Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Part 11

Basic Utilities

247

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Chapter 5

Encryption Schemes

Upto the 1970’s, Cryptography was understood as the art of building encryption schemes.
Since then, other tasks such as message authentication have been recorgnized as at least as
central to Cryptography. Yet, the construction of encryption schemes remains, and is likely
to remain, a central enterprise of Cryptography.

In this chapter we review the well-known notions of private-key and public-key encryp-
tion schemes. More importantly, we define what is meant by saying that such schemes are
secure. We then turn to some basic constructions. In particular, we show that the widely
used construction of a “stream cipher” yields a secure (private-key) encryption, provided
that the “key sequence” is generated using a pseudorandom generator. We actually ad-
vocate an alternative construction which uses a pseudorandom function. We then turn to
public-key encryption schemes and present constructions based on any trapdoor one-way
permutation. Finally, we discuss “dynamic” notions of security such as robustness against
chosen ciphertext attacks and non-malleability.

Author’s Note: Currently the write-up contains only a very rough draft for the
first 2.5 sections of this chapter.

5.1 The Basic Setting

Loosely speaking, encryption schemes are supposed to enable private communication be-
tween parties which communicate over an insecure channel. Thus, the basic setting consists
of a sender, a recetver, and an insecure channel which may be tapped by an adversary. The
goal is to allow the sender to transfer information to the receiver, over the insecure channel,
without letting the adversary figure out this information. Thus, we distinguish between the
actual (secret) information which the receiver wishes to transmit and the messages sent over
the insecure communication channel. The former is called the plaintext, whereas the latter
is called the ciphertext. Clearly, the ciphertext must differ from the plaintext or else the
adversary can easily obtain the plaintext by tapping the channel. Thus, the sender must

249

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

250 CHAPTER 5. ENCRYPTION SCHEMES

transform the plaintext into a ciphertext so that the receiver can retreive the plaintext
from the ciphertext, but the adversary cannot do so. Clearly, something must distinguish
the receiver (who is able to retreive the plaintext from the corresponding ciphertext) from
the adversary (who cannot do so). Specifically, the receiver know something which the
adversary does not know. This thing is called a key.

An encryption scheme consists of a method of transforming plaintexts to ciphertexts and
vice versa, using adequate keys. These keys are essential to the ability to effect these trans-
formations. We stress that the encryption scheme itself (i.e., the encryption/decryption
algorithms) may be known to the adversary, and its security relies on the assumption that
the adversary does not know the keys. Formally, we need to consider a third algorithm;
namely, a probabilistic algorithm used to generate keys. This algorithm must be probabilis-
tic (or else, by invoking it the adversary obtains the very same key used by the receiver).

5.1.1 Overview

In accordance with the above, an encryption scheme consists of three algorithms. These
algorithms are public (i.e., known to all parties). The obvious algorithms are the encryp-
tion algorithm, which transforms plaintexts to ciphertexts, and the decryption algorithm,
which transforms ciphertexts to plaintexts. By the discussion above, it is clear that the
decription algorithm must employ a key which is known to the receiver but is not known
to the adversary. This key is generated using a third algorithm, called the key generator.
Furthermore, it is not hard to see that the encryption process must also depend on the key
(or else messages sent to one party can be read by a different party who is also a potential
receiver). Thus, the key-generation algorithm is used to produce a pair of (related) keys,
one for encryption and one for decryption. The encryption algorithm, given an encryption
key and a plaintext, produces a plaintext which when fed to the decryption algorithm, with
the corresponding decryption key, returns the original plaintext. We stress that knowledge
of the decryption key is essential for the latter transformation.

A fundamental distiction between encryption schemes refers to this relation between
the two keys. The simpler (and older) notion assumes that the encryption key equals the
decryption key. Such schemes are called private-key (or symmetric). To use a private-key
scheme, the legitimate parties must first agree on the secret key. This can be done by
having one party generate the key at random and send it to the other party using a channel
which is assumed to be secure. A crucial point is that the key is generated indepdendently
of the plaintext, and so it can be generated and exchanged prior to the plaintext even
being determined. Thus, private-key encryption is a way of extending a private channel
over time: If the parties can use a private channel today (e.g., they are currently in the
same physical location) but not tommorow, then they can use the private channel today to
exchange a secret key which they may use tomorrow for secret communication. A simple
example of a private-key encryption scheme is the one-time pad. The secret key is merely a
uniformly chosen sequence of n bits, and an n-bit long ciphertext is produced by XORing
the plaintext, bit-by-bit, with the key. The plaintext is recovered from the ciphertext in the

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.1. THE BASIC SETTING 251

same way. Clearly, the one-time pad provides absolute security. However, its usage of the
key is inefficient; or, put in other words, it requires keys of length comparable to the total
length of data communicated. In the rest of this chapter we will only discuss encryption
schemes where n-bit long keys allow to communicated data of length greater than n (but
still polynomial in n).

A new type of encryption schemes has emerged in the 1970’s. In these schemes, called
public-key (or asymmetric), the decryption key differs from the encryption key. Furthermore,
it is infeasible to find the decryption key, given the encryption key. These schemes enable
secure communication without ever using a secure channel. Instead, each party applies
the key-generation algorithm to produce a pair of keys. The party, called P, keeps the
decryption key, denoted dp, secret and publishes the encryption key, denoted ep. Now, any
party can send P private messages by encrypting them using the encryption key ep. Party
P can decrypt these messages by using the decryption key dp, but nobody else can do so.

5.1.2 A Formulation of Encryption Schemes

We start by defining the basic mechanism of encryption schemes. This definition says
nothing about the security of the scheme (which is the subject of the next section).

Definition 5.1.1 (encryption scheme): An encryption scheme is a triple, (G, FE,D), of
probabilistic polynomial-time algorithms satisfying the following two conditions

1. On input 17, algorithm G (called the key generator) outputs a pair of bit strings.

2. For every pair (e,d) in the range of G(1"), and for each a € {0,1}*, algorithms E
(encryption) and D (decryption) satisfy

Pr(D(d, E(e,a))=a)=1
where the probability is over the internal coin tosses of algorithms E and D.

The integer n serves as the security parameter of the scheme. Fach (e,d) in the range of
G(1™) consitutes a pair of corresponding encryption/decryption keys. The string F(e,a) is
the encryption of the plaintext o € {0,1}* using the encryption key e, whereas D(d, 3) is
the decryption of the ciphertext § using the decryption key d.

Observe that Definition 5.1.1 does not distinguish private-key encryption schemes from
public-key ones. The difference between the two types is introduced in the security defini-
tions: In a public-key scheme the “breaking algorithm” gets the encryption key (i.e., €) as
an additional input (and thus e # d follows); while in private-key schemes e is not given to
the “breaking algorithm” (and thus one may assume, without loss of generality, that e = d).

Notation: In the sequel we write F («a) instead of F(e,a) and D4(3) instead of D(d, 3).
Whenever there is little risk of confusion, we drop these subscripts. Also, we let G'(1")
(resp., G'5(1™)) denote the first (resp., second) element in the pair G(17).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

252 CHAPTER 5. ENCRYPTION SCHEMES

Comments: The above definition may be relaxed in several ways without significantly
harming its usefulness. For example, we may relax Condition (2) and allow a negligible
decryption error (e.g., Pr(D(G5(1"), E(G1(17),a)) # a) < 27"). Alternatively, one may
postulate that Condition (2) holds for all but a negligible measure of the key-pairs gener-
ated by G(1"). At least one of these relaxations is essential for all popular suggestions of
encryption schemes.

Another relaxation consists of restricting the domain of possible plaintexts (and cipher-
texts). For example, one may restrict Condition (2) to a’s of length {(n), where { : N— N is
some fixed function. Given a scheme of the latter type (with plaintext length (), we may con-
struct a scheme as in Definition 5.1.1 by breaking pliantexts into blocks of length ((n) and
applying the restricted scheme separetly to each block. For more details see Section 5.2.4.

5.2 Security of Encryption Schemes

In this section we present two fundamental definitions of security and prove their equiv-
alence. The first definition, called semantic security, is the most natural one. Semantic
security is a computational complexity analogue of Shannon’s definition of perfect privacy.
Loosely speaking, an encryption scheme is semantically secure if the encryption of a message
does not yield any information on the message to an adversary which is computationally
restricted (e.g., to polynomial-time). The second definition has a more technical flavour. It
interprets security as the infeasibility of distinguishing between encryptions of a given pair
of messages. This definition is useful in demonstrating the security of a proposed encryption
scheme, and for arguments concerning properties of cryptographic protocols which utilize
an encryption scheme.

We stress that the definitions presented below go way beyond saying that it is infeasible
to recover the plaintext from the ciphertext. The latter statement is indeed a minimal
requirement from a secure encryption scheme, but we claim that it is way too weak a
requirement: An encryption scheme is typically used in applications where obtaining spe-
cific partial information on the plaintext endangers the security of the application. When
designing an application-independent encryption scheme, we do not know which partial in-
formation endangers the application and which does not. Furthermore, even if one wants
to design an encryption scheme tailored to one’s own specific applications, it is rare (to say
the least) that one has a precise characterization of all possible partial information which
endanger these applications. Thus, we require that it is infeasible to obtain any information
about the plaintext from the ciphertext. Furthermore, in most applications the plaintext
may not be uniformly distributed and some a-priori information regarding it is available to
the adversary. We require that the secrecy of all partial information is preserved also in
such a case. That is, even in presence of a-priori information on the plaintext, it is infeasible
to obtain any (new) information about the plaintext from the ciphertext (beyond what is
feasible to obtain from the a-priori information on the plaintext). The definition of semantic
security postulates all of this.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.2. SECURITY OF ENCRYPTION SCHEMES 253

To simplify the exposition, we adopt a non-uniform formulation. Namely, in the security
definitions we expand the domain of efficient adversaries/algorithms to include polynomial-
size circuits (rather than only probabilistic polynomial-time machines). Likewise, we make
no computation restriction regarding the probability distribution from which messages are
taken, nor regarding the a-priori information available on these messages. We note that
employing such a non-uniform formulation (rather than a uniform one) may only strengthen
the definitions; yet, it does weaken the implications proven between the definitions, since
these (simpler) proofs make free usage of non-uniformity.

5.2.1 Semantic Security

Loosely speaking, semantic security means that whatever can be efficiently computed from
the ciphertext, can be efficiently computed given only the length of the plaintext. Note
that this formulation does not role out the possibility that the length of the plaintext
can be inferred from the ciphertext. Indeed, some information about the length of the
plaintext must be revealed by the ciphertext (see Exercise 2). We stress that other than
information about the length of the plaintext, the ciphertext is required to yield nothing
about the plaintext. Thus, an adversary gains nothing by intercepting ciphertexts sent
between communicating parties who use a semantically secure encryption scheme.

We augment this formulation by requiring that the above remains valid even in presence
of auxiliary partial information about the plaintext. Namely, whatever can be efficiently
computed from the ciphertext and additional partial information about the plaintext, can be
efficiently computed given only the length of the plaintext and the same partial information.

Secrurity holds only for plaintexts of length polynomial in the security parameter. This
is captured below by the restriction | X,,| = poly(n). Note that we cannot hope to provide
computational security for plaintexts of unbounded length in the security parameter (see
Exercise 1). Likewise, we restrict the functions f and h to be polynomially-bounded; that
is, | ()], |h(2)] = poly(e]):

The difference between private-key and public-key encryption schemes is manisfested in
the definition of security. In the latter the adversary, trying to obtain information on the
plaintext, is given the encryption key whereas in the former it is not. Thus, the difference
between these schemes amounts to a difference in the adversary model (considered in the
definition of security). We start by presenting the definition for private-key encryption
schemes.

Definition 5.2.1 (semantic security — private-key): An encryption scheme, (G, E, D), is
semantically secure (in the private-key model) if there exists a polynomail-time transforma-
tion, T, so that for every polynomial-size circuit family {C,}, for every ensemble { X, },en,
with | X,| = poly(n), every pair of polynomially-bounded functions f,h : {0,1}* — {0,1}*,
every polynomial p(-) and all sufficiently large n

Pr (Col Eayumy (X0), 1% R(X,)) = (X)) < Pr(CL(1% A(X,)) = F(X,)) +]ﬁ

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

254 CHAPTER 5. ENCRYPTION SCHEMES

where C, ! T(C,) is the circuit produced by T on input C,,. (The probability in the above
terms is taken over X, as well as over the internal coin tosses of algorithms G and F.)

The function h provides both algorithms with partial information on the plaintext X,,. In
addition both algorithms get the length of X,,. These algorithms then try to guess the value
f(X,); namely, they try to infer information about the plaintext X,. Loosely speaking, in
semantically secure encryption scheme the ciphertext does not help in this inference task.
That is, the success probability of any efficient algorithm (i.e., the circuit family {C,})
which is given the ciphertext, can be matched, upto a negligible fraction, by the success
probability of an efficient algorithm (i.e., the circuit family {C7}) which is not given the
ciphertext at all. (See Exercise 8.)

Definition 5.2.1 refers to private-key encryption schemes. To derive a definition of secu-
rity for public-key encryption schemes, the public-key (i.e., G;(1")) should be given to the
algorithms as an additional input. That is,

Definition 5.2.2 (semantic security — public-key): An encryption scheme, (G, E, D), is
semantically secure (in the public-key model) if there exists a polynomail-time transforma-
tion, T', so that for every polynomial-size circuit family {C,}, and for every { X, },em,)R,
p(+) and n as in Definition 5.2.1

Pr (Cn(G1(1n)7 EGl(ln)(Xn)v 1|Xﬂ|7h(Xn)) :f(Xn))

< Pr(CiG(M XL R(X,) = F(Xa)) +]ﬁ

where C! < T(C,,).

For sake of simplicity, we refer to an encryption scheme which is semantically secure in the
private-key (resp., public-key) model as to a semantically-secure private-key (resp., public-key)
encryption scheme.

5.2.1.1 * Discussion of some definitional choices

We discuss some fine points regarding Definitions 5.2.1 and 5.2.2.

Effecient transformation of adversaries. Our definitions require that adversaries cap-
turing what can be inferred from the ciphertext can be effectively transformed into “equiv-
alent” adversaries which operate without being given the ciphertext. This is stronger than
only requiring that corresponding “equivalent” adversaries exist. The strenthening seems
especially appropriate since we are using a non-uniform model of adversary strategies.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.2. SECURITY OF ENCRYPTION SCHEMES 255

Deterministic versus randomized adversaries. Our definitions refer implicitly to
deterministic adversaries (modelled by non-uniform families of circuits which are typically
assumed to be deterministic). This is in accordance with the general thesis by which the
harm of non-uniform adversaries may be maximized by deterministic ones (i.e., by fixing
the “worst” coin-sequence). However, we need to verify that a transformation of adversaries
(as discussed above) referring to deterministic adversaries can be extended to randomized
ones. This is indeed the case; see Exercise 5. (In fact, the above non-uniform formulation
is equivalent to a uniform formulation in which the adversaries are given identical auxiliary
input: See Exercise 4.)

Lack of restrictions on the functions f and g. We do not require that these functions
are even computable. This seems strange at first glance. However, as we shall see in the
sequel (see also Exercise 8), the meaning of semantic security is essentially that the dis-
tribution ensembles (E(X,), X~ A(X,)) and (E(1X=1) 11X 1(X)) are computationally
indistinguishable (and so whatever ', can compute can be computed by C/).

5.2.2 Indistinguishability of Encryptions

The following technical interpratation of security states that it is infeasible to distinguish the
encryptions of two plaintexts (of the same length). That is, such ciphertexts are computa-
tionally indistinguishable as defined in Definition 3.2.2. Again, we start with the private-key
variant.

Definition 5.2.3 (indistinguishability of encryptions — private-key): An encryption scheme,
(G, E, D), has indistinguishable encryptions (in the private-key model) if for every polynomial-
size circuit family {C,}, every polynomial p, all sufficiently large n and every z,y €
{0, 13PN (ie., 2] = |y|) and » € {0,1}Po¥(),

|Pr (Cp(z, Eg,(1my(2))=1) = Pr(Cpn(z, Eg,m(y))=1) | <]ﬁ

The probability in the above terms is taken over the internal coin tosses of algorithms G
and F.

The string z models additional information, on the potential plaintexts, given to the algo-
rithm which tries to distinguish the encryptions of these messages. In fact, the string z can
be incorporated into the circuit C), (so that the circuit models both the adversary’s strategy
and its a-priori information): See Exercise 6.

Author’s Note: Option: define indistinguishable-encryptions without auxiliary
inputs, and explain that non-uniformity takes care of it.

Again, the security definition for public-key encryption schemes can be derived by adding
the public-key (i.e., G1(1")) as an additional input to the algorithm. That is,

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

256 CHAPTER 5. ENCRYPTION SCHEMES

Definition 5.2.4 (indistinguishability of encryptions — public-key): An encryption scheme,
(G, E, D), has indistinguishable encryptions (in the public-key model) if for every polynomial-
size circuit family {C,}, and every p(-), n, x,y and z as in Definition 5.2.3

IPr (Cl(z, G1(17), Egyae)(2))=1) = Pr (Cu(2, G1(1"), Eg,ae)(y))=1) | <]ﬁ

For sake of simplicity, we refer to an encryption scheme which has indistinguishable en-
cryptions in the private-key (resp., public-key) model as to a ciphertext-indistinguishable
private-key (resp., public-key) encryption scheme.

5.2.3 Equivalence of the Security Definitions

The following theorem is stated and proven for private-key encryption schemes. Similar
results hold for public-key encryption schemes (see Exercise 7).

Theorem 5.2.5 : A private-key encryption scheme is semantically secure if and only if it
has indistinguishable encryptions.

Let (G, F, D) be an encryption scheme. We formulate a proposition for each of the two di-
rections of the above theorem. Both propositions are in fact stronger than the corresponding
direction stated in Theorem 5.2.5. The more useful direction is stated first: It asserts that
the technical interpration of security, in terms of ciphertext-indistinguishability, implies the
natural notion of sematic security. Thus, the following proposition yields a methodology
for designing sematically secure encryption schemes — design and prove your scheme to be
ciphertext-indistinguishability, and conclude (by the following) that it is sematically secure.

Proposition 5.2.6 : Suppose that (G, F,D) is a ciphertext-indistinguishable private-key
encryption scheme. Then (G, F, D) is semantically-secure. Furthermore, the conclusion
holds even if the definition of indistinguishable encryptions is restricted to the case where
no auziliary information is given (i.e., z = A).

(In view of the comment above — see Exercise 6 — the furthermore clause follows anyhow
from the main claim.

Proposition 5.2.7 : Suppose that (G, F, D) is a semantically secure private-key encryp-
tion scheme. Then (G, F, D) has indistinguishable encryptions. Furthermore, the conclu-
ston holds even if the definition of semantic security is restricted to the special case where
h is a constant function, X,, is uniformly distributed over a set containing two strings, and
the transformation T is not even required to be computable.

Observe that in the latter special case, it suffices to consider a function f which assigns ‘1’
to one string in the support of X, and ‘0’ to the other.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.2. SECURITY OF ENCRYPTION SCHEMES 257

Proof of Proposition 5.2.6: Suppose that (G, E, D) has indistinguishable encryptions
(in the restricted sense of no auxiliary input; i.e., z = X). We show that (G, F, D) is seman-
tically secure by constructing for every polynomial-size circuit family {C,,}, a polynomial-
size circuit family {C/} so that for every {X,},cn, f and h, {C]} guesses f(X,) from
(11Xl h(X,,)) essentially as good as {C,} guesses f(X,) from (E(X,), 1=l h(X,)).

Let €, be a circuit which tries to infer partial information (i.e., the value f(X,)) from
the encryption of the message X, (11*=l and a-priori information A(X,)). Namely, on
input F(a) and (1% h(a)), the circuit C,, tries to guess f(a). We construct a new circuit,
C!, which performs as well without getting the input E(a). The new circuit consists of
invoking C,, on input Eg, 1) (11*1) and (11, h()). That is, C}, invokes the key-generator ¢Z
(on input 1), obtains an encryption-key e = G1(1"), invokes the encryption algorithm with
key e and (“dummy”) plaintext 1!/, obtaining a ciphertext which it feeds to C), together
with the inputs (1!, A(a)). Observe that C’ can be efficiently computed from C,, (i.e., by
augmenting it with the unifom circuit for computing algorithms G and F).

Indistinguishability of encryptions will be used to prove that C/ performs as well as
C,. Note that the construction of C/ does not depend on the functions & and f or on the
distribution of messages to be encrypted.

Claim: Let {C!} be as above. Then, for any polynomial p, and all sufficiently large n’s

Pr (Col Eayuey (X0), 1% R(X,)) = (X)) < Pr(CL(% A(X,)) = F(X,)) +]ﬁ

Proof: To simplify the notations, let us incorporate 1!°l into 2(a). Using the definition of
C7, we can rewritten the claim as asserting

Pr(Co(Eossoy (X) HCX)= (X)) < Pr (€l ooy (1P AX.) = FL60) s

Assume, to the contradiction that for some polynomail p and infinitely many n’s the above
inequality is violated. Then, for each such n, we have E(A(X,,)) > 1/p(n), where

Alz) =

Pr (ColEg,1m(2), h(2)) = f(2)) = Pr (Co(Ea,am (1), h(z) = f(2))| (5.1)

Let z,, € {0, 1}P°¥(™) he a string for which A(z) is maximum, and so A(z,) > 1/p(n). Using
this ,, we introduce a new circuit D,,, which incorporates f(z,) and h(z,), and operates
as follows. On input g = E(«), the circuit D,, invokes C, (5, h(z,)) and outputs 1 if and
only if C,, outputs the value f(z,). (Otherwise, D, outputs 0.) Clearly,

Pr(Dn(Ea,am(a))=1) = Pr(Ca(Eq,an(a), h{wn)) = f(2n))

and so

‘Pr (Dn(Eg,(1m(2,))=1) — Pr (DH(EGl(ln)(llxnl)):l)‘ >]ﬁ

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

258 CHAPTER 5. ENCRYPTION SCHEMES

in contradiction to our hypothesis that F has indistinguisahble encryptions. Thus, the claim
follows. O

Proposition 5.2.6 follows.

Proof of Proposition 5.2.7: We now show that if (G, £/, D) has distinguishable encryp-
tions then it is not semantically secure (not even in the restricted sense mentioned in the
furthermore-clause of the proposition). Towards this end, we assume that there exists a
polynomial p, a polynomial-size circuit family {D,}, such that for infinitely many n’s there
exists x,,y, € {0,1}P°¥) 50 that

Pr(Dn(Eg,1ny(2n))=1) = Pr(Dn(Eg,am)(yn))=1)| >) (5.2)

(Recall that the auxiliary input z in Definition 5.2.3 can be incorporated into the circuit:
See Exercise 6.) We define a random variable X, which is uniformly distributed over
{Zn,yn}, and f:{0,1}*— {0,1} so that f(z,) =1 and f(y,) = 0. Note that f(X,) =1
with probability 1/2 and is 0 otherwise. (We may define h(a) = 11l and supply it to C,
defined below, but this has no real effect.) We will show that D,, can be transformed into
a polynomial-size circuit C,, which guesses the value of f(X,), from the encryption of X,
and does so significantly better that with probability % This violates (even the restricted
form of) semantic security, since no circuit (regardless of its size) can guess f(X,) better
than with probability 1/2 when only given 11%-I (since given the constant value 11X=l the
value of f(X,) is uniformly distributed over {0,1}).
Let us assume, without loss of generality, that

1
Pr(Dn(Eg,1v)(wn))=1) > Pr(Da(Eg,an(ya))=1) + o) (5.3)
We modify D, so that on input § = F(a), the new circuit C,, feeds D,, with input 5 and

outputs 1 if D, outputs 1 (otherwise,), outputs 0). It is left to analyze the probability
that C,(E(X,,)) equals f(X,).

Pr (Col oK)= F(X0) = 5 -Pr{CulBoyan(X0) = F(X)X, =)
by P (B, an(X.) = F(X) X, = 5,)
_ % [P (Co(Egyny(22))=1) + Pr(Co(Eg,ny(9n)) =0)]
_ % [Pr(Co(Bayamy(22))=1) + 1 = Pr(Co(Ba,1my(yn)) =1)]
1 1
~ 2 + 2p(n)

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.2. SECURITY OF ENCRYPTION SCHEMES 259

where the inequality is due to Eq. (5.3). In contrast, as observed above, for every circuit C},
Pr(C (1) = f(X,)) < . This contradicts the hypothesis that the scheme is semantically
secure (even in the restricted sense mentioned in the furthermore-clause of the proposition).
Thus, the poroposition follows. [

5.2.4 Multiple Messages

The above definitions only refer to the security of a scheme which is used to encrypt a
single plaintext (per key generated). Clearly, in reality, we want to use encryption schemes
to encrypt many messages with the same key. We show that in the public-key model,
security in the single-message setting (discussed above) implies security in the multiple-
message setting (defined below). This is not necessarily true for the private-key model. Let
us start by presenting the definitions.

Definition 5.2.8 (semantic security — mulitple messages): An encryption scheme, (G, E, D),
s semantically secure for multiple messages in the private-key model if there exists a polynomail-
time transformation, T, so that for every polynomail t(-) and every polynomial-size circuit
family {C,,}, for every ensemble {X,, }nen, with | X,| = t(n)-poly(n), every pair of functions
foh:{0,1}* — {0, 1}, every polynomial p(-) and all sufficiently large n

< Pr(C (X)) = (X)) +

where C!, = T(C,), X, = (X, ., XU and E(X,) € E(XWY), ..., E(X{0)), An
encryption scheme, (G, E, D), is semantically secure for multiple messages in the public-key

model if for t(-), {Cw}, {Ch}, {Xn}ner, foh, p(-) and n as above
Pr (Cu(G1(1"), By (X, 5L B(X,0)) = (X))

< Pr(C;(G1(1”),1'7n',h(7n))=f(_n))+

Definition 5.2.9 (indistinguishability of encryptions — mulitple messages): An encryption
scheme, (G, E,D), has indistinguishable encryptions for multiple messages in the private-
key model if for every polynomail t(-), every polynomial-size circuit family {C,}, every
polynomial p, all sufficiently large n and every xy, ..., Tyn) Yis-os Yon) € 10, 1}pelv(n) gnd
z € {0, 1}polyn),
_ — 1
IPr{Cn(z, Eg,an(Z))=1) = Pr{Cu(z, Fg,am(9))=1) | < —
(ol Faan(@)=1) = Pr (Calz Foram(@) =1) | < -5
where T = (T4, ..., Tein))s § = (Y14 Yi(n)), and E. is as in Definition 5.2.8. An encryption
scheme, (G, E, D), has indistinguishable encryptions for multiple messages in the public-key

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

260 CHAPTER 5. ENCRYPTION SCHEMES

model if for t(-), {Cn}, p, n and 1, ..., %40y, Y15 -y Ye(n), 2 a5 above

[Pr (Ca(G1(1"), 2, By (7)) =1) = Pr (Co(G1(17), 2, By (5)) =1) | < e

The equivalence of Definitions 5.2.8 and 5.2.9 can be established analogously to the proof
of Theorem 5.2.5. Thus, proving that single-message security implies multiple-message
security for one definition of security yields the same for the other. We may thus concentrate
on the ciphertext-indistinguishability definitions. We first consider public-key encryption
schemes.

Theorem 5.2.10 : A public-key encryption scheme has indistinguishable encryptions for
multiple messages (i.e., satisfies Definition 5.2.9 in the public-key model) if and only if it
has indistinguishable encryptions for a single message (i.e., satisfies Definition 5.2.4).

Proof: Clearly, multiple-message security implies single-message security as a special case.
The other direction follows by adapting the proof of Theorem 3.2.6 to the non-uniform case.

Suppose, towards the contradiction, that there exist a polynomail #(-), a polynomial-
size circuit family {C,}, and a polynomial p, such that for infinitely many n’s, there exists
T1seees Ta(n)y Y1y oo Ye(n) € {0, 1}P°W) s0 that

P (CLG) B (211=1) = P (GG) B () =1) | >

(By the above, we may assume without loss of generality that z = A. Alternatively, one
may incorporate the z’s into the circuit family.) Let us consider such a generic n and the
corresponding sequences Ty, ..., Tyn), Y1, -+ Ye(n)- Ve now use a hybrid argument. We start
by observing that there exists an ¢ € {0, ...,#(n)— 1} so that

‘Pr (CH(GI(]‘”)7EGl(ln)(B(i))):1) —Pr (C”(Gl(ln)’FGI(”)(BUH))):1)‘ ” W

where R 4f Ty Ty Yig1 o Yin)- We now construct a circuit D,, which on input e
and [operates as follows. (The constructivon relies on D,’s knowledge of the encryption-
key and hence the public-key model is essential for it.) For every j < ¢, the circuit D,
generates an encryption of z; using the encryption key e. Similarly, for every j > i + 1,
the circuit D, generates an encryption of y; using the encryption key e. Let us denote
the resulting ciphertexts by 81, ..., 8i, Biyo, ..., Bin). Finally, D, invokes €, on input e and
B s Bis B Brsrs s Bry

Now, suppose that 5 is a (random) encryption of z;4; with key e; that is, 8 = F.(2;41).
Then, D,(e,3) = Cy(e,h+Y), where equality means that the two random variables are
identically distributed. Similarly, for 8 = FE.(yi41) we have D,(e,3) = C,(e, h). Thus,
D, (given the encryption key) distinguishes the encryption of z,4, from the encryption

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.2. SECURITY OF ENCRYPTION SCHEMES 261

of yi11, in contradiction to our hypothesis that (G, £, D) is a ciphertext-indistinguishable
public-key encryption scheme. The theorem follows. [

In contrary to Theorem 5.2.10, ciphertext-indistinguishability for a single message does
NOT necessarily imply ciphertext-indistinguishability for multiple messages in the private-
key model. A counterexample to such a claim follows.

Proposition 5.2.11 Suppose that there exist pseudorandom generators (robust against
polynomial-size circuits). Then, there exists a private-key encryption scheme which sat-
isfies Definition 5.2.3 but does not satisfy Definition 5.2.9.

Proof: We start with the construction of the private-key encryption scheme. The encryp-
tion/decryption key for security parameter n is a uniformly distributed n-bit long string,
denoted s. To encrypt a ciphertext, z, the encryption algorithm uses the key s as a seed for
a pseudorandom generator, denoted ¢, which stretches seeds of length n into sequences of
length |z|. The ciphertext is obtained by a bit-by-bit exclusive-or of and ¢(s). Decryption
is done in the obvious manner.

It is easy to see that this encryption scheme satisfies Definition 5.2.3. Specifically,
suppose that a circuit C,, can distinguish encryptions of from encryptions of y (relative
to security parameter n), where |z| = |y| = poly(n). That is,

1

PrCo(z @ g(Ua))=1) = PHCAly 9(Un) = 1)] > —s

where U, is uniformly distributed over {0,1}". Since Pr(C (2@ Us)=1) = Pr(C,,(y D U)y)),

we have without loss of generality

1

IPr(Ca(@ & g(Un)) =1) = Pr(Cule & Up) = 1) > 50

Incorporating 2 into the circuit €', we obtain a circuit which distinguishes random sequences
from sequences generated by g, in contradiction to our hypothesis.

Finally, we observe that the above encryption scheme is no secure when encrypting two
messages. Intuitively, any plaintext-ciphertext pair yields a corresponding prefix of the
pseudorandom sequence, and knowledge of this prefix violates the security of additional
plaintexts. For concreteness, let us show that given the encryption of the plaintexts 0" and
U, , we can retreive U,. On input the ciphertexts f3;, 35, the adversary, knowing that the
first plaintext is 0", first retreives the pseudorandom sequence (i.e., it is just ;) and next
retreives the second plaintext (i.e., by computing 32 & 51). W

Comment: Indeed, as we show below, the above construction can be modified to yield
a private-key encryption secure for multiple message encryptions. All that is needed is to
make sure that the same part of the pseudorandom sequence is never used twice.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

262 CHAPTER 5. ENCRYPTION SCHEMES

5.3 Constructions of Secure Encryption Schemes

In this subsection we present constructions of secure private-key and public-key encryp-
tion schemes. Here and throughout this section security means semantic security in the
multiple-message setting. Recall that this is equivalent to ciphertext-indistinguishability
(in the multiple-message setting). Also recall that for public-key schemes it suffices to
prove ciphertext-indistinguishability (in the single-message setting). The main results of
this section are

¢ Using any (non-uniformly robust) pseudorandom function, one can construct secure
private-key encryption schemes (in the multiple message setting). Recall, that the
former can be constructed using any (non-uniformly strong) one-way function.

e Using any (non-uniform strong) trapdoor one-way permutation, one can construct
secure public-key encryption schemes (in the multiple message setting).

In addition, we review some popular suggestions for private and public-key encryption
schemes.

Probabilistic Encryption: Before starting, we note that a secure public-key encryption
scheme must employ a probabilistic (i.e., randomized) encryption algorithm. Otherwise,
given the encryption key as (additional) input, it is easy to distinguish the encryption of
the all-zero message from the encryption of the all-ones message. The same holds for private-
key encryption schemes when considering the multi-message setting.! For example, using
a deterministic (private-key) encryption algorithm allows the adversary to distinguish two
encryptions of the same message from the encryptions of a pair of different messages. This
explains the linkage between the above robust security definitions and the randomization
paradigm (discussed below).

5.3.1 Stream-Ciphers

Author’s Note: Define and discuss the notion of a stream-cipher.

Author’s Note: The definition of a stream-cipher deviates from our formulation
of encryption schemes (in having memory — counter).

It is common practice to use “pseudorandom generators” as a basis for private-key
stream ciphers. We stress that this is a very dangerous practice when the “pseudorandom
generator” is easy to predict (such as the linear congruential generator or some modifications

! We note that the above does not hold with respect to private-key schemes in the single-message setting.
(Hint: the private-key can be augmented to include a seed for a pseudorandom generator, the output of which
can be used to eliminate randomness from the encryption algorithm. Question: why does the argument fail
in the multi-message private-key setting? Same for the public-key setting).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 263

of it which output a constant fraction of the bits of each resulting number). However, this
common practice becomes sound provided one uses pseudorandom generators (as defined
in Chapter 3).

Author’s Note: Ellaborate.

5.3.2 Block-Ciphers

Many encryption schemes are more conveniently presented by first presenting a restricted
type of encryption scheme which we call a block-cipher.? In contrast to encryption schemes
(as defined in Definition 5.1.1), block-ciphers (defined below) are only required to operate
on plaintext of a specific length (which is a function of the security parameter). As we
shall see, given a secure block-cipher we can easily construct a (general) secure encryption
scheme.

Definition 5.3.1 (block-cipher): A block-cipher is a triple, (G, E, D), of probabilistic polynomial-
time algorithms satisfying the following two conditions

1. On input 1™, algorithm G outputs a pair of bit strings.

2. There exists a polynomially-bounded function { : N — N, called the block length, so
that for every pair (e,d) in the range of G(17), and for each o € {0, 1}, algorithms
E and D satisfy
Pr(D(d, E(e,a))=a)=1

All conventions are as in Definition 5.1.1.

Typically, either {(n) = O(n) or {(n) = 1. Analogously to Definition 5.1.1, the above
definition does not distinguish private-key encryption schemes from public-key ones. The
difference between the two types is captured in the security definitions, which remain as
they were above with the modification that we only consider plaintexts of length ¢(n). For
example, the analogue of Definition 5.2.1 reads

Definition 5.3.2 (semantic security — private-key block-ciphers): A block-cipher, (G, E, D),
with block length (is semantically secure (in the private-key model) if there exists a polynomail-

time transformation, T, so that for every polynomial-size circuit family {C,}, for every
ensemble { X, },en, with | X,| = {(n), and f,h, p(-) and n as in Definition 5.2.1

1
[X x| — 1 (11 Xxl —
Pr(Cal By (Xa) 1P MY) = J(X0)) < Pr(CLAMAL (X)) = F(X0) + 2
where C, ! T(C,) is the circuit produced by T on input C,,. (The probability in the above
terms is taken over X, as well as over the internal coin tosses of algorithms G and F.)

2 Doing so we abuse standard terminology by which a block-cipher must, in addition to operating on
plaintext of specific length, produce ciphertexts equal in length to the length of the corresponding plaintexts.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

264 CHAPTER 5. ENCRYPTION SCHEMES

There are several obvious ways of transforming a block-cipher into a general encryption
scheme. The basic idea is to break the plaintexts (for the resulting scheme) into blocks and
encode each block separately by using the block-cipher. Thus, the security of the block-
cipher (in the multiple-message settings) implies the security of the resulting encryption
scheme. The only technicality we need to deal with is how to encrypt plaintexts of length
which is not an integer multiple of the block-length (i.e., {(n)). This is easily resolved by
padding (the last block).

Construction 5.3.3 Let (G, E, D) be a block-cipher with block length function (. We con-
struct an encryption scheme, (G', E', D') as follows. The key-generation algorithm, G’, is
identical to G. To encrypt a message o (with encryption key e generated under security
parameter n), we break it into consequetive blocks of length {(n), while possibly augmenting
the last block. Let o, ..., a; be the resulting blocks. Then
def a
El(a) = (1 E(ay), ..., E(ay))
To decrypt the ciphertext (1™, 34, ..., 5;) (with decryption key d), we let a; = Dy(p;) for
1= 1,....t, and let the plaintext be the m-bit long prefix of the concatanated string ay - - - a.

The above construction yields ciphertexts which reveal the exact length of the plaintext.
Recall that this is not prohibited by the definitions of security. However, we can easily
construct encryption schemes which hide some information about the length of the plaintext;
see examples in Exercise 9. (Recall that we cannot hope to entirely hide the length.) Also,
note that the above construction applies even to the special case where £ is identically 1.

Theorem 5.3.4 Let (G, F,D) and (G',E',D’) be as in Contruction 5.3.3. Suppose that
the former a secure private-key (resp., public-key) block-cipher. Then the latter is a secure
private-key (resp., public-key) encryption scheme.

Proof Sketch: We use the definition of ciphertext-indistinguishability. That is, assuming
towards the contradiction that one can distinguish ciphertexts (or multiple ciphertexts) of
(G, E', D), one obtains a distinguisher for multiple-ciphertexts of (G, £, D). O

5.3.3 Private-key encryption schemes

Secure private-key encryption schemes can be easily constructed using any efficiently com-
putable pseudorandom function ensemble (see Section 3.6). We first present a block cipher
with block length {(n) = n. The key generation algorithm consists of selecting a seed,
denoted s, for such a function, denoted f,. To encrypt a message x € {0,1}" (using key s),
the encryption algorithm uniformly selects a string r € {0, 1} and produces the ciphertext
(r,z @ fi(r)). To decrypt the ciphertext (r,y) (using key s), the decryption algorithm just
computes y & fi(r). Formally,

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 265

Construction 5.3.5 Let F' = {F,} be an efficiently computable function ensemble and
let I and V' be the algorithms associated with it. That is, 1(1") selects a function with
distribution F,, and V(i,z) returns fi(x), where f; is the function associated with the string
i. We define a private-key block cipher, (G, E, D), (with block length {(n) = n) by letting
G(17) = I(1™), letting E;(z) = (r,V(i,7) @) where z € {0,1}" and r is uniformly chosen
in {0,1}". Finally, we let D;(r,y) =V (i,r) Dy

Author’s Note: Define and discuss pseudoradomness wrt circuits in the PRG
chapter.

Theorem 5.3.6 Let F' and (G, E, D) be as in Contruction 5.3.5, and suppose that F is
pseudorandom with respect to polynomail-size circuits. Then (G, E, D) is secure.

Proof Sketch: The proof consists of two steps (suggested as a general methodology in
Section 3.6):

1. Prove that an idealized version of the scheme, in which one uses a uniformly selected
function f:{0,1}"+—{0,1}", rather than the pseudorandom function f, is secure (in
the sense of ciphertext-indistinguishability).

2. Conclude that the real scheme (as presented above) is secure (since otherwise one
could distinguish a pseudorandom function from a truly random one).

Comments. Note that we could have gotten rid of the randomization if we had allowed
the encryption algorithm to be history dependent (e.g., use a counter in the role of r). Fur-
thermore, if the encryption scheme is used for FIFO communication between the parties and
both can maintain the counter value then there is no need for the sender to send the counter
value. On the other hand, the common practice of using pseudorandom permutations as
block-ciphers® is NOT semantically secure (as one can distinguish two encryptions of the
same message from encryptions of two different messages).

5.3.4 Public-key encryption schemes

Author’s Note: Should one present the ineflecient GM82-scheme first?

Author’s Note: The rest of this section is taken from my survey, and needs to be
greatly ellaborated.

® That is, letting E;(z) = pi(x), where p; is the perumtation associated with the string 4.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

266 CHAPTER 5. ENCRYPTION SCHEMES

The randomization paradigm [GM]: To demonstrate this paradigm suppose we have
a trapdoor one-way permutation, {p,}., and a hard-core predicate, b, for it. The key
generation algorithm consists of selecting at random a permutation p, together with a
trapdoor for it: The permutation (or rather its description) serves as the public-key, whereas
the trapdoor serves as the private-key. To encrypt a single bit ¢ (using public key p,), the
encryption algorithm uniformly selects an element, r, in the domain of p, and produces the
ciphertext (p,(r),0 @ b(r)). To decrypt the ciphertext (y,7) (using the private key), the
decryption algorithm just computes 7@ b(p;*(y)) (where the inverse is computed using the
trapdoor (i.e., private-key)). The above scheme is quite wasteful in bandwidth; however,
the paradigm underlying its construction is valuable in practice. For example, it is certainly
better to randomly pad messages (say using padding equal in length to the message) before
encrypting them using RSA than to employ RSA on the plain message. Such a heuristic
could be placed on firm grounds if the following conjecture is supported. That is, assume
that the first n/2 least significant bits of the argument constitute a hard-core function of
RSA with n-bit long moduli. Then, encrypting n/2-bit messages by padding the message
with n/2 random bits and applying RSA (with an n-bit moduli) on the result constitutes a
secure public-key encryption system, hereafter referred to as Randomized RSA.

An alternative public-key encryption scheme is presented in [B1Gw]. The encryption scheme
augments the Construction 3.4.2 (of a pseudorandom generator based on one-way permu-
tations) as follows. The key-generation algorithm consists of selecting at random a permu-
tation p, together with a trapdoor. To encrypt the n-bit string a (using public key p,),
the encryption algorithm uniformly selects an element, s, in the domain of p, and produces
the ciphertext (p2(s), 2 @& Go(s)), where Go(s) = b(s) - b(pa(s))---b(p?~1(s)). (We use the
notation pitt(z) = p.(p'(z)) and p7*tY(z) = pZ(p7i(z)).) To decrypt the ciphertext
(y,2) (using the private key), the decryption algorithm first recovers s = p;"(y) and then
outputs z & G,(s).

Assuming that factoring Blum Integers (i.e., products of two primes each congruent to
3 (mod 4)) is hard, one may use the modular squaring function in role of the trapdoor
permutation above (see [B1Gw,ACGS,VV,FnSn]). This yields a secure public-key encryption
scheme (depicted in Figure 5.1) with efficiency comparable to that of RSA. Recall that RSA
itself is not secure (as it employs a deterministic encryption algorithm), whereas Random-
ized RSA (defined above) is not known to be secure under standard assumption such as
intractability of factoring (or of inverting the RSA function).*

5.4 Stronger notions of security

The security definitions presented above are “static” in the sense that they persive the
adversary as a passive line-tapper who intercepts ciphertexts and tries to figure out in-

*Recall that Randomized RSA is secure assuming that the n/2 least significant bits constitute a hard-core
function for n-bit RSA moduli. We only know that the O(log n) least significant bits constitute a hard-core
function for n-bit moduli [ACGS].

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRY PTOGRAPHY .

5.4. STRONGER NOTIONS OF SECURITY 267

private-key: Two n/2-bit primes p, ¢, each congruent to 3 (mod 4).
public-key: Their product N def Pq.
encryption of message z € {0,1}":
1. Uniformly select so € {1,..., N}.
2. Fori=1,..,n+1, compute s; — s;_; mod N and a; = Ish(s;).
The ciphertext is (sp41,y), where y =z P o102+ op.
decryption of the ciphertext (r,y). Let d = 27" mod ¢(N) [precomputed].
1. Let s; «— r®* mod N.
2. For i =1,..,n, compute o; = Ish(s;) and 8,41 « 57 mod N.

The plaintext is y ® o102 -+ - op.

Figure 5.1: The Blum—Goldwasser Public-Key Encryption Scheme [B1Gw].

formation regarding the corresponding plaintexts. Furthermore, the encrypted messages
are selected obliviously from public information available in the public-key case. In many
setting this basic level of security suffices, but in other settings one may need to consider
more “active” adversaries. Before considering these stronger notions of security, we note
that the above basic definitions also cover the case where the adversary obatins some of the
plaintexts themselves. In this case it is still infeasible for him/her to obtain infromation
about the missing plaintexts (see Exercise 10).

In some settings it is feasible for the adversary to make the sender encrypt a message
of the adversary’s choice, and in some settings the adversary may even make the receiver
decrypt a ciphertext of the adversary’s choice. This gives rise to chosen message attacks
(resp., chosen ciphertext attacks) which are not covered by the above security definitions.
The first two subsections are devoted to these two types of attacks.

We conclude with a discussion of non-mallaebale encryption schemes. Loosely speaking,
these not only disallow the adversary to learn anything about the plaintexts, but also
disallow it to produce ciphertexts of related messages (i.e., given F.() it should be infeasible
to generate an encrypytion of z @ 1|x|).

Author’s Note: This section is yet to be written. The current material is merely
a collection of extracts from my survey.

5.4.1 Chosen plaintext attack

Clearly, a chosen message attack is of no help to an adversary which attacks a public-key (as

it may encrypt messages by itself). But still may select message space based on public-key??
299

See copyright notice.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

268 CHAPTER 5. ENCRYPTION SCHEMES

5.4.2 Chosen ciphertext attack

Author’s Note: HERE we refer to a version where the ciphertext to be cracked
is supplied after the attack... The case where the attack takes place after the
ciphertext is known is dealt in the next subsection.

Clearly, the private-key encryption scheme based on pseudorandom functions (described
above) is secure also against such attacks. Public-key encryption schemes secure against
Chosen Ciphertext Attacks can be constructed, assuming the existence of trapdoor per-
mutations and utilizing non-interactive zero-knowledge proofs (which can be constructed
under this assumption).

5.4.3 Non-malleable encryption schemes

DEFINITION...

It is easy to turn a private-key encryption scheme into a non-malleable one, by using a
message authentication scheme on top. Non-malleable public-key encryption schemes are
known to exist assuming the existence of trapdoor permutation.

5.5 Miscellaneous

Author’s Note: The entire material below is fragmented and tentative.

5.5.1 Historical Notes

The notion of private-key encryption scheme seems almost as ancient as the alphabet itself.
Furthermore, the development of encryption methods went along with the development of
communication media. As the amounts of communication grow, more efflicient and sophis-
ticated encryption methods were required. Computational complexity considerations were
explicitly introduced into the arena by Shannon. In his work [S49], Shannon considered
the classical setting where no computational considerations are present. He showed that in
this information theoretic setting, secure communication of information was possible only
as long as its entropy is lower than the entropy of the key. Thus, if one wishes to have an
encryption scheme which is capable of handling messages with total entropy exceeding the
length of the key then one must settle for a computational relaxion of the secrecy condition.
That is, rather than requiring that the ciphertext yields no information on the plaintext,
one has to require that such information cannot be efficiently computed from the ciphertext.
The latter requirement indeed coincides with the above definition of semantic security.
The notion of public-key encryption scheme was introduced by Diffie and Hellman [DH76].
First concrete candidates were suggested by Rivest, Shamir and Adleman [RSA78] and
by Merkle and Hellman [MH78]. However, satisfactory definitions of security were pre-
sented only a few years afterwards, by Goldwasser and Micali [GM82]. The two defini-

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.5. MISCELLANEOUS 269

tions presented in Section 5.2 originate in [GM82], where it was shown that ciphertext-
indistinguishability implies semantic security. The converse direction is due to [MRS].

Regarding the seminal paper of Goldwasser and Micali [GM82], a few additional com-
ments are due. Arguably, this paper is the basis of the entire rigorous approach to cryp-
tography (presented in the current book). The paper’s title (“Probabilistic Encryption”) is
due to the author’s realization that public-key encryption schemes in which the encryption
algorithm is deterministic cannot be secure in the sense defined in their paper. Indeed,
this led the authors to (explicitly) introduce and justify the paradigm of “randomizing the
plaintext” as part of the encryption process. Technically speaking, the paper only presents
security definitions for public-key encryption schemes, and furthermore some of these def-
initions are syntactically different from the ones we have presented above (yet, all these
definitions are equivalent). Finaly, the term “ciphertext-indistinguishability” used here re-
places the (generic) term “polynomial-security” used in [GM82]. Some of our modifications
have already appeared in [G89a].

The first construction of a secure encryption scheme based on a simple complexity
assumption was given by Goldwasser and Micali [GM82]. Specifically, they constructed
a public-key encryption scheme assuming that deciding Quadratic Residiousity modulo
composite numbers is intractable. The condition was weaken by Yao [Y82] who prove that
any trapdoor permutation will do. The efficient scheme presented in Figure XXX is due to
Blum and Goldwasser [B1Gw]. The security is based on the fact that the least significant
bit of the modular squaring function is a hard-core predicate, provided that factoring is
intractable, a result mostly due to [ACGS].

For decades, it has been common practice to use “pseudorandom generators” in the
design of stream ciphers. As pointed out by Blum and Micali [BM84], this practice is sound
provided that one uses pseudorandom generators (as defined in Chapter [pseudo.chap]).
The construction of private-key encryption schemes based on pseudorandom functions is
due to [GGM84b].

Author’s Note: From this point on — a mess...

CREDITS for CONS [GM82] and [B1Gw,ACGS],

CREDIT FOR — Public-key encryption schemes secure against Chosen Ciphertext At-
tacks can be constructed, assuming the existence of trapdoor permutations and utilizing
non-interactive zero-knowledge proofs [NY90] (which can be constructed under this assump-
tion [FLS]).

The study of non-malleability of the encryption schemes, was initiated in [DDN]. Non-
malleable public-key encryption schemes are known to exist assuming the existence of trap-
door permutation [DDN].

5.5.2 Suggestion for Further Reading

For discussion of Non-Malleable Cryptography, which actually transcends the domain of
encryption, see [DDN].

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

270 CHAPTER 5. ENCRYPTION SCHEMES

5.5.3 Open Problems

Author’s Note: upgrade CMA-encryption.

5.5.4 Exercises

Exercise 1: Fncryption schemes with unbounded-length plaintext: Suppose that the defi-
nition of semantic security is modified so that no bound is placed on the length of
plaintexts. Prove that in such a case there exists no sematically secure public-key
encryption scheme. (Hint: A plaintext of length exponential in the security parameter allows the
adversary to find the decryption key by exhuastive search.)

Exercise 2: Encryption scheme must leak information about the length of the plaintext:
Suppose that the definition of semantic security is modified so that the algorithms
are not given the length of the plaintext. Prove that in such a case there exists no
sematically secure encryption scheme.

Guideline: First show that for some polynomial p, |E(17)] < p(n), whereas for some
z € {0,1}7™) we have Pr(|E(z)| < p(n)) < 1/2.

Exercise 3: Deterministic encryption schemes: Prove that in order to be sematically se-
cure a public-key encryption scheme must have a probabilistic encryption algorithm.
(Hint: Otherwise, one can distinguish the encryptions of two candidate plaintexts by computing the

unique ciphertext for each of them.)

Exercise 4: Prove that the following definition, in which we use probabilistic polynomial-
time algorithms with auxiliary inputs, is equivalent to Definition 5.2.1.

For every probabilistic polynomial-time algorithm A, there exists a proba-
bilistic polynomial-time algorithm B, so that for every ensemble { X}, v,
with | X, | = poly(n), every pair of polynomially-bounded functions f,h :
{0,1}* — {0,1}*, every polynomial p(-), all sufficiently large n and every
> € {0, 1)7),

Pr (A(2, Egyum(X,), 1% h(X,)) = F(X,))
—

)
. B 1
() =05

Same for public-key encryption.

Guideline: The alternative view of non-uniformity, discussed in Section 1.3, is useful
here. That is, we can view a circuit family as a sequence of advices given to a universal
machine. Thus, the original definition states that advices for a machine which gets the
ciphertext can be efficiently transformed into advices for a machine which does not get
the ciphertext. However, we can incorporate the transformation program into the second

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.5. MISCELLANEOUS 271

universal algorithm, and so the advices are identical for both machines (and can be viewed
as the auxiliary string z in the new formulation). Thus, the original definition is implied
by the new definition. To close the gap between the two definitions, one only needs to
observe that it suffices to consider one fixed universal machine, A, in the new definition

(as any adversarial strategy can be coded in the auxiliary input to this universal machine).

Exercise 5: Prove that a sematically-secure (private-key) encryption scheme satisfies the
same requirements with respect to randomized circuits. That is, there exists a polynomail-
time transformation, 7', so that for every polynomial-size randomized circuit family
{C..}, for every ensemble { X, },cn, with |X,,| = poly(n), every pair of polynomially-
bounded functions f,h :{0,1}* — {0,1}*, every polynomial p(-) and all sufficiently
large n

Pr (ol Eay(1m (X, XL B(X,0) = F(X,)) < Pr (CL(IFL (X)) = F(X,) +]ﬁ

where C') ! (C,) is the circuit produced by 7" on input C,. Same for public-key
encryption.

Guideline: Given a randomized family {C,,} as above, consider all possible families of
deterministic circuits derived by fixing a sequence of coins for each C). Note that you
should provide one family of randomized circuits, {C},}, to match the randomized family
{Cr}. The alternative formulation of Exercise 4 is useful here (as one may incorporate

and extract the coin-sequence in the auxiliary input).

Exercise 6: Prove that Definition 5.2.3 remains unchanged when restricting the string z
to be empty. (Same for Definition 5.2.4.) (Hint: incorporate z in the circuit C,.)

Exercise 7: FEquivalence of the security definitions in the public-key model: Prove that a
public-key encryption scheme is semantically secure if and only if it has indistinguish-
able encryptions.

Exercise 8: Another equivalennt definition of security: Prove that an encryption scheme,
(G, E,D),is (semantically) secure (in the private-key model) if and only if the follow-
ing holds.

There exists a polynomail-time transformation, 7', so that for every polynomial-
size circuit family {C,}, for every ensemble { X, },cn, with | X,,| = poly(n),
the following two ensembles are computationally indistribguishable.

1. {CH(EGl(ln)(Xn)v1lxn|)}nEN

Formulate and prove an analogous claim for the public-key model.

Exercise 9: Hiding partial information about the length of the plaintext: Using an arbitrary
block cipher, construct an encryption scheme which

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

272 CHAPTER 5. ENCRYPTION SCHEMES

1. Hides the length of the plaintext upto a factor of 2.
2. Hides the length of the plaintext upto an additive term of n.

Prove that the resulting encryption scheme inherents the security of the original block-
cipher.

(Hint: Just use an adequate padding convention, making sure that it always yields correct decoding.)

Exercise 10: Known plaintext attacks: Loosely speaking, in a known palintext attack on
a private-key (resp., public-key) encryption scheme the adversary is given some plain-
text/ciphertext pairs in addition to some extra ciphertexts (without corresponding
plaintexts). Semantic security in this setting means that whatever can be efficiently
computed about the missing plaintexts, can be also efficiently computed given only
the length of these plaintexts.

1. Provide formal definitions of security for private-key/public-key in both the
single-message and multiple-message settings.

2. Prove that any secure public-key encryption scheme is also secure in the presence
of known plaintext attack.

3. Prove that any private-key encryption scheme which is secure in the multiple-
message setting is also secure in the presence of known plaintext attack.

Exercise 11: Length parameters: Assuming the existence of a secure public-key (resp.,
private-key) encryption scheme, prove the existence of such scheme in which the length
of keys equal the security parameter. Show that the length of ciphertexts may be a
fixed polynomial in the length of the plaintext.

Author’s Note: First draft written mainly in 1997.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Chapter 6

Digital Signatures and Message
Authentication

The difference between message authentication and digital signatures is analogous to the
difference between private-key and public-key encryption schemes. In this chapter we define
both type of schemes and the security problem associated to them. We then present several
constructions. We show how to construct message authentication schemes using pseudoran-
dom functions, and how to construct signature schemes using one-way permutations (which
do not necessarily have a trapdoor).

hPlan
\input{sg-def}/ %/ Definitions of Unforgable Signatures
heviiii i and Message Authentication

\input{sg-aut}}%4/% Construction of Message Authentication
\input{sg-con1}}) Construction of Signatures by [NY]

heviiii i tools: one-time signature, aut-trees, one-way hashing
\input{sg-hash}/) * Collision-free hashing:
he oo def, construct by clawfree, applications (sign., etc.)

\input{sg-con2}/) * Alternative Construction of Signatures [EGM]
\input{sg-misc}%) As usual: History, Reading, Open, Exercises

Author’s Note: Temporary material from survey

6.1 Signatures — Brief Summary from my Essay

Again, there are private-key and public-key versions both consisting of three efficient algo-
rithms: key generation, signing and verification. (Private-key signature schemes are com-
monly referred to as message authentication schemes or codes (MAC).) The difference be-
tween the two types is again reflected in the definition of security. This difference yields

273

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

274 CHAPTER 6. DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

different functionality (even more than in the case of encryption): Public-key signature
schemes (hereafter referred to as signature schemes) may be used to produce signatures
which are universally verifiable (given access to the public-key of the signer). Private-key
signature schemes (hereafter referred to as message authentication schemes) are only used
to authenticate messages sent among a small set of mutually trusting parties (since ability
to verify signatures is linked to the ability to produce them). Put in other words, message
authentication schemes are used to authenticate information sent between (typically two)
parties, and the purpose is to convince the receiver that the information was indeed sent
by the legitimate sender. In particular, message authentication schemes cannot convince a
third party that the sender has indeed sent the information (rather than the receiver having
generated it by itself). In contrast, public-key signatures can be used to convince third
parties: A signature to a document is typically sent to a second party so that in the future
this party may (by merely presenting the signed document) convince third parties that the
document was indeed generated/sent/approved by the signer.

6.1.1 Definitions

We consider very powerful attacks on the signature scheme as well as a very liberal notion
of breaking it. Specifically, the attacker is allowed to obtain signatures to any message of its
choice. One may argue that in many applications such a general attack is not possible (as
messages to be signed must have a specific format). Yet, our view is that it is impossible
to define a general (i.e., application-independent) notion of admissible messages, and thus
a general /robust definition of an attack seems to have to be formulated as suggested here.
(Note that at worst, our approach is overly cautious.) Likewise, the adversary is said to
be successful if it can produce a valid signature to ANY message for which it has not asked
for a signature during its attack. Again, this defines the ability to form signatures to
possibly “nonsensical” messages as a breaking of the scheme. Yet, again, we see no way
to have a general (i.e., application-independent) notion of “meaningful” messages (so that
only forging signatures to them will be consider a breaking of the scheme).

Definition 6.1.1 (unforgeable signatures [GMRi]):

o A chosen message attack is a process which on input a verification-key can obtain
signatures (relative to the corresponding signing-key) to messages of its choice.

o Such an attack is said to succeeds (in existential forgery) if it outputs a valid signature
to a message for which it has NOT requested a signature during the attack.

o A signature scheme is secure (or unforgeable) if every feasible chosen message attack
succeeds with at most negligible probability.

We stress that plain RSA (alike plain versions of Rabin’s scheme [R79] and DSS [DSS])
is not secure under the above definition. However, it may be secure if the message is

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. SIGNATURES — BRIEF SUMMARY FROM MY ESSAY 275

“randomized” before RSA (or the other schemes) is applied (cf., [BRsign]). Thus, the
randomization paradigm (see Section 5.3) seems pivotal here too.

6.1.2 Constructions

Message authentication schemes can be constructed using pseudorandom functions (see [GGM2]
or the better constructions in [BKR,BGR,BCK]). However, as noted in [BCK2], an extensive
usage of pseudorandom functions seem an overkill for achieving message authentication,
and more efficient schemes may be obtained based on other cryptographic primitives. We
mention two approaches:

1. Fingerprinting the message using a scheme which is secure against forgery provided
that the adversary does not have access to the scheme’s outcome (e.g., using Universal
Hashing [CW]), and “hiding” the result using a non-malleable scheme (e.g., a private-
key encryption or a pseudorandom function). (Non-malleability is not required in
certain cases; see [WC].)

2. Hashing the message using a collision-free scheme (cf., [D87,D89]), and authenticating
the result using a MAac which operates on (short) fixed-length strings [BCK2].

Three central paradigms in the construction of signature schemes are the “refreshing” of the
“effective” signing-key, the usage of an “authentication tree” and the “hashing paradigm”.

The refreshing paradigm [GMRi]: To demonstrate this paradigm, suppose we have a
signature scheme which is robust against a “random message attack” (i.e., an attack in which
the adversary only obtains signatures to randomly chosen messages). Further suppose that
we have a one-time signature scheme (i.e., a signature scheme which is secure against an
attack in which the adversary obtains a signature to a single message of its choice). Then,
we can obtain a secure signature scheme as follows: When a new message is to be signed,
we generate a new random signing-key for the one-time signature scheme, use it to sign the
message, and sign the corresponding (one-time) verification-key using the fixed signing-key
of the main signature scheme! (which is robust against a “random message attack”) [EGM].
We note that one-time signature schemes (as utilized here) are easy to construct (see, for
example [M87]).

The tree paradigm [M80,GMRi]: To demonstrate this paradigm, we show how to con-
struct a general signature scheme using only a one-time signature scheme (alas one where
an 2n-bit string can be signed w.r.t an n-bit long verification-key). The idea is to use the
initial singing-key (i.e., the one corresponding to the public verification-key) in order to
sign/authenticate two new/random verification keys. The corresponding signing keys are

! Alternatively, one may generate the one-time key-pair and the signature to its verification-key ahead of
time, leading to an “off-line/on-line” signature scheme [EGM].

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

276 CHAPTER 6. DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

used to sign/authenticate four new/random verification keys (two per a signing key), and
so on. Stopping after d such steps, this process forms a binary tree with 29 leaves where
each leaf corresponds to an instance of the one-time signature scheme. The signing-keys at
the leaves can be used to sign the actual messages, and the corresponding verification-keys
may be authenticated using the path from the root. Pseudorandom functions may be used
to eliminate the need to store the values of intermediate vertices used in previous signa-
tures [G868]. Employing this paradigm and assuming that the RSA function is infeasible
to invert, one obtains a secure signature scheme [GMRi,G86] in which the 7*® message can
be signed/verified in time 2log, i slower than plain RSA. Using a tree of large fan-in and
agssuming that RSA is infeasible to invert, one may obtain a secure signature scheme [DN]
which for reasonable parameters is only 5 times slower than plain RSA (alas uses a much
bigger key).? We stress that plain RSA is not a secure signature scheme, whereas the se-
curity of its randomized version (mentioned above) is not known to be reducible to the
assumption that RSA is hard to invert.

The hashing paradigm: A common practice is to sign real documents via a two stage
process: First the document is hashed into a (relatively) short bit string, and next the basic
signature scheme is applied to the resulting string. We note that this heuristic becomes
sound provided the hashing function is collision-free (as defined in [D87]). Collision-free
functions can be constructed assuming the intractability of factoring [D87]. One may
indeed postulate that certain off-the-shelf products (as MD5 or SHA) are collision-free, but
such assumptions need to be tested (and indeed may turn out false). We stress that using a
hashing scheme in the above two-stage process without evaluating whether it is collision-free
is a very dangerous practice.

A useful variant on the above paradigm is the use of Universal One-Way Hash Func-
tions (as defined in [NY89]), rather than the collision-free hashing used above. In such
a case a new hash function is selected per each application of the scheme, and the basic
signature scheme is applied to both the (succinct) description of the hash function and to
the resulting (hashed) string. (In contrast, when using a collision-free hashing function,
the same function — the description of which is part of the signer’s public-key — is used in
all applications.) The advantage of using Universal One-Way Hash Functions is that their
security requirement seems weaker than the collision-free condition (e.g., the former may
be constructed using any one-way function [R90], whereas this is not known for the latter).

A plausibility result: By [NY89,R90] signature schemes exist if and only if one-way
functions exist. Unlike the constructions of signature schemes described above, the known
construction of signature schemes from arbitrary one-way functions has no practical signifi-
cance [R90]. It is indeed an important open problem to provide an alternative construction

2This figure refers to signing up-to 1,000,000,000 messages. The scheme requires a universal set of system
parameters consisting of 1000-2000 integers of the size of the moduli. We believe that in some applications
the storage/time trade-off provided by [DN] may be preferred over [GMRi,G86].

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. SIGNATURES — BRIEF SUMMARY FROM MY ESSAY 277

which may be practical and still utilize an arbitrary one-way function.

6.1.3 Some Suggestions for Further Reading

For a definitional treatment of signature schemes the reader is referred to [GMRi] and [P].
Easy to understand constructions appear in [BeM,EGM,DN]. Variants on the basic model
are discussed in [P] and in [C82,JL0]. For discussion of message authentication schemes
(MACs) the reader in referred to [BCK2].

[BCK] M. Bellare, R. Canetti and H. Krawczyk. Pseudorandom functions Revisited: The
Cascade Construction and its Concrete Security. In 37th IEEFE Symposium on Foun-
dations of Computer Science, pages 514-523, 1996.

[BCK2] M. Bellare, R. Canetti and H. Krawczyk. Keying Hash Functions for Message
Authentication. In Crypto96, Springer Lecture Notes in Computer Science (Vol. 1109),
pages 1-15.

[BGR] M. Bellare, R. Guerin and P. Rogaway. XOR MACs: New Methods for Message
Authentication using Finite Pseudorandom Functions. In Crypto95, Springer-Verlag
Lecture Notes in Computer Science (Vol. 963), pages 15-28.

[BKR] M. Bellare, J. Kilian and P. Rogaway. The Security of Cipher Block Chaining.
In Crypto94, Springer-Verlag Lecture Notes in Computer Science (Vol. 839), pages
341-358.

[BRsign] M. Bellare and P. Rogaway. The Exact Security of Digital Signatures: How to
Sign with RSA and Rabin. In PuroCrypt96, Springer Lecture Notes in Computer
Science (Vol. 1070).

[CW] L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer and
System Science, Vol. 18, 1979, pages 143-154.

[C82] D. Chaum. Blind Signatures for Untraceable Payments. In Crypto82, Plenum Press,
pages 199-203, 1983.

[D87] I. Damgard. Collision Free Hash Functions and Public Key Signature Schemes. In
FuroCrypt87, Springer-Verlag, Lecture Notes in Computer Science (Vol. 304), pages
203-216.

[D89] I. Damgard. A Design Principle for Hash Functions. In Crypto89, Springer-Verlag
Lecture Notes in Computer Science (Vol. 435), pages 416-427.

[DN] C. Dwork, and M. Naor. An Efficient Existentially Unforgeable Signature Scheme
and its Application. To appear in Journal of Cryptology. Preliminary version in
Crypto94.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

278 CHAPTER 6. DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

[EGM] S. Even, O. Goldreich and S. Micali. On-line/Off-line Digital signatures. Journal
of Cryptology, Vol. 9, 1996, pages 35-67.

[G86] O. Goldreich. Two Remarks Concerning the GMR Signature Scheme. In Crypto86,
Springer-Verlag Lecture Notes in Computer Science (Vol. 263), pages 104-110, 1987.

[GGM2] O. Goldreich, S. Goldwasser, and S. Micali. On the Cryptographic Applications
of Random Functions. In Crypto84, Springer-Verlag Lecture Notes in Computer Sci-
ence (Vol. 263), pages 276-288, 1985.

[GMRIi] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks. STAM Journal on Computing, April 1988,
pages 281-308.

[JLO] A. Juels, M. Luby and R. Ostrovsky. Security of Blind Digital Signatures. In
Crypto97, Springer Lecture Notes in Computer Science (Vol. 1777).

[M80] R.C. Merkle. Protocols for public key cryptosystems. In Proc. of the 1980 Sympo-
stum on Security and Privacy.

[M87] R.C. Merkle. A Digital Signature Based on a Conventional Encryption Function.
In Crypto87, Springer-Verlag Lecture Notes in Computer Science (Vol. 293), 1987,
pages 369-378.

[M89] R.C. Merkle. A Certified Digital Signature Scheme. In Crypto89, Springer-Verlag
Lecture Notes in Computer Science (Vol. 435), pages 218-238.

[DSS] National Institute for Standards and Technology. Digital Signature Standard (Dss),
Federal Register, Vol. 56, No. 169, August 1991.

[NY89] M. Naor and M. Yung. Universal One-Way Hash Functions and their Crypto-
graphic Application. 21st ACM Symposium on the Theory of Computing, 1989, pages
33-43.

[P] B. Pfitzmann. Digital Signature Schemes (General Framework and Fail-Stop Signa-
tures). Springer Lecture Notes in Computer Science (Vol. 1100), 1996.

[R77] M.O. Rabin. Digitalized Signatures. In Foundations of Secure Computation (R.A. De-
Millo et. al. eds.), Academic Press, 1977.

[R79] M.O. Rabin. Digitalized Signatures and Public Key Functions as Intractable as
Factoring. MIT/LCS/TR-212, 1979.

[R90] J. Rompel. One-way Functions are Necessary and Sufficient for Secure Signatures.
In 22nd ACM Symposium on the Theory of Computing, 1990, pages 387-394.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. SIGNATURES — BRIEF SUMMARY FROM MY ESSAY 279

[WC] M. Wegman and L. Carter. New Hash Functions and their Use in Authentication
and Set Equality. Journal of Computer and System Science, Vol. 22, 1981, pages
265-279.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

280 CHAPTER 6. DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Chapter 7

Cryptographic Protocols

Author’s Note: This chapter is a serious obstacle to any future attempt of com-
pleting this book.

#Plan

\input{pt-motiv}), Motivation (Examples: voting, 0T)
\input{pt-def}%%% Definition (of a protocol problem)
\input{pt-two}%4%’ Construction of two-party protocols
\input{pt-many}%} Construction of multi-party protocols
\input{pt-misc}%/ As usual: History, Reading, Open, Exercises

Author’s Note: Temporary material from survey

7.1 Cryptographic Protocols — Brief Summary from my Es-
say

A general framework for casting cryptographic (protocol) problems consists of specifying
a random process which maps n inputs to n outputs. The inputs to the process are to
be thought of as local inputs of n parties, and the n outputs are their corresponding local
outputs. The random process describes the desired functionality. That is, if the n parties
were to trust each other (or trust some outside party), then they could each send their local
input to the trusted party, who would compute the outcome of the process and send each
party the corresponding output. The question addressed in this section is to what extent
can this trusted party be “simulated” by the mutually distrustful parties themselves.

7.1.1 Definitions

For simplicity we consider the special case where the specified process is deterministic and
the n outputs are identical. That is, we consider an arbitrary n-ary function and n parties

281

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

282 CHAPTER 7. CRYPTOGRAPHIC PROTOCOLS

which wish to obtain the value of the function on their n corresponding inputs. Each party
wishes to obtain the correct value of the function and prevent any other party from gaining
anything else (i.e., anything beyond the value of the function and what is implied by it).

We first observe that (one thing which is unavoidable is that) each party may change
its local input before entering the protocol. However, this is unavoidable also when the
parties utilize a trusted party. In general, the basic paradigm underlying the definitions of
secure multi-party computations amounts to saying that situations which may occur in the
real protocol, can be simulated in the ideal model (where the parties may employ a trusted
party). Thus, the “effective malfunctioning” of parties in secure protocols is restricted to
what is postulated in the corresponding ideal model. The specific definitions differ in the
specific restrictions and/or requirements placed on the parties in the real computation. This
is typically reflected in the definition of the corresponding ideal model — see examples below.

An example — computations with honest majority: Here we consider an ideal model
in which any minority group (of the parties) may collude as follows. Firstly this minority
shares its original inputs and decided together on replaced inputs® to be sent to the trusted
party. (The other parties send their respective original inputs to the trusted party.) When
the trusted party returns the output, each majority player outputs it locally, whereas the
colluding minority may compute outputs based on all they know (i.e., the output and all
the local inputs of these parties). A secure multi-party computation with honest majority
is required to simulate this ideal model. That is, the effect of any feasible adversary which
controls a minority of the players in the actual protocol, can be essentially simulated by a
(different) feasible adversary which controls the corresponding players in the ideal model.
This means that in a secure protocol the effect of each minority group is “essentially re-
stricted” to replacing its own local inputs (independently of the local inputs of the majority
players) before the protocol starts, and replacing its own local outputs (depending only
on its local inputs and outputs) after the protocol terminates. (We stress that in the real
execution the minority players do obtain additional pieces of information; yet in a secure
protocol they gain nothing from these additional pieces of information.)

Secure protocols according to the above definition may even tolerate a situation where
a minority of the parties aborts the execution. An aborted party (in the real protocol) is
simulated by a party (in the ideal model) which aborts the execution either before supplying
its input to the trusted party (in which case a default input is used) or after supplying its
input. In either case, the majority players (in the real protocol) are able to compute the
output although a minority aborted the execution. This cannot be expected to happen
when there is no honest majority (e.g., in a two-party computation) [C86].

1Such replacement may be avoided if the local inputs of parties are verifiable by the other parties. In
such a case, a party (in the ideal model) has the choice of either joining the execution of the protocol with
its correct local input or not join the execution at all (but it cannot join with a replaced local input). Secure
protocols simulating this ideal model can be constructed as well.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. CRYPTOGRAPHIC PROTOCOLS — BRIEF SUMMARY FROM MY ESSAY 283

Another example — two-party computations: In light of the above, we consider an
ideal model where each of the two parties may “shut-down” the trusted (third) party at
any point in time. In particular, this may happen after the trusted party has supplied the
outcome of the computation to one party but before it has supplied it to the second. A
secure multi-party computation allowing abort is required to simulate this ideal model. That
is, each party’s “effective malfunctioning” in a secure protocol is restricted to supplying an
initial input of its choice and aborting the computation at any point in time. We stress
that, as above, the choice of the initial input of each party may NOT depend on the input
of the other party.

7.1.2 Constructions

General plausibility results: Assuming the existence of trapdoor permutations, one
may provide secure protocols for any two-party computation (allowing abort) [Y86] as
well as for any multi-party computations with honest majority [GMW87]. Thus, a host of
cryptographic problems are solvable assuming the existence of trapdoor permutations. As
stressed in the case of zero-knowledge proofs, we view these results as asserting that very
wide classes of problems are solvable in principle. However, we do not recommend using
the solutions derived by these general results in practice. For example, although Threshold
Cryptography (cf., [DF89,Ge97]) is merely a special case of multi-party computation, it is
indeed beneficial to focus on its specifics.

Analogous plausibility results were obtained in a variety of models. In particular, we men-
tion secure computations in the private channels model [BGW,CCD] and in the presence of
mobile adversaries [0Y].

7.1.3 Some Suggestions for Further Reading

This area is both most complex and most lacking good expositions. Our own preference is
to refer to [C95] for the definitions and to [G89] for the constructions.

[BGW] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th ACM Symposium on
the Theory of Computing, pages 1-10, 1988.

[C95] R. Canetti. Studies in Secure Multi- Party Computation and Applications. Ph.D. The-
sis, Department of Computer Science and Applied Mathematics, Weizmann Institute
of Science, Rehovot, Israel, June 1995.
Available from from http://theory.lcs.mit.edu/ tcryptol/B0O0KS/ran-phd.html.

[CCD] D. Chaum, C. Crépeau and I. Damgard. Multi-party unconditionally Secure Pro-
tocols. In 20th ACM Symposium on the Theory of Computing, pages 11-19, 1988.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

284 CHAPTER 7. CRYPTOGRAPHIC PROTOCOLS

[C86] R. Cleve. Limits on the Security of Coin Flips when Half the Processors are Faulty.
In 18th ACM Symposium on the Theory of Computing, pages 364-369, 1986.

[DF89] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In Crypto89, Springer-
Verlag Lecture Notes in Computer Science (Vol. 435), pages 307-315.

[Ge97] P.S. Gemmell. An Introduction to Threshold Cryptography. In CryptoBytes, RSA
Lab., Vol. 2, No. 3, 1997.

[G89] O. Goldreich. Lecture Notes on Encryption, Signatures and Cryptographic Protocol.
Spring 1989. Available from http://theory.lcs.mit.edu/ oded/1n89.html

[GMWS8T7] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game — A
Completeness Theorem for Protocols with Honest Majority. In 19th ACM Symposium
on the Theory of Computing, pages 218-229, 1987.

[OY] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks. In 10th ACM
Symposium on Principles of Distributed Computing, pages 51-59, 1991.

[Y86] A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Symposium on
Foundations of Computer Science, pages 162-167, 1986.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Part 111

Beyond the Basics

285

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Chapter 8

* New Frontiers

Where is the area going?

That’s always hard to predict,
but following are some recent and not so recent developments.

#Plan

\input{fr-sys}i// Cryptographic Infrastructure Problems (key-mgmt, replay, etc.)
\input{fr-eff}%%}% more stress on efficiency (from a theory perspective!)
\input{fr-rom}}%/ the Random Oracle Model (e.g., [BRI]).

\input{fr-dyn}}%/% Migrating adversaries (in multi-party protocls)
\input{fr-incr}}) Incremental Cryptography [BGG]

\input{fr-traf})) Trafic Analysis [RS]

\input{fr-soft}%} Software Protection [G,0] (that’s not really new...)

287

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

288 CHAPTER 8. * NEW FRONTIERS

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Chapter 9

* The Effect of Cryptography on
Complexity Theory

Cryptography had a fundamental effect on the development of complexity theory. Notions
such as computational indistinguishability, pseudorandomness and interactive proofs were
first introduced and developed with a cryptographic motivation. However, these notions
turned out to influence the development of complexity theory as well, and were further
developed within this broader theory. In this chapter we survey some of these developments
which have their roots in cryptography and yet provide results which are no longer (directly)
relevant to cryptography.

Author’s Note: Until the time this chapter is written, the reader is referred to
my homepage for surveys of Probabilistic Proof Systems.

#Plan
\input{eff-rand}), Deterministic Simulation of Randomized Complexity Classes
AP (simulations of random-ACO, BPP and RL)

9.1 The power of Interactive Proofs

9.2 Probabilistically Checkable Proofs

Theorem 9.2.1 the pcp characterization of NP

\input{eff-rsr}%} Random Self-Reducibility (DLP/QR, Permanent)

\input{eff-learn}}, Learning
\input{eff-misc}) (as usual)

289

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

290CHAPTER 9. *THE EFFECT OF CRYPTOGRAPHY ON COMPLEXITY THEORY

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Chapter 10

* Related Topics

In this chapter we survey several unrelated topics which are related to cryptography in some
way. For example, a natural problem which arises in light of the excessive use of randomness
is how to extract almost perfect randomness from sources of weak randomness.

#Plan

\input{tp-sour})’ Weak sources of randomness
\input{tp-byz}/%/% Byzantine Agreement

\input{tp-check}), Program Checking and Statistical Tests
\input{tp-misc}/ As usual: History, Reading, Open, Exercises

291

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

292 CHAPTER 10. * RELATED TOPICS

