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Appendix AAnnotated List of References(compiled Feb. 1989)Author's Note: The following list of annotated references was compiled by memore than �ve years ago. The list was intended to serve as an appendix to classnotes for my course on \Foundations of Cryptography" given at the Technion inthe Spring of 1989. Thus, a few pointers to lectures given in the course appearin the list.Author's Note: By the way, copies of the above-mentioned class notes, writtenmostly by graduate students attending my course, can be obtained from myhomepages� http://theory.lcs.mit.edu/~oded� http://www.wisdom.weizmann.ac.il/people/homepages/oded/oded.html.Although I have a very poor opinion of these notes, I was surprised to learn thatthey have been used by several people. The only thing that I can say in favourof these notes is that they cover my entire (one-semester) course on \Founda-tions of Cryptography"; in particular, they contain material on encryption andsignatures (which is most missing in the current fragments).
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296 APPENDIX A. ANNOTATED LIST OF REFERENCES (COMPILED FEB. 1989)Preface to the List of ReferencesThe list of references is partitioned into two parts: Main References and Suggestions forFurther Reading. The Main References consists of the list of papers that I have extensivelyused during the course1. Other papers which I mentioned briey may be found in the listof Suggestions for Further Reading. This second list also contains papers, reporting furtherdevelopments, which I have not mentioned at all.Clearly, my suggestions for further reading do not exhaust all interesting works done inthe area. Some good works were omitted on purpose (usually when totally superseeded byothers) and some were omitted by mistake. Also, no consistent policy was implemented indeciding which version of the work to cite. In most cases I used the reference which I hadavailable on line (as updating all references would have taken too much time).

1This refers to the course \Foundations of Cryptography" given at the Technion in 1989.
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A.0. MAIN REFERENCES 297A.0 Main ReferencesPART I : Main References[BM88] Bellare, M., and S. Micali, \How to Sign Given any Trapdoor Function", Proc. 20thSTOC, 1988.Simpli�es the construction used in [GMR84], using a weaker condition (i.e. the exis-tence of trapdoor one-way permutations).Readability: reasonable.[BM82] Blum, M., and Micali, S., \How to Generate Cryptographically Strong Sequences ofPseudo-Random Bits", SIAM Jour. on Computing, Vol. 13, 1984, pp. 850-864. Firstversion in FOCS 1982.Presents a general method of constructing pseudorandom generators, and the �rstexample of using it. Characterizes such generators as passing all (polynomial-time)prediction tests. Presents the notion of a "hard-core" predicate and the �rst proof ofthe existence of such predicate based on the existence of a particular one-way function(i.e. Discrete Logarithm Problem).Readability: confusing in some places, but usually �ne.[GL89] Goldreich, O., and L.A. Levin, \A Hard-Core Predicate to any One-Way Function",21st STOC, 1989, pp. 25-32.Shows that any "padded" one-way function f(x; p) = f0(x) �p, has a simple hard-corebit, the inner-product mod-2 of x and p.Readability: STOC version is very elegant and laconic (Levin wrote it). These notespresent a more detailed but cumbersome version.[GMW86] Goldreich, O., S. Micali, and A. Wigderson, \Proofs that Yield Nothing But theirValidity and a Methodology of Cryptographic Protocol Design", Proc. of 27th Symp.on Foundation of Computer Science, 1986, pp. 174-187. A full version appears asTR-544, Computer Science Dept., Technion, Haifa, Israel.Demonstrates the generality and the wide applicability of zero-knowledge proofs. Inparticular, using any bit commitment scheme, it is shown how to construct a zero-knowledge proof for any language in NP . Perfect zero-knowledge proofs are presented
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298 APPENDIX A. ANNOTATED LIST OF REFERENCES (COMPILED FEB. 1989)for Graph Isomorphism and its complement.Readability: the full version is very detailed, sometimes to a point of exhausting thereader. A more elegant proof of the main result is sketched in [G89a].[GMW87] Goldreich, O., S. Micali, and A. Wigderson, \How to Play any Mental Game", 19thSTOC, 1987. A more reasonable version is available from me.Deals with the problem of cryptographic protocols in its full generality, showing howto automatically generate fault-tolerant protocols for computing any function (usingany trapdoor one-way permutation).Readability: STOC version is too hand-waving. These notes constitute a better sourceof information.[GM82] Goldwasser, S., and S. Micali, \Probabilistic Encryption", JCSS , Vol. 28, No. 2,1984, pp. 270-299. Previous version in STOC 1982.Introduces the concept of polynomially indistinguishable probability distributions.Presents notions of secure encryption, demonstrating the inadequency of previousintuitions. Presents a general method for constructing such encryption schemes, anda �rst application of it. First use of the "hybrid" method.Readability: Nice introduction. The technical part is somewhat messy.[GMR85] Goldwasser, S., S. Micali, and C. Racko�, \The Knowledge Complexity of InteractiveProof Systems", SIAM J. on Comput., Vol. 18, No. 1, 1989, pp. 186-208. Previousversion in STOC 1985.Introduces the concepts of an interactive proof and a zero-knowledge proof. Presentsthe �rst (non-trivial) example of a zero-knowledge proof. First application of zero-knowledge to the design of cryptographic protocols.Readability: good.[GMR84] Goldwasser, S., S. Micali, and R.L. Rivest, \A Digital Signature Scheme SecureAgainst Adaptive Chosen Message Attacks", SIAM J on Comput., Vol. 17, No. 2,1988, pp. 281-308. Previous version in FOCS 1984.Surveys and investigates de�nitions of unforgeable signatures. Presents the �rst signa-ture scheme which is unforgeable in a very strong sense even under a chosen messageattack.Readability: excellent as an introduction to the problem. Don't read the construction,but rather refer to [BM88].
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A.0. MAIN REFERENCES 299[Y82] Yao, A.C., \Theory and Applications of Trapdoor Functions", Proc. of the 23rd IEEESymp. on Foundation of Computer Science, 1982, pp. 80-91.Presents a general de�nition of polynomially indistinguishable probability distribu-tions. Characterizes pseudorandom generators as passing all (polynomial-time) sta-tistical tests. (This formulation is equivalent to passing all polynomial-time predictiontests.) Given any one-way permutation constructs a pseudorandom generator.Readability: Most interesting statements are not stated explicitly. Furthermore, con-tains no proofs.
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300 APPENDIX A. ANNOTATED LIST OF REFERENCES (COMPILED FEB. 1989)PART II : Suggestions for Further ReadingMy suggestions for further reading are grouped under the following categories:1. General: Papers which deal or relate several of the following categories.2. Hard Computational Problems: Pointers to literature on seemingly hard computa-tional problems (e.g. integer factorization) and to works relating di�erent hardnesscriteria.3. Encryption: Papers dealing with secure encryption schemes (in the strong sense de-�ned in lecture 5B and 6).4. Pseudorandomness: Papers dealing with the construction of pseudorandom genera-tors, pseudorandom functions and permutations and their applications to cryptogra-phy and complexity theory.5. Signatures and Commitment Schemes: Papers dealing with unforable signature schemes(as de�ned in lecture 10) and secure commitment schemes (mentioned in lecture 13).6. Interactive Proofs, Zero-Knowledge and Protocols: In addition to papers with apparentrelevance to cryptography this list contains also papers investigating the complexitytheoretic aspects of interactive proofs and zero-knowledge.7. Additional Topics: Pointers to works on software protection, computation with anuntrusted oracle, protection against abuse of cryptographic systems, Byzantine Agree-ment, sources of randomness, and \cryptanalysis".8. Historical Background: The current approach to Cryptography did not emerge \outof the blue". It originates in works that were not referenced in the previous categories(which include only material conforming with the de�nitions and concepts presentedin the course). This category lists some of these pioneering works.
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A.1. GENERAL 301A.1 GeneralMuch of the current research in cryptography focuses on reducing the existence of complexcryptographic primitives (such as the existence of unforgeable signature schemes) to simplecomplexity assumptions (such as the existence of one-way functions). A �rst work investi-gating the limitations of these reductions is [IR89], where a "gap" between tasks implyingsecret key exchange and tasks reducible to the existence of one-way functions is shown. Thegap is in the sense that a reduction of the �rst task to the second would imply P 6= NP.Many of the more complex results in cryptography (e.g. the existence of zero-knowledgeinteractive proofs for all languages in NP) are stated and proved in terms of non-uniformcomplexity. As demonstrated throughout the course, this simpli�es both the statementsand their proofs. An attempt to treat secure encryption and zero-knowledge in uniformcomplexity measures is reported in [G89a]. In fact, the lectures on secure encryption arebased on [G89a].references[G89a] Goldreich, O., \A Uniform-Complexity Treatment of Encryption and Zero-Knowledge",TR-568, Computer Science Dept., Technion, Haifa, Israel, 1989.[IR89] Impagliazzo, R., and S. Rudich, \Limits on the Provable Consequences of One-WayPermutations", 21st STOC, pp. 44-61, 1989.A.2 Hard Computational Problems2.1. Candidates for One-Way functionsHard computational problems are the basis of cryptography. The existence of adequatelyhard problems (see lecture 2) is not known. The most popular candidates are from compu-tational number theory: integer factorization (see [P82] for a survey of the best algorithmsknown), discrete logarithms in �nite �elds (see [O84] for a survey of the best algorithmsknown), and the logarithm problem for "Elliptic groups" (cf. [M85]). Additional sugges-tions are the decoding problem for random linear codes (see [GKL88] and [BMT78]) andhigh density subset-sum (\knapsack") problems (see [CR88, IN89]). Note that low densitysubset-sum problems are usually easy (see survey [BO88]).Much of the early-80th research in cryptography used the intractability assumptionof the Quadratic Residuousity Problem (introduced in [GM82]). The nice structure of theproblem was relied upon in constructions as [LMR83], but in many cases further research ledto getting rid of the need to rely on the special structure (and to using weaker intractabilityassumptions).
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302 APPENDIX A. ANNOTATED LIST OF REFERENCES (COMPILED FEB. 1989)Attempts to base cryptography on computationally hard combinatorial problems havebeen less popular. Graph Isomorphism is very appealing (as it has a nice structure asthe Quadratic Residuousity Problem), but such a suggestion should not be taken seriouslyunless one speci�es an easily samplable instance distribution for which the problem seemshard.For details on candidates whose conjectured hardness was refuted see category 7.6.2.2. Generic Hard ProblemsThe universal one-way function presented in lecture 3 originates from [L85]. The same ideaswere used in [G88a] and [AABFH88], but the context there is of \average case complexity"(originated in [L84] and surveyed in [G88a]). In this context \hard" means intractable onin�nitely many instance lengths, rather than intractable on all but �nitely many instancelengths. Such problems are less useful in cryptography.2.3. Hard-Core PredicatesAs pointed out in lecture 4, hard-core predicates are a useful tool in cryptography. Suchpredicates are known to exist for exponentiation modulo a prime [BM82], (more generally)for "repeated addition" in any Abelian group [K88] and for the RSA and Rabin (squaringmod N) functions [ACGS84]. Recall that the general result of [GL89] (see lectures 4-5A)guarantees the existence of hard-core predicates for any "padded" function.references[AABFH88] Abadi, M., E. Allender, A. Broder, J. Feigenbaum, and L. Hemachandra, \On Gen-erating Hard, Solved Instances of Computational Problem", Crypto88 proceedings.[ACGS84] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr, "RSA and Rabin Functions:Certain Parts Are As Hard As the Whole", SIAM Jour. on Computing, Vol. 17,1988, pp. 194-209. A preliminary version appeared in Proc. 25th FOCS, 1984, pp.449-457.[BM82] see main references.[BMT78] Berlekamp, E.R., R.J. McEliece, and H.C.A. van Tilborg, \On the Inherent In-tractability of Certain Coding Problems", IEEE Trans. on Inform. Theory, 1978.[BO88] Brickell, E.F., and A.M. Odlyzko, \Cryptanalysis: A Survey of Recent Results",Proceedings of the IEEE, Vol. 76, pp. 578-593, 1988.[CR88] Chor, B., and R.L. Rivest, \A Knapsack Type Public-Key Cryptosystem Based onArithmetic in Finite Fields", IEEE Trans. on Inf. Th., Vol. 34, pp. 901-909, 1988.
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A.3. ENCRYPTION 303[G88a] Goldreich, O., \Towards a Theory of Average Case Complexity (a survey)", TR-531,Computer Science Dept., Technion, Haifa, Israel, 1988.[GKL88] see category 4.[GL89] see main references.[GM82] see main references.[IN89] Impagliazzo, R., and M. Naor, \E�cient Cryptographic Schemes Provable as Secureas Subset Sum", manuscript, 1989.[K88] B.S. Kaliski, Jr., "Elliptic Curves and Cryptography: A Pseudorandom Bit Generatorand Other Tools", Ph.D. Thesis, LCS, MIT, 1988.[L84] Levin, L.A., \Average Case Complete Problems", SIAM Jour. of Computing, 1986,Vol. 15, pp. 285-286. Extended abstract in 16th STOC, 1984.[L85] see category 4.[LW] D.L. Long and A. Wigderson, "How Discreet is Discrete Log?", Proc. 15th STOC,1983, pp. 413-420. A better version ?[LMR83] see category 6.[M85] Miller, V.S., \Use of Elliptic Curves in Cryptography", Crypto85 - Proceedings, Lec-ture Notes in Computer Science, Vol. 218, Springer Verlag, 1985, pp. 417-426.[O84] Odlyzko, A.M., \Discrete Logarithms in Finite Fields and their Cryptographic Signif-icance", Eurocrypt84 proceedings, Springer-Verlag, Lecture Notes in Computer Sci-ence, Vol. 209, pp. 224-314, 1985. manuscript.[P82] Pomerance, C., \Analysis and Comparison of some Integer Factorization Algorithms",Computational Methods in Number Theory: Part I, H.W. Lenstra Jr. and R. Tijdemaneds., Math. Center Amsterdam, 1982, pp. 89-139.A.3 EncryptionThe e�cient construction of a secure public-key encryption scheme, presented in lecture 8,originates from [BG84]. The security of this scheme is based on the intractability assumptionof factoring, while its e�ciency is comparable with that of the RSA. More generally, thescheme can be based on any trapdoor one-way permutation.Non-uniform versions of the two de�nitions of security (presented in lecture 6) wereshown equivalent in [MRS88]. These versions were also shown equivalent to a third de�nitionappearing in [Y82].
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304 APPENDIX A. ANNOTATED LIST OF REFERENCES (COMPILED FEB. 1989)The robustness of encryption schemes against active adversaries was addressed in [GMT82].Folklore states that secret communication can be achieved over a channel controlled by anactive adversary by use of bi-directional communication: for every message transmission,the communicating parties exchange new authenticated cryptographic keys (i.e. the receivertransmits a new authenticated encryption-key that is used only for the current message).Note that this prevents a chosen message attack on the currently used instance of the en-cryption scheme. Note that this suggestion does not constitute a public-key encryptionscheme, but rather a secure means of private bi-directional communication. It was claimedthat \non-interactive zero-knowledge proofs of knowledge" yield the construction of public-key encryption secure against chosen ciphertext attack [BFM88], but no proof of this claimhas appeared.references[BFM88] see category 6.[BG84] Blum, M., and S. Goldwasser, \An E�cient Probabilistic Public-Key EncryptionScheme which hides all partial information", Advances in Cryptology: Proc. of Crypto84, ed. B Blakely, Springer Verlag Lecture Notes in Computer Science, vol. 196, pp.289-302.[GMT82] Goldwasser, S., S. Micali, and P. Tong, \Why and How to Establish a Private Codein a Public Network", 23rd FOCS, 1982, pp. 134-144.[MRS88] Micali, S., C. Racko�, and B. Sloan, \The Notion of Security for Probabilistic Cryp-tosystems", SIAM Jour. of Computing, 1988, Vol. 17, pp. 412-426.[Y82] see main references.A.4 PseudorandomnessI have partitioned the works in this category into two subcategories: works with immediatecryptographic relevance versus works which have a more abstract (say complexity theoretic)orientation. A survey on Pseudorandomness in contained in [G88b].4.1. Cryptographically oriented worksThe theory of pseudorandomness was extended to deal with functions and permutations.De�nitions of pseudorandom functions and permutations are presented in [GGM84] and[LR86]. Pseudorandom generators were used to construct pseudorandom functions [GGM84],
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A.4. PSEUDORANDOMNESS 305and these were used to construct pseudorandom permutations [LR86]. Cryptographic ap-plications are discussed in [GGM84b, LR86].In lecture 9, we proved that the existence of one-way permutations implies the existenceof pseudorandom generators. Recently, it has been shown that pseudorandom generatorsexist if and only if one-way functions exist [ILL89, H89]. The construction of pseudorandomgenerators presented in these works is very complex and ine�cient, thus the quest for ane�cient construction of pseudorandom generator based on any one-way function is not overyet. A previous construction by [GKL88] might turn out useful in this quest.A very e�cient pseudorandom generator based on the intractability of factoring integersarises from the works [BBS82, ACGS84, VV84]. The generator was suggested in [BBS82](where it was proved secure assuming intractability of Quadratic Residuousity Problem),and proven secure assuming intractability of factoring in [VV84] (by adapting the techniquesin [ACGS84]).4.2. Complexity oriented worksThe existence of a pseudorandom generator implies the existence of a pair of statisticallydi�erent e�ciently constructible probability ensembles which are computationally indistin-guishable. This su�cient condition turns out to be also a necessary one [G89b].The di�erence between the output distribution of a pseudorandom generator and morecommonly considered distributions is demonstrated in [L88]. The \commonly considered"distributions (e.g. all distributions having a polynomial-time computable distribution func-tion) are shown to be homogenous while a pseudorandom generator gives rise to distributionswhich are not homogenous. Homogenous distributions are de�ned as distributions whichallow good average approximation of all polynomial-time invariant characteristics of a stringfrom its Kolmogorov complexity.The use of pseudorandom generators for deterministic simulation of probabilistic com-plexity classes was �rst suggested in [Y82]. A uni�ed approach, leading to better simu-lations, can be found in [NW88]. Other results concerning the \e�cient" generation ofsequences which \look random" to machines of various complexity classes can be found in[RT85, BNS89, Ni89].The existence of sparse and evasive pseudorandom distributions is investigated in [GKr89a].A sparse distribution (unlike a distribution statistically close to the uniform one) rangesover a negligible fraction of the strings. Evasiveness is the infeasibility of hitting an elementin the distribution's support. Applications of some results to zero-knowledge are presentedin [GKr89b].references[ACGS84] see category 2.
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306 APPENDIX A. ANNOTATED LIST OF REFERENCES (COMPILED FEB. 1989)[BNS89] Babai, L., N. Nisan, and M. Szegedy, \Multi-party Protocols and Logspace-HardPseudorandom Sequences", 21st STOC, pp. 1-11, 1989.[BBS82] L. Blum, M. Blum and M. Shub, A Simple Secure Unpredictable Pseudo-RandomNumber Generator, SIAM Jour. on Computing, Vol. 15, 1986, pp. 364-383. Prelimi-nary version in Crypto82.[BM82] see main references.[G88b] Goldreich, O., \Randomness, Interactive Proofs, and Zero-Knowledge - A Survey",The Universal Turing Machine - A Half-Century Survey, R. Herken ed., Oxford Sci-ence Publications, pp. 377-406, 1988.[G89b] Goldreich, O., \A Note on Computational Indistinguishability", TR-89-051, ICSI,Berkeley, USA, (1989).[GGM84] Goldreich, O., S. Goldwasser, and S. Micali, "How to Construct Random Functions",Jour. of ACM, Vol. 33, No. 4, 1986, pp. 792-807. Extended abstract in FOCS84.[GGM84b] Goldreich, O., S. Goldwasser, and S. Micali, \On the Cryptographic Applications ofRandom Functions", Crypto84, proceedings, Springer-Verlag, Lecture Notes in Com-puter Science, vol. 196, pp. 276-288, 1985.[GKr89a] Goldreich, O., and H. Krawczyk, \Sparse Pseudorandom Distributions", Crypto89proceedings, to appear.[GKr89b] see category 6.[GKL88] Goldreich, O., H. Krawczyk, and M. Luby, "On the Existence of Pseudorandom Gen-erators", 29th FOCS, 1988.[GM82] see main references.[H89] Hastad, J., \Pseudo-Random Generators with Uniform Assumptions", preprint, 1989.[ILL89] Impagliazzo, R., L.A. Levin, and M. Luby, \Pseudorandom Generation from One-WayFunctions", 21st STOC, pp. 12-24, 1989.[L85] L.A. Levin, "One-Way Function and Pseudorandom Generators", Combinatorica, Vol.7, No. 4, 1987, pp. 357-363. A preliminary version appeared in Proc. 17th STOC,1985, pp. 363-365.[L88] L.A. Levin, "Homogenous Measures and Polynomial Time Invariants", 29th FOCS,pp. 36-41, 1988.[LR86] M. Luby and C. Racko�, "How to Construct Pseudorandom Permutations From Pseu-dorandom Functions", SIAM Jour. on Computing, Vol. 17, 1988, pp. 373-386. Ex-tended abstract in FOCS86.
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A.5. SIGNATURES AND COMMITMENT SCHEMES 307[NW88] Nisan, N., and A. Wigderson, \Hardness vs. Randomness", Proc. 29th FOCS, pp.2-11, 1988.[Ni89] Nisan, N., \Pseudorandom Generators for Bounded Space Machines", private com-munication, 1989.[RT85] Reif, J.H., and J.D. Tygar, \E�cient Parallel Pseudo-Random Number Generation",Crypto85, proceedings, Springer-Verlag, Lecture Notes in Computer Science, vol. 218,pp. 433-446, 1985.[Y82] see main references.[VV84] Vazirani, U.V., and V.V. Vazirani, \E�cient and Secure Pseudo-Random NumberGeneration", 25th FOCS, pp. 458-463, 1984.A.5 Signatures and Commitment SchemesRecent works reduce the existence of these important primitives to assumptions weakerthan ever conjectured.5.1. Unforgeable Signatures SchemesUnforgeable signature schemes can be constructed assuming the existence of one-way per-mutations [NY89]. The core of this work is a method for constructing \cryptographicallystrong" hashing functions. Further improvements and techniques are reported in [G86,EGM89]: in [G86] a technique for making schemes as [GMR84, BM88, NY89] \memory-less" is presented; in [EGS89] the concept of \on-line/o�-line" signature schemes is presentedand methods for constructing such schemes are presented as well.5.2. Secure Commitment SchemesSecure commitment schemes can be constructed assuming the existence of pseudorandomgenerator [N89]. In fact, the second scheme presented in lecture 13 originates from thispaper.references[BM88] see main references.[EGM89] Even, S., O. Goldreich, and S. Micali, \On-Line/O�-Line Digital Signature Schemes",Crypto89 proceedings, to appear.
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308 APPENDIX A. ANNOTATED LIST OF REFERENCES (COMPILED FEB. 1989)[G86] Goldreich, O., \Two Remarks concerning the Goldwasser-Micali-Rivest SignatureScheme", Crypto86, proceedings, Springer-Verlag, Lecture Notes in Computer Sci-ence, vol. 263, pp. 104-110, 1987.[GMR84] see main references.[N89] M. Naor, \Bit Commitment Using Pseudorandomness", IBM research report. Also toappear in Crypto89 proceedings, 1989.[NY89] M. Naor and M. Yung, \Universal One-Way Hash Functions and their CryptographicApplications", 21st STOC, pp. 33-43, 1989.A.6 Interactive Proofs, Zero-Knowledge and ProtocolsThis category is subdivided into three parts. The �rst contains mainly cryptographicallyoriented works on zero-knowledge, the second contains more complexity oriented works oninteractive proofs and zero-knowledge. The third subcategory lists works on the design ofcryptographic protocols. Surveys on Interactive Proof Systems and Zero-Knowledge Proofscan be found in [G88b, Gw89].6.1. Cryptographically oriented works on Zero-KnowledgeAn important measure for the \practicality" of a zero-knowledge proof system is its knowl-edge tightness. Intuitively, tightness is (the supremum taken over all probabilistic polynomial-time veri�ers of) the ratio between the time it takes the simulator to simulate an interactionwith the prover and the complexity of the corresponding veri�er [G87a]. The de�nition ofzero-knowledge only guarantees that the knowledge-tightness can be bounded by any func-tion growing faster than every polynomial. However, the de�nition does not guarantee thatthe knowledge-tightness can be bounded above by a particular polynomial. It is easy to seethat the knowledge-tightness of the proof system for Graph Isomorphism (presented in lec-ture 12) is 2, while the tightness of proof system for Graph colouring (lecture 13) is m (i.e.,the number of edges). I believe that the knowledge-tightness of a protocol is an importantaspect to be considered, and that it is very desirable to have tightness be a constant. Fur-thermore, using the notion of knowledge-tightness one can introduce more re�ned notionsof zero-knowledge and in particular the notion of constant-tightness zero-knowledge. Suchre�ned notions may be applied in a non-trivial manner also to languages in P .Two standard e�ciency measures associated with interactive proof systems are the com-putational complexity of the proof system (i.e., number of steps taken by either or bothparties) and the communication complexity of the proof system (here one may considerthe number of rounds, and/or the total number of bits exchanged). Of special importanceto practice is the question whether the (honest) prover's program can be a probabilistic
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A.6. INTERACTIVE PROOFS, ZERO-KNOWLEDGE AND PROTOCOLS 309polynomial-time when an auxiliary input is given (as in the case of the proof system, pre-sented in lecture 13, for Graph Colouability). An additional measure, the importance ofwhich has been realized only recently, is the number of strings to which the commitmentscheme is applied individually (see [KMO89]). The zero-knowledge proof system for graphcolourability presented in lecture 13 is not the most practical one known. Proof systemswith constant knowledge-tightness, probabilistic polynomial-time provers and a number ofiterations which is merely super-logarithmic exist for all languages in NP (assuming, ofcourse, the existence of secure commitment) [IY87]. This proof system can be modi�ed toyield a zero-knowledge proof with f(n) iterations, for every unbounded function f . Usingstronger intractability assumptions (e.g. the existence of claw-free one-way permutations),constant-round zero-knowledge proof systems can be presented for every language in NP[GKa89].Perfect zero-knowledge arguments2 were introduced in [BC86a, BCC88] and shown to ex-ist for all languages in NP , assuming the intractability of factoring integers. The di�erencebetween arguments and interactive proofs is that in a argument the soundness conditionis restricted to probabilistic polynomial-time machines (with auxiliary input). Hence, it isinfeasible (not impossible) to fool the veri�er into accepting (with non-negligible probabil-ity) an input not in the language. Assuming the existence of any commitment scheme, it isshown that any language in NP has a constant-round zero-knowledge argument [FS88].The limitations of zero-knowledge proof systems and the techniques to demonstratetheir existence are investigated in [GO87, GKr89b]. In particular, zero-knowledge proofswith deterministic veri�er (resp. prover) exist only for languages in RP (resp. BPP),constant-round proofs of the AM-type (cf. [B85]) can be demonstrated zero-knowledge byan oblivious simulation only if the language is in BPP . Thus, the \parallel versions" of theinteractive proofs (presented in [GMW86]) for Graph Isomorphism and every L 2 NP areunlikely to be demonstrated zero-knowledge. However, modi�ed versions of these interactiveproofs yield constant-round zero-knowledge proofs (see [GKa89] for NP and [BMO89] forGraph Isomorphism). These interactive proofs are, of course, not of the AM-type.The concept of a \proof of knowledge" was introduced and informally de�ned in [GMR85].Precise formalizations following this sketch has appeared in [BCC88, FFS87, TW87]. Thisconcept is quite useful in the design of cryptographic protocols and zero-knowledge proofsystems. In fact, it has been used implicitly in [GMR85, GMW87, CR87] and explicitly in[FFS87, TW87]. However, I am not too happy with the current formalizations and intendto present a new formalization.\Non-interactive" zero-knowledge proofs are known to exist assuming the existence oftrapdoor one-way permutations [KMO89]. These are two-phase protocols. The �rst phaseis a preprocessing which uses bi-directional communication. In the second phase, zero-2The term "argument" has appeared �rst in [BCY89]. The authors of [BCC88] create an enormousamount of confusion by insisting to refer to arguments by the term interactive proofs. For example, theresult of [For87] does not hold for perfect zero-knowledge arguments. Be careful not to confuse argumentswith interactive proofs in which the completeness condition is satis�ed by a probabilistic polynomial-timeprover (with auxiliary input).
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310 APPENDIX A. ANNOTATED LIST OF REFERENCES (COMPILED FEB. 1989)knowledge proofs can be produced via one-directional communication from the prover tothe veri�er. The number of statements proven in the second phase is a polynomial in thecomplexity of the �rst phase (this polynomial is arbitrarily �xed after the �rst phase iscompleted).Historical remark: Using a stronger intractability assumption (i.e. the intractability ofQuadratic Residuousity Problem) [BC86b] showed that every language in NP has a zero-knowledge interactive proof system. This result has been obtained independently of (butsubsequently to) [GMW86].6.2. Complexity oriented works on Interactive Proofs and Zero-KnowledgeThe de�nition of interactive proof systems, presented in lecture 12, originates from [GMR85].A special case, in which the veri�er sends the outcome of all its coin tosses to the proverwas suggested in [B85] and termed Arthur Merlin (AM) games. AM games are easier toanalyze, while general interactive proof systems are easier to design. Fortunately, the twoformalizations coincide in a strong sense: for every polynomial Q, the classes IP(Q(n))and AM(Q(n)) are equal [GS86], where IP(Q(n)) denotes the class of languages havingQ(n)-round interactive proof system. It is also known, that for every k � 1 and every poly-nomial Q, the class AM(Q(n)) and AM(k � Q(n)) coincide [BaMo88]. A stronger resultdoes not \relativize" (i.e. there exists an oracle A such that for every polynomial Q and ev-ery unbounded function g the class AM(Q(n))A is strictly contained in AM(g(n) �Q(n))A)[AGH88].Author's Note: However, in light of the results of [LFKN,S] (see FOCS90), thismeans even less than ever. See also Chang et. al. (JCSS, Vol. 49, No. 1).Author's Note: This list was compiled before the fundamental results of Lund,Fortnow, Karlo� and Nisan [LFKN] and Shamir [S] were known. By theseresults every language in PSPACE has an interactive proof system. Since IP �PSPACE [folklore], the two classes collide.Every language L 2 IP(Q(n)) has a Q(n)-round interactive proof system in which theveri�er accepts every x 2 L with probability 1, but only languages in NP have interactiveproof systems in which the veri�er never accepts x =2 L [GMS87]. Further developmentsappear in [BMO89].The class AM(2) is unlikely to contain coNP , as this will imply the collapse of thepolynomial-time hierarchy [BHZ87]. It is also known that for a random oracle A, AM(2) =NPA [NW88].The complexity of languages having zero-knowledge proof systems seems to depend onwhether these systems are perfect or only computational zero-knowledge. On one hand, it isknown that perfect (even almost-perfect) zero-knowledge proof systems exist only for lan-guages inside AM(2)\coAM(2) [For87, AH87]. On the other hand, assuming the existence
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A.6. INTERACTIVE PROOFS, ZERO-KNOWLEDGE AND PROTOCOLS 311of commitment schemes (the very assumption used to show \NP in ZK") every languagesin IP has a computational zero-knowledge proof system [IY87] (for a detailed proof see[Betal88]). Returning to perfect zero-knowledge proof systems, it is worthwhile mentioningthat such systems are known for several computational problems which are considered hard(e.g. Quadratic Residuousity Problem [GMR85], Graph Isomorphism [GMW86], member-ship in a subgroup [TW87], and a problem computationally equivalent to Discrete Logarithm[GKu88]).The concept of the knowledge complexity of a languages was introduced in [GMR85],but the particular formalization suggested there is somewhat ad-hoc and unnatural.3 Theknowledge complexity of a language is the minimum number of bits released by an interactiveproof system for the language. Namely, a language L 2 IP has knowledge complexity � k(�)if there exists an interactive proof for L such that the interaction of the prover on x 2 L canbe simulated by a probabilistic polynomial-time oracle machine on input x and up to k(jxj)Boolean queries (to an oracle of "its choice"). More details will appear in a forthcomingpaper of mine.An attempt to get rid of the intractability assumption used in the \NP in ZK" resultof [GMW86], led [BGKW88] to suggest and investigate a model of multi-prover interactiveproof systems. It was shown that two \isolated" provers can prove statements in NP ina perfect zero-knowledge manner. A di�erent multi-prover model, in which one unknownprover is honest while the rest my interact and cheat arbitrarily, was suggested and inves-tigated in [FST88]. This model is equivalent to computation with a \noisy oracle".6.3. On the Design of Cryptographic ProtocolsThe primary motivation for the concept of zero-knowledge proof systems has been theirpotential use in the design of cryptographic protocols. Early examples of such use canbe found in [GMR85, FMRW85, CF85]. The general results in [GMW86] allowed thepresentation of automatic generators of two-party and multi-party cryptographic protocols(see [Y86]4 and [GMW87], respectively). Further improvements are reported in [GHY87,GV87, IY87].Two important tools in the construction of cryptographic protocols are Oblivious Trans-fer and Veri�able Secret Sharing. Oblivious Transfer, introduced in [R81], was further in-vestigated in [EGL82, FMRW85, BCR86, Cre87, CK88, Kil88]. Veri�able Secret Sharing,introduced in [CGMA85], was further investigated in [GMW86, Bh86a, Fel87]. Other usefultechniques appear in [Bh86b, CR87].An elegant model for investigations of multi-party cryptographic protocols was sug-gested in [BGW88]. This model consists of processors connected in pairs via private chan-3In particular, according to that formalization a prover revealing with probability 12 a Hamiltonian circuitin the input gragh yields one one bit of knowledge.4It should be stressed that [Y86] improves over [Y82b]. The earlier paper presented two-party cryp-tographic protocols allowing semi-honest parties to compute privately functions ranging over \small" (i.e.polynomially bounded) domains.
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312 APPENDIX A. ANNOTATED LIST OF REFERENCES (COMPILED FEB. 1989)nels. The bad processors have in�nite computing resources (and so using computationallyhard problems is useless). Hence, computational complexity restrictions and assumptionsare substituted by assumptions about the communication model. An automatic generatorof protocols for this model, tolerating up to 13 malicious processors, has been presentedin [BGW88, CCD88]. Augmenting the model by a broadcast channel, tolerance can beimproved to 12 [BR89]. (The augmentation is necessary, as there are tasks which cannotbe performed if a third of the processors are malicious (e.g. Byzantine Agreement).) Be-yond the 12 bound, only functions of special type (i.e. the exclusive-or of locally computedfunctions) can be privately computed [CKu89].references[AGH86] Aiello, W., S. Goldwasser, and J. Hastad, \On the Power of Interaction", Proc. 27thFOCS, pp. 368-379, 1986.[AH87] Aiello, W., and J. Hastad, \Perfect Zero-Knowledge Languages can be Recognized inTwo Rounds", Proc. 28th FOCS, pp. 439-448, 1987.[AGY85] Alon, N., Z. Galil, and M. Yung, \A Fully Polynomial Simultaneous Broadcast in thePresence of Faults", unpublished manuscript, 1985.[B85] Babai, L., \Trading Group Theory for Randomness", Proc. 17th STOC, 1985, pp.421-429.[BKL] Babai, L., W.M. Kantor, and E.M. Luks, \Computational Complexity and Classi�ca-tion of Finite Simple Groups", Proc. 24th FOCS, pp. 162-171, 1983.[BaMo88] Babai, L., and S. Moran, \Arthur-Merlin Games: A Randomized Proof System, anda Hierarchy of Complexity Classes", JCSS, Vol. 36, No. 2, pp. 254-276, 1988.[BMO89] Bellare, M., S. Micali, and R. Ostrovsky, \On Parallelizing Zero-Knowledge Proofsand Perfect Completeness Zero-Knowledge", manuscript, April 1989.[Bh86a] Benaloh, (Cohen), J.D., \Secret Sharing Homomorphisms: keeping shares of a secretsecret", Crypto86, proceedings, Springer-Verlag, Lecture Notes in Computer Science,vol. 263, pp. 251-260, 1987.[Bh86b] Benaloh, (Cohen), J.D., \Cryptographic Capsules: A Disjunctive Primitive for Inter-active Protocols", Crypto86, proceedings, Springer-Verlag, Lecture Notes in ComputerScience, vol. 263, pp. 213-222, 1987.[Betal88] Ben-Or, M., O. Goldreich, S. Goldwasser, J. Hastad, J. Killian, S. Micali, and P.Rogaway, \Every Thing Provable is provable in ZK", to appear in the proceedings ofCrypto88, 1988.
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A.6. INTERACTIVE PROOFS, ZERO-KNOWLEDGE AND PROTOCOLS 313[BGW88] Ben-Or, M., S. Goldwasser, and A. Wigderson, \Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation", 20th STOC, pp. 1-10, 1988.[BGKW88] Ben-Or, M., S. Goldwasser, J. Kilian, and A. Wigderson, \Multi-Prover InteractiveProofs: How to Remove Intractability", 20th STOC, pp. 113-131, 1988.[BT89] Ben-Or, M., and T. Rabin, \Veri�able Secret Sharing and Multiparty Protocols withHonest Majority", 21st STOC, pp. 73-85, 1989.[Bk] Blakley, G.R., \Safeguarding Cryptographic Keys", Proc. of National ComputerConf., Vol. 48, AFIPS Press, 1979, pp. 313-317.[BFM88] Blum, M., P. Feldman, and S. Micali, \Non-Interactive Zero-Knowledge and its Ap-plications", 20th STOC, pp. 103-112, 1988.[BHZ87] Boppana, R., J. Hastad, and S. Zachos, \Does Co-NP Have Short Interactive Proofs?",IPL, 25, May 1987, pp. 127-132.[BCC88] Brassard, G., D. Chaum, and C. Crepeau, "Minimum Disclosure Proofs of knowledge",JCSS, Vol. 37, No. 2, Oct. 1988, pp. 156-189.[BC86a] Brassard, G., and C. Crepeau, \Non-Transitive Transfer of Con�dence: A PerfectZero-Knowledge Interactive Protocol for SAT and Beyond", Proc. 27th FOCS, pp.188-195, 1986.[BC86b] Brassard, G., and C. Crepeau, \Zero-Knowledge Simulation of Boolean Circuits", Ad-vances in Cryptology - Crypto86 (proceedings), A.M. Odlyzko (ed.), Springer-Verlag,Lecture Notes in Computer Science, vol. 263, pp. 223-233, 1987.[BCR86] Brassard, G., C. Crepeau, and J.M. Robert, \Information Theoretic Reductions AmongDisclosure Problems", Proc. 27th FOCS, pp. 168-173, 1986.[BCY89] Brassard, G., C. Crepeau, and M. Yung, \Everything in NP can be argued in perfectzero-knowledge in a bounded number of rounds", Proc. of the 16th ICALP, July 1989.[CCD88] Chaum, D., C. Crepeau, I. Dangard, \Multi-party Unconditionally Secure Protocols",20th STOC, pp. 11-19, 1988.[Cha] Chaum, D., \Demonstrating that a Public Predicate can be Satis�ed Without Reveal-ing Any Information About How", Advances in Cryptology - Crypto86 (proceedings),A.M. Odlyzko (ed.), Springer-Verlag, Lecture Notes in Computer Science, vol. 263,pp. 195-199, 1987.[CGMA85] Chor, B., S. Goldwasser, S. Micali, and B. Awerbuch, \Veri�able Secret Sharing andAchieving Simultaneity in the Presence of Faults", Proc. 26th FOCS, 1985, pp. 383-395.
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314 APPENDIX A. ANNOTATED LIST OF REFERENCES (COMPILED FEB. 1989)[CKu89] Chor, B., and E. Kushilevitz, \A Zero-One Law for Boolean Privacy", 21st STOC,pp. 62-72, 1989.[CR87] Chor, B., and M.O, Rabin, \Achieving Independence in Logarithmic Number ofRounds", 6th PODC, pp. 260-268, 1987.[CGG] Chor, B., O. Goldreich, and S. Goldwasser, \The Bit Security of Modular Squaringgiven Partial Factorization of the Modulos", Advances in Cryptology - Crypto85 (pro-ceedings), H.C. Williams (ed.), Springer-Verlag, Lecture Notes in Computer Science,vol. 218, 1986, pp. 448-457.[CF85] Cohen, J.D., and M.J. Fischer, \A Robust and Veri�able Cryptographically SecureElection Scheme", Proc. 26th FOCS, pp. 372-382, 1985.[Cre87] Crepeau, C., \Equivalence between two Flavour of Oblivious Transfer", Crypto87proceedings, Lecture Notes in Computer Science, Vol. 293, Springer-Verlag, 1987, pp.350-354.[CK88] Crepeau, C., and J. Kilian, \Weakening Security Assumptions and Oblivious Trans-fer", Crypto88 proceedings.[EGL82] see category 8.[Fel87] Feldman, P., \A Practical Scheme for Veri�able Secret Sharing", Proc. 28th FOCS,pp. 427-438, 1987.[FFS87] Feige, U., A. Fiat, and A. Shamir, \Zero-Knowledge Proofs of Identity", Proc. of 19thSTOC, pp. 210-217, 1987.[FST88] Feige, U., A. Shamir, and M. Tennenholtz, \The Noisy Oracle Problem", Crypto88proceedings.[FS88] Feige, U., and A. Shamir, \Zero-Knowledge Proofs of Knowledge in Two Rounds",manuscript, Nov. 1988.[FMRW85] Fischer, M., S. Micali, C. Racko�, and D.K. Wittenberg, \An Oblivious Transfer Pro-tocol Equivalent to Factoring", unpublished manuscript, 1986. Preliminary versionswere presented in EuroCrypt84 (1984), and in the NSF Workshop on MathematicalTheory of Security, Endicott House (1985).[For87] Fortnow, L., \The Complexity of Perfect Zero-Knowledge", Proc. of 19th STOC, pp.204-209, 1987.[GHY85] Galil, Z., S. Haber, and M. Yung, \A Private Interactive Test of a Boolean Predicateand Minimum-Knowledge Public-Key Cryptosystems", Proc. 26th FOCS, 1985, pp.360-371.
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A.6. INTERACTIVE PROOFS, ZERO-KNOWLEDGE AND PROTOCOLS 315[GHY87] Galil, Z., S. Haber, and M. Yung, \Cryptographic Computation: Secure Fault-TolerantProtocols and the Public-Key Model" Crypto87, proceedings, Springer-Verlag, Lec-ture Notes in Computer Science, vol. 293, pp. 135-155, 1987.[G87a] Goldreich, O., \Zero-Knowledge and the Design of Secure Protocols (an exposition)",TR-480, Computer Science Dept., Technion, Haifa, Israel, 1987.[G88b] see category 4.[GKu88] Goldreich, O., and E. Kushilevitz, \A Perfect Zero-Knowledge Proof for a DecisionProblem Equivalent to Discrete Logarithm", Crypto88, proceedings.[GKa89] Goldreich, O., and A. Kahan, \Using Claw-Free Permutations to Construct Zero-Knowledge Proofs for NP", in preparation, 1989.[GKr89b] Goldreich, O., and H. Krawczyk, \On Sequential and Parallel Composition of Zero-Knowledge Protocols", preprint, 1989.[GV87] Goldreich, O., and R. Vainish, \How to Solve any Protocol Problem - an E�ciencyImprovement", Crypto87, proceedings, Springer-Verlag, Lecture Notes in ComputerScience, vol. 293, pp. 73-86, 1987.[GMS87] Goldreich, O., Y. Mansour, and M. Sipser \Interactive Proof Systems: Provers thatNever Fail and Random Selection", 28th FOCS, pp. 449-461, 1987.[GMW86] see main references.[GMW87] see main references.[GO87] Goldreich, O., and Y. Oren, \On the Cunning Power of Cheating Veri�ers: SomeObservations about Zero-Knowledge Proofs", in preparation. Preliminary version, byY. Oren, in FOCS87.[Gw89] Goldwasser, S., \Interactive Proof Systems", Proc. of Symposia in Applied Mathe-matics, AMS, Vol. 38, 1989.[GMR85] see main references.[GS86] Goldwasser, S., and M. Sipser, \Private Coins vs. Public Coins in Interactive ProofSystems", Proc. 18th STOC, 1986, pp. 59-68.[IY87] Impagliazzo, R., and M. Yung, \Direct Minimum-Knowledge Computations", Ad-vances in Cryptology - Crypto87 (proceedings), C. Pomerance (ed.), Springer-Verlag,Lecture Notes in Computer Science, vol. 293, 1987, pp. 40-51.[Kil88] Kilian, J., \Founding Cryptography on Oblivious Transfer", 20th STOC, pp. 20-31,1988.
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316 APPENDIX A. ANNOTATED LIST OF REFERENCES (COMPILED FEB. 1989)[LMR83] Luby, M., S. Micali, and C. Racko�, 24th FOCS, 1983.[KMO89] Kilian, J., S. Micali, and R. Ostrovsky, \Simple Non-Interactive Zero-KnowledgeProofs", 30th FOCS, to appear, 1989.[NW88] see category 4.[R81] see category 8.[TW87] Tompa, M., and H. Woll, \Random Self-Reducibility and Zero-Knowledge InteractiveProofs of Possession of Information", Proc. 28th FOCS, pp. 472-482, 1987.[Y82b] Yao, A.C., \Protocols for Secure Computations", 23rd FOCS, 1982, pp. 160-164.[Y86] Yao, A.C., \How to Generate and Exchange Secrets", Proc. 27th FOCS, pp. 162-167,1986.A.7 Additional TopicsThis category provides pointers to topics which I did not address so far. These topicsinclude additional cryptographic problems (e.g. software protection, computation with anuntrusted oracle, and protection against \abuse of cryptographic systems"), lower levelprimitives (e.g. Byzantine Agreement and sources of randomness) and \cryptanalysis".7.1. Software ProtectionA theoretical framework for discussing software protection is suggested in [G87b]. Recently,the solution in [G87b] has been dramatically improved [O89].7.2. Computation with an Untrusted OracleComputation with an untrusted oracle raises two problems: the oracle may fail the compu-tation by providing wrong answers, and/or the oracle can gain information on the input ofthe machine which uses it. The �rst problem can be identi�ed with recent research on \pro-gram checking" initiated in [BK89]. Note that the de�nition of \program checking" is morere�ned than the one of an interactive proof (in particular it does not trivialize polynomial-time computations and does not allow in�nitely powerful provers) and thus is more suitablefor the investigation. The results in [BK89, BLR89] are mainly encouraging as they providemany positive examples of computations which can be sped-up (and yet con�rmed) usingan oracle. A formalization of the second problem, presented in [AFK87], seems to havereached a dead-end with the negative results of [AFK87]. Other formalizations appear in[BF89] and [BLR89].

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



A.7. ADDITIONAL TOPICS 3177.3. Protection Against Abuse of Cryptographic SystemsHow can a third party prevent the abuse of a two-party cryptographic protocol executedthrough a channel he controls? As an example consider an attempt of one party to passinformation to his counterpart by using a signature scheme. This old problem (sometimesreferred to as the prisoners' problem or the subliminal channel) is formalized and solved,using active intervention of the third party, in [D88].7.4. Byzantine AgreementIn lectures 14-15 we have assumed the existence of a broadcast channel accessable by allprocessors. In case such a channel does not exist in the network (i.e., in case we are usinga point-to-point network), such a channel can be implemented using Byzantine Agreement.Using private channel, randomized Byzantine Agreement protocols with expected O(1)rounds can be implemented [FM88]. This work builds on [R83]. Additional insight can begained from the pioneering works of [Be83, Br85], and from the survey of [CD89].7.5. Sources of RandomnessA subject related to cryptography is the use of weak sources of randomness in applicationsrequiring perfect coins. Models of weak sources are presented and investigated in [B84,SV84, CG85, Cetal85, LLS87]. Further developments are reported in [V85, VV85, V87].7.6. CryptanalysisIn all the famous examples of successful cryptanalysis of a proposed cryptographic scheme,the success revealed a explicit or implicit assumption made by the designers of the cryp-tosystem. This should serve as experimental support to the thesis underlying the coursethat assumptions have to be made explicitly.Knapsack cryptosystems, �rst suggested in [MH78], were the target of many attacks.The �rst dramatic success was the breaking of the original [MH78] scheme, using the ex-istence of a trapdoor super-increasing sequence [S82]. An alternative attack applicableagainst low density knapsack (subset sum) problems was suggested in [LO85]. For moredetails see [BO88]. It seems that the designers conjectured that subset sum problems with atrapdoor (resp. with low density) are as hard as random high density subset sum problems.It seems that this conjecture is false.Another target for many attacks were the linear congruential number generators andtheir generalizations. Although these generators are known to pass many statistical tests[K69], they do not pass all polynomial-time statistical tests [Boy82]. Generalizations topolynomial congruential recurrences and linear generators which output only part of thebits of the numbers produced can be found in [Kr88] and [S87], respectively. The fact thata proposed scheme passes some tests or attacks does not mean that it will pass all e�cienttests.
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318 APPENDIX A. ANNOTATED LIST OF REFERENCES (COMPILED FEB. 1989)Another famous cryptographic system which triggered interesting algorithmic researchis the [OSS84] signature scheme. This scheme was based on the conjecture, latter refutedin [Pol84], that it is hard to solve a modular quadratic equation in two variables. Othervariants (e.g. [OSS84b, OS85]) were broken as well (in [EAKMM85, BD85], resp.). Provingthat one cannot �nd the trapdoor information used by the legal signer does not mean thatone cannot forge signatures.5references[AFK87] Abadi, M., J. Feigenbaum, and J. Kilian, \On Hiding Information from an Oracle",19th STOC, pp. 195-203, 1987.[BF89] Beaver, D., and J. Feigenbaum, \Encrypted Queries to Multiple Oracles", manuscript,1989.[B84] Blum, M., \Independent Unbiased Coin Flips from a Correlated Biased Source: aFinite State Markov Chain", 25th Symp. on Foundation of Computer Science, pp.425-433, 1984.[Be83] Ben-Or, M., \Another Advantage of Free Choice: Completely Asynchronous Agree-ment Protocols", 2nd PODC, pp. 27-30, 1983.[BK89] Blum, M., and S. Kannan, \Designing Programs that Check their Work", 21st STOC,pp. 86-97, 1989.[BLR89] Blum, M., M. Luby, and R. Rubinfeld, in preparation.[Boy82] Boyar, J.B., \Inferring Sequences Produced by Pseudo-Random Number Generators",JACM, Vol. 36, No. 1, pp. 129-141, 1989. Early version in FOCS82 (under previousname: Plumstead).[Br85] Bracha, G., \An O(log n) Expected Rounds Randomized Byzantine Generals Proto-col", JACM, Vol. 34, No. 4, pp. 910-920, 1987. Extended abstract in STOC85.[BD85] Brickell, E.F., and J.M. DeLaurentis, \An Attack on a Signature Scheme Proposedby Okamoto and Shiraishi", Crypto85, proceedings, Springer-Verlag, Lecture Notes inComputer Science, vol. 218, pp. 28-32, 1985.[LO85] Lagarias, J.C., and A.M. Odlyzko, \Solving Low-Density Subset Sum Problems",JACM, Vol. 32, (1985), pp. 229-246. 24th FOCS, pp. 1-10, 1983.[BO88] see category 2.5To further stress this point, consider a signature scheme \based on composites" where the signature ofa message m relative to the public-key N is 2mmodN . The infeasibility of retrieving the trapdoor (i.e. thefactorization of N) is a poor guarantee for security.
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A.7. ADDITIONAL TOPICS 319[CD89] Chor, B., and C. Dwork, \Randomization in Byzantine Agreement", Advances inComputing Research, Vol. 5, S. Micali, ed., JAI Press, in press.[Cetal85] Chor, B., J. Freidmann, O. Goldreich, J. Hastad, S. Rudich, and R. Smolensky, \TheBit Extraction Problem or t-Resilient Functions", 26th FOCS, pp. 396-407, 1985.[CG85] Chor, B., and O. Goldreich, \Unbiased Bits from Sources of Weak Randomness andProbabilistic Communication Complexity", 26th Symp. on Foundation of ComputerScience, pp. 427-443, 1985.[D88] Desmedt, Y., \Abuses in Cryptography and How to Fight Them", Crypto88 proceed-ings, to appear.[EAKMM85] Estes, D., L. Adleman, K. Kompella, K. McCurley, and G. Miller, \Breaking the Ong-Schnorr-Shamir Signature Scheme for Quadratic Number Fields", Crypto85, proceed-ings, Springer-Verlag, Lecture Notes in Computer Science, vol. 218, pp. 3-13, 1985.[FM88] Feldman, P., and S. Micali, \Optimal Algorithms for Byzantine Agreement", 20thSTOC, pp. 148-161, 1988.[FHKLS] Frieze, A.M., J. Hastad, R. Kannan, J.C. Lagarias, and A. Shamir, \ReconstructingTruncated Integer Variables Satisfying Linear Congruences", SIAM J. Comput., Vol.17, No. 2, pp. 262-280, 1988. Combines early papers from FOCS84 and STOC85 (byFrieze, Kannan and Lagarias, and Hastad and Shamir, resp.).[G87b] Goldreich, O., \Towards a Theory of Software Protection and Simulation by ObliviousRAMs", 19th STOC, pp. 182-194, 1987.[K69] Knuth, D.E., The Art of Computer Programming, Vol. 2, Addison-Wesley, Reading,Mass., 1969.[Kr88] Krawczyk, H., \How to Predict Congruential Generators", TR-533, Computer ScienceDept., Technion, Haifa, Israel, 1988. To appear in J. of Algorithms.[LR88] J.C. Lagarias, and J. Reeds, \Unique Extrapolation of Polynomial Recurrences",SIAM J. Comput., Vol. 17, No. 2, pp. 342-362, 1988.[LLS87] Lichtenstein, D., N. Linial, and M. Saks, \Imperfect Random Sources and DiscreteControl Processes", 19th STOC, pp. 169-177, 1987.[MH78] see category 8.[OS85] Okamoto, T., and A. Shiraishi, \A Fast Signature Scheme Based on Quadratic In-equalities", Proc. of 1985 Symp. on Security and Privacy, April 1985, Oakland,Cal.
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320 APPENDIX A. ANNOTATED LIST OF REFERENCES (COMPILED FEB. 1989)[OSS84] Ong, H., C.P. Schnorr, and A. Shamir, \An E�cient Signature Scheme Based onQuadratic Equations", 16th STOC, pp. 208-216, 1984.[OSS84b] Ong, H., C.P. Schnorr, and A. Shamir, \E�cient Signature Schemes Based on Polyno-mial Equations", Crypto84, proceedings, Springer-Verlag, Lecture Notes in ComputerScience, vol. 196, pp. 37-46, 1985.[O89] Ostrovsky, R., \An E�cient Software Protection Scheme", in preparations.[Pol84] Pollard, J.M., \Solution of x2 + ky2 � m (modn), with Application to Digital Signa-tures", preprint, 1984.[R83] Rabin, M.O., \Randomized Byzantine Agreement", 24th FOCS, pp. 403-409, 1983.[SV84] Santha, M., and U.V. Vazirani, \Generating Quasi-Random Sequences from Slightly-Random Sources", 25th Symp. on Foundation of Computer Science, pp. 434-440,1984.[S82] Shamir, A., \A Polynomial-Time Algorithm for Breaking the Merkle-Hellman Cryp-tosystem", 23rd FOCS, pp. 145-152, 1982.[S87] Stern, J., \Secret Linear Congruential Generators are not Cryptographically Secure",28th FOCS, pp. 421-426, 1987.[V85] U.V. Vazirani, \Towards a Strong Communication Complexity Theory or GeneratingQuasi-Random Sequences from Two Communicating Slightly-Random Sources", Proc.17th ACM Symp. on Theory of Computing, 1985, pp. 366-378.[V87] U.V. Vazirani, "E�ciency Considerations in Using Semi-random Sources", Proc. 19thACM Symp. on Theory of Computing, 1987, pp. 160-168.[VV85] U.V. Vazirani, and V.V. Vazirani, \Random Polynomial Time is equal to Slightly-Random Polynomial Time", 26th Symp. on Foundation of Computer Science, pp.417-428, 1985.A.8 Historical BackgroundAn inspection of the references listed above reveals that all these works were initiated inthe 80's and began to appear in the literature in 1982 (e.g. [GM82]). However, previouswork had tremendous inuence on these works of the 80's. The inuence took the form ofsetting intuitive goals, providing basic techniques, and suggesting potential solutions whichserved as a basis for constructive criticism (leading to robust approaches).
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A.8. HISTORICAL BACKGROUND 3218.1. Classic CryptographyAnswering the fundamental question of classic cryptography in a gloomy way (i.e. it isimpossible to design a code that cannot be broken), Shannon suggested a modi�cation tothe question [S49]. Rather than asking whether it is possible to break the code, one shouldask whether it is feasible to break it. A code should be considered good if it cannot bebroken when investing work which is in reasonable proportion to the work required of thelegal parties using the code.8.2. New Directions in CryptographyProspects of commercial application were the trigger for the beginning of civil investigationsof encryption schemes. The DES designed in the early 70's has adopted the new paradigm:it is clearly possible but supposely infeasible to break it.Following the challenge of constructing and analyzing new encryption schemes came newquestions like how to exchange keys over an insecure channel [M78]. New concepts wereinvented: digital signatures [R77, DH76], public-key cryptosystems and one-way functions[DH76]. First implementations of these concepts were suggested in [MH78, RSA78, R79].Cryptography was explicitly related to complexity theory in [Br79, EY80, Lem79]: itwas understood that problems related to breaking a cryptographic scheme cannot be NP-complete and that NP-hardness is a poor evidence for cryptographic security. Techniquesas \n-out-of-2n veri�cation" [R77] and secret sharing [S79] were introduced (and indeedwere used extensively in subsequent research).8.3. At the Dawn of a New EraEarly investigations of cryptographic protocols revealed the inadequacy of imprecise notionsof security and the subtleties involved in designing cryptographic protocols. In particular,problems as coin tossing over telephone [B82a], exchange of secrets and oblivious transferwere formulated [R81, B82b] (cf. [EGL82]). Doubts concerning the security of \mentalpoker" protocol of [SRA79] led to the current notion of secure encryption [GM82] and toconcepts as computational indistinguishability. Doubts concerning the Oblivious Transferprotocol of [R81] led to the concept of zero-knowledge [GMR85] (early versions date toMarch 1982).An alternative approach to the security of cryptographic protocols was suggested in[DY81] (see also [DEK82]), but it turned out that it is much too di�cult to test whether aprotocol is secure [EG83]. Fortunately, tools for constructing secure protocols do exist (see[Y86, GMW87])!references[B82a] Blum, M., \Coin Flipping by Phone", IEEE Spring COMPCOM, pp. 133-137, Febru-ary 1982. See also SIGACT News, Vol. 15, No. 1, 1983.
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322 APPENDIX A. ANNOTATED LIST OF REFERENCES (COMPILED FEB. 1989)[B82b] Blum, M., \How to Exchange Secret Keys", Memo. No. UCB/ERL M81/90. ACMTrans. Comput. Sys., Vol. 1, pp. 175-193, 1983.[Br79] Brassard, G., \A Note on the Complexity of Cryptography", IEEE Trans. on Inform.Th., Vol. 25, pp. 232-233, 1979.[DH76] W. Di�e, and M. E. Hellman, "New Directions in Cryptography", IEEE transactionson Info. Theory, IT-22 (Nov. 1976), pp. 644-654[DEK82] Dolev, D., S. Even, and R. Karp, \On the Security of Ping-Pong Protocols", Advancesin Cryptology: Proceedings of Crypto82, Plenum Press, pp. 177-186, 1983.[DY81] Dolev, D., and A.C. Yao, \On the Security of Public-Key Protocols", IEEE Trans.on Inform. Theory, Vol. 30, No. 2, pp. 198-208, 1983. Early version in FOCS81.[EGL82] Even, S., O. Goldreich, and A. Lempel, \A Randomized Protocol for Signing Con-tracts", CACM, Vol. 28, No. 6, 1985, pp. 637-647. Extended abstract in Crypto82.[EG83] Even, S., and O. Goldreich, \On the Security of Multi-party Ping-Pong Protocols",24th FOCS, pp. 34-39, 1983.[EY80] Even, S., and Y. Yacobi, \Cryptography and NP-Completeness", 7th ICALP pro-ceedings, Lecture Notes in Computer Science, Vol. 85, Springer Verlag, pp. 195-207,1980. See also later version by Even, Selman, and Yacobi (titled: \The Complexity ofPromise Problems with Applications to Public-Key Cryptography") in Inform. andControl, Vol. 61, pp. 159-173, 1984.[GMW87] see main references.[GM82] see main references.[GMR85] see main references.[Lem79] Lempel, A., \Cryptography in Transition", Computing Surveys , Dec. 1979.[M78] Merkle, R.C., \Secure Communication over Insecure Channels", CACM, Vol. 21, No.4, pp. 294-299, 1978.[MH78] Merkle, R.C., and M.E. Hellman, \Hiding Information and Signatures in TrapdoorKnapsacks", IEEE Trans. Inform. Theory, Vol. 24, pp. 525-530, 1978.[R77] M.O. Rabin, \Digitalized Signatures", Foundations of Secure Computation, AcademicPress, R.A. DeMillo et. al. eds., 1977.[R79] M.O. Rabin, "Digitalized Signatures and Public Key Functions as Intractable as Fac-toring", MIT/LCS/TR-212, 1979.
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A.8. HISTORICAL BACKGROUND 323[R81] Rabin, M.O., \How to Exchange Secrets by Oblivious Transfer", unpublished manuscript,1981.[RSA78] R. Rivest, A. Shamir, and L. Adleman, "A Method for Obtaining Digital Signaturesand Public Key Cryptosystems", Comm. ACM, Vol. 21, Feb. 1978, pp 120-126[S79] Shamir, A., \How to Share a Secret", CACM, Vol. 22, 1979, pp. 612-613.[S83] A. Shamir, "On the Generation of Cryptographically Strong Pseudorandom Sequences",ACM Transaction on Computer Systems, Vol. 1, No. 1, February 1983, pp. 38-44.[SRA79] Shamir, A., R.L. Rivest, and L. Adleman, \Mental Poker", MIT/LCS report TM-125,1979.[S49] Shannon, C.E., \Communication Theory of Secrecy Systems", Bell Sys. Tech. J., 28,pp. 656-715, 1949.[Y86] see category 6.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



Indexaveraging argument, 157Blum integers, 47, 50, 52, 206Chebyshev Inequality, 12, 17, 58, 97Cherno� Bound, 13, 17, 80, 105clawfree functions, 205clawfree functions, DLP, 205clawfree functions, factoring assumption,205, 206clawfree permutations, 211clawfree permutations, factoring assump-tion, 52collision-free hashing, 42commitment scheme, 165, 210commitment scheme, computational secrecy,213commitment scheme, perfect a posteriorisecrecy, 206, 217commitment scheme, perfect secrecy, 208,211, 213computational indistinguishability, 78, 143,160, 255computational indistinguishability, by sam-pling, 80computationally sound proofs, round-e�cient,211discrete logarithm, 47, 51DLP function, 47, 212DLP function, clawfree property, 51DLP function, hard-core, 54encryption, chosen message attack, 220encryption, non-uniformity, 252

encryption, perfect secrecy, 252encryption, private-key, 250encryption, public-key, 251expander graph, 63, 64expander graph, explicitly constructed, 63expander graph, random walk on, 64expander graph, random walks on, 65factoring integers, 34, 47, 206function ensembles, 107function ensembles, constructible, 107function ensembles, pseudorandom, 107,108, 264Graph Coloring, 163graph isomorphism, 53, 72, 137, 145hamiltonian cycle, 200, 223hashing functions, 96, 97hashing, collision-free, 209, 210hybrid argument, 169hybrid technique, 81, 83, 86, 98, 109, 116,156interactive machine, 132interactive machine, joint computation, 133interactive machine, the complexity of, 134interactive proofs, 135, 136, 201interactive proofs, auxiliary inputs, 140,151, 185, 201interactive proofs, error reduction, 135, 137,166interactive proofs, graph non-isomorphism,137interactive proofs, round-e�cient, 211324

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



INDEX 325Kolmogorov Complexity, 79Kolmogorov complexity, 76Markov Inequality, 11, 55negligible, 28{30, 78non-negligible, 30NP, as a proof system, 130, 136NP-completeness, 35, 163, 174NP-completeness, G3C, 15, 174NP-completeness, generic reduction, 174,244NP-completeness, strong sense, 174, 244one-way function, hard-core function of,98, 99one-way functions, clawfree collection, 50one-way functions, clawfree functions, 44one-way functions, collections of, 44, 180one-way functions, Rabin, 47one-way functions, regular, 63, 102, 105one-way permutations, 48one-way permutations, DLP, 47one-way permutations, hard-core of, 93,161, 223one-way permutations, RSA, 46one-way permutations, with trapdoor, 44,48, 55one-way, clawfree functions, 205one-way, clawfree permutations, 211one-way, decoding random linear codes, 35one-way, factoring assumption, 34, 47, 206one-way, length preserving, 33one-way, length regular, 33one-way, non-uniform, 36one-way, permutations, 204one-way, strong, 29, 55one-way, subset sum problem, 35one-way, the inner-product hard-core, 55one-way, weak, 30P vs. NP problem, 28, 70permutation ensembles, 114

permutation ensembles, invertible, 115permutation ensembles, pseudorandom, 114,116permutation ensembles, strongly pseudo-random, 115polynomialy related, 78probability ensembles, 77probability ensembles, e�ciently constructible,81pseudorandom ensembles, 84pseudorandom ensembles, unpredictabilityof, 90pseudorandom generator, application of,161pseudorandom generator, construction of,91, 93pseudorandom generator, constructions of,86, 98, 100, 104pseudorandom generator, general de�ni-tion, 84, 85public-key encryption, 42Rabin function, 47, 50Rabin function, hard-core, 54random linear codes, 35random variables, pairwise independent,57, 58reducibility argument, 32, 34, 37, 41, 43,55, 59, 64, 65, 81, 83, 87, 90, 103RSA function, 46, 50RSA function, hard-core, 54Shannon, 252signature schemes, 220statistical di�erence, 79, 142statistical distance, 203subset sum, 35two-partner model, 229zero-knowledge, alternative formulation, 143,185zero-knowledge, auxiliary input, 166

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



326 INDEXzero-knowledge, auxiliary inputs, 151, 185zero-knowledge, black box, 152, 179, 183,212, 245zero-knowledge, class of languages, 144zero-knowledge, computational, 143zero-knowledge, graph isomorphism, 145zero-knowledge, in multi-prover proofs, 231zero-knowledge, knowledge tightness, 178zero-knowledge, perfect, 142zero-knowledge, round complexity, 177zero-knowledge, round-e�cient, 213zero-knowledge, sequential composition, 147,166
Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.


