the sequel we augment the basic de�nition ofan interactive proof system by allowing each of the parties to have a private input (in addi-tion to the common input). Loosely speaking, these inputs are used to capture additionalinformation available to each of the parties. Speci�cally, when using interactive proof sys-tems as subprotocols inside larger protocols, the private inputs are associated with the localcon�gurations of the machines before entering the subprotocol. In particular, the privateinput of the prover may contain information which enables an e�cient implementation ofthe prover's task.De�nition 4.2.10 (interactive proof systems - revisited):� An interactive machine is de�ned as in De�nition 4.2.1, except that the machine hasan additional read-only tape called the auxiliary-input-tape. The contents of this tapeis call auxiliary input.� The complexity of such an interactive machine is still measured as a function of the(common) input. Namely, the interactive machine A has time complexity t :N 7!Nif for every interactive machine B and every string x, it holds that when interactingwith machine B, on common input x, machine A always (i.e., regardless of contentsof its random-tape and its auxiliary-input-tape as well as the contents of B's tapes)halts within t(jxj) steps.� We denote by hA(y); B(z)i(x) the random variable representing the (local) output ofB when interacting with machine A on common input x, when the random-input toeach machine is uniformly and independently chosen, and A (resp., B) has auxiliaryinput y (resp., z).� A pair of interactive machines, (P; V), is called an interactive proof system for alanguage L if machine V is polynomial-time and the following two conditions hold{ Completeness: For every x 2 L, there exists a string y such that for everyz 2 f0; 1g� Pr (hP (y); V (z)i(x)=1) � 23

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 141{ Soundness: For every x 62 L, every interactive machine B, and every y; z 2f0; 1g� Pr (hB(y); V (z)i(x)=1) � 13We stress that when saying that an interactive machine is polynomial-time, we meanthat its running-time is polynomial in the length of the common input. Consequently, it isnot guaranteed that such a machine has enough time to read its entire auxiliary input.4.3 Zero-Knowledge Proofs: De�nitionsIn this section we introduce the notion of a zero-knowledge interactive proof system, andpresent a non-trivial example of such a system (speci�cally to claims of the form \thefollowing two graphs are isomorphic").4.3.1 Perfect and Computational Zero-KnowledgeLoosely speaking, we say that an interactive proof system, (P; V), for a language L is zero-knowledge if whatever can be e�ciently computed after interacting with P on input x 2L,can also be e�ciently computed from x (without any interaction). We stress that the aboveholds with respect to any e�cient way of interacting with P , not necessarily the way de�nedby the veri�er program V . Actually, zero-knowledge is a property of the prescribed proverP . It captures P 's robustness against attempts to gain knowledge by interacting with it. Astraightforward way of capturing the informal discussion follows.Let (P; V) be an interactive proof system for some language L. We say that(P; V), actually P , is perfect zero-knowledge if for every probabilistic polynomial-time interactive machine V � there exists an (ordinary) probabilistic polynomial-time algorithm M� so that for every x 2 L the following two random variablesare identically distributed� hP; V �i(x) (i.e., the output of the interactive machine V � after interactingwith the interactive machine P on common input x);� M�(x) (i.e., the output of machine M� on input x).Machine M� is called a simulator for the interaction of V � with P .We stress that we require that for every V � interacting with P , not merely for V ,there exists a (\perfect") simulator M�. This simulator, although not having access to theinteractive machine P , is able to simulate the interaction of V � with P . This fact is takenas evidence to the claim that V � did not gain any knowledge from P (since the same outputcould have been generated without any access to P).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

142 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSNote that every language in BPP has a perfect zero-knowledge proof system in whichthe prover does nothing (and the veri�er checks by itself whether to accept the commoninput or not). To demonstrate the zero-knowledge property of this \dummy prover", onemay present for every veri�er V � a simulatorM� which is essentially identical to V � (exceptthat the communication tapes of V � are considered as ordinary work tapes of M�).Unfortunately, the above formulation of perfect zero-knowledge is slightly too strict to beuseful. We relax the formulation by allowing the simulator to fail, with bounded probability,to produce an interaction.De�nition 4.3.1 (perfect zero-knowledge): Let (P; V) be an interactive proof system forsome language L. We say that (P; V) is perfect zero-knowledge if for every probabilisticpolynomial-time interactive machine V � there exists a probabilistic polynomial-time algo-rithm M� so that for every x 2 L the following two conditions hold:1. With probability at most 12 , on input x, machine M� outputs a special symbol denoted? (i.e., Pr(M�(x)=?) � 12).2. Let m�(x) be a random variable describing the distribution of M�(x) conditioned onM�(x) 6= ? (i.e., Pr(m�(x)=�) = Pr(M�(x)=�jM�(x) 6=?), for every � 2 f0; 1g�).Then the following random variables are identically distributed� hP; V �i(x) (i.e., the output of the interactive machine V � after interacting withthe interactive machine P on common input x);� m�(x) (i.e., the output of machine M� on input x, conditioned on not being ?);Machine M� is called a perfect simulator for the interaction of V � with P .Condition 1 (above) can be replaced by a stronger condition requiring thatM� outputsthe special symbol (i.e., ?) only with negligible probability. For example, one can requirethat on input x machine M� outputs ? with probability bounded above by 2�p(jxj), forany polynomial p(�); see Exercise 6. Consequently, the statistical di�erence between therandom variables hP; V �i(x) and M�(x) can be made negligible (in jxj); see Exercise 7.Hence, whatever the veri�er e�ciently computes after interacting with the prover, can bee�ciently computed (up to an overwhelmingly small error) by the simulator (and hence bythe veri�er himself).Following the spirit of Chapters 3 and 5, we observe that for practical purposes thereis no need to be able to \perfectly simulate" the output of V � after interacting with P .Instead, it su�ces to generate a probability distribution which is computationally indis-tinguishable from the output of V � after interacting with P . The relaxation is consistentwith our original requirement that \whatever can be e�ciently computed after interactingwith P on input x 2L, can also be e�ciently computed from x (without any interaction)".The reason being that we consider computationally indistinguishable ensembles as being

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 143the same. Before presenting the relaxed de�nition of general zero-knowledge, we recall thede�nition of computationally indistinguishable ensembles. Here we consider ensembles in-dexed by strings from a language, L. We say that the ensembles fRxgx2L and fSxgx2L arecomputationally indistinguishable if for every probabilistic polynomial-time algorithm, D,for every polynomial p(�) and all su�ciently long x 2 L it holds thatjPr(D(x;Rx)=1)� Pr(D(x; Sx)=1)j < 1p(jxj)De�nition 4.3.2 (computational zero-knowledge): Let (P; V) be an interactive proof sys-tem for some language L. We say that (P; V) is computational zero-knowledge (or justzero-knowledge) if for every probabilistic polynomial-time interactive machine V � there ex-ists a probabilistic polynomial-time algorithm M� so that the following two ensembles arecomputationally indistinguishable� fhP; V �i(x)gx2L (i.e., the output of the interactive machine V � after interacting withthe interactive machine P on common input x);� fM�(x)gx2L (i.e., the output of machine M� on input x).Machine M� is called a simulator for the interaction of V � with P .The reader can easily verify (see Exercise 9) that allowing the simulator to output thesymbol ? (with probability bounded above by, say, 12) and considering the conditional out-put distribution (as done in De�nition 4.3.1), does not add to the power of De�nition 4.3.2.We stress that both de�nitions of zero-knowledge apply to interactive proof systems inthe general sense (i.e., having any non-negligible gap in the acceptance probabilities forinputs inside and outside the language). In fact, the de�nitions of zero-knowledge apply toany pair of interactive machines (actually to each interactive machine). Namely, we maysay that the interactive machine A is zero-knowledge on L if whatever can be e�cientlycomputed after interacting with A on common input x 2 L, can also be e�ciently computedfrom x itself.An alternative formulation of zero-knowledgeAn alternative formulation of zero-knowledge considers the veri�er's view of the interactionwith the prover, rather than only the output of the veri�er after such an interaction. By the\veri�er's view of the interaction" we mean the entire sequence of the local con�gurations ofthe veri�er during an interaction (execution) with the prover. Clearly, it su�ces to consideronly the contents of the random-tape of the veri�er and the sequence of messages that theveri�er has received from the prover during the execution (since the entire sequence of localcon�gurations as well as the �nal output are determine by these objects).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

144 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSDe�nition 4.3.3 (zero-knowledge { alternative formulation): Let (P; V), L and V � be asin De�nition 4.3.2. We denote by viewPV �(x) a random variable describing the contents ofthe random-tape of V � and the messages V � receives from P during a joint computation oncommon input x. We say that (P; V) is zero-knowledge if for every probabilistic polynomial-time interactive machine V � there exists a probabilistic polynomial-time algorithm M� sothat the ensembles fviewPV �(x)gx2L and fM�(x)gx2L are computationally indistinguishable.A few remarks are in place. De�nition 4.3.3 is obtained from De�nition 4.3.2 by replacinghP; V �i(x) for viewPV �(x). The simulator M� used in De�nition 4.3.3 is related, but notequal, to the simulator used in De�nition 4.3.2 (yet, this fact is not re
ected in the text ofthese de�nitions). Clearly, V �(x) can be computed in (deterministic) polynomial-time fromviewPV �(x), for every V �. Although the opposite direction is not always true, De�nition 4.3.3is equivalent to De�nition 4.3.2 (see Exercise 10). The latter fact justi�es the use of Def-inition 4.3.3, which is more convenient to work with, although it seems less natural thanDe�nition 4.3.2. An alternative formulation of perfect zero-knowledge is straightforward,and clearly it is equivalent to De�nition 4.3.1.* Complexity classes based on Zero-KnowledgeDe�nition 4.3.4 (class of languages having zero-knowledge proofs): We denote by ZK(also CZK) the class of languages having (computational) zero-knowledge interactive proofsystems. Likewise, PZK denotes the class of languages having perfect zero-knowledge in-teractive proof systems.Clearly, BPP � PZK � CZK � IP . We believe that the �rst two inclusions arestrict. Assuming the existence of (non-uniformly) one-way functions, the last inclusion isan equality (i.e., CZK = IP). See Proposition 4.4.5 and Theorems 3.5.12 and 4.4.11.* Expected polynomial-time simulatorsThe formulation of perfect zero-knowledge presented in De�nition 4.3.1 is di�erent fromthe standard de�nition used in the literature. The standard de�nition requires that thesimulator always outputs a legal transcript (which has to be distributed identically to thereal interaction) yet it allows the simulator to run in expected polynomial-time rather thanin strictly polynomial-time time. We stress that the expectation is taken over the cointosses of the simulator (whereas the input to the simulator is �xed).De�nition 4.3.5 (perfect zero-knowledge { liberal formulation): We say that (P; V) isperfect zero-knowledge in the liberal sense if for every probabilistic polynomial-time inter-active machine V � there exists an expected polynomial-time algorithm M� so that for everyx 2 L the random variables hP; V �i(x) and M�(x) are identically distributed.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 145We stress that by probabilistic polynomial-time we mean a strict bound on the run-ning time in all possible executions, whereas by expected polynomial-time we allow non-polynomial-time executions but require that the running-time is \polynomial on the av-erage". Clearly, De�nition 4.3.1 implies De�nition 4.3.5 { see Exercise 8. Interestingly,there exists interactive proofs which are perfect zero-knowledge with respect to the liberalde�nition but not known to be perfect zero-knowledge with respect to De�nition 4.3.1. Weprefer to adopt De�nition 4.3.1, rather than De�nition 4.3.5, because we wanted to avoidthe notion of expected polynomial-time that is much more subtle than one realizes at �rstglance.A parenthetical remark concerning the notion of average polynomial-time: Thenaive interpretation of expected polynomial-time is having average running-timethat is bounded by a polynomial in the input length. This de�nition of expectedpolynomial-time is unsatisfactory since it is not closed under reductions and is(too) machine dependent. Both aggravating phenomenon follow from the factthat a function may have an average (say over f0; 1gn) that is bounded bypolynomial (in n) and yet squaring the function yields a function which is notbounded by a polynomial (in n). Hence, a better interpretation of expectedpolynomial-time is having running-time that is bounded by a polynomial in afunction which has average linear growing rate.Furthermore, the correspondence between average polynomial-time and e�cient computa-tions is more controversial than the more standard association of strict polynomial-timewith e�cient computations.An analogous discussion applies also to computational zero-knowledge. More speci�cally,De�nition 4.3.2 requires that the simulator works in polynomial-time, whereas a more liberalnotion allows it to work in expected polynomial-time.For sake of elegancy, it is customary to modify the de�nitions allowing expected polynomial-time simulators, by requiring that such simulators exist also for the interaction of expectedpolynomial-time veri�ers with the prover.4.3.2 An Example (Graph Isomorphism in PZK)As mentioned above, every language in BPP has a trivial (i.e., degenerate) zero-knowledgeproof system. We now present an example of a non-degenerate zero-knowledge proof system.Furthermore, we present a zero-knowledge proof system for a language not known to be inBPP. Speci�cally, the language is the set of pairs of isomorphic graphs, denoted GI (seede�nition in Section 4.2).Construction 4.3.6 (Perfect Zero-Knowledge proof for Graph Isomorphism):� Common Input: A pair of two graphs, G1= (V1; E1) and G2= (V2; E2). Let � be anisomorphism between the input graphs, namely � is a 1-1 and onto mapping of thevertex set V1 to the vertex set V2 so that (u; v) 2 E1 if and only if (�(v); �(u))2 E2.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

146 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS� Prover's �rst Step (P1): The prover selects a random isomorphic copy of G2, andsends it to the veri�er. Namely, the prover selects at random, with uniform probabilitydistribution, a permutation � from the set of permutations over the vertex set V2, andconstructs a graph with vertex set V2 and edge setF def= f(�(u); �(v)) : (u; v)2E2gThe prover sends (V2; F) to the veri�er.� Motivating Remark: If the input graphs are isomorphic, as the prover claims, thenthe graph sent in step P1 is isomorphic to both input graphs. However, if the inputgraphs are not isomorphic then no graph can be isomorphic to both of them.� Veri�er's �rst Step (V1): Upon receiving a graph, G0 = (V 0; E 0), from the prover, theveri�ers asks the prover to show an isomorphism between G0 and one of the inputgraph, chosen at random by the veri�er. Namely, the veri�er uniformly selects � 2f1; 2g, and sends it to the prover (who is supposed to answer with an isomorphismbetween G� and G0).� Prover's second Step (P2): If the message, �, received from the veri�er equals 2 thenthe prover sends � to the veri�er. Otherwise (i.e., � 6= 2), the prover sends � �� (i.e.,the composition of � on �, de�ned as � � �(v) def= �(�(v))) to the veri�er. (Remark:the prover treats any � 6= 2 as � = 1.)� Veri�er's second Step (V2): If the message, denoted , received from the prover is anisomorphism between G� and G0 then the veri�er outputs 1, otherwise it outputs 0.Let use denote the prover's program by PGI.The veri�er program presented above is easily implemented in probabilistic polynomial-time. In case the prover is given an isomorphism between the input graphs as auxiliary input,also the prover's program can be implemented in probabilistic polynomial-time. We nowshow that the above pair of interactive machines constitutes a zero-knowledge interactiveproof system (in the general sense) for the language GI (Graph Isomorphism).Proposition 4.3.7 The language GI has a perfect zero-knowledge interactive proof system.Furthermore, the programs speci�ed in Construction 4.3.6 satisfy1. If G1 and G2 are isomorphic (i.e., (G1; G2) 2 GI) then the veri�er always accepts(when interacting with the prover).2. If G1 and G2 are not isomorphic (i.e., (G1; G2) 62 GI) then, no matter with whatmachine the veri�er interacts, it rejects the input with probability at least 12.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 1473. The above prover (i.e., PGI) is perfect zero-knowledge. Namely, for every probabilisticpolynomial-time interactive machine V � there exists a probabilistic polynomial-timealgorithmM� outputting ? with probability at most 12 so that for every x def= (G1; G2) 2GI the following two random variables are identically distributed� viewPGIV � (x) (i.e., the view of V � after interacting with PGI, on common input x);� m�(x) (i.e., the output of machine M�, on input x, conditioned on not being ?).A zero-knowledge interactive proof system for GI with error probability 2�k (only in thesoundness condition) can be derived by executing the above protocol, sequentially, k times.We stress that in each repetition, of the above protocol, both (the prescribed) prover andveri�er use coin tosses which are independent of the coins used in the other repetitions of theprotocol. For further discussion see Section 4.3.4. We remark that k parallel executions willdecrease the error in the soundness condition to 2�k as well, but the resulting interactiveproof is not known to be zero-knowledge in case k grows faster than logarithmic in the inputlength. In fact, we believe that such an interactive proof is not zero-knowledge. For furtherdiscussion see Section 4.5.We stress that it is not known whether GI 2 BPP. Hence, Proposition 4.3.7 asserts theexistence of perfect zero-knowledge proofs for languages not known to be in BPP .proof: We �rst show that the above programs indeed constitute a (general) interactive proofsystem for GI . Clearly, if the input graphs, G1 and G2, are isomorphic then the graph G0constructed in step (P1) is isomorphic to both of them. Hence, if each party follows itsprescribed program then the veri�er always accepts (i.e., outputs 1). Part (1) follows. Onthe other hand, if G1 and G2 are not isomorphic then no graph can be isomorphic to bothG1 and G2. It follows that no matter how the (possibly cheating) prover constructs G0 thereexists � 2 f1; 2g so that G0 and G� are not isomorphic. Hence, when the veri�er follows itsprogram, the veri�er rejects (i.e., outputs 0) with probability at least 12 . Part (2) follows.It remains to show that PGI is indeed perfect zero-knowledge on GI . This is indeed thedi�cult part of the entire proof. It is easy to simulate the output of the veri�er speci�edin Construction 4.3.6 (since its output is identically 1 on inputs in the language GI). Itis also not hard to simulate the output of a veri�er which follows the program speci�edin Construction 4.3.6, except that at termination it output the entire transcript of itsinteraction with PGI { see Exercise 12. The di�cult part is to simulate the output of ane�cient veri�er which deviates arbitrarily from the speci�ed program.We will use here the alternative formulation of (perfect) zero-knowledge, and show howto simulate V �'s view of the interaction with PGI , for every probabilistic polynomial-timeinteractive machine V �. As mentioned above it is not hard to simulate the veri�er's viewof the interaction with PGI in case the veri�er follows the speci�ed program. However, weneed to simulate the view of the veri�er in the general case (in which it uses an arbitrarypolynomial-time interactive program). Following is an overview of our simulation (i.e., ofour construction of a simulator, M�, for each V �).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

148 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSThe simulator M� incorporates the code of the interactive program V �. On input(G1; G2), the simulatorM� �rst selects at random one of the input graphs (i.e., either G1 orG2) and generates a random isomorphic copy, denoted G00, of this input graph. In doing so,the simulator behaves di�erently from PGI , but the graph generated (i.e., G00) is distributedidentically to the message sent in step (P1) of the interactive proof. Say that the simulatorhas generated G00 by randomly permuting G1. Then, if V � asks to see the isomorphismbetween G1 and G00, the simulator can indeed answer correctly and in doing so it completesa simulation of the veri�er's view of the interaction with PGI . However, if V � asks to see theisomorphism between G2 and G00, then the simulator (which, unlike PGI , does not \know"�) has no way to answer correctly, and we let it halt with output ?. We stress that thesimulator \has no way of knowing" whether V � will ask to see an isomorphism to G1 orG2. The point is that the simulator can try one of the possibilities at random and if it islucky (which happens with probability exactly 12) then it can output a distribution whichis identical to the view of V � when interacting with PGI (on common input (G1; G2)). Adetailed description of the simulator follows.Simulator M�. On input x def= (G1; G2), simulator M� proceeds as follows:1. Setting the random-tape of V �: Let q(�) denote a polynomial bounding the running-time of V �. The simulator M� starts by uniformly selecting a string r 2 f0; 1gq(jxj),to be used as the contents of the random-tape of V �.2. Simulating the prover's �rst step (P1): The simulator M� selects at random, withuniform probability distribution, a \bit" � 2 f1; 2g and a permutation from the setof permutations over the vertex set V� . It then constructs a graph with vertex set V�and edge set F def= f((u); (v)) : (u; v)2E�gSet G00 def= (V� ; F).3. Simulating the veri�er's �rst step (V1): The simulator M� initiates an execution ofV � by placing x on V �'s common-input-tape, placing r (selected in step (1) above) onV �'s random-tape, and placing G00 (constructed in step (2) above) on V �'s incomingmessage-tape. After executing a polynomial number of steps of V �, the simulator canread the outgoing message of V �, denoted �. To simplify the rest of the description,we normalize � by setting � = 1 if � 6= 2 (and leave � unchanged if � = 2).4. Simulating the prover's second step (P2): If � = � then the simulator halts withoutput (x; r; G00;).5. Failure of the simulation: Otherwise (i.e., � 6= �), the simulator halts with output ?.Using the hypothesis that V � is polynomial-time, it follows that so is the simulator M�.It is left to show that M� outputs ? with probability at most 12 , and that, conditioned

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 149on not outputting ?, the simulator's output is distributed as the veri�er's view in a \realinteraction with PGI". The following claim is the key to the proof of both claims.Claim 4.3.7.1: Suppose that the graphs G1 and G2 are isomorphic. Let � be a randomvariable uniformly distributed in f1; 2g, and �(G) be a random variable (independent of�) describing the graph obtained from the graph G by randomly relabelling its nodes (cf.Claim 4.2.9.1). Then, for every graph G00, it holds thatPr (�=1j�(G�)=G00) = Pr (�=2j�(G�)=G00)Claim 4.3.7.1 is identical to Claim 4.2.9.1 (used to demonstrate that Construction 4.2.8constitutes an interactive proof for GNI). As in the rest of the proof of Proposition 4.2.9,it follows that any random process with output in f1; 2g, given �(G�), outputs � with prob-ability exactly 12 . Hence, given G00 (constructed by the simulator in step (2)), the veri�er'sprogram yields (normalized) � so that � 6= � with probability exactly 12 . We concludethat the simulator outputs ? with probability 12 . It remains to prove that, conditioned onnot outputting ?, the simulator's output is identical to \V �'s view of real interactions".Namely,Claim 4.3.7.2: Let x = (G1; G2) 2 GI . Then, for every string r, graph H , and permutation , it holds thatPr �viewPGIV � (x)=(x; r;H;)�= Pr (M�(x)=(x; r;H;) jM�(x) 6=?)proof: Let m�(x) describe M�(x) conditioned on its not being ?. We �rst observe that bothm�(x) and viewPGIV � (x) are distributed over quadruples of the form (x; r; �; �), with uniformlydistributed r 2 f0; 1gq(jxj). Let �(x; r) be a random variable describing the last two elementsof viewPGIV � (x) conditioned on the second element equals r. Similarly, let �(x; r) describe thelast two elements of m�(x) (conditioned on the second element equals r). Clearly, it su�cesto show that �(x; r) and �(x; r) are identically distributed, for every x and r. Observe thatonce r is �xed the message sent by V � on common input x, random-tape r, and incomingmessage H , is uniquely de�ned. Let us denote this message by v�(x; r;H). We show thatboth �(x; r) and �(x; r) are uniformly distributed over the setCx;r def= �(H;) : H = (Gv�(x;r;H))	where (G) denotes the graph obtained from G by relabelling the vertices using the per-mutation (i.e., if G=(V;E) then (G) = (V; F) so that (u; v) 2 E i� ((u); (v)) 2 F).The proof of this statement is rather tedious and unrelated to the subjects of this book(and hence can be skipped with no damage).The proof is slightly non-trivial because it relates (at least implicitly) to theautomorphism group of the graph G2 (i.e., the set of permutations � for which�(G2) is identical, not just isomorphic, to G2). For simplicity, consider �rst

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

150 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSthe special case in which the automorphism group of G2 consists of merely theidentity permutation (i.e., G2=�(G2) if and only if � is the identity permuta-tion). In this case, (H;) 2 Cx;r if and only if H is isomorphic to (both G1and) G2 and is the isomorphism between H and Gv�(x;r;H). Hence, Cx;r con-tains exactly jV2j! pairs, each containing a di�erent graph H as the �rst element.In the general case, (H;) 2 Cx;r if and only if H is isomorphic to (both G1and) G2 and is an isomorphism between H and Gv�(x;r;H). We stress thatv�(x; r;H) is the same in all pairs containing H . Let aut(G2) denotes the sizeof the automorphism group of G2. Then, each H (isomorphic to G2) appears inexactly aut(G2) pairs of Cx;r and each such pair contain a di�erent isomorphismbetween H and Gv�(x;r;H).We �rst consider the random variable �(x; r) (describing the su�x ofm�(x)).Recall that �(x; r) is de�ned by the following two step random process. In the�rst step, one selects uniformly a pair (�;), over the set of pairs f1; 2g-times-permutation, and sets H = (G�). In the second step, one outputs (i.e., sets�(x; r) to) ((G�);) if v�(x; r;H)= � (and ignores the (�;) pair otherwise).Hence, each graphH (isomorphic toG2) is generated, at the �rst step, by exactlyaut(G2) di�erent (1; �)-pairs (i.e., the pairs (1;) satisfying H= (G1)), and byexactly aut(G2) di�erent (2; �)-pairs (i.e., the pairs (2;) satisfying H= (G2)).All these 2 � aut(G2) pairs yield the same graph H , and hence lead to the samevalue of v�(x; r;H). It follows that out of the 2 � aut(G2) pairs, (�;), yieldingthe graph H= (G�), only the pairs satisfying � =v�(x; r;H) lead to an output.Hence, for each H (which is isomorphic to G2), the probability that �(x; r) =(H; �) equals aut(G2)=(jV2j!). Furthermore, for each H (which is isomorphic toG2), Pr (�(x; r)=(H;)) = (1jV2j! if H= (Gv�(x;r;H))0 otherwiseHence �(x; r) is uniformly distributed over Cx;r.We now consider the random variable �(x; r) (describing the su�x of theveri�er's view in a \real interaction" with the prover). Recall that �(x; r) isde�ned by selecting uniformly a permutation � (over the set V2), and setting�(x; r)= (�(G2); �) if v�(x; r; �(G2))= 2 and �(x; r)= (�(G2); � � �) otherwise,where � is the isomorphism between G1 and G2. Clearly, for each H (which isisomorphic to G2), the probability that �(x; r) = (H; �) equals aut(G2)=(jV2j!).Furthermore, for each H (which is isomorphic to G2),Pr (�(x; r)=(H;)) = (1jV2j! if =� � �2�v�(x;r;H)0 otherwiseObserving that H = (Gv�(x;r;H)) if and only if =� � �2�v�(x;r;H), we concludethat �(x; r) and �(x; r) are identically distributed.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 151The claim follows. 2This completes the proof of Part (3) of the proposition.4.3.3 Zero-Knowledge w.r.t. Auxiliary InputsThe de�nitions of zero-knowledge presented above fall short of what is required in practicalapplications and consequently a minor modi�cation should be used. We recall that thesede�nitions guarantee that whatever can be e�ciently computed after interaction with theprover on any common input, can be e�ciently computed from the input itself. However,in typical applications (e.g., when an interactive proof is used as a sub-protocol inside abigger protocol) the veri�er interacting with the prover, on common input x, may havesome additional a-priori information, encoded by a string z, which may assist it in itsattempts to \extract knowledge" from the prover. This danger may become even moreacute in the likely case in which z is related to x. (For example, consider the protocol ofConstruction 4.3.6 and the case where the veri�er has a-priori information concerning anisomorphism between the input graphs.) What is typically required is that whatever can bee�ciently computed from x and z after interaction with the prover on any common inputx, can be e�ciently computed from x and z (without any interaction with the prover). Thisrequirement is formulated below using the augmented notion of interactive proofs presentedin De�nition 4.2.10.De�nition 4.3.8 (zero-knowledge { revisited): Let (P; V) be an interactive proof for alanguage L (as in De�nition 4.2.10). Denote by PL(x) the set of strings y satisfying the com-pleteness condition with respect to x 2 L (i.e., for every z 2 f0; 1g� Pr (hP (y); V (z)i(x)=1) �23). We say that (P; V) is zero-knowledge with respect to auxiliary input (auxiliary input zero-knowledge) if for every probabilistic polynomial-time interactive machine V � there exists aprobabilistic algorithm M�, running in time polynomial in the length of its �rst input, so thatthe following two ensembles are computationally indistinguishable (when the distinguishinggap is considered as a function of jxj)� fhP (y); V �(z)i(x)gx2L;y2PL(x);z2f0;1g�� fM�(x; z)gx2L;z2f0;1g�Namely, for every probabilistic algorithm, D, with running-time polynomial in length ofthe �rst input, every polynomial p(�), and all su�ciently long x 2 L, all y 2 PL(x) andz 2 f0; 1g�, it holds thatjPr(D(x; z; hP (y); V �(z)i(x))=1)� Pr(D(x; z;M�(x; z))=1)j < 1p(jxj)In the above de�nition y represents a-priori information to the prover, whereas z repre-sents a-priori information to the veri�er. Both y and z may depend on the common input

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

152 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSx. We stress that the local inputs (i.e., y and z) may not be known, even in part, to thecounterpart. We also stress that the auxiliary input z is also given to the distinguishingalgorithm (which may be thought of as an extension of the veri�er).Recall that by De�nition 4.2.10, saying that the interactive machine V � is probabilisticpolynomial-time means that its running-time is bounded by a polynomial in the length of thecommon input. Hence, the veri�er program, the simulator, and the distinguishing algorithm,all run in time polynomial in the length of x (and not in time polynomial in the total lengthof all their inputs). This convention is essential in many respects (unless one explicitlybounds the length of the auxiliary input by a polynomial in length of x; see Exercise 11).For example, having allowed even one of these machines to run in time proportional tothe length of the auxiliary input would have collapsed computational zero-knowledge toperfect zero-knowledge (e.g., by considering veri�ers which run in time polynomial in thecommon-input yet have huge auxiliary inputs of length exponential in the common-input).De�nition 4.3.8 refers to computational zero-knowledge. A formulation of perfect zero-knowledge with respect to auxiliary input is straightforward. We remark that the perfectzero-knowledge proof for Graph Isomorphism, presented in Construction 4.3.6, is in factperfect zero-knowledge with respect to auxiliary input. This fact follows easily by a minoraugmentation to the simulator constructed in the proof of Proposition 4.3.7 (i.e., wheninvoking the veri�er, the simulator should provide it with the auxiliary input which isgiven to the simulator). In general, a demonstration of zero-knowledge can be extendedto yield zero-knowledge with respect to auxiliary input, provided that the simulator usedin the original demonstration works by invoking the veri�er's program as a black box. Allsimulators presented in this book have this property.Comment: Implicit non-uniformity in De�nition 4.3.8. The non-uniform nature ofDe�nition 4.3.8 is captured by the fact that the simulator gets an auxiliary input. It is truethat this auxiliary input is also given to both the veri�er program and the simulator, howeverif it is su�ciently long then only the distinguisher can make any use of its su�x. It followsthat the simulator guaranteed in De�nition 4.3.8 produces output that is indistinguishablefrom the real interactions also by non-uniform polynomial-size machines. Namely, for every(even non-uniform) polynomial-size circuit family, fCngn2N , every polynomial p(�), and allsu�ciently large n's, all x 2 L \ f0; 1gn, all y 2 PL(x) and z 2 f0; 1g�,jPr(Cn(x; z; hP (y); V �(z)i(x))=1)� Pr(Cn(x; z;M�(x; z))=1)j< 1p(jxj)Following is a sketch of the proof. We assume, to the contrary, that there exists a polynomial-size circuit family, fCngn2N , such that for in�nitely many n's there exists triples (x; y; z) forwhich Cn has a non-negligible distinguishing gap. We derive a contradiction by incorporat-ing the description of Cn together with the auxiliary input z into a longer auxiliary input,denoted z0. This is done in a way that both V � and M� have no su�cient time to reachthe description of Cn. For example, let q(�) be a polynomial bounding the running-time of

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 153both V � and M�, as well as the size of Cn. Then, we let z0 be the string which results bypadding z with blanks to a total length of q(n) and appending the description of the circuitCn at its end (i.e., if jzj > q(n) then z0 is a pre�x of z). Clearly, M�(x; z0) = M�(x; z)and hP (y); V �(z0)i(x) = hP (y); V �(z)i(x). On the other hand, by using a circuit evaluat-ing algorithm, we get an algorithm D such that D(x; z0; �) = Cn(x; z), and contradictionfollows.Comment: why not go for absolute non-uniformity? A simpli�ed version of Def-inition 4.3.8 allows the veri�er to be modelled by a (non-uniform) family of circuits, andrequires the same of the simulator. Such a version is actually weaker as it does not guaran-tee an \e�ective" transformation of veri�ers to simulators. Indeed, such a transformation isnot required in De�nition 4.3.8 either, but there the objects (i.e., machines) are of �xed size(whereas the circuits are of polynomial-size). Furthermore, a simpli�ed version does notguarantee a relation between the size of the non-uniform part of the veri�er and the corre-sponding part in the simulator, whereas in De�nition 4.3.8 this part is the auxiliary-inputwhich remains unchanged. These issues arise when trying to prove a sequential compositionof a non-constant number of zero-knowledge proof systems.Author's Note: Re-examine the discussions above!4.3.4 Sequential Composition of Zero-Knowledge ProofsAn intuitive requirement that a de�nition of zero-knowledge proofs must satisfy is that zero-knowledge proofs are closed under sequential composition. Namely, if one executes one zero-knowledge proof after another then the composed execution must be zero-knowledge. Thesame should remain valid even if one executes polynomially many proofs one after the other.Indeed, as we will shortly see, the revised de�nition of zero-knowledge (i.e., De�nition 4.3.8)satis�es this requirement. Interestingly, zero-knowledge proofs as de�ned in De�nition 4.3.2are not closed under sequential composition, and this fact is indeed another indication tothe necessity of augmenting this de�nition (as done in De�nition 4.3.8).In addition to its conceptual importance, the Sequential Composition Lemma is an im-portant tool in the design of zero-knowledge proof systems. Typically, these proof systemconsists of many repetitions of a atomic zero-knowledge proof. Loosely speaking, the atomicproof provides some (but not much) statistical evidence to the validity of the claim. By re-peating the atomic proof su�ciently many times the con�dence in the validity of the claim isincreased. More precisely, the atomic proof o�ers a gap between the accepting probability ofstring in the language and strings outside the language. For example, in Construction 4.3.6pairs of isomorphic graphs (i.e., inputs in GI) are accepted with probability 1, whereas pairsof non-isomorphic graphs (i.e., inputs not in GI) are accepted with probability at most 12 .By repeating the atomic proof the gap between the two probabilities is further increased.For example, repeating the proof of Construction 4.3.6 for k times yields a new interactiveproof in which inputs in GI are still accepted with probability 1 whereas inputs not in GI

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

154 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSare accepted with probability at most 12k . The Sequential Composition Lemma guaranteesthat if the atomic proof system is zero-knowledge then so is the proof system resulting byrepeating the atomic proof polynomially many times.Before we state the Sequential Composition Lemma, we remind the reader that thezero-knowledge property of an interactive proof is actually a property of the prover. Also,the prover is required to be zero-knowledge only on inputs in the language. Finally, westress that when talking on zero-knowledge with respect to auxiliary input we refer to allpossible auxiliary inputs for the veri�er.Lemma 4.3.9 (Sequential Composition Lemma): Let P be an interactive machine (i.e.,a prover) which is zero-knowledge with respect to auxiliary input on some language L.Suppose that the last message sent by P , on input x, bears a special \end of proof" symbol.Let Q(�) be a polynomial, and let PQ be an interactive machine that, on common inputx, proceeds in Q(jxj) phases, each of them consisting of running P on common input x.(We stress that in case P is probabilistic, the interactive machine PQ uses independent cointosses for each of the Q(jxj) phases.) Then PQ is zero-knowledge (with respect to auxiliaryinput) on L. Furthermore, if P is perfect zero-knowledge (with respect to auxiliary input)then so is PQ.The convention concerning \end of proof" is introduced for technical purposes (and is re-dundant in all known provers for which the number of messages sent is easily computed fromthe length of the common input). Clearly, every machine P can be easily modi�ed so thatits last message bears an appropriate symbol (as assumed above), and doing so preservesthe zero-knowledge properties of P (as well as completeness and soundness conditions).The Lemma remain valid also if one allows auxiliary input to the prover. The extensionis straightforward. The lemma ignores other aspects of repeating an interactive proof severaltimes; speci�cally, the e�ect on the gap between the accepting probability of inputs insideand outside of the language. This aspect of repetition is discussed in the previous section(see also Exercise 1).Proof: Let V � be an arbitrary probabilistic polynomial-time interactive machine interactingwith the composed prover PQ. Our task is to construct a (polynomial-time) simulator,M�, which simulates the real interactions of V � with PQ. Following is a very high leveldescription of the simulation. The key idea is to simulate the real interaction on commoninput x in Q(jxj) phases corresponding to the phases of the operation of PQ. Each phaseof the operation of PQ is simulated using the simulator guaranteed for the atomic proverP . The information accumulated by the veri�er in each phase is passed to the next phaseusing the auxiliary input.The �rst step in carrying-out the above plan is to partition the execution of an arbitraryinteractive machine V � into phases. The partition may not exist in the code of the programV �, and yet it can be imposed on the executions of this program. This is done using thephase structure of the prescribed prover PQ, which is induced by the \end of proof" symbols.Hence, we claim that no matter how V � operates, the interaction of V � with PQ on common

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 155input x, can be captured by Q(jxj) successive interaction of a related machine, denoted V ��,with P . Namely,Claim 4.3.9.1: There exists a probabilistic polynomial-time V �� so that for every commoninput x and auxiliary input z it holds thathPQ; V �(z)i(x) = Z(Q(jxj))where Z(0) def= z and Z(i+1) def= hP; V ��(Z(i))i(x)Namely, Z(Q(jxj)) is a random variable describing the output of V �� after Q(jxj) successiveinteractions with P , on common input x, where the auxiliary input of V �� in the i + 1stinteraction equals the output of V �� after the ith interaction (i.e., Z(i)).proof: Consider an interaction of V �(z) with PQ, on common input x. Machine V � can beslightly modi�ed so that it starts its execution by reading the common-input, the random-input and the auxiliary-input into special regions in its work-tape, and never accesses theabove read-only tapes again. Likewise, V � is modi�ed so that it starts each active periodby reading the current incoming message from the communication-tape to a special regionin the work tape (and never accesses the incoming message-tape again during this period).Actually, the above description should be modi�ed so that V � copies only a polynomiallylong (in the common input) pre�x of each of these tapes, the polynomial being the onebounding the running time of V �.Considering the contents of the work-tape of V � at the end of each of the Q(jxj) phases(of interactions with PQ), naturally leads us to the construction of V ��. Namely, on commoninput x and auxiliary input z0, machine V �� starts by copying z0 into the work-tape of V �.Next, machine V �� simulates a single phase of the interaction of V � with PQ (on input x)starting with the above contents of the work-tape of V � (instead of starting with an emptywork-tape). The invoked machine V � regards the communication-tapes of machine V �� asits own communication-tapes. Finally, V �� terminates by outputting the current contentsof the work-tape of V �. Actually, the above description should be slightly modi�ed todeal di�erently with the �rst phase in the interaction with PQ. Speci�cally, V �� copies z0into the work-tape of V � only if z0 encodes a contents of the work-tape of V � (we assume,w.l.o.g., that the contents of the work-tape of V � is encoded di�erently from the encodingof an auxiliary input for V �). In case z0 encodes an auxiliary input to V �, machine V ��invokes V � on an empty work-tape, and V � regards the readable tapes of V �� (i.e., common-input-tape, the random-input-tape and the auxiliary-input-tape) as its own. Observe thatZ(1) def= hP; V ��(z)i(x) describes the contents of the work-tape of V � after one phase, andZ(i) def= hP; V ��(Z(i�1))i(x) describes the contents of the work-tape of V � after i phases. Theclaim follows. 2Since V �� is a polynomial-time interactive machine (with auxiliary input) interactingwith P , it follows by the lemma's hypothesis that there exists a probabilistic machine whichsimulates these interactions in time polynomial in the length of the �rst input. Let M��

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

156 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSdenote this simulator. We may assume, without loss of generality, that with overwhelminglyhigh probability M�� halts with output (as we can increase the probability of output bysuccessive applications ofM��). Furthermore, for sake of simplicity, we assume in the rest ofthis proof that M�� always halts with output. Namely, for every probabilistic polynomial-time (in x) algorithmD, every polynomial p(�), all su�ciently long x 2 L and all z 2 f0; 1g�,we have jPr(D(x; z; hP; V ��(z)i(x)) = 1)� Pr(D(x; z;M��(x; z)) = 1)j < 1p(jxj)We are now ready to present the construction of a simulator, M�, that simulates the\real" output of V � after interaction with PQ. Machine M� uses the above guaranteedsimulator M��. On input (x; z), machine M� sets z(0) = z and proceeds in Q(jxj) phases.In the ith phase, machine M� computes z(i) by running machine M�� on input (x; z(i�1)).After Q(jxj) phases are completed, machine M� stops outputting z(Q(jxj)).Clearly, machine M�, constructed above, runs in time polynomial in its �rst input. (Fornon-constant Q(�) it is crucial here that the running-time ofM� is polynomial in the lengthof the �rst input, rather than being polynomial in the length of both inputs.) It is leftto show that machine M� indeed produces output which is polynomially indistinguishablefrom the output of V � (after interacting with PQ). Namely,Claim 4.3.9.2: For every probabilistic algorithm D, with running-time polynomial in its �rstinput, every polynomial p(�), all su�ciently long x 2 L and all z 2 f0; 1g�, we havejPr(D(x; z; hPQ; V �(z)i(x)) = 1)� Pr(D(x; z;M�(x; z)) = 1)j < 1p(jxj)proof sketch: We use a hybrid argument. In particular, we de�ne the following Q(jxj) + 1hybrids. The ith hybrid, 0� i�Q(jxj), corresponds to the following random process. We�rst let V �� interact with P for i phases, starting with common input x and auxiliary inputz, and denote by Z(i) the output of V �� after the ith phase. We next repeatedly iterateM��for the remaining Q(m)� k phases. In both cases, we use the output of the previous phaseas auxiliary input to the new phase. Formally, the hybrid H (i) is de�ned as follows.H (i)(x; z) def= M��Q(m)�i(x; Z(i))where Z(0) def= z and Z(j+1) def= hP; V ��(Z(j))i(x)M��0 (x; z0) def= (x; z0) and M��j (x; z0) def= M��j�1(x;M��(x; z0))Using Claim 4.3.9.1, the Q(jxj)th hybrid (i.e., H (Q(jxj))(x; z)) equals hPQ; V �(z)i(x)). On theother hand, recalling the construction of M�, we see that the zero hybrid (i.e., H (0)(x; z))equalsM�(x; z)). Hence, all that is required to complete the proof is to show that every twoadjacent hybrids are polynomially indistinguishable (as this would imply that the extreme

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 157hybrids, H (Q(m)) and H (0), are indistinguishable too). To this end, we rewrite the ith andi� 1st hybrids as follows.H (i)(x; z) = M��Q(jxj)�i(x; hP; V ��(Z(i�1))i(x))H (i�1)(x; z) = M��Q(jxj)�i(x;M��(x; Z(i�1)))where Z(i�1) is as de�ned above (in the de�nition of the hybrids).Using an averaging argument, it follows that if an algorithm, D, distinguishes the hy-brids H (i)(x; z) and H (i�1)(x; z) then there exists a z0 so that algorithm D distinguishesthe random variables M��Q(jxj)�i(x; hP; V ��(z0)i(x)) and M��Q(jxj)�i(x;M��(x; z0)) at least aswell. Incorporating algorithm M�� into D, we get a new algorithm D0, with running timepolynomially related to the former algorithms, which distinguishes the random variables(x; z0; hP; V ��(z0)i(x)) and (x; z0;M��(x; z0)) at least as well. (Further details are presentedbelow.) Contradiction (to the hypothesis that M�� simulates (P; V ��)) follows. 2The lemma follows.Further details concerning the proof of Claim 4.3.9.2: The proof of Claim 4.3.9.2is rather sketchy. The main thing which is missing are details concerning the way in whichan algorithm contradicting the hypothesis that M�� is a simulator for (P; V ��) is derivedfrom an algorithm contradicting the statement of Claim 4.3.9.2. These details are presentedbelow, and the reader is encouraged not to skip them.Let us start with the non-problematic part. We assume, to the contradiction, thatthere exists a probabilistic polynomial-time algorithm, D, and a polynomial p(�), so thatfor in�nitely many x 2 L there exists z 2 f0; 1g� such thatjPr(D(x; z; hPQ; V �(z)i(x)) = 1)� Pr(D(x; z;M�(x; z)) = 1)j > 1p(jxj)It follows that for every such x and z, there exists an i 2 f1; :::;Q(jxj)g such thatjPr(D(x; z;H (i)(x; z)) = 1)� Pr(D(x; z;H (i�1)(x; z)) = 1)j > 1Q(jxj) � p(jxj)Denote �(n) def= 1=(Q(n) � p(n)). Combining the de�nition of the ith and i� 1st hybrids withan averaging argument, it follows that for each such x, z and i, there exists a z0, in thesupport of Z(i�1) (de�ned as above), such thatjPr(D(x; z0;M��Q(jxj)�ihP; V ��(z0)i(x)) = 1)�Pr(D(x; z0;M��Q(jxj)�i(M��(x; z0))) = 1)j > �(jxj)This almost leads to the desired contradiction. Namely, the random variables (x; z0; hP; V ��(z0)i(x))and (x; z0;M��(x; z0)) can be distinguished using algorithms D and M��, provided we

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

158 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS\know" i. The problem is resolved using the fact, pointed out at the end of Subsection 4.3.3,that the output ofM�� is undistinguished from the interactions of V �� with the prover evenwith respect to non-uniform polynomial-size circuits. Details follow.We construct a polynomial-size circuit family, denoted fCng, which distinguishes (x; z0; hP; V ��(z00)i(x))and (x; z0;M��(x; z00)), for the above-mentioned (x; z0) pairs. On input x (supposedlyin L \ f0; 1gn) and � (supposedly in either (x; z0; hP; V ��(z00)i(x)) or (x; z0;M��(x; z00))),the circuit Cn, incorporating (the above-mentioned) i, uses algorithm M�� to compute� =MQ(jxj)�i(x; �). Next Cn, using algorithm D, computes � = D((x; z0); �) and halts out-putting �. Contradiction (to the hypothesis that M�� is a simulator for (P; V ��)) follows.2And what about parallel composition?Unfortunately, we cannot prove that zero-knowledge (even with respect to auxiliary input)is preserved under parallel composition. Furthermore, there exist zero-knowledge proofsthat when played twice in parallel do yield knowledge (to a \cheating veri�er"). For furtherdetails see Subsection 4.5.The fact that zero-knowledge is not preserved under parallel composition of protocolsis indeed bad news. One may even think that this fact is a conceptually annoying phe-nomenon. We disagree with this feeling. Our feeling is that the behaviour of protocolsand \games" under parallel composition is, in general (i.e., not only in the context of zero-knowledge), a much more complex issue than the behaviour under sequential composition.Furthermore, the only advantage of parallel composition over sequential composition is ine�ciency. Hence, we don't consider the non-closure under parallel composition to be aconceptual weakness of the formulation of zero-knowledge. Yet, the \non-closure" of zero-knowledge motivates the search for either weaker or stronger notions which are preservedunder parallel composition. For further details, the reader is referred to Sections 4.9 and 4.6.4.4 Zero-Knowledge Proofs for NPThis section presents the main thrust of the entire chapter; namely, a method for construct-ing zero-knowledge proofs for every language in NP . The importance of this method stemsfrom its generality, which is the key to its many applications. Speci�cally, we observe thatalmost all statements one wish to prove in practice can be encoded as claims concerningmembership in languages in NP .The method, for constructing zero-knowledge proofs for NP-languages, makes essentialuse of the concept of bit commitment. Hence, we start with a presentation of this concept.4.4.1 Commitment SchemesCommitment schemes are a basic ingredient in many cryptographic protocols. The are usedto enable a party to commit itself to a value while keeping it secret. In a latter stage the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.4. ZERO-KNOWLEDGE PROOFS FOR NP 159commitment is \opened" and it is guaranteed that the \opening" can yield only a singlevalue determined in the committing phase. Commitment schemes are the digital analogueof nontransparent sealed envelopes. By putting a note in such an envelope a party commitsitself to the contents of the note while keeping it secret.4.4.1.1 De�nitionLoosely speaking, a commitment scheme is an e�cient two-phase two-party protocol throughwhich one party, called the sender, can commit itself to a value so the following two con-
icting requirements are satis�ed.1. Secrecy: At the end of the �rst phase, the other party, called the receiver, does notgain any knowledge of the sender's value. This requirement has to be satis�ed even ifthe receiver tries to cheat.2. Unambiguity: Given the transcript of the interaction in the �rst phase, there existsat most one value which the receiver may later (i.e., in the second phase) accept as alegal \opening" of the commitment. This requirement has to be satis�ed even if thesender tries to cheat.In addition, one should require that the protocol is viable in the sense that if both partiesfollow it then, at the end of the second phase, the receiver gets the value committed toby the sender. The �rst phase is called the commit phase, and the second phase is calledthe reveal phase. We are requiring that the commit phase yield no knowledge (at leastnot of the sender's value) to the receiver, whereas the commit phase does \commit" thesender to a unique value (in the sense that in the reveal phase the receiver may accept onlythis value). We stress that the protocol is e�cient in the sense that the predeterminedprograms of both parties can be implemented in probabilistic, polynomial-time. Withoutloss of generality, the reveal phase may consist of merely letting the sender send, to thereceiver, the original value and the sequence of random coin tosses that it has used duringthe commit phase. The receiver will accept the value if and only if the supplied informationmatches its transcript of the interaction in the commit phase. The latter convention leadsto the following de�nition (which refers explicitly only to the commit phase).De�nition 4.4.1 (bit commitment scheme): A bit commitment scheme is a pair of prob-abilistic polynomial-time interactive machines, denoted (S;R) (for sender and receiver),satisfying:� Input Speci�cation: The common input is an integer n presented in unary (servingas the security parameter). The private input to the sender is a bit v.� Secrecy: The receiver (even when deviating arbitrarily from the protocol) cannot dis-tinguish a commitment to 0 from a commitment to 1. Namely, for every probabilis-tic polynomial-time machine R� interacting with S, the random variables describ-

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

160 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSing the output of R� in the two cases, namely hS(0); R�i(1n) and hS(1); R�i(1n), arepolynomially-indistinguishable.� Unambiguity:Preliminaries{ A receiver's view of an interaction with the sender, denoted (r;m), consists ofthe random coins used by the receiver (r) and the sequence of messages receivedfrom the sender (m).{ Let � 2 f0; 1g. We say that a receiver's view (of such interaction), (r;m), is apossible �-commitment if there exists a string s such thatm describes the messagesreceived by R when R uses local coins r and interacts with machine S which useslocal coins s and has input (�; 1n). (Using the notation of De�nition 4.3.3, thecondition may be expressed as m = viewS(�;1n;s)R(1n;r) .){ We say that the receiver's view (r;m) is ambiguous if it is both a possible 0-commitment and a possible 1-commitment.The unambiguity requirement asserts that, for all but a negligible fraction of the cointosses of the receiver, there exists no sequence of messages (from the sender) whichtogether with these coin tosses forms an ambiguous receiver view. Namely, that forall but a negligible fraction of the r 2 f0; 1gpoly(n) there is no m such that (r;m) isambiguous.The secrecy requirement (above) is analogous to the de�nition of indistinguishability of en-cryptions (i.e., De�nition [missing(enc-indist.def)]). An equivalent formulation analo-gous to semantic security (i.e., De�nition [missing(enc-semant.def)]) can be presented,but is less useful in typical applications of commitment schemes. In any case, the secrecy re-quirement is a computational one. On the other hand, the unambiguity requirement has aninformation theoretic
avour (i.e., it does not refer to computational powers). A dual def-inition, requiring information theoretic secrecy and computational unfeasibility of creatingambiguities, is presented in Subsection 4.8.2.The secrecy requirement refers explicitly to the situation at the end of the commit phase.On the other hand, we stress that the unambiguity requirement implicitly assumes that thereveal phase takes the following form:1. the sender sends to the receiver its initial private input, v, and the random coins, s,it has used in the commit phase;2. the receiver veri�es that v and s (together with the coins (r) used by R in the commitphase) indeed yield the messages thatR has received in the commit phase. Veri�cationis done in polynomial-time (by running the programs S and R).Note that the viability requirement (i.e., asserting that if both parties follow the protocolthen, at the end of the reveal phase, the receiver gets v) is implicitly satis�ed by the aboveconvention.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.4. ZERO-KNOWLEDGE PROOFS FOR NP 1614.4.1.2 Construction based on any one-way permutationSome public-key encryption scheme can be used as a commitment scheme. This can bedone by having the sender generate a pair of keys and use the public-key together with theencryption of a value as its commitment to the value. In order to satisfy the unambiguityrequirement, the underlying public-key scheme needs to satisfy additional requirements (e.g.,the set of legitimate public-keys should be e�ciently recognizable). In any case, public-key encryption schemes have additional properties not required of commitment schemesand their existence seems to require stronger intractability assumptions. An alternativeconstruction, presented below, uses any one-way permutation. Speci�cally, we use a one-way permutation, denoted f , and a hard-core predicate for it, denoted b (see Section 2.5).Construction 4.4.2 (simple bit commitment): Let f : f0; 1g� 7! f0; 1g� be a function,and b : f0; 1g� 7! f0; 1g be a predicate.1. commit phase: To commit to value v 2 f0; 1g (using security parameter n), the senderuniformly selects s 2 f0; 1gn and sends the pair (f(s); b(s)� v) to the receiver.2. reveal phase: In the reveal phase, the sender reveals the string s used in the commitphase. The receiver accepts the value v if f(s) = � and b(s)� v = �, where (�; �) isthe receiver's view of the commit phase.Proposition 4.4.3 Let f : f0; 1g� 7! f0; 1g� be a length preserving 1-1 one-way function,and b : f0; 1g� 7! f0; 1g be a hard-core predicate of f . Then, the protocol presented inConstruction 4.4.2 constitutes a bit commitment scheme.Proof: The secrecy requirement follows directly from the fact that b is a hard-core of f .The unambiguity requirement follows from the 1-1 property of f . In fact, there exists noambiguous receiver view. Namely, for each receiver view (�; �), there is a unique s 2 f0; 1gj�jso that f(s) = � and hence a unique v 2 f0; 1g so that b(s)� v = �.4.4.1.3 Construction based on any one-way functionWe now present a construction of a bit commitment scheme which is based on the weakestassumption possible: the existence of one-way function. Proving the that the assumptionis indeed minimal is left as an exercise (i.e., Exercise 13). On the other hand, by the resultsin Chapter 3 (speci�cally, Theorems 3.3.4 and 3.5.12), the existence of one-way functionsimply the existence of pseudorandom generators expanding n-bit strings into 3n-bit strings.We will use such a pseudorandom generator in the construction presented below.We start by motivating the construction. Let G be a pseudorandom generator satisfyingjG(s)j = 3 � jsj. Assume that G has the property that the sets fG(s) : s 2 f0; 1gng andfG(s)� 13n : s 2 f0; 1gng are disjoint, were �� � denote the bit-by-bit exclusive-or of the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

162 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSstrings � and �. Then, the sender may commit itself to the bit v by uniformly selectings 2 f0; 1gn and sending the message G(s) � v3n (vk denotes the all-v's k-bit long string).Unfortunately, the above assumption cannot be justi�ed, in general, and a slightly morecomplex variant is required. The key observation is that for most strings � 2 f0; 1g3nthe sets fG(s) : s 2 f0; 1gng and fG(s) � � : s 2 f0; 1gng are disjoint. Such a string� is called good. This observation suggests the following protocol. The receiver uniformlyselects � 2 f0; 1g3n, hoping that it is good, and the sender commits to the bit v by uniformlyselecting s 2 f0; 1gn and sending the message G(s) if v = 0 and G(s)� � otherwise.Construction 4.4.4 (bit commitment under general assumptions): Let G : f0; 1g� 7!f0; 1g� be a function so that jG(s)j = 3 � jsj for all s 2 f0; 1g�.1. commit phase: To receive a commitment to a bit (using security parameter n), thereceiver uniformly selects r 2 f0; 1g3n and sends it to the sender. Upon receiving themessage r (from the receiver), the sender commits to value v 2 f0; 1g by uniformlyselecting s 2 f0; 1gn and sending G(s) if v = 0 and G(s)� r otherwise.2. reveal phase: In the reveal phase, the sender reveals the string s used in the commitphase. The receiver accepts the value 0 if G(s) = � and the value 1 if G(s)� r = �,where (r; �) is the receiver's view of the commit phase.Proposition 4.4.5 If G is a pseudorandom generator, then the protocol presented in Con-struction 4.4.4 constitutes a bit commitment scheme.Proof: The secrecy requirement follows the fact that G is a pseudorandom generator.Speci�cally, let Uk denote the random variable uniformly distributed on strings of length k.Then for every r 2 f0; 1g3n, the random variables U3n and U3n�r are identically distributed.Hence, if it is feasible to �nd an r 2 f0; 1g3n such that G(Un) and G(Un)� r are computa-tionally distinguishable then either U3n and G(Un) are computationally distinguishable orU3n� r and G(Un)� r are computationally distinguishable. In either case contradiction tothe pseudorandomness of G follows.We now turn to the unambiguity requirement. Following the motivating discussion, wecall � 2 f0; 1g3n good if the sets fG(s) : s 2 f0; 1gng and fG(s)�� : s 2 f0; 1gng are disjoint.We say that � 2 f0; 1g3n yields a collision between the seeds s1 and s2 if G(s1) = G(s2)��.Clearly, � is good if it does not yield a collision between any pair of seeds. On the otherhand, there is a unique string � which yields a collision between a given pair of seeds (i.e.,� = G(s1) � G(s2)). Since there are 22n possible pairs of seeds, at most 22n strings yieldcollisions between seeds and all the other 3n-bit long strings are good. It follows thatwith probability at least 1 � 22n�3n the receiver selects a good string. The unambiguityrequirement follows.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.4. ZERO-KNOWLEDGE PROOFS FOR NP 1634.4.1.4 ExtensionsThe de�nition and the constructions of bit commitment schemes are easily extended togeneral commitment schemes enabling the sender to commit to a string rather than to asingle bit. When de�ning the secrecy of such schemes the reader is advised to consultDe�nition [missing(enc-indist.def)]). For the purposes of the rest of this section weneed a commitment scheme by which one can commit to a ternary value. Extending thede�nition and the constructions to deal with this case is even more straightforward.In the rest of this section we will need commitment schemes with a seemingly strongersecrecy requirement than de�ned above. Speci�cally, instead of requiring secrecy withrespect to all polynomial-time machines, we will require secrecy with respect to all (notnecessarily uniform) families of polynomial-size circuits. Assuming the existence of non-uniformly one-way functions (see De�nition 2.2.6 in Section 2.2) commitment schemes withnonuniform secrecy can be constructed, following the same constructions used in the uniformcase.4.4.2 Zero-Knowledge proof of Graph ColoringPresenting a zero-knowledge proof system for one NP-complete language implies the exis-tence of a zero-knowledge proof system for every language in NP . This intuitively appealingstatement does require a proof which we postpone to a later stage. In the current subsec-tion we present a zero-knowledge proof system for one NP-complete language, speci�callyGraph 3-Colorability. This choice is indeed arbitrary.The language Graph 3-Coloring, denoted G3C, consists of all simple graphs (i.e., noparallel edges or self-loops) that can be vertex-colored using 3 colors so that no two adjacentvertices are given the same color. Formally, a graph G=(V;E), is 3-colorable, if there existsa mapping � : V 7! f1; 2; 3g so that �(u) 6= �(v) for every (u; v) 2 E.4.4.2.1 Motivating discussionThe idea underlying the zero-knowledge proof system for G3C is to break the proof of theclaim that a graph is 3-colorable into polynomially many pieces arranged in templates sothat each template by itself yields no knowledge and yet all the templates put togetherguarantee the validity of the main claim. Suppose that the prover generates such piecesof information, places each of them in a separate sealed and nontransparent envelope, andallows the veri�er to open and inspect the pieces participating in one of the templates. Thencertainly the veri�er gains no knowledge in the process, yet his con�dence in the validityof the claim (that the graph is 3-colorable) increases. A concrete implementation of thisabstract scheme follows.To prove that the graph G = (V;E) is 3-colorable, the prover generates a random 3-coloring of the graph, denoted � (actually a random relabelling of a �xed coloring will do).The color of each single vertex constitutes a piece of information concerning the 3-coloring.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

164 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSThe set of templates corresponds to the set of edges (i.e., each pair (�(u); �(v)), (u; v) 2 E,constitutes a template to the claim that G is 3-colorable). Each single template (beingmerely a random pair of distinct elements in f1; 2; 3g) yield no knowledge. However, if allthe templates are OK then the graph must be 3-colorable. Consequently, graphs which arenot 3-colorable must contain at least one bad template and hence are rejected with non-negligible probability. Following is an abstract description of the resulting zero-knowledgeinteractive proof system for G3C.� Common Input: A simple graph G=(V;E).� Prover's �rst step: Let be a 3-coloring of G. The prover selects a random per-mutation, �, over f1; 2; 3g, and sets �(v) def= �((v)), for each v 2 V . Hence, theprover forms a random relabelling of the 3-coloring . The prover sends the veri�era sequence of jV j locked and nontransparent boxes so that the vth box contains thevalue �(v);� Veri�er's �rst step: The veri�er uniformly selects an edge (u; v) 2 E, and sends it tothe prover;� Motivating Remark: The veri�er asks to inspect the colors of vertices u and v;� Prover's second step: The prover sends to the veri�er the keys to boxes u and v;� Veri�er's second step: The veri�er opens boxes u and v, and accepts if and only ifthey contain two di�erent elements in f1; 2; 3g;Clearly, if the input graph is 3-colorable then the prover can cause the veri�er to acceptalways. On the other hand, if the input graph is not 3-colorable then any contents placed inthe boxes must be invalid on at least one edge, and consequently the veri�er will reject withprobability at least 1=jEj. Hence, the above protocol exhibits a non-negligible gap in theaccepting probabilities between the case of inputs in G3C and inputs not in G3C. The zero-knowledge property follows easily, in this abstract setting, since one can simulate the realinteraction by placing a random pair of di�erent colors in the boxes indicated by the veri�er.We stress that this simple argument will not be possible in the digital implementation sincethe boxes are not totally ine�ected by their contents (but are rather e�ected, yet in anindistinguishable manner). Finally, we remark that the con�dence in the validity of theclaim (that the input graph is 3-colorable) may be increased by sequentially applying theabove proof su�cient many times. (In fact if the boxes are perfect as assumed above thenone can also use parallel repetitions.)4.4.2.2 The interactive proofWe now turn to the digital implementation of the above abstract protocol. In this imple-mentation the boxes are implemented by a commitment scheme. Namely, for each box we

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.4. ZERO-KNOWLEDGE PROOFS FOR NP 165invoke an independent execution of the commitment scheme. This will enable us to exe-cute the reveal phase in only some of the commitments, a property that is crucial to ourscheme. For simplicity of exposition, we use the simple commitment scheme presented inConstruction 4.4.2 (or, more generally, any one-way interaction commitment scheme). Wedenote by Cs(�) the commitment of the sender, using coins s, to the (ternary) value �.Construction 4.4.6 (A zero-knowledge proof for Graph 3-Coloring):� Common Input: A simple (3-colorable) graph G = (V;E). Let n def= jV j and V =f1; :::; ng.� Auxiliary Input to the Prover: A 3-coloring of G, denoted .� Prover's �rst step (P1): The prover selects a random permutation, �, over f1; 2; 3g,and sets �(v) def= �((v)), for each v 2 V . The prover uses the commitment schemeto commit itself to the color of each of the vertices. Namely, the prover uniformly andindependently selects s1; :::; sn 2 f0; 1gn, computes ci = Csi(�(i)), for each i 2 V , andsends c1; :::; cn to the veri�er;� Veri�er's �rst step (V1): The veri�er uniformly selects an edge (u; v) 2 E, and sendsit to the prover;� Motivating Remark: The veri�er asks to inspect the colors of vertices u and v;� Prover's second step (P2): Without loss of generality, we may assume that the messagereceived for the veri�er is an edge, denoted (u; v). (Otherwise, the prover sets (u; v) tobe some predetermined edge of G.) The prover uses the reveal phase of the commitmentscheme in order to reveal the colors of vertices u and v to the veri�er. Namely, theprover sends (su; �(u)) and (sv; �(v)) to the veri�er;� Veri�er's second step (V2): The veri�er checks whether the values corresponding tocommitments u and v were revealed correctly and whether these values are di�erent.Namely, upon receiving (s; �) and (s0; �), the veri�er checks whether cu = Cs(�),cv = Cs0(�), and � 6= � (and both in f1; 2; 3g). If all conditions hold then the veri�eraccepts. Otherwise it rejects.Let us denote the above prover's program by PG3C.We stress that both the programs of the veri�er and of the prover can be implemented inprobabilistic polynomial-time. In case of the prover's program this property is made possibleby the use of the auxiliary input to the prover. As we will shortly see, the above protocolconstitutes a weak interactive proof for G3C. As usual, the con�dence can be increased(i.e., the error probability can be decreased) by su�ciently many successive applications.However, the mere existence of an interactive proof for G3C is obvious (since G3C 2

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

166 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSNP). The punch-line is that the above protocol is zero-knowledge (also with respect toauxiliary input). Using the Sequential Composition Lemma (Lemma 4.3.9), it follows thatalso polynomially many sequential applications of this protocol preserve the zero-knowledgeproperty.Proposition 4.4.7 Suppose that the commitment scheme used in Construction 4.4.6 sat-is�es the (nonuniform) secrecy and the unambiguity requirements. Then Construction 4.4.6constitutes an auxiliary input zero-knowledge (generalized) interactive proof for G3C.For further discussion of Construction 4.4.6 see remarks at the end of the current subsection.4.4.2.3 Proof of Proposition 4.4.7We �rst prove that Construction 4.4.6 constitutes a weak interactive proof for G3C. Assume�rst that the input graph is indeed 3-colorable. Then if the prover follows the program inthe construction then the veri�er will always accept (i.e., accept with probability 1). Onthe other hand, if the input graph is not 3-colorable then, no matter what the proverdoes, the n commitments sent in Step (P1) cannot \correspond" to a 3-coloring of thegraph (since such coloring does not exists). We stress that the unique correspondenceof commitments to values is guaranteed by the unambiguity property of the commitmentscheme. It follows that there must exists an edge (u; v) 2 E so that cu and cv, sent in step(P1), are not commitments to two di�erent elements of f1; 2; 3g. Hence, no matter howthe prover behaves, the veri�er will reject with probability at least 1=jEj. Hence there isa non-negligible (in the input length) gap between the accepting probabilities in case theinput is in G3C and in case it is not.We now turn to show that PG3C, the prover in Construction 4.4.6, is indeed zero-knowledge for G3C. The claim is proven without reference to auxiliary input (to theveri�er), yet extending the argument to auxiliary input zero-knowledge is straightforward.Again, we will use the alternative formulation of zero-knowledge (i.e., De�nition 4.3.3),and show how to simulate V �'s view of the interaction with PG3C , for every probabilisticpolynomial-time interactive machine V �. As in the case of the Graph Isomorphism proofsystem (i.e., Construction 4.3.6) it is quite easy to simulate the veri�er's view of the in-teraction with PG3C , provided that the veri�er follows the speci�ed program. However, weneed to simulate the view of the veri�er in the general case (in which it uses an arbitrarypolynomial-time interactive program). Following is an overview of our simulation (i.e., ofour construction of a simulator, M�, for an arbitrary V �).The simulator M� incorporates the code of the interactive program V �. On input agraph G=(V;E), the simulator M� (not having access to a 3-coloring of G) �rst uniformlyand independently selects n values e1; :::; en 2 f1; 2; 3g, and constructs a commitment toeach of them. These ei's constitute a \pseudo-coloring" of the graph, in which the end-pointsof each edge are colored di�erently with probability 23 . In doing so, the simulator behavesvery di�erently from PG3C , but nevertheless the sequence of commitments so generated is

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.4. ZERO-KNOWLEDGE PROOFS FOR NP 167computationally indistinguishable from the sequence of commitments to a valid 3-coloringsent by PG3C in step (P1). If V �, when given the commitments generated by the simulator,asks to inspect an edge (u; v) so that eu 6= ev then the simulator can indeed answer correctly,and doing so it completes a simulation of the veri�er's view of the interaction with PG3C.However, if V � asks to inspect an edge (u; v) so that eu = ev then the simulator has no wayto answer correctly, and we let it halt with output ?. We stress that we don't assume thatthe simulator a-priori \knows" which edge the veri�er V � will ask to inspect. The validityof the simulator stems from a di�erent source. If the veri�er's request were oblivious of theprover's commitment then with probability 23 the veri�er would have asked to inspect anedge which is properly colored. Using the secrecy property of the commitment scheme itfollows that the veri�er's request is \almost oblivious" of the values in the commitments.The zero-knowledge claim follows (yet, with some e�ort). Further detail follow. We startwith a detailed description of the simulator.Simulator M�. On input a graph G=(V;E), the simulator M� proceeds as follows:1. Setting the random tape of V �: Let q(�) denote a polynomial bounding the running-time of V �. The simulator M� starts by uniformly selecting a string r 2 f0; 1gq(jxj),to be used as the contents of the local random tape of V �.2. Simulating the prover's �rst step (P1): The simulator M� uniformly and indepen-dently selects n values e1; :::; en 2 f1; 2; 3g and n random strings s1; :::; sn 2 f0; 1gn tobe used for committing to these values. The simulator computes, for each i 2 V , acommitment di = Csi(ei).3. Simulating the veri�er's �rst step (V1): The simulator M� initiates an execution ofV � by placing G on V �'s \common input tape", placing r (selected in step (1) above)on V �'s \local random tape", and placing the sequence (d1; :::; dn) (constructed in step(2) above) on V �'s \incoming message tape". After executing a polynomial numberof steps of V �, the simulator can read the outgoing message of V �, denoted m. Again,we assume without loss of generality thatm 2 E and let (u; v) = m. (Actually m 62 Eis treated as in step (P2) in PG3C; namely, (u; v) is set to be some predetermined edgeof G.)4. Simulating the prover's second step (P2): If eu 6= ev then the simulator halts withoutput (G; r; (d1; :::; dn); (su; eu; sv; ev)).5. Failure of the simulation: Otherwise (i.e., eu = ev), the simulator halts with output?.Using the hypothesis that V � is polynomial-time, it follows that so is the simulator M�.It is left to show that M� outputs ? with probability at most 12 , and that, conditionedon not outputting ?, the simulator's output is computationally indistinguishable from theveri�er's view in a \real interaction with PG3C". The proposition will follow by running the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

168 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSabove simulator n times and outputting the �rst output di�erent from ?. We now turn toprove the above two claims.Claim 4.4.7.1: For every su�ciently large graph, G=(V;E), the probability thatM�(G) = ?is bounded above by 12 .proof: As above, n will denote the cardinality of the vertex set of G. Let us denote bypu;v(G; r; (e1; :::; en)) the probability, taken over all the choices of the s1; :::; sn 2 f0; 1gn,that V �, on input G, random coins r, and prover message (Cs1(e1); :::; Csn(en)), replies withthe message (u; v). We assume, for simplicity, that V � always answers with an edge of G(since otherwise its message is anyhow treated as if it were an edge of G). We �rst claimthat for every su�ciently large graph, G=(V;E), every r 2 f0; 1gq(n), every edge (u; v) 2 E,and every two sequences �; � 2 f1; 2; 3gn, it holds thatjpu;v(G; r; �)� pu;v(G; r; �)j � 12jEjActually, we can prove the following.Request Obliviousness Subclaim: For every polynomial p(�), every su�ciently large graph,G = (V;E), every r 2 f0; 1gq(n), every edge (u; v) 2 E, and every two sequences �; � 2f1; 2; 3gn, it holds that jpu;v(G; r; �)� pu;v(G; r; �)j � 1p(n)The Request Obliviousness Subclaim is proven using the non-uniform secrecy of the com-mitment scheme. The reader should be able to �ll-up the details of such a proof at thisstage. Nevertheless, a proof of the subclaim follows.Proof of the Request Obliviousness Subclaim: Assume on the contrary that thereexists a polynomial p(�), and an in�nite sequence of integers such that for eachinteger n (in the sequence) there exists an n-vertices graph, Gn = (Vn; En),a string rn 2 f0; 1gq(n), an edge (un; vn) 2 En, and two sequences �n; �n 2f1; 2; 3gn so thatjpun;vn(Gn; rn; �n)� pun;vn(Gn; rn; �n)j > 1p(n)We construct a circuit family, fAng, by letting An incorporate the interactivemachine V �, the graph Gn, and rn; un; vn; �n; �n, all being as in the contradic-tion hypothesis. On input, y (supposedly a commitment to either �n or �n),circuit An runs V � (on input Gn coins rn and prover's message y), and out-puts 1 if and only if V � replies with (un; vn). Clearly, fAng is a (non-uniform)family of polynomial-size circuits. The key observation is that An distinguishescommitments to �n from commitments to �n, sincePr(An(CUn2 (
)) = 1) = pun;vn(Gn; rn;
)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.4. ZERO-KNOWLEDGE PROOFS FOR NP 169where Uk denotes, as usual, a random variable uniformly distributed over f0; 1gk.Contradiction to the (non-uniform) secrecy of the commitment scheme follows bya standard hybrid argument (which relates the indistinguishability of sequencesto the indistinguishability of single commitments).Returning to the proof of Claim 4.4.7.1, we now use the above subclaim to upper boundthe probability that the simulator outputs ?. The intuition is simple. Since the requestsof V � are almost oblivious of the values to which the simulator has committed itself, it isunlikely that V � will request to inspect an illegally colored edge more often than if he wouldhave made the request without looking at the commitment. A formal (but straightforward)analysis follows.Let M�r (G) denote the output of machine M� on input G, conditioned on the eventthat it chooses the string r in step (1). We remind the reader that M�r (G) = ? only incase the veri�er on input G, random tape r, and a commitment to some pseudo-coloring(e1; :::; en), asks to inspect an edge (u; v) which is illegally colored (i.e., eu = ev). LetE(e1;:::;en) denote the set of edges (u; v) 2 E that are illegally colored (i.e., satisfy eu = ev)with respect to (e1; :::; en). Then, �xing an arbitrary r and considering all possible choicesof (e1; :::; en) 2 f1; 2; 3gn,Pr(M�r (G) = ?) = Xe2f1;2;3gn 13n � X(u;v)2Ee pu;v(G; r; e)(Recall that pu;v(G; r; e) denotes the probability that the veri�er asks to inspect (u; v) whengiven a sequence of random commitments to the values e.) De�ne Bu;v to be the set of n-tuples (e1; :::; en) 2 f1; 2; 3gn satisfying eu = ev. Clearly, jBu;vj = 3n�1. By straightforwardcalculation we getPr(M�r (G) = ?) = 13n � X(u;v)2E Xe2Bu;v pu;v(G; r; e)� 13n � X(u;v)2E jBu;vj ��pu;v(G; r; (1; :::; 1))+ 12jEj�= 16 + 13 � X(u;v)2E pu;v(G; r; (1; :::; 1))= 16 + 13The claim follows. 2For simplicity, we assume in the sequel that on common input G 2 G3C, the prover getsthe lexicographically �rst 3-coloring of G as auxiliary input. This enables us to omit theauxiliary input to PG3C (which is now implicit in the common input) from the notation.The argument is easily extended to the general case where PG3C gets an arbitrary 3-coloringof G as auxiliary input.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

170 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSClaim 4.4.7.2: The ensemble consisting of the output of M� on input G= (V;E) 2 G3C,conditioned on it not being ?, is computationally indistinguishable from the ensemblefviewPG3CV � (G)gG2G3C. Namely, for every probabilistic polynomial-time algorithm, A, everypolynomial p(�), and all su�ciently large graph G=(V;E),jPr(A(M�(G)) = 1jM�(G) 6= ?)� Pr(A(viewPG3CV � (G)) = 1)j < 1p(jV j)We stress that these ensembles are very di�erent (i.e., the statistical distance between themis very close to the maximum possible), and yet they are computationally indistinguishable.Actually, we can prove that these ensembles are indistinguishable also by (non-uniform)families of polynomial-size circuits. In �rst glance it seems that Claim 4.4.7.2 follows easilyfrom the secrecy property of the commitment scheme. Indeed, Claim 4.4.7.2 is provenusing the secrecy property of the commitment scheme, yet the proof is more complex thanone anticipates (at �rst glance). The di�culty lies in the fact that the above ensemblesconsist not only of commitments to values, but also of an opening of some of the values.Furthermore, the choice of which commitments are to be opened depends on the entiresequence of commitments.proof: Given a graph G=(V;E), we de�ne for each edge (u; v) 2 E two random variablesdescribing, respectively, the output of M� and the view of V � in a real interaction, in casethe veri�er asked to inspect the edge (u; v). Speci�cally� �u;v(G) describes M�(G) conditioned on M�(G) containing the \reveal information"for vertices u and v.� �u;v(G) describes viewPG3CV � (G) conditioned on viewPG3CV � (G) containing the \reveal in-formation" for vertices u and v.Let pu;v(G) denote the probability thatM�(G) contains \reveal information" for verticesu and v, conditioned on M�(G) 6= ?. Similarly, let qu;v(G) denote the probability thatviewPG3CV � (G) contains \reveal information" for vertices u and v.Assume, in the contrary to the claim, that the ensembles mentioned in the claim arecomputationally distinguishable. Then one of the following cases must occur.Case 1: There is a noticeable di�erence between the probabilistic pro�le of the requestsof V � when interacting with PG3C and the requests of V � when invoked by M�.Formally, there exists a polynomial p(�) and an in�nite sequence of integers such thatfor each integer n (in the sequence) there exists an n-vertices graph Gn = (Vn; En),and an edge (un; vn) 2 En, so thatjpun;vn(Gn)� qun;vn(Gn)j > 1p(n)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.4. ZERO-KNOWLEDGE PROOFS FOR NP 171Case 2: An algorithm distinguishing the above ensembles does so also conditioned onV � asking for a particular edge. Furthermore, this request occurs with noticeableprobability which is about the same in both ensembles. Formally, there exists aprobabilistic polynomial-time algorithm A, a polynomial p(�) and an in�nite sequenceof integers such that for each integer n (in the sequence) there exists an n-verticesgraph Gn=(Vn; En), and an edge (un; vn) 2 En, so that the following conditions hold� qun;vn(Gn) > 1p(n)� jpun;vn(Gn)� qun;vn(Gn)j < 13�p(n)2� jPr(A(�un;vn(Gn)) = 1)� Pr(A(�un;vn(Gn)) = 1)j > 1p(jV j) .Case 1 can be immediately discarded since it leads easily to contradiction (to the non-uniform secrecy of the commitment scheme). The idea is to use the Request ObliviousnessSubclaim appearing in the proof of Claim 4.4.7.1. Details are omitted. We are thus leftwith Case 2.We are now going to show that also Case 2 leads to contradiction. To this end we willconstruct a circuit family that will distinguish commitments to di�erent sequences of values.Interestingly, neither of these sequences will equal the sequence of commitments generatedby either the prover or by the simulator. Following is an overview of the construction.The nth circuit gets a sequence of 3n commitments and produces from it a sequence of ncommitments (part of which is a subsequence of the input). When the input sequence to thecircuit is taken from one distribution the circuit generates a subsequence corresponding tothe sequence of commitments generated by the prover. Likewise, when the input sequence(to the circuit) is taken from the other distribution the circuit will generate a subsequencecorresponding to the sequence of commitments generated by the simulator. We stress thatthe circuit does so without knowing from which distribution the input is taken. Aftergenerated an n-long sequence, the circuit feeds it to V �, and depending on V �'s behaviourthe circuit may feed part of the sequence to algorithm A (mentioned in Case 2). Followingis a detailed description of the circuit family.Let us denote by n the (lexicographically �rst) 3-coloring of Gn used by the prover.We construct a circuit family, denoted fAng, by letting An incorporate the interactivemachine V �, the \distinguishing" algorithm A, the graph Gn, the 3-coloring n, and theedge (un; vn), all being those guaranteed in Case 2. The input to circuit An will be a sequenceof commitments to 3n values, each in f1; 2; 3g. The circuit will distinguish commitmentsto a uniformly chosen 3n-long sequence from commitments to the �xed sequence 1n2n3n(i.e., the sequence consisting of n 1-values, followed by n 2-values, followed by n 3-values).Following is a description of the operation of An.On input, y = (y1; :::; y3n) (where each yi is supposedly a commitment to an element off1; 2; 3g), the circuit An proceeds as follows.� An �rst selects uniformly a permutation � over f1; 2; 3g, and computes �(i) = �(n(i)),for each i 2 Vn.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

172 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS� For each i 2 Vn � fun; vng, the circuit sets ci = y�(i)�n�n+i (i.e., ci = yi if �(i) = 1,ci = yn+i if �(i) = 2, and ci = y2n+i if �(i) = 3). Note that each yj is used at mostonce, and 2n+ 2 of the yj's are not used at all.� The circuit uniformly selects su; sv 2 f0; 1gn, and sets cun = Csun(�(un)) and cvn =Csvn(�(vn)).� The circuit initiates an execution of V � by placing Gn on V �'s \common input tape",placing a uniformly selected r 2 f0; 1gq(n) on V �'s \local random tape", and placingthe sequence (c1; :::; cn) (constructed above) on V �'s \incoming message tape". Thecircuit reads the outgoing message of V �, denoted m.� If m 6= (un; vn) then the circuit outputs 1.� Otherwise (i.e., m = (un; vn)), the circuit invokes algorithm A and outputsA(Gn; r; (c1; :::; cn); (sun; �(un); svn; �(vn)))Clearly the size of An is polynomial in n. We now evaluate the distinguishing ability ofAn. Let us �rst consider the probability that circuit An outputs 1 on input a random com-mitment to the sequence 1n2n3n. The reader can easily verify that the sequence (c1; :::; cn)constructed by circuit An is distributed identically to the sequence sent by the prover instep (P1). Hence, letting C(
) denote a random commitment to a sequence
 2 f1; 2; 3g�,we get Pr(An(C(1n2n3n)) = 1) = (1� qun;vn(Gn))+qun ;vn(Gn) � Pr(A(�un;vn(Gn)) = 1)On the other hand, we consider the probability that circuit An outputs 1 on input arandom commitment to a uniformly chosen 3n-long sequence over f1; 2; 3g. The reader caneasily verify that the sequence (c1; :::; cn) constructed by circuit An is distributed identicallyto the sequence (d1; :::; dn) generated by the simulator in step (2), conditioned on dun 6= dvn.Letting T3n denote a random variable uniformly distributed over f1; 2; 3g3n, we getPr(An(C(T3n) = 1) = (1� pun;vn(Gn))+pun;vn(Gn) � Pr(A(�un;vn(Gn)) = 1)Using the conditions of Case 2, and omitting Gn from the notation, we getjPr(An(C(1n2n3n)) = 1)� Pr(An(C(T3n) = 1)j� qun;vn � jPr(A(�un;vn) = 1)� Pr(A(�un;vn) = 1)j � 2 � jpun;vn � qun;vn j> 1p(n) � 1p(n) � 2 � 13 � p(n)2= 13 � p(n)2

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.4. ZERO-KNOWLEDGE PROOFS FOR NP 173Hence, the circuit family fAng distinguishes commitments to f1n2n3ng from commitmentsto fT3ng. Combining an averaging argument with a hybrid argument, we conclude that thereexists a polynomial-size circuit family which distinguishes commitments. This contradictsthe non-uniform secrecy of the commitment scheme.Having reached contradiction in both cases, Claim 4.4.7.2. 2Combining Claims 4.4.7.1 and 4.4.7.2, the zero-knowledge property of PG3C follows. Thiscompletes the proof of the proposition.4.4.2.4 Concluding remarksConstruction 4.4.6 has been presented using a unidirectional commitment scheme. A fun-damental property of such schemes is that their secrecy is preserved also in case (polyno-mially) many instances are invoked simultaneously. The proof of Proposition 4.4.7 indeedtook advantage on this property. We remark that Construction 4.4.4 also possesses thissimultaneous secrecy property, and hence the proof of Proposition 4.4.7 can be carried outalso if the commitment scheme in used is the one of Construction 4.4.4 (see Exercise 15).We recall that this latter construction constitutes a commitment scheme if and only if suchschemes exist at all (since Construction 4.4.4 is based on any one-way function and theexistence of one-way functions is implied by the existence of commitment schemes).Proposition 4.4.7 assumes the existence of a nonuniformly secure commitment scheme.The proof of the proposition makes essential use of the nonuniform security by incorpo-rating instances on which the zero-knowledge property fails into circuits which contradictthe security hypothesis. We stress that the sequence of \bad" instances is not necessar-ily constructible by e�cient (uniform) machines. Put in other words, the zero-knowledgerequirement has some nonuniform
avour. A uniform analogue of zero-knowledge wouldrequire only that it is infeasible to �nd instances on which a veri�er gains knowledge (andnot that such instances do not exist at all). Using a uniformly secure commitment scheme,Construction 4.4.6 can be shown to be uniformly zero-knowledge.By itself, Construction 4.4.6 has little practical value, since it o�ers very moderateacceptance gap (between inputs inside and outside of the language). Yet, repeating theprotocol, on common input G=(V;E), for k � jEj times (and letting the veri�er accept onlyif all iterations are accepting) yields an interactive proof for G3C with error probabilitybounded by e�k, where e � 2:718 is the natural logarithm base. Namely, on commoninput G 2 G3C the veri�er always accepts, whereas on common input G 62 G3C theveri�er accepts with probability bounded above by e�k (no matter what the prover does).We stress that, by virtue of the Sequential Composition Lemma (Lemma 4.3.9), if theseiterations are performed sequentially then the resulting (strong) interactive proof is zero-knowledge as well. Setting k to be any super-logarithmic function of jGj (e.g., k = jGj),the error probability of the resulting interactive proof is negligible. We remark that it is

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

174 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSunlikely that one can prove an analogous statement with respect to the interactive proofwhich results by performing these iteration in parallel. See Section 4.5.An important property of Construction 4.4.6 is that the prescribed prover (i.e., PG3C)can be implemented in probabilistic polynomial-time, provided that it is given as auxiliaryinput a 3-coloring of the common input graph. As we shall see, this property is essential tothe applications of Construction 4.4.6 to the design of cryptographic protocols.As admitted in the beginning of the current subsection, the choice of G3C as a boot-strapping NP-complete language is totally arbitrary. It is quite easy to design analogouszero-knowledge proofs for other popular NP-complete languages. Such constructions willuse the same underlying ideas as those presented in the motivating discussion.4.4.3 The General Result and Some ApplicationsThe theoretical and practical importance of a zero-knowledge proof for Graph 3-Coloring(e.g., Construction 4.4.6) follows from the fact that it can be applied to prove, in zero-knowledge, any statement having a short proof that can be e�ciently veri�ed. More pre-cisely, a zero-knowledge proof system for a speci�c NP-complete language (e.g., Construc-tion 4.4.6) can be used to present zero-knowledge proof systems for every language in NP .Before presenting zero-knowledge proof systems for every language in NP , let us recallsome conventions and facts concerning NP . We �rst recall that every language L 2 NP ischaracterized by a binary relation R satisfying the following properties� There exists a polynomial p(�) such that for every (x; y) 2 R it holds jyj � p(jxj).� There exists a polynomial-time algorithm for deciding membership in R.� L = fx : 9w s.t. (x; w) 2 Rg.Actually, each language in NP can be characterized by in�nitely many such relations.Yet, for each L 2 NP we �x and consider one characterizing relation, denoted RL. Sec-ondly, since G3C is NP-complete, we know that L is polynomial-time reducible (i.e., Karp-reducible) to G3C. Namely, there exists a polynomial-time computable function, f , suchthat x 2 L if and only if f(x) 2 G3C. Thirdly, we observe that the standard reduction ofL to G3C, denoted fL, has the following additional property:There exists a polynomial-time computable function, denoted gL, such that forevery (x; w) 2 RL it holds that gL(w) is a 3-coloring of fL(x).We stress that the above additional property is not required by the standard de�nitionof a Karp-reduction. Yet, it can be easily veri�ed that the standard reduction fL (i.e.,the composition of the generic reduction of L to SAT , the standard reductions of SAT to3SAT , and the standard reduction of 3SAT to G3C) does have such a corresponding gL.(See Exercise 17.) Using these conventions, we are ready to \reduce" the construction ofzero-knowledge proof for NP to a zero-knowledge proof system for G3C.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.4. ZERO-KNOWLEDGE PROOFS FOR NP 175Construction 4.4.8 (A zero-knowledge proof for a language L 2 NP):� Common Input: A string x (supposedly in L);� Auxiliary Input to the Prover: A witness, w, for the membership of x 2 L (i.e., astring w such that (x; w) 2 RL).� Local pre-computation: Each party computes G def= fL(x). The prover computes def=gL(w).� Invoking a zero-knowledge proof for G3C: The parties invoke a zero-knowledge proofon common input G. The prover enters this proof with auxiliary input .Proposition 4.4.9 Suppose that the subprotocol used in the last step of Construction 4.4.8is indeed an auxiliary input zero-knowledge proof for G3C. Then Construction 4.4.8 con-stitutes an auxiliary input zero-knowledge proof for L.Proof: The fact that Construction 4.4.8 constitutes an interactive proof for L is immediatefrom the validity of the reduction (and the fact that it uses an interactive proof for G3C).In �rst glance it seems that the zero-knowledge property of Construction 4.4.8 follows asimmediately. There is however a minor issue that one should not ignore. The veri�erin the zero-knowledge proof for G3C, invoked in Construction 4.4.8, possesses not onlythe common input graph G but also the original common input x which reduces to G.This extra information might have helped this veri�er to extract knowledge in the G3Cinteractive proof, if it were not the case that this proof system is zero-knowledge also withrespect to auxiliary input. can be dealt with using auxiliary input to the veri�er in Detailsfollow.Suppose we need to simulate the interaction of a machine V � with the prover, on commoninput x. Without loss of generality we may assume that machine V � invokes an interactivemachine V �� which interacts with the prover of the G3C interactive proof, on common inputG = fL(x) and having auxiliary input x. Using the hypothesis that the G3C interactiveproof is auxiliary input zero-knowledge, it follows that there exists a simulator M�� thaton input (G; x) simulates the interaction of V �� with the G3C-prover (on common inputG and veri�er's auxiliary input x). Hence, the simulator for Construction 4.4.8, denotedM�, operates as follows. On input x, the simulator M� computes G def= fL(x) and outputsM��(G; x). The proposition follows.We remark that an alternative way of resolving the minor di�culty addressed above isto observe that the function fL (i.e., the one induced by the standard reductions) can beinverted in polynomial-time (see Exercise 18). In any case, we immediately getTheorem 4.4.10 Suppose that there exists a commitment scheme satisfying the (nonuni-form) secrecy and the unambiguity requirements. Then every language in NP has an aux-iliary input zero-knowledge proof system. Furthermore, the prescribed prover in this system

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

176 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMScan be implemented in probabilistic polynomial-time, provided it gets the corresponding NP-witness as auxiliary input.We remind the reader that the condition of the theorem is satis�ed if (and only if) thereexists (non-uniformly) one-way functions. See Theorem 3.5.12 (asserting that one-way func-tions imply pseudorandom generators), Proposition 4.4.5 (asserting that pseudorandom gen-erators imply commitment schemes), and Exercise 13 (asserting that commitment schemesimply one-way functions).Applications { An ExampleA typical application of Theorem 4.4.10 is to enable one party to prove some property ofits secrets without revealing the secrets. For concreteness, consider a party, denoted S,sending encrypted messages (over a public channel) to various parties, denoted R1; :::; Rt,and wishing to prove to some other party, denoted V , that all the corresponding plaintextmessages are identical. Further suppose that the messages are sent to the receivers (i.e., theRi's) using a secure public-key encryption scheme, and let Ei(�) denote the (probabilistic)encryption employed when sending a message to Ri. Namely, to send messageMi to Ri, thesender uniformly chooses ri 2 f0; 1gn, computes the encryption Ei(ri;Mi), and transmitsit over the public channel. In order to prove that C1 = E1(r1;M) and C2 = E2(r2;M)both encrypt the same message it su�ces to reveal r1, r2 andM . However, doing so revealsthe message M to the veri�er. Instead, one can prove in zero-knowledge that there existsr1, r2 and M such that C1 = E1(r1;M) and C2 = E2(r2;M). The existence of such azero-knowledge proof follows from Theorem 4.4.10 and the fact that the statement to beproven is of NP-type. Formally, we de�ne a languageL def= f(C1; C2) : 9r1; r2;M s.t. C1 = E1(r1;M) and C2 = E2(r2;M)gClearly, the language L is in NP , and hence Theorem 4.4.10 can be applied. Additionalexamples are presented in Exercise 19.Zero-Knowledge for any language in IPInterestingly, the result of Theorem 4.4.10 can be extended \to the maximum"; in the sensethat under the same conditions every language having an interactive proof system also hasa zero-knowledge proof system. Namely,Theorem 4.4.11 Suppose that there exists a commitment scheme satisfying the (nonuni-form) secrecy and unambiguity requirements. Then every language in IP has a zero-knowledge proof system.We believe that this extension does not have much practical signi�cance. Theorem 4.4.11is proven by �rst converting the interactive proof for L into one in which the veri�er uses

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.4. ZERO-KNOWLEDGE PROOFS FOR NP 177only \public coins" (i.e., an Arthur-Merlin proof); see Chapter 8. Next, the veri�er'scoin tosses are forced to be almost unbiased by using a coin tossing protocols (see section****???). Finally, the prover's replies are sent using a commitment scheme, At the endof the interaction the prover proves in zero-knowledge that the original veri�er would haveaccepted the hidden transcript (this is an NP-statement).4.4.4 E�ciency ConsiderationsWhen presenting zero-knowledge proof systems for every language in NP , we made noattempt to present the most e�cient construction possible. Our main concern was topresent a proof which is as simple to explain as possible. However, once we know thatzero-knowledge proofs for NP exist, it is natural to ask how e�cient can they be.In order to establish common grounds for comparing zero-knowledge proofs, we have tospecify a desired measure of error probability (for these proofs). An instructive choice, usedin the sequel, is to consider the complexity of zero-knowledge proofs with error probability2�k, where k is a parameter that may depend on the length of the common input. Anotherissue to bear in mind when comparing zero-knowledge proof is under what assumptions (ifat all) are they valid. Throughout this entire subsection we stick to the assumption usedso far (i.e., the existence of one-way functions).4.4.4.1 Standard e�ciency measuresNatural and standard e�ciency measures to consider are� The communication complexity of the proof. The most important communicationmeasure is the round complexity (i.e., the number of message exchanges). The totalnumber of bits exchanged in the interaction is also an important consideration.� The computational complexity of the proof. Speci�cally the number of elementarysteps taken by each of the parties.Communication complexity seems more important than computational complexity, as longas the trade-o� between them is \reasonable".To demonstrate these measures we consider the zero-knowledge proof for G3C presentedin Construction 4.4.6. Recall that this proof system has very moderate acceptance gap,speci�cally 1=jEj, on common input graph G = (V;E). So Construction 4.4.6 has to beapplied sequentially k � jEj in order to result in a zero-knowledge proof with error probabilitye�k, where e � 2:718 is the natural logarithm base. Hence, the round complexity of theresulting zero-knowledge proof is O(k � jEj), the bit complexity is O(k � jEj � jV j2), and thecomputational complexity is O(k � jEj �poly(jV j)), where the polynomial poly(�) depends onthe commitment scheme in use.Much more e�cient zero-knowledge proof systems may be custom-made for speci�clanguages inNP . Furthermore, even if one adopts the approach of reducing the construction

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

178 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSof zero-knowledge proof systems for NP languages to the construction of a zero-knowledgeproof system for a single NP-complete language, e�ciency improvements can be achieved.For example, using Exercise 16, one can present zero-knowledge proofs for the HamiltonianCircuit Problem (again with error 2�k) having round complexity O(k), bit complexity O(k �jV j2+�), and computational complexity O(k � jV j2+O(�)), where � > 0 is a constant dependingon the desired security of the commitment scheme (in Construction 4.4.6 and in Exercise 16we chose � = 1). Note that complexities depending on the instance size are e�ected byreductions among problems, and hence a fair comparison is obtained by considering thecomplexities for the generic problem (i.e., Bounded Halting).The round complexity of a protocol is a very important e�ciency consideration and itis desirable to reduce it as much as possible. In particular, it is desirable to have zero-knowledge proofs with constant number of rounds and negligible error probability. Thisgoal is pursued in Section 4.9.4.4.4.2 Knowledge Tightness: a particular e�ciency measureThe above e�ciency measures are general in the sense that they are applicable to anyprotocol (independent on whether it is zero-knowledge or not). A particular measure ofe�ciency applicable to zero-knowledge protocols is their knowledge tightness. Intuitively,knowledge tightness is a re�nement of zero-knowledge which is aimed at measuring the\actual security" of the proof system. Namely, how much harder does the veri�er need towork, when not interacting with the prover, in order to compute something which it cancomputes after interacting with the prover. Thus, knowledge tightness is the ratio betweenthe (expected) running-time of the simulator and the running-time of the veri�er in thereal interaction simulated by the simulator. Note that the simulators presented so far, aswell as all known simulator, operate by repeated random trials and hence an instructivemeasure of tightness should consider their expected running-time (assuming they never err(i.e., output the special ? symbol)) rather than the worst case.De�nition 4.4.12 (knowledge tightness): Let t : N 7! N be a function. We say that a zero-knowledge proof for language L has knowledge tightness t(�) if there exists a polynomial p(�)such that for every probabilistic polynomial-time veri�er V � there exists a simulator M� (asin De�nition 4.3.2) such that for all su�ciently long x 2 L we haveTimeM�(x)� p(jxj)TimeV �(x) � t(jxj)where TimeM�(x) denotes the expected running-time of M� on input x, and TimeV �(x)denotes the running time of V � on common input x.We assume a model of computation allowing one machine to invoke another machine atthe cost of merely the running-time of the latter machine. The purpose of polynomial p(�),in the above de�nition, is to take care of generic overhead created by the simulation (this is

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.5. * NEGATIVE RESULTS 179important in case the veri�er V � is extremely fast). We remark that the de�nition of zero-knowledge does not guarantee that the knowledge tightness is polynomial. Yet, all knownzero-knowledge proof, and more generally all zero-knowledge properties demonstrated usinga single simulator with black-box access to V �, have polynomial knowledge tightness. Inparticular, Construction 4.3.6 has knowledge tightness 2, whereas Construction 4.4.6 hasknowledge tightness 3=2. We believe that knowledge tightness is a very important e�ciencyconsideration and that it desirable to have it be a constant.4.5 * Negative ResultsIn this section we review some negative results concerning zero-knowledge. These resultscan be viewed as evidence to the belief that some of the shortcomings of the results andconstructions presented in previous sections are unavoidable. Most importantly, Theo-rem 4.4.10 asserts the existence of (computational) zero-knowledge proof systems for NP ,assuming that one-way functions exist. Two natural questions arise1. An unconditional result: Can one prove the existence of (computational) zero-knowledgeproof systems for NP , without making any assumptions?2. Perfect zero-knowledge: Can one present perfect zero-knowledge proof systems forNP , even under some reasonable assumptions?The answer to both question seems to be negative.Another important question concerning zero-knowledge proofs is their preservation un-der parallel composition. We show that, in general, zero-knowledge is not preserved underparallel composition (i.e., there exists a pair of zero-knowledge protocols that when executedin parallel leak knowledge in a strong sense). Furthermore, we consider some natural proofsystems, obtained via parallel composition of zero-knowledge proofs, and indicate that it isunlikely that the resulting composed proofs can be proven to be zero-knowledge.4.5.1 Implausibility of an Unconditional \NP in ZK" ResultRecall that Theorem 4.4.11 asserts the existence of zero-knowledge proofs for any languagesin IP , provided that nonuniform one-way functions exist. In this subsection we consider thequestion of whether this su�cient condition is also necessary. The results, known to date,seem to provide some (yet, weak) indication in this direction. Speci�cally, the existence ofzero-knowledge proof systems for languages out of BPP implies very weak forms of one-wayness. Also, the existence of zero-knowledge proof systems for languages which are hardto approximate, in some average case sense, implies the existence of one-way functions (butnot of nonuniformly one-way functions). In the rest of this subsection we provide precisestatements of the above results.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

180 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS4.5.1.1 BPP � CZK implies weak forms of one-waynessDe�nition 4.5.1 (collection of functions with one-way instances): A collection of func-tions, ffi :Di 7! f0; 1g�gi2I, is said to have one-way instances if there exists three probabilisticpolynomial-time algorithms, I, D and F , so that the following two conditions hold1. easy to sample and compute: as in De�nition 2.4.3.2. some functions are hard to invert: For every probabilistic polynomial-time algorithm,A0, every polynomial p(�), and in�nitely many i'sPr �A0(fi(Xn); i)2f�1i fi(Xn)� < 1p(n)where Xn is a random variable describing the output of algorithm D on input i.Actually, since the hardness condition does not refer to the distribution induced by I , wemay assume, without loss of generality, that I = f0; 1g� and algorithm I uniformly selectsa string (of length equal to the length of its input). Recall that collections of one-wayfunctions (as de�ned in De�nition 2.4.3) requires hardness to invert of all but a negligiblemeasure of the functions fi (where the probability measure is induced by algorithm I).Theorem 4.5.2 If there exist zero-knowledge proofs for languages outside of BPP thenthere exist collections of functions with one-way instances.We remark that the mere assumption that BPP � IP is not known to imply any form ofone-wayness. The existence of a language in NP which is not in BPP implies the existenceof a function which is easy to compute but hard to invert in the worst-case (see Section 2.1).The latter consequence seems to be a much weaker form of one-wayness.4.5.1.2 Zero-knowledge for \hard" languages yield one-way functionsOur notion of hard languages is the followingDe�nition 4.5.3 We say that a language L is hard to approximate if there exists a proba-bilistic polynomial-time algorithm S such that for every probabilistic polynomial-time algo-rithm A, every polynomial p(�), and all su�ciently large n'sPr(A(Xn)=�L(Xn)) < 12 + 1p(n)where Xn def= S(1n), and �L is the characteristic function of the language L (i.e., �L(x) = 1if x 2 L and �L(x) = 0 otherwise).Theorem 4.5.4 If there exist zero-knowledge proofs for languages that are hard to approx-imate then there exist one-way functions.We stress that the mere existence of languages that are hard to approximate is not knownto imply the existence of one-way functions (see Section 2.1).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.5. * NEGATIVE RESULTS 1814.5.2 Implausibility of Perfect Zero-Knowledge proofs for all of NPA theorem bounding the class of languages possessing perfect zero-knowledge proof systemsfollows. We start with some background (for more details see Section [missing(eff-ip.sec)]).By AM we denote the class of languages having an interactive proof which proceeds as fol-lows. First the veri�er sends a random string to the prover, next the prover answers withsome string, and �nally the veri�er decided whether to accept or reject based on a deter-ministic computation (depending on the common input and the above two strings). Theclass AM seems to be a randomized counterpart ofNP , and it is believed that coNP is notcontained in AM. Additional support to this belief is given by the fact that coNP � AMimplies the collapse of the Polynomial-Time Hierarchy. In any case it is known thatTheorem 4.5.5 The class of languages possessing perfect zero-knowledge proof systems iscontained in the class coAM. (In fact, these languages are also in AM.)The theorem remains valid under several relaxations of perfect zero-knowledge (e.g.,allowing the simulator to run in expected polynomial-time, etc.). Hence, if some NP-complete language has a perfect zero-knowledge proof system then coNP � AM, which isunlikely.We stress that Theorem 4.5.5 does not apply to perfect zero-knowledge arguments,de�ned and discussed in Section 4.8. Hence, there is no con
ict between Theorem 4.5.5and the fact that, under some reasonable complexity assumptions, perfect zero-knowledgearguments do exist for every language in NP .4.5.3 Zero-Knowledge and Parallel CompositionWe discuss two negative results of very di�erent conceptual standing. The �rst resultasserts the failure of the general \Parallel Composition Conjecture", but says nothing aboutspeci�c natural candidates. The second result refers to a class of interactive proofs, whichcontains several interesting and natural examples, and assert that the members of this classcannot be proven zero-knowledge using a general paradigm (know by the name \black boxsimulation"). We mention that it is hard to conceive an alternative way of demonstratingthe zero-knowledge property of protocols (rather than by following this paradigm).4.5.3.1 Failure of the Parallel Composition ConjectureFor some time, after zero-knowledge proofs were �rst introduced, several researchers insistedthat the following must be trueParallel Composition Conjecture: Let P1 and P2 be two zero-knowledge provers. Then theprover resulting by running both of them in parallel is also zero-knowledge.Some researchers even considered the failure to prove the Parallel Composition Conjectureas a sign of incompetence. However, the Parallel Composition Conjecture is just wrong.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

182 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSProposition 4.5.6 There exists two provers, P1 and P2, such that each is zero-knowledge,and yet the prover resulting by running both of them in parallel yields knowledge (e.g., acheating veri�er may extract from this prover a solution to a problem that is not solvable inpolynomial-time). Furthermore, the above holds even if the zero-knowledge property of eachof the Pi's can be demonstrated using a simulator which uses the veri�er as a black-box (seebelow).We remark that these provers can be incorporated into a single prover that randomly selectswhich of the two programs to execute. Alternatively, the choice may be determined by theveri�er.Proof idea: Consider a prover, denoted P1, that send \knowledge" to the veri�er if andonly if the veri�er can answer some randomly chosen hard question (i.e., we stress thatthe question is chosen by P1). Answers to the hard questions look pseudorandom, yet P1(which is not computationally bounded) can verify their correctness. Now, consider a secondprover, denoted P2, that answers these hard questions. Each of these provers (by itself) iszero-knowledge: P1 is zero-knowledge since it is unlikely that any probabilistic polynomial-time veri�er can answer its questions; whereas P2 is zero-knowledge since its answers canbe simulated by random strings. Yet, once played in parallel, a cheating veri�er can answerthe question of P1 by sending it to P2, and using this answer gain knowledge from P1. Toturn this idea into a proof we need to implement a hard problem with the above properties.The above proposition refutes the Parallel Composition Conjecture by means of exponen-tial time provers. Assuming the existence of one-way functions the Parallel CompositionConjecture can be refuted also for probabilistic polynomial-time provers (with auxiliary in-puts). For example, consider the following two provers P1 and P2, which make use of proofsof knowledge (see Section 4.7). Let C be a bit commitment scheme (which we know toexist provided that one-way functions exist). On common-input C(1n; �), where � 2 f0; 1g,prover P1 proves to the veri�er, in zero-knowledge, that it knows �. (To this end the proveris give as auxiliary input the coins used in the commitment.) On input C(1n; �), prover P2asks the veri�er to prove that it knows � and if P2 is convinced then it sends � to the veri-�er. This veri�er employs the same system of proofs of knowledge used by the program P1.Clearly, each prover is zero-knowledge and yet their parallel composition is not. Similarly,using stronger intractability assumptions, one can refute the Parallel Composition Conjec-ture also with respect to perfect zero-knowledge (rather than with respect to computationalzero-knowledge).4.5.3.2 Problems with \natural" candidatesBy de�nition, to show that a prover is zero-knowledge one has to present, for each prospec-tive veri�er V �, a corresponding simulator M� (which simulates the interaction of V � withthe prover). However, all known demonstrations of zero-knowledge proceed by presenting

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.5. * NEGATIVE RESULTS 183one \universal" simulator which uses any prospective veri�er V � as a black-box. In fact,these demonstrations use as black-box (or oracle) the \next message" function determinedby the veri�er program (i.e., V �), its auxiliary-input and its random-input. (This propertyof the simulators is implicit in our constructions of the simulators in previous sections.) Weremark that it is hard to conceive an alternative way of demonstrating the zero-knowledgeproperty.De�nition 4.5.7 (black-box zero-knowledge):� next message function: Let B be an interactive turing machine, and x; z; r be stringsrepresenting a common-input, auxiliary-input, and random-input, respectively. Con-sider the function Bx;z;r(�) describing the messages sent by machine B such thatBx;z;r(m) denotes the message sent by B on common-input x, auxiliary-input z,random-input r, and sequence of incoming messages m. For simplicity, we assumethat the output of B appears as its last message.� black-box simulator: We say that a probabilistic polynomial-time oracle machine M isa black-box simulator for the prover P and the language L if for every polynomial-timeinteractive machine B, every probabilistic polynomial-time oracle machine D, everypolynomial p(�), all su�ciently large x 2 L, and every z; r 2 f0; 1g�:jPr �DBx;z;r(hP;Br(z)i(x))=1�� Pr �DBx;z;r(MBx;z;r(x))=1� j < 1p(jxj)where Br(z) denotes the interaction of machine B with auxiliary-input z and random-input r.� We say that P is black-box zero knowledge if it has a black-box simulator.Essentially, the de�nition says that a black-box simulator mimics the interaction ofprover P with any polynomial-time veri�er B, relative to any auxiliary-input (i.e., z) thatB may get and any random-input (i.e., r) that B may choose. The simulator does so (ef-�ciently), merely by using oracle calls to Bx;z;r (which speci�es the next message that Bsends on input x, auxiliary-input z, and random-input r). The simulation is indistinguish-able from the true interaction, even if the distinguishing algorithm (i.e., D) is given accessto the oracle Bx;z;r . An equivalent formulation is presented in Exercise 23. Clearly, if Pis black-box zero-knowledge then it is zero-knowledge with respect to auxiliary input (andhas polynomially bounded knowledge tightness (see De�nition 4.4.12)).Theorem 4.5.8 Suppose that (P; V) is an interactive proof system, with negligible errorprobability, for the language L. Further suppose that (P; V) has the following properties� constant round: There exists an integer k such that for every x 2 L, on input x theprover P sends at most k messages.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

184 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS� public coins: The messages sent by the veri�er V are predetermined consecutive seg-ments of its random tape.� black-box zero-knowledge: The prover P has a black-box simulator (over the languageL).Then L 2 BPP.We remark that both Construction 4.3.6 (zero-knowledge proof for Graph Isomorphism)and Construction 4.4.6 (zero-knowledge proof for Graph Coloring) are constant round, usepublic coins and are black-box zero-knowledge (for the corresponding languages). However,they do not have negligible error probability. Yet, repeating each of these constructionspolynomially many times in parallel yields an interactive proof, with negligible error prob-ability, for the corresponding language. Clearly the resulting proof system are constantround and use public coins. Hence, unless the corresponding languages are in BPP , theseparallelized proof systems are not black-box zero-knowledge.Theorem 4.5.8 is sometimes interpreted as pointing to an inherent limitation of interac-tive proofs with public coins (also known asArthur Merlin games; see Section [missing(eff-ip.sec)]).Such proofs cannot be both round-e�cient (i.e., have constant number of rounds and negli-gible error) and black-box zero-knowledge (unless they are trivially so, i.e., the language isin BPP). In other words, when constructing round-e�cient zero-knowledge proof systems(for languages not in BPP), one is advised to use \private coins" (i.e., to let the veri�ersend messages depending upon, but not revealing its coin tosses).4.6 * Witness Indistinguishability and HidingIn light of the non-closure of zero-knowledge under parallel composition, see Subsection 4.5.3,alternative \privacy" criteria that are preserved under parallel composition are of practicaland theoretical importance. Two notions, called witness indistinguishability and witnesshiding, which refer to the \privacy" of interactive proof systems (of languages in NP), arepresented in this section. Both notions seem weaker than zero-knowledge, yet they su�cefor some speci�c applications.4.6.1 De�nitionsIn this section we con�ne ourself to languages in NP . Recall that a witness relation for alanguage L 2 NP is a binary relation RL that is polynomially-bounded (i.e., (x; y)2 RLimplies jyj � poly(jxj)), polynomial-time recognizable, and characterizes L byL = fx : 9y s.t. (x; y)2RLg

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.6. * WITNESS INDISTINGUISHABILITY AND HIDING 1854.6.1.1 Witness indistinguishabilityLoosely speaking, an interactive proof for a language L 2 NP is witness independent (resp.,witness indistinguishable) if the veri�er's view of the interaction with the prover is statis-tically independent (resp., \computationally independent") of the auxiliary input of theprover. Actually, we will relax the requirement so that it applies only to the case in whichthe auxiliary input constitutes an NP-witness to the common input; namely, let RL be thewitness relation of the language L and suppose that x 2 L, then we consider only auxiliaryinputs in RL(x) def= fy; (x; y)2RLg. By saying that the view is computational independentof the witness we mean that for every two choices of auxiliary inputs the resulting viewsare computationally indistinguishable. In the actual de�nition we combine notations andconventions from De�nitions 4.3.3 and 4.3.8.De�nition 4.6.1 (witness indistinguishability / independence): Let (P; V), L 2 NP andV � be as in De�nition 4.3.8, and let RL be a �xed witness relation for the language L.We denote by viewP (y)V �(z)(x) a random variable describing the contents of the random-tape ofV � and the messages V � receives from P during a joint computation on common input x,when P has auxiliary input y and V � has auxiliary input z. We say that (P; V) is witnessindistinguishable for RL if for every probabilistic polynomial-time interactive machine V �,and every two sequences W 1 = fw1xgx2L and W 2 = fw2xgx2L, so that w1x; w2x 2 RL(x), thefollowing two ensembles are computationally indistinguishable� fx; viewP (w1x)V �(z) (x)gx2L;z2f0;1g�� fx; viewP (w2x)V �(z) (x)gx2L;z2f0;1g�Namely, for every probabilistic polynomial-time algorithm, D, every polynomial p(�), allsu�ciently long x 2 L, and all z 2 f0; 1g�, it holds thatjPr(D(x; viewP (w1x)V �(z) (x))=1)� Pr(D(x; viewP (w2x)V �(z) (x))=1)j < 1p(jxj)We say that (P; V) is witness independent if the above ensembles are identically distributed.Namely, for every x2L every w1x; w2x2R(x) and z2f0; 1g�, the random variables viewP (w1x)V �(z) (x)and viewP (w2x)V �(z) (x) are identically distributed.A few remarks are in place. First, one may observe that any proof system in which theprover ignores its auxiliary-input is trivially witness independent. In particular, exponential-time provers may, without loss of generality, ignore their auxiliary-input (without any de-crease in the probability that they convince the veri�er). Yet, probabilistic polynomial-timeprovers can not a�ord to ignore their auxiliary input (since otherwise they become useless).Hence, for probabilistic polynomial-time provers for languages outside BPP , witness indis-tinguishability is non-trivial. Secondly, one can easily show that any zero-knowledge proof

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

186 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSsystem for a language in NP is witness indistinguishable (since the view corresponding toeach witness can be approximated by the same simulator). Likewise, perfect zero-knowledgeproofs are witness independent. Finally, it is relatively easy to see that witness indistin-guishability and witness independence are preserved under sequential composition. In thenext subsection we show that they are also preserved under parallel composition.4.6.1.2 Witness hidingWe now turn to the notion of witness hiding. Intuitively, a proof system for a language inNP is witness hiding if after interacting with the prover it is still infeasible for the veri�erto �nd an NP witness for the common input. Clearly, such a requirement can hold onlyif it is infeasible to �nd witnesses from scratch. Since, each NP language has instancesfor which witness �nding is easy, we must consider the task of witness �nding for speciallyselected hard instances. This leads to the following de�nitions.De�nition 4.6.2 (distribution of hard instances): Let L 2 NP and RL be a witness re-lation for L. Let X def= fXngn2N be a probability ensemble so that Xn assign non-zeroprobability mass only to strings in L \ f0; 1gn. We say that X is hard for RL if for ev-ery probabilistic polynomial-time (witness �nding) algorithm F , every polynomial p(�), allsu�ciently large n's and all z 2 f0; 1gpoly(n)Pr(F (Xn; z)2RL(Xn)) < 1p(n)De�nition 4.6.3 (witness hiding): Let (P; V), L 2 NP, and RL be as in the above de�ni-tions.� Let X = fXngn2N be a hard instance ensemble for RL. We say that (P; V) is witnesshiding for the relation RL under the instance ensemble X if for every probabilisticpolynomial-time machine V �, every polynomial p(�) and all su�ciently large n's, andall z 2 f0; 1g� Pr(hP (Yn); V �(z)i(Xn)2RL(Xn)) < 1p(n)where Yn is arbitrarily distributed over RL(Xn).� We say that (P; V) is universal witness hiding for the relation RL if the proof system(P; V) is witness hiding for RL under every ensemble of hard instances, for RL, thatis e�ciently constructible (see De�nition 3.2.5)We remark that the relation between the two privacy criteria (i.e., witness indistin-guishable and witness hiding) is not obvious. Yet, zero-knowledge proofs (for NP) are also(universal) witness hiding (for any corresponding witness relation). We remark that witnessindistinguishability and witness hiding, similarly to zero-knowledge, are properties of theprover (and more generally of a any interactive machine).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.6. * WITNESS INDISTINGUISHABILITY AND HIDING 1874.6.2 Parallel CompositionIn contrary to zero-knowledge proof systems, witness indistinguishable proofs o�er somerobustness under parallel composition. Speci�cally, parallel composition of witness indis-tinguishable proof systems results in a witness indistinguishable system, provided that theoriginal prover is probabilistic polynomial-time.Lemma 4.6.4 (Parallel Composition Lemma): Let L 2 NP, and RL be as in De�-nition 4.6.1, and suppose that P is probabilistic polynomial-time, and (P; V) is witnessindistinguishable (resp., witness independent) for RL. Let Q(�) be a polynomial, andPQ denote a program that on common-input x1; :::; xQ(n) 2 f0; 1gn and auxiliary-inputw1; :::; wQ(n) 2 f0; 1g�, invokes P in parallel Q(n) times, so that in the ith copy P is invokedon common-input xi and auxiliary-input wi. Then, PQ is witness indistinguishable (resp.,witness independent) for RQL def= f(x; w) : 8i (xi; wi)2RLgwhere x = (x1; :::; xm), and w = (w1; :::; wm), so that m = Q(n) and jxij=n for each i.Proof Sketch: Both the computational and information theoretic versions follow by ahybrid argument. We concentrate on the computational version. To avoid cumbersomenotation we consider a generic n for which the claim of the lemma fails. (By contradictionthere must be in�nitely many such n's and a precise argument will actually handle allthese n's together.) Namely, suppose that by using a veri�er program V �Q, it is feasibleto distinguish the witnesses w1 = (w11; :::; w1m) and w2 = (w21; :::; w2m), used by PQ, in aninteraction on common-input x 2 Lm. Then, for some i, the program V �Q distinguishes alsothe hybrid witnesses h(i) = (w11; :::; w1i ; w2i+1; :::; w2m) and h(i+1) = (w11; :::; w1i+1; w2i+2; :::; w2m).Rewrite h(i) = (w1; :::; wi; w2i+1; wi+2; :::; wm) and h(i+1) = (w1; :::; wi; w1i+1; wi+2; :::; wm). Wederive a contradiction by constructing a veri�er V � that distinguishes (the witnesses usedby P in) interactions with the original prover P . Details follow.The program V � incorporates the programs P and V �Q and proceeds by interactingwith the prover P in parallel to simulating m � 1 other interactions with P . The realinteraction with P is viewed as the i+1st copy in an interaction of V �Q, whereas the simulatedinteractions are associated with the other copies. Speci�cally, in addition to the common-input x, machine V � gets the appropriate i and the sequences x, h(i) and h(i+1) as part ofits auxiliary input. For each j 6= i+1, machine V � will use xj as common-input and wj asthe auxiliary-input to the jth copy of P . Machine V � invokes V �Q on common input x andprovides it with an interface to a virtual interaction with PQ. The i+ 1st component of amessage � = (�1; :::; �m) sent by V �Q is forwarded to the prover P and all other componentsare kept for the simulation of the other copies. When P answers with a message �, machineV � computes the answers of the other copies of P (by feeding the program P with thecorresponding auxiliary-input and the corresponding sequence of incoming messages). Itfollows, that V � can distinguish the case P uses the witness w1i+1 from the case P uses w2i+1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

188 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS4.6.3 ConstructionsIn this subsection we present constructions of witness indistinguishable and witness hidingproof systems.4.6.3.1 Constructions of witness indistinguishable proofsUsing the Parallel Composition Lemma and the observation that zero-knowledge proofs arewitness indistinguishable we derive the followingTheorem 4.6.5 Assuming the existence of (nonuniformly) one-way functions, every lan-guage in NP has a constant-round witness indistinguishable proof system with negligibleerror probability. In fact, the error probability can be made exponentially small.We remark that no such result is known for zero-knowledge proof system. Namely, theknown proof systems for NP are either� not constant-round (e.g., Construction 4.4.8); or� have non-negligible error probability (e.g., Construction 4.4.6); or� require stronger intractability assumptions (see Subsection 4.9.1); or� are only computationally sound (see Subsection 4.9.2).Similarly, we can derive a constant-round witness independent proof system, with exponen-tially small error probability, for Graph Isomorphism. (Again, no analogous result is knownfor perfect zero-knowledge proofs.)4.6.3.2 Constructions of witness hiding proofsWitness indistinguishable proof systems are not necessarily witness hiding. For example,any language with unique witnesses has a proof system which yields the unique witness,and yet is trivially witness independent. On the other hand, for some relations, witnessindistinguishability implies witness hiding. For exampleProposition 4.6.6 Let f(f0i ; f1i) : i 2 Ig be a collection of (nonuniform) clawfree functions,and let R def= f(x; w) : w=(�; r) ^ x=(i; x0) ^ x0=f�i (r)gThen if a machine P is witness indistinguishable for R then it is also witness hiding for Runder the distribution generated by setting i = I(1n) and x0 = f0i (D(0; i)), where I and Dare as in De�nition 2.4.6.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.6. * WITNESS INDISTINGUISHABILITY AND HIDING 189By a collection of nonuniform clawfree functions we mean that even nonuniform familiesof circuits fCng fail to form claws on input distribution I(1n), except with negligible prob-ability. We remark that the above proposition does not relate to the purpose of interactingwith P (e.g., whether P is proving membership in a language, knowledge of a witness, andso on). The proposition is proven by contradiction. Details follow.Suppose that an interactive machine V � �nds witnesses after interacting with P . Bythe witness indistinguishability of P it follows that V � is performing as well regardless onwhether the witness is of the form (0; �) or (1; �). Combining the programs V � and P withalgorithm D we derive a claw forming algorithm (and hence contradiction). Speci�cally, theclaw-forming algorithm, on input i 2 I, uniformly selects � 2 f0; 1g, randomly generatesr = D(�; i), computes x = (i; f�i (r)), and simulates an interaction of V � with P on common-input x and auxiliary-input (�; r) to P . If machine V � outputs a witness w 2 R(x) then,with probability approximately 12 , we have w = (1��; r0) and a claw is formed (sincef�i (r) = f1��i (r0)).2Furthermore, every NP relation can be \slightly modi�ed" so that, for the modi�ed re-lation, witness indistinguishability implies witness hiding. Given a relation R, the modi�edrelation, denoted R2, is de�ned byR2 def= f((x1; x2); w) : jx1j= jx2j ^ 9i s.t. (xi; w)2RgNamely, w is a witness under R2 for the instance (x1; x2) if and only if w is a witness underR for either x1 or x2.Proposition 4.6.7 Let R and R2 be as above. If a machine P is witness indistinguishablefor R2 then it is also witness hiding for R2 under every distribution of hard instances induced(see below) by an e�cient algorithm that randomly selects pairs in R.Let S be a probabilistic polynomial-time algorithm that on input 1n outputs (x; w) 2 R sothat jxj= n. Let Xn denotes the distribution induced on the �rst element in the outputof S(1n). The proposition asserts that if P is witness indistinguishable and fXngn2N anensemble of hard instances for R then P is witness hiding under the ensemble fXngn2Nwhere Xn consists of two independent copies of Xn. This assertion is proven by contradic-tion. Suppose that an interactive machine V � �nds witnesses after interacting with P . Bythe witness indistinguishability of P it follows that V � is performing as well regardless onwhether the witness w for (x1; x2) satis�es either (x1; w) 2 R or (x2; w) 2 R. Combiningthe programs V � and P with algorithm S we derive a algorithm, denoted F �, that �ndswitnesses for R (under the distribution Xn). On input x 2 L, algorithm F � generates atrandom (x0; w0) = S(1jxj) and sets x = (x; x0) with probability 12 and x = (x0; x) otherwise.Algorithm F � simulates an interaction of V � with P on common-input x and auxiliary in-put w0 to P , and when V � outputs a witness w algorithm F � checks whether (x; w) 2 R.The reader can easily veri�er that algorithm F � performs well under the instance ensemblefXng, hence contradicting the hypothesis that Xn is hard for R. 2

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

190 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS4.6.4 ApplicationsApplications for the notions presented in this section are scattered in various places in thebook. In particular, witness-indistinguishable proof systems are used in the constructionof constant-round arguments for NP (see Subsection 4.9.2), witness independent proofsystems are used in the zero-knowledge proof for Graph Non-Isomorphism (see Section 4.7),and witness hiding proof systems are used for the e�cient identi�cation scheme based onfactoring (in Section 4.7).4.7 * Proofs of KnowledgeThis section addresses the concept of \proofs of knowledge". Loosely speaking, these areproofs in which the prover asserts \knowledge" of some object (e.g., a 3-coloring of a graph)and not merely its existence (e.g., the existence of a 3-coloring of the graph, which in turnimply that the graph is in the language G3C). But what is meant by saying that a machineknows something? Indeed the main thrust of this section is in addressing this question.Before doing so we point out that \proofs of knowledge", and in particular zero-knowledge\proofs of knowledge", have many applications to the design of cryptographic schemes andcryptographic protocols. Some of these applications are discussed in a special subsection. Ofspecial interest is the application to identi�cation schemes, which is discussed in a separatesubsection. Finally, in the last subsection, we introduce the notion of strong proofs ofknowledge.4.7.1 De�nitionWe start with a motivating discussion.What does it mean to say that a machine knows something? Any standarddictionary suggests several meanings to the verb know and most meanings arephrased with reference to \awareness". We, however, must look for a behavior-istic interpretation of the verb. Indeed, it is reasonable to link knowledge withability to do something, be it at the least the ability to write down whatever oneknows. Hence, we will say that a machine knows a string � if it can output thestring �. This seems as total nonsense. A machine has a well de�ned output:either the output equals � or it does not. So what can be meant by saying thata machine can do something. Loosely speaking, it means that the machine canbe modi�ed so that it does whatever is claimed. More precisely, it means thatthere exists an e�cient machine which, using the original machine as oracle,outputs whatever is claimed.So far for de�ning the \knowledge of machines". Yet, whatever a machine knows or doesnot know is \its own business". What can be of interest to the outside is the question of

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.7. * PROOFS OF KNOWLEDGE 191what can be deduced about the knowledge of a machine after interacting with it. Hence,we are interested in proofs of knowledge (rather than in mere knowledge).For sake of simplicity let us consider a concrete question: how can a machine prove thatit knows a 3-coloring of a graph? An obvious way is just to send the 3-coloring to the veri�er.Yet, we claim that applying Construction 4.4.6 (i.e., the zero-knowledge proof system forG3C) su�ciently many times results in an alternative way of proving knowledge of a 3-coloring of the graph. Loosely speaking, we say that an interactive machine, V , constitutesa veri�er for knowledge of 3-coloring if the probability that the veri�er is convinced by amachine P to accept the graph G is inversely proportional to the di�culty of extracting a3-coloring of G when using machine P as a \black box". Namely, the extraction of the 3-coloring is done by an oracle machine, called an extractor, that is given access to a functionspecifying the messages sent by P (in response to particular messages that P receives). The(expected) running time of the extractor, on input G and access to an oracle specifyingP 's messages, is inversely related (by a factor polynomial in jGj) to the probability that Pconvinces V to accept G. In case P always convinces V to accept G, the extractor runsin expected polynomial-time. The same holds in case P convinces V to accept with non-negligible probability. We stress that the latter special cases do not su�ce for a satisfactoryde�nition.4.7.1.1 PreliminariesLet R � f0; 1g� � f0; 1g� be a binary relation. Then R(x) def= fs : (x; s) 2 Rg and LR def=fx : 9s s.t. (x; s) 2 Rg. If (x; s) 2 R then we call s a solution for x. We say that R ispolynomially bounded if there exists a polynomial p such that jsj � p(jxj) for all (x; s) 2 R.We say that R is an NP relation if R is polynomially bounded and, in addition, there existsa polynomial-time algorithm for deciding membership in R (i.e., LR 2 NP). In the sequel,we con�ne ourselves to polynomially bounded relations.We wish to be able to consider in a uniform manner all potential provers, without makingdistinction based on their running-time, internal structure, etc. Yet, we observe that theseinteractive machine can be given an auxiliary-input which enables them to \know" and toprove more. Likewise, they may be luck to select a random-input which enables more thananother. Hence, statements concerning the knowledge of the prover refer not only to theprover's program but also to the speci�c auxiliary and random inputs it has. Hence, we �xan interactive machine and all inputs (i.e., the common-input, the auxiliary-input, and therandom-input) to this machine, and consider both the corresponding accepting probability(of the veri�er) and the usage of this (prover+inputs) template as an oracle to a \knowledgeextractor". This motivates the following de�nition.De�nition 4.7.1 (message speci�cation function): Denote by Px;y;r(m) the message sentby machine P on common-input x, auxiliary-input y, and random input r, after receivingmessages m. The function Px;y;r is called the message speci�cation function of machine Pwith common-input x, auxiliary-input y, and random input r.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

192 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSAn oracle machine with access to the function Px;y;r will represent the knowledge of machineP on common-input x, auxiliary-input y, and random input r. This oracle machine, calledthe knowledge extractor, will try to �nd a solution to x (i.e., an s 2 R(x)). The runningtime of the extractor is inversely related to the corresponding accepting probability (of theveri�er).4.7.1.2 Knowledge veri�ersNow that all the machinery is ready, we present the de�nition of a system for proofs ofknowledge. Actually, the de�nition presented below is a generalization (to be motivatedby the subsequent applications). At �rst reading, the reader may set the function � to beidentically zero.De�nition 4.7.2 (System of proofs of knowledge): Let R be a binary relation, and � :N ! [0; 1]. We say that an interactive function V is a knowledge veri�er for the relation Rwith knowledge error � if the following two conditions hold.� Non-triviality: There exists an interactive machine P so that for every (x; y) 2 Rall possible interactions of V with P on common-input x and auxiliary-input y areaccepting.� Validity (with error �): There exists a polynomial q(�) and a probabilistic oraclemachine K such that for every interactive function P , every x 2 LR and everyy; r 2 f0; 1g�, machine K satis�es the following condition:Denote by p(x) the probability that the interactive machine V accepts, oninput x, when interacting with the prover speci�ed by Px;y;r. Then if p(x) >�(jxj) then, on input x and access to oracle Px;y;r, machine K outputs asolution s2R(x) within an expected number of steps bounded byq(jxj)p(x)� �(jxj) :The oracle machine K is called a universal knowledge extractor.When �(�) is identically zero, we just say that V is a knowledge veri�er for the relationR. An interactive pair (P; V) so that V is a knowledge veri�er for a relation R and P is amachine satisfying the non-triviality condition (with respect to V and R) is called a systemfor proofs of knowledge for the relation R.4.7.2 ObservationsThe zero-knowledge proof systems for Graph Isomorphism (i.e., Construction 4.3.6) andfor Graph 3-Coloring (i.e., Construction 4.4.6) are in fact proofs of knowledge (with some

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.7. * PROOFS OF KNOWLEDGE 193knowledge error) for the corresponding languages. Speci�cally, Construction 4.3.6 is aproof of knowledge of an isomorphism with knowledge error 12 , whereas Construction 4.4.6is a proof of knowledge of a 3-coloring with knowledge error 1 � 1jEj (on common inputG=(V;E)). By iterating each construction su�ciently many times we can get the knowledgeerror to be exponentially small. (The proofs of all these claims are left as an exercise.) Infact, we get a proof of knowledge with zero error, sinceProposition 4.7.3 Let R be an NP relation, and q(�) be a polynomial such that (x; y) 2 Rimplies jyj � q(jxj). Suppose that (P; V) is a system for proofs of knowledge, for the relationR, with knowledge error �(n) def= 2�q(n). Then (P; V) is a system for proofs of knowledgefor the relation R (with zero knowledge error).Proof Sketch: Given a knowledge extractor, K, substantiating the hypothesis, we con-struct a new knowledge extractor which runs K in parallel to conducting an exhaustivesearch for a solution. Let p(x) be as in De�nition 4.7.2. To evaluate the performance of thenew extractor consider two cases.Case 1: p(x) � 2 � �(jxj). In this case, we use the fact1p(x)� �(jxj) � 2p(x)Case 2: p(x) � 2 � �(jxj). In this case, we use the fact that exhaustive search of a solutionboils down to 2q(jxj) trials, whereas 1p(x) � 12 � 2q(jxj).It follows thatTheorem 4.7.4 Assuming the existence of (nonuniformly) one-way function, every NPrelation has a zero-knowledge system for proofs of knowledge.4.7.3 ApplicationsWe brie
y review some of the applications for (zero-knowledge) proofs of knowledge. Typ-ically, (zero-knowledge) proofs of knowledge are used for \mutual disclosure" of the sameinformation. Suppose that Alice and Bob both claim that they know something (e.g., a3-coloring of a common input) but are each doubtful of the other person's claim. Employ-ing a zero-knowledge proof of knowledge in both direction is indeed a (conceptually) simplesolution to the problem of convincing each other of their knowledge.4.7.3.1 Non-oblivious commitment schemesWhen using a commitment scheme the receiver is guaranteed that after the commit phasethe sender is committed to at most one value (in the sense that it can later \reveal" onlythis value). Yet, the receiver is not guaranteed that the sender \knows" to what value itis committed. Such a guarantee may be useful in many settings, and can be obtained byusing proof of knowledge. For more details see Subsection 4.9.2.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

194 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS4.7.3.2 Chosen message attacksAn obvious way of protecting against chosen message attacks on a (public-key) encryptionscheme is to augment the ciphertext by a zero-knowledge proof of knowledge of the cleartext.(For de�nition and alternative constructions of such schemes see Section [missing(enc-strong.sec)].)However, one should note that the resulting encryption scheme employs bidirectional com-munication between the sender and the receiver (of the encrypted message). It seemsthat the use of non-interactive zero-knowledge proofs of knowledge would yield unidirec-tional (public-key) encryption schemes. Such claims have been made, yet no proof hasever appeared (and we refrain from expressing an opinion on the issue). Non-interactivezero-knowledge proofs are discussed in Section 4.10.4.7.3.3 A zero-knowledge proof system for GNIThe interactive proof of Graph Non-Isomorphism (GNI), presented in Construction 4.2.8, isnot zero-knowledge (unless GNI 2 BPP). A cheating veri�er may construct a graph H andlearn whether it is isomorphic to the �rst input graph by sending H as query to the prover. Amore appealing refutation can be presented to the claim that Construction 4.2.8 is auxiliary-input zero-knowledge (e.g., the veri�er can check whether its auxiliary-input is isomorphicto one of the common-input graphs). We observe however, that Construction 4.2.8 \wouldhave been zero-knowledge" if the veri�er always knew the answer to its queries (as is the casefor the honest veri�er). The idea then is to have the veri�er prove to the prover that he (i.e.,the veri�er) knows the answer to the query (i.e., an isomorphism to the appropriate inputgraph), and the prover answers the query only if it is convinced of this claim. Certainly,the veri�er's proof of knowledge should not yield the answer (otherwise the prover can usethis information in order to cheat thus foiling the soundness requirement). If the veri�er'sproof of knowledge is zero-knowledge then certainly it does not yield the answer. In fact,it su�ces that the veri�er's proof of knowledge is witness-independent (see Section 4.6).4.7.4 Proofs of Identity (Identi�cation schemes)Identi�cation schemes are useful in large distributed systems in which the users are notacquainted with one another. A typical, everyday example is the consumer-retailer situa-tion. In computer systems, a typical example is electronic mail (in communication networkscontaining sites allowing too loose local super-user access). In between, in technological so-phistication, are the Automatic Teller Machine (ATM) system. In these distributed systems,one wishes to allow users to be able to authenticate themselves to other users. This goalis achieved by identi�cation schemes, de�ned below. In the sequel, we shall also see thatidenti�cation schemes are intimately related to proofs of knowledge. We just hint that aperson's identity can be linked to his ability to do something, and in particular to his abilityto prove knowledge of some sort.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.7. * PROOFS OF KNOWLEDGE 1954.7.4.1 De�nitionLoosely speaking, an identi�cation scheme consists of a public �le containing records foreach user and an identi�cation protocol. Each record consists of the name (or identity) ofa user and auxiliary identi�cation information to be used when invoking the identi�cationprotocol (as discussed below). The public �le is established and maintained by a trustedparty which vouches for the authenticity of the records (i.e., that each record has beensubmitted by the user the name of which is speci�ed in it). All users have read access tothe public �le at all times. Alternatively, the trusted party can supply each user with asigned copy of its public record. Suppose now, that Alice wishes to prove to Bob that it isindeed her communicating with him. To this end, Alice invokes the identi�cation protocolwith the (public �le) record corresponding to her name as a parameter. Bob veri�es that theparameter in use indeed matches Alice's public record and proceeds executing his role inthe protocol. It is required that Alice will always be able to convince Bob (that she is indeedAlice), whereas nobody else can fool Bob into believing that she/he is Alice. Furthermore,Carol should not be able to impersonate as Alice even after receiving polynomially manyproofs of identity from Alice.Clearly, if the identi�cation information is to be of any use, then Alice must keep insecret the random coins she has used to generate her record. Furthermore, Alice must usethese stored coins, during the execution of the identi�cation protocol, but this must be donein a way which does not allow her counterparts to later impersonate her.Conventions: In the following de�nition we adopt the formalism and notations of interac-tive machines with auxiliary input (presented in De�nition 4.2.10). We recall that when Mis an interactive machine, we denote by M(y) the machine which results by �xing y to bethe auxiliary input of machine M . In the following de�nition n is the security parameter,and we assume with little loss of generality, that the names (i.e., identities) of the users areencoded by strings of length n. If A is a probabilistic algorithm and x; r 2 f0; 1g�, thenAr(x) denotes the output of algorithm A on input x and random coins r.Remark: In �rst reading, the reader may ignore algorithm A and the random variable Tnin the security condition. Doing so, however, yields a weaker condition, that is typicallyunsatisfactory.De�nition 4.7.5 (identi�cation scheme): An identi�cation scheme consists of a pair, (I;�),where I is a probabilistic polynomial time algorithm and �=(P; V) is a pair of probabilisticpolynomial-time interactive machines satisfying the following conditions� Viability: For every n 2 N, every � 2 f0; 1gn, and every s 2 f0; 1gpoly(n)Pr (hP (s); V i(�; Is(�))=1) = 1� Security: For every pair of probabilistic polynomial-time interactive machines, A and

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

196 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSB, every polynomial p(�), all su�ciently large n 2 N, every � 2 f0; 1gn, and every zPr (hB(z; Tn); V i(�; ISn(�))=1) < 1p(n)where Sn is a random variable uniformly distributed over f0; 1gpoly(n), and Tn is arandom variable describing the output of A(z) after interacting with P (Sn) on commoninput �, for polynomially many times.Algorithm I is called the information generating algorithm, and the pair (P; V) is called theidenti�cation protocol.Hence, to use the identi�cation scheme a user, say Alice, the identity of which isencoded by the string �, should �rst uniformly select a secret string s, compute i def= Is(�),ask the trusted party to place the record (�; i) in the public �le, and store the string s ina safe place. The viability condition asserts that Alice can convince Bob of her identityby executing the identi�cation: Alice invokes the program P using the stored string s asauxiliary input, and Bob uses the program V and makes sure that the common input is thepublic record containing � (which is in the public �le). Ignoring, for a moment, algorithmA and the random variable Tn, the security condition yields that it is infeasible for a partyto impersonate Alice if all this party has is the public record of Alice and some unrelatedauxiliary input. However, such a security condition may not su�ce in many applicationssince a user wishing to impersonate Alicemay ask her �rst to prover her identity to him/her.The (full) security condition asserts that even if Alice has proven her identity to Carolmany times in the past, still it is infeasible for Carol to impersonate Alice. We stress thatCarol cannot impersonate Alice to Bob provided that she cannot interact concurrentlywith both. In case this condition does not hold then nothing is guaranteed (and indeedCarol can easily cheat by referring Bob's questions to Alice and answering as Alice does).4.7.4.2 Identi�cation schemes and proofs of knowledgeA natural way of establishing a person's identity is to ask him/her to supply a proof ofknowledge of a fact that this person is supposed to know. Let us consider a speci�c (andin fact quite generic) example.Construction 4.7.6 (identi�cation scheme based on a one-way function): Let f be a func-tion. On input an identity � 2 f0; 1gn, the information generating algorithm uniformlyselects a string s 2 f0; 1gn and outputs f(s). (The pair (�; f(s)) is the public record forthe user with name �). The identi�cation protocol consists of a proof of knowledge of theinverse of the second element in the public record. Namely, in order to prove its identity,user � proves that he knows a string s so that f(s) = r, where (�; r) is a record in the public�le. (The proof of knowledge in used is allowed to have negligible knowledge error.)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.7. * PROOFS OF KNOWLEDGE 197Proposition 4.7.7 If f is a one-way function and the proof of knowledge in use is zero-knowledge then Construction 4.7.6 constitutes an identi�cation scheme.Hence, identi�cation schemes exist if one-way functions exist. More e�cient identi�ca-tion schemes can be constructed based on speci�c intractability assumptions. For example,assuming the intractability of factoring, the so called Fiat-Shamir identi�cation scheme,which is actually a proof of knowledge of a square root, follows.Construction 4.7.8 (the Fiat-Shamir identi�cation scheme): On input an identity � 2f0; 1gn, the information generating algorithm uniformly selects a composite number N ,which is the product of two n-bit long primes, a residue s mod N , and outputs the pair(N; s2 mod N). (The pair (�; (N; s2 mod N)) is the public record for user �). The iden-ti�cation protocol consists of a proof of knowledge of the corresponding modular squareroot. Namely, in order to prove its identity, user � proves that he knows a square root ofr def= s2 mod N , where (�; (r;N)) is a record in the public �le. (Again, negligible knowledgeerror is allowed.)The proof of knowledge of square root is analogous to the proof system for GraphIsomorphism presented in Construction 4.3.6. Namely, in order to prove knowledge of asquare root of r � s2 (mod N), the prover repeats the following steps su�ciently manytimes:Construction 4.7.9 (atomic proof of knowledge of square root):� The prover randomly selects a residue, q, modulo N and send t def= q2 mod N to theveri�er;� The veri�er uniformly selects � 2 f0; 1g and sends it to the prover;� Motivation: in case � = 0 the veri�er asks for a square root of t mod N , whereas incase � = 1 the veri�er asks for a square root of t � r mod N . In the sequel we assume,without loss of generality, that � 2 f0; 1g.� The prover replies with p def= q � s� mod N ;� The veri�er accepts (this time) if and only if the messages t and p sent by the proversatis�es p2 � t � r� mod N ;When Construction 4.7.9 is repeated k times, either sequentially or in parallel, the result-ing protocol constitutes a proof of knowledge of modular square root with knowledge error2�k. In case these repetitions are conducted sequentially, then the resulting protocol iszero-knowledge. Yet, for use in Construction 4.7.8 it su�ces that the proof of knowledge iswitness-hiding, and fortunately even polynomially many parallel executions can be shown

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

198 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSto be witness-hiding (see Section 4.6). Hence the resulting identi�cation scheme has con-stant round complexity. We remark that for identi�cation purposes it su�ces to performConstruction 4.7.9 superlogarithmically many times. Furthermore, also less repetitions areof value: when applying Construction 4.7.9 k = O(logn) times, and using the resultingprotocol in Construction 4.7.8, we get a scheme (for identi�cation) in which impersonationcan occur with probability at most 2�k.4.7.4.3 Identi�cation schemes and proofs of abilityAs hinted above, a proof of knowledge of a string (i.e., the ability to output the string) is aspecial case of a proof of ability to do something. It turns out that identi�cation schemescan be based also on the more general concept of proofs of ability. We avoid de�ning thisconcept, and refrain ourself to two \natural" examples of using a proof of ability as basisfor identi�cation.It is an everyday practice to identify people by their ability to produce their signature.This practice can be carried into the digital setting. Speci�cally, the public record of Aliceconsists of her name and the veri�cation key corresponding to her secret signing key in apredetermined signature scheme. The identi�cation protocol consists of Alice signing arandom message chosen by the veri�er.A second popular means of identi�cation consists of identifying people by their ability toanswer correctly personal questions. A digital analogue to this practice follows. To this endwe use pseudorandom functions (see Section 3.6) and zero-knowledge proofs (of membershipin a language). The public record of Alice consists of her name and a \commitment" toa randomly selected pseudorandom function (e.g., either via a string-commitment to theindex of the function or via a pair consisting of a random domain element and the value ofthe function at this point). The identi�cation protocol consists of Alice returning the valueof the function at a random location chosen by the veri�er, and supplying a zero-knowledgeproof that the value returned indeed matches the function appearing in the public record.We remark that the digital implementation o�ers more security than the everyday practice.In the everyday setting the veri�er is given the list of all possible question and answer pairsand is trusted not to try to impersonate as the user. Here we replaced the possession of thecorrect answers by a zero-knowledge proof that the answer is correct.4.7.5 Strong Proofs of KnowledgeDe�nition 4.7.2 relies in a fundamental way on the notion of expected running-time. We thusprefer the following more stingent de�nition in which the knowledge extractor is required torun in strict polynomial-time (rather than in expected polynomial-time). (We also take theoppertumity to postulate { in the de�nition { that no-instances are accepted with negligibleprobability; this is done by extending the scope of the validity condition also to x's not inLR.)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.7. * PROOFS OF KNOWLEDGE 199De�nition 4.7.10 (System of strong proofs of knowledge): Let R be a binary relation.We say that an interactive function V is a strong knowledge veri�er for the relation R if thefollowing two conditions hold.� Non-triviality: As in De�nition 4.7.2.� Strong Validity: There exists a negligible function � : N 7! [0; 1] and a probabilistic(strict) polynomial-time oracle machine K such that for every interactive function Pand every x; y; r 2 f0; 1g�, machine K satis�es the following condition:Let p(x) and Px;y;r be as in De�nition 4.7.2. If p(x) > �(jxj) then, on inputx and access to oracle Px;y;r, with probability at least 1��(jxj), machine Koutputs a solution s2R(x).The oracle machine K is called a strong knowledge extractor.An interactive pair (P; V) so that V is a strong knowledge veri�er for a relation R and Pis a machine satisfying the non-triviality condition (with respect to V and R) is called asystem for strong proofs of knowledge for the relation R.Sequentially repeating the (zero-knowledge) proof systems for Graph Isomorphism (i.e.,Construction 4.3.6), su�ciently many times yields a strong proof of knowledge of isomor-phism. The key observation is that each application of the basic proof system (i.e., Con-struction 4.3.6), results in one of two possible situations depending on whether the veri�erasks to see an isomorphism to the �rst or second graph. In case the prover answers correctlyin both cases, we can retreive an isomorphism between the input graphs (by composing theisomorphisms provided in the two cases). In case the prover fails in both cases, the veri�erwill reject regradless of what the prover does from this point on. Speci�cally, the abovediscussion suggests the following construction of a strong knowledge extractor (where werefer to repeating the basic proof systems n times and set �(n) = 2�n).Strong knowledge extractor for graph isomorphism: On input (G1; G2) and accessto the prover-strategy oracle P �, we procced in n iterantions, starting with i = 1. Initially,T (the trascript so far), is empty.1. Obtain the intermediate graph, G0, from the prover strategy (i.e., G0 = P �(T)).2. Extract the prover's answer to both possible veri�er moves. That is, for j = 1; 2, let j P �(T; j). We say that j is correct if it is an isomorphism between between Gjand G0.3. If both j's are correct then � �12 1 is an isomorphism between G1 and G2. Inthis case we output � and halt.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

200 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS4. In case j is correct for a single j and i < n, we let T T; j, and proceed to the nextiteration (i.e., i i+ 1). Otherwise, halt with no output.It can be easily veri�ed that if the extractor halts with no output in iteration i < n thenthe veri�er (in the real interaction) accepts with probability zero. Similarly, if the extractorhalts with no output in iteration n then the veri�er (in the real interaction) accepts withprobability 2�n. Thus, whenever p(G1; G2) > 2�n, the extractor succeeds in recovering anisomporphism between the two input graphs. A similar argument may be applied to somezero-knowledge proof systems for NP. In particular, consider n sequential repetitions of thefollowing basic proof system for the Hamiltonian Cycle (HC) problem which is NP-complete(and thus get proof systems for any language in NP). We consider directed graphs (andthe existence of directed Hamiltonian cycles).Construction 4.7.11 (Basic proof system for HC):� Common Input: a directed graph G = (V;E) with n def= jV j.� Auxiliary Input to Prover: a directed Hamiltonian Cycle, C � E, in G.� Prover's �rst step (P1): The prover selects a random permutation, �, of the verticesV , and commits to the entries of the adjacency matrix of the resulting permuted graph.That is, it sends an n-by-n matrix of commitments so that the (�(i); �(j))th entry isa commitment to 1 if (i; j) 2 E, and is a commitment to 0 otherwise.� Veri�er's �rst step (V1): The veri�er uniformly selects � 2 f0; 1g and sends it to theprover.� Prover's second step (P1): If � = 0 then the prover sends � to the veri�er along withthe revealing (i.e., preimages) of all commitments. Otherwise, the prover reveals tothe veri�er only the commitments to entries (�(i); �(j)) with (i; j) 2 C.� Veri�er's second step (V1): If � = 0 then the veri�er checks that the revealed graphis indeed isomorphic, via �, to G. Otherwise, the veri�er just checks that all revealedvalues are 1 and that the corresponding entries form a simple n-cycle. (Of course inboth cases, the veri�er checks that the revealed values do �t the commitments.) Theveri�er accepts if and only if the corresponding condition holds.We mention that the known (zero-knowledge) strong proofs of knowledge are all costy inround-complexity. Still, we haveTheorem 4.7.12 Assuming the existence of (nonuniformly) one-way function, every NPrelation has a zero-knowledge system for strong proofs of knowledge.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.8. * COMPUTATIONALLY-SOUND PROOFS (ARGUMENTS) 2014.8 * Computationally-Sound Proofs (Arguments)In this section we consider a relaxation of the notion of an interactive proof system. Speci�-cally, we relax the soundness condition of interactive proof systems. Instead of requiring thatit is impossible to fool the veri�er into accepting false statement (with probability greaterthan some bound), we only require that it is infeasible to do so. We call such protocols com-putationally sound proof systems (or arguments). The advantage of computationally soundproof systems is that perfect zero-knowledge computationally sound proof systems can beconstructed, under some reasonable complexity assumptions, for all languages in NP . Weremark that perfect zero-knowledge proof systems are unlikely to exists for all languages inNP (see section 4.5). We recall that computational zero-knowledge proof systems do existfor all languages in NP , provided that one-way functions exist. Hence, the above quotedpositive results exhibit some kind of a trade-o� between the soundness and zero-knowledgeproperties of the zero-knowledge protocols of NP . We remark, however, that this is nota real trade-o� since the perfect zero-knowledge computationally sound proofs for NP areconstructed under stronger complexity theoretic assumption than the ones used for thecomputationally zero-knowledge proofs. It is indeed an interesting research project to tryto construct perfect zero-knowledge computationally sound proofs for NP under weakerassumptions (and in particular assuming only the existence of one-way functions).We remark that it seems that computationally-sound proof systems can be much moree�cient than ordinary proof systems. Speci�cally, under some plausible complexity as-sumptions, extremely e�cient computationally-sound proof systems (i.e., requiring onlypoly-logarithmic communication and randomness) exist for any language in NP . An analo-gous result cannot hold for ordinary proof systems, unless NP is contained in deterministicquasi-polynomial time (i.e., NP � Dtime(2polylog)).4.8.1 De�nitionThe de�nition of computationally sound proof systems follows naturally from the abovediscussion. The only issue to consider is that merely replacing the soundness condition ofDe�nition 4.2.4 by the following computational soundness condition leads to an unnaturalde�nition, since the computational power of the prover in the completeness condition (inDe�nition 4.2.4) is not restricted.Computational Soundness: For every polynomial-time interactive machine B,and for all su�ciently long x 62 LPr (hB; V i(x)=1) � 13Hence, it is natural to restrict the prover in both (completeness and soundness) conditionsto be an e�cient one. It is crucial to interpret e�cient as being probabilistic polynomial-time given auxiliary input (otherwise only languages in BPP will have such proof systems).Hence, our starting point is De�nition 4.2.10 (rather than De�nition 4.2.4).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

202 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSDe�nition 4.8.1 (computationally sound proof system) (arguments): A pair of interactivemachines, (P; V), is called an computationally sound proof system for a language L if bothmachines are polynomial-time (with auxiliary inputs) and the following two conditions hold� Completeness: For every x 2 L there exists a string y such that for every string zPr (hP (y); V (z)i(x)=1) � 23� Computational Soundness: For every polynomial-time interactive machine B, and forall su�ciently long x 62 L and every y and zPr (hB(y); V (z)i(x)=1) � 13As usual, the error probability in the completeness condition can be reduced (from 13) upto 2�poly(jxj), by repeating the protocol su�ciently many times. By sequentially repeating acomputationally sound proof system su�ciently many time (i.e., superlogarithmically manytimes) we get a new veri�er V 0 for which it holds thatFor every polynomial p(�), every polynomial-time interactive machine B, andfor all su�ciently long x 62 L and every y and zPr (hB(y); V 0(z)i(x)=1) � 1p(jxj)See Exercise 21. We note that error reduction via parallel repetitions is not known to workin general.4.8.2 Perfect Commitment SchemesThe thrust of the current section is in a method for constructing perfect zero-knowledgearguments for every language in NP . This method makes essential use of the concept ofcommitment schemes with a perfect (or \information theoretic") secrecy property. Hence,we start with an exposition of \perfect" commitment schemes. We remark that such schemesmay be useful also in other settings (e.g., in settings in which the receiver of the commitmentis computationally unbounded, see for example Section 4.9).The di�erence between commitment scheme (as de�ned in Subsection 4.4.1) and perfectcommitment schemes (de�ned below) consists of a switching in scope of the secrecy andunambiguity requirements. In commitment schemes (see De�nition 4.4.1), the secrecy re-quirement is computational (i.e., refers only to probabilistic polynomial-time adversaries),whereas the unambiguity requirement is information theoretic (and makes no reference tothe computational power of the adversary). On the other hand, in perfect commitmentschemes (see de�nition below), the secrecy requirement is information theoretic, whereas

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.8. * COMPUTATIONALLY-SOUND PROOFS (ARGUMENTS) 203the unambiguity requirement is computational (i.e., refers only to probabilistic polynomial-time adversaries). Hence, in some sense calling one of these schemes \perfect" is somewhatunfair to the other (yet, we do so in order to avoid cumbersome terms as a \perfectly-secret/computationally-nonambiguous commitment scheme"). We remark that it is impos-sible to have a commitment scheme in which both the secrecy and unambiguity requirementsare information theoretic (see Exercise 22).4.8.2.1 De�nitionLoosely speaking, a perfect commitment scheme is an e�cient two-phase two-party protocolthrough which the sender can commit itself to a value so the following two con
ictingrequirements are satis�ed.1. Secrecy: At the end of the commit phase the receiver does not gain any informationof the sender's value.2. Unambiguity: It is infeasible for the sender to interact with the receiver so that thecommit phase is successfully terminated and yet later it is feasible for the sender toperform the reveal phase in two di�erent ways leading the receiver to accept (as legal\openings") two di�erent values.Using analogous conventions to the ones used in Subsection 4.4.1, we make the followingde�nition.De�nition 4.8.2 (perfect bit commitment scheme): A perfect bit commitment scheme is apair of probabilistic polynomial-time interactive machines, denoted (S;R) (for sender andreceiver), satisfying:� Input Speci�cation: The common input is an integer n presented in unary (servingas the security parameter). The private input to the sender is a bit v.� Secrecy: For every probabilistic (not necessarily polynomial-time) machine R� inter-acting with S, the random variables describing the output of R� in the two cases,namely hS(0); R�i(1n) and hS(1); R�i(1n), are statistically close.� Unambiguity:Preliminaries. For simplicity v 2 f0; 1g and n 2 N are implicit in all notations. Fixany probabilistic polynomial-time algorithm F �.{ As in De�nition 4.4.1, a receiver's view of an interaction with the sender, denoted(r;m), consists of the random coins used by the receiver (r) and the sequence ofmessages received from the sender (m). A sender's view of the same interac-tion, denoted (s; ~m), consists of the random coins used by the sender (s) and thesequence of messages received from the receiver (~m). A joint view of the interac-tion is a pair consisting of corresponding receiver and sender views of the sameinteraction.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

204 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS{ Let � 2 f0; 1g. We say that a joint view (of an interaction), ((r;m); (s; ~m)),has a feasible �-opening (with respect to F �) if on input (m; s; ~m; �), algorithmF � outputs (say, with probability > 1=2) a string s0 such that m describes themessages received by R when R uses local coins r and interacts with machine Swhich uses local coins s0 and input (�; 1n).(Remark: We stress that s0 may, but need not, equal s. The output of algorithmF � has to satisfy a relation which depends only on the receiver's view part of theinput; the sender's view is supplied to algorithm F � as additional help.){ We say that a joint view is ambiguous (with respect to F �) if it has both a feasible0-opening and a feasible 1-opening (w.r.t. F �).The unambiguity requirement asserts that, for all but a negligible fraction of the cointosses of the receiver, it is infeasible for the sender to interact with the receiver so thatthe resulting joint view is ambiguous with respect to some probabilistic polynomial-timealgorithm F �. Namely, for every probabilistic polynomial time interactive machine S�,probabilistic polynomial-time algorithm F �, polynomial p(�), and all su�ciently largen, the probability that the joint view of the interaction between R and with S�, oncommon input 1n, is ambiguous with respect to F �, is at most 1=p(n).In the formulation of the unambiguity requirement, S� describes the (cheating) senderstrategy in the commit phase, whereas F � describes its strategy in the reveal phase. Hence,it is justi�ed (and in fact necessary) to pass the sender's view of the interaction (between S�and R) to algorithm F �. The unambiguity requirement asserts that any e�cient strategy S�will fail to produce a joint view of interaction, which can be latter (e�ciently) opened in twodi�erent ways supporting two di�erent values. As usual, events occurring with negligibleprobability are ignored.As in De�nition 4.4.1, the secrecy requirement refers explicitly to the situation at theend of the commit phase, whereas the unambiguity requirement implicitly assumes that thereveal phase takes the following form:1. the sender sends to the receiver its initial private input, v, and the random coins, s,it has used in the commit phase;2. the receiver veri�es that v and s (together with the coins (r) used by R in the commitphase) indeed yield the messages thatR has received in the commit phase. Veri�cationis done in polynomial-time (by running the programs S and R).4.8.2.2 Construction based on one-way permutationsPerfect commitment schemes can be constructed using any one-way permutation. Theknown scheme, however, involve a linear (in the security parameter) number of rounds.Hence, it can be used for the purposes of the current section, but not for the constructionin Section 4.9.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.8. * COMPUTATIONALLY-SOUND PROOFS (ARGUMENTS) 205Construction 4.8.3 (perfect bit commitment): Let f be a permutation, and b(x; y) denotethe inner-product mod 2 of x and y (i.e., b(x; y) =Pni=1 xiyi mod 2).1. commit phase (using security parameter n):� The receiver randomly selects n � 1 linearly indepndent vectors r1; :::; rn�1 2f0; 1gn. The sender uniformly selects s 2 f0; 1gn and computes y = f(s). (Sofar no message is exchanged between the parties.)� The parties proceed in n�1 rounds. In the ith round (i = 1; :::; n�1), the receiversends ri to the sender, which replies by computing and sending ci def= b(y; ri).� At this point there are exactly two solutions to the equations b(y; ri) = ci, 1�i � n � 1. De�ne j = 0 if y is the lexicographically �rst solution (among thetwo), and j = 1 otherwise. To commit to a value v 2 f0; 1g, the sender sendscn def= j � v to the receiver.2. reveal phase: In the reveal phase, the sender reveals the string s used in the commitphase. The receiver accepts the value v if f(s) = y, b(y; ri) = ci for all 1� i�n � 1,and y is the lexicographically �rst solution to these n� 1 equations i� cn = v.Proposition 4.8.4 Suppose that f is a one-way permutation. Then, the protocol presentedin Construction 4.8.3 constitutes a perfect bit commitment scheme.It is quite easy to see that Construction 4.8.3 satis�es the secrecy condition. The proofthat the unambiguity requirement is satis�ed is quite complex and is omitted for spaceconsiderations.4.8.2.3 Construction based on clawfree collectionsPerfect commitment schemes (of constant number of rounds) can be constructed usinga strong intractability assumption; speci�cally, the existence of clawfree collections (seeSubsection 2.4.5). This assumption implies the existence of one-way functions, but it is notknown whether the converse is true. Nevertheless, clawfree collections can be constructedunder widely believed assumptions such as the intractability of factoring and DLP. Actually,the construction of perfect commitment schemes, presented below, uses a clawfree collectionwith an additional property; speci�cally, it is assume that the set of indices of the collection(i.e., the range of algorithm I) can be e�ciently recognized (i.e., is in BPP). We remark thatsuch collections do exist under the assumption that DLP is intractable (see Subsection 2.4.5).Construction 4.8.5 (perfect bit commitment): Let (I;D; F) be a triplet of e�cient algo-rithms.1. commit phase: To receive a commitment to a bit (using security parameter n), thereceiver randomly generates i = I(1n) and sends it to the sender. To commit to value

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

206 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSv 2 f0; 1g (upon receiving the message i from the receiver), the sender checks if indeedi is in the range of I(1n), and if so the sender randomly generates s = D(i), computesc = F (v; i; s), and sends c to the receiver. (In case i is not in the range of I(1n) thesender aborts the protocol announcing that the receiver is cheating.)2. reveal phase: In the reveal phase, the sender reveals the string s used in the commitphase. The receiver accepts the value v if F (v; i; s) = c, where (i; c) is the receiver's(partial) view of the commit phase.Proposition 4.8.6 Let (I;D; F) be a clawfree collection with a probabilistic polynomial-time recognizable set of indices (i.e., range of algorithm I). Then, the protocol presented inConstruction 4.8.5 constitutes a perfect bit commitment scheme.Proof: The secrecy requirement follows directly from Property (2) of a clawfree collection(combined with the test i 2 I(1n) conducted by the sender). The unambiguity requirementfollows from Property (3) of a clawfree collection, using a standard reducibility argument.We remark that the Factoring Clawfree Collection, presented in Subsection 2.4.5, canbe used to construct a perfect commitment scheme although this collection is not known tohave an e�ciently recognizable index set. Hence, perfect commitment schemes exists alsounder the assumption that factoring Blum integers is intractable. Loosely speaking, thisis done by letting the receiver prove to the sender (in zero-knowledge) that the selectedindex, N , satis�es the secrecy requirement. What is actually being proven is that half ofthe square roots, of each quadratic residue mod N , have Jacobi symbol 1 (relative to N).A zero-knowledge proof system of this claim does exist (without assuming anything). Weremark that the idea just presented can be described as replacing the requirement thatthe index set is e�ciently recognizable by a zero-knowledge proof that a string is indeed alegitimate index.4.8.2.4 Commitment Schemes with a posteriori secrecyWe conclude the discussion of perfect commitment schemes by introducing a relaxationof the secrecy requirement. The resulting scheme cannot be used for the purposes of thecurrent section, yet it is useful in di�erent settings. The advantage in the relaxation is thatit allows to construct commitment schemes using any clawfree collection, thus waiving theadditional requirement that the index set is e�ciently recognizable.Loosely speaking, we relax the secrecy requirement of perfect commitment schemes byrequiring that it only holds whenever the receiver follows it prescribed program (denotedR). This seems strange since we don't really want to assume that the real receiver followsthe prescribed program (but rather allow it to behave arbitrarily). The point is that a realreceiver may disclose the coin tosses used by it in the commit phase in a later stage, sayeven after the reveal phase, and by doing so a posteriori prove that (at least in some weak

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.8. * COMPUTATIONALLY-SOUND PROOFS (ARGUMENTS) 207sense) it was following the prescribed program. Actually, the receiver only proves that hebehaved in a manner which is consistent with its program.De�nition 4.8.7 (commitment scheme with perfect a posteriori secrecy): A bit commit-ment scheme with perfect a posteriori secrecy is de�ned as in De�nition 4.8.2, except thatthe secrecy requirement is replaced by the following a posteriori secrecy requirement: Forevery string r 2 f0; 1gpoly(n) it holds that hS(0); Rri(1n) and hS(1); Rri(1n) are statisticallyclose, where Rr denotes the execution of the interactive machine R when using internal cointosses r.Proposition 4.8.8 Let (I;D; F) be a clawfree collection. Consider a modi�cation of Con-struction 4.8.5, in which the sender's check, of whether i is in the range of I(1n), is omitted(from the commit phase). Then the resulting protocol constitutes a bit commitment schemewith perfect a posteriori secrecy.In contrast to Proposition 4.8.6, here the clawfree collection may not have an e�cientlyrecognizable index set. Hence, the veri�er's check must have been omitted. Yet, the receivercan later prove that the message sent by it during the commit phase (i.e., i) is indeed a validindex by disclosing the random coins it has used in order to generate i (using algorithm I).Proof: The a posteriori secrecy requirement follows directly from Property (2) of a clawfreecollection (combined with the assumption that i in indeed a valid index). The unambiguityrequirement follows as in Proposition 4.8.6.A typical application of commitment scheme with perfect a posteriori secrecy is pre-sented in Section 4.9. In that setting the commitment scheme is used inside an interactiveproof with the veri�er playing the role of the sender (and the prover playing the role ofthe receiver). If the veri�er a posteriori learns that the prover has been cheating then theveri�er rejects the input. Hence, no damage is caused, in this case, by the fact that thesecrecy of the veri�er's commitments might have been breached.4.8.2.5 Nonuniform computational unambiguityActually, for the applications to proof/argument systems, both the one below and theone in Section 4.9, we need commitment schemes with perfect secrecy and nonuniformcomputational unambiguity. (The reasons for this need are analogous to the case of thezero-knowledge proof for NP presented in Section 4.4.) By nonuniform computationalunambiguity we mean that the unambiguity condition should hold also for (nonuniform)families of polynomial-size circuits. We stress that all the constructions of perfect com-mitment schemes possess the nonuniform computational unambiguity, provided that theunderlying clawfree collections foil also nonuniform polynomial-size claw-forming circuits.In order to prevent the terms of becoming too cumbersome we omit the phrase \nonuni-form" when referring to the perfect commitment schemes in the description of the twoapplications.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

208 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS4.8.3 Perfect Zero-Knowledge Arguments for NPHaving perfect commitment scheme at our disposal, we can construct perfect zero-knowledgearguments forNP , by modifying the construction of (computational) zero-knowledge proofs(for NP) in a totally syntactic manner. We recall that in these proof systems (e.g., Con-struction 4.4.6 for Graph 3-Colorability) the prover uses a commitment scheme in order tocommit itself to many values, part of them it later reveals upon the veri�er's request. Allthat is needed is to replace the commitment scheme used by the prover by a perfect commit-ment scheme. We claim that the resulting protocol is a perfect zero-knowledge argument(computationally sound proof) for the original language. For sake of concreteness we proveProposition 4.8.9 Consider a modi�cation of Construction 4.4.6 so that the commitmentscheme used by the prover is replaced by a perfect commitment scheme. Then the resultingprotocol is a perfect zero-knowledge weak argument for Graph 3-Colorability.By a weak argument we mean a protocol in which the gap between the completeness and thecomputational soundness condition is non-negligible. In our case the veri�er always acceptsinputs in G3C, whereas no e�cient prover can fool him into accepting graphs G=(V;E) notin G3C with probability greater than 1� 12jEj . We remind the reader that by polynomiallymany repetitions the error probability can be made negligible.Proof Sketch: We start by proving that the resulting protocol is perfect zero-knowledgefor G3C. We use the same simulator as in the proof of Proposition 4.4.7. However, thistime analyzing the properties of the simulator is much easier since the commitments aredistributed independently of the committed values, and consequently the veri�er acts intotal oblivion of the values. It follows that the simulator outputs a transcript with proba-bility exactly 23 , and for similar reasons this transcript is distributed identically to the realinteraction. The perfect zero-knowledge property follows.The completeness condition is obvious as in the proof of Proposition 4.4.7. It is left toprove that the protocol satis�es the computational soundness requirement. This is indeedthe more subtle part of the current proof (in contrast to the proof of Proposition 4.4.7 inwhich proving soundness is quite easy). We use a reducibility argument to show that aprover's ability to cheat with too high probability on inputs not in G3C translates to analgorithm contradicting the unambiguity of the commitment scheme. Details follows.We assume, to the contradiction, that there exists a (polynomial-time) cheating proverP �, and an in�nite sequence integers, so that for each integer n there exists graphs Gn=(Vn; En) 62 G3C and a string yn so that P �(yn) leads the veri�er to accept Gn with probabil-ity > 1� 12jEnj . Let k def= jVnj. Let c1; :::; ck be the sequence of commitments (to the verticescolors) sent by the prover in step (P1). Recall that in the next step, the veri�er sends auniformly chosen edge (of En) and the prover must answer by revealing di�erent colors forits endpoint, otherwise the veri�er rejects. A straightforward calculation shows that, sinceGn is not 3-colorable, there must exist a vertex for which the prover is able to reveal atleast two di�erent colors. Hence, we can construct a polynomial-size circuit, incorporating

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.8. * COMPUTATIONALLY-SOUND PROOFS (ARGUMENTS) 209P �, Gn and yn, that violates the (nonuniform) unambiguity condition. Contradiction to thehypothesis of the proposition follows, and this completes the proof.Combining Propositions 4.8.4 and 4.8.9, we getCorollary 4.8.10 If non-uniformly one-way permutations exist then every language in NPhas a perfect zero-knowledge argument.Concluding Remarks: Propositions 4.4.7 and 4.8.9 exhibit a kind of a trade-o� betweenthe strength of the soundness and zero-knowledge properties. The protocol of Proposi-tion 4.4.7 o�ers computational zero-knowledge and \perfect" soundness, whereas the proto-col of Proposition 4.8.9 o�ers perfect zero-knowledge and computational soundness. How-ever, one should note that the two results are not obtained under the same assumptions.The conclusion of Proposition 4.4.7 is valid as long as any one-way functions exist, whereasthe conclusion of Proposition 4.8.9 requires a (probably much) stronger assumption. Yet,one may ask which of the two protocols should we prefer, assuming that they are both valid.The answer depends on the setting (i.e., application) in which the protocol is to be used.In particular, one should consider the following issues� The relative importance attributed to soundness and zero-knowledge in the speci�capplication. In case of clear priori to one of the two properties a choice should bemade accordingly.� The computational resources of the various users in the application. One of the usersmay be known to be in possession of much more substantial computing resources, andit may be reasonable to require that he/she should not be able to cheat even not inan information theoretic sense.� The soundness requirement refers only to the duration of the execution, whereas inmany applications zero-knowledge may be of concern also for a long time afterwards.If this is the case then perfect zero-knowledge arguments do o�er a clear advantage(over zero-knowledge proofs).4.8.4 Zero-Knowledge Arguments of Polylogarithmic E�ciencyA dramatic improvement in the e�ciency of zero-knowledge arguments for NP , can beobtained by combining ideas from Chapter [missing(sign.sec)] and a result describedin Section [missing(eff-pcp.sec)]. In particular, assuming the existence of very strongcollision-free hashing functions one can construct a computationally-sound (zero-knowledge)proof, for any language in NP , which uses only polylogarithmic amount of communicationand randomness. The interesting point in the above statement is the mere existence of suchextremely e�cient argument, let alone their zero-knowledge property. Hence, we refrainourselves to describing the ideas involved in constructing such arguments, and do not addressthe issue of making them zero-knowledge.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

210 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSBy Theorem [missing(np-pcp.thm)], every NP language, L, can be reduced to 3SATso that non-members of L are mapped into 3CNF formulae for which every truth assignmentsatis�es at most an 1 � � fraction of the clauses, where � > 0 is a universal constant. Letus denote this reduction by f . Now, in order to prove that x 2 L it su�ces to prove thatthe formula f(x) is satis�able. This can be done by supplying a satisfying assignment forf(x). The interesting point is that the veri�er need not check that all clauses of f(x) aresatis�ed by the given assignment. Instead, it may uniformly select only polylogarithmicallymany clauses and check that the assignment satis�es all of them. If x 2 L (and the proversupplies a satisfying assignment to f(x)) then the veri�er will always accept. Yet, if x 62 Lthen no assignment satis�es more than a 1 � � fraction of the clauses, and consequentlya uniformly chosen clause is not satis�ed with probability at least �. Hence, checkingsuperlogarithmically many clauses will do.The above paragraph explains why the randomness complexity is polylogarithmic, butit does not explain why the same holds for the communication complexity. For this endwe need an additional idea. The idea is to use a special commitment scheme which allowsto commit to a string of length n so that the commitment phase takes polylogarithmiccommunication and individual bits of this string can be revealed (and veri�ed correct) atpolylogarithmic communication cost. For constructing such a commitment scheme we use acollision-free hashing function. The function maps strings of some length to strings of halfthe length so that it is \hard" to �nd two strings which are mapped by the function to thesame image. (The following description is slightly inaccurate. What we need is a family ofhash function such that no small non-uniform circuit, given the description of a function inthe family can form collisions with respect to it.)Let n denote the length of the input string to which the sender wishes to commit itself,and let k be a parameter (which is later set to be polylogarithmic in n). Denote by H acollision-free hashing function mapping strings of length 2k into strings of length k. Thesender partitions its input string into m def= nk consequtive blocks, each of length k. Next, thesender constructs a binary tree of depth log2m, placing the m blocks in the correspondingleaves of the tree. In each internal node, the sender places the hash value obtained byapplying the function H to the contents of the children of this node. The only messagesent in the commit phase is the contents of the root (sent by the sender to the receiver).By doing so, unless the sender can form collisions under H , the sender has \committed"itself to some n-bit long string. When the receiver wishes to get the value of a speci�c bitin the string, the sender reveals to the receiver the contents of both children of each nodealong the path from the root to the corresponding leaf. The receiver checks that the valuessupplied for each node (along the path) match the value obtained by applying H to thevalues supplied for the two children.The protocol for arguing that x 2 L consists of the prover committing itself to a sat-isfying assignment for f(x), using the above scheme, and the veri�er checking individualclauses by asking the prover to reveal the values assigned to the variables in these clauses.The protocol can be shown to be computationally-sound provided that it is infeasible to

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.9. * CONSTANT ROUND ZERO-KNOWLEDGE PROOFS 211�nd a pair �; � 2 f0; 1g2k so that H(�) = H(�). Speci�cally, we need to assume thatforming collisions under H is not possible in subexponential time; namely, that for some� > 0, forming collisions with probability greater than 2�k� must take at least 2k� time. Insuch a case, we set k = (logn)1+ 1� and get a computationally-sound proof of communicationcomplexity O(logno(1) �m �k) = polylog(n). (Weaker lower bounds for the collision-forming taskmay still yield meaningful results by an appropriate setting of the parameter k.) We stressthat collisions can always be formed in time 22k and hence the entire approach fails if theprover is not computationally bounded (and consequently we cannot get (perfectly-sound)proof systems this way). Furthermore, by a simulation argument one may show that, onlylanguages in Dtime(2polylog) have proof systems with polylogarithmic communication andrandomness complexity.4.9 * Constant Round Zero-Knowledge ProofsIn this section we consider the problem of constructing constant-round zero-knowledge proofsystems with negligible error probability for all languages in NP . To make the rest of thediscussion less cumbersome we de�ne a proof system to be round-e�cient if it is bothconstant-round and with negligible error probability.We present two approaches to the construction of round-e�cient zero-knowledge proofsfor NP .1. Basing the construction of round-e�cient zero-knowledge proof systems on commit-ment schemes with perfect secrecy (see Subsection 4.8.2).2. Constructing (round-e�cient zero-knowledge) computationally-sound proof systems(see Section 4.8) instead of (round-e�cient zero-knowledge) proof systems.The advantage of the second approach is that round-e�cient zero-knowledge computationally-sound proof systems for NP can be constructed using any one-way function, whereas it isnot known whether round-e�cient zero-knowledge proof systems forNP can be constructedunder the same general assumption. In particular, we only know how to construct perfectcommitment schemes by using much stronger assumptions (e.g., the existence of clawfreepermutations).Both approaches have one fundamental idea in common. We start with an abstractexposition of this common idea. Recall that the basic zero-knowledge proof for Graph3-Colorability, presented in Construction 4.4.6, consists of a constant number of rounds.However, this proof system has a non-negligible error probability (in fact the error proba-bility is very close to 1). In Section 4.4, it was suggested to reduce the error probabilityto a negligible one by sequentially applying the proof system su�ciently many times. Theproblem is that this yields a proof system with a non-constant number of rounds. A naturalsuggestion is to perform the repetitions of the basic proof in parallel, instead of sequentially.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

212 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSThe problem with this \solution" is that it is not known whether that the resulting proofsystem is zero-knowledge.Furthermore, it is known that it is not possible to present, as done in the proofof Proposition 4.4.7, a single simulator which uses every possible veri�er as ablack box (see Section 4.5). The source of trouble is that, when playing manyversions of Construction 4.4.6 in parallel, a cheating veri�er may select the edgeto be inspected (i.e., step (V1)) in each version depending on the commitmentssent in all versions (i.e., in step (P1)). Such behaviour of the veri�er defeats asimulator analogous to the one presented in the proof of Proposition 4.4.7.The way to overcome this di�culty is to \switch" the order of steps (P1) and (V1). Butswitching the order of these steps enables the prover to cheat (by sending commitmentsin which only the \query" edges are colored correctly). Hence, a more re�ned approachis required. The veri�er starts by committing itself to one edge-query for each version (ofConstruction 4.4.6), then the prover commits itself to the coloring in each version, andonly then the veri�er reveals its queries and the rest of the proof proceeds as before. Thecommitment scheme used by the veri�er should prevent the prover from predicting thesequence of edges committed to by the veri�er. This is the point were the two approachesdi�er.1. The �rst approach utilizes for this purpose a commitment scheme with perfect secrecy.The problem with this approach is that such schemes are known to exists only understronger assumption than merely the existence of one-way function. Yet, such schemesdo exists under assumptions such as the intractability of factoring integers of specialform or the intractability of the discrete logarithm problem.2. The second approach bounds the computational resources of prospective cheatingprovers. Consequently, it su�ces to utilize, \against" these provers (as commitmentreceivers), commitment schemes with computational security. We remark that thisapproach utilizes (for the commitments done by the prover) a commitment schemewith an extra property. Yet, such schemes can be constructed using any one-wayfunction.We remark that both approaches lead to protocols that are zero-knowledge in a liberal sense(i.e., using expected polynomial-time simulators).4.9.1 Using commitment schemes with perfect secrecyFor sake of clarity, let us start by presenting a detailed description of the constant-roundinteractive proof (for Graph 3-Colorability (i.e., G3C)) sketched above. This interactiveproof employs two di�erent commitment schemes. The �rst scheme is the simple commit-ment scheme (with \computational" secrecy) presented in Construction 4.4.2. We denote

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.9. * CONSTANT ROUND ZERO-KNOWLEDGE PROOFS 213by Cs(�) the commitment of the sender, using coins s, to the (ternary) value �. The secondcommitment scheme is a commitment scheme with perfect secrecy (see Section 4.8.2). Forsimplicity, we assume that this scheme has a commit phase in which the receiver sends onemessage to the sender which then replies with a single message (e.g., the schemes presentedin Section 4.8.2). Let us denote by Pm;s(�) the commitment of the sender to string �, uponreceiving message m (from the receiver) and when using coins s.Construction 4.9.1 (A round-e�cient zero-knowledge proof for G3C):� Common Input: A simple (3-colorable) graph G= (V;E). Let n def= jV j, t def= n � jEjand V = f1; :::; ng.� Auxiliary Input to the Prover: A 3-coloring of G, denoted .� Prover's preliminary step (P0): The prover invokes the commit phase of the perfectcommit scheme, which results in sending to the veri�er a message m.� Veri�er's preliminary step (V0): The veri�er uniformly and independently selects asequence of t edges, E def= ((u1; v1); :::; (ut; vt)) 2 Et, and sends the prover a randomcommitment to these edges. Namely, the veri�er uniformly selects s 2 f0; 1gn andsends Pm;s(E) to the prover;� Motivating Remark: At this point the veri�er is committed to a sequence of t edges.This commitment is of perfect secrecy;� Prover's step (P1): The prover uniformly and independently selects t permutations,�1; :::; �t, over f1; 2; 3g, and sets �j(v) def= �j((v)), for each v 2 V and 1 � j � t.The prover uses the computational commitment scheme to commit itself to colors ofeach of the vertices according to each 3-coloring. Namely, the prover uniformly andindependently selects s1;1; :::; sn;t 2 f0; 1gn, computes ci;j = Csi;j(�j(i)), for each i 2 Vand 1�j� t, and sends c1;1; :::; cn;t to the veri�er;� Veri�er's step (V1): The veri�er reveals the sequence E = ((u1; v1); :::; (ut; vt)) to theprover. Namely, the veri�er send (s; E) to the prover;� Motivating Remark: At this point the entire commitment of the veri�er is revealed.The veri�er now expects to receive, for each j, the colors assigned by the jth coloringto vertices uj and vj (the endpoints of the jth edge in E);� Prover's step (P2): The prover checks that the message just received from the veri-�er is indeed a valid revealing of the commitment made by the veri�er at step (V0).Otherwise the prover halts immediately. Let us denote the sequence of t edges, justrevealed, by (u1; v1); :::; (ut; vt). The prover uses the reveal phase of the computational

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

214 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMScommitment scheme in order to reveal, for each j, the jth coloring of vertices uj andvj to the veri�er. Namely, the prover sends to the veri�er the sequence of quadruples(su1;1; �1(u1); sv1;1; �1(v1)); :::; (sut;t; �t(ut); svt;t; �t(vt))� Veri�er's step (V2): The veri�er checks whether, for each j, the values in the jthquadruple constitute a correct revealing of the commitments cuj;j and cvj;j, and whetherthe corresponding values are di�erent. Namely, upon receiving (s1; �1; s01; �1) through(st; �t; s0t; �t), the veri�er checks whether for each j, it holds that cuj;j = Csj(�j),cvj;j = Cs0j(�j), and �j 6= �j (and both are in f1; 2; 3g). If all conditions hold then theveri�er accepts. Otherwise it rejects.We �rst assert that Construction 4.9.1 is indeed an interactive proof for G3C. Clearly,the veri�er always accepts a common input in G3C. Suppose that the common input graph,G= (V;E), is not in G3C. Clearly, each of the \committed colorings" sent by the proverin step (P1) contains at least one illegally-colored edge. Using the perfect secrecy of thecommitments sent by the veri�er in step (V0), we deduce that at step (P1) the prover has\no idea" which edges the veri�er asks to see (i.e., as far as the information available to theprover is concerned, each possibility is equally likely). Hence, although the prover sends the\coloring commitment" after receiving the \edge commitment", the probability that all the\committed edges" have legally \committed coloring" is at most�1� 1jEj�t � e�n < 2�nWe now turn to show that Construction 4.9.1 is indeed zero-knowledge (in the liberalsense allowing expected polynomial-time simulators). For every probabilistic (expected)polynomial-time interactive machine, V �, we introduce an expected polynomial-time simu-lator, denoted M�. The simulator starts by selecting and �xing a random tape, r, for V �.Given the input graph G and the random tape r, the commitment message of the veri�erV � is determined. Hence, M� invokes V �, on input G and random tape r, and gets thecorresponding commitment message, denoted CM . The simulator proceeds in two steps.S1) Extracting the query edges: M� generates a sequence of n � t random commitmentsto dummy values (e.g., all values equal 1), and feeds it to V �. In case V � replies byrevealing correctly a sequence of t edges, denoted (u1; v1); :::; (ut; vt), the simulatorrecords these edges and proceed to the next step. In case the reply of V � is not avalid revealing of the commitment message CM , the simulator halts outputting thecurrent view of V � (e.g., G, r and the commitments to dummy values).S2) Generating an interaction that satis�es the query edges (oversimpli�ed exposition): Let(u1; v1); :::; (ut; vt) denote the sequence of edges recorded in step (S1). M� generatesa sequence of n � t commitments, c1;1; :::; cn;t, so that for each j = 1; :::; t, it holds that

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.9. * CONSTANT ROUND ZERO-KNOWLEDGE PROOFS 215cuj;j and cvj;j are random commitments to two di�erent random values in f1; 2; 3g andall the other ci;j's are random commitments to dummy values (e.g., all values equal 1).The underlying values are called a pseudo-colorings. The simulator feeds this sequenceof commitments to V �. If V � replies by revealing correctly the (above recorded)sequence of edges, then M� can complete the simulation of a \real" interaction ofV � (by revealing the colors of the endpoints of these recorded edges). Otherwise, theentire step is repeated (until success occurs).In the rest of the description we ignore the possibility that, when invoked in steps (S1)and (S2), the veri�er reveals two di�erent edge commitments. Loosely speaking, this prac-tice is justi�ed by the fact that during expected polynomial-time computations such eventcan occur only with negligible probability (since otherwise it contradicts the computationalunambiguity of the commitment scheme used by the veri�er).To illustrate the behaviour of the simulator assume that the program V � always revealscorrectly the commitment done in step (V0). In such a case, the simulator will �nd outthe query edges in step (S1), and using them in step (S2) it will simulate the interaction ofV � with the real prover. Using ideas as in Section 4.4 one can show that the simulation iscomputational indistinguishable from the real interaction. Note that in this case, step (S2)of the simulator is performed only once.Consider now a more complex case in which, on each possible sequence of internalcoin tosses r, program V � correctly reveals the commitment done in step (V0) only withprobability 13 . The probability in this statement is taken over all possible commitmentsgenerated to the dummy values (in the simulator step (S1)). We �rst observe that theprobability that V � correctly reveals the commitment done in step (V0), after receivinga random commitment to a sequence of pseudo-colorings (generated by the simulator instep (S2)), is approximately 13 . (Otherwise, we derive a contradiction to the computationalsecrecy of the commitment scheme used by the prover.) Hence, the simulator reaches step(S2) with probability 13 , and each execution of step (S2) is completed successfully withprobability p � 13 . It follows that the expected number of times that step (S2) is invokedwhen running the simulator is 13 � 1p � 1.Let us now consider the general case. Let q(G; r) denote the probability that, on in-put graph G and random tape r, after receiving random commitments to dummy values(generated in step (S1)), program V � correctly reveals the commitment done in step (V0).Likewise, we denote by p(G; r) the probability that, (on input graph G and random tape r)after receiving a random commitment to a sequence of pseudo-colorings (generated by thesimulator in step (S2)), program V � correctly reveals the commitment done in step (V0).As before the di�erence between q(G; r) and p(G; r) is negligible (in terms of the size of thegraph G), otherwise one derives contradiction to the computational secrecy of the prover'scommitment scheme. We conclude that the simulator reaches step (S2) with probabilityq def= q(G; r), and each execution of step (S2) is completed successfully with probabilityp def= p(G; r). It follows that the expected number of times that step (S2) is invoked whenrunning the simulator is q � 1p . Here are the bad news: we cannot guarantee that qp is approxi-

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

216 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSmately 1 or even bounded by a polynomial in the input size (e.g., let p = 2�n and q = 2�n=2,then the di�erence between them is negligible and yet qp is not bounded by poly(n)). Thisis why the above description of the simulator is oversimpli�ed and a modi�cation is indeedrequired.We make the simulator expected polynomial-time by modifying step (S2) as follows.We add an intermediate step (S1.5), to be performed only if the simulator did not haltin step (S1). The purpose of step (S1.5) is to provide a good estimate of q(G; r). Theestimate is computed by repeating step (S1) until a �xed (polynomial in jGj) number ofcorrect V �-reveals are encountered (i.e., the estimate will be the ratio of the number ofsuccesses divided by the number of trial). By �xing a su�ciently large polynomial, we canguarantee that with overwhelmingly high probability (i.e., 1 � 2�poly(jGj)) the estimate iswithin a constant factor of q(G; r). It is easily veri�ed that the estimate can be computedwithin expected time poly(jGj)=q(G; r). Step (S2) of the simulator is modi�ed by addinga bound on the number of times it is performed, and if none of these executions yield acorrect V �-reveal then the simulator outputs a special empty interaction. Speci�cally, step(S2) will be performed at most poly(jGj)=q, where q is the estimate to q(G; r) computed instep (S1.5). It follows that the modi�ed simulator has expected running time bounded byq(G; r) � poly(jGj)q(G;r) = poly(jGj).It is left to analyze the output distribution of the modi�ed simulator. We refrain our-selves to reducing this analysis to the analysis of the output of the original simulator, bybounding the probability that the modi�ed simulator outputs a special empty interaction.This probability is bounded by�(G; r) def= q(G; r)� q(G; r) � �1� (1� p(G; r))poly(jGj)=q(G;r)�= q(G; r) � (1� p(G; r))poly(jGj)=q(G;r)We claim that �(G; r) is a negligible function of jGj. Assume, to the contrary, that thereexists a polynomial P (�), an in�nite sequence of graphs fGng, and an in�nite sequence ofrandom tapes frng, such that �(Gn; rn) > 1=P (n). It follows that for each such n we haveq(Gn; rn) > 1=P (n). We consider two cases.Case 1: For in�nitely many n's, it holds that p(Gn; rn) � q(Gn; rn)=2. In such a case weget for these n's �(Gn; rn) � (1� p(Gn; rn))poly(jGnj)=q(Gn;rn)� �1� q(Gn; rn)2 �poly(jGnj)=q(Gn;rn)< 2�poly(jGnj)=2which contradicts our hypothesis that �(Gn; rn) > 1=poly(n).Case 2: For in�nitely many n's, it holds that p(Gn; rn) < q(Gn; rn)=2. It follows that forthese n's we have jq(Gn; rn) � p(Gn; rn)j > P (n)=2, which leads to contradiction ofthe computational secrecy of the commitment scheme (used by the prover).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.9. * CONSTANT ROUND ZERO-KNOWLEDGE PROOFS 217Hence, contradiction follows in both cases.We remark that one can modify Construction 4.9.1 so that weaker forms of perfectcommitment schemes can be used. We refer speci�cally to commitment schemes with perfecta posteriori secrecy (see Subsection 4.8.2). In such schemes the secrecy is only establisheda posteriori by the receiver which discloses the coin tosses it has used in the commit phase.In our case, the prover plays the role of the receiver, and the veri�er plays the role of thesender. It su�ces to establish the secrecy property a posteriori, since in case secrecy is notestablish the veri�er may reject. In such a case no harm has been caused since the secrecyof the perfect commitment scheme is used only to establish the soundness of the interactiveproof.4.9.2 Bounding the power of cheating proversConstruction 4.9.1 can be modi�ed to yield a zero-knowledge computationally sound proof,under the (more general) assumption that one-way functions exist. In the modi�ed proto-col, we let the veri�er use a commitment scheme with computational secrecy, instead of thecommitment scheme with perfect secrecy used in Construction 4.9.1. (Hence, both userscommit to their messages using commitment scheme with computational secrecy.) Fur-thermore, the commitment scheme used by the prover must have the extra property thatit is infeasible to construct a commitment without \knowing" to what value it commits.Such a commitment scheme is called non-oblivious. We start by de�ning and constructingnon-oblivious commitment schemes.4.9.2.1 Non-oblivious commitment schemesThe non-obliviousness of a commitment scheme is intimately related to the de�nition ofproof of knowledge (see Section 4.7).De�nition 4.9.2 (non-oblivious commitment schemes): Let (S;R) be a commitment schemeas in De�nition 4.4.1. We say that the commitment scheme is non-oblivious if the prescribedreceiver, R, constitutes a knowledge-veri�er, that is always convinced by S, for the relationf((1n; r;m); (�; s)) : m=viewS(�;1n;s)R(1n;r) gwhere, as in De�nition 4.4.1, viewS(�;1n;s)R(1n;r) denotes the messages received by the interactivemachine R on input 1n and local-coins r, when interactive with machine S (that has input(�; 1n) and uses coins s).It follows that the receiver prescribed program,R, may accept or rejects at the end of thecommit phase, and that this decision is supposed to re
ect the sender's ability to later comeup with a legal opening of the commitment (i.e., successfully complete the reveal phase). Westress that non-obliviousness relates mainly to cheating senders, since the prescribed sender

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

218 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMShas no di�culty to later successfully complete the reveal phase (and in fact during thecommit phase S always convinces the receiver of this ability). Hence, any sender program(not merely the prescribed S) can be modi�ed so that at the end of the commit phase it(locally) outputs information enabling the reveal phase (i.e., � and s). The modi�ed senderruns in expected time that is inversely proportional to the probability that the commitphase is completed successfully.We remark that in an ordinary commitment scheme, at the end of the commit phase,the receiver does not necessarily \know" whether the sender can later successfully conductthe reveal phase. For example, a cheating sender in Construction 4.4.2 can (undetectedly)perform the commit phase without ability to later successfully perform the reveal phase(e.g., the sender may just send a uniformly chosen string). It is only guaranteed that ifthe sender follows the prescribed program then the sender can always succeed in the revealphase. Furthermore, with respect to the scheme presented in Construction 4.4.4, a cheatingsender can (undetectedly) perform the commit phase in a way that it generates a receiverview which does not have any corresponding legal opening (and hence the reveal phase isdoomed to fail). See Exercise 14.NeverthelessTheorem 4.9.3 If one-way functions exist then there exist non-oblivious commitment schemeswith constant number of communication rounds.We recall that (ordinary) commitment schemes can be constructed assuming the ex-istence of one-way functions (see Proposition 4.4.5 and Theorem 3.5.12). Consider therelation corresponding to such a scheme. Using zero-knowledge proofs of knowledge (seeSection 4.7) for the above relation, we get a non-oblivious commitment scheme. (We re-mark that such proofs do exist under the same assumptions.) However, the resulting com-mitment scheme has unbounded number of rounds (due to the round complexity of thezero-knowledge proof). We seem to have reached a vicious circle, yet there is a way out.We can use constant-round witness indistinguishable proofs (see Section 4.6), instead ofthe zero-knowledge proofs. The resulting commitment scheme has the additional prop-erty that when applied (polynomially) many times in parallel the secrecy property holdssimultaneously in all copies. This fact follows from the Parallel Composition Lemma forwitness indistinguishable proofs (see Section 4.6). The simultaneous secrecy of many copiesis crucial to the following application.4.9.2.2 Modifying Construction 4.9.1We recall that we are referring to a modi�cation of Construction 4.9.1 in which the veri�eruses a commitment scheme (with computational secrecy), instead of the commitment schemewith perfect secrecy used in Construction 4.9.1. In addition, the commitment scheme usedby the prover is non-oblivious.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.9. * CONSTANT ROUND ZERO-KNOWLEDGE PROOFS 219We conclude this section by remarking on how to adopt the argument of the �rst ap-proach (i.e., of Subsection 4.9.1) to suit our current needs. We start with the claim that themodi�ed protocol is a computationally-sound proof for G3C. Verifying that the modi�edprotocol satis�es the completeness condition is easy as usual. We remark that the modi�edprotocol does not satisfy the (usual) soundness condition (e.g., a \prover" of exponentialcomputing power can break the veri�er's commitment and generate pseudo-colorings thatwill later fool the veri�er into accepting). Nevertheless, we can show that the modi�edprotocol does satisfy the computational soundness (of De�nition 4.8.1). Namely, we showthat for every polynomial p(�), every polynomial-time interactive machine B, and for allsu�ciently large graph G 62 G3C and every y and zPr (hB(y); VG3C(z)i(x)=1) � 1p(jxj)where VG3C is the veri�er program in the modi�ed protocol.Using the information theoretic unambiguity of the commitment scheme employed bythe prover, we can talk of a unique color assignment which is induced by the prover'scommitments. Using the fact that this commitment scheme is non-oblivious, it follows thatthe prover can be modi�ed so that, in step (P1), it outputs the values to which it commitsitself at this step. We can now use the computational secrecy of the veri�er's commitmentscheme to show that the color assignment generated by the prover is almost independentof the veri�er's commitment. Hence, the probability that the prover can fool the veri�erto accept an input not in the language is non-negligibly greater than what it would havebeen if the veri�er asked random queries after the prover makes its (color) commitments.The computational soundness of the (modi�ed) protocol follows. We remark that we do notknow whether the protocol is computationally sound in case the prover uses a commitmentscheme that is not guaranteed to be non-oblivious.Showing that the (modi�ed) protocol is zero-knowledge is even easier than it was inthe �rst approach (i.e., in Subsection 4.9.1). The reason being that when demonstratingzero-knowledge of such protocols we use the secrecy of the prover's commitment schemeand the unambiguity of the veri�er's commitment scheme. Hence, only these propertiesof the commitment schemes are relevant to the zero-knowledge property of the protocols.Yet, the current (modi�ed) protocol uses commitment schemes with relevant propertieswhich are not weaker than the ones of the corresponding commitment schemes used inConstruction 4.9.1. Speci�cally, the prover's commitment scheme in the modi�ed protocolpossess computationally secrecy just like the prover's commitment scheme in Construc-tion 4.9.1. We stress that this commitment, like the simpler commitment used for theprover in Construction 4.9.1, has the simultaneous secrecy (of many copies) property. Fur-thermore, the veri�er's commitment scheme in the modi�ed protocol possess \informationtheoretic" unambiguity, whereas the veri�er's commitment scheme in Construction 4.9.1 ismerely computationally unambiguous.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

220 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS4.10 * Non-Interactive Zero-Knowledge ProofsIn this section we consider `non-interactive' zero-knowledge proof systems. Actually, theterm non-interactive is somewhat misleading. Indeed, in the model which we will discussthe interaction between the prover and the veri�er is minimal; it consists of the proversending a single message to the veri�er (as in the case of an NP-proof). Yet, both theprover and the veri�er have access to a (trusted) random string, which can be thought of asa restricted trusted third party. Non-interactive zero-knowledge proof systems have variousapplications (e.g., to Encryption Schemes secure against Chosen Message Attacks and toSignature Schemes).We start with basic de�nitions and constructions allowing to prove a single assertion ofa-priori bounded length. Next we extend the treatment to proof systems in which manyassertions of various lengths can be proven, as long as the total length of all assertions isa polynomial in a security parameter but the polynomial is not a-priori known. Jumpingahead, we note that, unlike the basic treatment, the extended treatment allows to proveassertions of total length much bigger than the length of the trusted random string. Therelation between the total length of the provable assertions and the length of the trustedrandom string is analogous to the relation between the total length of messages that can beencrypted (resp., documents that can be signed) and the length of the encryption-key (resp.,signing-key). We stress, however, that even handling the basic case is very challenging inthe case of non-interactive zero-knowledge proofs.4.10.1 Basic De�nitionsIn the setting of non-interactive proof systems, both the prover and veri�er are ordinaryprobabilistic machines which, in addition to the common-input, also get a common random-string. We stress that both the prover and veri�er may toss coins and get auxiliary inputs,in addition to the above common input and random-string. However, for sake of simplicitywe present a de�nition for the case in which none of these machines gets an auxiliary input.The veri�er also gets as input the output produced by the prover.De�nition 4.10.1 (non-interactive proof system): A pair of probabilistic machines, (P; V),is called a non-interactive proof system for a language L if V is polynomial-time and thefollowing two conditions hold� Completeness: For every x 2 LPr (V (x;R; P (x;R))=1)� 23where R is a random variable uniformly distributed in f0; 1gpoly(jxj).� Soundness: For every x 62 L and every machine B,Pr (V (x;R;B(x;R))=1)� 13

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.10. * NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS 221where R is a random variable uniformly distributed in f0; 1gpoly(jxj).The uniformly chosen string R is called the common random-string.As usual, the error probability in both conditions can be reduced (from 13) up to 2�poly(jxj),by repeating the \protocol" su�ciently many times (using a sequence of many independentlychosen random-strings). In stating the soundness condition, we have deviated from commonformulations which allows x 62 L to be selected after R. Namely, in many sources thesoundness condition is stated asfor every n and every pair of functions � : f0; 1gpoly(n) 7! (f0; 1gn � L) and� :f0; 1gpoly(n) 7!f0; 1gpoly(n)Pr (V (�(R); R; �(R))=1)� 13where R is a random variable uniformly distributed in f0; 1gpoly(n).Clearly, the two formulations are equivalent; starting from the weaker soundness condition,one may �rst reduce the soundness error to 13 �2�n (by repetitions), and next apply a standardcounting argument. Every language in NP has a non-interactive proof system (in which norandomness is used). However, this NP-proof system is unlikely to be zero-knowledge.The de�nition of zero-knowledge for the non-interactive model gets simpli�ed since we needonly consider one veri�er. Actually, we can avoid considering the veri�er at all.De�nition 4.10.2 (non-interactive zero-knowledge): A non-interactive proof system, (P; V),for a language L is zero-knowledge if there exists a probabilistic polynomial-time algorithmM such that the ensembles f(x;Rjxj; P (x;Rjxj))gx2L and fM(x)gx2L are computationallyindistinguishable, where Rn is a random variable uniformly distributed in f0; 1gpoly(n).4.10.2 ConstructionsA �ctitious abstraction which is nevertheless very helpful for constructing non-interactivezero-knowledge proof systems is the hidden bits model. In this model the common random-string is uniformly selected as before, but only the prover can see all of it. The `proof'he sends the veri�er consists of two parts; a `certi�cate' and the speci�cation of some bitpositions in the common random-string. The veri�er may only inspect the bits of thecommon random-string residing in the locations which have been speci�ed by the prover.Certainly, in addition, the veri�er inspects the common input and the `certi�cate'.De�nition 4.10.3 (proof systems in the Hidden Bits Model): A pair of probabilistic ma-chines, (P; V), is called a hidden-bits proof system for L if V is polynomial-time and thefollowing two conditions hold

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

222 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS� Completeness: For every x 2 LPr (V (x;RI; I; �)=1)� 23where (I; �) def= P (x;R), R is a random variable uniformly distributed in f0; 1gpoly(jxj)and RI is the sequence of bits at positions I � f1; 2; :::; poly(jxj)g. That is, RI =ri1 � � �rit, where R = r1 � � �rt and I = (i1; :::; it).� Soundness: For every x 62 L and every machine B,Pr (V (x;RI; I; �)=1)� 13where (I; �) def= B(x;R), R is a random variable uniformly distributed in f0; 1gpoly(jxj)and RI is the sequence of bits at positions I � f1; 2; :::;poly(jxj)g.In both cases, I is called the set of revealed bits and � is called the certi�cate. Zero-knowledgeis de�ned as before, with the exception that we need to simulate (x;RI; P (x;R)) rather than(x;R; P (x;R)), where (I; �) = P (x;R).As hinted above, we do not suggest the Hidden-Bits Model as a realistic model. Theimportance of the model stems from two facts. Firstly, it is a `clean' model which facilitatesthe design of proof systems (in it), and secondly that proof systems in the Hidden-Bits Modelcan be easily transformed into non-interactive proof systems (i.e., the realistic model). Thetransformation follows.Construction 4.10.4 (from Hidden Bits proof systems to non-interactive ones): Let (P; V)be a hidden-bits proof system for L, f : f0; 1g� 7! f0; 1g� and b : f0; 1g� 7! f0; 1g. Further-more, let m = poly(n) denote the length of the common random-string for common inputsof length n and suppose that f is 1-1 and length preserving. Following is a speci�cation ofa non-interactive system, (P 0; V 0):� Common Input: x 2 f0; 1gn.� Common Random-String: s = (s1; :::; sm), where each si is in f0; 1gn.� Prover (denoted P 0):{ computes ri = b(f�1(si)), for i = 1; 2; :::;m.{ invokes P to get (I; �) = P (x; r1 � � �rm).{ outputs (I; �; pI), where pI def= (f�1(si1) � � �f�1(sit)) for I = (i1; :::; it).� Veri�er (denoted V 0) given prover's output (I; �; (p1 � � �pt)):{ checks that sij = f(pj), for each ij 2 I. In case a mismatch is found, V 0 rejects.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.10. * NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS 223{ computes ri = b(pi), for i = 1; :::; t. Let r = r1; :::; rt.{ invokes V on (x; r; I; �) and accepts if and only if V accepts.Proposition 4.10.5 Let (P; V), L, f , b and (P 0; V 0) be as in Construction 4.10.4. Then,(P 0; V 0) is a non-interactive proof system for L, provided that Pr(b(Un)=1) = 12. Further-more, if P is zero-knowledge and b is a hard-core of f then P 0 is zero-knowledge too.We remark that P 0 is not perfect zero-knowledge even in case P is. Also, P 0 may notbe implemented in polynomial-time (even with help of auxiliary inputs) even if P is (seeRemark 4.10.6 below).proof: To see that (P 0; V 0) is a non-interactive proof system for L we note that uniformlychosen si 2 f0; 1gn induce uniformly distributed bits ri 2 f0; 1g. (This follows by ri =b(f�1(si)), the fact that f is one-to-one, and the fact that b(f�1(Un)) = b(Un) is unbiased.)Note that in case b is a hard-core of f , it is almost unbiased (i.e., Pr(b(Un)=1) = 12 � 1�(n) ,where � is a negligible function). Thus, saying that b is a hard-core for f essentially su�ces.To see that P 0 is zero-knowledge note that we can convert an e�cient simulator for Pinto an e�cient simulator for P 0. Speci�cally, for each revealed bit of value � we uniformlyselect a string r 2 f0; 1gn so that b(r) = � and put f(r) in the corresponding position in thecommon random-string. For each unrevealed bit we uniformly select a string s 2 f0; 1gn andput it in the corresponding position in the common random-string. Using the fact that b isa hard-core of f , it follows that the simulator's output is computationally indistinguishablefrom the veri�er's view.Remark 4.10.6 (e�cient implementation of P 0): As stated above, in general P 0 cannot bee�ciently implemented given a black-box access to P . What is needed is ability (of P 0) toinvert f , however for P 0 to be zero-knowledge f must be one-way. The oblivious solution is touse a family of trapdoor permutations and let the prover know the trapdoor. Furthermore,the family should have the property that its members can be e�ciently recognized (i.e.,given a description of a function one can e�ciently decide whether it is in the family).In other words, P 0 starts by selecting a permutation f over f0; 1gn so that it knows itstrapdoor, and proceeds as in Construction 4.10.4, except that it also appends f to the`proof'. The veri�er acts as in Construction 4.10.4 with respect to the function f speci�edin the proof. In addition it also checks that f is indeed in the family. Both the completenessand the zero-knowledge conditions follow exactly as in the proof of Proposition 4.10.5. Forthe soundness condition we need to consider all possible members of the family (w.l.o.g.,there are at most 2n such permutation). For each such permutation, the argument is asbefore and our claim thus follows by a counting argument. (Actually, we need also to repeatthe (P; V) system for O(n) times to make the counting argument work.)We now turn to the construction of proof systems in the Hidden Bits model. Speci�cally,we are going to construct a proof system for the Hamiltonian Cycle (HC) problem which is

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

224 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSNP-complete (and thus get proof systems for any language in NP). We consider directedgraphs (and the existence of directed Hamiltonian cycles). Below, we present a basic zero-knowledge system in which Hamiltonian graphs are accepted with probability 1 whereasnon-Hamiltonian graphs on n vertices are rejected with probability
(n�3=2). (This systemis inspired by the one presented in Construction 4.7.11.)Construction 4.10.7 (Hidden Bits systems for HC):� Common Input: a directed graph G = (V;E) with n def= jV j.� Common Random-String: viewed as an n3-by-n3 Boolean matrix M , with each entrybeing 1 with probability n�5.(This is implemented by breaking the common random-string to blocks of length5 log2 n and setting a matrix entry to 1 i� the corresponding block is all 1's.)� De�nitions: A permutation matrix is a matrix in which each row (resp., column) con-tains a single entry of value 1. A Hamiltonian matrix is a permutation matrix whichcorresponds to a single directed cycle (it follows that the corresponding directed graphconsists of a single Hamiltonian cycle). An n3-by-n3 matrix M is called useful if itcontains an n-by-n Hamiltonian submatrix and all other entries in M are 0.� Prover: Let C be a Hamiltonian cycle in G, in case such exists.case 1: M is useful. Let H denote its Hamiltonian n-by-n submatrix.{ the prover reveals all entries in M which are not in H.{ the prover �nds a 1-1 mapping, �1, of V to the rows of H and a 1-1 mapping,�2, of V to the columns of H so that the edges of C are mapped to the 1-entries of H.(Directed pairs of vertices of G, being edges or not, are mapped in thenatural manner; that is (u; v) is mapped to the matrix entry (�1(u); �2(v)).The mapping-pair (�1; �2) is an isomorphism of C to H . Actually, we shouldspecify one isomorphism among the n possible ones.){ the prover reveals the entries corresponding to non-edges of G.(The correspondence is by the above mappings.){ the prover outputs the mapping pair (�1; �2) (as a certi�cate).case 2: M is not useful. In this case the prover reveals all entries of M .� Veri�er:case 1: The prover has not revealed all entries in M . Let (�1; �2) be the certi�catesent/output by the prover. The veri�er checks that all entries in M which donot have an image under (�1; �2) in E are revealed and are indeed zero. That is,the veri�er accepts if all matrix entries, except for the entries in f(�1(u); �2(v)) :(u; v)2Eg, are revealed and all revealed bits are 0.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.10. * NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS 225case 2: The prover has revealed all of M . In this case the veri�er accepts i� M isnot useful.The following fact is instrumental for the analysis of Construction 4.10.7.Fact 4.10: Pr(M is useful) =
(n�3=2).proof: With probability
(1=pn), the matrix M contains exactly n entries of value 1.Considering any row of M , observe that with probability at most �n32 � � (n�5)2 < n�4 thisrow contains more than a single 1-entry. Thus, with probability
(1=pn), the matrix Mcontains an n-by-n permutation matrix and all its other entries are 0. The fact followsby observing that there are n! (n-by-n) permutation matrices and (n � 1)! of them areHamiltonian matrices.Proposition 4.10.8 There exists a (perfect) zero-knowledge Hidden Bits proof system forGraph Hamiltonicity. Furthermore, the prover may be implemented by a polynomial-timemachine which gets an Hamiltonian cycle as auxiliary input.proof: We start by demonstrating a gap in the acceptance probability of the veri�er ofConstruction 4.10.7. Firstly, we claim that in case G is Hamiltonian and the prover fol-lows the program then the veri�er accepts no matter which matrix M appears as commonrandom-string. The claim follows easily by observing that in Case 1 the mapping-pair mapsthe Hamiltonian cycle of G to the Hamiltonian cycle of H and, since the latter contains theonly 1-entries in M , all non-edges of G are mapped to 0-entries of M . (In Case 2 the claimis trivial.) We remark that the prover's actions can be implemented in polynomial-timewhen given an Hamiltonian cycle of G as auxiliary input. Speci�cally, all that the proverneeds to do is check if M is useful and �nd an isomorphism between two given n-vertexcycles.Next, suppose that G is non-Hamiltonian. By Fact 4.10, with probability at least
(n�3=2), the matrix M is useful and let H denote its n-by-n Hamiltonian submatrix. Inthis case the prover must reveal all entries not in the submatrix H since mapping V �V toany other n-by-n submatrix of M will reveal 1-entries (in the rest of M). Thus, the provermust output a mapping pair (�1; �2) so that �1(V)��2(V) = H . Also, each non-edge ofG must be mapped to a 0-entry of H (or else the veri�er will reject). It follows that thepreimage of each 1-entry in H must be an edge in G, which implies thatG has a Hamiltoniancycle (in contradiction to our hypothesis). We conclude that in case G is non-Hamiltonian,it is rejected with probability
(n�3=2).Finally, we show that the above prover is zero-knowledge. This is done by constructinga simulator that on input a graph G randomly selects an n3-by-n3 matrix, denotedM , withdistribution as in the common random-string (i.e., each entry being 1 with probability n�5).If M is not useful then the simulator outputs (G;M; f1; :::; n3g2) (i.e., all bits are revealedwith values as in M and no certi�cate is given). Otherwise, the prover selects uniformly a

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

226 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSpair of 1-1 mappings (�1; �2) so that �i : V 7! f1; :::; n3g, for i = 1; 2. The prover outputs(G; 0n6�jEj; I; (�1; �2)), where I def= f1; :::; n3g2�f(�1(u); �2(v)) : (u; v)2Eg. The reader caneasily verify that the output distribution of the simulator is identical to the distributionseen by the veri�er.Using Propositions 4.10.8 and 4.10.5 and Remark 4.10.6, we concludeTheorem 4.10.9 Assuming the existence of one-way permutations, each language in NPhas a zero-knowledge non-interactive proof system. Furthermore, assuming the existenceof families of trapdoor permutations for which membership in the family can be decided inBPP, each language in NP has a zero-knowledge non-interactive proof system in whichthe prover can be implemented by a probabilistic polynomial-time machine which gets anNP-witness as auxiliary input.4.10.3 Extensions: many assertions of varying lengthThe de�nitions presented in Section 4.10.1 are restricted in two ways. Firstly, they consideronly the proving of one assertion relative to the common random-string, and furthermorethe common random-string is allowed to be longer than the assertion (though polynomial inlength of the assertion). A stronger de�nition provided below allows proving poly(n)-manyassertions, each of poly(n)-length, using the same n-bit long common random-string.We �rst note that it su�ces to treat the case in which the number of assertions isunbounded but the length of each assertion is a-priori bounded. Speci�cally, for any " > 0,it su�ces to consider the case where poly(n)-many assertions, each of length n", need to beproven relative to the same n-bit long common random-string. The reason for this is thatwe can reduce, in a \zero-knowledge manner", any NP-assertion of length poly(n) into asequence of poly(n)-many NP-assertions, each of length n". For example, �rst we reducethe original NP-assertion to an assertion regarding the 3-colorability of a poly(n)-vertexgraph. Next, we use a commitment scheme with commitments of length n", in order tocommit to the coloring of each vertex. Finally, for each edge, we (invoke the proof systemto) prove that the corresponding two commitments are to two di�erent values in f1; 2; 3g.We now turn to the actual de�nitions. First we note that nothing needs to be changedregarding the de�nition of non-interactive proof systems (De�nition 4.10.1). We still requireability to be convinced by valid assertions and \protection" from false assertions. Alas aminor technical di�erence is that, while in De�nition 4.10.1 we have denoted by n the lengthof the assertion and considered a common random-string of length poly(n), here we let ndenote the length of the common random-string used for assertions of length n". We call "the fundamental constant of the proof system. In contrast, the de�nition of zero-knowledgehas to be extended to handle a sequence of proofs.De�nition 4.10.10 (non-interactive zero-knowledge { extended): A non-interactive proofsystem, (P; V), with fundamental constant ", for a language L is strongly zero-knowledge if

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.10. * NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS 227there exists a probabilistic polynomial-time algorithm M such that the ensemblesf((x1; :::; xm); Un; (P (x1; Un); :::; P (xm; Un)))gx1;:::;xm2Ln" and fM(x1; :::; xm)gx1;:::;xm2Ln"are computationally indistinguishable, where m = poly(n) and L` def= L \ f0; 1g`.We now turn to the construction of strong zero-knowledge (non-interactive) proof systems.The underlying idea is to facilitate the simulation by potentially proving a �ctitious assertionregarding a portion of the common random-string. The assertion that will be potentiallyproven about this portion will have the following properties1. The assertion holds for a negligible fraction of the strings of the same length. Thus,adding this potential ability does not signi�cantly e�ect the soundness condition.2. Strings satisfying the assertion are computationally indistinguishable from uniformlydistributed strings of the same length. Thus, it will be ok for the simulator to usesuch strings rather than uniformly chosen ones (used in the real proof system).3. The decision problem for the assertion is in NP . This will allow a reduction to anNP-complete problem.An immediate assertion, concerning strings, which comes to mind is being produced by apseudorandom generator.Construction 4.10.11 (strong zero-knowledge non-interactive proof systems): Let G :f0; 1g` 7! f0; 1g2`, L1 be an NP-complete language, and (P; V) be a non-interactive proofsystem for L1. Furthermore, suppose that (P; V) uses a common random-string of lengthn � 2` for assertions of length poly(`) and that P takes as auxiliary input an NP-witnessfor membership in L1. Following is a speci�cation of a non-interactive system for L 2 NP:� Common Input: x 2 f0; 1g`.� Common Random-String: r = (p; s), where p 2 f0; 1g2` and s 2 f0; 1gn�2`.� Prover:{ Using a standard reduction of L2 to L1, reduces (x; p) to y 2 f0; 1gpoly(`), whereL2 def= f(x; p) : x2L_ 9w2f0; 1gjxj s.t. G(w) = pgIn case the prover is given a witness u for x2L, it reduces u to a witness, denotedw, for y 2 L1.{ Invokes P with common input y, auxiliary input w and common random-strings, getting output � which it outputs/sends.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

228 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS� Veri�er:{ Reduces (x; p) into y using the same standard reduction of L2 to L1.{ Invokes V with common input y, common random-string s and prover's output�, and decide as V does.Proposition 4.10.12 Let (P; V) be as above, G be a pseudorandom generator, and poly(`) =n". Furthermore, suppose that P is zero-knowledge and that when given an NP-witness asauxiliary input it can be implemented in probabilistic polynomial-time. Then, Construc-tion 4.10.11 constitutes a zero-knowledge non-interactive proof system for L, with fundamen-tal constant ". Furthermore, the prover may be implemented by a probabilistic polynomial-time machine which gets an NP-witness as auxiliary input.proof sketch: The completeness and e�ciency claims for the new prover follow immedi-ately from the hypothesis concerning (P; V). The soundness condition follows by observingthat the probability that p is in the range of G is at most 2�`. To prove the zero-knowledgeproperty, we construct a simulator as follows. The simulator uniformly selects u0 2 f0; 1g`and s 2 f0; 1gn�2`, sets p = G(u0), and follows the prover's program except that it usesu0 as the NP-witness for (x; p) 2 L2. Namely, the simulator reduces (x; p) 2L1 to y 2L1along with reducing the NP-witness u0 to a witness w0 (for y). Next, the simulator invokesP with common input y, auxiliary input w0 and common random-string s. Note that thee�ciency of the simulator relies on the e�cient implementation of P . To prove that thesimulator's output is computationally indistinguishable from the veri�er's view we combinethe following two observations:1. The distribution of the common random-string is very di�erent in the two cases. Yet,by the pseudorandomness of G this di�erence is computationally indistinguishable.Thus, we may consider the veri�er's view in case the common random-string is selectedexactly as in the simulation (but the prover acts as in Construction 4.10.11).2. The zero-knowledge property of P implies that P is witness-indistinguishable (seeSection 4.6). Thus, one cannot distinguish the case P uses a witness for x 2L (as inConstruction 4.10.11) from the case P uses as witness a seed for the pseudorandomsequence p (as done in the simulator). The same holds when repeating the processpolynomially-many times.Using Theorem 4.10.9 and Proposition 4.10.12, we obtainTheorem 4.10.13 Assuming the existence of families of trapdoor permutations for whichmembership in the family can be decided in BPP, each language in NP has a strong zero-knowledge non-interactive proof system. Furthermore, the prover can be implemented by aprobabilistic polynomial-time machine which gets an NP-witness as auxiliary input.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.11. * MULTI-PROVER ZERO-KNOWLEDGE PROOFS 2294.11 * Multi-Prover Zero-Knowledge ProofsIn this section we consider an extension of the notion of an interactive proof system. Specif-ically, we consider the interaction of a veri�er with several (say, two) provers. The proversmay share an a-priori selected strategy, but it is assumed that they cannot interact witheach other during the time period in which they interact with the veri�er. Intuitively, theprovers can coordinate their strategies prior to, but not during, their interrogation by theveri�er.The notion of multi-prover interactive proof plays a fundamental role in complexity the-ory. This aspect is not addressed here (but rather postponed to Section [missing(eff-pcp.sec)]).In the current section we merely address the zero-knowledge aspects of multi-party interac-tive proofs. Most importantly, the multi-prover model enables the construction of (perfect)zero-knowledge proof systems for NP , independent of any complexity theoretic (or other)assumptions. Furthermore, these proof systems can be extremely e�cient. Speci�cally, theon-line computations of all parties can be performed in polylogarithmic time (on a RAM).4.11.1 De�nitionsFor sake of simplicity we consider the two-prover model. We remark that more provers donot o�er any essential advantages (and speci�cally, none that interest us in this section).Loosely speaking, a two-prover interactive proof system is a three party protocol, where twoparties are provers and the additional party is a veri�er. The only interaction allowed inthis model is between the veri�er and each of the provers. In particular, a prover does not\know" the contents of the messages sent by the veri�er to the other prover. The proversdo however share a random input tape, which is (as in the one-prover case) \beyond thereach" of the veri�er. The two-prover setting is a special case of the two-partner modeldescribed below.4.11.1.1 The two-partner modelThe two-party model consists of two partners interacting with a third party, called solitary.The two partners can agree on their strategies beforehand, and in particular agree on acommon uniformly chosen string. Yet, once the interaction with the solitary begins, thepartners can no longer exchange information. The following de�nition of such an interactionextends De�nitions 4.2.1 and 4.2.2.De�nition 4.11.1 (two-partner model): The two-partner model consists of three interactivemachines, two are called partners and the third is called solitary, which are linked and interactas hereby speci�ed.� The input-tapes of all three parties coincide, and its contents is called the commoninput.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

230 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS� The random-tapes of the two partners coincide, and is called the partners' random-tape.(The solitary has a separate random-tape.)� The solitary has two pairs of communication-tapes and two switch-tapes; instead of asingle pair of communication-tapes and a single switch-tape (as in De�nition 4.2.1).� Both partners have the same identity and the solitary has an opposite identity (seeDe�nitions 4.2.1 and 4.2.2).� The �rst (resp., second) switch-tape of the solitary coincides with the switch-tape ofthe �rst (resp., second) partner, the �rst (resp., second) read-only communication-tapeof the solitary coincides with the write-only communication-tape of the �rst (resp.,second) partner and vice versa.� The joint computation of the three parties, on a common input x, is a sequence oftriplets. Each triplet consists of the local con�guration of each of the three machines.The behaviour of each partner-solitary pair is as in the de�nition of the joint compu-tation of a pair of interactive machines.� Notation: We denote by hP1; P2; Si(x) the output of the solitary S after interactingwith the partners P1 and P2, on common input x.4.11.1.2 Two-prover interactive proofsA two-prover interactive proof system is now de�ned analogously to the one-prover case(see De�nitions 4.2.4 and 4.2.6).De�nition 4.11.2 (two-prover interactive proof system): A triplet of interactive machines,(P1; P2; V), in the two-partner model is called an proof system for a language L if the machineV (called veri�er) is probabilistic polynomial-time and the following two conditions hold� Completeness: For every x 2 LPr (hP1; P2; V i(x)=1) � 23� Soundness: For every x 62 L and every pair of partners (B1; B2),Pr (hB1; B2; V i(x)=1) � 13As usual, the error probability in the completeness condition can be reduced (from 13)up to 2�poly(jxj), by sequentially repeating the protocol su�ciently many times. We stressthat error reduction via parallel repetitions is not known to work in general.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.11. * MULTI-PROVER ZERO-KNOWLEDGE PROOFS 231The notion of zero-knowledge (for multi-prove systems) remains exactly as in the one-prover case. Actually, the de�nition of perfect zero-knowledge may even be made morestrict by requiring that the simulator never fails (i.e., never outputs the special symbol ?).Namely,De�nition 4.11.3 We say that a (two-prover) proof system (P1; P2; V) for a language Lis perfect zero-knowledge if for every probabilistic polynomial-time interactive machine V �there exists a probabilistic polynomial-time algorithm M� such that for every x 2 L therandom variables hP1; P2; V �i(x) and M�(x) are identically distributed.Extension to the auxiliary-input (zero-knowledge) model is straightforward.4.11.2 Two-Senders Commitment SchemesThe thrust of the current section is in a method for constructing perfect zero-knowledgetwo-prover proof systems for every language in NP . This method makes essential use of acommitment scheme for two senders and one receiver that posses \information theoretic"secrecy and unambiguity properties. We stress that it is impossible to simultaneouslyachieve \information theoretic" secrecy and unambiguity properties in the single sendermodel.4.11.2.1 A De�nitionLoosely speaking, a two-sender commitment scheme is an e�cient two-phase protocol forthe two-partner model, through which the partners, called senders, can commit themselvesto a value so that the following two con
icting requirements are satis�ed.1. Secrecy: At the end of the commit phase the solitary, called receiver, does not gainany information of the senders' value.2. Unambiguity: Suppose that the commit phase is successfully terminated. Then if laterthe senders can perform the reveal phase so that the receiver accepts the value 0 withprobability p then they cannot perform the reveal phase so that the receiver acceptsthe value 1 with probability substantially bigger than 1 � p. (Due to the secrecyrequirement and the fact that the senders are computationally unbounded, for everyp, the senders can always conduct the commit phase so that they can later reveal thevalue 0 with probability p and the value 1 with probability 1� p.)Instead of presenting a general de�nition, we restrict our attention to the special case oftwo-sender commitment schemes in which only the �rst sender (and the receiver) takespart in the commit phase, whereas only the second sender takes part in the reveal phase.Furthermore, we assume, without loss of generality, that in the reveal phase the (second)sender sends the contents of the joint random-tape (used by the �rst sender in the commitphase) to the receiver.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

232 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSDe�nition 4.11.4 (two-sender bit commitment): A two-sender bit commitment scheme isa triplet of probabilistic polynomial-time interactive machines, denoted (S1; S2; R), for thetwo-partner model satisfying:� Input Speci�cation: The common input is an integer n presented in unary, called thesecurity parameter. The two partners, called the senders, have an auxiliary privateinput v 2 f0; 1g.� Secrecy: The 0-commitment and the 1-commitment are identically distributed. Namely,for every probabilistic (not necessarily polynomial-time) machine R� interacting withthe �rst sender (i.e., S1), the random variables hS1(0); R�i(1n) and hS1(1); R�i(1n)are identically distributed.� Unambiguity: Preliminaries. For simplicity v 2 f0; 1g and n 2 N are implicit in allnotations.{ As in De�nition 4.4.1, a receiver's view of an interaction with the (�rst) sender,denoted (r;m), consists of the random coins used by the receiver, denoted r, andthe sequence of messages received from the (�rst) sender, denoted m.{ Let � 2 f0; 1g. We say that the string s is a possible �-opening of the receiver'sview (r;m) if m describes the messages received by R when R uses local coins rand interacts with machine S1 which uses local coins s and input (�; 1n).{ Let S�1 be an arbitrary program for the �rst sender. Let p be a real, and � 2 f0; 1g.We say that p is an upper bound on the probability of a �-opening of the receiver'sview of the interaction with S�1 if for every random variableX, which is statisticallyindependent of the receiver's coin tosses, the probability that X is a possible �-opening of the receiver's view of an interaction with S�1 is at most p.(The probability is taken over the coin tosses of the receiver, the strategy S�1 andthe random variable X .){ Let S�1 be as above, and, for each � 2 f0; 1g, let p� be an upper bound on theprobability of a �-opening of the interaction with S�1 . We say that the receiver'sview of the interaction with S�1 is unambiguous if p0 + p1 � 1 + 2�n.The unambiguity requirement asserts that, for every program for the �rst sender, S�1 ,the receiver's interaction with S�1 is unambiguous.In the formulation of the unambiguity requirement, the random variables X represent pos-sible strategies of the second sender. These strategies may depend on the random inputthat is shared by the two senders, but is independent of the receiver's random coins (sinceinformation on these coins, if at all, is only sent to the �rst sender). Actually, the highestpossible value of p0 + p1 is attainable by deterministic strategies for both senders. Thus,it su�ces to consider an arbitrary deterministic strategy S�1 for the �rst sender and a �xed

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.11. * MULTI-PROVER ZERO-KNOWLEDGE PROOFS 233�-opening, denoted s� , for the second sender (for each � 2 f0; 1g). In this case, the prob-ability is taken only over the receiver coin tosses and we can strengthen the unambiguitycondition as follows:(strong unambiguity condition) for every deterministic strategy S�1 , and every pairof strings (s0; s1), the probability that for both � = 0; 1 the string s� is a �-opening of the receiver's view of the interaction with S�1 is bounded above by2�n.In general, in case the sender employ randomized strategies, they determine for each possiblecoin-tossing of the receiver a pair of probabilities corresponding to their success in a 0-opening and a 1-opening. The unambiguity condition asserts that the average of thesepairs, taken over all possible receiver's coin tosses is a pair which sums-up to at most1 + 2�n. Intuitively, this means that the senders cannot do more harm than deciding atrandom (possibly based also on the receiver's message to the �rst sender) whether to committo 0 or to 1. Both secrecy and unambiguity requirements are information theoretic (in thesense that no computational restrictions are placed on the adversarial strategies). We stressthat we have implicitly assumed that the reveal phase takes the following form:1. the second sender sends to the receiver the initial private input, v, and the randomcoins, s, used by the �rst sender in the commit phase;2. the receiver veri�es that v and s (together with the private coins (r) used by R in thecommit phase) indeed yield the messages that R has received in the commit phase.Veri�cation is done in polynomial-time (by running the programs S1 and R).4.11.2.2 A ConstructionBy the above conventions, it su�ces to explicitly describe the commit phase (in which onlythe �rst sender takes part).Construction 4.11.5 (two-sender bit commitment):� Preliminaries: Let �0; �1 denote two permutations over f0; 1; 2g so that �0 is the iden-tity permutation and �1 is a permutation consisting of a single transposition, say (1; 2).Namely, �1(1)=2, �1(2)=1 and �1(0)=0.� Common input: the security parameter n (in unary).� A convention: Suppose that the contents of the senders' random-tape encodes a uni-formly selected s=s1 � � �sn 2 f0; 1; 2gn.� Commit Phase:1. The receiver uniformly selects r = r1 � � �rn 2 f0; 1gn and sends r to the �rstsender.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

234 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS2. To commit to a bit �, the �rst sender computes ci def= �ri(si) + � mod 3, for eachi, and sends c1 � � �cn to the receiver.We remark that the second sender could have opened the commitment either way if he hadknown r (sent by the receiver to the �rst sender). The point is that the second sender doesnot \know" r, and this fact drastically limits its ability to cheat.Proposition 4.11.6 Construction 4.11.5 constitutes a two-sender bit commitment scheme.Proof: The security property follows by observing that for every choice of r 2 f0; 1gn, themessage sent by the �rst sender is uniformly distributed over f0; 1; 2gn.The unambiguity property is proven by contradiction. As a motivation, we �rst considerthe execution of the above protocol when n equals 1 and show that it is impossible for thetwo senders to be always able to open the commitments both ways. Consider two messages,(0; s0) and (1; s1), sent by the second sender in the reveal phase so that s0 is a possible0-opening and s1 is a possible 1-opening, both with respect to the receiver's view. We stressthat these messages are sent obliviously of the random coins of the receiver, and hencemust match all possible receiver's views (or else the opening does not always succeed). Itfollows that for each r 2 f0; 1g, both �r(s0) and �r(s1) + 1 mod 3 must �t the messagereceived by the receiver (in the commit phase) in response to message r sent by it. Hence,�r(s0) � �r(s1) + 1 (mod 3) holds, for each r 2 f0; 1g. Contradiction follows since no twos0; s1 2 f0; 1; 2g can satisfy both �0(s0) � �0(s1) + 1 (mod 3) and �1(s0) � �1(s1) + 1(mod 3). (The reason being that the �rst equality implies s0 � s1 + 1 (mod 3) whichcombined with the second equality yields �1(s1+1 mod 3) � �1(s1) + 1 (mod 3), whereasfor every s 2 f0; 1; 2g it holds that �1(s+ 1 mod 3) 6� �1(s) + 1 (mod 3).)We now turn to the actual proof of the unambiguity property. We �rst observe thatif there exists a program S�1 so that the receiver's interaction with S�1 is ambiguous, thenthere exists also such a deterministic program. Actually, the program is merely a function,denoted f , mapping n-bit long strings into sequences in f0; 1; 2gn. Likewise, the (0-openingand 1-opening) strategies for the second sender can be assumed, without loss of generality,to be deterministic. Consequently, both strategies consist of constant sequences, denoteds0 and s1, and both can be assumed (with no loss of generality) to be in f0; 1; 2gn.For each � 2 f0; 1g, let p� denote the probability that the sequence s� is a possible �-opening of the receiver's view (Un; f(Un)), where Un denotes a random variable uniformlydistributed over f0; 1gn. The contradiction hypothesis implies that p0 + p1 > 1 + 2�n. Putin other words, jR0j+ jR1j � 2n + 2, where R� denotes the set of all strings r 2 f0; 1gn forwhich the sequence s� is a possible �-opening of the receiver's view (r; f(r)). Namely,R� = fr : (8i) fi(r)��ri(s�i) + � (mod 3)gwhere r = r1 � � �rn, s� = s�1 � � �s�n, and f(r) = f1(r) � � �fn(r). We are going to refute thecontradiction hypothesis by showing that the intersection of the sets R0 and R1 cannotcontain more than a single element.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.11. * MULTI-PROVER ZERO-KNOWLEDGE PROOFS 235Claim 4.11.6.1: Let R0 and R1 as de�ned above. Then jR0 \R1j � 1.proof: Suppose, on the contrary, that �; � 2 R0 \ R1 (and � 6= �). Then, there exist an isuch that �i 6= �i, and without loss of generality �i = 0 (and �i = 1). By the de�nition ofR� it follows that fi(�) � �0(s0i) (mod 3)fi(�) � �1(s0i) (mod 3)fi(�) � �0(s1i) + 1 (mod 3)fi(�) � �1(s1i) + 1 (mod 3)Contradiction follows as in the motivating discussion. 2This completes the proof of the proposition.We remark that Claim 4.11.6.1 actually yields the strong unambiguity condition (presentedin the discussion following De�nition 4.11.4). More importantly, we remark that the proofextends easily to the case in which many instances of the protocol are executed in parallel;namely, the parallel protocol constitutes a two-sender multi-value (i.e., string) commitmentscheme.Author's Note: The last remark should be elaborated signi�cantly. In addition,it should be stressed that the claim holds also when the second sender is askedto reveal only some of the commitments, as long as this request is indepdendentof the coin tosses used by the receiver during the commit phase.4.11.3 Perfect Zero-Knowledge for NPTwo-prover perfect zero-knowledge proof systems for any language in NP follow easily bymodifying Construction 4.4.6. The modi�cation consists of replacing the bit commitmentscheme, used in Construction 4.4.6, by the two-sender bit commitment scheme of Con-struction 4.11.5. Speci�cally, the modi�ed proof system for Graph Coloring proceeds asfollows.Two-prover atomic proof of Graph Coloring:� The �rst prover uses the prover's random tape to determine a permutation of thecoloring. In order to commit to each of the resulting colors, the �rst prover invokes(the commit phase of) a two-sender bit commitment, setting the security parameterto be the number of vertices in the graph. (The �rst prover plays the role of the �rstsender whereas the veri�er plays the role of the receiver.)� The veri�er uniformly selects an edge and sends it to the second prover.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

236 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS� The second prover reveals the colors of the endpoints of the required edge, by sendingthe portions of the prover's random-tape used in the corresponding instance of thecommit phase.We now remark on the properties of the above protocol. As usual, one can see thatthe provers can always convince the veri�er of valid claims (i.e., the completeness conditionhold). Using the unambiguity property of the two-sender commitment scheme we can thinkof the �rst prover as selecting at random, with arbitrary probability distribution, a colorassignment to the vertices of the graph. We stress that this claim holds although manyinstances of the commit protocol are performed concurrently (see remark above). If thegraph is not 3-colored than each of the possible color assignments chosen by the �rst proveris illegal, and a weak soundness property follows. Yet, by executing the above protocolpolynomially many times, even in parallel, we derive a protocol satisfying the soundness re-quirement. We stress that the fact that parallelism is e�ective here (as means for decreasingerror probability) follows from the unambiguity property of two-sender commitment schemeand not from a general \parallel composition lemma" (which is not valid in the two-proversetting).Author's Note: The last sentence refers to a false claim by which the error prob-ability of a protocol in which a basic protocol is repeated t times in parallel isat most pt, where p is the error probability of the basic protocol. Interestingly,Ran Raz has recently proven a general \parallel composition lemma" of slightlyweaker form: the error probability indeed decreases exponentially in t (but thebase is indeed bigger than p).We now turn to the zero-knowledge aspects of the above protocol. It turns out that thispart is much easier to handle than in all previous cases we have seen. In the constructionof the simulator we take advantage on the fact that it is playing the role of both proversand hence the unambiguity of the commitment scheme does not apply. Speci�cally, thesimulator, playing the role of both senders, can easily open each commitment any way itwants. (Here we take advantage on the speci�c structure of the commitment scheme ofConstruction 4.11.5.) Details follow.Simulation of the atomic proof of Graph Coloring� The simulator generates random \commitments to nothing". Namely, the simulatorinvokes the veri�er and answers its messages by uniformly chosen strings.� Upon receiving the query-egde (u; v) from the veri�er, the simulator uniformly selectstwo di�erent colours, �u and �v, and opens the corresponding commitments so thatto reveal this values. The simulator has no di�culty to do so since, unlike the secondprover, it knows the messages sent by the veri�er in the commit phase. (Given thereceiver's view, (r1 � � �rn; c1 � � �cn), of the commit phase, a 0-opening is computed bysetting si = ��1ri (ci) whereas a 1-opening is computed by setting si = ��1ri (ci � 1), forall i.)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.12. MISCELLANEOUS 237We now remark that the entire argument extends trivially to the case in which polynomiallymany instances of the protocol are performed concurrently.E�ciency improvement. A dramatic improvement in the e�ciency of two-prover (per-fect) zero-knowledge proofs for NP , can be obtained by using the techniques described inSection [missing(eff-pcp.sec)]. In particular, such a proof system with constant errorprobability, can be implemented in probabilistic polynomial-time, so that the number ofbits exchanged in the interaction is logarithmic. Furthermore, the veri�er is only requiredto use logarithmically many coin tosses. The error can be reduced to 2�k by repeating theprotocol sequentially for k times. In particular negligible error probability is achieved inpolylogarithmic communication complexity. We stress again that error reduction via par-allel repetitions is not known to work in general, and in particular is not known to work inthis speci�c case.Author's Note: Again, the last statement is out of date and recent results doallow to reduce the error probability without increasing the number of rounds.4.11.4 ApplicationsMulti-prover interactive proofs are useful only in settings in which the \proving entity"can be separated and its parts kept ignorant of one another during the proving process.In such cases we get perfect zero-knowledge proofs without having to rely on complexitytheoretic assumptions. In other words, general widely believed mathematical assumptionsare replaced by physical assumptions concerning the speci�c setting.A natural application is to the problem of identi�cation, and speci�cally the identi�-cation of a user at some station. In Section 4.7 we discuss how to reduce identi�cation toa zero-knowledge proof of knowledge (for some NP relation). The idea is to supply eachuser with two smart-cards, implementing the two provers in a two-prover zero-knowledgeproof of knowledge. These two smart-cards have to be inserted in two di�erent slots of thestation, and this guarantees that the smart-cards cannot communicate one with another.The station will play the role of the veri�er in the zero-knowledge proof of knowledge. Thisway the station is protected against impersonation, whereas the users are protected againstpirate stations which may try to extract knowledge from the smart-cards (so to enableimpersonation by its agents).4.12 Miscellaneous4.12.1 Historical NotesInteractive proof systems were introduced by Goldwasser, Micali and Racko� [GMR85].(Earlier versions of this paper date to early 1983. Yet, the paper, being rejected threetimes from major conferences, has �rst appeared in public only in 1985, concurrently to

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

238 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSthe paper of Babai [B85].) A restricted form of interactive proofs, known by the nameArthur Merlin Games, was introduced by Babai [B85]. (The restricted form turned out tobe equivalent in power { see Section [missing(eff-ip.sec)].) The interactive proof forGraph Non-Isomorphism is due to Goldreich, Micali and Wigderson [GMW86].The concept of zero-knowledge has been introduced by Goldwasser, Micali and Rack-o�, in the same paper quoted above [GMR85]. Their paper contained also a perfect zero-knowledge proof for Quadratic Non Residuousity. The perfect zero-knowledge proof systemfor Graph Isomorphism is due to Goldreich, Micali and Wigderson [GMW86]. The latterpaper is also the source to the zero-knowledge proof systems for all languages in NP , usingany (nonunifomly) one-way function. (Brassard and Cr�epeau have later constructed alter-native zero-knowledge proof systems for NP , using a stronger intractability assumption,speci�cally the intractability of the Quadratic Residuousity Problem.)The cryptographic applications of zero-knowledge proofs were the very motivation fortheir presentation in [GMR85]. Zero-knowledge proofs were applied to solve cryptographicproblems in [FMRW85] and [CF85]. However, many more applications were possible onceit was shown how to construct zero-knowledge proof systems for every language in NP .In particular, general methodologies for the construction of cryptographic protocols haveappeared in [GMW86,GMW87].Credits for the advanced sectionsThe results providing upper bounds on the complexity of languages with perfect zero-knowledge proofs (i.e., Theorem 4.5.5) are from Fortnow [For87] and Aiello and Hastad[AH87]. The results indicating that one-way functions are necessary for non-trivial zero-knowledge are from Ostrovsky and Wigderson [OWistcs93]. The negative results con-cerning parallel composition of zero-knowledge proof systems (i.e., Proposition 4.5.6 andTheorem 4.5.8) are from [GKr89b].The notions of witness indistinguishability and witness hiding, were introduced anddeveloped by Feige and Shamir [FSwitness].Author's Note: FSwitness has appeared in STOC90.The concept of proofs of knowledge originates from the paper of Goldwasser, Micali andRacko� [GMR85]. First attempts to provide a de�nition to this concept appear in Fiat,Feige and Shamir [FFS87] and Tompa and Woll [TW87]. However, the de�nitions providedin both [FFS87,TW87] are not satisfactory. The issue of de�ning proofs of knowledge hasbeen extensively investigated by Bellare and Goldreich [BGknow], and we follow their sug-gestions. The application of zero-knowledge proofs of knowledge to identi�cation schemeswas discovered by Feige, Fiat and Shamir [FFS87]. The Fiat-Shamir Identi�cation schemeis based on the zero-knowledge proof for Quadratic Residousity of Goldwasser, Micali andRacko� [GMR85].Author's Note: Reference Fiat and Shamir in Crypto86(?)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.12. MISCELLANEOUS 239Computationally sound proof systems (i.e., arguments) were introduced by Brassard,Chaum, and Cr�epeau [BCC87]. Their paper also presents perfect zero-knowledge argumentsfor NP based on the intractability of factoring. Naor et. al. [NOVY92] showed how toconstruct perfect zero-knowledge arguments for NP based on any one-way permutation,and Construction 4.8.3 is taken from their paper. The polylogarithmic-communicationargument system for NP (of Subsection 4.8.4) is due to Kilian [K92].Author's Note: NOVY92 has appeared in Crypto92, and K92 in STOC92.The round-e�cient zero-knowledge proof systems for NP , based on any clawfree collec-tion, is taken from Goldreich and Kahan [GKa89]. The round-e�cient zero-knowledge ar-guments for NP , based on any one-way function, uses ideas of Feige and Shamir [FSconst](yet, their original construction is di�erent).Non-interactive zero-knowledge proof systems were introduced by Blum, Feldman andMicali. The constructions presented in Section 4.10 are due to Feige, Lapidot and Shamir[FLSnizk].Author's Note: BFM has appeared in STOC88, and FLSnizk in FOCS90Multi-prover interactive proofs were introduced by Ben-Or, Goldwasser, Kilian andWigderson [BGKW88]. Their paper also presents a perfect zero-knowledge two-prover proofsystem for NP . The perfect zero-knowledge two-prover proof for NP , presented in Sec-tion 4.11, follows their ideas but explicitly states the properties of the two-sender commit-ment scheme in use. Consequently, we observe that (su�ciently many) parallel repetitionsof this speci�c proof system does decease the error probability to a negligible one. Thisobservation escaped Feige, Lapidot and Shamir, who, being aware of the problematics ofparallel repetitions (of general multi-prover systems), suggested an alternative construc-tion [FLSmip].Author's Note: add FLSmip reference4.12.2 Suggestion for Further ReadingFor further details on interactive proof systems see Section [missing(eff-ip.sec)]. Theinterested reader may also want to look at Section [missing(eff-pcp.sec)], which isdevoted to probabilistically checkable proof systems, which in turn are an o�-spring ofinteractive proof systems.A uniform-complexity treatment of zero-knowledge was given by Goldreich [Guniform].In particular, it is shown how to use (uniformly) one-way functions to construct interactiveproof systems for NP so that it is infeasible to �nd instances on which the prover leaksknowledge.Zero-knowledge proof systems for any language in IP , based on (nonuniformly) one-wayfunctions, were constructed by Impagliazzo and Yung [IY87] (yet, their paper contains nodetails). An alternative construction is presented by Ben-Or et. al. [Betal88].

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

240 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSFurther reading related to the advanced sectionsAdditional negative results concerning zero-knowledge proofs of restricted types appear inGoldreich and Oren [GO87]. The interested reader is also directed to Boppana, Hastad andZachos [BHZ87] for a proof that if every language in coNP has a constant-round interactiveproof system then the Polynomial-Time Hierarchy collapses to its second level.Round-e�cient perfect zero-knowledge arguments for NP , based on the intractability ofthe Discrete Logarithm Problem, appears in a paper by Brassard, Cr�epeau and Yung [BCY].A round-e�cient perfect zero-knowledge proof system for Graph Isomorphism appears in apaper by Bellare, Micali and Ostrovsky [BMO89].A much more e�cient construction of non-interactive proof systems for NP , based onthe same assumptions as [FLSnizk], has appeared in a paper of Kilian and Petrnak [KP96].Author's Note: KP96 has appeared in ECCC and will appear in Jour of Cryp-tology.An extremely e�cient perfect zero-knowledge two-prover proof system for NP , appearsin a paper by Dwork et. al. [DFKNS]. Speci�cally, only logarithmic randomness and commu-nication complexities are required to get a constant error probability. This result uses thecharacterization of NP in terms of low complexity multi-prover interactive proof systems,which is further discussed in Section [missing(eff-pcp.sec)].Parallel repetition is problematic both in the multi-prover setting (cf., [Feige,Raz])and in the computational-sound setting (cf., [BIN]).The paper by Goldwasser, Micali and Racko� [GMR85] contains also a suggestion for ageneral measure of \knowledge" revealed by a prover, of which zero-knowledge is merely aspecial case. For further details see Goldreich and Petrank [GPkc].Author's Note: GPkc has appeared in FOCS91. See also a recent work by Petrankand Tardos (in FOCS96).Author's Note: The discussion of knowledge complexity may be better �t intothe missing chapter on complexity.4.12.3 Open ProblemsOur formulations of zero-knowledge (e.g., perfect zero-knowledge as de�ned in De�ni-tion 4.3.1) is di�erent from the standard de�nition used in the literature (e.g., De�ni-tion 4.3.5). The standard de�nition refers to expected polynomial-time machines rather tostrictly (probabilistic) polynomial-time machines. Clearly, De�nition 4.3.1 implies De�ni-tion 4.3.5 (see Exercise 8), but it is open whether the converse hold.Author's Note: Base nizk and arguments on (more) general assumptions.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.12. MISCELLANEOUS 2414.12.4 ExercisesExercise 1: Decreasing the error probability in interactive proofs:Prove Proposition 4.2.7.Guideline: Execute the weaker interactive proof su�ciently many times, using inde-pendently chosen coin tosses for each execution, and rule by an appropriate threshold.Observe that the bounds on completeness and soundness need to be e�ciently com-putable. Be careful when demonstrating the soundness of the resulting veri�er. Thestatement remains valid regardless of whether these repetitions are executed sequentiallyor \in parallel", yet demonstrating that the soundness condition is satis�ed is much easierin the �rst case.Exercise 2: the role of randomization in interactive proofs { part 1: Prove that if L hasan interactive proof system in which the veri�er is deterministic then L 2 NP. (Hint:Note that if the veri�er is deterministic then the entire interaction between the prover and the veri�eris determined by the prover.)Exercise 3: the role of randomization in interactive proofs { part 2: Prove that if L has aninteractive proof system then it has one in which the prover is deterministic. Further-more, prove that for every (probabilistic) interactive machine V there exists a deter-ministic interactive machine P so that for every x the probability Pr (hP; V i(x)=1)equals the supremum of Pr (hB; V i(x)=1) taken over all interactive machines B.Guideline: For each possible pre�x of interaction, the prover can determine a messagewhich maximizes the accepting probability of the veri�er V .Exercise 4: the role of randomization in interactive proofs { part 3: Consider a modi�-cation, to the de�nition of an interactive machine, in which the random-tapes of theprover and veri�er coincide (i.e., intuitively, both use the same sequence of coin tosseswhich is known to both of them). Prove that every language having such a modi�edinteractive proof system has also an interactive proof system (of the original kind) inwhich the prover sends a single message.Exercise 5: the role of error in interactive proofs: Prove that if L has an interactive proofsystem in which the veri�er never (not even with negligible probability) accepts astring not in the language L then L 2 NP .Guideline: De�ne a relation RL such that (x; y) 2 RL if y is a full transcript of aninteraction leading the veri�er to accept the input x. We stress that y contains theveri�er's coin tosses and all the messages received from the prover.Exercise 6: error in perfect zero-knowledge simulators - part 1: Consider modi�cationsof De�nition 4.3.1 in which condition 1 is replaced by requiring, for some functionq(�), that Pr(M�(x)=?) < q(jxj). Assume that q(�) is polynomial-time computable.Show that if for some polynomials, p1(�) and p2(�), and all su�ciently large n's, q(n) >

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

242 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS1=p1(n) and q(n) < 1�2�p2(n) then the modi�ed de�nition is equivalent to the originalone. Justify the bounds placed on the function q(�). (Hint: Invoke the simulator su�cientlymany times.)Exercise 7: error in perfect zero-knowledge simulators - part 2: Consider the following al-ternative to De�nition 4.3.1, by which we say that (P; V) is perfect zero-knowledge if forevery probabilistic polynomial-time interactive machine V � there exists a probabilisticpolynomial-time algorithm M� so that the following two ensembles are statisticallyclose (i.e., their statistical di�erence is negligible as a function of jxj)� fhP; V �i(x)gx2L� fM�(x)gx2LProve that De�nition 4.3.1 implies the new de�nition.Exercise 8: (E) error in perfect zero-knowledge simulators - part 3: Prove that De�ni-tion 4.3.1 implies De�nition 4.3.5.Exercise 9: error in computational zero-knowledge simulators: Consider an alternative toDe�nition 4.3.2, by which the simulator is allowed to output the symbol ? (with prob-ability bounded above by, say, 12) and its output distribution is considered conditionedon its not being ? (as done in De�nition 4.3.1). Prove that this alternative de�nitionis equivalent to the original one (i.e., to De�nition 4.3.2).Exercise 10: alternative formulation of zero-knowledge - simulating the interaction: Provethe equivalence of De�nitions 4.3.2 and 4.3.3.Exercise 11: Prove that De�nition 4.3.8 is equivalent to a version where the auxiliary inputto the veri�er is rexplicitly bounded in length. That is, the alternative zero-knowledgeclaus readsfor every polynomial `, and for every probabilistic polynomial-time interactivemachine V �, there exists a probabilistic ploynomial-time algorithm M�, sothat the following two ensembles are computationally indistinguishable� fhP (y); V �(z)i(x)gx2L;y2PL(x);z2f0;1g`(jxj)� fM�(x; z)gx2L;z2f0;1g`(jxj)Note that it is immaterial here whether the running-time of M� (as well as the dis-tinguishing gap) is considered as a function of jxj or as a function of j(x; z)j.Exercise 12: Present a simple probabilistic polynomial-time algorithm which simulatesthe view of the interaction of the veri�er described in Construction 4.3.6 with theprover de�ned there. The simulator, on input x 2 GI , should have output which isdistributed identically to viewPGIVGI (x).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.12. MISCELLANEOUS 243Exercise 13: Prove that the existence of bit commitment schemes implies the existence ofone-way functions.Guideline: Following the notations of De�nition 4.4.1, consider the mapping of (v; s; r)to the receiver's view (r;m). Observe that by the unambiguity requirement range ele-ments are very unlikely to have inverses with both possible values of v. The mapping ispolynomial-time computable and an algorithm that inverts it, even with success proba-bility that is not negligible, can be used to contradict the secrecy requirement.Exercise 14: Considering the commitment scheme of Construction 4.4.4, suggest a cheat-ing sender that induces a receiver-view (of the commit phase) being both� indistinguishable from the receiver-view in interactions with the prescribed sender;� with very high probability, neither a possible 0-commitment nor a possible 1-commitment.(Hint: the sender just replies with a uniformly chosen string.)Exercise 15: using Construction 4.4.4 as a commitment scheme in Construction 4.4.6:Prove that when the commitment scheme of Construction 4.4.4 is used in the G3Cprotocol then resulting scheme remains zero-knowledge. Consider the modi�cationsrequired to prove Claim 4.4.7.2.Exercise 16: more e�cient zero-knowledge proofs for NP : Following is an outline for aconstant-round zero-knowledge proof for the Hamiltonian Circuit Problem (HCP),with acceptance gap 12 (between inputs inside and outside of the language).� Common Input: a graph G=(V;E);� Auxiliary Input (to the prover): a permutation , over V , representing the orderof vertices along a Hamiltonian Circuit;� Prover's �rst step: Generates a random isomorphic copy of G, denoted G0 =(V;E 0). (Let � denote the permutation between G and G0). For each pair(i; j) 2 V 2, the prover sets ei;j = 1 if (i; j) 2 E 0 and ei;j = 0 otherwise. Theprover computes a random commitment to each ei;j. Namely, it uniformly choosessi;j 2 f0; 1gn and computes ci;j = Csi;j(ei;j). The prover sends all the ci;j's tothe veri�er;� Veri�er's �rst step: Uniformly selects � 2 f0; 1g and sends it to the prover;� Prover's second step: Let � be the message received from the veri�er. If � = 1then the prover reveals all the jV j2 commitments to the veri�er (by reveal-ing all si;j's), and sends along also the permutation �. If � = 0 then theprover reveals only jV j commitments to the veri�er, speci�cally those corre-sponding to the Hamiltonian circuit in G0 (i.e., the prover sends s�(1);�((2)),s�(2);�((3)),...,s�(n�1);�((n)), s�(n);�((1))).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

244 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSComplete the description of the above interactive proof, evaluate its acceptance proba-bilities, and provide a sketch of the proof of the zero-knowledge property (i.e., describethe simulator). If you are really serious provide a full proof of the zero-knowledgeproperty.Exercise 17: strong reductions: Let L1 and L2 be two languages in NP , and let R1 and R2be binary relations characterizing L1 and L2, respectively. We say that the relationR1 is Levin-reducible to the relation R2 if there exist two polynomial-time computablefunctions f and g such that the following two conditions hold.1. standard requirement: x 2 L1 if and only if f(x) 2 L2.2. additional requirement: For every (x; w) 2 R1, it holds that (f(x); g(w)) 2 R2.We call the above reduction after Levin, who upon discovering, independently ofCook and Karp, the existence of NP-complete problem, made a stronger de�nitionof a reduction which implies the above. Prove the following statements1. Let L 2 NP and let LR be the generic relation characterizing L (i.e., �x a non-deterministic machine ML and let (x; w) 2 RL if w is an accepting computationof ML on input x). Let RSAT be the standard relation characterizing SAT (i.e.,(x; w) 2 RSAT if w is a truth assignment satisfying the CNF formula x). Provethat RL is Levin-reducible to RSAT .2. Let RSAT be as above, and let R3SAT be de�ned analogously for 3SAT . Provethat RSAT is Levin-reducible to R3SAT .3. Let R3SAT be as above, and let RG3C be the standard relation characterizingG3C (i.e., (x; w) 2 RG3C if w is a 3-coloring of the graph x). Prove that R3SATis Levin-reducible to RG3C.4. Levin-reductions are transitive.Exercise 18: Prove the existence of a Karp-reduction of L to SAT that, when consideredas a function, can be inverted in polynomial-time. Same for the reduction of SAT to3SAT and the reduction of 3SAT to G3C. (In fact, the standard Karp-reductionshave this property.)Exercise 19: applications of Theorem 4.4.10: Assuming the existence of non-uniformlyone-way functions, present solutions to the following cryptographic problems:1. Suppose that party R received over a public channel a message encrypted usingits own public-key encryption. Suppose that the message consists of two partsand party R wishes to reveal to everybody the �rst part of the message but notthe second. Further suppose that the other parties want a proof that R indeedrevealed the correct contents of the �rst part of its message.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4.12. MISCELLANEOUS 2452. Suppose that party S wishes to send party R a signature to a publicly knowndocument so that only R gets the signature but everybody else can verify thatsuch a signature was indeed sent by S. (We assume that all parties share a publicchannel.)3. Suppose that party S wishes to send party R a commitment to a partially speci-�ed statement so that R remains oblivious of the unspeci�ed part. For example,S may wish to commit itself to some standard o�er while keeping the amounto�ered secret.Exercise 20: on knowledge tightness: Evaluate the knowledge tightness of Construction 4.4.6,when applied logarithmically many times in parallel.Exercise 21: error reduction in computationally sound proofs { part 1: Given a computa-tionally sound proof (with error probability 13) for a language L construct a compu-tationally sound proof with negligible error probability (for L).Guideline: Use sequentil repetitions. Parallel repetitions may fail to reduce computational-soundness in some cases (see [BIN]).Exercise 22: commitment schemes { an impossibility result: Prove that there exists notwo-party protocol which simultaneously satis�es the perfect secrecy requirement ofDe�nition 4.8.2 and the (information theoretic) unambiguity requirement of De�ni-tion 4.4.1.Exercise 23: alternative formulation of black-box zero-knowledge: We say that a proba-bilistic polynomial-time oracle machine M is a black-box simulator for the prover Pand the language L if for every (not necessarily uniform) polynomial-size circuit fam-ily fBngn2N , the ensembles fhP;Bjxji(x)gx2L and fMBjxj(x)gx2L are indistinguishableby (non-uniform) polynomial-size circuits. Namely, for every polynomial-size circuitfamily fDngn2N , every polynomial p(�), all su�ciently large n and x 2 f0; 1gn \ L,jPr (Dn(hP;Bni(x))=1)� Pr �Dn(MBn(x))=1� j < 1p(n)Prove that the current formulation is equivalent to the one presented in De�ni-tion 4.5.7.Exercise 24: Prove that the protocol presented in Construction 4.4.6 is indeed a black-boxzero-knowledge proof system for G3C.Guideline: Use the formulation presented above.Author's Note: First draft (execpt Section 4.10) written mainly in 1992. Sec-tion 4.10 written in February 1996.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

246 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSExtracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

