
Draft of a chapteron General Protocols(�rst posted version)Extracts from a working draft forVolume 2 of Foundations of CryptographyOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.October 27, 2002

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Ito Dana

c
Copyright 2002 by Oded Goldreich.Permission to make copies of part or all of this work for personal or classroom useis granted without fee provided that copies are not made or distributed for pro�t orcommercial advantage and that new copies bear this notice and the full citation on the�rst page. Abstracting with credit is permitted.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

II
Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

PrefaceThe current manuscript is a preliminary draft of the chapter on gen-eral protocols (Chapter 7) of the second volume of the work Foun-dations of Cryptography.The bigger picture. The current manuscript is part of a working draft ofPart 2 of the three-part work Foundations of Cryptography (see Figure 0.1). Thethree parts of this work are Basic Tools, Basic Applications, and Beyond the Ba-sics. The �rst part (containing Chapters 1{4) has been published by CambridgeUniversity Press (in June 2001). The second part, consists of Chapters 5{7 (re-garding Encryptioni Schemes, Signatures Schemes, and General CryptographicProtocols, respectively). We hope to publish the second part with CambridgeUniversity Press within a few years.Part 1: Introduction and Basic ToolsChapter 1: IntroductionChapter 2: Computational Di�culty (One-Way Functions)Chapter 3: Pseudorandom GeneratorsChapter 4: Zero-Knowledge ProofsPart 2: Basic ApplicationsChapter 5: Encryption SchemesChapter 6: Signature SchemesChapter 7: General Cryptographic ProtocolsPart 3: Beyond the Basics� � �Figure 0.1: Organization of this work
III

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

IV The partition of the work into three parts is a logical one. Furthermore, ito�ers the advantage of publishing the �rst part without waiting for the comple-tion of the other parts. Similarly, we hope to complete the second part within acouple of years, and publish it without waiting for the third part.Prerequisites. The most relevant background for this text is provided bybasic knowledge of algorithms (including randomized ones), computability andelementary probability theory. Background on (computational) number theory,which is required for speci�c implementations of certain constructs, is not reallyrequired here.Using this text. The text is intended as part of a work that is aimed to serveboth as a textbook and a reference text. That is, it is aimed at serving both thebeginner and the expert. In order to achieve this aim, the presentation of thebasic material is very detailed so to allow a typical CS-undergraduate to followit. An advanced student (and certainly an expert) will �nd the pace (in theseparts) way too slow. However, an attempt was made to allow the latter readerto easily skip details obvious to him/her. In particular, proofs are typicallypresented in a modular way. We start with a high-level sketch of the main ideas,and only later pass to the technical details. Passage from high-level descriptionsto lower level details is typically marked by phrases such as details follow.In a few places, we provide straightforward but tedious details in in-dented paragraphs as this one. In some other (even fewer) places suchparagraphs provide technical proofs of claims that are of marginal rele-vance to the topic of the book.More advanced material is typically presented at a faster pace and with lessdetails. Thus, we hope that the attempt to satisfy a wide range of readers willnot harm any of them.Teaching. The material presented in the full (three-volume) work is, on onehand, way beyond what one may want to cover in a course, and on the otherhand falls very short of what one may want to know about Cryptography ingeneral. To assist these con
icting needs we make a distinction between basicand advanced material, and provide suggestions for further reading (in the lastsection of each chapter). In particular, sections, subsections, and subsubsectionsmarked by an asterisk (*) are intended for advanced reading.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Table of Contents
Preface III7 General Cryptographic Protocols 5757.1 Overview : 5767.1.1 The De�nitional Approach and Some Models : : : : : : : 5777.1.1.1 Some parameters used in de�ning security models 5777.1.1.2 Example: Multi-party protocols with honest ma-jority : 5807.1.1.3 Another example: Two-party protocols allowingabort : 5827.1.2 Some Known Results : 5837.1.2.1 The main results presented in this chapter : : : 5837.1.2.2 Other results : 5847.1.2.3 An extension and e�ciency considerations : : : 5857.1.3 Construction Paradigms : : : : : : : : : : : : : : : : : : : 5857.1.3.1 From passively-secure protocols to actively-secureones : 5867.1.3.2 Passively-secure computation with \scrambled cir-cuits" : 5877.1.3.3 Passively-secure computation with shares : : : : 5897.2 * The Two-Party Case: De�nitions : : : : : : : : : : : : : : : : : 5917.2.1 The syntactic framework : : : : : : : : : : : : : : : : : : : 5917.2.1.1 Simplifying conventions : : : : : : : : : : : : : : 5927.2.1.2 Computational indistinguishability: conventionsand notation : 5947.2.1.3 Representation of parties' strategies : : : : : : : 5957.2.2 The semi-honest model : : : : : : : : : : : : : : : : : : : 5957.2.2.1 The simple formulation of privacy : : : : : : : : 5967.2.2.2 The alternative formulation : : : : : : : : : : : : 5987.2.2.3 Equivalence of the two formulation : : : : : : : : 6007.2.3 The malicious model : 6017.2.3.1 The actual de�nition : : : : : : : : : : : : : : : 6027.2.3.2 An alternative approach : : : : : : : : : : : : : : 6067.3 * Privately Computing (2-Party) Functionalities : : : : : : : : : 609V

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

VI 7.3.1 Privacy reductions and a composition theorem : : : : : : 6107.3.2 The OTk1 protocol { de�nition and construction : : : : : : 6147.3.3 Privately computing c1 + c2 = (a1 + a2) � (b1 + b2) : : : 6187.3.4 The circuit evaluation protocol : : : : : : : : : : : : : : : 6197.4 * Forcing (2-party) Semi-Honest Behavior : : : : : : : : : : : : : 6247.4.1 The compiler { motivation and overview : : : : : : : : : : 6257.4.2 Security reductions and a composition theorem : : : : : : 6267.4.3 The compiler { functionalities in use : : : : : : : : : : : : 6327.4.3.1 Coin Tossing : 6347.4.3.2 Authenticated Computation (Partial Version) : : 6387.4.3.3 Image Transmission : : : : : : : : : : : : : : : : 6437.4.3.4 Authenticated Computation, Revisited : : : : : 6467.4.3.5 Augmented coin-tossing : : : : : : : : : : : : : : 6497.4.3.6 Input Commitment : : : : : : : : : : : : : : : : 6527.4.3.7 Summary : 6557.4.4 The compiler itself : 6567.4.4.1 The e�ect of the compiler : : : : : : : : : : : : : 6587.4.4.2 Canonical protocols and the augmented semi-honest model : 6637.4.4.3 Conclusion { Proof of Theorem 7.4.1 : : : : : : : 6687.5 * Extension to the Multi-Party Case : : : : : : : : : : : : : : : : 6707.5.1 De�nitions : 6707.5.1.1 The communication model and external adver-saries : 6717.5.1.2 The semi-honest model : : : : : : : : : : : : : : 6727.5.1.3 The two malicious models : : : : : : : : : : : : : 6737.5.2 Security in the Semi-Honest Model : : : : : : : : : : : : : 6777.5.2.1 A composition theorem : : : : : : : : : : : : : : 6787.5.2.2 Privately computing Pi ci = (Pi ai) � (Pi bi) : 6807.5.2.3 The multi-party circuit evaluation protocol : : : 6827.5.2.4 Conclusion: Private computation of any func-tionality : 6837.5.3 The Malicious Models { Overview and Preliminaries : : : 6847.5.3.1 Precompiler (emulating private channels) : : : : 6867.5.3.2 Postcompiler (emulating a broadcast channel) : 6877.5.4 The �rst complier { Forcing Semi-Honest Behavior : : : : 6897.5.4.1 Security reductions and a composition theorem : 6907.5.4.2 Secure broadcast : : : : : : : : : : : : : : : : : : 6927.5.4.3 Multi-party authenticated computation : : : : : 6937.5.4.4 Multi-party augmented coin-tossing : : : : : : : 6977.5.4.5 Multi-party input-commitment : : : : : : : : : : 7017.5.4.6 The compiler itself : : : : : : : : : : : : : : : : : 7027.5.4.7 Analysis of the compiler : : : : : : : : : : : : : : 7037.5.5 The second complier { E�ectively Preventing Abort : : : 7047.5.5.1 Veri�able Secret Sharing : : : : : : : : : : : : : 705

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

17.5.5.2 The compiler itself : : : : : : : : : : : : : : : : : 7087.5.5.3 Analysis of the compiler : : : : : : : : : : : : : : 7107.6 * The Private Channel Model : 7167.6.1 De�nitions : 7177.6.2 Security in the Semi-Honest Model : : : : : : : : : : : : : 7187.6.3 Security in the Malicious Model : : : : : : : : : : : : : : : 7217.7 Miscellaneous : 7227.7.1 * Three deferred issues : 7227.7.1.1 Partial fairness or on exchanging secrets : : : : : 7227.7.1.2 The adaptive model : : : : : : : : : : : : : : : : 7237.7.1.3 Reactive systems : : : : : : : : : : : : : : : : : : 7267.7.2 * Concurrent Executions : : : : : : : : : : : : : : : : : : : 7277.7.2.1 De�nitions : 7277.7.2.2 Constructions : : : : : : : : : : : : : : : : : : : 7297.7.3 Historical Notes : 7307.7.4 Suggestion for Further Reading : : : : : : : : : : : : : : : 7317.7.5 Open Problems : 7327.7.6 Exercises : 732

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

574
Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Chapter 7General CryptographicProtocolsThe design of secure protocols that implement arbitrary desired functionalitiesis a major part of modern cryptography. Taking the opposite perspective, thedesign of any cryptographic scheme may be viewed as the design of a secureprotocol for implementing a suitable functionality. Still, we believe that it makesense to di�erentiate between basic cryptographic primitives (which involve littleinteraction) like encryption and signature schemes on one hand, and generalcryptographic protocols on the other hand.In this chapter we consider general results concerning secure multi-partycomputations, where the two-party case is an important special case. In a nut-shell, these results assert that one can construct protocols for securely computingany desirable multi-party functionality (see terminology below). Indeed, what isstriking about these results is their generality, and we believe that the wonder isnot diminished by the (various alternative) conditions under which these resultshold.Our focus on the general study of secure multi-party computation (ratherthan on protocols for solving speci�c problems) is natural in the context of thetheoretical treatment of the subject matter. We wish to highlight the importanceof this general study to practice. Firstly, this study clari�es fundamental issuesregarding security in a multi-party environment. Secondly, it draws the linesbetween what is possible in principle and what is not. Thirdly, it developsgeneral techniques for design of secure protocols. And last, sometimes, it mayeven yield schemes (or modules) that may be incorporated in practical systems.Thus, we believe that the current chapter is both of theoretical and practicalimportance.Terminology: The notion of a (multi-party) functionality is central to thecurrent chapter. By an m-ary functionality we mean a random process that mapsm inputs to m outputs, where functions mapping m inputs to m outputs are575

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

576 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSa special case (also referred to as deterministic functionalities). Thus, func-tionalities are randomized extensions of ordinary functions. One may think of afunctionality F as being a probability distribution over (corresponding) functions(i.e., F equals the function f (i) with probability pi). Alternatively, we think ofF (x1; :::; xm) as selecting at random a string r, and outputting F 0(r; x1; :::; xm),where F 0 is a function mapping m+ 1 inputs to m outputs.Teaching Tip: Since the contents of the current chapter is quite complex,we suggest to cover in class only the overview section (i.e., Section 7.1), andconsider the rest of this chapter to be advanced material. Furthermore, weassume that the reader is familiar with the material in all the previous chapters.This familiarity is important not only because we use some of the notions andresults presented in these chapters, but rather because we use similar prooftechniques (and do so while assuming that this is not the reader's �rst encounterwith these techniques).Organization: In addition to the overview section (i.e., Section 7.1), the cur-rent chapter consists of two main parts.The �rst part (i.e., Sections 7.2{7.4) consists of a detailed treatment of generalsecure two-party protocols.Our ultimate goal in this part is to design two-party protocols that with-stand any feasible adversarial behavior. We proceed in two steps. First weconsider a benign type of adversary, called semi-honest, and construct pro-tocols that are secure with respect to such an adversary (cf. Section 7.3).Next, we show how to force parties to behave in a semi-honest manner(cf. Section 7.4). That is, we show how to transform any protocol, securein the semi-honest model, into a protocol that is secure against any fea-sible adversarial behavior. But before presenting these constructions, wepresent the relevant de�nitions (cf. Section 7.2).The second part (i.e., Sections 7.5 and 7.6) deals with general securemulti-partyprotocols. Speci�cally, in Section 7.5 we extend the treatment presented inthe �rst part to multi-party protocols, whereas in Section 7.6 we considerthe \private channels" model and present alternative constructions for it.Although it is possible to skip some of the earlier sections of this chapter beforereading a later section, we recommend not to do so. In particular, we recommendto read the overview section (i.e., Section 7.1), before reading any later section.7.1 OverviewA general framework for casting (m-party) cryptographic (protocol) problemsconsists of specifying a random process that maps m inputs to m outputs. Theinputs to the process are to be thought of as local inputs of m parties, andthe m outputs are their corresponding (desired) local outputs. The random

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. OVERVIEW 577process describes the desired functionality. That is, if the m parties were totrust each other (or trust some external party), then they could each send theirlocal input to the trusted party, who would compute the outcome of the processand send to each party the corresponding output. A pivotal question in the areaof cryptographic protocols is to what extent can this (imaginary) trusted partybe \emulated" by the mutually distrustful parties themselves.The results mentioned above and surveyed below describe a variety of modelsin which such an \emulation" is possible. The models vary by the underlyingassumptions regarding the communication channels, numerous parameters re-lating to the extent of adversarial behavior, and the desired level of emulationof the trusted party (i.e., level of \security"). We stress that unless stated dif-ferently, the two-party case is an important special case of the treatment of themulti-party setting (i.e., we consider any m � 2).7.1.1 The De�nitional Approach and Some ModelsBefore describing the abovementioned results, we further discuss the notion of\emulating a trusted party", which underlies the de�nitional approach to securemulti-party computation. The approach can be traced back to the de�nition ofzero-knowledge (see Section 4.3), and even to the de�nition of semantic security(see Section 5.2.1). The underlying paradigm (called the simulation paradigm) isthat a scheme is secure if whatever a feasible adversary can obtain after attackingit, is also feasibly attainable in an \ideal setting". In case of zero-knowledge thisamounts to saying that whatever a (feasible) veri�er can obtain after interactingwith the prover on a prescribed valid assertion, can be (feasibly) computed fromthe assertion itself. In case of multi-party computation we compare the e�ect ofadversaries that participate in the execution of the actual protocol to the e�ectof adversaries that participate in an imaginary execution of a trivial (ideal) pro-tocol for computing the desired functionality with the help of a trusted party.If whatever adversaries can feasibly obtain in the former real setting can also befeasibly obtained in the latter ideal setting then the protocol \emulates the idealsetting" (i.e., \emulates a trusted party"), and so is deemed secure. This meansthat properties that are satis�ed in the ideal setting are also satis�ed by a se-cure protocol that is executed in the real setting. For example, security typicallyimplies the preservation of the privacy of the parties' local inputs (beyond what-ever is revealed by the local outputs provided to the adversary), and correctnessof the honest parties' local outputs (i.e., their �tting the functionality).The approach outlined above can be applied in a variety of models, and isused to de�ne the goals of security in these models.1 We �rst discuss some1 A few technical comments are in place. Firstly, we assume that the inputs of all partiesare of the same length. We comment that as long as the lengths of the inputs are polynomiallyrelated, the above convention can be enforced by padding. On the other hand, some lengthrestriction is essential for the security results, because (in general) it is impossible to hideall information regarding the length of the inputs to a protocol. Secondly, we assume thatthe desired functionality is computable in probabilistic polynomial-time, because we wishthe secure protocol to run in probabilistic polynomial-time (and a protocol cannot be moree�cient than the corresponding centralized algorithm). Clearly, the results can be extended

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

578 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSof the parameters used in de�ning various models, and next demonstrate theapplication of this approach to a couple of important cases (cf. Sections 7.1.1.2and 7.1.1.3).7.1.1.1 Some parameters used in de�ning security modelsThe following parameters are described in terms of the actual (or real) computa-tion. In some cases, the corresponding de�nition of security is obtained by somerestrictions or provisions applied to the ideal model. In all cases, the desirednotion of security is de�ned by requiring that for any adequate adversary inthe real model, there exist a corresponding adversary in the corresponding idealmodel that obtains essentially the same impact (as the real-model adversary).� The communication channels: The standard assumption in the area isthat the adversary may tap all communication channels (between honestparties). In contrast, one may postulate that the adversary cannot obtainmessages sent between honest parties, yielding the so-called private-channelmodel. In addition, one may postulate the existence of a broadcast channel.Each of these postulates may be justi�ed in some settings. Furthermore,each postulate may be viewed as a useful abstraction that provide a cleanmodel for study and development of secure protocols. In this respect, itis important to mention that, in a variety of settings of the other param-eters, both types of channels can be easily emulated by ordinary \tappedchannels".The standard assumption in the area is that the adversary cannot mod-ify, duplicate, or generate messages sent over the communication channels(between honest parties). Again, this assumption can be justi�ed in somesettings and emulated in others.Most work in the area assume that communication is synchronous andthat point-to-point channels exist between every pair of processors. How-ever, one may also consider asynchronous communication, and arbitrarynetworks of point-to-point channels.� Set-up assumptions: Unless di�erently stated, we make no set-up assump-tions (except for the obvious assumption that all parties have copies ofthe protocol's program). However, in some cases it is assumed that eachparty knows some information (e.g., a veri�cation-key) corresponding toeach of the other parties (or, one may assume the existence of a public-keyinfrastructure). Another assumption, made more rarely, is that all partieshave access to some common (trusted) random string.� Computational limitations: Typically, we consider computationally-boundedadversaries (e.g., probabilistic polynomial-time adversaries). However, theto functionality that are computable within any given (time-constructible) time bound, usingadequate padding.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. OVERVIEW 579private-channel model allows also to (meaningfully) consider computationally-unbounded adversaries.We stress that, also in the latter case, security should be de�ned by say-ing that for every real adversary, whatever the adversary can computeafter participating in the execution of the actual protocol is computablewithin comparable time by an imaginary adversary participating in animaginary execution of the trivial ideal protocol (for computing the de-sired functionality with the help of a trusted party). Thus, results inthe computationally-unbounded adversary model trivially imply resultsfor computationally-bounded adversaries.� Restricted adversarial behavior: The most general type of an adversaryconsidered in the literature is one that may corrupt parties to the protocolwhile the execution goes on, and decide which parties to corrupt based onpartial information it has gathered so far. A somewhat more restrictedmodel, which seems adequate in many setting, postulates that the set ofdishonest parties is �xed (arbitrarily) before the execution starts (but thisset is, of course, not known to the honest parties). The latter model iscalled non-adaptive as opposed to the adaptive adversary mentioned �rst.An orthogonal parameter of restriction refers to whether a dishonest partytakes active steps to disrupt the execution of the protocol (i.e., sends mes-sages that di�er from those speci�ed by the protocol), or merely gathersinformation (which it may latter share with the other dishonest parties).The latter adversary has been given a variety of names such as semi-honest,passive, and honest-but-curious. This restricted model may be justi�ed incertain settings, and certainly provides a useful methodological locus (cf.Section 7.1.3). Below we refer to the adversary of the unrestricted modelas to active; another commonly used name is malicious.� Restricted notions of security: One example is the willingness to tolerate\unfair" protocols in which the execution can be suspended (at any time)by a dishonest party, provided that it is detected doing so. We stress thatin case the execution is suspended, the dishonest party does not obtainmore information than it could have obtained when not suspending theexecution. What may happen is that some honest parties will not obtaintheir desired outputs (although other parties did obtain their correspond-ing outputs), but will rather detect that the execution was suspended.We will say that this restricted notion of security allows abort (or allowspremature suspension of the execution).� Upper bounds on the number of dishonest parties: In some models, securemulti-party computation is possible only if a strict majority of the partiesare honest.2 Sometimes even a special majority (e.g., 2/3) is required.General \resilient adversary-structures" have been considered too.2 Indeed, requiring an honest majority in the two-party case yields a meaningless model.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

580 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS� Mobile adversary: In most works, once a party is said to be dishonest itremains so throughout the execution. More generally, one may considertransient adversarial behavior (e.g., an adversary seizes control of somesite and later withdraws from it). This model, which will not be furtherdiscussed in this work, allows to construct protocols that remain secureeven in case the adversary may seize control of all sites during the execution(but never control concurrently, say, more than 10% of the sites). Wecomment that schemes secure in this model were later termed \proactive".In the rest of this chapter we will consider a few speci�c settings of the above pa-rameters. Speci�cally, we will focus on non-adaptive, active, and computationally-bounded adversary, and will not assume the existence of private channels. InSection 7.1.1.2 we consider this setting while restricting the dishonest parties toa strict minority, whereas in Section 7.1.1.3 we consider a restricted notion ofsecurity for two-party protocols that allows \unfair suspension" of execution (or\allows abort").7.1.1.2 Example: Multi-party protocols with honest majorityWe consider a non-adaptive, active, computationally-bounded adversary, and donot assume the existence of private channels. Our aim is to de�ne multi-partyprotocols that remain secure provided that the honest parties are in majority.(The reason for requiring a honest majority will be discussed at the end of thissubsection.) For more details about this model, see Section 7.5.1.Consider any multi-party protocol. We �rst observe that each party maychange its local input before even entering the execution of the protocol. Fur-thermore, this is unavoidable also when the parties utilize a trusted party. Con-sequently, such an e�ect of the adversary on the real execution (i.e., modi�cationof its own input prior to entering the actual execution) is not considered a breachof security. In general, whatever cannot be avoided when the parties utilize atrusted party, is not considered a breach of security. We wish secure protocols (inthe real model) to su�er only from whatever is unavoidable also when the partiesutilize a trusted party. Thus, the basic paradigm underlying the de�nitions ofsecure multi-party computations amounts to saying that the only situations thatmay occur in the real execution of a secure protocol, are those that can also occurin a corresponding ideal model (where the parties may employ a trusted party).In other words, the \e�ective malfunctioning" of parties in secure protocols isrestricted to what is postulated in the corresponding ideal model.When de�ning secure multi-party protocols (with honest majority), we needto pin-point what cannot be avoided in the ideal model (i.e., when the partiesutilize a trusted party). This is easy, because the ideal model is very simple.Since we are interested in executions in which the majority of parties are honest,we consider an ideal model in which any minority group (of the parties) maycollude as follows:1. Firstly this dishonest minority shares its original inputs and decided to-gether on replaced inputs to be sent to the trusted party. (The other

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. OVERVIEW 581parties send their respective original inputs to the trusted party.)2. Upon receiving inputs from all parties, the trusted party determines thecorresponding outputs and sends them to the corresponding parties. (Westress that the communication between honest parties and the trustedparty is not seen by the dishonest colluding minority.)3. Upon receiving the output-message from the trusted party, each honestparty outputs it locally, whereas the dishonest colluding minority maydetermine their outputs based on all they know (i.e., their initial inputsand their received outputs).Note that the above behavior of the minority group is unavoidable in any execu-tion of any protocol (even in presence of trusted parties). This is the reason thatthe ideal model was de�ned as above. Now, a secure multi-party computationwith honest majority is required to emulate this ideal model. That is, the e�ectof any feasible adversary that controls a minority of the parties in a real execu-tion of the actual protocol, can be essentially simulated by a (di�erent) feasibleadversary that controls the corresponding parties in the ideal model. That is:De�nition 7.1.1 (secure protocols { a sketch): Let f be an m-ary functionalityand � be an m-party protocol operating in the real model.� For a real-model adversary A, controlling some minority of the parties (andtapping all communication channels), and an m-sequence x, we denote byreal�;A(x) the sequence of m outputs resulting from the execution of �on input x under attack of the adversary A.� For an ideal-model adversary A0, controlling some minority of the parties,and an m-sequence x, we denote by idealf;A0(x) the sequence of m outputsresulting from the ideal process described above, on input x under attackof the adversary A0.We say that � securely implements f with honest majority if for every feasiblereal-model adversary A, controlling some minority of the parties, there existsa feasible ideal-model adversary A0, controlling the same parties, so that theprobability ensembles freal�;A(x)gx and fidealf;A0(x)gx are computationallyindistinguishable (as in Part 2 of De�nition 3.2.2).Thus, security means that the e�ect of each minority group in a real executionof a secure protocol is \essentially restricted" to replacing its own local inputs(independently of the local inputs of the majority parties) before the protocolstarts, and replacing its own local outputs (depending only on its local inputsand outputs) after the protocol terminates. (We stress that in the real executionthe minority parties do obtain additional pieces of information; yet in a secureprotocol they gain nothing from these additional pieces of information, sincethey can actually reproduce those by themselves.)The fact that De�nition 7.1.1 refers to a model without private channelsis due to the fact that our (sketchy) de�nition of the real-model adversary al-lowed it to tap the channels, which in turn e�ects the set of possible ensembles

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

582 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSfreal�;A(x)gx. When de�ning security in the private-channel model, the real-model adversary is not allowed to tap channels between honest parties, and thisagain e�ects the possible ensembles freal�;A(x)gx. On the other hand, whenwe wish to de�ne security with respect to passive adversaries, both the scope ofthe real-model adversaries and the scope of the ideal-model adversaries changes.In the real-model execution, all parties follow the protocol but the adversarymay alter the output of the dishonest parties arbitrarily depending on all theirintermediate internal stated (during the execution). In the corresponding ideal-model, the adversary is not allowed to modify the inputs of dishonest parties (inStep 1), but is allowed to modify their outputs (in Step 3).We comment that a de�nition analogous to De�nition 7.1.1 can be presentedalso in case the dishonest parties are not in minority. In fact, such a de�nitionseems more natural, but the problem is that such a de�nition cannot be satis�ed.That is, most natural functionalities do not have a protocol for computing themsecurely in case at least half of the parties are dishonest and employ an adequate(active) adversarial strategy. This follows from an impossibility result regardingtwo-party computation, which essentially asserts that there is no way to preventa party from prematurely suspending the execution. Indeed, secure multi-partycomputation with dishonest majority is possible if premature suspension of theexecution is not considered a breach of security.7.1.1.3 Another example: Two-party protocols allowing abortIn light of the last paragraph, we now consider multi-party computations inwhich premature suspension of the execution is not considered a breach of secu-rity. For concreteness, we focus here on the special case of two-party computations.3For more details about this model, see Section 7.2.3.Intuitively, in any two-party protocol, each party may suspend the execu-tion at any point in time, and furthermore it may do so as soon as it learnsthe desired output. Thus, in case the output of each parties depends on bothinputs, it is always possible for one of the parties to obtain the desired outputwhile preventing the other party from fully-determining its own output. Thesame phenomenon occurs even in case the two parties just wish to generate acommon random value. Thus, when considering active adversaries in the two-party setting, we do not consider such premature suspension of the execution asa breach of security. Consequently, we consider an ideal model where each of thetwo parties may \shut-down" the trusted (third) party at any point in time. Inparticular, this may happen after the trusted party has supplied the outcome ofthe computation to one party but before it has supplied it to the second. Thatis, an execution in the ideal model proceeds as follows:1. Each party sends its input to the trusted party, where the dishonest partymay replace its input or sends no input at all (which may be viewed asaborting).3 As in Section 7.1.1.2, we consider a non-adaptive, active, computationally-boundedadversary.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. OVERVIEW 5832. Upon receiving inputs from both parties, the trusted party determines thecorresponding outputs, and sends the �rst output to the �rst party.3. In case the �rst party is dishonest, it may instruct the trusted party to halt,otherwise it always instructs the trusted party to proceed. If instructed toproceed, the trusted party sends the second output to the second party.4. Upon receiving the output-message from the trusted party, the honestparty outputs it locally, whereas the dishonest party may determine itsoutputs based on all it know (i.e., its initial input and its received output).A secure two-party computation allowing abort is required to emulate this idealmodel. That is, as in De�nition 7.1.1, security is de�ned by requiring that for ev-ery feasible real-model adversary A, there exists a feasible ideal-model adversaryA0, controlling the same party, so that the probability ensembles representing thecorresponding (real or ideal) executions are computationally indistinguishable.This means that each party's \e�ective malfunctioning" in a secure protocol isrestricted to supplying an initial input of its choice and aborting the computa-tion at any point in time. (Needless to say, the choice of the initial input of eachparty may not depend on the input of the other party.)We mention that an alternative way of dealing with the problem of prema-ture suspension of execution (i.e., abort) is to restrict attention to single-outputfunctionalities; that is, functionalities in which only one party is supposed toobtain an output. The de�nition of secure computation of such functionalitiescan be identical to the De�nition 7.1.1, with the exception that no restrictionis made on the set of dishonest parties (and in particular one may consider asingle dishonest party within two-party computations). For further details, seeSection 7.2.3.2.7.1.2 Some Known ResultsWe brie
y mention some of the models for which general secure multi-party com-putation is known to be attainable; that is, models in which one can constructsecure multi-party protocols for computing any desired functionality.7.1.2.1 The main results presented in this chapterWe start with results that refer to secure two-party protocols as well as to securemulti-party protocols in the standard model (where the adversary may tap thecommunication lines).Theorem 7.1.2 (the main feasibility results { a sketch): Assuming the exis-tence of enhanced trapdoor permutations (as in De�nition C.1.1), general securemulti-party computation is possible in the following three models:1. Passive adversary, for any number of dishonest parties.2. Active adversary that may control only a strict minority of the parties.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

584 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS3. Active adversary, for any number of bad parties, provided that suspensionof execution is not considered a violation of security.In all these cases, the adversary is computationally-bounded and non-adaptive.On the other hand, the adversary may tap the communication lines betweenhonest parties (i.e., we do not assume the existence of private channels). Theresults for active adversaries assume a broadcast channel.Recall that a broadcast channel can be implemented (while tolerating any num-ber of bad parties) using a signature scheme and assuming a public-key infras-tructure (i.e., each party knows the veri�cation-key corresponding to each of theother parties).4Most of the current chapter will be devoted to proving Theorem 7.1.2. InSections 7.3 and 7.4 we prove Theorem 7.1.2 for the special case of two parties:In that case, Part 2 is not relevant, Part 1 is proved in Section 7.3, and Part 3is proved in Section 7.4. The general case (i.e., of multi-party computation) istreated in Section 7.5.7.1.2.2 Other resultsWe next list some other models in which general secure multi-party computationis attainable:� Making no computational assumptions and allowing computationally-unboundedadversaries, but assuming the existence of private channels, general securemulti-party computation is possible in the following models:1. Passive adversary that may control only a (strict) minority of theparties.2. Active adversary that may control only less than one third of theparties. (Fault-tolerance can be increased to a regular minority ifbroadcast channels exists.)In both cases the adversary may be adaptive. For details, see Section 7.6.� General secure multi-party computation is possible against an active, adap-tive and mobile adversary that may control a small constant fraction ofthe parties at any point in time. This result makes no computationalassumptions, allows computationally-unbounded adversaries, but assumesthe existence of private channels.4 Note that the implementation of a broadcast channel can be cast as a cryptographicprotocol problem (i.e., for the functionality (v; �; :::; �) 7! (v; v; :::; v), where v 2 f0; 1g� and� denotes the empty string). Thus, it is not surprising that the results regarding activeadversaries either assume the existence of such a channel or a setting in which such a channelcan be implemented (e.g., either that less than a third of the parties are faulty or that apublic-key infrastructure exists). (This reasoning fails if the de�nition of secure protocols isrelaxed such that it does not imply agreement; see [159].)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. OVERVIEW 585� Assuming the existence of trapdoor permutations, general secure multi-party computation is possible in a model allowing an adaptive and activecomputationally-bounded adversary that may control only less than onethird of the parties. We stress that this result does not assume the existenceof private channels.Results for asynchronous communication and arbitrary networks of point-to-point channels are also known. For further details, see Section 7.7.4.7.1.2.3 An extension and e�ciency considerationsSecure reactive computation: All the above results extend (easily) to areactive model of computation in which each party interacts with a high-levelprocess (or application). The high-level process adaptively supplies each partywith a sequence of inputs, one at a time, and expect to receive correspondingoutputs from the parties. That is, a reactive system goes through (a possiblyunbounded number of) iterations of the following type:� Parties are given inputs for the current iteration.� Depending on the current inputs, the parties are supposed to computeoutputs for the current iteration. That is, the outputs in iteration j aredetermined by the inputs of the jth iteration.A more general formulation allows the outputs of each iteration to depend alsoon a global state, which is possibly updated in each iteration. The global statemay include all inputs and outputs of previous iterations, and may only bepartially known to individual parties. (In a secure reactive computation sucha global state may be maintained by all parties in a \secret sharing" manner.)For further discussion, see Section 7.7.1.3.E�ciency considerations: One important e�ciency measure regarding pro-tocols is the number of communication rounds in their execution. The resultsmentioned above were originally obtained using protocols that use an unboundednumber of rounds. In some cases, subsequent works obtained secure constant-round protocols. Other important e�ciency considerations include the totalnumber of bits sent in the execution of a protocol, and the local computationtime. The (communication and computation) complexities of the protocols es-tablishing the above results are related to the computational complexity of thecomputation, but alternative relations (e.g., referring to the (insecure) commu-nication complexity of the computation) may be possible.7.1.3 Construction ParadigmsWe brie
y sketch three paradigms used in the construction of secure multi-party protocols. We focus on the construction of secure protocols for the modelof computationally-bounded and non-adaptive adversaries. These constructionsproceed in two steps: First a secure protocol is presented for the model of passiveadversaries (for any number of dishonest parties), and next such a protocol is

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

586 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS\compiled" into a protocol that is secure in one of the two models of activeadversaries (i.e., either in a model allowing the adversary to control only aminority of the parties or in a model in which premature suspension of theexecution is not considered a violation of security).Recall that in the model of passive adversaries, all parties follow the pre-scribed protocol, but at termination the adversary may alter the output of thedishonest parties depending on all their intermediate internal states (during theexecution). Below, we refer to protocols that are secure in the model of passive(resp., general or active) adversaries by the term passively-secure (resp., actively-secure).7.1.3.1 From passively-secure protocols to actively-secure onesWe show how to transform any passively-secure protocol into a correspondingactively-secure protocol. The communication model in both protocols consistsof a single broadcast channel. Note that the messages of the original (passively-secure) protocol may be assumed to be sent over a broadcast channel, becausethe adversary may see them anyhow (by tapping the point-to-point channels).As for the resulting actively-secure protocol, the broadcast channel it uses can beimplemented via an (authenticated) Byzantine Agreement protocol, thus provid-ing an emulation of this model on the standard point-to-point model (in which abroadcast channel does not exist). Recall that authenticated Byzantine Agree-ment is typically implemented using a signature scheme (and assuming that eachparty knows the veri�cation-key corresponding to each of the other parties).Turning to the transformation itself, the main idea is to use zero-knowledgeproofs in order to force parties to behave in a way that is consistent with the(passively-secure) protocol. Actually, we need to con�ne each party to a uniqueconsistent behavior (i.e., according to some �xed local input and a sequence ofcoin tosses), and to guarantee that a party cannot �x its input (and/or its coins)in a way that depends on the inputs of honest parties. Thus, some preliminarysteps have to be taken before the step-by-step emulation of the original proto-col can take place. Speci�cally, the compiled protocol (which like the originalprotocol is executed over a broadcast channel) proceeds as follows:1. Prior to the emulation of the original protocol, each party commits to itsinput (using a commitment scheme). In addition, using a zero-knowledgeproof-of-knowledge (cf. Section 4.7), each party also proves that it knowsits own input; that is, that it can properly decommit to the commitmentit sent. (These zero-knowledge proof-of-knowledge are conducted sequen-tially to prevent dishonest parties from setting their inputs in a way thatdepends on inputs of honest parties.)2. Next, all parties jointly generate a sequence of random bits for each partysuch that only this party knows the outcome of the random sequence gen-erated for it, but everybody gets a commitment to this outcome. Thesesequences will be used as the random-inputs (i.e., sequence of coin tosses)for the original protocol. Each bit in the random-sequence generated for

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. OVERVIEW 587Party X is determined as the exclusive-or of the outcomes of instances ofan (augmented) coin-tossing protocol that Party X plays with each of theother parties.3. In addition, when compiling (the passively-secure protocol to an actively-secure protocol) for the model that allows the adversary to control onlya minority of the parties, each party shares its input and random-inputwith all other parties using a Veri�able Secret Sharing protocol (cf. Sec-tion 7.5.5). This will guarantee that if some party prematurely suspendsthe execution, then all the parties can together reconstruct all its secretsand carry-on the execution while playing its role.4. After all the above steps were completed, we turn to the main step inwhich the new protocol emulates the original one. In each step, each partyaugments the message determined by the original protocol with a zero-knowledge that asserts that the message was indeed computed correctly.Recall that the next message (as determined by the original protocol) isa function of the sender's own input, its random-input, and the messagesit has received so far (where the latter are known to everybody becausethey were sent over a broadcast channel). Furthermore, the sender's inputis determined by its commitment (as sent in Step 1), and its random-input is similarly determined (in Step 2). Thus, the next message (asdetermined by the original protocol) is a function of publicly known strings(i.e., the said commitments as well as the other messages sent over thebroadcast channel). Moreover, the assertion that the next message wasindeed computed correctly is an NP-assertion, and the sender knows acorresponding NP-witness (i.e., its own input and random-input as wellas the corresponding decommitment information). Thus, the sender canprove (to each of the other parties) in zero-knowledge that the message itis sending was indeed computed according to the original protocol.A detailed description is provided in Section 7.4 (see also Section 7.5.4).7.1.3.2 Passively-secure computation with \scrambled circuits"This technique refers mainly to two-party computation. Suppose that two par-ties, each having a private input, wish to obtain the value of a predeterminedtwo-argument function evaluated at their corresponding inputs. Further sup-pose that the two parties hold a circuit that computes the value of the functionon inputs of the adequate length. The idea is to have one party construct an\scrambled" form of the circuit so that the other party can propagate encryptedvalues through the \scrambled gates" and obtain the output in the clear (whileall intermediate values remain secret). Note that the roles of the two parties arenot symmetric, and recall that we are describing a protocol that is secure (only)with respect to passive adversaries. An implementation of this idea proceeds asfollows:

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

588 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS� The the �rst party constructs a \scrambled" form of the original circuit.The \scrambled" circuit consists of pairs of encrypted secrets that corre-spond to the wires of the original circuit and gadgets that correspond tothe gates of the original circuit. The secrets associated with the wiresentering a gate are used (in the gadget that corresponds to this gate) askeys in the encryption of the secrets associated with the wire exiting thisgate. Furthermore, there is a random correspondence between each pair ofsecrets and the Boolean values (of the corresponding wire). That is, wirew is assigned a pair of secrets, denoted (s0w; s00w), and there is a random1-1 mapping, denoted �w, between this pair and the pair of Boolean values(i.e., f�w(s0w); �w(s00w)g = f0; 1g).Each gadget is constructed such that knowledge of a secret that corre-spond to each wire entering the corresponding gate (in the circuit) yieldsa secret corresponding to the wire that exits this gate. Furthermore, thereconstruction of secrets using each gadget respects the functionality ofthe corresponding gate. For example, if one knows the secret that corre-sponds to the 1-value of one entry-wire and the secret that corresponds tothe 0-value of the other entry-wire, and the gate is an or-gate, then oneobtains the secret that corresponds to the 1-value of exit-wire.Speci�cally, each gadget consists of 4 templets that are presented at a ran-dom order, where each templet corresponds to one of the 4 possible valuesof the two entry-wires. A templet may be merely a double encryption of thesecret that corresponds to the appropriate output value, where the doubleencryption uses as keys the two secrets that correspond to the input values.That is, suppose a gate computing f : f0; 1g2 ! f0; 1g has input wires w1and w2, and output wire w3. Then, each of the four templets of this gatehas the form Esw1 (Esw2 (sw3)), where f(�w1(sw1); �w2(sw2)) = �w3(sw3).� In addition to the \scrambled" circuit, the �rst party sends to the secondparty the secrets that correspond to its own (i.e., the �rst party's) inputbits (but not the values of these bits). The �rst party also reveals thecorrespondence between the pair of secrets associated with each output(i.e., circuit-output wire) and the Boolean values.5 We stress that therandom correspondence between the pair of secrets associated with eachother wire and the Boolean values is kept secret (by the �rst party).� In addition, the �rst party uses a (1-out-of-2) Oblivious Transfer protocolin order to hand the second party the secrets corresponding to the secondparty's input bits (without the �rst party learning anything about thesebits).Loosely speaking, a 1-out-of-k Oblivious Transfer is a protocol enablingone party to obtain one of k secrets held by another party, without thesecond party learning which secret was obtained by the �rst party. That5 This can be done by providing, for each output wire, a succinct 2-partition (of all strings)that separates the two secrets associated with this wire.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.1. OVERVIEW 589is, we refer to the two-party functionality(i; (s1; :::; sk)) 7! (si; �) (7.1)where � denotes the empty string.� Finally, the second party \evaluates" the \scrambled" circuit gate-by-gate,starting from the top (circuit-input) gates (for which it knows one secretper each wire) and ending at the bottom (circuit-output) gates (for which,by construction, the correspondence of secrets to values is known). Thus,the second party obtains the output value of the circuit (but nothing else),and sends it to the �rst party.For further details, see Section 7.7.4.7.1.3.3 Passively-secure computation with sharesFor any m � 2, suppose that m parties, each having a private input, wishto obtain the value of a predetermined m-argument function evaluated at theirsequence of inputs. Further suppose that the parties hold a circuit that computesthe value of the function on inputs of the adequate length, and that the circuitcontains only and and not gates. Again, the idea is to propagate informationfrom the top (circuit-input) gates to the bottom (circuit-output) gates, but thistime the information is di�erent, and the propagation is done simultaneously byall parties. The idea is to share the value of each wire in the circuit so that allshares yield the value, whereas lacking even one of the shares keeps the valuetotally undetermined. That is, we use a simple secret sharing scheme such thata bit b is shared by a random sequence of m bits that sum-up to b mod 2. First,each party shares each of its input bits with all parties (by secretly sending eachparty a random value and setting its own share accordingly). Next, all partiesjointly scan the circuit from its input wires to the output wires, processing eachgate as follows:� When encountering a gate, the parties already hold shares of the values ofthe wires entering the gate, and their aim is to obtain shares of the valueof the wire exiting the gate.� For a not-gate this is easy: the �rst party just
ips the value of its share,and all other parties maintain their shares.� Since an and-gate corresponds to multiplication modulo 2, the parties needto securely compute the following randomized functionality (in which thexi's denote shares of one entry-wire, the yi's denote shares of the secondentry-wire, the zi's denote shares of the exit-wire, and the shares indexedby i belongs to Party i):((x1; y1); :::; (xm; ym)) 7! (z1; :::; z2) (7.2)wheremXi=1 zi = mXi=1 xi � mXi=1 yi (7.3)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

590 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSThat is, the zi's are random subject to Eq. (7.3).Thus, securely evaluating the entire (arbitrary) circuit \reduces" to securelyconducting a speci�c (very simple) multi-party computation. But things geteven simpler: the key observation is that mXi=1 xi! � mXi=1 yi! = mXi=1 xiyi + X1�i<j�m (xiyj + xjyi) (7.4)Thus, the m-ary functionality of Eq. (7.2)& (7.3) can be computed as follows(where all arithmetic operations are mod 2):1. Each Party i locally computes zi;i def= xiyi.2. Next, each pair of parties (i.e., Parties i and j) securely compute randomshares of xiyj + xjyi = xiyj + yixj . That is, Parties i and j (holding(xi; yi) and (xj ; yj), respectively), need to securely compute the random-ized two-party functionality ((xi; yi); (xj ; yj)) 7! (zi;j ; zj;i), where the z'sare random subject to zi;j+zj;i = xiyj+yixj . The latter simple two-partycomputation can be securely implemented using (a 1-out-of-4) ObliviousTransfer. Speci�cally, Party i uniformly selects zi;j 2 f0; 1g, and de�nesits four secrets as follows:index of corresponding value of the secretthe secret value of (xj ; yj) (output of Party j)1 (0; 0) zi;j2 (0; 1) zi;j + xi3 (1; 0) zi;j + yi4 (1; 1) zi;j + xi + yiIndeed, for \small" B, any two-party functionality f : A�B ! f�g�f0; 1gcan be securely implemented by a single invocation of a 1-out-of-jBj Obliv-ious Transfer, where the �rst party de�nes its jBj secrets in correspondenceto the jBj possible values of the input to the second party.3. Finally, for every i = 1; :::;m, summing-up all the zi;j 's yields the desiredshare of Party i.A detailed description is provided in Section 7.3 (see also Section 7.5.2).A related construction: We mention that an analogous construction hasbeen subsequently used in the private channel model and withstands compu-tationally unbounded active (resp., passive) adversaries that control less thanone third (resp., a minority) of the parties. The basic idea is to use a moresophisticated secret sharing scheme; speci�cally, via a low degree polynomials.That is, the Boolean circuit is viewed as an arithmetic circuit over a �nite �eldhaving more than m elements, and a secret element s of the �eld is shared

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 591by selecting uniformly a polynomial of degree d = b(m� 1)=3c (resp., degreed = b(m� 1)=2c) having a free-term equal to s, and handing each party thevalue of this polynomial evaluated at a di�erent (�xed) point (e.g., party i isgiven the value at point i). Addition is emulated by (local) point-wise addi-tion of the (secret sharing) polynomials representing the two inputs (using thefact that for polynomials p and q, and any �eld element e (and in particulare = 0; 1; :::;m), it holds that p(e) + q(e) = (p + q)(e)). The emulation of mul-tiplication is more involved and requires interaction (because the product ofpolynomials yields a polynomial of higher degree, and thus the polynomial rep-resenting the output cannot be the product of the polynomials representing thetwo inputs). Indeed, the aim of the interaction is to turn the shares of the prod-uct polynomial into shares of a degree d polynomial that has the same free-termas the product polynomial (which is of degree 2d). This can be done using thefact that the coe�cients of a polynomial are a linear combination of its valuesat su�ciently many arguments (and the other way around), and the fact thatone can privately-compute any linear combination (of secret values). For furtherdetails, see Section 7.6.7.2 * The Two-Party Case: De�nitionsIn this section we de�ne security for two models of adversaries for two-partyprotocols. In both models the adversary is non-adaptive and computationally-bounded (i.e., restricted to probabilistic polynomial-time with (non-uniform)auxiliary inputs). In the �rst model, presented in Section 7.2.2, we consider arestricted adversary called semi-honest, whereas the general case of maliciousadversary is considered in Section 7.2.3. In addition to being of independentinterest, the semi-honest model will play a major role in the constructions ofprotocols for the malicious model (see Sections 7.3 and 7.4).7.2.1 The syntactic frameworkA two-party protocol problem is cast by specifying a random process that mapspairs of inputs (one input per each party) to pairs of outputs (one per eachparty). We refer to such a process as the desired functionality, denoted f :f0; 1g��f0; 1g� ! f0; 1g��f0; 1g�. That is, for every pair of inputs (x; y), thedesired output-pair is a random variable, f(x; y), ranging over pairs of strings.The �rst party, holding input x, wishes to obtain the �rst element in f(x; y);whereas the second party, holding input y, wishes to obtain the second elementin f(x; y). A few interesting special cases are highlight next.� Symmetric deterministic functionalities: This is the simplest general caseoften considered in the literature. In this case, for some predeterminedfunction, g, both parties wish to obtain the value of g evaluated at theinput pair. That is, the functionality they wish to (securely) computeis f(x; y) def= (g(x; y); g(x; y)). For example, they may be interested in

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

592 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSdetermining whether their local inputs are equal (i.e., g(x; y) = 1 i� x = y)or whether their local inputs viewed as sets are disjoint (i.e., g(x; y) = 1i� for every i either xi = 0 or yi = 0).� Input oblivious randomized functionalities: Whereas input-oblivious deter-ministic functionalities are trivial, some input-oblivious randomized func-tionalities are very interesting. Suppose, for example, that the two partieswish to toss a fair coin (i.e., such that no party can \in
uence the outcome"by itself). This task can be cast by requiring that, for every input pair(x; y), the output pair f(x; y) is uniformly distributed over f(0; 0); (1; 1)g.� Asymmetric functionalities: The general case of asymmetric functionalitiesis captured by functionalities of the form f(x; y) def= (f 0(x; y); �), wheref 0f0; 1g� � f0; 1g� ! f0; 1g� is a randomized process and � denotes theempty string. A special case of interest is when one party wishes to revealto the other party some predetermined partial information regarding itssecret, where the secret (if given) is veri�able by the second party. Thistask is captured by a functionality f such that f(x; y) def= (R(x); �) ifV (x; y) = 1 and f(x; y) def= (?; �) otherwise, where R represents the partialinformation to be revealed and V represents the veri�cation procedure.6We stress that whenever we consider a protocol for securely computing f , it isimplicitly assumed that the protocol is correctly computes f when both partiesfollow the prescribed program. That is, the joint output distribution of theprotocol, played by honest parties, on input pair (x; y), equals the distributionof f(x; y).Notation: We let � denote the empty string and ? denote a special errorsymbol. That is, whereas � 2 f0; 1g� (and j�j = 0), we postulate that ? 62 f0; 1g�(and is thus distinguishable from any string in f0; 1g�).7.2.1.1 Simplifying conventionsTo simplify the exposition we make the following three assumptions:1. The protocol problem has to be solved only for inputs of the same length(i.e., jxj = jyj).2. The functionality is computable in time polynomial in the length of theinputs.3. Security is measured in terms of the length of the inputs.As discussed next, the above conventions (or assumptions) can be greatly re-laxed, yet each represents an essential issue that must be addressed.6 One may also consider the \non-veri�able" case (i.e., V � 1), but in this case nothingcan prevent the �rst party from acting as if its secret is di�erent from the \actual" one.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 593We start with the �rst convention (or assumption). Observe that making norestriction on the relationship among the lengths of the two inputs, disallows theexistence of secure protocols for computing any \non-degenerate" functionality.The reason is that the program of each party (in a protocol for computing thedesired functionality) must either depend only on the length of the party's inputor obtain information on the counterpart's input length. In case informationof the latter type is not implied by the output value, a secure protocol \cannota�ord" to give it away.7 By using adequate padding, any \natural" functionalitycan be cast as one satisfying the equal length convention.8We now turn to the second convention. Certainly, the total running-time ofa secure two-party protocol for computing the functionality cannot be smallerthan the time required to compute the functionality (in the ordinary sense).Arguing as in the case of input lengths, one can see that we need an a-prioribound on the complexity of the functionality. A more general approach wouldbe to let such a bound be given explicitly to both parties as an auxiliary input.In such a case, the protocol can be required to run for time bounded by a �xedpolynomial in this auxiliary parameter (i.e., the time-complexity bound of f).Assuming that a good upper bound of the complexity of f is time-constructibleand using standard padding techniques, we can reduce this general case to thespecial case discussed above: That is, given a general functionality, g, and atime-bound t : N ! N , we introduce the functionalityf((x; 1i); (y; 1j)) def= � g(x; y) if i = j = t(jxj) = t(jyj)(?;?) otherwisewhere ? is a special error symbol. Now, the problem of securely computing greduces to the problem of securely computing f , which in turn is polynomial-timecomputable.Finally, we turn to the third convention. Indeed, a more general conventionwould be to have an explicit security parameter that determines the security ofthe protocol. This general alternative is essential for allowing \secure" computa-tion of �nite functionalities (i.e., functionalities de�ned on �nite input domains).We may accommodate the general convention using the special case, postulatedabove, as follows. Suppose that we want to compute the functionality f , on in-put pair (x; y) with security (polynomial in) the parameter s. Then we introducethe functionality f 0((x; 1s); (y; 1s)) def= f(x; y) ;and consider secure protocols for computing f 0. Indeed, this reduction corre-sponds to the realistic setting where the parties �rst agree on the desired levelof security, and only then proceed to compute the function (using this level ofsecurity).7 The situation is analogous to the de�nition of secure encryption, where it is required thatthe message length be polynomially-related to the key length. Actually, things become evenworst in the current setting, because of the possible malicious behavior of parties.8 In the sequel, we sometimes take the liberty of presenting functionalities in a form thatviolates the equal length convention (e.g., in case of Oblivious Transfer). Indeed, these formu-lations can be easily modi�ed to �t the equal length convention.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

594 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSPartial functionalities. The �rst convention postulates that we are actuallynot considering mapping from the set of all pairs of bit strings, but rather map-pings from a certain (general) set of pairs of strings (i.e., [n2Nf0; 1gn�f0; 1gn).Taking this convention one step further, one may consider functionalities thatare de�ned only over a set R � [n2Nf0; 1gn � f0; 1gn. Clearly, securely com-puting such a functionality f 0 can be reduced to computing any of its extensionsto [n2Nf0; 1gn � f0; 1gn (e.g., computing f such that f(x; y) def= f 0(x; y) for(x; y) 2 R and f(x; y) def= (?;?) otherwise). With one exception (to be dis-cussed explicitly), our exposition only refers to functionalities that are de�nedover the set of all pairs of strings of equal length.An alternative set of conventions. An alternative way of addressing allthree concerns discussed above is to introduce an explicit security parameter,denoted n, and consider the following sequence of functionalities hfnin2N. Eachfn is de�ned over the set of all pairs of bit strings, but typically one considers onlythe value of fn on strings of poly(n) length. In particular, for a functionality f asin our main conventions, one may consider fn(x; y) def= f(x; y) if jxj = jyj = n andfn(x; y) def= (?;?) otherwise. When following the alternative convention, onetypically postulates that there exists a poly(n)-time algorithm for computing fn(for a generic n), and security is also evaluated with respect to the parameter n.We stress that in this case the protocol's running-time and its security guaranteeare only related to the parameter n, and are independent of the length of theinput (which indeed may be partially ignored).7.2.1.2 Computational indistinguishability: conventions and nota-tionAs in De�nition 7.1.1, we will often talk of the computational indistinguishabil-ity of probability ensembles indexed by strings (as in Part 2 of De�nition 3.2.2).Whenever we do so, we refer to computational indistinguishability by (non-uniform) families of polynomial-size circuits. That is, we say that the ensem-bles, X def= fXwgw2S and Y def= fYwgw2S, are computationally indistinguishable,denoted X c� Y , if the following holds:for every polynomial-size circuit family, fCngn2N, every positivepolynomial p(�), every su�ciently large n and every w 2 S \ f0; 1gn,jPr [Cn(Xw)=1]� Pr [Cn(Yw)=1] j < 1p(n) (7.5)Note that an in�nite sequence of w's may be incorporated in the family, hence thede�nition is not strengthened by providing the circuit Cn with w as additionalinput.Recall that computational indistinguishability is a relaxation of statistical in-distinguishability, where here the ensembles X def= fXwgw2S and Y def= fYwgw2S

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 595are statistically indistinguishable, denoted X s� Y , if for every positive polynomialp(�), every su�ciently large n and every w 2 S \ f0; 1gn,X�2f0;1g� jPr [Xw=�]� Pr [Yw=�]j < 1p(n) (7.6)In case the di�erences are all equal to zero, we say that the ensembles areidentically distributed (and denote this by X � Y).7.2.1.3 Representation of parties' strategiesIn Chapter 4, the parties' strategies for executing a given protocol (e.g., a proofsystem) were represented by interactive Turing machines. In this chapter weprefer an equivalent formulation, which is less formal and less cumbersome.Speci�cally, the parties' strategies are presented as functions mapping the party'scurrent view of the interactive execution to the next message to be sent. Recallthat the party's view consists of its initial input, an auxiliary initial input (whichis relevant only for modeling adversarial strategies), its random-tape, and thesequence of messages it has received so far. A strategy will be called feasible if itis implementable in probabilistic polynomial-time (i.e., the function associatedwith it is computable in polynomial-time).As in Chapter 4, it is typically important to allow the adversaries to ob-tain (non-uniformly generated) auxiliary inputs (cf. Section 4.3.3). Recall thatauxiliary inputs play a key role in guaranteeing that zero-knowledge is closedunder sequential composition (see Section 4.3.4). Similarly, auxiliary inputs tothe adversaries will play a key role in composition theorems for secure protocols,which are pivotal to our exposition and very important in general. Nevertheless,for sake of simplicity, we often omit the auxiliary inputs from our notations anddiscussions (especially in places where they do not play an active role).Recall that considering auxiliary inputs (as well as ordinary inputs) withoutintroducing any restrictions (other than on their length) means that we areactually presenting a treatment in terms of non-uniform complexity. Thus, allour assumptions will refer to non-uniform complexity.7.2.2 The semi-honest modelLoosely speaking, a semi-honest party is one who follows the protocol properlywith the exception that it keeps a record of all its intermediate computations.Actually, it su�ces to keep the internal coin tosses and all messages received fromthe other party. In particular, a semi-honest party tosses fair coins (as instructedby its program), and sends messages according to its speci�ed program (i.e., asa function of its input, outcome of coin tosses, and incoming messages). Notethat a semi-honest party corresponds to the \honest veri�er" in the de�nitionsof zero-knowledge (cf. Section 4.3.1.7).In addition to the methodological role of semi-honest parties in our exposi-tion, they do constitute a model of independent interest. In particular, deviating

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

596 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSfrom the speci�ed program, which may be invoked inside a complex softwareapplication, is more di�cult than merely recording the contents of some com-munication registers. Furthermore, records of these registers may be availablethrough some standard activities of the operating system. Thus, whereas generalmalicious behavior may be infeasible for many users, semi-honest behavior maybe feasible for them (and one cannot assume that they just behave in a totally-honest way). Consequently, in many settings, one may assume that althoughthe users may wish to cheat, they actually behave in a semi-honest way. (Wemention that the \augmented semi-honest" model, introduced in Section 7.4.4.1,may be more appealing and adequate for more settings.)Below, we present two equivalent formulations of security in the semi-honestmodel. The �rst formulation capitalizes on the simplicity of the current modeland de�nes security in it by a straightforward extension of the de�nition of zero-knowledge. The second formulation applies the general methodology outlined inSection 7.1.1. Indeed, both formulations follow the simulation paradigm, but the�rst does so by extending the de�nition of zero-knowledge, whereas the seconddoes so by degenerating the general \real-vs-ideal" methodology.7.2.2.1 The simple formulation of privacyThe semi-honest model is implicit in the following de�nition of privacy. Looselyspeaking, the de�nition says that a protocol privately computes f if whatevera semi-honest party can be obtained after participating in the protocol, couldbe essentially obtained from the input and output available to that party. Thisextends the formulation of zero-knowledge by considering also the (proper) out-put, which is not �xed in the current setting. As in case of zero-knowledge, itactually su�ces to (e�ciently) \simulate the view" of each (semi-honest) party,since anything that can be obtain after participating in the protocol is obtainablefrom the view.De�nition 7.2.1 (privacy w.r.t semi-honest behavior): Let f : f0; 1g��f0; 1g� !f0; 1g��f0; 1g� be a functionality, and f1(x; y) (resp., f2(x; y)) denotes the �rst(resp., second) element of f(x; y). Let � be a two-party protocol for comput-ing f .9 The view of the �rst (resp., second) party during an execution of �on (x; y), denoted view�1 (x; y) (resp., view�2 (x; y)), is (x; r;m1; :::;mt) (resp.,(y; r;m1; :::;mt), where r represent the outcome of the �rst (resp., second) party'sinternal coin tosses, and mi represent the ith message it has received. The out-put of the �rst (resp., second) party after an execution of � on (x; y), denotedoutput�1 (x; y) (resp., output�2 (x; y)), is implicit in the party's own view of theexecution.� (deterministic case) For a deterministic functionality f , we say that �privately computes f if there exist polynomial-time algorithms, denoted S19 By saying that � computes (rather than privately computes) f , we mean that the outputdistribution of the protocol (when played by honest or semi-honest parties) on input pair (x; y)is identically distributed as f(x; y).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 597and S2, such thatfS1(x; f1(x; y))gx;y2f0;1g� c� fview�1 (x; y)gx;y2f0;1g� (7.7)fS2(y; f2(x; y))gx;y2f0;1g� c� fview�2 (x; y)gx;y2f0;1g� (7.8)where jxj = jyj. (Recall that c� denotes computational indistinguishabilityby (non-uniform) families of polynomial-size circuits.)� (general case)We say that � privately computes f if there exist polynomial-time algorithms, denoted S1 and S2, such thatf(S1(x; f1(x; y)); f2(x; y))gx;y c� f(view�1 (x; y);output�2 (x; y))gx;y (7.9)f(f1(x; y); S2(y; f2(x; y)))gx;y c� f(output�1 (x; y);view�2 (x; y))gx;y(7.10)We stress that above view�1 (x; y), view�2 (x; y), output�1 (x; y) and output�2 (x; y),are related random variables, de�ned as a function of the same random ex-ecution. In particular, output�i (x; y) is fully determined by view�i (x; y).Consider �rst the deterministic case: Eq. (7.7) (resp., Eq. (7.8)) asserts that theview of the �rst (resp., second) party, on each possible input, can be e�cientlysimulated based solely on its input and output. Thus, all that this party learnsfrom the full transcript of the proper execution, is e�ectively implied by its ownoutput from this execution (and its input to it). In other words, all that theparty essentially learns from the (semi-honest) execution is implied by the outputitself. Next note that the formulation for the deterministic case coincides withthe general formulation as applied to deterministic functionalities (because, inany protocol � that computes a deterministic functionality f , it must hold thatoutput�i (x; y) = fi(x; y), for each party i and any pair of inputs (x; y)).In contrast to the deterministic case, augmenting the view of the semi-honestparty by the output of the other party is essential when randomized functional-ities are concerned. Note that in this case, for any protocol � that computes arandomized functionality f , it does not necessarily hold that output�i (x; y) =fi(x; y), because each of the two objects is a random variable. Indeed, thesetwo random variables must be identically distributed, but this does not suf-�ce for asserting, for example, that Eq. (7.7) implies Eq. (7.9). A disturbingcounter-example follows: Consider the functionality (1n; 1n) 7! (r;?), where ris uniformly distributed in f0; 1gn, and consider a protocol in which Party 1uniformly selects r 2 f0; 1gn, sends it to Party 2, and outputs r. Clearly, thisprotocol computes the above functionality, alas intuitively we should not con-sider this computation private (because Party 2 learns the output although itis not supposed to learn anything about it). The reader may easily constructa simulator that satis�es Eq. (7.8) (e.g., S2(1n) outputs a uniformly chosen r),but not Eq. (7.10).What about auxiliary inputs? Auxiliary inputs are implicit in De�nition 7.2.1.They are represented by the fact that the de�nition asks for computational

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

598 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSindistinguishability by non-uniform families of polynomial-size circuits (ratherthan computational indistinguishability by probabilistic polynomial-time algo-rithms). In other words, indistinguishability holds also with respect to proba-bilistic polynomial-time that obtain (non-uniform) auxiliary inputs.Private computation of partial functionalities. For functionalities thatare de�ned only for inputs pairs in some set R � f0; 1g� � f0; 1g� (see Sec-tion 7.2.1.1), private computation is de�ned as in De�nition 7.2.1, except thatthe ensembles are indexed by pairs in R.7.2.2.2 The alternative formulationIt is instructive to recast the above de�nition in terms of the general (\real-vs-ideal") framework discussed in Section 7.1.1 (and used extensively in the caseof arbitrary malicious behavior). In this framework one �rst consider an idealmodel in which the (two) parties are joined by a (third) trusted party, andthe computation is performed via this trusted party. Next, one considers thereal model in which a real (two-party) protocol is executed (and there exist notrusted third parties). A protocol in the real model is said to be secure withrespect to certain adversarial behavior if the possible real executions with suchan adversary can be \simulated" in the ideal model. The notion of simulationused here is di�erent than the one used in Section 7.2.2.1: The simulation is notof the view of one party via a traditional algorithm, but rather a simulation ofthe joint view of both parties by the execution of an ideal-model protocol.According to the general methodology (framework), we should �rst specifythe ideal-model protocol. In case of semi-honest adversaries, the ideal modelconsists of each party sending its input to the trusted party (via a secure privatechannel), the third party computing the corresponding output-pair and sendingeach output to the corresponding party. The only adversarial behavior allowedhere is for one of the parties to determine its own output based on its input andthe output it has received (from the trusted party).10 This adversarial behaviorrepresents the attempt to learn something from the party's view of a properexecution (which in the ideal model consists only of its local input and output).The other (i.e., honest) party merely outputs the output that it has received(from the trusted party).Next, we turn to the real model. Here, there is a real two-party protocoland the adversarial behavior is restricted to be semi-honest. That is, one partymay conduct an arbitrary polynomial-time computation based on its view ofthe execution (as de�ned above). We stress that the only adversarial behaviorallowed here is for one of the parties to determine its own output based on itsview of the proper execution of the protocol.Finally, we de�ne security in the semi-honest model. A secure protocol forthe real (semi-honest) model is such that for every semi-honest behavior of one10 We stress that unlike in the malicious model, discussed in Section 7.2.3, the dishonest(or rather semi-honest) party is not allowed here to modify its input (as given to the trustedparty).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 599of the parties, we can simulate the joint outcome (of their computation) by anexecution in the ideal model (where also one party is semi-honest and the otheris honest). Actually, we need to augment the de�nition so to account for a-prioriinformation available to semi-honest parties before the protocol starts. This isdone by supplying these parties with auxiliary inputs.Note that in both (ideal and real) models, the (semi-honest) adversarial be-havior only takes place after the proper execution of the corresponding protocol.Thus, in the ideal model this behavior is captured by a computation applied tothe local input-output pair, whereas in the real model this behavior is capturedby a computation applied to the party's local view (of the execution).De�nition 7.2.2 (security in the semi-honest model): Let f : f0; 1g��f0; 1g�!f0; 1g� � f0; 1g� be a functionality, where f1(x; y) (resp., f2(x; y)) denotes the�rst (resp., second) element of f(x; y), and � be a two-party protocol for com-puting f .� Let B = (B1; B2) be a pair of probabilistic polynomial-time algorithmsrepresenting parties' strategies for the ideal model. Such a pair is admis-sible (in the ideal model) if for at least one Bi we have Bi(u; v; z) = v,where u demotes the party's local input, v its local output, and z its aux-iliary input. The joint execution under B in the ideal model on inputpair (x; y) and auxiliary input z, denoted idealf;B(z)(x; y), is de�ned as(B1(x; f1(x; y); z); B2(y; f2(x; y); z)).(That is, if Bi is honest then it just outputs the value fi(x; y) obtained fromthe trusted party, which is implicit in this de�nition. Thus, our peculiarchoice to feed both parties with the same auxiliary input is immaterial,because the honest party ignores its auxiliary input.)� Let A = (A1; A2) be a pair of probabilistic polynomial-time algorithms rep-resenting parties' strategies for the real model. Such a pair is admissible (inthe real model) if for at least one i 2 f1; 2g we have Ai(view; aux) = outfor every view and aux, where out is the output implicit in view. The jointexecution of � under A in the real model on input pair (x; y) and auxiliary in-put z, denoted real�;A(z)(x; y), is de�ned as (A1(view�1 (x; y); z); A2(view�2 (x; y); z)),where view�i (x; y) is as in De�nition 7.2.1.(Again, if Ai is honest then it just outputs the value fi(x; y) obtained fromthe execution of �, and we may feed both parties with the same auxiliaryinput.)Protocol � is said to securely compute f in the semi-honest model (secure w.r.tf and semi-honest behavior) if for every of probabilistic polynomial-time pairA = (A1; A2) that is admissible for the real model there exists a probabilisticpolynomial-time pair B = (B1; B2) that is admissible for the ideal model suchthat fidealf;B(z)(x; y)gx;y;z c� freal�;A(z)(x; y)gx;y;z (7.11)where x; y; z 2 f0; 1g� such that jxj = jyj and jzj = poly(jxj).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

600 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSObserve that the de�nition of the joint execution in the real model prohibitsboth parties (honest and semi-honest) to deviate from the strategies speci�edby �. The di�erence between honest and semi-honest is merely in their actionson the corresponding local views of the execution: An honest party outputs onlythe output-part of the view (as speci�ed by �), whereas a semi-honest party mayoutput an arbitrary (feasibly computable) function of the view.We comment that, as will become clear in the proof of Proposition 7.2.3,omitting the auxiliary input does not weaken De�nition 7.2.2.7.2.2.3 Equivalence of the two formulationIt is not hard to see that De�nitions 7.2.1 and 7.2.2 are equivalent. That is,Proposition 7.2.3 Let � be a protocol for computing f . Then, � privatelycomputes f if and only if � securely computes f in semi-honest model.Proof Sketch: Suppose �rst that � securely computes f in semi-honest model(i.e., satis�es De�nition 7.2.2). Without loss of generality, we show how to sim-ulate the �rst party view. Towards this end, we de�ne the following admissiblepair A = (A1; A2) for the real model: A1 is merely the identity transformation(i.e., it outputs the view given to it), whereas A2 maps its view to the corre-sponding output (as required by de�nition of an admissible pair). We stressthat we consider an adversary that does not get an auxiliary input (or alterna-tively ignores it). Let B = (B1; B2) be the ideal-model adversary guaranteed byDe�nition 7.2.2. Then, B1 (in role of S1) satis�es Eq. (7.9).Now, suppose that � privately computes f , and let S1 and S2 be as guar-anteed in De�nition 7.2.1. Let A = (A1; A2) be an admissible pair for the real-model adversaries. Without loss of generality, we assume that A2 merely mapsthe view (of the second party) to the corresponding output (i.e., f2(x; y)); thatis, Party 2 is honest (and Party 1 is semi-honest). Then, we de�ne an ideal-modelpair B = (B1; B2) such that B1(x; v; z) def= A1(S1(x; v); z) and B2(y; v; z) def= v.The following holds (for an in�nite sequence of (x; y; z)'s):real�;A(z)(x; y) = (A1(view�1 (x; y); z); A2(view�2 (x; y); z))= (A1(view�1 (x; y); z);output�2 (x; y))c� (A1(S1(x; f1(x; y); z); f2(x; y))= (B1(x; f1(x; y); z); B2(y; f2(x; y); z))= idealf;B(z)(x; y)where the computational indistinguishability (i.e., c�) is due to the guarantee re-garding S1 (in its general form); i.e., Eq. (7.9). Indeed, the latter only guarantees(view�1 (x; y);output�2 (x; y)) c� (S1(x; f1(x; y); f2(x; y)), but by incorporatingA1 and z in the distinguisher the above soft-equality follows.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 601Conclusion: The above proof demonstrates that the alternative formulation ofDe�nition 7.2.2 is merely a cumbersome form of the simpler De�nition 7.2.1. Westress that the reason we have presented the cumbersome form is the fact that itfollows the general framework of de�nitions of security which is used for activeadversarial behavior. In the rest of this chapter, whenever we deal with thesemi-honest model (for two-party computation), we will used De�nition 7.2.1.Furthermore, since much of the text focuses on deterministic functionalities, wewill be able to use the simpler case of De�nition 7.2.1.7.2.3 The malicious modelWe now turn to consider arbitrary feasible deviation of parties from a speci�edtwo-party protocol. A few preliminary comments are in place. Firstly, thereis no way to force parties to participate in the protocol. That is, a possiblemalicious behavior may consists of not starting the execution at all, or, moregenerally, suspending (or aborting) the execution in any desired point in time.In particular, a party can abort at the �rst moment when it obtains the desiredresult of the computed functionality. We stress that our model of communicationdoes not allow to condition the receipt of a message by one party on the con-current sending of a proper message by this party. Thus, no two-party protocolcan prevent one of the parties to abort when obtaining the desired result andbefore its counterpart also obtains the desired result. In other words, it can beshown that perfect fairness { in the sense of both parties obtaining the outcomeof the computation concurrently { is not achievable in two-party computation.We thus give up on such fairness altogether. (We comment that partial fairnessis achievable, see Section 7.7.1.1).Secondly, observe that when considering malicious adversaries it is not clearwhat is their input to the protocol. That is, a malicious party can enter theprotocol with arbitrary input, which may not equal its \true" local input. Thereis no way for a protocol to tell the \true" local input from the one claimed by aparty (or, in other words, to prevent a malicious party from modifying its input).(We stress that both phenomena did not occur in the semi-honest model, for theobvious reason that parties were postulated not to deviate from the protocol.)In view of the above, there are three things we cannot hope to avoid (nomatter what protocol we use).1. Parties refusing to participate in the protocol (when the protocol is �rstinvoked).2. Parties substituting their local input (and entering the protocol with aninput other than the one provided to them).3. Parties aborting the protocol prematurely (e.g., before sending their lastmessage).Thus, we shall consider a two-party protocol to be secure if the adversary'sbehavior in it is essentially restricted to the above three actions. Following the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

602 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS\real-vs-ideal" methodology (of Section 7.1.1), this means that we should de�nean ideal model that corresponds to these possible actions, and de�ne securitysuch that the execution of a secure protocol in the real model can be simulatedby the ideal model.7.2.3.1 The actual de�nitionWe start with a straightforward implementation of the above discussion. Analternative approach, which is simpler alas partial, is presented in Section 7.2.3.2.(Speci�cally, the alternative approach is directly applicable only to one-outputfunctionalities, in which case the complications introduced by aborting do notarise. The interested reader may proceed directly to Section 7.2.3.2, which ismostly self-contained.)The ideal model. We �rst translate the above discussion into a de�nitionof an ideal model. That is, we will allow in the ideal model whatever cannotbe possibly prevented in any real execution. An alternative way of looking atthings is that we assume that the the two parties have at their disposal a trustedthird party, but even such a party cannot prevent certain malicious behavior.Speci�cally, we allow a malicious party in the ideal model to refuse to participatein the protocol or to substitute its local input. (Clearly, neither can be preventby a trusted third party.) In addition, we postulate that the �rst party has theoption of \stopping" the trusted party just after obtaining its part of the output,and before the trusted party sends the other output-part to the second party.Such an option is not given to the second party.11 Thus, an execution in theideal model proceeds as follows (where all actions of the both the honest andthe malicious parties must be feasible to implement):Inputs: Each party obtains an input, denoted u.Sending inputs to trusted party: An honest party always sends u to the trustedparty. A malicious party may, depending on u (as well as on an auxiliaryinput and its coin tosses), either abort or sends some u0 2 f0; 1gjuj to thetrusted party.12The trusted party answers the �rst party: In case it has obtained an input pair,(x; y), the trusted party (for computing f), �rst replies to the �rst partywith f1(x; y). Otherwise (i.e., in case it receives only one input), thetrusted party replies to both parties with a special symbol, denoted ?.11 This asymmetry is due to the non-concurrent nature of communication in the model.Since we postulate that the trusted party sends the answer �rst to the �rst party, the �rstparty (but not the second) has the option to stop the third party after obtaining its part ofthe output. The second party, can only stop the third party before obtaining its output, butthis is the same as refusing to participate.12 We comment that restricting the ideal-model adversary (to replacing u by u0 of thesame length) only strengthens the de�nition of security. This restriction is essential to ourformulation, because (by our convention) the functionality f is de�ned only for pairs of stringsof equal length.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 603The trusted party answers the second party: In case the �rst party is maliciousit may, depending on its input and the trusted party's answer, decide tostop the trusted party. In this case the trusted party sends ? to the secondparty. Otherwise (i.e., if not stopped), the trusted party sends f2(x; y) tothe second party.Outputs: An honest party always outputs the message it has obtained from thetrusted party. A malicious party may output an arbitrary (polynomial-time computable) function of its initial input (auxiliary input and random-tape) and the message it has obtained from the trusted party.In fact, without loss of generality, we may assume that both parties send inputsto the trusted party (rather than allowing the malicious party not to enter theprotocol). This assumption can be justi�ed by letting the trusted party usesome default value (or a special abort symbol) in case it does not get an inputfrom one of the parties.13 Thus, the ideal model (computation) is captured bythe following de�nition, where the algorithms B1 and B2 represent all possibleactions in the model.14 In particular, B1(x; z; r) (resp., B2(y; z; r)) representsthe input handed to the trusted party by Party 1 (resp., Party 2) having local-input x (resp., y), auxiliary input z and using random-tape r. Indeed, if Party 1(resp., Party 2) is honest then B1(x; z; r) = x (resp., B2(y; z; r) = y). Likewise,B1(x; z; r; v) = ? represents a decision of Party 1 to stop the trusted party, oninput x (auxiliary input z and random-tape r), after receiving the (output) valuev from the trusted party. In this case B1(x; z; r; v;?) represents the party's local-output. Otherwise (i.e., B1(x; z; r; v) 6= ?), we let B1(x; z; r; v) itself representthe party's local-output. The local output of Party 2 is always represented byB2(y; z; r; v), where y is the party's local input (z is the auxiliary input, r isthe random-tape) and v is the value received from the trusted party. Indeed, ifParty 1 (resp., Party 2) is honest then B1(x; z; r; v) = v (resp., B2(y; z; r; v) = v).De�nition 7.2.4 (malicious adversaries, the ideal model): Let f : f0; 1g� �f0; 1g� ! f0; 1g� � f0; 1g� be a functionality, where f1(x; y) (resp., f2(x; y))denotes the �rst (resp., second) element of f(x; y). Let B = (B1; B2) be a pairof probabilistic polynomial-time algorithms representing strategies in the idealmodel. Such a pair is admissible (in the ideal malicious model) if for at least onei 2 f1; 2g, called honest, we have Bi(u; z; r) = u and Bi(u; z; r; v) = v, for everypossible value of u; z; r and v. Furthermore, jBi(u; z; r)j = juj must hold forboth i's. The joint execution under B in the ideal model (on input pair (x; y) andauxiliary input z), denoted idealf;B(z)(x; y), is de�ned by uniformly selecting a13 The functionality may be modi�ed accordingly such that if one of the inputs equals thespecial abort symbol then the output is a special abort symbol.14 As in De�nition 7.2.2, we make the peculiar choice of feeding both Bi's with the sameauxiliary input z (and the same random-tape r). However, again, the honest strategy ignoresthis auxiliary input, which is only used by the malicious strategy. Note that unlike in previousde�nitions, we make the random-tape (of the adversary) explicit in the notation. The reasonbeing that the same strategy is used to describe two di�erent actions of the adversary (ratherthan a single action, as in De�nition 7.2.2). Since these actions may be probabilistically related,it is important that they are determined based on the same random-tape.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

604 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSrandom-tape r for the adversary, and letting idealf;B(z)(x; y) def= �(x; y; z; r),where �(x; y; z; r) is de�ned as follows:� In case Party 1 is honest, �(x; y; z; r) equals(f1(x; y0) ; B2(y; z; r; f2(x; y0)), where y0 def= B2(y; z; r). (7.12)� In case Party 2 is honest, �(x; y; z; r) equals(B1(x; z; r; f1(x0; y);?) ; ?) if B1(x; z; r; f1(x0; y)) = ? (7.13)(B1(x; z; r; f1(x0; y)) ; f2(x0; y)) otherwise (7.14)where, in both cases, x0 def= B1(x; z; r).Eq. (7.13)& (7.14) refer to the case that Party 2 is honest (and Party 1 maybe malicious). Speci�cally, Eq. (7.13) represents the sub-case where Party 1invokes the trusted party with a possibly substituted input, denoted B1(x; z; r),and aborts while stopping the trusted party right after obtaining the output,f1(B1(x; z; r); y). In this sub-case, Party 2 obtains no output (from the trustedparty). Eq. (7.14) represents the sub-case where Party 1 invokes the trustedparty with a possibly substituted input, and allows the trusted party to answerParty 2. In this sub-case, Party 2 obtains and output f2(A1(x; z; r); y). In bothsub-cases, the trusted party computes f(A1(x; z; r); y), and Party 1 outputs astring that depends on both x; z; r and f1(A1(x; z; r); y). Likewise, Eq. (7.12)represent possible malicious behavior of Party 2; however, in accordance to theabove discussion, the trusted party �rst supplies output to Party 1 and so Party 2does not have an abort option (analogous to Eq. (7.13)).Execution in the real model. We next consider the real model in which areal (two-party) protocol is executed (and there exist no trusted third parties).In this case, a malicious party may follow an arbitrary feasible strategy; thatis, any strategy implementable by a probabilistic polynomial-time algorithm(which gets an auxiliary input). In particular, the malicious party may abortthe execution at any point in time, and when this happens prematurely, the otherparty is left with no output. In analogy to the ideal case, we use algorithms tode�ne strategies in a protocol, where these strategies (or algorithms implementingthem) map partial execution histories to the next message.De�nition 7.2.5 (malicious adversaries, the real model): Let f be as in De�ni-tion 7.2.4, and � be a two-party protocol for computing f . Let A = (A1; A2) bea pair of probabilistic polynomial-time algorithms representing strategies in thereal model. Such a pair is admissible (w.r.t �) (for the real malicious model) ifat least one Ai coincides with the strategy speci�ed by �. (In particular, this Aiignores the auxiliary input.) The joint execution of � under A in the real model(on input pair (x; y) and auxiliary input z), denoted real�;A(z)(x; y), is de�nedas the output pair resulting from the interaction between A1(x; z) and A2(y; z).(Recall that the honest Ai ignores the auxiliary input z, and so our peculiarchoice of providing both Ai's with the same z is immaterial.)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 605In some places (in Section 7.4), we will assume that the algorithms representingthe real-model adversaries (i.e., the algorithm Ai that does not follow �) aredeterministic. This is justi�ed by observing that one may just (consider and) �xthe \best" possible choice of coins for a randomized adversary and incorporatethis choice in the auxiliary input of a deterministic adversary (cf. Section 1.3.3).Security as emulation of real execution in the ideal model. Havingde�ned the ideal and real models, we obtain the corresponding de�nition ofsecurity. Loosely speaking, the de�nition asserts that a secure two-party protocol(in the real model) emulates the ideal model (in which a trusted party exists).This is formulated by saying that admissible adversaries in the ideal-model areable to simulate (in the ideal-model) the execution of a secure real-model protocolunder admissible adversaries.De�nition 7.2.6 (security in the malicious model): Let f and � be as in De�-nition 7.2.5. Protocol � is said to securely compute f (in the malicious model) iffor every probabilistic polynomial-time pair A = (A1; A2) that is admissible forthe real model (of De�nition 7.2.5) there exists a probabilistic polynomial-timepair B = (B1; B2) that is admissible for the ideal model (of De�nition 7.2.4)such that fidealf;B(z)(x; y)gx;y;z c� freal�;A(z)(x; y)gx;y;zwhere x; y; z 2 f0; 1g� such that jxj = jyj and jzj = poly(jxj). (Recall that c� de-notes computational indistinguishability by (non-uniform) families of polynomial-size circuits.) When the context is clear, we sometimes refer to � as an secureimplementation of f .It follows that, in an execution of a secure protocol, the honest party either getsthe correct output or detects that the other party has aborted the executionprematurely. This property is implies by the fact that this is the situation inthe ideal model of De�nition 7.2.4.One obvious property that De�nition 7.2.6 implies is privacy with respect tomalicious adversaries. That is, all that an adversary can learn by participatingin the protocol, while using an arbitrary (feasible) strategy, can be essentiallyinferred from the corresponding output alone. Another property that is impliedby De�nition 7.2.6 is correctness, which means that the output of the honest partymust be consistent with an input pair in which the element corresponding to thehonest party equals its actual input. Furthermore, the element corresponding tothe adversary must be chosen obliviously of the honest party's input. We stressthat both properties are easily implied by De�nition 7.2.6, but the latter is notimplied by combining the two properties. For further discussion, see Exercise 3.We wish to highlight another property that is implied by De�nition 7.2.6:Loosely speaking, this de�nition implies that at the end of the (real) executionof a secure protocol, each party \knows" the value of the corresponding inputfor which the output is obtained. That is, when a malicious Party 1 obtains the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

606 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSoutput z, it knows an x0 (which does not necessarily equal to its initial local-input x) such that z = f1(x0; y) for some y (i.e., the local-input of the honestParty 2). This \knowledge" is implied by the equivalence to the ideal model,in which the party explicitly hands the (possibly modi�ed) input to the trustedparty. For example, say Party 1 uses the malicious strategy A1. Then the outputvalues (in real�;A(x; y)) correspond to the input pair (B1(x); y), where B1 isthe ideal-model adversary derived from the real-model adversarial strategy A1.We comment that although De�nition 7.2.6 does not talk about transform-ing admissible A's to admissible B's, we will often use such phrases. Further-more, although the de�nition does not even guarantees that such a transfor-mation is e�ective (i.e., computable), the transformations used in this work areall polynomial-time computable. Moreover, these transformation consists of ageneric program for Bi that uses subroutine (or oracle) calls to the correspondingAi. Consequently, we sometimes describe these transformation without referringto the auxiliary input, and the description can be completed by having Bi passits auxiliary input to Ai (in each of its invocations).Remark 7.2.7 (security for partial functionalities): For functionalities thatare de�ned only for inputs pairs in some set R � f0; 1g� � f0; 1g� (see Sec-tion 7.2.1.1), security is de�ned as in De�nition 7.2.6 with the following twoexceptions:1. When de�ning the ideal model, the adversary is allowed to modify its inputarbitrarily as long as the modi�ed input pair is in R.2. The ensembles considered are indexed by triplets (x; y; z) that satisfy (x; y) 2R as well as jxj = jyj and jzj = poly(jxj).7.2.3.2 An alternative approachA simpler de�nition of security may be used in the special case of single-outputfunctionalities (i.e., functionalities in which only one party obtains an output).Assume, without loss of generality, that only the �rst party obtains an output(from the functionality f); that is, f(x; y) = (f1(x; y); �).15 In this case, we neednot be concerned of what happens after the �rst party obtains its output (becausethe second party's has no output), and thus the complications arising from theissue of aborting the execution can be eliminated. Consequently, computationin the ideal model takes the following form:Inputs: Each party obtains an input, denoted u.Sending inputs to trusted party: An honest party always sends u to the trustedparty. A malicious party may, depending on u (as well as on an auxiliary15 Actually, the treatment of the case in which only the second party obtains an output (i.e.,f(x; y) = (�; f2(x; y))) is slightly di�erent. However, also in this case, the event in which the�rst party aborts after obtaining its (empty) output can be discarded. In this case, this event(of obtaining an a-priori �xed output) is essentially equivalent to the party aborting beforeobtaining output, which in turn can be viewed as replacing its input by a special symbol.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.2. * THE TWO-PARTY CASE: DEFINITIONS 607input and its coin tosses), either abort or sends some u0 2 f0; 1gjuj to thetrusted party. However, without loss of generality, aborting at this stagemay be treated as supplying the trusted party with a special symbol.The answer of trusted party: Upon obtained an input pair, (x; y), the trustedparty (for computing f), replies to the �rst party with f1(x; y). Withoutloss of generality, the trusted party only answers the �rst party, becausethe second party has no output (or, alternatively, should always output�).Outputs: An honest party always outputs the message it has obtained from thetrusted party. A malicious party may output an arbitrary (polynomial-time computable) function of its initial input (auxiliary input and its cointosses) and the message it has obtained from the trusted party.Thus, the ideal model (computation) is captured by the following de�nition,where the algorithms B1 and B2 represent all possible actions in the model.In particular, B1(x; z; r) (resp., B2(y; z; r)) represents the input handed to thetrusted party by Party 1 (resp., Party 2) having local-input x (resp., y), auxiliaryinput z and random-tape r. Indeed, if Party 1 (resp., Party 2) is honest thenB1(x; z; r) = x (resp., B2(y; z; r) = y). Likewise, B1(x; z; r; v) represents theoutput of Party 1, when having local-input x (auxiliary input z and random-tape r) and receiving the value v from the trusted party, whereas the outputof Party 2 is represented by B2(y; z; r; �). Indeed, if Party 1 (resp., Party 2) ishonest then B1(x; z; r; v) = v (resp., B2(y; z; r; �) = �).De�nition 7.2.8 (the ideal model): Let f : f0; 1g��f0; 1g�! f0; 1g��f�g beone-output functionality such that f(x; y) = (f1(x; y); �). Let B = (B1; B2) bea pair of probabilistic polynomial-time algorithms representing strategies in theideal model. Such a pair is admissible (in the ideal malicious model) if for atleast one i 2 f1; 2g, called honest, we have Bi(u; z; r) = u and Bi(u; z; r; v) = vfor all possible u; z; r and v. Furthermore, jBi(u; z; r)j = juj must hold for bothi's. The joint execution under B in the ideal model (on input pair (x; y) andauxiliary input z), denoted idealf;B(z)(x; y), is de�ned by uniformly selecting arandom-tape r for the adversary, and letting idealf;B(z)(x; y) def= �(x; y; z; r),where�(x; y; z; r) def= (B1(x; z; r; f1(B1(x; z; r); B2(y; z; r))) ; B2(y; z; r; �)) (7.15)That is, idealf;B(z)(x; y) def= (B1(x; z; r; v); B2(y; z; r; �)), where v f1(B1(x; z; r); B2(y; z; r))and r is uniformly distributed among the set of strings of adequate length.16We next consider the real model in which a real (two-party) protocol is executed(and there exist no trusted third parties). In this case, a malicious party may16 Recall that if Bi is honest then it passes its input to the trusted party and outputs itsresponse. Thus, our peculiar choice to feed both parties with the same auxiliary input andsame random-tape is immaterial, because the honest party ignores both.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

608 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSfollow an arbitrary feasible strategy; that is, any strategy implementable by aprobabilistic polynomial-time algorithm. The de�nition is identical to De�ni-tion 7.2.5, and is reproduced below for sake of self-containment.De�nition 7.2.9 (the real model): Let f be as in De�nition 7.2.8, and � be atwo-party protocol for computing f . Let A = (A1; A2) be a pair of probabilisticpolynomial-time algorithms representing strategies in the real model. Such a pairis admissible (w.r.t �) (for the real malicious model) if at least one Ai coincideswith the strategy speci�ed by �. The joint execution of � under A in the real model(on input pair (x; y) and auxiliary input z), denoted real�;A(z)(x; y), is de�nedas the output pair resulting from the interaction between A1(x; z) and A2(y; z).(Note that the honest Ai ignores the auxiliary input z.)Having de�ned the ideal and real models, we obtain the corresponding de�nitionof security. Loosely speaking, the de�nition asserts that a secure two-partyprotocol (in the real model) emulates the ideal model (in which a trusted partyexists). This is formulated by saying that admissible adversaries in the ideal-model are able to simulate (in the ideal-model) the execution of a secure real-model protocol under admissible adversaries. The de�nition is analogous toDe�nition 7.2.6.De�nition 7.2.10 (security): Let f and � be as in De�nition 7.2.9. Protocol� is said to securely compute f (in the malicious model) if for every probabilisticpolynomial-time pair A = (A1; A2) that is admissible for the real model (ofDe�nition 7.2.5) there exists a probabilistic polynomial-time pair B = (B1; B2)that is admissible for the ideal model (of De�nition 7.2.4) such thatfidealf;B(z)(x; y)gx;y;z c� freal�;A(z)(x; y)gx;y;zwhere x; y; z 2 f0; 1g� such that jxj = jyj and jzj = poly(jxj).Clearly, as far as single-output functionalities are concerned, De�nitions 7.2.6and 7.2.10 are equivalent (because in this case the ideal-model de�nitions co-incide). It is also clear from the above discussions that the two de�nitions arenot equivalent in general (i.e., with respect to two-output functionalities). Still,it is possible to securely implement any (two-output) functionality by using aprotocol for securely computing a (related) single-output functionality. Thatis, ability to construct secure protocols under De�nition 7.2.10 yields ability toconstruct secure protocols under De�nition 7.2.6.Proposition 7.2.11 Suppose that there exists one-way functions and that anysingle-output functionality can be securely computed as per De�nition 7.2.10.Then any two-output functionality can be securely computed as per De�nition 7.2.6.Proof Sketch: Suppose that the parties wish to securely compute the (two-output) functionality (x; y) 7! (f1(x; y); f2(x; y)). The �rst idea that comesto mind is to �rst let the parties (securely) compute the �rst output (i.e., by

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 609securely computing (x; y) 7! (f1(x; y); �)) and next let them (securely) computethe second output (i.e., by securely computing (x; y) 7! (�; f2(x; y))). Thissolution is insecure, because a malicious party may enter di�erent inputs inthe two invocations (not to mention that the approach will fail for randomizedfunctionalities even if both parties are honest). Instead, we are going to let the�rst party obtain its output as well as an (authenticated and) encrypted versionof the second party's output, which it will send to the second party (whichwill be able to decrypt and verify the value). That is, we will use private-keyencryption and authentication schemes, which exist under the �rst hypothesis, asfollows. First, the second party generates an encryption/decryption-key, denotede, and a signing/veri�cation-key, denoted s. Next, the two parties securelycompute the randomized functionality ((x; (y; e; s)) 7! ((f1(x; y); c; t) ; �), wherec is the ciphertext obtained by encrypting the plaintext v = f2(x; y) under theencryption-key e, and t is an authentication-tag of c under the signing-key s.Finally, the �rst party sends (c; t) to the second party, which veri�es that c isproperly signed and (if so) recovers f2(x; y) from it.7.3 * Privately Computing (2-Party) Function-alitiesRecall that our ultimate goal is to design (two-party) protocols that withstandany feasible adversarial behavior. We proceed in two steps. In this section,we show how to construct protocols for privately computing any functionality;that is, protocols that are secure with respect to the semi-honest model. InSection 7.4, we will show how to compile these protocols into ones that aresecure also in the malicious model.Throughout the current section, we assume that the desired (two-party) func-tionality (w.r.t the desired input length) is represented by a (two-input) Booleancircuit. We show how to transform this circuit into a two-party protocol for eval-uating the circuit on a given pair of local inputs. The transformation follows theoutline provided in in Section 7.1.3.3.17The circuit-evaluation protocol, presented in subsection 7.3.4, scans the cir-cuit from the input wires to the output wires, processing a single gate in eachbasic step. When entering each basic step, the parties hold shares of the valuesof the input wires of the gate, and when the step is completed they hold sharesof the output wire of the gate. The shares held by each party yield no informa-tion about the corresponding values, but combining the two shares of any valueallows to reconstruct the value. Each basic step is performed without yieldingany additional information; that is, the generation of shares for all wires (and inparticular for the circuit's output wires) is performed in a private manner. Putin other words, we will show that privately evaluating the circuit \reduces" toprivately evaluating single gates on values shared by both parties.17 Indeed, the current section is mainly a detailed version of Section 7.1.3.3.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

610 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSOur presentation is modular, where the modularity is supported by an ap-propriate notion of a reduction. Thus, we �rst de�ne such notion, and showthat indeed it is suitable to our goals; that is, given a reduction of (the privatecomputation of) g to (the private computation of) f and a protocol for privatelycomputing f , we (show how to) derive a protocol for privately computing g. Ap-plying this notion of a reduction, we reduce the private computation of generalfunctionalities to the private computation of deterministic functionalities, andthus focus on the latter.We next consider, without loss of generality, the evaluation of Boolean cir-cuits with and and xor gates of fan-in 2.18 Actually, we �nd it more convenientto consider the corresponding arithmetic circuits over GF(2), where multiplica-tion corresponds to and and addition to xor. A value v is shared by the twoparties in the natural manner (i.e., the sum of the shares equals v mod 2). Weshow how to propagate shares of values through any given gate (operation).Propagation through an addition gate is trivial, and we concentrate on propa-gation through a multiplication gate. The generic case is that the �rst partyholds (a1; b1) and the second party holds (a2; b2), where a1 + a2 is the value ofone input wire and b1+ b2 is the value of the other input wire. What we want isto provide each party with a random share of the value of the output wire; thatis, a share of the value (a1 + a2) � (b1 + b2). In other words we are interested inprivately computing the following randomized functionality((a1; b1); (a2; b2)) 7! (c1; c2) (7.16)where c1 + c2 = (a1 + a2) � (b1 + b2). (7.17)That is, (c1; c2) ought to be uniformly distributed among the pairs satisfyingc1 + c2 = (a1 + a2) � (b1 + b2). The above functionality has a �nite domain,and as such it can be privately computed by reduction to a variant of ObliviousTransfer (OT). This variant is de�ned in Section 7.3.2, where it is shown thatthis variant can be privately implemented assuming the existence of enhancedtrapdoor one-way permutations.The actual presentation proceeds bottom-up. We �rst de�ne reductions be-tween (two-party) protocol problems (in the semi-honest model). Next we de�neand implement OT, and show how to use OT for privately computing a singlemultiplication gate. Finally, we show how to use the latter protocol to derive aprotocol for privately evaluating the entire circuit.7.3.1 Privacy reductions and a composition theoremIt is time to de�ne what we mean by saying that the private computation of onefunctionality reduces to the private computation of another functionality. Ourde�nition is a natural extension of the standard notion of reduction in the con-text of ordinary (i.e., one party) computation. Recall that standard reductionsare de�ned in terms of oracle machines. Thus, we need to consider two-partyprotocols with oracle access. Here the oracle is invoked by both parties, each18 Indeed, negation can be emulated by xoring the given bit with the constant true.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 611supplying it with one input (or query), and it responses with a pair of answers,one per each party. We stress that the answer-pair depends on the (entire)query-pair.De�nition 7.3.1 (protocols with oracle access): A oracle-aided protocol is aprotocol augmented by pairs of oracle-tapes, one pair per each party, and oracle-call steps de�ned as follows. Each of the parties may send a special oracle requestmessage, to the other party. Such a message is typically sent after this partywrites a string, called its query, on its own write-only oracle-tape. In response,the other party also writes a string, called its query, on its own oracle-tape andresponds to the requesting party with a oracle call message. At this point theoracle is invoked and the result is that a string, not necessarily the same, iswritten by the oracle on the read-only oracle-tape of each party. This pair ofstrings is called the oracle answer.We stress that the syntax of De�nition 7.3.1 (only) allows sequential oracle calls(but not parallel ones). We call the reader attention to the second item inDe�nition 7.3.2 that requires that the oracle-aided protocol privately computesthe functionality rather than merely computes it.De�nition 7.3.2 (privacy reductions):� An oracle-aided protocol is said to be using the oracle-functionality f if theoracle answers are according to f . That is, when the oracle is invokedsuch that the requesting party writes the query q1 and responding partywrites the query q2, the answer-pair is distributed as f(q1; q2), where therequesting party gets the �rst part (i.e., f1((q1; q2)).We require that the length of each query be polynomially related to thelength of the initial input.19� An oracle-aided protocol using the oracle-functionality f is said to privatelycompute g if there exist polynomial-time algorithms, denoted S1 and S2,satisfying Eq. (7.7) and Eq. (7.8), respectively, where the correspondingviews of the execution of the oracle-aided protocol are de�ned in the naturalmanner.� An oracle-aided protocol is said to privately reduce g to f , if it privatelycomputes g when using the oracle-functionality f . In such a case we saythat g is privately reducible to f ,We are now ready to state a composition theorem for the semi-honest model.Theorem 7.3.3 (Composition Theorem for the semi-honest model): Supposethat g is privately reducible to f and that there exists a protocol for privatelycomputing f . Then there exists a protocol for privately computing g.19 This requirement guarantees that the security of the oracle calls be related to the securityof the high level protocol.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

612 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSTheorem 7.3.3 can be generalized to assert that if g is privately-reducible to f ,and f is privately-reducible to e then g is privately-reducible to e. See Exercise 5.Proof Sketch: Let �gjf be a oracle-aided protocol that privately reduces g tof , and let �f be a protocol that privately computes f . We construct a protocol� for computing g in the natural manner; that is, starting with �gjf , we replaceeach invocation of the oracle (i.e., of f) by an execution of the protocol �f .Clearly, � computes g. We need to show that � privately computes g.For each i = 1; 2, let Sgjfi and Sfi be the corresponding simulators for theview of Party i (i.e., in �gjf and �f , respectively). We construct a simulationSi, for the view of Party i in �, in the natural manner. That is, we �rst runSgjfi and obtain the view of Party i in �gjf . This view includes queries madeby Party i and corresponding answers. (Recall, we have only the part of Party iin the query-answer pair.) Invoking Sfi on each such \partial query-answer" we�ll-in the view of Party i for each of these invocations of �f .A minor technicality: There is a minor inaccuracy in the above description,which presupposes that Party i is the party that plays the ith party in�f (i.e., Party 1 is the party in �gjf that requests all oracle calls to f).But, in general, it may be that, in some invocations of �f , Party 2 playsthe �rst party in �f (i.e., Party 1 is the party in �gjf that requests thisparticular oracle call). In this case, we should simulate the execution of�f by using the simulator that simulates the view of the correspondingparty in �f (rather than the corresponding party in �).Advanced comment: Note that we capitalize on the fact that in the semi-honest model, the execution of the steps of �gjf (inside �) is independentof the actual executions of �f (and may depend only on the outcomes of�f). This fact, allows us to �rst simulate a transcript of �gjf , and nextgenerate simulated transcripts of �f . In contrast, in the malicious model,the adversary's actions in �gjf may depend on the transcript of previousexecutions of �f , and thus the above simulation strategy will not workin the malicious model (and a more complex simulation strategy will beused).It is left to show that Si indeed generates a distribution that (augmented bythe value of g3�i) is indistinguishable from the view of Party i (augmented bythe output of Party 3 � i) in actual executions of �. Towards this end, weintroduce a hybrid distribution, denoted Hi. This hybrid distribution representsthe view of Party i (and output of Party 3 � i) in an execution of �gjf that isaugmented by corresponding invocations of Sfi . That is, for each query-answerpair, (q; a), viewed by Party i we augment its view with Si(q; a). In other words,Hi represents the execution of �, with the exception that the invocations of �fare replaced by simulated transcripts.Comment: We stress that since g may be a randomized functionality, weshould consider the general form of De�nition 7.2.1 rather than its simpli-�ed form. That is, we consider the joint distribution consisting of the viewof Party i and the output of Party 3� i (rather than merely the former).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 613This fact merely makes the phrases more cumbersome, and the essence ofthe argument may be better captured by assuming that g is deterministicand using the special (simpler) form of De�nition 7.2.1.Using the guarantees regarding Sfi (resp., Sgjfi), we show that the distributionscorresponding to Hi and � (resp., Hi and Si) are computationally indistinguish-able. Speci�cally:1. The distributions represented by Hi and � are computationally indistin-guishable: The reason being that these distributions di�er only in that theinvocations of �f in � are replaced in Hi by Sfi -simulated transcripts.Thus, the hypothesis regarding Sfi implies that the two distributions arecomputationally indistinguishable, where indistinguishability is with re-spect to the length of the queries as well as with respect to the length ofthe initial inputs.20 Speci�cally, one may consider hybrids of � and Hisuch that in the jth hybrid the �rst j invocations of �f are real and therest are simulated. Then distinguishability of neighboring hybrids contra-dicts the hypothesis regarding Sfi (by incorporating a possible transcriptof the rest of the execution into the distinguisher).2. The distributions represented by Hi and Si are computationally indistin-guishable: The reason being that these distributions are obtained, respec-tively, from �gjf and Sgjfi , by augmenting the latter with invocations ofSfi . Thus, indistinguishability follows by the hypothesis regarding Sgjfi .Speci�cally, distinguishing Hi and Si implies distinguishing �gjf and Sgjfi(by incorporating the program Sfi into the distinguisher).The theorem follows.Application: reducing private computation of general functionalitiesto deterministic ones. Given a general functionality g, we �rst write it ina way that makes the randomization explicit. That is, we let g(r; (x; y)) de-note the value of g(x; y) when using coin tosses r 2 f0; 1gpoly(jxj) (i.e., g(x; y)is the randomized process consisting of uniformly selecting r 2 f0; 1gpoly(jxj),and deterministically computing g(r; (x; y))). Next, we privately reduce g to adeterministic f , where f is de�ned as followsf((x1; r1); (x2; r2)) def= g(r1 � r2; (x1; x2)) (7.18)Applying Theorem 7.3.3 (while using a straightforward privacy-reduction of gto f), we conclude that the existence of a protocol for privately computing thedeterministic functionality f implies the existence of a protocol for privatelycomputing the randomized functionality g. For sake of future reference, weexplicitly state the privacy reduction of g to f (i.e, the oracle-aided protocol forg given f).20 Here we use the hypothesis (made in the �rst item of De�nition 7.3.2) that the length ofeach query is polynomially related to the length of the initial input.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

614 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSProposition 7.3.4 (privately reducing a randomized functionality to determin-istic one): Let g be a randomized functionality, and f be as de�ned in Eq. (7.18).Then the following oracle-aided protocol privately reduces g to f .Inputs: Party i gets input xi 2 f0; 1gn.Step 1: Party i uniformly selects ri 2 f0; 1gpoly(jxij).Step 2 { Reduction: Party i invokes the oracle with query (xi; ri), and recordsthe oracle response.Outputs: Each party outputs the oracle's response.We comment that the above construction holds also in case of malicious adver-saries; see Section 7.4.2.Proof: Clearly, the above protocol, denoted �, computes g. To show that� privately computes g we need to present a simulator for each party view.The simulator for Party i, denoted Si, is the obvious one. On input (xi; vi),where xi is the local input to Party i and vi is its local output, the simulatoruniformly selects ri 2 f0; 1gm, and outputs (xi; ri; vi), where m = poly(jxij).The main observation underlying the analysis of this simulator is that for every�xed x1; x2 and r 2 f0; 1gm, we have vi = gi(r; (x1; x2)) if and only if vi =fi((x1; r1); (x2; r2)), for every pair (r1; r2) satisfying r1 � r2 = r. Now, let �ibe a random variable representing the random choice of Party i in Step 1, and� 0i denote the corresponding choice made by the simulator Si. Then, referringto the general form of De�nition 7.2.1 (as we should since g is a randomizedfunctionality), we show that for every �xed x1; x2; ri and v = (v1; v2) it holdsthatPr � view�i (x1; x2) = (xi; ri; vi)output�3�i(x1; x2) = v3�i � = Pr[(�i = ri) ^ (f((x1; �1); (x2; �2)) = v)]= Pr[�i = ri] � jfr3�i : f((x1; r1); (x2; r2)) = vgj2m= 2�m � jfr : g(r; (x1; x2)) = vgj2m= Pr[� 0i = ri] � Pr[g(x1; x2) = v]= Pr[(� 0i = ri) ^ (g(x1; x2) = v)]= Pr � Si(xi; gi(x1; x2)) = (xi; ri; vi)^ g3�i(x1; x2) = v3�i �where the equalities are justi�ed as follows: the 1st by de�nition of �, the 2nd byindependence of the �i's, the 3rd by de�nition of �i and f , the 4th by de�nitionof � 0i and g, the 5th by independence of � 0i and g, and the 6th by de�nition ofSi. The claim follows.7.3.2 The OTk1 protocol { de�nition and constructionThe (following version of the) Oblivious Transfer functionality is a main ingredi-ent of our construction. Let k be a �xed integer (k = 4 will do for our purpose),

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 615and let �1; �2; :::; �k 2 f0; 1g and i 2 f1; :::; kg. Then, the (one-output) func-tionality 1-out-of-k Oblivious Transfer, denoted OTk1 , is de�ned asOTk1((�1; �2; :::; �k); i) = (�; �i) (7.19)Indeed, 1-out-of-k Oblivious Transfer, is asymmetric. Traditionally, the �rstplayer, holding input (�1; �2; :::; �k) is called the sender, whereas the secondplayer, holding the input i 2 f1; :::; kg is called the receiver. Intuitively, thegoal is to transfer the ith bit to the receiver, without letting the receiver obtainknowledge of any other bit and without letting the sender obtain knowledge ofthe identity of the bit required by the receiver.Using any enhanced trapdoor permutation, ff� :D�!D�g�2I , we presenta protocol for privately computing OTk1 . The description below refers to thealgorithms guaranteed by such a collection (see De�nitions 2.4.5 and C.1.1),and to a hard-core predicate b for such a collection (see Section 2.5). We denotethe sender (i.e., the �rst party) by S and the receiver (i.e., the second party) byR. As discussed in Section 7.2.1, since we are dealing with a �nite functionality,we want the security to be stated in terms of an auxiliary security parameter,n, presented to both parties in unary.Construction 7.3.5 (Oblivious Transfer protocol for semi-honest model):Inputs: The sender has input (�1; �2; :::; �k) 2 f0; 1gk, the receiver has inputi 2 f1; 2; :::; kg, and both parties have the auxiliary security parameter 1n.Step S1: The sender uniformly selects a trapdoor pair, (�; t), by running the gen-eration algorithm, G, on input 1n. That is, it uniformly selects a random-tape, r, for G and sets (�; t) = G(1n; r). It sends � to the receiver.Step R1: The receiver uniformly and independently selects x1; :::; xk 2 D�, setsyi = f�(xi) and yj = xj for every j 6= i, and sends (y1; y2; :::; yk) to thesender. That is,1. It uniformly and independently selects x1; :::; xk 2 D�, by invoking thedomain sampling algorithm k times, on input �. Speci�cally, it selectsrandom tapes, rj 's, for D and sets xj = D(�; rj), for j = 1; :::; k.2. Using the evaluation algorithm, the receiver sets yi = f�(xi).3. For j 6= i, the receiver sets yj = xj .4. The receiver sends (y1; y2; :::; yk) to the sender.(Thus, the receiver knows f�1� (yi) = xi, but cannot predict b(f�1� (yj)) forany j 6= i.)Step S2: Upon receiving (y1; y2; :::; yk), using the inverting-with-trapdoor algo-rithm and the trapdoor t, the sender computes zj = f�1� (yj), for everyj 2 f1; :::; kg. It sends (�1� b(z1); �2� b(z2); :::; �k� b(zk)) to the receiver.Step R2: Upon receiving (c1; c2; :::; ck), the receiver locally outputs ci � b(xi).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

616 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSWe �rst observe that the above protocol correctly computes OTk1 : This is thecase since the receiver's local output (i.e., ci � b(xi)) satis�esci � b(xi) = (�i � b(zi))� b(xi)= �i � b(f�1� (yi))� b(xi)= �i � b(f�1� (f�(xi)))� b(xi)= �iWe show below that the protocol indeed privately computes OTk1 . Intuitively,the sender gets no information from the execution since, for any possible value ofi, the senders sees the same distribution { a sequence of uniformly and indepen-dently selected elements of D�. Intuitively, the receiver gains no computationalknowledge from the execution since, for j 6= i, the only data it has regarding�j is the triplet (�; xj ; �j � b(f�1� (xj))), from which it is infeasible to predict�j better than by a random guess. A formal argument is indeed due and givennext.Proposition 7.3.6 Suppose that ffi : Di ! Digi2I constitutes a collection ofenhanced trapdoor permutations (as in De�nition C.1.1) and that b constitutesa hard-core predicate for it. Then, Construction 7.3.5 constitutes a protocol forprivately computing OTk1 (in the semi-honest model).We comment that the intractability assumption used in Proposition 7.3.6, willpropagate to all subsequent results in the current and next section (i.e., Sec-tions 7.3 and 7.4). In fact, the implementation of OTk1 seems to be the bottleneckof the intractability assumptions used in these sections.Proof Sketch: Note that since we are dealing with a deterministic functionality,we may use the special (simpler) form of De�nition 7.2.1 (which only refers toeach party's view). Thus, we will present a simulator for the view of eachparty. Recall that these simulators are given the local input (which includesalso the security parameter) and the local output of the corresponding party.The following schematic depiction of the information
ow in Construction 7.3.5may be useful towards the constructions of these simulators:Sender (S) Receiver (R)input (�1; :::; �k) iS1 (�; t) G(1n) �! � �!R1 generates yj 's � (y1; :::; yk) � (knows xi)S2 cj = �j � b(f�1� (yj)) �! (c1; :::; ck) �!R2 (output) � ci � b(xi)We start by presenting a simulator to the sender's view. On input (((�1; :::; �k); 1n); �),this simulator randomly selects � (as in Step S1), and generates uniformly and

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 617independently y1; :::; yk 2 D�. Let r denote the sequence of coins used to gen-erate �, and assume without loss of generality that the inverting-with-trapdooralgorithm is deterministic (which is typically the case anyhow). Then the simu-lator outputs (((�1; :::; �k); 1n); r; (y1; :::; yk)), where the �rst element representsthe party's input, the second its random choices, and the third the (single) mes-sage that the party has received. Clearly, this output distribution is identicalto the view of the sender in the real execution. (Indeed, the key observation isthat f� is a permutation, and thus applying it to the uniform distribution overD� yields a uniformly distributed element of D�.)We now turn to the receiver. On input ((i; 1n); �i), the simulator (of thereceiver's view) proceeds as follows.1. Emulating Step S1, the simulator uniformly selects a trapdoor pair, (�; t),by running the generation algorithm on input 1n.2. As in Step R1, it uniformly and independently selects r1; :::; rk for thedomain sampler D, and sets xj = D(�; rj) for j = 1; :::; k. Next, it setsyi = f�(xi) and yj = xj , for j 6= i.3. It sets ci = �i � b(xi), and uniformly selects cj 2 f0; 1g, for j 6= i.4. Finally, it outputs ((i; 1n); (r1; :::; rk); (�; (c1; :::; ck))), where the �rst ele-ment represents the party's input, the second its random choices, and thethird represents the two messages that the party has received.Note that, except for the sequence of cj 's, this output is distributed iden-tically to the corresponding pre�x of the receiver's view in the real execu-tion. Furthermore, the above holds even if we include the bit ci (which equals�i � b(f�1� (yi)) = �i � b(xi) in the real execution as well as in the simulation).Thus, the two distributions di�er only in the values of the other cj 's: For j 6= i,in the simulation cj is uniform and independent of anything else, whereas inthe real execution cj equals b(f�1� (yj)) = b(f�1� (xj)) (and hence depends on rjwhich determines xj). However, it is impossible to distinguish the two cases,because xj is uniformly distributed and the distinguisher is only given � andrj (but not the trapdoor to f�). Here is where we use the hypothesis that b isa hard-core of an enhanced collection of trapdoor permutations (as in De�ni-tion C.1.1), rather than merely a standard collection of trapdoor permutations.Other variants of Oblivious Transfer: A variety of di�erent variants ofthe Oblivious Transfer functionality were considered in the literature, but mosttreatments refer to the question of implementing them securely in the maliciousmodel (rather than in the semi-honest model). We brie
y mention two of theseother variants.1. Extensions of 1-out-of-k Oblivious Transfer to k secrets that are bit stringsrather than single bits.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

618 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS2. Oblivious Transfer of a single secret (denoted �) with probability 1=2. Thatis, the randomized functionality that maps (�; �) to (�; �) with probability1=2 and to (�; �) otherwise.Privacy reductions among these variants can be easily constructed (see Exer-cise 6).7.3.3 Privately computing c1 + c2 = (a1 + a2) � (b1 + b2)We now turn to the functionality de�ned in Eq. (7.16){(7.17). Recall that thisfunctionality is a randomized mapping ((a1; b1); (a2; b2)) 7! (c1; c2) satisfyingc1 + c2 = (a1 + a2) � (b1 + b2), where the arithmetics is in GF(2). We reduce theprivate computation of this (�nite) functionality to (the private computation of)OT41.Construction 7.3.7 (privately reducing the functionality of Eq. (7.16){(7.17)to OT41):Inputs: Party i holds (ai; bi) 2 f0; 1g� f0; 1g, for i = 1; 2.Step 1: The �rst party uniformly selects c1 2 f0; 1g.Step 2 { Reduction: The aim of this step is to privately compute the (residual)deterministic functionality ((a1; b1; c1); (a2; b2)) 7! (�; fa2;b2(a1; b1; c1)), wherefa;b(x; y; z) def= z+(x+a) �(y+b)). The parties privately reduce the compu-tation of this functionality to OT41. Speci�cally, Party 1 plays the senderand Party 2 plays the receiver. Using its input (a1; b1) and coin c1, Party 1sets the sender's input (in the OT41) to equal the 4-tuple(f0;0(a1; b1; c1) ; f0;1(a1; b1; c1) ; f1;0(a1; b1; c1) ; f1;1(a1; b1; c1)) : (7.20)Using its input (a2; b2), Party 2 sets the receiver's input (in the OT41) toequal 1 + 2a2 + b2 2 f1; 2; 3; 4g.Thus, the receiver output will be the (1+2a2+ b2)th element in Eq. (7.20),which in turn equals fa2;b2(a1; b1; c1). That is:input of Party 2 receiver's input in OT41 receiver's output in OT41(i.e., (a2; b2)) (i.e., 1 + 2a2 + b2) (i.e., fa2;b2(a1; b1; c1))(0; 0) 1 c1 + a1b1(0; 1) 2 c1 + a1 � (b1 + 1)(1; 0) 3 c1 + (a1 + 1) � b1(1; 1) 4 c1 + (a1 + 1) � (b1 + 1)Recall that fa2;b2(a1; b1; c1) = c1 + (a1 + a2) � (b1 + b2).Outputs: Party 1 outputs c1, whereas Party 2 output the result obtained fromthe OT41 invocation.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 619We �rst observe that the above reduction is valid; that is, when Party i enterswith input (ai; bi), the output of Party 2 equals fa2;b2(a1; b1; c1) = c1+(a1+a2) �(b1+b2), where c1 is the output of Party 1. That is, the output pair is uniformlydistributed among the pairs (c1; c2) for which c1+c2 = (a1+a2) � (b1+b2) holds.Thus, each of the local outputs (i..e, of either Party 1 or Party 2) is uniformlydistributed, although the two local-outputs are dependent of one another (as inEq. (7.17)). It is also easy to see that the reduction is private. That is,Proposition 7.3.8 Construction 7.3.7 privately reduces the computation of Eq. (7.16){(7.17) to OT41.Proof Sketch: Simulators for the oracle-aided protocol of Construction 7.3.7are easily constructed. Speci�cally, the simulator of the view of Party 1, hasinput ((a1; b1); c1) (i.e., the input and output of Party 1), which is identical tothe view of Party 1 in the corresponding execution (where here c1 serves as coinsto Party 1). Thus, the simulation is trivial (i.e., by the identity transformation).The same holds also for the simulator of the view of Party 2: it gets input((a2; b2); c1 + (a1 + a2) � (b1 + b2)) (i.e., the input and output of Party 2), whichis identical to the view of Party 2 in the corresponding execution (where herec1+(a1+a2) �(b1+b2) serves as the oracle response to Party 2). Thus, again, thesimulation is trivial. We conclude that the view of each party can be perfectlysimulated (rather than just be simulated in a computationally indistinguishablemanner). The same holds when we also account for the other party's output,and the proposition follows.21On the generic nature of Construction 7.3.7: The idea underlying Step 2of Construction 7.3.7 can be applied to reduce the computation of any deter-ministic functionality of the form (x; y) 7! (�; fy(x)) to 1-out-of-2jyj ObliviousTransfer. Indeed, this reduction is applicable only when y is short (i.e., the num-ber of possible y's is at most polynomial in the security parameter). Speci�cally,consider the functions fy : f0; 1gk ! f0; 1g, for y 2 f0; 1g` (when in Construc-tion 7.3.7 ` = 2 (and k = 3)). Then, privately computing (x; y) 7! (�; fy(x))is reduced to 1-out-of-2` Oblivious Transfer by letting the �rst party play thesender with input set the 2`-tuple (f0`(x); :::; f1`(x)) and the second party playthe receiver with input set to the index of y among the `-bit long strings.7.3.4 The circuit evaluation protocolWe now show that the computation of any deterministic functionality, which isexpressed by an arithmetic circuit over GF(2), is privately reducible to the func-tionality of Eq. (7.16){(7.17). Recall that the latter functionality correspondsto a private computation of multiplication of inputs that are shared by the twoparties. We thus refer to this functionality as the multiplication-gate emulation.Our reduction follows the overview presented in the beginning of this section(i.e., Section 7.3). In particular, the sharing of a bit value b between the two21 An alternative proof is presented in Exercise 9.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

620 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSparties means a uniformly distributed pair of bits (v1; v2) such that v = v1 + v2,where the �rst party holds v1 and the second holds v2. Our aim is to propagate,via private computation, shares of the input-wires of the circuit to shares of allwires of the circuit, so that �nally we obtain shares of the output-wires of thecircuit.Arithmetic circuits { the basics: Recall that an arithmetic circuit over GF(2)is a directed acyclic graph with internal vertices corresponding to gates,where internal vertices are vertices having both in-coming and out-goingedges. Without loss of generality, we will consider two types of gates, calledaddition and multiplication. We will assume that each internal vertex hastwo in-coming edges, called its input wires, and several out-going edgescalled its output wires. Boolean values are propagated through the abovegates in the natural manner (i.e., each out-going wire holds the sum ormultiple of the values of the in-coming wires of the gate). Vertices with noin-coming edges are called sources, and vertices with no out-going edgesare called sinks. Without loss of generality, each source has a single out-going edge, which is called an input-wire of the circuit, and each sink has asingle in-coming edge, which is called an output-wire of the circuit. Whenplacing Boolean values on the input-wires of the circuit, the propagationof values through the gates determines values to all output-wires. Thefunction from input values to output values de�ned this way is called thefunction computed by the circuit.A tedious comment: For sake of simplicity, we do not provide the circuitwith constant values (i.e., 0 and 1). The constant 0 can be easily producedby adding any GF(2) value to itself, but omitting the constant 1 weakensthe power of such circuits (because without this constant is essential tothe computation of non-monotone functions). However, the computationof any circuit that uses the constant 1 can be privately reduced to thecomputation of a corresponding circuit that does not use the constant 1.22We will consider an enumeration of all wires in the circuit. The input wires ofthe circuit, n per each party, will be numbered 1; 2::::; 2n so that, for j = 1; :::; n,the jth input of party i corresponds to the (i�1) �n+jth wire. The wires will benumbered so that the output wires of each gate have a larger numbering thanits input wires. The output-wires of the circuit are clearly the last ones. Forsake of simplicity we assume that each party obtains n output bits, and that theoutput bits of the second party correspond to the last n wires.Construction 7.3.9 (reducing the evaluation of any circuit to the emulationof a multiplication-gate):Inputs: Party i holds the bit string x1i � � �xni 2 f0; 1gn, for i = 1; 2.Step 1 { Sharing the inputs: Each party splits and shares each of its input bitswith the other party. That is, for every i = 1; 2 and j = 1; :::; n, Party i22 Given a circuit C with constant inputs, derive a circuit C0 that lacks constant inputs byintroducing auxiliary variables that are to be set to 1; i.e., C(x) = C0(x; 1 � � � 1). Clearly, theprivate evaluation of C(x1x2) is reducible to the private evaluation of C0(x1x2; 1 � � � 1).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 621uniformly selects a bit rji and sends it to the other party as the otherparty's share of input wire (i� 1) � n+ j. Party i sets its own share of the(i� 1) � n+ jth input wire to xji + rji .Step 2 { Circuit Emulation: Proceeding by the order of wires, the parties usetheir shares of the two input wires to a gate in order to privately computeshares for the output wire(s) of the gate. Suppose that the parties holdshares to the two input wires of a gate; that is, Party 1 holds the sharesa1; b1 and Party 2 holds the shares a2; b2, where a1; a2 are the shares ofthe �rst wire and b1; b2 are the shares of the second wire. We consider twocases.23Emulation of an addition gate: Party 1 just sets its share of the outputwire of the gate to be a1+ b1, and Party 2 sets its share of the outputwire to be a2 + b2.Emulation of a multiplication gate: Shares of the output wire of the gateare obtained by invoking the oracle for the functionality of Eq. (7.16){(7.17), where Party 1 supplies the input (query-part) (a1; b1), andParty 2 supplies (a2; b2). When the oracle responses, each party setsits share of the output wire of the gate to equal its part of the oracleanswer. Recall that, by Eq. (7.17), the two parts of the oracle answersum-up to (a1 + b1) � (a2 + b2).Step 3 { Recovering the output bits: Once the shares of the circuit-output wiresare computed, each party sends its share of each such wire to the partywith which the wire is associated. That is, the shares of the last n wiresare send by Party 1 to Party 2, whereas the shares of the preceding n wiresare sent by Party 2 to Party 1. Each party recovers the correspondingoutput bits by adding-up the two shares; that is, the share it had obtainedin Step 2 and the share it has obtained in the current step.Outputs: Each party locally outputs the bits recovered in Step 3.For starters, let us verify that the output is indeed correct. This can be shownby induction on the wires of the circuits. The induction claim is that the sharesof each wire sum-up to the correct value of the wire. The base case of theinduction are the input wires of the circuits. Speci�cally, the (i � 1) � n + jthwire has value xji and its shares are rji and rji + xji (indeed summing-up to xji).For the induction step we consider the emulation of a gate. Suppose that thevalues of the input wires (to the gate) are a and b, and that their shares a1; a2and b1; b2 indeed satisfy a1 + a2 = a and b1 + b2 = b. In case of an addition23 In the text, we implicitly assume that each gate has a single output wire, but this assump-tion is immaterial and the treatment extends easily to the case that the gates have severaloutput wires. In case of multiplication gate both the natural possibilities (which follow) are�ne. The �rst (more natural) possibility is to invoke the oracle once per each multiplicationgate and have each party use the same share to all output wires. The second possibility is toinvoke the oracle once per each output wire (of a multiplication gate).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

622 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSgate, the shares of the output wire were set to be a1 + b1 and a2 + b2, indeedsatisfying (a1 + b1) + (a2 + b2) = (a1 + a2) + (b1 + b2) = a+ bIn case of a multiplication gate, the shares of the output wire were set to be c1and c2 such that c1+ c2 = (a1 + a2) � (b1+ b2). Thus, c1 + c2 = a � b as required.Privacy of the reduction. We now turn to show that Construction 7.3.9indeed privately reduces the computation of a circuit to the multiplication-gateemulation. That is,Proposition 7.3.10 (privately reducing circuit evaluation to multiplication-gate emulation): Construction 7.3.9 privately reduces the evaluation of arith-metic circuits over GF(2) to the functionality of Eq. (7.16){(7.17).Proof Sketch: Note that since we are dealing with a deterministic functional-ity, we may use the special (simpler) form of De�nition 7.2.1 and only refer tosimulating the view of each party. Recall that these simulators should producethe view of the party in an oracle-aided execution (i.e., an execution of Con-struction 7.3.9, which is an oracle-aided protocol). Without loss of generality,we present a simulator for the view of Party 1. This simulator gets the party'sinput x11; :::; xn1 , as well as its output, denoted y1; :::; yn. It operates as follows.1. The simulator uniformly selects r11 ; :::; rn1 and r12 ; :::; rn2 , as in Step 1. (Therj1's will be used as the coins of Party 1, which are part of the view of theexecution, whereas the rj2's will be used as the message Party 1 receivesat Step 1.) For each j � n, the simulator sets xj1 + rj1 as the party's shareof the value of the jth wire. Similarly, for j � n, the party's share of then+ jth wire is set to rj2.This completes the computation of the party's shares of all circuit-inputwires.2. The party's shares for all other wires are computed, iteratively gate-by-gate, as follows.� The share of the output-wire of an addition gate is set to be the sumof the shares of the input-wires of the gate.� The share of the output-wire of a multiplication gate is uniformlyselected in f0; 1g.(The shares computed for output-wires of multiplication gates will be usedas the answers obtained, by Party 1, from the oracle.)3. For each wire corresponding to an output, denoted yj , that is available toParty 1, the simulator sets the value zj to equal the sum of yj and theparty's share of that wire.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.3. * PRIVATELY COMPUTING (2-PARTY) FUNCTIONALITIES 6234. The simulator outputs((x11; :::; xn1); (y1; :::; yn); (r11 ; :::; rn1); V 1; V 2; V 3)where V 1 = (r12 ; :::; rn2) correspond to the view of Party 1 in Step 1 ofthe protocol, the string V 2 equals the concatenation of the bits selectedfor the output-wires of multiplication gates (corresponding to the party'sview of the oracle answers in Step 2), and V 3 = (z1; :::; zn) corresponds tothe party's view in Step 3 (i.e., the messages it would have obtained fromParty 2 in Step 3 of the execution).We claim that the output of the simulation is distributed identically to theview of Party 1 in the execution of the oracle-aided protocol. The claim clearlyholds with respect to the �rst four parts of the view; that is, the claim holdswith respect to the party's input (i.e., x11; :::; xn1), its output (i.e., y1; :::; yn), itsinternal coin-tosses (i.e., r11 ; :::; rn1), and the message obtained from Party 2 inStep 1 (i.e., r12 ; :::; rn2). Also, by de�nition of the functionality of Eq. (7.16){(7.17), the oracle-answers to each party are uniformly distributed independentlyof (the parts of) the party's queries. Thus, this part of the view of Party 1is uniformly distributed, identically to V 2. It follows, that all shares held byParty 1, are set by the simulator to have exactly the same distribution as theyhave in a real execution. This holds, in particular, for the shares of the outputwires held by Party 1. Finally, we observe that both in the real execution and inthe simulation, adding the latter shares (i.e., the shares of the output wires) tothe messages sent by Party 2 in Step 3 (resp., to V 3) must yield the correspondingbits of the local-output of Party 1. Thus, conditioned on the view so far, V 3 isdistributed identically to the messages sent by Party 2 in Step 3. We concludethat the simulation is perfect (not only computationally indistinguishable), andso the proposition follows.Conclusion. Combining Propositions 7.3.4, 7.3.10 and 7.3.8 with the transi-tivity of privacy-reductions (see Exercise 5), we obtain:Theorem 7.3.11 Any functionality is privately reducible to OT41.Combining Theorem 7.3.11 and Proposition 7.3.6 with the Composition Theorem(Theorem 7.3.3), we obtain:24Theorem 7.3.12 Suppose that there exist collections of enhanced trapdoor per-mutations. Then any functionality can be privately computable (in the semi-honest model).24 Alternatively, one may avoid relying on the transitivity of privacy-reductions by succes-sively apply the Composition Theorem to derive private protocols �rst for the multiplicationfunctionality, then for any deterministic functionality, and �nally for any functionality. Thatis, in the �rst application we use Propositions 7.3.8 and 7.3.6, in the second we use Proposi-tion 7.3.10 and the protocol resulting from the �rst application, and in the last application weuse Proposition 7.3.4 and the protocol resulting from the second application.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

624 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSFor sake of future usage (in Section 7.4), we point out a property of the protocolsunderlying the proof of Theorem 7.3.12.De�nition 7.3.13 (canonical semi-honest protocols): A protocol � for pri-vately computing the functionality f is called canonical if it proceeds by executingthe following two stages.Stage 1: The parties privately compute the functionality (x; y) 7! ((r1; r2); (s1; s2)),where the ri's and si's are uniformly distributed among all possibilities thatsatisfy (r1 � s1; r2 � s2) = f(x; y).Stage 2: Party 2 sends s1 to Party 1, which responses with r2. Each partycomputes its own output; that is, Party i outputs ri � si.Indeed, the protocols underlying the proof of Theorem 7.3.12 are canonical.Hence,Theorem 7.3.14 Suppose that there exist collections of enhanced trapdoor per-mutations. Then any functionality can be privately computable by a canonicalprotocol.Proof: Recall that the oracle-aided protocol claimed in Theorem 7.3.11 is ob-tained by composing the reduction in Proposition 7.3.4 with Constructions 7.3.9and 7.3.7. The high-level structure is induced by the circuit evaluation protocol(of Construction 7.3.9), which is clearly canonical (with Step 3 �tting Stage 2in De�nition 7.3.13). This property is preserved also when replacing the OT41oracle by an adequate subprotocol.Alternatively, by Theorem 7.3.12, we can �rst derive a protocol for privatelycomputing the functionality of Stage 1 (in De�nition 7.3.13). Augmenting thisprotocol by the trivial Stage 2, we derive a canonical protocol for privatelycomputing the original functionality (i.e., f itself).7.4 * Forcing (2-party) Semi-Honest BehaviorOur aim is to use Theorem 7.3.12 (or rather Theorem 7.3.14) in order to establishthe main result of this chapter; that is,Theorem 7.4.1 (main result for the two-party case): Suppose that there existcollections of enhanced trapdoor permutations. Then any two-party functionalitycan be securely computable (in the malicious model).Theorem 7.4.1 will be established by compiling any protocol for the semi-honestmodel into an \equivalent" protocol for the malicious model. The current sectionis devoted to the construction of the said compiler, which was already outlined inSection 7.1.3.1. Loosely speaking, the compiler works by replacing the originalinstructions by macros that force each party to either e�ectively behave in asemi-honest manner (hence the title of the current section) or be detected ascheating (in which case, the protocol aborts).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 6257.4.1 The compiler { motivation and overviewWe are given a protocol for the semi-honest model. In this protocol, each partyhas a local input and uses a uniformly distributed local random-tape. Such aprotocol may be used to privately compute some functionality (either a determin-istic or a probabilistic one), but the compiler does not refer to this functionality.The compiler is supposed to produce an \equivalent protocol" for the maliciousmodel. That is, any input-output behavior that a malicious adversary can in-duce by attacking the resulting protocol, can also be induced by a semi-honestadversary that attacks the original protocol. To motivate the protocol complier,let us start by considering what a malicious party may do (beyond whatever asemi-honest party can do).1. A malicious party may enter the actual execution of the protocol with aninput di�erent from the one it is given (i.e., \substitute its input"). Asdiscussed in Section 7.2.3, this is unavoidable. What we need to guaranteeis that this substitution is done obliviously of the input of the other party;that is, that the substitution only depends on the original input.Jumping ahead, we mention that the input-commitment phase of the com-piled protocol is aimed at achieving this goal. The tools used here arecommitment schemes (see Section 4.4.1) and strong zero-knowledge proofsof knowledge (see Section 4.7.6).2. A malicious party may enter the actual execution of the protocol with arandom-tape that is not uniformly distributed. What we need to do is forcethe party to use a random-tape (for the emulated semi-honest protocol)that is uniformly distributed.The coin-generation phase of the compiled protocol is aimed at achievingthis goal. The tool used here is an augmented coin-tossing into the wellprotocol, which in turn uses tools as in Item 1.3. A malicious party may try to send messages di�erent than the ones speci-�ed by the original (semi-honest model) protocol. So we need to force theparty to send messages as speci�ed by its (already committed) local-inputand random-tape.The protocol emulation phase of the compiled protocol is aimed at achiev-ing this goal. The tool used here is zero-knowledge proof systems (forNP-statements).In accordance with the above discussion, the protocols produced by the compilerconsist of three phases.Input-commitment phase: Each of the parties commits to its input by using a se-cure implementation of the input-commitment functionality (to be de�nedin Section 7.4.3.6). The latter functionality guarantees that the commit-ting party actually knows the value to which it has committed, and thatthe secrecy of the committed value is preserved. It follows that each party

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

626 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLScommits to values that are essentially independent of the values committedto by the other party. Furthermore, the input-commitment functionalityprovides the committer with the corresponding decommitment information(to be used in the protocol-emulation phase).Coin-generation phase: The parties generate random-tape for the emulation ofthe original protocol. Each party obtains the value of the random-tape tobe held by it, whereas the other party obtains a commitment to this value.The party holding the value also obtains the corresponding decommitmentinformation. All this is obtained by using a secure implementation of the(augmented) coin-tossing functionality (to be de�ned in Section 7.4.3.5).It follows that each party obtains a random-tape that is essentially randomand independent of anything else.Protocol emulation phase: The parties use a secure implementation of the authenticated-computation functionality (to be de�ned in Section 7.4.3.4) in order to em-ulate each step of the original protocol. Speci�cally, each message trans-mission in the original protocol is replaced by an invocation of the saidsub-protocol (implementing this functionality), where the current senderand receiver provide this sub-protocol with the following inputs. The in-put provided by the sender consists of its initial input (as committed inthe �rst stage), its random-tape (as generated in the second stage), thedecommitment information provided to it in the two corresponding stages,and the sequence of all in-coming messages (of the original protocol asemulated so far). The input provided by the receiver consists of the com-mitments it holds for the sender's input and random-tape as well as thesequence of all messages that it has previously sent to the sender.In order to allow a modular presentation of the compiled protocols, we start byde�ning an adequate notion of reducibility (where here the oracle-aided protocolneeds to be secure in the malicious model rather than in the semi-honest one).We next turn to construct secure protocols for several basic functionalities, anduse the latter to construct secure protocols for the three main functionalitiesmentioned above. Finally, we present and analyze the actual compiler.7.4.2 Security reductions and a composition theoremAnalogously to Section 7.3.1, we now de�ne what we mean by saying that onefunctionality securely reduces to another functionality. We use the same def-inition of an oracle-aided protocol (i.e., De�nition 7.3.1), but require such aprotocol to be secure in the malicious model (rather than secure in the semi-honest model, as required in De�nition 7.3.2). Recall that the basic syntax ofan oracle-aided protocol allows sequential (but not parallel) oracle calls. Forsimplicity of our exposition, we require that the length of each oracle query canbe determined from the length of the initial input to the oracle-aided protocol.De�nition 7.4.2 (security reductions):

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 627� As in De�nition 7.3.2, an oracle-aided protocol is said to be using theoracle-functionality f , if the oracle answers are according to f . However,in accordance with the behavior of ideal-model adversaries, the oracle doesnot answer both parties concurrently, but rather answer �rst the a real-model adversary that requested this speci�c oracle call (in the oracle-aidedprotocol). When receiving its part of the oracle answer, the real-modeladversary that requested the oracle call instructs the oracle whether or notto respond to the other party.We consider only protocols in which the length of each oracle query is apolynomial-time computable function of the length of the initial input tothe protocol. Furthermore, the length of each query must be polynomiallyrelated to the length of the initial input.We consider executions of such a protocol by a pair of parties, with strate-gies represented by probabilistic polynomial-time algorithms A1 and A2,such that one of the parties follow the oracle-aided protocol. Such a pair iscalled admissible. Analogously to De�nition 7.2.5, the joint execution of anoracle-aided protocol � with oracle f under A = (A1; A2) in the real model(on input pair (x; y) and auxiliary input z), denoted realf�;A(z)(x; y), isde�ned as the output pair resulting of the interaction between A1(x; z) andA2(y; z), where oracle calls are answered using f . We stress that here thereal model corresponds to an execution of an oracle-aided protocol.� An oracle-aided protocol � using the oracle-functionality f is said to se-curely compute g if a condition analogous to the one in De�nition 7.2.6holds. That is, the e�ect of any admissible real-model strategies as abovecan be simulated by admissible strategies for the ideal model, where theideal model for computing g is exactly as in De�nition 7.2.4.More speci�cally, the oracle-aided protocol � (using oracle f) issaid to securely compute g (in the malicious model) if for every prob-abilistic polynomial-time pair A = (A1; A2) that is admissible for thereal model of the oracle-aided computation there exists a probabilisticpolynomial-time pair B = (B1; B2) that is admissible for the idealmodel (of De�nition 7.2.4) such thatfidealg;B(z)(x; y)gx;y;z c� frealf�;A(z)(x; y)gx;y;zwhere x; y; z 2 f0; 1g� such that jxj = jyj and jzj = poly(jxj).� An oracle-aided protocol is said to securely reduce g to f , if it securelycomputes g when using the oracle-functionality f . In such a case we saythat g is securely reducible to f ,We are now ready to state a composition theorem for the malicious model.Theorem 7.4.3 (Composition Theorem for the malicious model): Suppose thatg is securely reducible to f and that there exists a protocol for securely computingf . Then there exists a protocol for securely computing g.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

628 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSRecall that the syntax of oracle-aided protocols disallows concurrent oracle calls,and thus Theorem 7.4.3 is actually a sequential composition theorem. As inthe semi-honest case, the Composition Theorem can be generalized to yieldtransitivity of secure-reductions; that is, if g is securely reducible to f and f issecurely reducible to e then g is securely reducible to e (see Exercise 13).As hinted in Section 7.3.1, the proof of Theorem 7.4.3 is signi�cantly morecomplex than the proof of Theorem 7.3.3. This does not refer to the constructionof the resulting protocol, but rather to establishing its security.Proof Sketch: Analogously to the proof of Theorem 7.3.3, we are given anoracle-aided protocol, denoted �gjf , that securely reduces g to f , and an ordinaryprotocol �f that securely computes f . Again, we construct a protocol � forcomputing g in the natural manner; that is, starting with �gjf , we replace eachinvocation of the oracle (i.e., of f) by an execution of the protocol �f .Clearly, � computes g, and we need to show that � securely computes g.Speci�cally, we should present a transformation of real-model adversaries for �into ideal-model adversaries for g. We have at our disposal two transformationsof real adversaries for �gjf and for �f into corresponding ideal adversaries for gand f , respectively. So the �rst thing we should do is derive, from the real-modeladversaries of �, real-model adversaries for �gjf and for �f .We assume, without loss of generality, that all real-model adversaries outputtheir view of the execution. (Recall that any other output can be e�cientlycomputed from the view, and that any adversary can be easily modi�ed tooutput its view.)Let A = (A1; A2) be an admissible pair of real-model strategies of �. We�rst derive from it a pair of strategies A0 = (A01; A02) that represent the behaviorof A during (each of) the invocations of �f . Since the honest Ai just behavesaccording to �, it follows that the induced A0i just behaves according to �f ,which means that A0i is honest. Thus, we focus on the other (i.e., dishonest)Ai. In this case, the derived A0i is a real-model adversary of �f that gets asauxiliary input the history of the execution of � up to the current invocationof �f . Formally, A0i takes two inputs, one representing (as usual) the historyof the current execution of �f , and the other (i.e., an auxiliary one) being thehistory of the execution of � up to the current invocation of �f . When A0icompletes (or aborts) the current execution of �f , it outputs its view of thatexecution. Loosely speaking, we derive the corresponding ideal-model adversaryfor f , denoted B0 = (B01; B02), by employing the guaranteed transformation. Afew technical di�culties arise and are resolved as follows:� Party i (i.e., A0i) is not necessarily the party that plays the ith party in�f (i.e., Party 1 is not necessarily the party in �gjf that requests thisparticular oracle call to f). Furthermore, the identity of the party (in�f) played by A0i is not �xed, but is rather determined by the history ofthe execution of � (which is given to A0i as auxiliary input). In contrast,our de�nitions refer to adversaries that play a predetermined party. Thistechnical discrepancy can be overcome by considering two versions of A0i,

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 629denoted A0i;1 and A0i;2, such that A0i;j in used (instead of A0i) in case Party iis the party that plays the jth party in �f . Indeed, A0i;j is always used toplays the jth party in �f .� A minor problem is that Ai may have its own auxiliary input, in which casethe resulting A0i will have two auxiliary inputs (i.e., the �rst identical to theone of Ai, and the second representing a partial execution transcript of �).Clearly, these two auxiliary inputs can be combined into a single auxiliaryinput. (This fact hold generically, but more so in this speci�c setting inwhich it is anyhow natural to incorporate the inputs to an adversary in itsview of the execution transcript.)� The last problem is that it is not clear what is the \real input" given to theadversary A0i towards its current execution of �f . However, this problem(which is more confusing than real) has little impact on our argument,because what matters is the actual actions of A0i during the current ex-ecution of �f , and these are determined based on its (actual) auxiliaryinput (which represent the history of the entire execution of �). Still, the\real inputs" for the executions of �f have to be de�ned so that they canbe passed to the ideal-model adversary that we derive from A0i. We mayalmost set these \real inputs" arbitrarily, except that (by our conventionsregarding functionalities) we must set them to strings of correct length(i.e., equal to the length of the other party's f -input). Here we use thehypothesis that this length can be determined from the length of the inputto � itself.25Thus, we have obtained an (admissible) ideal-adversary pair B0 = (B01; B02)corresponding to f such thatfidealf;B0(z0)(x0; y0)gx0;y0;z0 c� freal�f ;A0(z0)(x0; y0)gx0;y0;z0 (7.21)We comment that when applying Eq. (7.21), we set the input of the honest partyto equal the value on which the subprotocol (or functionality) was invoked, andset the auxiliary input to equal the current execution transcript of the high-level protocol (as seen by the adversary). (As explained above, the settingof the primary input to the dishonest party is immaterial, because the latterdetermines its actions according to its auxiliary input.)Our next step is to derive from A = (A1; A2) a pair of strategies A00 =(A001 ; A002) that represent the behavior of A during the �gjf -part of �. Again,the honest Ai induces a corresponding A00i that just behaves according to �gjf .25 We comment that when using the alternative conventions discussed at the end of Sec-tion 7.2.1.1, we may waive the requirement that the query length be determined by the inputlength. Instead, we postulate that all oracle calls made by the oracle-aided program use thesame security parameter as the one with which the program is invoked. On the other hand,when trying to extend the composition theorem to partial functionalities (or when removingthe \length determination" hypothesis), we run into trouble because we need to determinesome f-input that �ts the unknown f-input of the other party. (This problem can be resolvedby introducing adequate interface to oracle calls.)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

630 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSTurning to the dishonest Ai, we derive A00i by replacing the (real) actions of A0ithat take place in Ai by simulated actions of the ideal-model B0i. That is, theadversary A00i runs machine Ai locally, while interacting with the actual otherparty of �gjf , obtaining the messages that Ai would have sent in a real executionof �, and feeding Ai with messages that it expects to receive. The handling ofAi's messages depend on whether they belong to the �gjf -part or to one of theinvocations of �f . The key point is the handling of the latter messages.Handling messages of �gjf : These messages are forwarded to/from the otherparty without change. That is, A00i uses Ai in order to determine the nextmessage to be sent, and does so by feeding Ai with the history of theexecution so far (which contains �gjf -part messages that A00i has receivedbefore as well as the �f -parts that it has generated by itself). In particular,if Ai aborts then so does A00i .Handling messages of �f : Upon entering a new invocation of �f , the adversaryA00i sets hi to record the history of the execution so far. Now, rather thanexecuting �f using A0i(hi) (as Ai would have done), the adversary A00iinvokesB0i(hi), whereB0i is the ideal-model adversary for f (derived above).Recall that B0i sends no messages and makes a single oracle query (which itviews as sending a message to its imaginary trusted party). The real-modeladversary A00i (for the oracle-aided protocol �gjf) forwards this query toits own oracle (i.e., f), and feeds B0i with the answer. At some point B0iterminates, and A00i uses its output to update the simulated history of theexecution of �. In particular, oracle-stopping events caused by B0i(hi) (incase Party i requested this speci�c oracle call) and ?-answers of the oracle(in the other case) are handled in the straightforward manner.On stopping the oracle and ?-answers: Suppose �rst that Party i hasrequested this speci�c oracle call. In this case, after receiving theoracle answer (which it views as the answer of its trusted party), theideal-model adversary B0i may stop its trusted party. If this happensthen machine A00i instructs its own oracle (i.e., f) not to respond tothe other party. Next, suppose that Party i is the party respondingto this speci�c oracle call (rather than requesting it). In this case, itmay happen that the oracle is stopped by the other party (i.e., theoracle is not allowed to answer Party i). When noti�ed of this event(i.e., receiving a ?-answer from its oracle), machine A00i feeds ? asanswer to B0i.This completes the handling of the current invocation of �f .When Ai halts with some output, A00i halts with the same output. Note thatA00 = (A001 ; A002) is admissible as a real-model adversary for the oracle-aided pro-tocol �gjf (which computes g with oracle to f). Thus, we can derive fromA00 a corresponding ideal-model adversary for g, denoted B00 = (B001 ; B002), byemploying the second guaranteed transformation, such thatfidealg;B00(z)(x; y)gx;y;z c� frealf�gjf ;A00(z)(x; y)gx;y;z (7.22)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 631Thus, given a real-model adversary A for �, we have derived an ideal-modeladversary B def= B00 for g. It is left to show that indeed the following holdsfidealg;B(z)(x; y)gx;y;z c� freal�;A(z)(x; y)gx;y;z (7.23)Note that the l.h.s of Eq. (7.23) equals the l.h.s of Eq. (7.22), so it su�ces toshow that their corresponding r.h.s are computationally indistinguishable. Butreal�;A(z)(x; y) di�ers from realf�gjf ;A00(z)(x; y) only in that the �f invoca-tions in the former are replaced in the latter by ideal calls to f . However, byEq. (7.21), each �f invocation is computationally indistinguishable from an idealcall to f . Using a hybrid argument (corresponding to a gradual substitution of�f invocations by ideal calls to f), one can show that frealf�gjf ;A00(x; y)gx;yand freal�;A(x; y)gx;y are computationally indistinguishable.26 This estab-lishes Eq. (7.23), and the theorem follows.Security reduction of general functionalities to deterministic ones.The following reduction will not be used in our compiler, because the com-piler refers to protocols (rather to functionalities) and we have already obtainedprotocols for privately computing general functionalities (by privately-reducingthem to deterministic ones). Still, we consider it of interest to state that thereduction presented in Proposition 7.3.4 is in fact secure in the malicious model.Proposition 7.4.4 (securely reducing a randomized functionality to a deter-ministic one): Let g be a randomized functionality, f be as de�ned in Eq. (7.18),and � be the oracle-aided protocol for g using the oracle f as presented in Propo-sition 7.3.4. Then � securely computes g.Proof Sketch: Suppose, without loss of generality, that Party 1 is malicious,and denote by (x01; r01) the query it makes to f . Denoting by xi the initial in-put of Party i (in �), it follows that the oracle answer is f((x01; r01); (x2; r2)),where r2 is uniformly distributed (because Party 2 is honest). Recalling thatf((x01; r01); (x2; r2)) = g(r01 � r2; (x01; x2)), it follows that the oracle answer isg(x01; x2), and by the de�nition of � the latter is all that the party gets. Thisis easily simulated by a corresponding ideal-model adversary, which sets x01 ac-cording to the real-model adversary, and makes the oracle call x01 (to g).Remark 7.4.5 (reductions to a set of functionalities): We extend thenotion of security reductions to account for protocols that use several oraclesrather than one. Speci�cally, g is securely reducible to a set of functionalitiesF = ff1; :::; ftg if there exists an oracle-aided protocol that securely computesg when given oracles f1; :::; ft. Theorem 7.4.3 also extends to assert that if g is26 Here we use the hypothesis that the query lengths are polynomially-related to the lengthof the input. The issue is that in Eq. (7.21), computational indistinguishability is with respectto the length of the queries (to f), whereas we need computational indistinguishability withrespect to the length of the initial inputs.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

632 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSsecurely reducible to F , and each functionality in F can be securely computedthen so can g. We comment that the entire remark is a matter of semantics,because one can \pack" the set F in one functionality f (e.g., f((i; x); (i; y)) def=fi(x; y)).7.4.3 The compiler { functionalities in useAs stated in Section 7.4.1, the protocols produced by our compiler make exten-sive use of protocols that securely compute three functionalities that are the coreof the three corresponding phases of the compiled protocols. In the current sec-tion, we explicitly de�ne these functionalities and present protocols for securelycomputing them.We start by considering three natural functionalities that are related to thefunctionalities used by the compiler. Speci�cally, we �rst consider the coin-tossing functionality (see Section 7.4.3.1), a restricted notion of the authenticated-computation functionality (Section 7.4.3.2), and an \unauthenticated-computationfunctionality" (called image transmission in Section 7.4.3.3). Next, using thesethree functionalities, we present secure protocols for a general notion of authenticated-computation functionality (see Section 7.4.3.4), for an augmented notion ofcoin tossing (Section 7.4.3.5), and for the input-commitment functionality (Sec-tion 7.4.3.6). The latter three functionalities will be used directly in the compiledprotocols (see Figure 7.1, where solid arrows indicate direct and essential use).We comment that although the material in Section 7.4.3.2 is not used directlyin the rest of this work, it is instructive to the rest of the current section.
ZK proofs

THE COMPILED PROTOCOL

O
R

D
E

R
 O

F
 P

R
E

S
E

N
T

A
T

IO
N

Commitment
schemes ZK POKs

AUTH. C.

AUG.
COINCOMMIT

INPUT

COIN
TOSSING

TOOLS

2

1

3

4
5

6

restricted

AUTH.
Comput.

IMAGE
TRANS.

Figure 7.1: The functionalities used in the compiled protocol.We comment that it is easy to present private protocol (i.e., secure in thesemi-honest model) for computing all the abovementioned functionalities (seeExercise 11). Our aim, however, is to present (for later use in the compiler)protocols for securely computing these functionalities in the malicious model.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 633Basic tools and conventions regarding them. Let us recall some factsand notations regarding tools that we will use.� Commitment schemes (as de�ned in De�nition 4.4.1). For sake of sim-plicity, we will use a non-interactive commitment scheme (as in Construc-tion 4.4.2). We assume, for simplicity, that on security parameter n thecommitment scheme utilizes exactly n random bits. We denote by Cr(b)the commitment to the bit b using (security parameter n and) randomnessr 2 f0; 1gn, and by C(b) the value of Cr(b) for a uniformly distributedr 2 f0; 1gn (where n is understood from the context).� Zero-knowledge proofs of NP-assertions. We rely on the fact (cf. Theo-rem 4.4.11) that there exists such proof systems in which the prover strat-egy can be implemented in probabilistic polynomial-time, when given anNP-witness as auxiliary input. We stress that by the above we mean proofsystems with negligible soundness error. Furthermore, we rely on the factthat these proof systems have perfect completeness (i.e., the veri�er ac-cepts a valid statement with probability 1).� Zero-knowledge proofs of knowledge of NP-witnesses. We will use the def-inition of a strong proof of knowledge (see De�nition 4.7.13). We againrely on the analogous fact regarding the complexity of adequate proverstrategies: That is, strong proofs-of-knowledge that are zero-knowledgeexists for any NP-relation, and furthermore, the prover strategy can beimplemented in probabilistic polynomial-time, when given an NP-witnessas auxiliary input (see Construction 4.7.14).All these tools are known to exist assuming the existence of one-way 1-1 func-tions. In fact, the 1-1 requirement can be avoided at the cost of using an inter-active commitment scheme.A note on the adversaries being considered. For sake of simplicity, inall the proofs of security presented in this section, we only refer to malicious(real-model) adversaries with no auxiliary input. Furthermore, we will assumethat these malicious (real-model) adversaries are deterministic. As discussed inSection 7.2.3.1 (see text following De�nition 7.2.5), the treatment of randomizedadversaries (with auxiliary inputs) can be reduced to the treatment of determin-istic adversaries with auxiliary inputs, so the issue here is really the fact that weignore auxiliary inputs. However, in all cases, the extension of our treatmentto malicious adversaries with auxiliary input is straightforward. Speci�cally,in all cases, we construct ideal-model adversaries by using the real-model ad-versaries as subroutines. This black-box usage easily supports the extensionto adversaries with auxiliary inputs, because all that is needed is to pass theauxiliary-input (given to the ideal-model adversary) to the real-model adversary(which is invoked as a subroutine).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

634 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS7.4.3.1 Coin TossingWe initiate our assembly of functionalities that are useful for the compiler bypresenting and implementing a very natural functionality which is of independentinterest. Speci�cally, we refer to the coin tossing functionality (1n; 1n) 7! (b; b),where b is uniformly distributed in f0; 1g. This functionality allows a pair ofdistrustful parties to agree on a common random value.27De�nition 7.4.6 (coin-tossing into the well, basic version): A coin-tossing intothe well protocol is a two-party protocol for securely computing (in the maliciousmodel) the randomized functionality (1n; 1n) 7! (b; b), where b is uniformly dis-tributed in f0; 1g.That is, in spite of malicious behavior by any one party, a non-aborting executionof a coin-tossing-into-the-well protocol ends with both parties holding the sameuniformly distributed bit b. Recall that our de�nition of security allows (b;?)to appear as output in case Party 1 aborts. (It would have been impossibleto securely implement this functionality if the de�nition had not allowed thisslackness; see Section 7.7.1.1.) The coin-tossing functionality will not be useddirectly in the compiled protocols, but it will be used to implement an augmentednotion of coin tossing (see Section 7.4.3.5), which in turn will be used directlyin these protocols.Construction 7.4.7 (a coin-tossing-into-the-well protocol): For every r, letCr : f0; 1g ! f0; 1g�.Inputs: Both parties get security parameter 1n.Step C1: Party 1 uniformly selects � 2 f0; 1g and s 2 f0; 1gn, and sends c def=Cs(�) to Party 2.To simplify the exposition, we adopt the convention by which failure ofParty 1 to send a message (i.e., aborting) is interpreted as an arbitrary bitstring.Step C2: Party 2 uniformly selects �0 2 f0; 1g, and sends �0 to Party 1.Similarly, any possible response of Party 2, including abort, will be inter-preted by Party 1 as a bit.28Step C3: Party 1 outputs the value � � �0, and sends (�; s) to Party 2.Step C4: Party 2 checks whether or not c = Cs(�). It outputs ���0 if c = Cs(�)and halts with output ? otherwise.In contrast to Steps C1{C2, here any illegal answer is interpreted as abort.27 Actually, in order to conform with the convention that the functionality has to be de�nedfor any input pair, we may consider the formulation (x; y) 7! (b; b).28 These two conventions, prevent the parties from aborting the execution before Step C3.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 635Outputs: Party 1 always outputs b def= � � �0, whereas Party 2 either outputs bor ?.Intuitively, Steps C1{C3 may be viewed as \tossing a coin into the well". At thispoint the value of the coin is determined (essentially as a random value), butonly one party knows (\can see") this value. Clearly, if both parties are honestthen they both output the same uniformly chosen bit, recovered in Steps C3and C4, respectively.Proposition 7.4.8 Suppose that C is a bit commitment scheme. Then, Con-struction 7.4.7 constitutes a coin-tossing-into-the-well protocol.Proof Sketch: We need to transform any admissible pair, (A1; A2), for thereal model into a corresponding pair, (B1; B2), for the ideal model. We treatseparately each of the two cases corresponding to the identity of the honest party.Recall that we may assume for simplicity that the adversary is deterministic (seediscussion above). Also, for simplicity, we omit the input 1n in some places. Thefollowing schematic depiction of the information
ow in Construction 7.4.7 maybe useful towards the following analysis:Party 1 Party 2C1 selects (�; s)c Cs(�) �! c �!C2 selects �0 2 f0; 1g � �0 �C3 b � � �0 �! (�; s) �!output b b or ?(depending on whether c = Cs(�))We start with the case that the �rst party is honest. In this case B1 isdetermined (by the protocol), and we transform the real-model adversary A2into an ideal-model adversary B2. Machine B2 will run machine A2 locally,obtaining the single message that A2 would have sent in a real execution ofthe protocol (i.e., �0 2 f0; 1g) and feeding A2 with messages that it expects toreceive. Recall that A2 expects to see the messages Cs(�) and (�; s) (and thatB2 gets input 1n).1. B2 send 1n to the trusted party and obtain an answer (bit), denoted b,which is uniformly distributed. (Recall that b is also handed to Party 1.)2. B2 tries to generate an execution view (of A2) ending with output b. Thisis done by repeating the following steps at most n times:(a) B2 uniformly select � 2 f0; 1g and s 2 f0; 1gn, and feeds A2 withc def= Cs(�). Recall that A2 always responds with a bit, denoted �0,which depends on c (i.e., �0 A2(c)).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

636 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS(b) If � � �0 = b then B2 feed A2 with the execution view (c; (�; s)),and outputs whatever A2 does. Otherwise, it continues to the nextiteration.In case all n iterations were completed unsuccessfully (i.e., without out-put), B2 outputs a special failure symbol.We need to show that for the coin-tossing functionality, denoted f , and forConstruction 7.4.7, denoted �, it holds thatfidealf;B(1n; 1n)gn2N c� freal�;A(1n; 1n)gn2NIn fact, we will show that the two ensembles are statistically indistinguishable.We start by showing that the probability that B2 outputs failure is exponen-tially small. This is shown by proving that for every b 2 f0; 1g, each iteration ofStep 2 succeeds with probability approximately 1=2. Such an iteration succeeds ifand only if ���0 = b; that is, if A2(Cs(�)) = b��, where (�; s) 2 f0; 1g�f0; 1gnis uniformly chosen. We havePr�;s[A2(Cs(�)) = b� �]= 12 � Pr[A2(C(0)) = b] + 12 � Pr[A2(C(1)) = b� 1]= 12 + 12 � (Pr[A2(C(0)) = b]� Pr[A2(C(1)) = b])Using the hypothesis that C is a commitment scheme, the second term aboveis a negligible function in n, and so our claim regarding the probability thatB2 outputs failure follows. Next, we show that conditioned on B2 not out-putting failure, the distribution idealf;B(1n; 1n) is statistically indistinguish-able from the distribution real�;A(1n; 1n). Both distributions have the form(b ; A2(Cs(�); (�; s))), with b = ��A2(Cs(�)), and thus both are determined bythe (�; s)-pairs. In real�;A(1n; 1n), all (�; s)-pairs are equally likely (i.e., eachappears with probability 2�(n+1)); whereas (as proven below) in idealf;B(1n; 1n)each pair (�; s) appears with probability12 � 1jSA2(Cs(�))�� j (7.24)where Sb def= f(x; y) 2 f0; 1g � f0; 1gn : A2(Cy(x)) � x = bg is the set of pairsthat pass the condition in Step 2b (w.r.t the value b obtained in Step 1). Tojustify Eq. (7.24), observe that the pair (�; s) appears as output if and onlyif it is selected in Step 2a and the trusted party answers with A2(Cs(�)) � �,where the latter event occurs with probability 1=2. Furthermore, the successfulpairs, selected in Step 2a and passing the condition in Step 2b, are uniformlydistributed in SA2(Cs(�))�� , which justi�es Eq. (7.24). We next show that jSbj �2n, for every b 2 f0; 1g. Observe that (by the above), for every �xed b 2 f0; 1gand uniformly distributed (�; s) 2 f0; 1g � f0; 1gn, the event (�; s) 2 Sb (i.e.,

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 637A2(Cs(�))� b = �) occurs with probability that is negligibly close to 1=2. Thus,jSA2(Cs(�))�� j = (1��(n)) � 12 � 2n+1, where � is a negligible function. It followsthat the value of Eq. (7.24) is (1� �(n)) � 2�(n+1), and so real�;A(1n; 1n) andidealf;B(1n; 1n) are statistically indistinguishable.We now turn to the case where the second party is honest. In this case B2 isdetermined, and we transform A1 into B1 (for the ideal model). On input 1n,machine B1 runs machine A1 locally, obtaining the messages that A1 would havesent in a real execution of the protocol and feeding A1 with the single message(i.e., �0 2 f0; 1g) that it expects to receive.1. B1 invokes A1 (on input 1n). Recall that by our conventions, A1 alwayssends a message in Step C1. Let us denote this messages (which is sup-posedly a commitment using C) by c. Recall that c may be in the rangeof C(�) for at most one � 2 f0; 1g.2. Machine B1 tries to obtain the answers of A1 (in Step C3) to both possiblemessages that could be sent in Step C2.(a) B1 feeds A1 with the (Step C2) message 0 and records the answerwhich is either abort or (�0; s0). The case in which c 6= Cs0(�0) istreated as if A1 has aborted.(b) Rewinding A1 to the beginning of Step C2, machine B1 feeds A1 withthe message 1 and records the answer which is either abort or (�1; s1).(Again, the case in which c 6= Cs1 (�1) is treated as abort.)If A1 aborts in both cases, machine B1 aborts with output A1(1n; �0), fora uniformly chosen �0 2 f0; 1g (and does so without invoking the trustedparty).29 Otherwise, B1 proceed as follows, distinguishing two cases.Case 1: A1 answers properly (in the above experiment) for a single 0-1value, denoted �0. In this case, we de�ne � def= ��0 .Case 2: A1 answers properly for both values. In this case the values �0and �1 (de�ned in Step 1) must be identical, because Cs0(�0) = c =Cs1(�1) whereas the ranges of C(0) and C(1) are disjoint. In thiscase, we de�ne � def= �0 (= �1).3. Machine B1 sends 1n to the trusted party, which responses with a uniformlyselected value b 2 f0; 1g. Recall that the trusted party has not respondedto Party 2 yet, and that B1 still has the option of stopping the trustedparty before it responds to Party 2.29 We comment that whenever B1 is determined to abort, it needs not invoke the trustedparty at all, because it (i.e., B1) can simulate the trusted party's answer by itself. The onlyreason to invoke the trusted party is to provide Party 2 with an answer that is related to theoutput of B1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

638 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS4. In Case 1, machine B1 stops the trusted party if b 6= � � �0 (where �0is as de�ned in Case 1), and otherwise allows it to send b to Party 2. InCase 2, machine B1 sets �0 = b� �, and allows the trusted party to sendb to Party 2. Next, in both cases, B1 feeds �0 to A1, which responds withthe Step C3 message (�; s�0). Note that indeed � � �0 = b holds (in bothcases).5. Finally, B1 feed A1 with the execution view, (1n; �0), and outputs whateverA1 does.We now show that idealf;B(1n; 1n) and real�;A(1n; 1n) are actually identicallydistributed. Consider �rst the case where A1 (and so B1) never aborts. In thiscase, we have idealf;B(1n; 1n) = (A1(1n; � � b) ; b)real�;A(1n; 1n) = (A1(1n; �0) ; � � �0)where �0 and b are uniformly distributed in f0; 1g, and � is determined byc = A1(1n) (i.e., � = C�1(c)). Observe that �0 is distributed uniformly inde-pendently of �, and so � � �0 is uniformly distributed over f0; 1g. We concludethat (A1(1n; � � b) ; b) and (A1(1n; � � (� � �0)) ; � � �0) are identically dis-tributed.Next, consider the case that B1 always aborts (due to improper A1 behaviorin Step C3). In this case, B1 aborts before invoking the trusted party, and soboth ensembles are identical (i.e., both equal (A1(1n; �0);?) for a random �0).Since A1 is deterministic (see above), the only case left to consider is where A1responses properly (in Step C3) to a single value, denoted �0. In this case, thereal execution of � is completed only if Party 2 sends �0 as its Step C2 message(which happens with probability 1=2), and is aborted otherwise. Similarly, inthe ideal model, the execution is completed (without B1 aborting) if the trustedparty answers with b = � � �0 (which happens with probability 1=2).30 In bothmodels, the complete joint execution equals (A1(1n; �0) ; � � �0), whereas theaborted joint execution equals (A1(1n; �0 � 1) ; ?).7.4.3.2 Authenticated Computation (Partial Version)We continue our assembly of functionalities that are useful for the compilerby presenting and implementing another natural functionality which is of inde-pendent interest. Speci�cally, we refer to the archetypical application of zero-knowledge proofs (cf. Section 4.4.3), which is to solve the following problem. Fortwo predetermined (polynomial-time computable) functions, f and h, a partyholding a secret � should send the correct value of f(�) to the other party, whichholds h(�), while not revealing anything else to the other party. That is, we aretalking about securely computing the functionality (�; h(�)) 7! (�; f(�)), where30 Recall that here � and �0 are determined by the Step C1 message.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 639h is 1-1 (or else, as well shall see, an ordinary zero-knowledge proof will notsu�ce).Note that the functionality described above has a partial domain; that is,it is not de�ned over all pairs of inputs (of equal length), but rather only forpairs of the form (�; h(�)). This restriction (i.e., de�nability over a partial do-main) coincides with the standard archetypical application of zero-knowledgeproofs, and is easier to implement. However, this restriction does not su�ce fora modular exposition of the compiled protocols (because composition of partialfunctionalities is more complex than the composition result captured by The-orem 7.4.3). Indeed, in Section 7.4.3.4 we waive the restriction (to the partialdomain) and consider an extension of the authenticated computation function-ality to arbitrary pairs of (equal length) strings.De�nition 7.4.9 (authenticated computation, partial version): Let f : f0; 1g��f0; 1g� ! f0; 1g� and h : f0; 1g� ! f0; 1g� be polynomial-time computable. Theh-authenticated f -computation functionality is de�ned by(�; h(�)) 7! (�; f(�)) (7.25)We assume, for simplicity, that h is length preserving. Otherwise, the de�ni-tion may be modi�ed to consider the functionality ((�; 1jh(�)j) ; (h(�); 1j�j)) 7!(�; f(�)). To facilitate the implementation, we assume that the function h is one-to-one, as will be the case in our applications. This allows us to use (ordinary)zero-knowledge proofs, rather than strong (zero-knowledge) proofs-of-knowledge.The issue is further discussed in Section 7.4.3.3.The functionality of Eq. (7.25) is implemented by having Party 1 send f(�)to Party 2, and then prove in zero-knowledge the correctness of the value sent(with respect to the common input h(�)). Note that this statement is of theNP-type and that Party 1 has the NP-witness. Actually, the following protocolis the archetypical application of zero-knowledge proof systems.Construction 7.4.10 (authenticated computation protocol, partial version):Let L be the set of pairs satisfying Eq. (7.26), and (P; V) be an interactiveproof for L. Furthermore, suppose that P can be implemented in probabilisticpolynomial-time when given an adequate auxiliary-input (i.e., an NP-witness formembership of the common input in L).Inputs: Party 1 gets input � 2 f0; 1g�, and Party 2 gets input u = h(�).Step C1: Party 1 sends v def= f(�) to Party 2.Step C2: The parties invoke the proof system (P; V) such that Party 1 playsthe prover and Party 2 plays the veri�er. The common input to the proofsystem is (u; v), the prover gets auxiliary inputs �, and its objective is toprove that 9x s.t. (u = h(x)) ^ (v = f(x)) (7.26)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

640 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS(Each party locally determines the common input (u; v) according to itsown view of the execution so far.)31 In case the veri�er rejects the proof,Party 2 halts with output ? (otherwise the output will be v).(Any possible response { including abort { of Party 2 during the execu-tion of this step, will be interpreted by Party 1 as a canonical legitimatemessage.)Outputs: In case Party 2 has not halted with output ? (indicating improperbehavior of Party 1), Party 2 sets its local output to v. (Party 1 has nooutput (or, alternatively, always outputs �).)Observe that the speci�ed strategies are indeed implementable in polynomial-time. In particular, in Step C2, Party 1 supplies the prover subroutine withthe NP-witness � such that Eq. (7.26) is satis�ed with x = �. Also, using theperfect completeness condition of the proof system it follows that if both partiesare honest then neither aborts and the output is as required.Proposition 7.4.11 Suppose that the function h is one-to-one and that (P; V)is a zero-knowledge interactive proof (with negligible soundness error) for L.Then, Construction 7.4.10 securely computes (in the malicious model) the h-authenticated f-computation functionality of Eq. (7.25).We stress that Proposition 7.4.11 refers to the security of a protocol for com-puting a partial functionality, as discussed in Remark 7.2.7.Proof Sketch: Again, we need to transform any admissible pair, (A1; A2), forthe real model into a corresponding pair, (B1; B2), for the ideal model. We treatseparately each of the two cases, corresponding to the identity of the honestparty.We start with the case that the �rst party is honest. In this case B1 isdetermined, and we transform (the real-model adversary) A2 into (an ideal-model adversary) B2, which uses A2 as a subroutine. Recall that B2 gets inputu = h(�).1. B2 send u to the trusted party and obtain the value v, which equals f(�)for � handed by (the honest) Party 1. Thus, indeed (u; v) 2 L. (Recallthat Party 1 always obtains � from the trusted party.)2. B2 invokes the simulator guaranteed for the zero-knowledge proof system(P; V), on input (u; v), using (the residual) A2 as a possible maliciousveri�er (which may indeed act as if the common input is di�erent). Notethat we are simulating the actions of the prescribed prover P , which inthe real protocol is played by the honest Party 1. Denote the obtainedsimulation transcript by S = S(u; v).31 In particular, Party 1 sets (u; v) = (h(�); f(�)), whereas Party 2 sets u according to itsown input and v according to the message received in Step C1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 6413. Finally, B2 feed A2 with the alleged execution view (v; S), and outputswhatever A2 does.We need to show that for the functionality, denoted F , of Eq. (7.25) and forConstruction 7.4.10, denoted �, it holds thatfidealF;B(�; h(�))g�2f0;1g� c� freal�;A(�; h(�))g�2f0;1g� (7.27)Let R(�) denote the veri�er view of the real interaction with P on commoninput (h(�); f(�)) and prover's auxiliary input �, where the veri�er is played byA2. Then, real�;A(�; h(�)) = (� ; A2(h(�); f(�); R(�)))idealF;B(�; h(�)) = (� ; A2(h(�); f(�); S(h(�); f(�))))However, by the standard formulation of zero-knowledge, it follows that fR(�)g�2f0;1g�and fS(h(�); f(�))g�2f0;1g� are computationally indistinguishable (also whengiven � as auxiliary input), and so Eq. (7.27) follows.We now turn to the case where the second party is honest. In this case B2is determined, and we transform (real-model) A1 into (ideal-model) B1, whichuses A1 as a subroutine. Recall that B1 gets input � 2 f0; 1gn.1. B1 invokes A1 on input �. As (implicit) in the protocol, any action ofA1 in Step C1 (including abort) is interpreted as sending a string. Let usdenote by v the message sent by A1 (i.e., v = A1(�)).2. Machine B1 checks whether or not v supplied in Step 1 satis�es Eq. (7.26)with respect to u = h(�), where � is as above (i.e., the input to B1).Actually, B1 checks whether or not a honest veri�er would have been con-vinced by (the residual) A1. Speci�cally, B1 emulates the execution ofStep C2 (i.e., the execution of the proof system (P; V) on common input(u; v)), while using the strategy A1 to determine the moves of the (possi-bly cheating) prover (and playing the honest veri�er in a straightforwardmanner).32Recall that this proof system has negligible soundness error, and so if(u; v) does not satisfy Eq. (7.26) this fact is detected with probability1 � �(n), where � is some negligible function. If the veri�er (played byB1 itself) rejects then machine B1 aborts (without invoking the trustedparty).33 Otherwise, we proceed assuming that (u; v) satis�es Eq. (7.26).32 In particular, if A1 aborts the execution of Step C2 then the honest veri�er will not beconvinced.33 Alternatively, machine B1 may invoke the trusted party but prevent it from answeringParty 2. The di�erence is immaterial, because Party 1 gets nothing from the trusted party.What matters is that (in either case) Party 2 will get an abort symbol (i.e., ?).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

642 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSNote that since h is 1-1 and Eq. (7.26) is satis�ed it must be the case thatv = f(h�1(u)) = f(�).343. Assuming that machine B1 has not aborted, it sends � to the trusted party,and allows the latter to respond to Party 2. (The trusted party's responsewill be f(�) = v.)4. Finally, B1 feed A1 with the execution view, which consists of the prover'sview of the emulation of Step C2 (produced in Step 2 above), and outputswhatever A1 does.We now show thatfidealF;B(�; h(�))g�2f0;1g� c� freal�;A(�; h(�))g�2f0;1g� (7.28)Actually, we will show that these two ensembles are statistically indistinguish-able, where the statistical di�erence is due to the case where the real adversaryA1 succeeds to convince the veri�er (played by the honest A2) that (u; v) satis�esEq. (7.26), and yet this claim is false. By soundness of the proof system, thisevent happens only with negligible probability. On the other hand, in case (u; v)satis�es Eq. (7.26), we show that idealF;B(�; h(�)) and real�;A(�; h(�)) areidentically distributed. Details follow. One key observation is that the emulationof the proof system (with prover A1(�)) performed in Step 2 by B1 is distributedidentically to the real execution of the proof system that takes place in Step C2of �.Fixing any �, recall that v def= A1(�) need not equal f(�), and that u def= h(�)uniquely determines �. We denote by p the probability that A1(�) (playing apossibly cheating prover) convinces the veri�er (played in Step C2 by Party 2)that (u; v) satis�es Eq. (7.26). (Since A1 is deterministic, v = A1(�) is �xed andthe probability is only taken over the moves of Party 2.) We consider two casescorresponding to the relation between p and the soundness error-bound function� associated with the proof system (P; V).351. Suppose p > �(n). In this case, by the soundness condition, it must be thecase that A1(�) = v = f(�), because in this case (u; v) satis�es Eq. (7.26)and so v = f(h�1(u)) = f(h�1(h(�))) = f(�). Thus, in both the real andthe ideal model, with probability p, the joint execution view is non-abortingand equals (A1(�; T); A1(�)) = (A1(�; T); f(�)), where T represents theprover's view of the execution of Step C2 (on common input (h(�); f(�)),where the prover is played by A1(�) and the veri�er is honest). On the34 We comment that even if h were not 1-1 but a strong proof-of-knowledge (rather than anordinary proof system) was used in Step C2 then one could have inferred that Party 1 knowsan �0 so that h(�0) = u and v = f(�0), whereas �0 does not necessarily equal �. Sending �0to the trusted party in the next step, we would have been �ne, as it would have (also) meantthat the trusted party's respond to Party 2 is v.35 We stress that an explicit error-bound can be associated with all standard zero-knowledgeproof systems, and that here we use a system for which � is negligible. Furthermore, we mayuse a proof system with error bound �(n) def= 2�n.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 643other hand, in both models, with probability 1� p, the joint execution isaborting and equal (A1(�; T);?), where T is as above (except that here itis a rejecting execution transcript). Thus, in this case, the distributions inEq. (7.28) are identical.We highlight the extensive use (above and below) of the fact that theemulation of the proof system (with prover A1(�)) that is performed inStep 2 by B1 is distributed identically to the real execution of the proofsystem that takes place in Step C2 of �.2. Suppose that p � �(n). Again, in both models, aborting executions areidentical and occur with probability 1� p. However, in this case, we haveno handle on the non-aborting executions in the ideal model (because itis no longer guaranteed that A1(�) = f(h�1(u)) in the real non-abortingexecution, whereas in the ideal Party 2 outputs f(h�1(u))). But we donot care, because (in this case) these non-aborting executions occur withnegligible probability (i.e., p � �(n)). Thus, in this case, the distributionensembles in Eq. (7.28) are statistically indistinguishable.The proposition follows.We comment that the above treatment can be extended to the case that h is arandomized process rather than a function (as long as the image of h uniquelydetermines its preimage). Details are omitted in view of of the fact that a muchmore general treatment will be provided in Section 7.4.3.47.4.3.3 Image TransmissionWe now consider the following functionality, called image transmission (or unau-thenticated computation): (�; 1j�j) 7! (�; f(�)) (7.29)where (as in Section 7.4.3.2) the function f is polynomial-time computable.36In contrast to Section 7.4.3.2, the value f(�) is not veri�able (with respect toa value h(�) that is known to the second party and uniquely determines �).In other words, the value output by Party 2 is only required to be an imageof f (corresponding to a preimage of given length). Thus, at �rst glance, onemay think that securely computing Eq. (7.29) should be easier than securelycomputing Eq. (7.25), especially in case f is onto (in which case any string isan f -image). This impression is wrong, because securely computing Eq. (7.29)means emulating an ideal model in which Party 1 knows the string it sends tothe trusted party. That is, in a secure protocol for Eq. (7.29), whenever Party 2outputs some image (of f), Party 1 must know a corresponding preimage (underf).36 Actually, in order to conform with the convention that the functionality has to be de�nedfor any input pair, we may consider the formulation (�; �) 7! (�; f(�)).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

644 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSComment: The same holds also with respect to Eq. (7.25). But there theknowledge of a preimage (of the output v under f) is guaranteed by thefact that security implies that the preimage of v under f must be consistentwith h(�), whereas the only such preimage is � itself, which in turn is theinitial input of Party 1 and thus known to it.Still proving knowledge of a preimage (and doing so in zero-knowledge) is whata zero-knowledge proof-of-knowledge is all about. Actually, in order to avoid ex-pected probabilistic polynomial-time adversaries, we use zero-knowledge strong-proof-of-knowledge (as de�ned and constructed in Section 4.7.6). We will showthat Construction 7.4.10 can be easily adapted to yield a secure implementationof Eq. (7.29). Speci�cally, all that is needed is to use (in Step C2) a zero-knowledge strong-proof-of-knowledge (rather than an ordinary zero-knowledgeproof), and set h to be a constant function.Proposition 7.4.12 Suppose that (P; V) is a zero-knowledge strong-proof-of-knowledge for the relation R def= f(v; w) : v = f(w)g, and let h be a constantfunction. Then, Construction 7.4.10 securely computes (in the malicious model)the functionality of Eq. (7.29).Proof Sketch: Recall that P is postulated to be implemented in probabilisticpolynomial-time when given an adequate auxiliary-input (i.e., a preimage un-der f of the common input). For clarity, we reproduce the modi�ed protocol,omitting all mention of the (constant) function h.Inputs: Party 1 gets input � 2 f0; 1g�, and Party 2 gets input 1j�j.Step C1: Party 1 sends v def= f(�) to Party 2.Step C2: Analogously to Construction 7.4.10, the parties invoke the zero-knowledgestrong-proof-of-knowledge (for R) such that Party 1 plays the prover andParty 2 plays the veri�er. The common input to the proof system is v, theprover gets � as auxiliary input and its objective is to prove that it knowsa w such that (v; w) 2 R (i.e., v = f(w)). In case the veri�er rejects theproof, Party 2 halts with output ? (otherwise the output will be v).Outputs: In case Party 2 did not output ?, it halts with output v. (Party 1 hasno output.)The analysis of this protocol, denoted �, follows the ideas underlying the proofof Proposition 7.4.11. The only signi�cant modi�cation is in the construction ofideal-model adversaries for Party 1.Let us �rst justify why the treatment of the case in which Party 1 is honestis exactly as in the proof of Proposition 7.4.11. In this case, we can use exactlythe same transformation of the real-model adversary A2 into an ideal-modeladversary B2, because what this transformation does is essentially invoke thesimulator associated with (the residual prover) A2 on input the string v = f(�)that it obtains from the trusted party. Furthermore, the adequateness of this

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 645transformation is established by only referring to the adequateness of the (zero-knowledge) simulator, which holds also here.We now turn to the case where the second party is honest. In this case B2is determined, and we transform (real-model) A1 into (ideal-model) B1, whichuses A1 as a subroutine. Recall that B1 gets input � 2 f0; 1gn.1. B1 invokes A1 on input �. As (implicit) in the protocol, any action ofA1 in Step C1 (including abort) is interpreted as sending a string. Let usdenote by v the message sent by A1 (i.e., v = A1(�)).2. Machine B1 tries to obtain the a preimage of v under f . Towards thisend, B1 uses the (strong) knowledge-extractor associated with the proofsystem of Step C2. Speci�cally, providing the strong knowledge-extractorwith oracle access to (the residual prover) A1(�), machine B1 tries toextract (from A1) a string w such that f(w) = v. In case the extractorsucceeds, B1 sets �0 def= w. Otherwise, B1 sets �0 def= ?.3. Machine B1 now emulates an execution of Step C2. Speci�cally, it letsA1(�) play the prover and emulates by itself the (honest) veri�er interact-ing with A1(�) (i.e., B1 behaves like A2).� In case the emulated veri�er rejects, machine B1 aborts (withoutinvoking the trusted party), and outputs whatever A1 does (when fedwith this emulated proof transcript).� Otherwise, if �0 6= ? then B1 sends �0 to the trusted party, and allowsit to respond to Party 2. (The response will be f(�0), which by Step 2must equal v.) In case �0 = ? this sub-step will fail.4. Finally, B1 feed A1 with the execution view, which consists of the prover'sview of the emulation of Step C2 (produced in Step 3 above), and outputswhatever A1 does.Denoting the functionality of Eq. (7.29) by F , we now show thatfidealF;B(�; 1j�j)g�2f0;1g� c� freal�;A(�; 1j�j)g�2f0;1g� (7.30)Actually, we will show that these two ensembles are statistically indistinguish-able, where the statistical di�erence is due to the case where the real-modeladversary A1 succeeds to convince the knowledge-veri�er (played by the honestA2) that it knows a preimage of v under f , and yet the knowledge-extractorfailed to �nd such a preimage. By de�nition of strong knowledge-veri�ers, suchan event may occur only with negligible probability. Loosely speaking, ignoringthe rare case in which extraction fails although the knowledge-veri�er (playedby A2) is convinced, it can be shown that the distributions idealf;B((�; r); 1n)and real�;A((�; r); 1n) are identical. Details follow.Fixing any �, recall that v def= A1(�) need not be an image of f (let alonethat it may not equal f(�)). We denote by p the probability that A1(�), playing

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

646 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSa possibly cheating prover, convinces the knowledge-veri�er (played in Step C2by Party 2) that it knows a preimage of v under f . We consider two casescorresponding to the relation between p and the error-bound function � referredto in De�nition 4.7.13.1. Suppose that p > �(n). In this case, by De�nition 4.7.13, with probabilityat least 1��(n), machine B1 has successfully extracted a preimage �0 (ofv under f). In the real model, except that with probability 1�p, the jointexecution ends up aborting. In the ideal model, a joint execution is abortingwith probability 1�p��(n) (actually, the probability is at least 1�p andat most 1�p+�(n)). Thus, in both models, with probability 1�p��(n) ajoint execution is aborting and equal (A1(�; T);?), where T represents theprover's view of an execution of Step C2 (on common input f(�), wherethe prover is played by A1(�) and the veri�er is honest). On the otherhand, in both models, with probability p � �(n), the joint execution isnon-aborting and equals (A1(�; T); A1(�)) = (A1(�; T); f(�)), where T isas above (except that here it is an accepting execution transcript).We highlight the extensive use (above and below) of the fact that theemulation of the proof system (with prover A1(�)) performed in Step 2 byB1 is distributed identically to the real execution of the proof system thattakes place in Step C2 of �.2. Suppose that p � �(n). Again, in the real model the abort probabilityis 1 � p, which in this case is negligibly close to 1. In the ideal modelwe are only guaranteed that aborting executions occur with probabilityat least 1� p, which su�ces for us (recalling that aborting executions areidentically distributed in both models, and noting that they occur withprobability at least 1� �(n) in both models).Thus, in both case, the distribution ensembles in Eq. (7.30) are statisticallyindistinguishable. The proposition follows.7.4.3.4 Authenticated Computation, RevisitedWe now generalize the image transmission functionality to treat the case thatParty 2 has some partial information of the input of Party 1. In the extreme case,the information available to Party 2 uniquely determines the input of Party 1(although obtaining the latter from the former may be infeasible). Thus, is asense, we revisit the authenticated computation functionality, which was consid-ered in Section 7.4.3.2. The important aspect of the current treatment is thatwe consider a functionality that is de�ned on all pairs of (equal length) strings,rather than a partial functionality (as treated in Section 7.4.3.2).De�nition 7.4.13 (authenticated computation, revisited): Let f : f0; 1g� �f0; 1g� ! f0; 1g� and h : f0; 1g� ! f0; 1g� be polynomial-time computable. The

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 647h-authenticated f -computation functionality is de�ned by(�; �) 7! � (� ; f(�)) if � = h(�)(� ; (h(�); f(�))) otherwise (7.31)In the intended applications of the h-authenticated f -computation functionality,Party 2 is supposed to input � = h(�), and so the �rst case in Eq. (7.31) holdsprovides that both parties are honest. Indeed, if Party 2 is honest then eitherit gets the correct value of f(�) (i.e., which �ts h(�) known to it) or it getsan indication that Party 1 is cheating. The speci�c form of the second casewas designed to facilitate the implementation, while not causing any harm.37What matters is that the outputs in the two cases are di�erent, and so Party 2can tell whether or not it received the correct value of f(�). We stress that inthe intended applications, Party 2 knows h(�) and is supposed to obtain f(�),and so it causes no harm to provide Party 2 with both of them (even in case itmisbehaves and enters an input other than h(�)).We assume again, for simplicity, that h is length preserving (which againcan be \enforced" by considering �0 = (�; 1jh(�)j) and h0(�0) = (h(�); 1j�j)).However, we make no further assumptions concerning the function h, and thusEq. (7.29) is essentially a special case (obtained by setting h(�) = 1j�j).The functionality of Eq. (7.31) is implemented by having Party 1 use theimage transmission functionality to send the pair (h(�; f(�)) to Party 2, whichcompares the �rst element to its own input and acts accordingly. That is, weuse the following (oracle-aided) protocol.Construction 7.4.14 (authenticated computation protocol, general version):Inputs: Party 1 gets input � 2 f0; 1g�, and Party 2 gets input � 2 f0; 1gj�j.Step C1: Party 1 uses the image transmission functionality to send the pair(u; v) def= (h(�); f(�)) to Party 2. That is, the parties invoke the function-ality of Eq. (7.29) with respect to the function g(�) def= (h(�); f(�)), whereParty 1 enters the input � and Party 2 is to obtain g(�).Step C2: Assuming that Step C1 was not aborted by Party 1 and that Party 2receives the pair (u; v) in Step C2, Party 2 outputs v if u = � and (u; v)otherwise.Outputs: If not aborted (with output ?), Party 2 sets its local output as directedin Step C2. (Party 1 has no output.)We stress that in the protocol invocation (of Step C1), Party i plays the ithparty (w.r.t the oracle call). Recall that (unlike Party 2), Party 1 may abortand in particular do so during Step C1. Since Step C1 consists of an oracleinvocation, aborting during Step C1 means instructing the oracle not to answerParty 2.37 In contrast, even privately-computing the more natural functionality (�; �) 7! (� ; v),where v = f(�) if � = h(�) and v = � otherwise, is signi�cantly harder than Construc-tion 7.4.14. See Exercise 12.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

648 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSProposition 7.4.15 Construction 7.4.14 securely reduces the h-authenticatedf-computation functionality of Eq. (7.31) to the image transmission functionalityof Eq. (7.29).Proof Sketch: We need to transform any admissible pair, (A1; A2), for the realoracle-aided model into a corresponding pair, (B1; B2), for the ideal model. Westart by assuming that the �rst party is honest, and transforming the real-modeladversary A2 (for the oracle-aided execution) into a corresponding ideal-modeladversary B2. On input �, the latter proceeds as follows:1. Machine B2 sends � to the trusted party, and obtains the answer whichequals v def= f(�) if � = h(�) and (u; v) def= (h(�); f(�)) otherwise, where� is the (unknown to B2) input of Party 1.38 In the �rst case, B2 setsu def= �, and so in both cases (u; v) = (h(�); f(�)).2. Machine B1 emulates the protocol, by feeding A2 with the pair (u; v),which A2 expects to get in Step C1, and outputting whatever the latteroutputs (in Step C2).Note that both the ideal execution under (B1; B2) and the real execution (in theoracle-aided model) under (A1; A2) yield the output pair (� ; A2(h(�); f(�)).Thus, the ideal and real ensembles are identical.We now turn to the case that the second party is honest, and transform thereal-model adversary A1 into a corresponding ideal-model adversary B1. Oninput �, the latter proceeds as follows:1. Machine B1 emulates Step C1 of the protocol, by obtaining from A1 theinput �0 A1(�) (that A1 wishes to transmit via Eq. (7.29)) and feedingA1 with the expected answer �.2. If A1 instructs the oracle not to answer Party 2 then B1 halts withoutinvoking the trusted party. Otherwise, B1 sends �0 to the trusted party,and lets it answer Party 2. In both cases, B1 halts with output equal tothe corresponding output of A1.Note that if h(�0) = �, where � is the (unknown to B1) input of Party 2,then the trusted party answers Party 2 with f(�0) and otherwise it answersParty 2 with (h(�0); f(�0)).Note that both the ideal execution under (B1; B2) and the real execution (inthe oracle-aided model) under (A1; A2) yield the output pair (A1(�; �;?) ; ?)if A1(�; �) = ? and (A1(�; �) ; F (A1(�); �) otherwise, where F (�0; �) is as inEq. (7.31); i.e., F (�0; �) = f(�0) if h(�0) = � and F (�0; �) = (h(�0); f(�0))otherwise. Thus, also here the ideal and real ensembles are identical.38 Recall that, in either case, the trusted party will send Party 1 the answer �. Also notethat the emulation will remain valid regardless which j�j-bit long string B2 sends to the trustedparty (because, for any such choice, B2 will (explicitly) receive f(�) as well as (explicitly orimplicitly) receive h(�).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 6497.4.3.5 Augmented coin-tossingIn this section, we generalize the coin-tossing functionality (of Section 7.4.3.1)in two ways. Firstly, we consider the generation of random `(n)-bit long stringsrather than a single bit. Secondly, we provide the second party with a functionof the coin-outcomes obtained by the �rst party, rather than providing it withthe outcomes themselves. That is, for any positive polynomial ` : N ! N and apolynomial-time computable function g, we consider the randomized function-ality(1n; 1n) 7! (r; g(r)), where r is uniformly distributed in f0; 1g`(n). (7.32)Indeed, De�nition 7.4.6 is a special case (obtained by setting `(n) def= 1 andg(r) def= r). The augmented coin-tossing functionality (mentioned in Section 7.4.1)will be derived as a special case (see below). But �rst we show that Eq. (7.32) canbe securely reduced to the set of functionalities presented above (see discussionof this notion of a reduction in Remark 7.4.5). That is, we present an oracle-aided protocol that uses two of the latter functionalities (i.e., basic coin-tossingand general authenticated computation), as well as a commitment scheme C.The protocol can be viewed as a \protected" version of Construction 7.4.7 (i.e.,simple operations such as sending a commitment to a value and tossing a coinare replaced by functionalities that prevent various abuses).Construction 7.4.16 (an oracle-aided protocol for Eq. (7.32)): For r1; :::; r` 2f0; 1gn and �1; :::; �` 2 f0; 1g, we let Cr1;:::;r`(�1; :::; �`) = (Cr1(�1); :::; Cr`(�`)).Inputs: both parties get security parameter 1n, and set ` def= `(n).Step C1: Party 1 uniformly selects �1; :::; �` 2 f0; 1g and s1; :::; s` 2 f0; 1gn,and lets r0 = �1 � � ��` and s = s1 � � � s`.Step C2: Party 1 uses the image transmission functionality to send c def= Cs(r0)to Party 2. Actually, since image transmission functionality is a specialcase of the general authenticated computation functionality, we use thelatter. That is, Party 1 enters Eq. (7.31) with input (r0; s), Party 2 enterswith input 1`+`�n, and Party 2 is supposed to obtain f(r0; s) def= Cs(r0).Recall that, by de�nition, a party cannot abort the execution of an ora-cle call that was not initiated (requested) by it, and so Party 2 cannotabort Steps C2{C4. For simplicity, we assume that Party 1 does not abortSteps C2 and C3, but it may abort Step C4.Step C3: The parties invoke the basic coin tossing functionality ` times to gen-erate a common random string r00 2 f0; 1g`. That is, in the ith invocationof the functionality of De�nition 7.4.6, the parties obtain the ith bit of r00.Step C4: Party 1 sets r def= r0�r00, and uses the authenticated computation func-tionality to send g(r) to Party 2. Speci�cally, Party 1 enters Eq. (7.31)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

650 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSwith input (r0; s; r00), Party 2 enters with input (c; r00), where (c; r00) issupposed to equal h(r0; s; r00) def= (Cs(r0); r00), and Party 2 is supposed toobtain f(r0; s; r00) def= g(r0 � r00). In case Party 1 aborts or Party 2 ob-tains an answer of a di�erent format, which happens if the inputs to thefunctionality do not match, Party 2 halts with output ? (indicating thatParty 1 misbehaved).We comment that r = r0 � r00 is uniquely determined by c and r00, but thisfact will not be used explicitly.Outputs: Party 1 outputs r, and Party 2 outputs the value determined in Step C4,which is either g(r) or ?.We stress that, in all oracle calls, Party 1 is the party initiating (requesting)the call. We comment that more e�cient alternatives to Construction 7.4.16 doexist, it is just that we �nd the above easiest to analyze.Proposition 7.4.17 Let F be the set of two functionalities de�ned in De�ni-tion 7.4.6, and Eq. (7.31), respectively. Then Construction 7.4.16 constitutes asecurity reduction from the generalized coin tossing functionality of Eq. (7.32)to F .Proof Sketch: We start by assuming that the �rst party is honest, and trans-forming the real-model adversaryA2 (for the oracle-aided execution) into a corre-sponding ideal-model adversary B2. On input 1n, the latter proceeds as follows:1. Machine B2 emulates the local actions of the honest Party 1 in Step C1 ofthe protocol, by uniformly selecting r0 2 f0; 1g` and s 2 f0; 1g`�n.2. Machine B2 emulates Step C2 of the protocol, by feeding A2 with c def=Cs(r0). (Recall, that by our convention A2 never aborts.)3. Machine B2 emulates Step C3 of the protocol, by uniformly selecting r00 2f0; 1g`, and feeding A2 with it.4. Machine B2 invokes the trusted party with input 1n and obtains theanswer g(r), for a uniformly distributed r 2 f0; 1g` that is handed toParty 1.39 Next, machine B2 obtains the input (or query) of A2 to thefunctionality of Step C4. If this input (i.e., A2(�;Cs(r0); r00)) does notmatch the pair of values (Cs(r0); r00) fed to A2 in Steps 2{3 then B2 haltswith output A2(�; c; r00; ((c; r00); g(r))). Otherwise, B2 halts with outputA2(�; c; r00; g(r)).Note that in both cases the output corresponds to the output of A2 whenfed with the corresponding emulation of Steps C1{C4. In particular,h(r0; s; r00) = (Cs(r0); r00) and f(r0; s; r00) = g(r0 � r00). We stress thatB2 does not use the value g(r0� r00), but rather checks whether or not thisvalue would have been given to A2 if the latter were to invoke the oraclein Step C4 with input h(r0; s; r00).39 Indeed, this part of the current step could take place also at an earlier stage.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 651Let us �rst assume that the input entered by A2 to the functionality of Step C4does �t its view of Steps C2 and C3. In this case, the ideal-model execution under(B1; B2) yields the pair (r; A2(�;C(r0); r00; g(r)), where r0; r00; r are uniformly andindependently distributed. On the other hand, the real-model execution (in theoracle-aided model) under (A1; A2) yields the pair (r0�r00; A2(�;C(r0); r00; g(r0�r00)), where r0; r00 are as above, which (for r = r0 � r00) is distributed iden-tically to (r; A2(�;C(r � r00); r00; g(r)). However, due to the hiding propertyof C, the two ensembles are computationally indistinguishable. In case theinput entered by A2 to the functionality of Step C4 does not �t its view ofSteps C2 and C3, the ideal-model execution under (B1; B2) yields the pair(r; A2(�;C(r0); r00; (C(r0); r00); g(r))), whereas the real-model execution under(A1; A2) yields the pair (r0 � r00; A2(�;C(r0); r00; ((C(r0); r00); g(r0 � r00))), whichis distributed identically to (r; A2(�;C(r�r00); r00; (C(r�r00); r00); g(r))). Again,the two ensembles are computationally indistinguishable.We now turn to the case that the second party is honest, and transform thereal-model adversary A1 into a corresponding ideal-model adversary B1. Oninput 1n, the latter proceeds as follows:1. Machine B1 emulates Step C1 of the protocol, by obtaining (r0; s) A1(1n).2. Machine B1 emulates Step C2 by doing nothing.Note that the real-model adversary A1 would have made the oracle query(r0; s) and would have obtained � as an answer.3. Machine B1 invokes the trusted party (on input 1n), and obtains a uni-formly distributed r 2 f0; 1g`. We stress that at this time B1 does notinstruct the trusted party whether or not to answer Party 2. Machine B1emulates Step C3, by feeding r00 def= r � r0 to A1.4. Machine B1 starts its emulation of Step C4, by checking whether or not thequery that A1 wishes to make (i.e., A1(1n; �; r00)) �ts the tuple (r0; s; r00) inthe sense that it yields the same value (Cs(r0); r00). That is, let (q0; q; q00) def=A1(1n; �; r00). If (Cq(q0); q00) = (Cs(r0); r00) then B1 instruct the trustedparty to answer Party 2 else B1 instruct the trusted party to stop (with-out answering Party 2).40 Finally, B1 outputs whatever A1 does (i.e.,A1(1n; �; r00; �), where the four inputs of A1 correspond to its view in eachof the four steps).Note that the output of Party 1 in both the real-model (under the Ai's) andthe ideal-model (under the Bi's) equals A1(1n; �; r00; �), where r00 is uniformlydistributed (in both models). The issue is the correlation of this output to theoutput of Party 2, which is relevant only if Party 2 does have an output. Recallthat Party 2 obtains an output (in both models) only if the corresponding Party 140 In particular, if (in contrary to our simplifying assumption) A1 aborts before Step C4then the sequence (q0; q; q00) equals ? and does not �t (Cs(r0); r00).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

652 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSdoes not abort (or stops the trusted party). Furthermore, in both models, anoutput is obtained if and only if (Cq(q0); q00) = (Cs(r0); r00) holds, where (r0; s) =A1(1n), and (q0; q; q00) def= A1(1n; �; r00). In particular, (Cq(q0); q00) = (Cs(r0); r00)implies that (q0; q00) = (r0; r00) and that the inputs entered in Step C4 do match(i.e., h(q0; q; q00) = (Cs(r0); r00)). This means that in the real-model the outputof Party 2 is f(q0; q; q00) = f(r0; q; r00) = g(r0� r00), whereas in the ideal-model itequals g(r) = g(r0 � r00). We conclude that the ideal model perfectly emulatesthe real model, and the proposition follows.An important special case. An important special case of Eq. (7.32) is wheng(r; s) = Cs(r), where jsj = n � jrj. This special case will be called the augmentedcoin tossing functionality.De�nition 7.4.18 (coin-tossing into the well, augmented): An augmented coin-tossing into the well protocol is a two-party protocol for securely computing the fol-lowing randomized functionality with respect to some �xed commitment scheme,C, and a positive polynomial `:(1n; 1n) 7! ((r; s); Cs(r)) (7.33)where (r; s) is uniformly distributed in f0; 1g`(n) � f0; 1g`(n)�n.An augmented coin-tossing protocol is exactly what is needed for the implemen-tation of the coin-generation phase of the compiler. In particular, the string sincluded in the output of Party 1, allows it to (later) prove in zero-knowledgestatements regarding the actual value, r, committed (to Party 2). This fact willbe used in the protocol emulation phase of the compiler.Proposition 7.4.19 Let F be as in Proposition 7.4.17, and suppose that C isa commitment scheme. Then Construction 7.4.16, when applied to g = C, con-stitutes a secure reduction of the augmented coin-tossing functionality Eq. (7.33)to the set of functionalities F .7.4.3.6 Input CommitmentThe last component needed for the compiler is a functionality that captured whatis required in the input-commitment phase of the compiler. Speci�cally, we wantto force Party 1 to make a random commitment to an input of its choice, whileknowing the committed value and the corresponding decommitment. Knowledgeof the latter will allow the party to (later) prove in zero-knowledge statementsregarding the actual committed value, and this fact will be used in the protocolemulation phase of the compiler.Let C be a commitment scheme, and let C be de�ned as in Section 7.4.3.5.We consider the input commitment functionality(x; 1jxj) 7! (r; Cr(x)), where r is uniformly distributed in f0; 1gjxj2 (7.34)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 653Certainly, the naive protocol of just letting Party 1 send Party 2 a commitmentto x does not constitute a secure implementation of Eq. (7.34): This naivesuggestion does not guarantee that the output is in the range of the commitmentscheme, let alone that it is a random commitment for which Party 1 knows acorresponding decommitment. Thus, the naive protocol must be augmented bymechanisms that address all these concerns. We show that Eq. (7.34) can besecurely reduced to the set of functionalities presented above.Construction 7.4.20 (an oracle-aided protocol for Eq. (7.34)):Inputs: Party 1 has input x 2 f0; 1gn, whereas Party 2 gets input 1n.Step C1: Party 1 selects uniformly r0 2 f0; 1gn2.Step C2: Party 1 uses the image transmission functionality to send c0 def= Cr0(x)to Party 2. Again, we actually use the authenticated computation func-tionality, where Party 1 enters Eq. (7.31) with input (x; r0), Party 2 in-puts 1n+n2 , and Party 2 is supposed to obtain f(x; r0) def= Cr0(x). Thus,Steps C1{C2 yield an initial commitment to the input.As in Construction 7.4.16, we recall that Party 2 cannot abort Steps C2{C4, and assume that Party 1 does not abort Steps C2 and C3.Step C3: Generating coins for the �nal commitment. The parties use the aug-mented coin tossing functionality to obtain the outputs (r; r00) and c00 def=Cr00(r), respectively, where r 2 f0; 1gn2 and r00 2 f0; 1gn3 are uniformlyand independently distributed. That is, Party 1 gets (r; r00), while Party 2gets c00.Step C4: Sending the �nal commitment. Party 1 uses the authenticated compu-tation functionality to send Cr(x) to Party 2, where (x; r) is uniquelydetermined by (c0; c00). Speci�cally, Party 1 enters Eq. (7.31) with input(x; r; r0; r00), Party 2 enters with input (c0; c00), where (c0; c00) is supposed toequal h(x; r; r0; r00) def= (Cr0(x); Cr00(r)), and Party 2 is supposed to obtainf(x; r; r0; r00) def= Cr(x).In case Party 1 aborts or Party 2 obtains an answer of a di�erent format,which happens if the inputs to the functionality do not match, Party 2 haltswith output ? (indicating that Party 1 misbehaved).Outputs: Party 1 outputs r, and Party 2 outputs the value determined in Step C4,which is either Cr(x) or ?.Again, more e�cient alternatives to the above construction do exist, but weprefer to analyze the latter.Proposition 7.4.21 Construction 7.4.20 constitutes a security reduction fromEq. (7.34) to the set of two functionalities de�ned in Eq. (7.33) and Eq. (7.31),respectively.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

654 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSProof Sketch: We start by assuming that the �rst party is honest, and trans-forming the real-model adversaryA2 (for the oracle-aided execution) into a corre-sponding ideal-model adversary B2. On input 1n, the latter proceeds as follows:1. Machine B2 emulates (the actions of the honest Party 1 in) Step C1 of theprotocol, by uniformly selecting r0 2 f0; 1gn2 .2. Machine B2 emulates Step C2 of the protocol, by feeding A2 with c0 def=Cr0(0n). (Clearly, B2 is cheating, because A2 is supposed to be fed withC(x), where x is the (unknown to B2) input of Party 1. However, A2cannot detect this cheating.)3. Machine B2 emulates Step C3 of the protocol, by uniformly selecting s 2f0; 1gn2 and r00 2 f0; 1gn3, and feeding A2 with c00 def= Cr00(s).4. Machine B2 invokes the trusted party with input 1n and obtains the an-swer Cr(x), for a uniformly distributed r 2 f0; 1gn2 that is handed toParty 1.41 Next, machine B2 obtains the input (or query) of A2 to thefunctionality of Step C4. If this input does not match the pair of val-ues (c0; c00) = (Cr0(0n); Cr00(s)) fed to A2 in Steps 2{3 then B2 haltswith output A2(�; c0; c00; ((c0; c00); Cr(x))). Otherwise, B2 halts with outputA2(�; c0; c00; Cr(x)).Note that in both cases the output corresponds to the output of A2 whenfed with the corresponding emulation of Steps C1{C4. In particular,h(0n; s; r0; r00) = (Cr0(0n); Cr00(s)) and f(0n; s; r0; r00) = Cs(0n). We stressthat B2 does not use the value Cs(0n), but rather checks whether or notthis value would have been given to A2 if the latter were to invoke theoracle in Step C4 with input h(0n; s; r0; r00).Let us �rst assume that the input entered by A2 to the functionality of Step C4does �t its view of Steps C2 and C3. In this case, the ideal-model execu-tion under (B1; B2) yields the pair (r ; A2(�;C(0n); C(s); Cr(x)), where r ands are uniformly and independently distributed. On the other hand, the real-model execution (in the oracle-aided model) under (A1; A2) yields the pair(r ; A2(�;C(x); C(r); Cr(x)), where r is as above. However, due to the hid-ing property of C, the two ensembles are computationally indistinguishable. Incase the input entered by A2 to the functionality of Step C4 does not �t its viewof Steps C2 and C3, the ideal-model execution under (B1; B2) yields the pair thepair (r ; A2(�;C(0n); C(s); (C(0n); C(s)); Cr(x))), whereas the real-model exe-cution under (A1; A2) yields the pair (r ; A2(�;C(x); C(r); (C(x); C(r)); Cr(x))).Again, the two ensembles are computationally indistinguishable.We now turn to the case that the second party is honest, and transform thereal-model adversary A1 into a corresponding ideal-model adversary B1. Oninput x, the latter proceeds as follows:41 Indeed, this part of the current step could take place also at an earlier stage.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 6551. Machine B1 emulates Step C1 of the protocol, by obtaining r0 from A1(x).Actually, B1 obtains (x0; r0) A1(x), which is the query that A1 will usein Step C2.2. Machine B1 emulates Step C2 by doing nothing.Note that the real-model adversary A1 would have made the oracle query(x0; r0) and would have obtained � as an answer.3. Machine B1 invokes the trusted party on input x0, and obtains a uniformlydistributed r 2 f0; 1gn2. We stress that at this time B1 does not instructthe trusted party whether or not to answer Party 2. Machine B1 emulatesStep C3, by uniformly selecting r00 2 f0; 1gn3 and feeding (r; r00) to A1.4. Machine B1 starts its emulation of Step C4, by checking whether or notthe query that A1 wishes to make (i.e., A1(x; �; (r; r00))) �ts the tuple(x0; r; r0; r00) in the sense that it yields the same value (Cr0(x0); Cr00(r)).That is, let (q1; q2; s1; s2) def= A1(x; �; (r; r00)). If (Cs1(q1); Cs2(q2)) =(Cr0(x0); Cr00(r)) then B1 instruct the trusted party to answer Party 2else B1 instruct the trusted party to stop (without answering Party 2).Finally, B1 outputs whatever A1 does (i.e., A1(x; �; (r; r00); �), where thefour inputs of A1 correspond to its view in each of the four steps).Note that the output of Party 1 in both the real-model (under the Ai's) andthe ideal-model (under the Bi's) equals A1(x; �; (r; r00); �), where r 2 f0; 1gn2and r00 2 f0; 1gn3 are uniformly and independently distributed (in both mod-els). The issue is the correlation of this output to the output of Party 2, whichis relevant only if Party 2 does have an output. Recall that Party 2 obtainsan output (in both models) only if the corresponding Party 1 does not abort(or stops the trusted party). Furthermore, in both models, an output is ob-tained if and only if (Cs1(q1); Cs2(q2)) = (Cr0(x0); Cr00(r)), where (x0; r0) =A1(x) and (q1; q2; s1; s2) = A1(x; �; (r; r00)). In particular, (Cs1(q1); Cs2(q2)) =(Cr0(x0); Cr00(r)) implies that (q1; q2) = (x0; r) and that the inputs entered inStep C4 do match (i.e., h(q1; q2; s1; s2) = (Cr0(x0); Cr00(r))), which means that inthe real-model the output of Party 2 is f(q1; q2; s1; s2) = f(x0; r; s1; s2) = Cr(x0)(exactly as in the ideal-model). We conclude that the ideal model perfectlyemulates the real model, and the proposition follows.7.4.3.7 SummaryCombining Proposition 7.4.8 (resp., Proposition 7.4.12) with suitable resultsabout the underlying primitives, we conclude that coin tossing (resp., imagetransmission as in Eq. (7.29)) can be securely implemented based on any 1-1 one-way function. Combining Proposition 7.4.15 (resp., Proposition 7.4.19) [resp.,Proposition 7.4.21] with the previous results, by using the Composition Theorem(i.e., Theorem 7.4.3 or Remark 7.4.5), we obtain secure implementations of theauthenticated-computation functionality (resp., augmented coin-tossing) [resp.,

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

656 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSinput-commitment functionality]. The 1-1 restriction can be waived by usinga slightly more cumbersome construction that utilizes the commitment schemeof Construction 4.4.4 (instead of the simple scheme of Construction 4.4.2). Wethus state the following for future reference:Proposition 7.4.22 Assuming the existence of (non-uniformly strong) one-wayfunctions, the following three functionalities can be securely computed.1. The input-commitment functionality as de�ned in Eq. (7.34).2. The augmented coin-tossing functionality as de�ned in Eq. (7.33).3. The authenticated-computation functionality as de�ned in Eq. (7.31).7.4.4 The compiler itselfWe are now ready to present the compiler. Recall that we are given a protocol,�, for the semi-honest model, and we want to generate an \equivalent" protocol�0 for the malicious model. The meaning of the term `equivalent' will be clari�edin Section 7.4.4.1. We start by compiling � into an oracle-aided protocol thatuses the three functionalities referred to in Proposition 7.4.22.We assume, without loss of generality, that on any input of length n, eachparty to � tosses `(n) = poly(n) coins. Recall that C is a (non-interactive)(string) commitment scheme, derived from the bit commitment scheme C, andthat Cr(v) denotes the commitment to value v using the random-tape r.Construction 7.4.23 (the compiled protocol, oracle-aided version): Given aprotocol, �, for the semi-honest model, we consider the following oracle-aidedprotocol, �0, for the malicious model.Inputs: Party 1 gets input x 2 f0; 1gn and Party 2 gets input y 2 f0; 1gn.Input-commitment phase: Each of the two parties commits to its input by usingthe input-commitment functionality of Eq. (7.34). Recall that Eq. (7.34)maps the input pair (u; 1n) to the output pair (s; Cs(u)), where s is uni-formly distributed in f0; 1gn2. Thus, each of the parties obtains decom-mitment information that will allow it to perform its role in the protocolemulation phase.Speci�cally, we are talking about two invocations of Eq. (7.34). In the �rstinvocation, Party 1 wishing to commit to x, plays the role of the �rst partyin Eq. (7.34), and obtains a uniformly distributed �1 2 f0; 1gn2, whereasParty 2 (which plays the role of the second party in Eq. (7.34)) obtains
1 def= C�1(x). Likewise, in the second invocation, Party 2 wishing tocommit to y, plays the role of the �rst party in Eq. (7.34), and obtains auniformly distributed �2 2 f0; 1gn2, whereas Party 1 (which plays the roleof the second party in Eq. (7.34)) obtains
2 def= C�2(y).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 657Coin-generation phase: Each of the parties generate a random-tape for the emula-tion of �, by invoking the augmented coin-tossing functionality of Eq. (7.33).Recall that this functionality maps the input pair (1n; 1n) to the outputpair ((r; s); Cs(r)), where (r; s) is uniformly distributed in f0; 1g`(n) �f0; 1gn�`(n). Thus, each party obtains the random-tape to be held by it,whereas the other party obtains a commitment to this value. The partyholding the random-tape also obtains the randomization used in the cor-responding commitment, which it will use in performing its role in theprotocol emulation phase.Speci�cally, we are talking about two invocations of Eq. (7.33). In the �rst(resp., second) invocation, Party 1 (resp., Party 2) plays the role of the�rst party in Eq. (7.33), and obtains a uniformly distributed (r1; !1) 2f0; 1g`(n) � f0; 1gn�`(n) (resp., (r2; !2) 2 f0; 1g`(n) � f0; 1gn�`(n)), whereasParty 2 (resp., Party 1) which plays the other role obtains �1 def= C!1(r1).(resp., �2 def= C!2(r2)).Protocol emulation phase: The parties use the authenticated-computation func-tionality of Eq. (7.31) in order to emulate each step of protocol �. Recallthat, for predetermined functions h and f , this functionality maps the inputpair (�; �) to the output pair (�; f(�)) if � = h(�) and to (� ; (h(�); f(�)))otherwise, where the second case is treated as abort.The party that is supposed to send a message plays the role of the �rst(i.e., initiating) party in Eq. (7.31) and the party that is supposed to receivethe message plays the role of the second party. Suppose that the currentmessage in � is to be sent by Party j, and let u def= x if j = 1 and u def= yotherwise. Then the functions h; f and the inputs �; �, for the functionalityof Eq. (7.31), are set as follows:� The string � is set to equal (�1; �2; �3), where �1 = (u; �j) is thequery and answer of Party j in the oracle call that it initiated in theinput-commitment phase, �2 = (rj ; !j) is the answer that Party j ob-tained in the oracle call that it initiated in the coin-generation phase,and �3 is the sequence of messages that Party j obtained so far in theemulation of �. The string � equals (
j ; �j ; �3), where
j and �j arethe answers that the other party obtained in the same oracle calls inthe �rst two phases (and �3 is as above).In particular, u is the input to which Party j committed in the input-commitment phase and rj is the random-tape generated for it in thecoin-generation phase. Together with �3, they determine the messagethat is to be sent by Party j in �. The auxiliary strings �j and !jwill be used to authenticate u and rj , as re
ected in the followingde�nition of h.� The function h is de�ned such that h((v1; s1); (v2; s2); v3) equals (Cs1(v1); Cs2(v2); v3).Indeed, it holds that h(�1; �2; �3) = �.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

658 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS� The function f equals the computation that determines the messageto be sent in �. Note that this message is computable in polynomial-time from the party's input (denoted u and being part of �1), itsrandom-tape (denoted rj and being part of �2), and the messages ithas received so far (i.e., �3). Indeed, it holds that f(�1; �2; �3) is themessage that Party j should send in �.Recall that the party that play the receiver in the current oracle call, obtainseither f(�) or (h(�); f(�)). It treats the second case as if the other partyhas aborted, which is also possible per se.Aborting: In case any of the functionalities invoked in any of the above phasesterminates in an abort state, the party (or parties) obtaining this indicationaborts the execution, and sets its output to ?. Otherwise, outputs are asfollows.Outputs: At the end of the emulation phase, each party holds the correspondingoutput of the party in protocol �. The party just locally outputs this value.Clearly, in case both parties are honest, the input-output relation of �0 is identi-cal to that of �. (We will show that essentially the same holds also in general.)We note that the transformation of � to �0 can be implemented in polynomial-time. Finally, replacing the oracle calls by the subprotocols provided in Propo-sition 7.4.22 yields a standard protocol for the malicious model.7.4.4.1 The e�ect of the compilerAs will be shown below, given a protocol as underlying the proof of Theo-rem 7.3.12, the compiler produces a protocol that securely computes the samefunctionality. Thus, for any functionality f , the compiler transforms a speci�cprotocol for privately computing f (in the semi-honest model) into a protocolfor securely computing f (in the malicious model). This su�ces to establish ourmain result (i.e., Theorem 7.4.1), yet it does not say what the compiler doeswhen given an arbitrary protocol (i.e., one not produced as above). In order toanalyze the action of the compiler, in general, we introduce the following modelthat is a hybrid of the semi-honest and the malicious models.42 We call this newmodel, which is of independent interest, the augmented semi-honest model.De�nition 7.4.24 (the augmented semi-honest model): Let � be a two-partyprotocol. An augmented semi-honest behavior (w.r.t �) is a (feasible) strategythat satis�es the following conditions:Entering the execution: Depending on its initial input, denoted u, the party mayabort before taking any step in the execution of �. Otherwise, again de-pending on u, it enter the execution with any input u0 2 f0; 1gjuj of itschoice. From this point on, u0 is �xed.42 Indeed, Theorem 7.4.1 will follow as a special case of the general analysis of the compiler(as provided below). See further discussion following the statement of Proposition 7.4.25.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 659Proper selection of a random-tape: The party selects the random-tape to be usedin � uniformly among all strings of the length speci�ed by �. That is, theselection of the random-tape is exactly as speci�ed by �.Proper message transmission or abort: In each step of �, depending on its viewso far, the party may either abort or send a message as instructed by �.We stress that the message is computed as � instructs based on input u0,the random-tape selected above, and all messages received so far.Output: At the end of the interaction, the party produces an output dependingon its entire view of the interaction. We stress that the view consists of theinitial input u, the random-tape selected above, and all messages receivedso far.A pair of probabilistic polynomial-time strategies, C = (C1; C2), is admissiblew.r.t � in the augmented semi-honest model if one strategy implements � andthe other implements an augmented semi-honest behavior w.r.t �.The augmented semi-honest model extends the ordinary semi-honest model inallowing adversaries to modify their initial input and to abort the execution atarbitrary time. The augmented semi-honest model is arguably more appealingthan the semi-honest model, because in many settings input-modi�cation andaborting can also be performed at a high-level, without modifying the prescribedprogram. In contrast, implementing an e�ective malicious adversary may requiresome insight into the original protocol and typically requires substitution of theprogram's code.Intuitively, the compiler transforms any protocol � into an (oracle-aided)protocol �0 such that executions of �0 in the malicious model correspond toexecutions of � in the augmented semi-honest model. That is:Proposition 7.4.25 (general analysis of the two-party compiler): Let �0 be the(oracle-aided) protocol produced by Construction 7.4.23, when given the protocol�, and let G denote the set of the three oracle functionalities that are usedby protocol �0. Then, for every pair of probabilistic polynomial-time strategiesA = (A1; A2) that are admissible (w.r.t �0) for the (real) malicious model (ofDe�nition 7.4.2)43 there exists a pair of probabilistic polynomial-time strategiesB = (B1; B2) that are admissible w.r.t � for the augmented semi-honest model(of De�nition 7.4.24) such thatfreal�;B(z)(x; y)gx;y;z c� frealG�0;A(z)(x; y)gx;y;zwhere x; y; z 2 f0; 1g� such that jxj = jyj and jzj = poly(jxj).Proposition 7.4.25 will be applied to protocols as underlying the proof of Theo-rem 7.3.12. Actually, we will apply Proposition 7.4.25 to Theorem 7.3.14 (which43 Recall the de�nition of real-model adversaries for an oracle-aided protocol (i.e., De�ni-tion 7.4.2) extends the de�nition of real-model adversaries for ordinary protocols (i.e., De�ni-tion 7.2.5).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

660 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSprovides canonical protocols for privately computing any functionality). As weshall see (in Section 7.4.4.2), for these speci�c protocols, the augmented semi-honest model (of De�nition 7.4.24) can be emulated by the ideal malicious model(of De�nition 7.2.4). Thus, we obtain secure (oracle-aided) protocols (withoracle to G) for any functionality, because (schematically speaking) for everyfunctionality f there exist � and �0 such that idealf;malicious(x; y) equalsreal�;aug-semi-honest(x; y), which in turn equals realG�0;malicious(x; y). (Or-dinary secure protocols are obtained by using secure implementations of theoracles in G (which are provided by Proposition 7.4.22).) Thus, Theorem 7.4.1is proven by combining the properties of the compiler, as stated in Proposi-tion 7.4.25, with the properties of speci�c protocols to be compiled by it. Westart by establishing Proposition 7.4.25.Proof Sketch: Given a pair of strategies, (A1; A2), which is admissible w.r.t�0 for the real malicious model, we present a corresponding pair, (B1; B2), thatadmissible w.r.t � for the augmented semi-honest model. Denote by hon theidentity of the honest party and by mal the identity of the malicious party (i.e.,fhon; malg = f1; 2g). Then, Bhon is determined by �, and we transform (themalicious adversary) Amal into (an augmented semi-honest adversary) Bmal,which uses Amal as a subroutine. MachineBmal will emulate the various oracles,which are used in �0 but not in �. On input u 2 f0; 1gn, machine Bmal behavesas follows.Entering the execution: Machine Bmal invokes Amal on input u, and decideswhether to enter the protocol, and if so { with what input. Towardsthis end, machine Bmal emulates the input-committing phase of �0, usingAmal (as subroutine). Machine Bmal obtains from Amal the oracle querythat it makes to the input-committing functionality (initiated by it), anduses this query to determine the replaced input u0 (to be used in the rest ofthe execution). It also provides Amal with the oracle answers that Amalexpects to get. Details follow.Recall that the the input-committing phase consists of two invocationsof the input-committing functionality, one by Partyhon and the other byPartymal. In each invocation one party supplies an input and the otherparty gets a commitment to it (while the �rst party gets the correspondingcommitment coins).� In the invocation of the input-committing functionality in which Partyhoncommits to its input, machine Bmal generates a dummy commitment(supposedly to the input of Partyhon) and feeds it to Amal, which ex-pects to get a commitment (as answer from the oracle). Speci�cally,Bmal uniformly selects �hon 2 f0; 1gn2 , and computes the commit-ment
hon def= C�hon(0n), where 0n is an arbitrary (dummy) value(which replaces the unknown input of Partyhon). MachineBmal feedsAmal with
hon (as if
hon were the oracle answer).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 661� In the invocation of the input-committing functionality in which Partymalcommits to its input, machine Bmal tries to obtain the committedvalue (provided by Partymal) and feeds Amal with decommitmentinformation (which it expects to get). Speci�cally, Bmal obtains thequery, denoted u0, that Amal makes to the input-committing func-tionality, and feeds it with a uniformly selected �mal 2 f0; 1gn2 . Westress that Bmal will use this u0 as its modi�ed input in its (aug-mented semi-honest) execution of �.In case Amal has aborted this oracle call, machine Bmal aborts (i.e.,does not enter the execution).In case Bmal did not abort, it enters protocol � with input u0. Note thatthis entire step is implemented in polynomial-time, and the resulting u0depends only on u (the initial input of Bmal).Selection of random-tape: Bmal selects its random-tape uniformly in f0; 1g`(n)(as speci�es by �), and emulates the execution of the coin-generation phaseof �0 ending with this outcome, so as to place Amal in the appropriatestate towards the protocol-emulation phase. To achieve the latter goal,machine Bmal supplies Amal with the oracle answers that it expects tosee. Again, we distinguish between the two oracle calls (to the augmentedcoin-tossing functionality) made during the coin-generation phase of �0:� In the invocation of the augmented coin-tossing functionality in whichPartyhon obtains the outcome of the coin-toss, machine Bmal gen-erates a dummy commitment (supposedly to the random-tape ofPartyhon) and feeds it to Amal, which expects to get a commit-ment (as answer from the oracle). Speci�cally, Bmal uniformly se-lects !hon 2 f0; 1gn�`(n), and computes the commitment �hon def=C!hon(0`(n)), where 0`(n) is an arbitrary (dummy) value (which re-places the unknown random-tape of Partyhon). Machine Bmal feedsAmal with �hon (as if �hon were the oracle answer).� In the invocation of the augmented coin-tossing functionality in whichPartymal obtains the outcome of the coin-toss, machine Bmal �rstselects uniformly rmal 2 f0; 1g`(n) and !mal 2 f0; 1gn�`(n), and feedsAmal with the pair (rmal; !mal). Machine Bmal will use rmal as itsrandom-tape in its (augmented semi-honest) execution of �. If Amalaborts this oracle call then Bmal aborts.In case Bmal did not abort, it will use rmal as its random-tape in its thesubsequent steps of protocol �. Note that this entire step is implementedin polynomial-time, and that rmal is selected uniformly in f0; 1g`(n) inde-pendent of anything else.Subsequent steps { message transmission: Machine Bmal now enters the actualexecution of �. It proceeds in this real execution along with emulating the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

662 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLScorresponding oracle answers of the authenticated-computation function-ality. In a message-transmission step by Partyhon in �, machine Bmalobtains from Partyhon (in the real execution of �) a message, and em-ulates the answer given to Partymal by the authenticated-computationfunctionality. In a message-transmission step by Partymal in �, machineBmal computes the message to be sent to Partyhon (in �) as instructedby �, based on the input u0 determined above, the random-tape rmal se-lected above, and the messages obtained so far from Partyhon (in �). Itthen checks if Amal makes the correct oracle query, in which case it sendsPartyhon the message just computed and otherwise its aborts. Detailsfollow.� In a message-transmission step by Partyhon in �, machine Bmal �rstobtains from Partyhon (in the real execution of �) a message, denotedmsg. Next, machine Bmal obtains from Amal the query that Amalmakes to the authenticated-computation functionality. Let us denotethis query by � = (q1; q2; q3). If (q1; q2) = (
hon; �hon) and q3 equalsthe sequence of messages sent so far (by Bmal to Partyhon) thenBmal feeds Amal with the received message msg. Otherwise, Bmalfeeds Amal with ((
hon; �hon; �3); msg), where �3 is the sequenceof messages sent so far (by Bmal to Partyhon). (The latter casemeans that Amal is cheating, but Partyhon does not detect this fact(because it obtains no answer from the authenticated-computationfunctionality).)� In a message-transmission step by Partymal in �, machine Bmal �rstcomputes the message, denoted msg, that it should send (according to�) on input u0 (as determined above), random-tape rmal (as recordedabove), and the messages received so far (from Partyhon in executionof �). Next, machine Bmal obtains from Amal the query that Amalmakes to the authenticated-computation functionality. Let us de-note this query by ((u00; �00); (r00; !00); �03). If C�00 (u00) = C�mal(u0),C!00(r00) = C!mal(rmal) and �03 equals the sequence of messagesreceived so far (from Partyhon) then Bmal sends the message msgto Partyhon. Otherwise, Bmal aborts. (The latter case means thatAmal is cheating, and Partyhon detect this fact and treats it as ifPartymal has aborted.)Output: If machine Bmal has not aborted the execution, then it just outputswhatever machine Amal outputs given the execution history (in �0) emu-lated above.Clearly, machine Bmal (described above) implements an augmented semi-honestbehavior with respect to �. It is left to show thatfrealG�0;A(z)(x; y)gx;y;z c� freal�;B(z)(x; y)gx;y;z (7.35)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 663There is only one di�erence between the two ensembles referred to in Eq. (7.35):In the �rst distribution (i.e., realG�0;A(z)(x; y)), the commitments obtained byAmal in the input-commitment and coin-generation phases are to the true inputand true random-tape of Partyhon. On the other hand, in the second distri-bution (i.e., real�;B(z)(x; y)), machine Amal is given commitments to dummyvalues (and determines the actions of Bmal accordingly). We stress that, otherthan this di�erence, Bmal perfectly emulates Amal. However, the di�erence is\undetectable" (i.e., computationally indistinguishable) due to the hiding prop-erty of the commitment scheme.Composing the oracle-aided protocols produced by the compiler with secureimplementations of these oracles (as provided by Proposition 7.4.22), and usingthe Composition Theorem and Proposition 7.4.25, we obtain:Corollary 7.4.26 (compilation of two-party protocols): Assuming the exis-tence of (non-uniformly strong) one-way functions, any two-party protocol �can be e�ciently transformed into a two-party protocol �0 such that the follow-ing holds. For every pair of probabilistic polynomial-time strategies A = (A1; A2)that are admissible (w.r.t �0) for the (real) malicious model (of De�nition 7.2.5)there exists a pair of probabilistic polynomial-time strategies B = (B1; B2) thatare admissible w.r.t � for the augmented semi-honest model (of De�nition 7.4.24)such that freal�;B(z)(x; y)gx;y;z c� freal�0;A(z)(x; y)gx;y;zwhere x; y; z 2 f0; 1g� such that jxj = jyj and jzj = poly(jxj).7.4.4.2 Canonical protocols and the augmented semi-honest modelRecall that a protocol for privately computing some functionality is guaranteedto be secure with respect to semi-honest behavior. Thus, a real semi-honest ex-ecution of this protocol can be emulated by an ideal semi-honest computationof the functionality. The question is what happens to such a protocol when itis run under the augmented-semi-honest model. We now show that for canon-ical protocols (e.g., the protocols underlying the proof of Theorem 7.3.12), areal augmented-semi-honest execution of such a protocol can be emulated by anideal malicious computation of the functionality. That is, these protocol havethe salient property of allowing to emulate the (wider) class of augmented-semi-honest executions by the (wider) class of ideal malicious computations. Com-bined with Corollary 7.4.26, this fact means that if one applies the compiler toa canonical protocol � that privately computes f then the resulting protocol�0 securely computes f (because malicious executions of �0 can be emulated byaugmented-semi-honest executions of �, which in turn can be emulated by theideal malicious model for f).Recall that the augmented semi-honest model allows two things that go be-yond the semi-honest model: (1) oblivious substitution of inputs, and (2) abort.The �rst type of behavior has a correspondence in the malicious ideal-model,and so poses no problem. To account for the second type of behavior, we need

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

664 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSto match an aborting execution in the augmented semi-honest model with anaborting execution in the ideal malicious model. Here is where the extra prop-erty of the speci�c protocols, underlying the proof of Theorem 7.3.12, comes tohelp. Speci�cally, we refer to the fact that these protocols are canonical, whichmeans that the output of each party is determined only after it receives the verylast message (and no knowledge of the output is obtained before). Thus, abort-ing before this stage is essentially equivalent to not entering the execution at all,whereas aborting at the last stage is accounted for by the malicious ideal-model.Proposition 7.4.27 (on canonical protocols): Let � be a canonical protocolthat privately computes the functionality f . Then, for every probabilistic polynomial-time pair B = (B1; B2) that is admissible for the (real) augmented semi-honestmodel (of De�nition 7.4.24) there exists a probabilistic polynomial-time pairC = (C1; C2) that is admissible for the ideal malicious model (of De�nition 7.2.4)such that freal�;B(z)(x; y)gx;y;z c� fidealf;C(z)(x; y)gx;y;zwhere x; y; z 2 f0; 1g� such that jxj = jyj and jzj = poly(jxj).We comment that the statement of Proposition 7.4.27 implicitly introduces anotion of security in the augmented semi-honest model. Indeed, if the real-model adversary is allowed augmented semi-honest behavior then it is naturalto allow corresponding behavior in the ideal model, which then coincides withthe ideal malicious model. Viewed in these terms, Proposition 7.4.27 assertsthat canonical protocols are secure in the augmented semi-honest model.Proof Sketch: Recall that canonical protocols (cf. De�nition 7.3.13) proceedin two stages, where the �rst stage yield no information at all (to any semi-honest party) and the second phase consists of the exchange of a single pair ofmessages (i.e., each party sends a single message). We use the fact that canonicalprotocols admit a two-stage simulation procedure (for the view of a semi-honestparty). Such two-stage simulators acts as follows:Input to simulator: A pair (u; v), where u is the initial input of the semi-honestparty and v the corresponding local output.Simulation Stage 1: Based (only) on u, the simulator generates a transcript cor-responding to the view of the semi-honest party in the �rst stage of thecanonical protocol �.Recall that this is a truncated execution of �, where the execution istruncated just before the very last message is received by the semi-honestparty. We stress that this truncated view, denoted T , is produced withoutusing v.Simulation Stage 2: Based on T and v, the simulator produces a string cor-responding to the last message received by the semi-honest party. Thesimulator then outputs the concatenation of T and this message.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 665The reader may easily verify that any canonical protocol has two-stage simu-lators. Loosely speaking, a simulator as required in Stage 1 is implicit in thede�nition of a canonical protocol (cf. De�nition 7.3.13), and the simulation ofStage 2 is trivial (because Stage 1 in a canonical protocol ends with the partiesholding shares of the desired outputs and Stage 2 consists of each party sendingthe share required by the other party).
Party 1 Party 2

Stage 2

(r1,r2) (s1,s2)

r1 + s1 r2+ s2

meaningful
abort

r2

s1

Stage 1

Figure 7.2: Schematic depiction of a canonical protocol.Next, for any protocol having two-stage simulators, given a pair (B1; B2) thatis admissible w.r.t � for the augmented semi-honest model, we construct a pair,(C1; C2), that is admissible for the ideal malicious model. We distinguish twocases, corresponding to the identity of the honest party. The di�erence betweenthese cases amount to the possibility of (meaningfully) aborting the executionafter receiving the last message (i.e., just before sending the last message). Thispossibility exists for a dishonest Party 1 but not for a dishonest Party 2 (seeFigure 7.2).We start with the case that Party 1 is honest (and Party 2 is dishonest).In this case C1 is determined, and we need to transform the augmented semi-honest real adversary B2 into a malicious ideal-model adversary C2. The latteroperates as follows, using the two-stage simulator, denoted S2, provided for theview of Party 2 in semi-honest executions of � (which privately computes f).Recall that C2 gets input y 2 f0; 1gn.1. Machine C2 �rst determines the input y0 to be sent to the trusted party,

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

666 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSwhere y0 is determined according to the behavior of B2 during the entireemulation of the (canonical) protocol �. In addition, C2 determines allmessages to be sent by Party 2 (including its Stage 2 message). This isdone as follows:(a) First, C2 computes the substituted input with which (the augmentedsemi-honest adversary) B2 enters �. That is, y0 = B2(y). In case B2aborts, machine C2 sets y0 = ? (so to conform with the (simplifying)convention that the ideal-model adversary always sends input to thetrusted party).(b) Next, C2 invokes the �rst stage of the simulator S2, to obtain theview of a truncated execution of � by a semi-honest party havinginput y0. Denote this view by T , and note that T includes y0.Machine C2 extracts from T the random-tape, denoted r, of Party 2.This random-tape will be �xed for the use of B2.(c) Using T , machine C2 emulates the execution of B2 on input y0 andrandom-tape r, up to the point where Party 2 is to receive the lastmessage (in �). We stress that this point is just after Party 2 hassent its last message. Thus, the last message of Party 2 (in �) isdetermined at this step. To perform the emulation, C2 feeds B2 withinput y0 and random-tape r, and feeds B2 with messages as appearingin the corresponding locations in T . We stress that although T is onlythe transcript of Stage 1 in �, it determines all messages of Party 2in � (including its single Stage 2 message).Note that the augmented-semi-honest strategy B2 may abort in suchan execution, but in case it does not abort the messages it sendsequal the corresponding messages in T . In case B2 has aborted theexecution (even just before sending the last message, which belongsto Stage 2), machine C2 resets y0 to ?.We stress that y0 is determined based only on y, and that C2 never aborts.2. Machine C2 invokes the trusted party with input y0, and obtains a response,denoted v.(Since the trusted party answers Party 1 �rst, Party 2 does not have theoption of stopping the trusted party before it answers Party 1. But thisoption is not needed because Party 2 cannot meaningfully abort � afterreceiving the last message in it.)3. Finally, C2 determines its output as follows:(a) C2 invokes the second stage of the simulator S2, in order to obtain thelast message sent to Party 2. C2 supplies the simulator with the �rst-stage transcript T and the output v, and obtains the last message,denoted msg.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 667(b) C2 now emulates the last step of B2 (i.e., its output computation) bysupplying it with the message msg.(Note that the last message of B2 was already determined in Step 1,and so the execution of C2 ends here.)The output of C2 is set to be the output of B2, regardless if B2 has abortedor completed the execution.We need to show thatfreal�;B(z)(x; y)gx;y;z c� fidealf;C(z)(x; y)gx;y;z (7.36)Abusing notation, we replace the �nal value of y0 by B2(y), and get:freal�;B(x; y)gx;y � f(output�1 (x;B2(y)) ; B2(view�2 (x;B2(y))))gx;yc� f(f1(x;B2(y)) ; B2(S2(y; f2(x;B2(y)))))gx;y� f(f1(x;C2(y)) ; C2(y; f2(x;C2(y))))gx;y� fidealf;C(x; y)gx;ywhere S2(y; v) denotes the result of the two-stage simulation. Eq. (7.36) follows.We now turn to the case where Party 2 is totally honest (and Party 1 possiblydishonest). In this case C2 is determined, and we need to transform the aug-mented semi-honest real adversary B1 into a malicious ideal-model adversaryC1. The latter operates as follows, using the simulator, denoted S1, providedfor the view of Party 1. Recall that C1 gets input x 2 f0; 1gn.1. Machine C1 �rst determines the input x0 to be sent to the trusted party,where x0 is determined according to the behavior of B1 during Stage 1 ofthe (canonical) protocol �. This is done as in the previous transformationof B2 to C2, except that here the last message of B1 (i.e., the Stage 2message) is still undetermined at this step (and can be determined onlywhen given the last message of Party 2, which in turn is obtained only atStep 3).2. Machine C1 invokes the trusted party with input x0, and obtains a response,denoted v.We stress that, unlike in case Party 2 is dishonest, Party 1 (i.e., C1) stillhas the option of stopping the trusted party before it answers Party 2.3. Next, C1 invokes the second stage of the simulator S1, to obtain the lastmessage sent (by Party 2) to Party 1. It supplies the simulator with thetranscript of the �rst-stage and the output v, and obtains the last message,denoted msg.4. Machine C1 now emulates the last step of B1 by supplying it with themessage msg. In case B1 aborts, machine C1 prevents the trusted party

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

668 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSfrom answering Party 2, and aborts. Otherwise, machine C1 allows thetrusted party to answer Party 2. We stress that C1 does not abort in anyprior step.The output of C1 is set to be the output of B1, regardless if B1 has abortedor completed the execution.We again need to show that Eq. (7.36) holds. The argument is analogous to theone applied for a dishonest Party 2. Suppose �rst, for simplicity, that machineB1 never aborts. In such a case, by de�nition of S1,freal�;B(x; y)gx;y � f(B1(view�1 (B1(x); y)) ; output�2 (B1(x); y))gx;yc� f(B1(S1(B1(x); f1(B1(x); y))) ; f2(B1(x); y))gx;y� f(C1(x; f1(C1(x); y)) ; f2(C1(x); y))gx;y� fidealf;C(x; y)gx;yNext, suppose that B1 always aborts after receiving the last message, and beforesending its last message to Party 2. In this case, we havefreal�;B(x; y)gx;y � f(B1(view�1 (B1(x); y)) ; ?)gx;yc� f(B1(S1(B1(x); f1(B1(x); y))) ; ?)gx;y� f(C1(x; f1(C1(x); y);?) ; ?)gx;y� fidealf;C(x; y)gx;yIn the general case, machine B1 may abort in certain executions just after ob-taining the last message (and before sending its last message). The abort eventdepends also on the last message that B1 receives (which is supposed to deter-mine its output). However both the decision of whether or not to abort and theoutput at such a case are determined by B1 based on its view of the executionso far. Thus, Eq. (7.36) follows.7.4.4.3 Conclusion { Proof of Theorem 7.4.1Essentially, Theorem 7.4.1 follow by combining the following three results: (1) The-orem 7.3.14 providing canonical protocols for privately computing any function-ality, (2) the general analysis of the compiler (i.e., Corollary 7.4.26), and (3) thespecial properties of canonical protocols (i.e., Proposition 7.4.27). Speci�cally,let f be an arbitrary functionality, � be a canonical protocol for privately com-puting f (guaranteed by Theorem 7.3.14), and �0 be the protocol compiledfrom � by Construction 7.4.23 (using secure implementations of the function-alities in G). Now, let A be admissible for the real malicious model (w.r.t �0),let B be (admissible w.r.t � in the augmented semi-honest model) derived byCorollary 7.4.26, and C be (admissible for the ideal malicious model) derived byProposition 7.4.27. Thenfreal�0;A(z)(x; y)gx;y;z c� freal�;B(z)(x; y)gx;y;zc� fidealf;C(z)(x; y)gx;y;z

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.4. * FORCING (2-PARTY) SEMI-HONEST BEHAVIOR 669Theorem 7.4.1 follows.
Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

670 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS7.5 * Extension to the Multi-Party CaseIn this section we extend the treatment of general secure protocols from thetwo-party case to the multi-party case. Again, our ultimate goal is to designprotocols that withstand any feasible adversarial behavior, and again we proceedin two steps. First we consider a benign type of adversary, called semi-honest,and construct protocols that are secure with respect to such an adversary. Thede�nition of this type of adversary is very much the same as in the two-partycase. However, in case of general adversary behavior, we consider two di�erentmodels. The �rst model of malicious behavior mimics the treatment of adver-saries in the two-party case; it allows the adversary to control even a majorityof the parties, but does not view the (unavoidable) early abort phenomena as aviolation of security. In the second model of malicious behavior, we assume thatthe adversary can control only a strict minority of the parties. In this model,which would have been vacuous in the two-party case, early abort phenomenamay be e�ectively prevented. We show how to transform protocols secure in thesemi-honest model into protocols secure in each of the two malicious-behaviormodels. As in the two-party case, this is done by forcing parties (in each of thelatter models) to behave in an e�ectively semi-honest manner.The constructions are obtained by suitable modi�cations of the constructionsused in the two-party case. Actually, the construction of multi-party protocolsfor the semi-honest model is a minor modi�cation of the construction used in thetwo-party case. The same holds for the compilation of protocols for the semi-honest model into protocols for the �rst malicious model. In compiling protocolsfor the semi-honest model into protocols for the second malicious model, wewill use a new primitive, called Veri�able Secret Sharing (VSS), in order to\e�ectively prevent" minority parties from aborting the protocol prematurely.Actually, we shall compile protocols secure in the �rst malicious model intoprotocols secure in the second malicious model.Our treatment touches upon a variety of issues, which were ignored (or areinapplicable) in the two-party case. These issues include the communicationmodel (i.e., type of communication channels), the consideration of an externaladversary and the way the latter selects dishonest parties (or corrupts parties).In particular, in some models (i.e., postulating private channels and a majorityof honest participants), it is possible to obtain secure protocols without relyingon any intractability assumptions: See Section 7.6.7.5.1 De�nitionsA multi-party protocol problem is cast by specifying a random process that mapssequences of inputs (one input per each party) to sequences of outputs (one pereach party). Let m denote the number of parties. It will be convenient to thinkof m as being �xed, alas one can certainly think of it as an additional parameter.An m-ary functionality, denoted f : (f0; 1g�)m ! (f0; 1g�)m, is thus a randomprocess mapping string sequences of the form x = (x1; :::; xm) into sequencesof random variables, f1(x); :::; fm(x). The semantics is that, for every i, the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 671ith party, initially holds an input xi, and wishes to obtain the ith element inf(x1; :::; xm), denoted fi(x1; :::; xm). For example, consider deterministic func-tionalities for computing the maximum, average or any other statistics of theindividual values held by the parties (see more examples in Exercises 14 and 15).The discussions and simplifying conventions made in Section 7.2 apply in thecurrent context too. Most importantly, we assume throughout this section thatall parties hold inputs of equal length; that is, jxij = jxj j.Conventions regarding the number of parties. For simplicity of exposi-tion, we assume throughout our exposition that m is �xed. From time to time,we comment on what is needed in order to derive de�nitions (and constructions)for the case that m is a parameter. We comment that it is natural to discussmulti-party functionalities that are \uniform" in the sense that there exists analgorithm for uniformly computing them for each value of m (and of courseeach m-sequence). One such functionality is the \universal functionality" thatis given a description of a circuit as well as a corresponding sequence of inputs.(For example, the circuit may be part of the input of each party, and in casethese circuits are not identical the value of the functionality is de�ned as a se-quence of ?'s.) Indeed, a universal functionality is natural to consider also inthe two-party case, but here (in view of the extra parameter m) its appeal isenhanced.7.5.1.1 The communication model and external adversariesIn the de�nitional treatment of two-party case, we viewed one of the communi-cating parties as an adversary and considered its e�ect on the protocol's execu-tion. This approach can be extended to the multi-party case, except that herewe may consider coalitions of dishonest parties and its e�ect on the execution.Alternatively, we may consider an (external) adversary that controls a subsetof the parties that participate in the execution. A variety of issues that ariseinclude the size of this subset, the way it is selected (by the adversary), andpossible e�ect of the adversary on the communication channels.The number of parties controlled by the adversary. In the two-partycase, we have focus on the case in which the adversary is identi�ed with one of theparticipants in the execution. Clearly, the case in which the adversary controlsboth participants is of no interest, but the case in which the adversary controlsnone of the participants may be of interest in case the adversary can wire-tapthe communication line (as discussed below). In the multi-party case, we willconsider adversaries that control any number of participants.44 (Of course, whende�ning security following the \ideal-vs-real" paradigm, we should insist that thecorresponding ideal adversary controls the same set of participants.)44 Indeed, the case in which the adversary controls all parties is of no interest, and is oftenignored.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

672 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSThe selection of parties controlled by the adversary. The notion of anexternal adversary naturally leads to the issue of how this adversary selectsthe set of parties that it controls. The basic (and simpler) model postulatesthat this set is determined before the execution starts (and is of course notknown to the honest parties). This model is called non-adaptive as opposed tothe adaptive model in which the adversary may select the set of parties thatit controls adaptively, during the execution of the protocol and depending oninformation it has gathered so far. In this section we only consider the non-adaptive model, and defer the treatment of the adaptive model to Section 7.7.1.2.The di�erence between the non-adaptive model and the adaptive model becomescrucial when the number of parties (i.e., m) is treated as a parameter, ratherthan being �xed.The communication channels. It is natural to assume that the externaladversary may tap all communication channels (i.e., speci�cally those betweenhonest parties). In such a case, even an adversary that control none of the par-ticipants may potentially gain information about the execution. However, forsake of simplicity, we sometimes prefer to present and use de�nitions that pre-suppose that honest parties may communicate in secrecy (i.e., or put di�erently,we assume that adversaries do not tap communication lines between honest par-ties). We comment that in the non-adaptive model, the issue of providing secretcommunication is well understood, and can be easily decoupled from the maintreatment. Speci�cally, protocols secure in the \secret communication" modelcan be easily compiled to withstand wire-tapping adversaries (by using encryp-tion schemes). Similarly, we assume that messages sent between honest partiesarrive intact, whereas one may want to consider adversaries that may injectmessages on the communication line between honest parties. Again, this canbe counteracted by use of well-understood paradigms; in this case, the use ofsignature schemes.7.5.1.2 The semi-honest modelThis model is de�ned exactly as in the two-party case (see Section 7.2.2.1).Recall that a semi-honest party is one who follows the protocol properly withthe exception that it keeps a record of all its intermediate computations. Looselyspeaking, a multi-party protocol privately computes f if whatever a set (or acoalition) of semi-honest parties can obtain after participating in the protocol,could be essentially obtained from the input and output of these very parties.Thus, the only di�erence between the current de�nition and the one used in thetwo-party case is that we consider the gain of a coalition (rather than of a singleparty) from participating in the protocol.De�nition 7.5.1 (privacy w.r.t semi-honest behavior, with private channel):Let f : (f0; 1g�)m ! (f0; 1g�)m be an m-ary functionality, where fi(x1; :::; xm),denotes the ith element of f(x1; ::; xm). For I = fi1; :::; itg � [m] def= f1; :::;mg,we let fI(x1; :::; xm) denote the subsequence fi1(x1; :::; xm); :::; fit(x1; :::; xm). Let

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 673� be an m-party protocol for computing f .45 The view of the ith party duringan execution of � on x = (x1; :::; xm), denoted view�i (x), is de�ned as in De�ni-tion 7.2.1, and for I = fi1; :::; itg, we let view�I (x) def= (I;view�i1(x); :::;view�it (x)).� (deterministic case) In case f is a deterministic m-ary functionality, wesay that � privately computes f if there exist polynomial-time algorithm,denoted S, such that for every I as abovefS(I; (xi1 ; :::; xit); fI(x))gx2(f0;1g�)m c� fview�I (x)gx2(f0;1g�)m (7.37)� (general case)We say that � privately computes f if there exist polynomial-time algorithm, denoted S, such that for every I as abovef(S(I; (xi1 ; :::; xit); fI(x)) ; f(x))gx2(f0;1g�)mc� f(view�I (x) ; output�(x))gx2(f0;1g�)m (7.38)where output�(x) denote the output sequence of all parties during theexecution represented in view�I (x).Eq. (7.38) asserts that the view of the parties in I can be e�ciently simulatedbased solely on their inputs and outputs. The de�nition refers to the case thatthe semi-honest parties cannot wire-tap the channels between honest parties (andthus is labeled \with private channels"). To deal with the case of wire-tapping,one just needs to augment view�I (x) with the transcript of the messages sentbetween the honest parties. De�nition 7.5.1 can be easily adapted to deal witha varying parameter m. This is hinted by the order of quanti�ers (i.e., \thereexists an S such that for every I").46 We also note that the simulator cancertainly handle the trivial cases in which either I = [m] or I = ;. (The caseI = [m] is always trivial, whereas the case I = ; is trivial only because here weconsider the case of private channels.)As in the two-party case, De�nition 7.5.1 is equivalent to a de�nition thatcan be derived by following the \real-vs-ideal" paradigm (analogously to thetreatment of Section 7.2.2.2).7.5.1.3 The two malicious modelsWe now turn to consider arbitrary feasible deviation of parties from a speci�edmulti-party protocol. As mentioned above, one may consider two alternativemodels:1. A model in which the number of parties that deviate from the protocolis arbitrary. The treatment of this case follows the treatment given in45 As in Section 7.2, by saying that � computes (rather than privately computes) f , we meanthat the output distribution of the protocol (when played by honest or semi-honest parties)on the input sequence (x1; :::; xm) is identically distributed as f(x1; :::; xm).46 Note that for a �xed m it may make as much sense to reverse the order of quanti�ers(i.e., require that \for every I exists an algorithm SI").

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

674 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSthe two-party case. In particular, in this model one cannot prevent mali-cious parties from aborting the protocol prematurely, and the de�nition ofsecurity has to account for this if it is to have a chance of being met.2. A model in which the number of parties that deviate from the protocolis strictly less than half the total number of parties. The de�nitionaltreatment of this case is simpler than the treatment given in the two-party case. In particular, one may { in some sense { (e�ectively) preventmalicious parties from aborting the protocol prematurely.47 Consequently,the de�nition of security is \freed" from the need to account for earlystopping, and thus is simpler.We further assume (towards achieving a higher level of security) that maliciousparties may communicate (without being detected by the honest parties), andmay thus coordinate their malicious actions. Actually, it will be instructiveto think of all malicious parties as being controlled by one adversary. Ourpresentation follows the ideal-vs-real emulation paradigm introduced and usedin the previous sections. The di�erence between the two malicious models isre
ected in a di�erence in the corresponding ideal models, that capture thebehavior which a secure protocol is aimed at achieving. The di�erent bound onthe number of malicious parties (in the two model) is translated into the onlydi�erence between the corresponding real models (or, rather, a di�erence in theadversaries allowed as per each malicious model).The �rst malicious model: Following the discussion in Section 7.2.3, weconclude that three things cannot be avoided in the �rst malicious model:1. Malicious parties may refuse to participate in the protocol (when the pro-tocol is �rst invoked). Actually, as explained in Section 7.2.3, this behaviormay be viewed as a special case of input-substitution (i.e., next item).2. Malicious parties may substituting their local input (and enter the protocolwith an input other than the one provided to them from the outside).3. Malicious parties may abort the protocol prematurely (e.g., before sendingtheir last message).Accordingly, the ideal model is derived by a straightforward generalization ofDe�nition 7.2.4. In light of this similarity, we allow ourself to be quite terse.To simplify the exposition, we assume that, for every I , �rst the trusted partysupplies the adversary with the I-part of the output (i.e., the value of fI), andonly next is it possibly allowed (at the adversary's discretion) to answer theother parties. Actually, as in the two-party case, the adversary has the abilityto prevent the trusted party from answering all parties only in case it controlsParty 1.47 As we shall see, the assumption that malicious parties are in minority opens the door toe�ectively preventing them from aborting the protocol immaturely. This will be achieved byhaving the majority parties have (together!) enough information so to be able to emulate theminority parties in case the latter have decided to abort.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 675De�nition 7.5.2 (malicious adversaries, the ideal model { �rst model): Letf : (f0; 1g�)m ! (f0; 1g�)m be an m-ary functionality. For I = fi1; :::; itg �[m] def= f1; :::;mg, let I = [m] n I and (x1; :::; xm)I = (xi1 ; :::; xit). A pair(I; B), where I � [m] and B is probabilistic polynomial-time algorithm, rep-resents and adversary in the ideal model as follows. The joint execution under(I; B) in the ideal model (on input x = (x1; :::; xm) and auxiliary input z), de-noted ideal(1)f;I;B(z)(x), is de�ned by uniformly selecting a random-tape r forthe adversary, and letting idealf;I;B(z)(x) def= �(x; I; z; r), where �(x; I; z; r) isde�ned as follows:� In case Party 1 is honest (i.e., 1 62 I),�(x; I; z; r) def= (fI(x0) ; B(xI ; I; z; r; fI(x0)); (7.39)where x0 def= (x01; :::; x0m) such that x0i = B(xI ; I; z; r)i for i 2 I and x0i = xiotherwise.� In case Party 1 is not honest (i.e., 1 2 I), �(x; I; z; r) equals(?jIj ; B(xI ; I; z; r; fI(x0);?)) if B(xI ; I; z; r; fI(x0)) = ? (7.40)(fI(x0) ; B(x; I; z; r; fI(x0))) otherwise (7.41)where, in both cases, x0 def= (x01; :::; x0m) such that x0i = B(xI ; I; z; r)i fori 2 I and x0i = xi otherwise.In all cases the trusted party is invoked with possibly substituted inputs, denotedx0 = (x01; :::; x0m), where x0i 6= xi only if i 2 I . Eq. (7.40) represents the casewhere the trusted party is stopped right after supplying the adversary with theI-part of the output (i.e., fI(x0)). This case is allowed only when 1 2 I , andso Party 1 can always be \blamed" when this happens.48 Equations (7.39)and (7.41) represent the cases where the trusted party is invoked with possiblysubstituted inputs (as above), but is allowed to answer all parties. We stressthat either all honest parties get their output or all are noti�ed that the trustedparty was stopped by the adversary. As usual, the de�nition of security isobtained by requiring that for every feasible adversary in the real model thereexists a corresponding adversary in the ideal model that achieves the same e�ect.Speci�cally, in the real model the adversary may tap all communication lines anddetermine (adaptively) all the outgoing messages of all dishonest parties.De�nition 7.5.3 (security in the �rst malicious model): Let f be as in De�-nition 7.5.2, and � be an m-party protocol for computing f .48 In fact, in the protocols presented below, early abort is always due to malicious behaviorof Party 1. By De�nition 7.5.3 (below), this translates to malicious behavior of Party 1 in theideal model.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

676 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS� The joint execution of � under (I; A) in the real model (on input sequencex = (x1; :::; xm) and auxiliary input z), denoted real�;I;A(z)(x), is de�nedas the output sequence resulting of the interaction between the m parties,where the messages of parties in I are computed according to A(xI ; I; z)and the messages of parties not in I are computed according to �.49 Specif-ically, the messages of malicious parties are determined by the adversaryA based on the initial inputs of the parties in I, the auxiliary input z, andall messages sent so far by all parties (including messages received by thehonest parties (i.e., parties in �I def= [m] n I)).� Protocol � is said to securely compute f (in the �rst malicious model) if forevery probabilistic polynomial-time algorithm A (representing a real-modeladversary strategy) there exists a probabilistic polynomial-time algorithmB (representing an ideal-model adversary strategy) such that for everyI � [m] fideal(1)f;I;B(z)(x)gx;z c� freal�;I;A(z)(x)gx;zWhen the context is clear, we sometimes refer to � as an implementationof f .We stress that the ideal-model adversary (i.e., B) controls exactly the same set ofparties (i.e., I) as the the real-model adversary (i.e., A). De�nition 7.5.3 (as wellas De�nition 7.5.4) refers to an adversary that may wire-tap all communicationchannels. This is re
ected in the de�nition of real�;I;A(z)(x), which allows Ato determine its actions based on all messages communicated so far. In orderto derive a de�nition for the private channel model, one should modify thede�nition of real�;I;A(z)(x) such that A's actions may depend only on themessages received by parties in I .The second malicious model: In the second model, where malicious partiesare in strict minority, the early-abort phenomena can be e�ectively prevented.Thus, in this case, there is no need to \tolerate" early-abort and consequentlyour de�nition of security requires \proper termination" of executions. This isre
ected in the de�nition of the ideal model, which actually becomes simpler.50De�nition 7.5.4 (security in the second malicious model, assuming honest ma-jority): Let f and � be as in De�nition 7.5.3.� The ideal-model adversary is de�ned as in De�nition 7.5.2, except that theabort case captured by Eq. (7.40) is not allowed. The corresponding jointcomputation in the ideal model, under (I; B), is denoted by ideal(2)f;I;B(z)(x).� The real-model adversary is de�ned exactly as in De�nition 7.5.3. A keypoint is that we will only consider the case that the adversary controlsstrictly less than m=2 parties.49 To �t the format used in De�nition 7.5.2, the outputs of the parties (in real�;I;A(z)(x))are arranged such that the outputs of the honest parties appear on the l.h.s.50 In this case, the de�nition extends the one presented in Section 7.2.3.2.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 677� Protocol � is said to securely compute f (in the second malicious model)if for every probabilistic polynomial-time algorithm A (representing a real-model adversary strategy) there exists a probabilistic polynomial-time al-gorithm B (representing an ideal-model adversary strategy) such that forevery I � [m] such that jI j < m=2fideal(2)f;I;B(z)(x)gx;z c� freal�;I;A(z)(x)gx;zWhen the context is clear, we sometimes refer to � as an implementationof f .We stress that in De�nition 7.5.4 we consider only adversaries that control astrict minority of the parties.Discussion. The two alternative malicious models gives rise to two appealingand yet fundamentally incomparable notions of security. Put in other words,there is a trade-o� between the willingness to put-up with early-abort (i.e.,not consider it a breach of security), and requiring the protocol to be robustagainst malicious coalitions controlling a majority of all parties. The questionof which notion of security is preferable depends on the application (or on thesetting). In some settings one may prefer to be protected from malicious ma-jorities, while giving-up the guarantee that parties cannot abort the protocolprematurely (while being detected doing so). On the other hand, in settings inwhich a strict majority of the parties can be trusted to follow the protocol, onemay obtain the bene�t of e�ectively preventing parties to abort the protocolprematurely. We stress that all de�nitions are easily adapted to deal with avarying parameter m.7.5.2 Security in the Semi-Honest ModelOur construction of private multi-party protocols (i.e., secure versus semi-honestbehavior) for any given multi-argument functionality follows the presentation ofthe two-party case. For simplicity, we think of the number of parties m as being�xed. The reader may verify that the dependency of our constructions onm is atmost polynomial. We start with the treatment of deterministic functionalities.Our protocol construction adapts the one used in the two-party case (seeSection 7.3). That is, we consider a GF(2) circuit for evaluating the (determin-istic) m-ary functionality f , and start by letting each party share its input bitswith all other parties so that the sum of all shares equals the input bit. Go-ing from the input wires to the output wires, we proceed to privately computeshares of each wire in the circuit so that the sum of the shares equals the correctvalue. We are faced with only one problem: When evaluating a multiplicationgate of the circuit, we have party i holding bits ai and bi, and we need to con-duct a private computation so that this party ends-up with a random bit ciand (Pmi=1 ai) � (Pmi=1 bi) =Pmi=1 ci holds. More precisely, we are interested in

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

678 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSprivately computing the following randomized m-ary functionality((a1; b1); :::; (am; bm)) 7! (c1; :::; cm) uniformly in f0; 1gm (7.42)subject to mXi=1 ci = mXi=1 ai � mXi=1 bi : (7.43)Thus, all that we need to do on top of Section 7.3 is to provide a private m-party computation of the above functionality. This is done by privately reducing,for arbitrary m, the computation of Eq. (7.42){(7.43) to the computation ofthe same functionality for the case case m = 2, which in turn coincides withEq. (7.16){(7.17). But �rst we need to de�ne an appropriate notion of reduction.Indeed, the new notion of reduction is merely a generalization of the notionpresented in Section 7.3.1.7.5.2.1 A composition theoremWe wish to generalize the notion of reduction presented in Section 7.3.1 (in thecontext of two-party (semi-honest) computation). Here the reduction is an m-party protocol that may invoke a k-ary functionality in its oracle calls, wherek � m. In case k < m, an oracle call needs to specify also the set of partieswho are to provide the corresponding k inputs. Actually, the oracle call needs tospecify the order of these parties (i.e., which party should supply which input,etc.). (We note that the ordering of parties needs to be speci�ed also in casek = m, and indeed this was done implicitly in Section 7.3.1, where the conventionwas that the party who makes the oracle request is the one supplying the �rstinput. In case k > 2 such a convention does not determine the correspondencebetween parties and roles, and thus we use below an explicit mechanism forde�ning the correspondence.)De�nition 7.5.5 (m-party protocols with k-ary oracle access): As in the two-party case, a oracle-aided protocol is a protocol augmented by a pair of oracle-tapes, per each party, and oracle-call steps de�ned as follows. Each of the mparties may send a special oracle request message, to all other parties. Theoracle request message contains a sequence of k distinct parties, called the requestsequence, that are to supply queries in the current oracle call. In response, eachparty speci�ed in the request sequence writes a string, called its query, on its ownwrite-only oracle-tape, and responds to the �rst party with a oracle call message.At this point the oracle is invoked and the result is that a string, not necessarilythe same, is written by the oracle on the read-only oracle-tape of each of the kspeci�ed parties. This k-sequence of strings is called the oracle answer.One may assume, without loss of generality, that the party who invokes theoracle is the one who plays the role of the �rst party in the reduction (i.e., the�rst element in the request sequence is always the identity of the party whichrequests the current oracle call).De�nition 7.5.6 (multi-party privacy reductions):

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 679� Anm-party oracle-aided protocol is said to be using the k-ary oracle-functionalityf if the oracle answers are according to f . That is, when the oracle is in-voked with request sequence (i1; :::; ik), and the query-sequence q1; :::; qk issupplied by parties i1; :::; ik, the answer-sequence is distributed as f(q1; :::; qk).Speci�cally, party ij in the m-party protocol (the one which supplied qj), isthe one which obtains the answer part fj(q1; :::; qk). As in De�nition 7.3.2,we require that the length of each query be polynomially related to the lengthof the initial input.� An m-party oracle-aided protocol using the k-ary oracle-functionality f issaid to privately compute g if there exists a polynomial-time algorithm,denoted S, satisfying Eq. (7.38), where the corresponding views are de�nedin the natural manner.� An m-party oracle-aided protocol is said to privately reduce the m-ary func-tionality g to the k-ary functionality f , if it privately computes g whenusing the oracle-functionality f . In such a case we say that g is privatelyreducible to f ,We are now ready to generalize Theorem 7.3.3:Theorem 7.5.7 (Composition Theorem for the multi-party semi-honest model):Suppose that the m-ary functionality g is privately reducible to the k-ary func-tionality f , and that there exists a k-party protocol for privately computing f .Then there exists an m-party protocol for privately computing g.As in the two-party case, the Composition Theorem can be generalized to yieldtransitivity of privacy-reductions; that is, if g is privately reducible to f and fis privately reducible to e then g is privately reducible to e.Proof Sketch: The construction supporting the theorem is identical to the oneused in the proof of Theorem 7.3.3: Let �gjf be a oracle-aided protocol whichprivately reduces g to f , and let �f be a protocol which privately computes f .Then, a protocol � for computing g is derived by starting with �gjf , and replac-ing each invocation of the oracle by an execution of �f . Clearly, � computes g.We need to show that it privately computes g.We consider an arbitrary set I � [m] of semi-honest parties in the executionof �. Note that, for k < m (unlike the situation in the two-party case), theset I may induce di�erent sets of semi-honest parties in the di�erent executionsof �f (replacing di�erent invocations of the oracle). Still our \uniform" de�-nition of simulation (i.e., uniform over all possible sets of semi-honest parties)keeps us away from trouble. Speci�cally, let Sgjf and Sf be the simulators guar-anteed for �gjf and �f , respectively. We construct a simulation S, for �, inthe natural manner. On input (I; xI ; fI(x)) (see De�nition 7.5.1), we �rst runSgjf (I; xI ; fI(x)), and obtain the view of the semi-honest coalition I in �gjf .This view includes sequence of all oracle-call requests made during the execu-tion as well as the sequence of parties which supplies query-parts in each suchcall. The view also contains the query-parts supplied by the parties in I as well

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

680 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSas the corresponding responses. For each such oracle-call, we denote by J thesubset of I that supplied query-parts in this call, and just invoke Sf providingit with the subset J as well as with the corresponding J-parts of queries andanswers. Thus, we �ll-up the view of I in the current execution of �f . (Recallthat Sf can also handle the trivial cases in which either jJ j = k or jJ j = 0.)It is left to show that S indeed generates a distribution indistinguishablefrom the view of semi-honest parties in actual executions of �. As in the proofof Theorem 7.3.3, this is done by introducing a hybrid distribution, denoted H .This hybrid distribution represents the view of the parties in I (and output of allparties) in an execution of �gjf that is augmented by corresponding invocationsof Sf . In other words, H represents the execution of �, with the exception thatthe invocations of �f are replaced by simulated transcripts. Using the guaranteesregarding Sf (resp., Sgjf), we show that the distributions corresponding to Hand � (resp., H and S) are computationally indistinguishable. The theoremfollows.7.5.2.2 Privately computing Pi ci = (Pi ai) � (Pi bi)We now turn to the m-ary functionality de�ned in Eq. (7.42){(7.43). Recall thatthe arithmetic is that of GF(2), and so �1 = +1 etc. The key observation isthat mXi=1 ai! � mXi=1 bi! = mXi=1 aibi + X1�i<j�m (aibj + ajbi) (7.44)= (1� (m� 1)) � mXi=1 aibi + X1�i<j�m(ai + aj) � (bi + bj)= m � mXi=1 aibi + X1�i<j�m(ai + aj) � (bi + bj) (7.45)where the last equality relies on the speci�cs of GF(2). Now, looking at Eq. (7.45),we observe that each party, i, may compute (by itself) the term m �aibi, whereaseach 2-subset, fi; jg, may privately compute shares to the term (ai+aj)�(bi+bj),by invoking the two-party functionality of Eq. (7.16){(7.17)). This leads to thefollowing construction.Construction 7.5.8 (privately reducing them-party computation of Eq. (7.42){(7.43) to the two-party computation of Eq. (7.16){(7.17)):Inputs: Party i holds (ai; bi) 2 f0; 1g� f0; 1g, for i = 1; :::;m.Step 1 { Reduction: Each pair of parties, (i; j), where i < j, invokes the 2-aryfunctionality of Eq. (7.16){(7.17). Party i provides the input pair, (ai; bi),whereas Party j provides (aj ; bj). Let us denote the oracle response toParty i by cfi;jgi , and the response to Party j by cfi;jgj .

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 681Step 2: Party i sets ci = maibi +Pj 6=i cfi;jgi .Indeed, maibi = 0 if m is even and maibi = aibi otherwise.Outputs: Party i outputs ci.We �rst observe that the above reduction is valid; that is, the output of all partiesindeed sum-up to what they should. It is also easy to see that the reduction isprivate. That is,Proposition 7.5.9 Construction 7.5.8 privately reduces the computation of them-ary functionality given by Eq. (7.42){(7.43) to the computation of the 2-aryfunctionality given by Eq. (7.16){(7.17).Proof Sketch: We construct a simulator, denoted S, for the view of partiesin the oracle-aided protocol, denoted �, of Construction 7.3.7. Given a set ofsemi-honest parties, I = fi1; :::; itg (with t < m), and a sequence of inputs(ai1 ; bi1); ::::; (ait ; bit) and outputs ci1 ; :::; cit , the simulator proceeds as follows.1. For each pair, (i; j) 2 I � I where i < j, the simulator uniformly selectscfi;jgi 2 f0; 1g and sets cfi;jgj = cfi;jgi + (ai + aj) � (bi + bj).2. Let �I def= [m] n I , and let ` be the largest element in �I . (Such an ` 2 [m]exists since jI j < m).(a) For each i 2 I and each j 2 �I n f`g, the simulator uniformly selectscfi;jgi 2 f0; 1g.(b) For each i 2 I , the simulator sets cfi;`gi = ci+maibi+Pj 62fi;`g cfi;jgi ,where the latter cfi;jgi 's are as generated in Steps 1 and 2a.3. The simulator outputs all cfi;jgi 's generated above. That is, it outputs thesequence of cfi;jgi 's corresponding to all i 2 I and j 2 [m] n fig.We claim that the output of the simulator is distributed identically to the viewof the parties in I during the execution of the oracle-aided protocol. Further-more, we claim that for every such I , every x = ((a1; b1); :::; (am; bm)) and everypossible outcome (c1; :::; cm) of the functionality f of Eq. (7.42){(7.43), it holdsthat the conditional distribution of S(I; xI ; fI(x)) is distributed identically tothe conditional distribution of view�I (x).To prove the above claim, we �rst note that fI(x) is uniformly distributedover f0; 1gt. The same holds also for the �-outputs of the parties in I (bylooking at the contribution of the ci;`i 's to the output of each Party i 2 I). Turn-ing to the conditional distributions (i.e., conditioning of fI(x) = (ci1 ; :::; cit) =output�(x)), we show that the sequence of cfi;jgi 's is distributed identically inboth distributions. Speci�cally, for i; j 2 I , the oracle answer on ((ai; bi); (aj ; bj))(i.e., (cfi;jgi ; cfi;jgj)) is uniformly and independently distributed over the pairs ofbits summing-up to (ai + aj) � (bi + bj) (which is exactly what happens in the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

682 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSsimulation). Similarly, for every i 2 I , the i-parts of the answers obtained inthe m�1 oracle invocations is uniformly and independently distributed over thesequences agreeing with the above cfi;jgi 's and summing-up to ci +maibi. Theproposition follows.7.5.2.3 The multi-party circuit evaluation protocolFor sake of completeness, we explicitly present the m-party analogue of theprotocol of Section 7.3.4. Speci�cally, we show that the computation of any de-terministic functionality, which is expressed by an arithmetic circuit over GF(2),is privately reducible to the functionality of Eq. (7.42){(7.43).Our reduction follows the overview presented in the beginning of this section.In particular, the sharing of a bit-value v between m parties means a uniformlyselected m-sequence of bits (v1; :::; vm) so that v =Pmi=1 vi, where the ith partyholds vi. Our aim is to propagate, via private computation, shares of the inputwires of the circuit into shares of all wires of the circuit, so that �nally we obtainshares of the output wires of the circuit.We will consider an enumeration of all wires in the circuit. The input wiresof the circuit, n per each party, will be numbered 1; 2::::;m � n so that, forj = 1; :::; n, the jth input of Party i corresponds to the (i � 1) � n + jth wire.The wires will be numbered so that the output wires of each gate have a largernumbering than its input wires. The output-wires of the circuit are the last ones.For sake of simplicity we assume that each party obtains n output bits, and thatthe jth output bit of the ith party corresponds to wire N � (m+ 1� i) � n+ j,where N denotes the size of the circuit.Construction 7.5.10 (privately reducing any deterministic m-ary functional-ity to the functionality of Eq. (7.42){(7.43), for any m � 2):Inputs: Party i holds the bit string x1i � � �xni 2 f0; 1gn, for i = 1; :::;m.Step 1 { Sharing the inputs: Each party splits and shares each of its input bitswith all other parties. That is, for every i = 1; :::;m and j = 1; :::; n, andevery k 6= i, party i uniformly selects a bit r(i�1)n+jk and sends it to party kas the party's share of input wire (i� 1) � n+ j. Party i sets its own shareof the (i� 1) � n+ jth input wire to xji +Pk 6=i r(i�1)n+jk .Step 2 { Circuit Emulation: Proceeding by the order of wires, the parties usetheir shares of the two input wires to a gate in order to privately com-pute shares for the output wire of the gate. Suppose that the parties holdshares to the two input wires of a gate; that is, for i = 1; :::;m, Party iholds the shares ai; bi, where a1; :::; am are the shares of the �rst wire andb1; :::; bm are the shares of the second wire. We consider two cases.Emulation of an addition gate: Each party, i, just sets its share of the out-put wire of the gate to be ai + bi.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 683Emulation of a multiplication gate: Shares of the output wire of the gateare obtained by invoking the oracle for the functionality of Eq. (7.42){(7.43), where Party i supplies the input (query-part) (ai; bi). Whenthe oracle responses, each party sets its share of the output wire ofthe gate to equal its part of the oracle answer.Step 3 { Recovering the output bits: Once the shares of the circuit-output wiresare computed, each party sends its share of each such wire to the partywith which the wire is associated. That is, for i = 1; :::;m and j = 1; :::; n,each party sends its share of wire N � (m+1� i) � n+ j to Party i. Eachparty recovers the corresponding output bits by adding-up the correspondingm shares; that is, the share it had obtained in Step 2 and the m� 1 sharesit has obtained in the current step.Outputs: Each party locally outputs the bits recovered in Step 3.As in the two-party case, one can easily verify that the output of the protocolis indeed correct. Speci�cally, by using induction on the wires of the circuits,one can show that the shares of each wire sum-up to the correct value of thewire. Indeed, for m = 2, Construction 7.5.10 coincides with Construction 7.3.9.The privacy of Construction 7.5.10 is also shown by extending the analysis ofthe two-party case; that is, analogously to Proposition 7.3.10, one can showthat Construction 7.5.10 privately reduces the computation of a circuit to themultiplication-gate emulation.Proposition 7.5.11 Construction 7.5.10 privately reduces the evaluation ofarithmetic circuits over GF(2), representing an m-ary deterministic function-ality, to the functionality of Eq. (7.42){(7.43).Proof Sketch: Just follow the proof of Proposition 7.3.10, treating the partiesin I analogously to the way that Party 1 is treated there. In treating the outputwires of parties in I (i.e., Step 3 in the simulation), note that the shares ofparties in I and the known output value uniquely determines the shares receivedin Step 3 of the protocol only if jI j = m � 1 (as was the case in the proof ofProposition 7.3.10). Otherwise (i.e., for jI j < m� 1), the shares sent (in Step 3of the protocol) by parties in �I should be selected uniformly among all sequencesthat (together with the shares of parties in I) add-up to the given output value.7.5.2.4 Conclusion: Private computation of any functionalityAs in Section 7.3, we may privately reduce the computation of a general (ran-domized) m-ary functionality, g, to the computation of the deterministic m-aryfunctionality, f , de�ned byf((x1; r1); :::; (xm; rm)) def= g(�mi=1ri; (x1; :::; xm)) (7.46)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

684 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSwhere g(r; x) denote the value of g(x) when using coin tosses r 2 f0; 1gpoly(jxj)(i.e., g(x) is the randomized process consisting of uniformly selecting r 2 f0; 1gpoly(jxj),and deterministically computing g(r; x)). Combining this fact with Proposi-tions 7.5.11, 7.5.9 and 7.3.8 (and using the transitivity of privacy-reductions),we obtain:Theorem 7.5.12 Any functionality is privately reducible to OT41.Combining Theorem 7.5.12 and Proposition 7.3.6 with the Composition Theorem(Theorem 7.5.7), we obtain that if enhanced trapdoor permutation exist then anym-ary functionality is privately computable. However, as in the two-party case,we wish to highlight a useful property of the protocols underlying the latter fact.Indeed, we refer to a notion of canonical m-party computation that extendsDe�nition 7.3.13.De�nition 7.5.13 (canonical semi-honest multi-party protocols): A protocol �for privately computing the m-ary functionality f is called canonical if it proceedsby executing the following two stages.Stage 1: The parties privately compute the functionality x 7! ((r11 ; :::; r1m); :::; (rm1 ; :::; rmm)),where the rij 's are uniformly distributed among all possibilities that satisfy(�mi=1ri1; :::;�mi=1rim) = f(x).Stage 2: For i = 2; :::;m and j 2 [m] n fig, Party i sends rij to Party j. Next,Party 1 sends r1j to Party j, for j = 2:::;m. Finally, each party computesits own output; that is, for j = 1:::;m, Party j outputs �mi=1rij .Indeed, the protocols underlying the proof of Theorem 7.5.12 are essentiallycanonical.51 Hence,Theorem 7.5.14 Suppose that there exist collections of enhanced trapdoor per-mutations. Then any functionality can be privately computable by a canonicalprotocol.We comment that the said protocols happen to maintain their security even if theadversary can wire-tap all communication lines. This follows from the fact thatprivacy w.r.t wire-tapping adversaries hold for all privacy reductions presentedin the current section as well as for the protocols presented in Section 7.3.7.5.3 The Malicious Models { Overview and PreliminariesOur aim is to use Theorem 7.5.14 in order to establish the main result of thissection; that is,Theorem 7.5.15 (main result for the multi-party case): Suppose that enhancedtrapdoor permutation exist. Then any m-ary functionality can be securely com-putable in each of the two malicious models.51 This assertion depends on the exact implementation of Step 3 of Construction 7.5.10, andholds provides that Party 1 is the last one to send its shares to all other parties.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 685The theorem will be established in two steps. First, we compile any protocolfor the semi-honest model into an \equivalent" protocol for the �rst maliciousmodel. This compiler is very similar to the one used in the two-party case.Next, we compile any protocol for the �rst malicious model into an \equivalent"protocol for the second malicious model. The heart of the second compiler is aprimitive, which is alien to the two-party case, called Veri�able Secret Sharing(VSS). For simplicity, we again think of the number of parties m as being �xed.The reader may again verify that the dependency of our constructions on m isat most polynomial.To simplify the exposition of the multi-party compilers, we describe them asproducing protocols for a communication model consisting of a single broadcastchannel (and no point-to-point links). In this model, in each communicationround, only one (predetermined) party may send a message and this messagearrives to all parties. Such a broadcast channel can be implemented via an(authenticated) Byzantine Agreement protocol, thus providing an emulation ofthe broadcast model on the standard point-to-point model (in which a broadcastchannel does not exist).Recall that our goal is to transform protocols that are secure in the semi-honest point-to-point model into protocols that are secure in the two maliciousbroadcast models. Starting with (semi-honestly secure) protocols that operatesin the point-to-point communication model, we �rst derive equivalent proto-cols for the broadcast-channel model, and only next we apply the two compil-ers, where each compiler takes and produces protocols in the broadcast-channelmodel (which are secure with respect to a corresponding type of adversaries).Thus, the full sequence of transformations establishing Theorem 7.5.15 (basedon Theorem 7.5.14) is as follows:� We �rst use the pre-compiler (of Section 7.5.3.1) to transform a protocol �0that privately computes a functionality f in the (private channel) point-to-point model into a protocol �00 that privately computes f in the broadcastmodel (where no private point-to-point channels exist).Note that, since we refer to semi-honest behavior, we do not gain by havinga broadcast channel and we may only lose by the elimination of the privatepoint-to-point channels (because this allows the adversary to obtain allmessages sent). However, the protocols presented in Section 7.5.2 happento be secure in the semi-honest broadcast model, and so this pre-compiler isactually not needed (provided we start with these speci�c protocols ratherthan with arbitrary semi-honestly secure protocols).� Using the �rst compiler (of Section 7.5.4), we transform �00 (which issecure in the semi-honest model) into a protocol �01 that is secure in the�rst malicious model.We stress that both �00 and �01 operate and are evaluated for security in acommunication model consisting of a single broadcast channel. The sameholds also for �02 mentioned next.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

686 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS� Using the second compiler (of Section 7.5.5) to transform �01 (which issecure in the �rst malicious model) into a protocol �02 that is secure in thesecond malicious model.� Finally, we use the post-compiler (of Section 7.5.3.2) to transform each ofthe protocols �01 and �02, which are secure in the �rst and second maliciousmodels when communication is via a broadcast channel, into correspondingprotocols, �1 and �2, for the standard point-to-point model. That is, �1(resp., �2) securely computes f in the �rst (resp., second) malicious modelin which communication is via standard point-to-point channels.We stress that security holds even if the adversary is allowed to wire-tapthe (point-to-point) communication lines between honest parties.We start by discussing the security de�nitions for the broadcast communicationmodel, and presenting the pre-compiler and the post-compiler mentioned above.Once this is done, we turn to the real core of this section: the two compilers(which are applied to protocols that operate in the broadcast model).De�nitions. Indeed, security in the broadcast model was not de�ned so far.However, the three relevant de�nitions for the broadcast communication modelare easily derived from the corresponding de�nitions given in Section 7.5.1, wherea point-to-point communication model was used. Speci�cally, in de�ning secu-rity in the semi-honest model one merely includes the entire transcript of thecommunication over the (single) broadcast channel in each party's view. Simi-larly, when de�ning security in the two malicious models one merely notes thatthe \real execution model" (i.e., real�;I;A) changes (since the protocol is nowexecuted over a di�erent communication media), whereas the \ideal model" (i.e.,ideal(1)f;I;B or ideal(2)f;I;B) remains intact.7.5.3.1 Precompiler (emulating private channels)It is easy to (securely) emulate a set of (private) point-to-point communicationchannels over a (single) broadcast channel. All that one needs to do is use asecure public-key encryption scheme. Speci�cally, a protocol � that operates inthe (private) point-to-point communication model is emulated as follows. First,each party randomly generates a pair of encryption/decryption keys, posts theencryption-key on the broadcast channel, and keeps the decryption-key secret.Next, any party instructed (by �) to send a message, msg, to Party i, encryptsmsg using the encryption-key posted by Party i, and places the resulting ci-phertext on the broadcast channel (indicating that it is intended for Party i).Party i recovers msg by using its decryption-key, and proceeds as directed by�. Denote the resulting protocol by �0. Below, we merely consider the e�ect ofthis transformation in the semi-honest model.Proposition 7.5.16 (pre-compiler): Suppose that enhanced trapdoor permuta-tion exist. Then any m-ary functionality is privately computable in the broadcastcommunication model. Furthermore, the protocol is canonical.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 687Proof Sketch: Let f be an m-ary functionality, and � be a protocol (guaran-teed by Theorem 7.5.14) for privately computing f in the point-to-point commu-nication model. Given a trapdoor permutation, we construct a secure public-keyencryption scheme and use it to transform � into �0 as described above.To simulate the view of parties in an execution of �0 (taking place in thebroadcast communication model), we �rst simulate their view in an execution of� (taking place in the point-to-point communication model). We then encrypteach message sent by a party in the semi-honest coalition, as this would bedone in an execution of �0. Note that we know both the message and thecorresponding encryption-key. We do the same for messages received by semi-honest parties. All that remain is to deal with messages, which we may notknow, sent between two honest parties. Here we merely place an encryption ofan arbitrary message. This concludes the description of the \broadcast-model"simulator.The analysis of the latter simulator combines the guarantee given for the\point-to-point simulator" and the guarantee that the encryption scheme is se-cure. That is, ability to distinguish the output of the \broadcast-model" simu-lator from the execution view (in the broadcast model) yields either (1) abilityto distinguish the output of the \point-to-point" simulator from the executionview (in the point-to-point model) or (2) ability to distinguish encryptions underthe above public-key encryption scheme. In both cases we reach contradictionto our hypothesis.7.5.3.2 Postcompiler (emulating a broadcast channel)Here we go the other way around (i.e., from the broadcast model to the point-to-point model). We are given a protocol that securely computes (in one of thetwo malicious models) some functionality, where the protocol uses a broadcastchannel. We wish to convert this protocol into an equivalent one that worksin a point-to-point communication model. (Actually, we do not go all the wayback, because we do not assume these point-to-point lines to provide privatecommunication.) Thus, all we need to do is emulate a broadcast channel over apoint-to-point network and in the presence of malicious parties, which reducesto solving the celebrated Byzantine Agreement problem. However, we havesignature schemes at our disposal and so we merely need to solve the mucheasier problem known as authenticated Byzantine Agreement. For sake of self-containment we de�ne the problem and present a solution.Authenticated Byzantine Agreement: We presuppose a synchronous point-to-point model of communication and a signature scheme infrastructure. Thatis, each party knows the veri�cation-key of all other parties. Party 1 has aninput bit, denoted �, and its objective is to let all honest parties agree on thevalue of this bit. In case Party 1 is honest, the other parties must agree on itsactual input, but otherwise they may agree on any value (as long as they agree).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

688 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSConstruction 7.5.17 (Authenticated Byzantine Agreement): Let m denotethe number of parties. We assume that the signature scheme in use has sig-nature of length that depends only on the security parameter, and not on thelength of the message to be signed.52Phase 1: Party 1 sign its input and sends it to all parties.De�nition: A message is called (v; i)-authentic if it has the form (v; sp1 ; :::; spi),where p1 = 1, all pj's are distinct, and for every j = 1; :::; i, the string spjis accepted as a signature to (v; sp1 ; :::; spj�1) relative to the veri�cationkey of party pj .Observe that when Party 1 follows the protocol with input v, at Phase 1it sends a (v; 1)-authentic message to each party. For every i � 2, if(v; sp1 ; :::; spi) is (v; i)-authentic then (v; sp1 ; :::; spi�1) is (v; i�1)-authentic.Phase i = 2; :::;m: Each honest party (other than Party 1) inspects the messagesit has received at Phase i�1, and forwards signed versions of the (�; i�1)-authentic messages that it has received. Speci�cally, for every v 2 f0; 1g,if Party j has received a (v; i� 1)-authentic message (v; sp1 ; :::; spi�1) suchthat all pk's are di�erent from j then it appends its signature to the mes-sage, and sends the resulting (v; i)-authentic message to all parties.We stress that, for each value of v, Party j sends at most one (v; i)-authentic message to all parties. Actually, it may refrain from sending(v; i)-authentic messages if it has already sent (v; i0)-authentic messagesfor some i0 < i.Termination: Each honest party (other than Party 1) evaluates the situation asfollows:1. If, for some i0; i1 2 [m] (which are not necessarily di�erent), it hasreceived both an (0; i0)-authentic message and a (1; i1)-authentic mes-sage then it decides that Party 1 is malicious, and outputs a defaultvalue, say 0.2. If, for a single v 2 f0; 1g and some i, it has received an (v; i)-authenticmessage then it outputs the value v.3. If it has never received a (v; i)-authentic message, for any v 2 f0; 1gand i, then it decides that Party 1 is malicious and outputs a defaultvalue, say 0.The protocol can be easily adapted to handle non-binary input values. For sakeof e�ciency, one may instruct honest parties to forward at most two authenticmessages that refer to di�erent values (because this su�ces to establish thatParty 1 is malicious).52 Such a signature scheme can be constructed given any one-way function. In particular,one may use Construction 6.4.30. Maintaining short signatures is important in this application,because we are going to iteratively sign messages consisting of the concatenation of an originalmessage and prior signatures.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 689Proposition 7.5.18 Assuming that the signature scheme in use is unforgeable,Construction 7.5.17 satis�es the following two conditions:1. It is infeasible to make any two honest parties output di�erent values.2. If Party 1 is honest then it is infeasible to make any honest party outputa value di�erent from the input of Party 1.The claim holds regardless of the number of dishonest parties and even if dis-honest parties abort the execution.Proof Sketch: Fixing any j and v, suppose that in Phase i�1, Party j receivesan (v; i�1)-authentic message, and assume that i is the smallest integer for whichthis happens. For this to happen it must be that i � m, because the messagemust contain i� 1 signatures from di�erent parties (other than Party j itself).In such a case, if Party j is honest then it will send an authentic (v; i)-messagein Phase i (i � m), and so all parties will receive an authentic (v; i)-message inPhase i. Thus, for every v, if an honest party see a (v; �)-authentic message thenso do all other honest parties, and Part 1 follows. Part 2 follows by observingthat if Party 1 is honest and has input v then all honest parties see an authentic(v; 1)-message. Furthermore, none can see a (v0; i)-authentic message, for v0 6= vand any i.Proposition 7.5.19 (post-compiler): Suppose that one-way functions exist. Thenany m-ary functionality that is securely computable in the �rst (resp., second)malicious broadcast model is also securely computable in the �rst (resp., second)malicious point-to-point model.Proof Sketch: The idea is to replace any broadcast message sent in the originalprotocol by an execution of Authenticated Byzantine Agreement (AuthBA).This idea needs to be carefully implemented because it is not clear that thesecurity of AuthBA is preserved under multiple executions, and thus applyingProposition 7.5.18 per se will not do. The problem is that the adversary mayuse authenticated messages sent in one execution of the protocol in order tofool some parties in a di�erent execution. This attack can be avoided in thecurrent context, by using identi�ers (which can be assigned consistently by thehigher-level protocol) for each of the executions of the AuthBA protocol. Thatis, authentic messages will be required to bear the distinct execution identi�er(and all signatures will be applied to that identi�er as well), and so authenticmessages of one execution will not be authentic in any other execution. Thus,the proof of Proposition 7.5.18 can be extended to our context, where sequentialexecutions of AuthBA (with externally-assigned distinct identi�ers) take place.7.5.4 The �rst complier { Forcing Semi-Honest BehaviorWe follow the basic structure of the two-party compiler presented in Section 7.4.Adapting that compiler to the multi-party setting merely requires generalizing

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

690 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSthe implementation of each of the three phases (of the compiled two-party proto-cols). Following is a high-level description of the multi-party protocols generatedby the (multi-party) compiler. Recall that all communication, both in the in-put protocol as well as in the one resulting from the compilation, is conductedmerely by posting messages on a single broadcast channel.Input-commitment phase: Each of the parties commits to each of its in-put bits. This will be done using a multi-party version of the input-commitment functionality of Eq. (7.34).Intuitively, malicious parties may (abort or) substitute their inputs duringthis phase, but they may do so depending only on the value of the inputsheld by malicious parties.Coin-generation phase: The parties generate random-tapes for each of theparties. These random-tapes are intended to serve as the coins of thecorresponding parties in their emulation of the semi-honest protocol. Eachparty obtains the random-tape to be held by it, whereas the other partiesobtain commitments to this value. This will be done using a multi-partyversion of the augmented coin-tossing functionality of Eq. (7.33).Intuitively, malicious parties may abort during this phase, but otherwisethey end-up with a uniformly distributed random-tape.Protocol emulation phase: The parties emulate the execution of the semi-honest protocol with respect to the inputs committed in the �rst phaseand the random-tapes selected in the second phase. This will be doneusing a multi-party version of the authenticated-computation functionalityof Eq. (7.31).Intuitively, malicious parties may abort during this phase, but otherwisethey end-up sending messages as directed by the semi-honest protocol.In order to implement the above phases, we de�ne natural extensions of theinput-commitment, coin-tossing, and authenticated-computation functionalities(of the two-party case), and present secure implementations of them in the cur-rent (�rst malicious) multi-party model. The original de�nitions and construc-tions are obtained by setting m = 2. We start again by de�ning an adequatenotion of reducibility, which allows a modular presentation of the compiled pro-tocols.7.5.4.1 Security reductions and a composition theoremAnalogously to Section 7.5.2.1, we now de�ne what we mean by saying thatone functionality securely reduces to another functionality. We use the samede�nition of an oracle-aided protocol (i.e., De�nition 7.5.5), but require such aprotocol to be secure in the �rst malicious model (rather than be secure in thesemi-honest model). As in the two-party case, we require that the length ofeach oracle query can be determined from the length of the initial input to theoracle-aided protocol.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 691De�nition 7.5.20 (security reductions in the �rst malicious model):� As in De�nition 7.5.6, an m-party oracle-aided protocol is said to be us-ing the k-party oracle-functionality f if the oracle answers are according tof . However, in accordance with the behavior of ideal-model adversaries,the oracle does not answer all parties concurrently, but rather answer �rstthe party that requested this speci�c oracle call (in the oracle-aided proto-col). When receiving its part of the oracle answer, the party that requestedthe oracle call instructs the oracle whether or not to respond to the otherparties.We consider only protocols in which the length of each oracle query is apolynomial-time computable function of the length of the initial input tothe protocol. Furthermore, the length of each query must be polynomiallyrelated to the length of the initial input.Analogously to De�nition 7.5.3, the joint execution of an oracle-aided pro-tocol � with oracle f under (I; A) in the real model ((on input sequencex = (x1; :::; xm) and auxiliary input z), denoted realf�;I;A(z)(x), is de�nedas the output sequence resulting of the interaction between the m parties,where the messages of parties in I are computed according to A(xI ; z), themessages of parties not in I are computed according to �, and the oraclecalls are answered using f .� An oracle-aided protocol �, using the oracle-functionality f , is said tosecurely compute g (in the �rst malicious model) if a condition analogousto the one in De�nition 7.5.3 holds. That is, the e�ect of any e�cientreal-model adversary as above can be simulated by a corresponding ideal-model adversary, where the ideal model for computing g is exactly as inDe�nition 7.5.2.More speci�cally, the oracle-aided protocol � (using oracle f) issaid to securely compute g (in the �rst malicious model) if for everyprobabilistic polynomial-timeA there exists a probabilistic polynomial-time pair B such that for every I � [m]fideal(1)g;I;B(z)(x)gx;z c� frealf�;I;A(z)(x)gx;z� An oracle-aided protocol is said to securely reduce g to f (in the �rst mali-cious model), if it securely computes g (in the �rst malicious model) whenusing the oracle-functionality f . In such a case we say that g is securelyreducible to f ,Indeed, when clear from the context, we often omit the quali�er \in the �rstmalicious model".We are now ready to state a composition theorem for the �rst multi-party ma-licious model.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

692 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSTheorem 7.5.21 (Composition Theorem for the �rst multi-party maliciousmodel): Suppose that the m-ary functionality g is securely reducible to the k-aryfunctionality f and that there exists a k-party protocol for securely computing f .Then there exists an m-party protocol for securely computing g.Recall that the syntax of oracle-aided protocols disallows concurrent oracle calls,and thus Theorem 7.5.21 is actually a sequential composition theorem. As in thetwo-party case, the Composition Theorem can be generalized to yield transitivityof secure-reductions and to account for reductions that use several oracles ratherthan one.Proof Sketch: Analogously to the proof of previous composition theorems, weare given an oracle-aided protocol, denoted �gjf , that securely reduces g to f ,and an ordinary protocol �f that securely computes f . Again, we construct aprotocol � for computing g in the natural manner; that is, starting with �gjf , wereplace each invocation of the oracle (i.e., of f) by an execution of the protocol�f . Clearly, � computes g, and we need to show that � securely computes g.This is proven by merely generalizing the proof of Theorem 7.4.3 (i.e., the two-party case). The only point that is worthwhile stressing is that the real-modeladversary for �f , derived from the real-model adversary for �, is constructedobliviously of the set of parties I that the adversary controls.53 As in the proofof Theorem 7.5.7, we determine the set of parties for every such invocation of �f ,and rely on the fact that security holds with respect to adversaries controllingany subset of the k parties participating in an execution of �f . In particular,security of an invocation of �f by parties J = fj1; :::; jkg holds also in caseI \ J = ;, where it means that a real-model adversary (which control no partyin J) learns nothing by merely tapping the broadcast channel.547.5.4.2 Secure broadcastIn order to facilitate the implementation of some functionalities, we introducethe following secure broadcast functionality:(v; 1jvj; :::; 1jvj;) 7! (v; v; :::; v) (7.47)At �rst glance, it seems that Eq. (7.47) is trivially implementable by Party 1posting the value v on the broadcast channel. This solution is \secure" as longas the (real-model) adversary controls a non-empty set of parties, but fails incase the adversary controls none of the parties but may be tapping the broadcastchannel. Note that this case may arise in a subtle way also in case we don't careabout it a-priori (e.g., see the proof of Theorem 7.5.21). Indeed, by using apublic-key encryption scheme, we can easily present a secure implementation ofEq. (7.47).53 Unlike in the two-party case, here we cannot a�ord to consider a designated adversaryfor each subset of parties.54 Security holds also in the other extreme case, where I \ J = J, but is not meaningful inthat case.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 693Proposition 7.5.22 Assuming the existence of trapdoor permutations, there ex-ist a secure implementation of Eq. (7.47) in the �rst malicious model.Proof Sketch: As in Section 7.5.3.1, we let each party generate and broadcastan encryption-key, and let Party 1 broadcast the encryption of v under each ofthese encryption-keys.7.5.4.3 Multi-party authenticated computationWe start our assembly of multi-party functionalities by presenting and imple-menting a multi-party generalization of the authenticated computation function-ality of Eq. (7.31).55De�nition 7.5.23 (authenticated computation, multi-party version): Let f :f0; 1g� � f0; 1g� ! f0; 1g� and h : f0; 1g� ! f0; 1g� be polynomial-time com-putable. The h-authenticated f -computation m-party functionality is de�ned by(�; �2; :::; �m) 7! (�; v2; :::; vm) (7.48)where vi def= f(�) if �i = h(�) and vi def= (h(�); f(�)) otherwise.Note that the obvious reduction of Eq. (7.48) to the two-party case (i.e., toEq. (7.31)) does not work (see Exercise 16). As in the two-party case, wewill securely-reduce Eq. (7.48) to an adequate multi-party generalization of theimage-transmission functionality, and provide a secure implementation of thelatter. We start by implementing the adequate multi-party generalization of theimage transmission functionality, de�ned as follows:(�; 1j�j; :::; 1j�j) 7! (�; f(�); :::; f(�)) (7.49)Indeed, Eq. (7.49) is essentially a special case of Eq. (7.48). The followingmulti-party protocol generalizes the one used in the two-party case. The factthat we use a proof system of perfect completeness plays a central role in itssecurity. The same holds with respect to the fact that all messages are sent overa broadcast channel (and so the honest parties agree one their value). Togetherthese two facts imply that any party can determine whether some other partyhas \justi�ably rejected" some claim.Construction 7.5.24 (image transmission protocol, multi-party version): LetR def= f(v; w) : v = f(w)g. For simplicity, we assume that f is length-regular;that is, jf(x)j = jf(y)j for every jxj = jyj.Inputs: Party 1 gets input � 2 f0; 1g�, and each other party gets input 1n, wheren = j�j.55 Indeed, an alternative multi-party generalization may require that all vi's equal f(�) if�2 = � � � = �m = h(�) and equal (h(�); f(�)) otherwise. However, this alternative generaliza-tion seems harder to implement, whereas Eq. (7.48) su�ces for our application.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

694 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSStep C1: Party 1 securely broadcasts v def= f(�). That is, Party 1 invokesEq. (7.47) with input v, whereas each other party enters the input 1jf(1n)jand receives the output v.Step C2: For i = 2; :::;m, Parties 1 and i invoke a zero-knowledge strong-proof-of-knowledge system for R such that Party 1 plays the prover and Party iplays the veri�er. The common input to the proof system is v, the provergets � as auxiliary input and its objective is to prove that it knows a wsuch that (v; w) 2 R (i.e., v = f(w)). In case the veri�er rejects the proof,Party i sends the coins used by the veri�er so that all other parties canbe convinced of its justi�able rejection, where the latter corresponds to theview of the veri�er in a rejecting interaction. All messages of the proofsystem are sent using the secure broadcast functionality.Outputs: For i = 2; :::;m, if Party i sees some justi�able rejection then it output? else it output v. (Party 1 has no output.)A key observation is that if Party 1 is honest then no party can justi�ably rejectits proof in Step C2, because the proof system has perfect completeness (whichmeans that there exist no random-tape that makes the veri�er reject an honestprover). Note that Construction 7.5.24 is actually an oracle-aided protocol, usingthe secure broadcast oracle. Consequently, in case the real-model adversarycontrols none of the parties, it learns nothing (as opposed to what might havehappened if we were to use ordinary broadcast in Steps C1 or C2).Proposition 7.5.25 Suppose that the proof system, (P; V), used in Step C2is indeed a zero-knowledge strong-proof-of-knowledge for the relation R. Then,Construction 7.5.24 securely reduces Eq. (7.49) to Eq. (7.47).Proof Sketch: The proof extends the two-party case treated in Proposition 7.4.12.Here, we transform any real-model adversaryA into a corresponding ideal-modeladversary B, where both get the set I as auxiliary input. The case I = ; is han-dled by relying on the secure broadcast functionality (which implies that in thiscase the real-model adversary, which refers to an oracle-aided protocol in whichall messages are sent using Eq. (7.47), gets nothing). Otherwise, the operationof B depends on whether or not 1 2 I , which corresponds to the cases handledin the two-party case.We start with the case that the �rst party is honest, which means here that1 62 I . In this case the input to B essentially consist of 1n, where n = j�j, andit operates as follows (assuming I 6= ;):1. B sends 1j�j to the trusted party and obtains the value v, which equals f(�)for � handed by (the honest) Party 1. Thus, indeed (v; �) 2 R. (Recallthat Party 1 always obtains � from the trusted party, but the other partiesin �I = [m] n I obtain v).)2. For i = 2; :::;m, machine B invokes the simulator guaranteed for the zero-knowledge proof system (P; V), on input v, using (the residual) A as a

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 695possible malicious veri�er (which may indeed act as if the common inputis di�erent). Note that we are simulating the actions of the prescribedprover P , which in the real protocol is played by the honest Party 1. Onceone simulation is �nished, its transcript becomes part of the history fed toA in subsequent simulations. Denote the obtained sequence of simulationtranscripts by S = S(v).3. Finally, B feed A with the alleged execution view (v; S), and outputswhatever A does.The computational indistinguishability of the output of the real-model adversaryunder (A; I) and the output of the ideal-model adversary under (B; I) followsfrom the guaranteed quality of the zero-knowledge simulator. What needs tobe addressed is the outputs of the honest parties (i.e., the parties in �I), andspeci�cally the outputs of parties in �I n f1g. (Indeed, this is an issue only if�I n f1g 6= ;, which is the reason that it did not arise in two two-party case.)In the ideal-model execution, each party in �I n f1g output v = f(�), and wehave to prove that the same occurs in the real-model execution (when Party 1is honest). This follows from the perfect completeness of (P; V), as discussedabove.We now turn to the case where the �rst party is dishonest (i.e., 1 2 I). Inthis case the input to B includes �, and it operates as follow (ignoring the easycase I = [m]):1. B invokes A on input �, and obtains the Step C1 message, denoted v, thatA instruct Party 1 to send (i.e., v = A(�)). As (implicit) in the protocol,any action of A in Step C1 (including abort) is interpreted as sending astring.2. B tries to obtain a preimage of v under f . Towards this end, B usesthe (strong) knowledge-extractor associated with (P; V). Speci�cally, pro-viding the strong knowledge-extractor with oracle access to (the residualprover) A(�), machine B tries to extract (from A) a string w such thatf(w) = v. This is done per each of the j�I j executions of the proof systemin which the veri�er is played by a honest party, while updating the his-tory of A accordingly.56 In case the extractor succeeds (in one of these j�I jattempts), machine B sets �0 def= w. Otherwise, B sets �0 def= ?.3. B now emulates an execution of Step C2. Speci�cally, for each i 2 �I ,machine B lets the adequate residual A play the prover, and emulates byitself the (honest) veri�er interacting with A (i.e., B behaves as a honestParty i). The emulation of the proofs given to parties in I is performed inthe straightforward manner.56 If necessary (i.e., j�Ij 6= f2; :::; j�Ij + 1g), we also emulate the interleaved proofs that aregiven to parties in I. This is performed in the straightforward manner (i.e., by letting Aemulate both parties in the interaction).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

696 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS� In case any of the m�1 emulated veri�ers rejects justi�ably, machineB aborts (without invoking the trusted party), and outputs whateverA does (when fed with these emulated proof transcripts).� Otherwise (i.e., no veri�er rejects justi�ably), we consider two sub-cases:(a) If �0 6= ? then B sends �0 to the trusted party, and allows it torespond the honest parties. (The response will be f(�0), whichby Step 2 must equal v.)(b) Otherwise (i.e., �0 = ? indicating that extraction has failed),B fails. (Note that this means that in Step 3 the veri�er wasconvinced, while in Step 2 the extraction attempt has failed.)4. Finally, B feed A with the execution view, which contains the prover'sview of the emulation of Step C2 (produced in Step 3 above), and outputswhatever A does.As in the two-party case (see proof of Proposition 7.4.12), the real-model execu-tion di�ers from the ideal-model execution only in case the real-model adversaryA succeeds to convince the knowledge-veri�er (which is properly emulated) thatit knows a preimage of v under f , and yet the knowledge-extractor failed to �ndsuch a preimage. By de�nition of strong knowledge-veri�ers, such an event mayoccur only with negligible probability.Securely-reducing authenticated computation to image-transmission.Analogously to the two-party case, we securely-reduce Eq. (7.48) to Eq. (7.49).Construction 7.5.26 (multi-party authenticated computation, oracle-aided pro-tocol):Inputs: Party 1 gets input � 2 f0; 1g�, and Party i gets input �i 2 f0; 1gj�j.Step C1: Party 1 uses the (multi-party) image transmission functionality to sendthe pair (u; v) def= (h(�); f(�)) to the other parties. That is, the partiesinvoke the functionality of Eq. (7.49), where Party 1 enters the input �and Party i is to obtain g(�) def= (h(�); f(�)).Step C2: Assuming that Step C1 was not aborted by Party 1 and that Party ireceives the pair (u; v) in Step C2, Party i outputs v if u = �i and (u; v)otherwise.Outputs: If not aborted (with output ?), Party i sets its local output as directedin Step C2. (Party 1 has no output.)Extending the proof of Proposition 7.4.15 (to apply to Construction 7.5.26), andusing Propositions 7.5.25 and 7.5.22, we obtain:

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 697Proposition 7.5.27 Assuming the existence of trapdoor permutations, the h-authenticated f-computation m-party functionality of Eq. (7.48) can be securelyimplemented in the �rst malicious model.Proof Sketch: We focus on the analysis of Construction 7.5.26, which extendsthe proof of Proposition 7.4.15. As in the proof of Proposition 7.5.25, whenextending the proof of the two-party setting, the two cases (in the proof) cor-respond to whether or not Party 1 is honest (resp., 1 62 I or 1 2 I). Again, wediscard the case I = ;, where here the justi�cation is that the oracle-aided proto-col does not use the broadcast channel at all (and so no information is availableto the real-model adversary in this case). The case 1 62 I 6= ; is handled exactlyas the case that Party 1 is honest in the proof of Proposition 7.4.15 (i.e., B sendsthe �i's it holds to the trusted party, obtains h(�) and f(�) (either explicitlyor implicitly), where � is the input of Party 1, and uses (h(�); f(�)) to emulatethe real execution). In case 1 2 I , we need to extend the two-party treatmenta little, because we also have to emulate the oracle-answer given (in Step C1) todishonest parties (di�erent than Party 1, which gets no answer). However, thisanswer is determined by the query �0 made in Step C1 by Party 1, and indeedwe merely need to feed A with the corresponding oracle answer (h(�0); f(�0)).The rest of the treatment is exactly as in the two-party case. The propositionfollows.Comment: pure oracle-aided protocols. Note that Construction 7.5.26makes no direct use of its communication channel, but is rather con�ned to theinvocation of oracles and local computations. Such an oracle-aided protocol iscalled pure. Note that most oracle-aided protocols presented in Section 7.4 arepure. An important property of pure oracle-aided protocols is that an adversarythat controls none of the parties and only wire-taps the communication channelgets no information, and so this case can be discarded (as done in the proof ofProposition 7.5.27).57 In fact, Construction 7.5.24 is also a pure oracle-aidedprotocol (by virtue of its use of the secure broadcast functionality).7.5.4.4 Multi-party augmented coin-tossingIn this section, we generalize the augmented coin-tossing functionality (of Sec-tion 7.4.3.5) to the multi-party setting. More generally, for any positive polyno-mial ` : N ! N and a polynomial-time computable function g, we consider therandomized m-ary functionality(1n; :::; 1n) 7! (r; g(r); :::; g(r)); (7.50)where r is uniformly distributed in f0; 1g`(n). We securely-reduce Eq. (7.50)to the multi-party authenticated computation functionality. We note that thisconstruction is di�erent from the one used in the two-party case.57 Recall that in Section 7.4 we did not consider such external adversaries, and thus thenotion of pure oracle-aided protocols was not discussed or used.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

698 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSConstruction 7.5.28 (an oracle-aided protocol for Eq. (7.50)): Let C be acommitment scheme and Cr1;:::;r`(�1; :::; �`) = (Cr1(�1); :::; Cr`(�`)) be as inConstruction 7.4.16.Inputs: Each party gets input 1n, and sets ` def= `(n).Step C1: For i = 1; ::;m, Party i uniformly selects ri 2 f0; 1g` and si 2 f0; 1g`�n.Step C2: For i = 1; ::;m, Party i uses the image transmission functionality tosend ci def= Csi(ri) to all parties. Actually, Party i enters Eq. (7.48) withinput (ri; si), each other party enters with input 1`+`�n, which is supposed toequal h(ri; si) def= 1jrij+jsij, and is supposed to obtain f(ri; si) def= Csi(ri).Abusing notation, let us denote by ci the answer received by each party,where ci may equal ? in case Party i has aborted the ith oracle call.Thus, in Steps C1{C2, each party commits to a random string. Withoutloss of generality, we assume that no party abort these steps (i.e., we treatabort as if it were some legitimate default action).Step C3: For i = 2; ::;m (but not for i = 1), Party i uses the authenticatedcomputation functionality to send ri to all parties. That is, Party i en-ters Eq. (7.48) with input (ri; si), each other party enters with input ci,where ci is supposed to equal h(ri; si) def= Csi(ri), and is supposed to ob-tain f(ri; si) def= ri. In case Party i aborts or Party j obtains an answerof a di�erent format, which happens if the inputs of these parties to thefunctionality do not match, Party j sets rji = 0`. Otherwise Party j ob-tains f(ri; si) = ri and sets rji = ri. (For simplicity, let rjj def= rj .) Thus,e�ectively there is no aborting in this step either.Note that in this step, each party, except Party 1, reveals the `-bit longstring to which it has committed in Step C2. The correctness of the re-vealed value is guaranteed by the de�nition of the authenticated computa-tion functionality, which is used here instead of the straightforward way ofrevealing the decommitment information.Step C4: For j = 1; :::;m, Party j sets rj def= �mi=2rji .Party 1 sets r def= r1 � r1 = �mi=1r1i , and uses the authenticated computa-tion functionality to send g(r) to all parties. Speci�cally, Party 1 entersEq. (7.48) with input (r1; s1; r1), each (other) Party j enters with input(c1; rj), where (c1; rj) is supposed to equal h(r1; s1; r1) def= (Cs1(r1); r1),and is supposed to obtain f(r1; s1; r1) def= g(r1 � r1), which equals g(r).In case Party 1 aborts or Party i obtains an answer of a di�erent format,which happens if the inputs to the functionality do not match, Party i haltswith output ? (indicating that Party 1 misbehaved).Outputs: Party 1 outputs r, and Party 2 outputs the value determined in Step C4,which is either g(r) or ?.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 699Note that, in case m = 2, Construction 7.5.28 yields an alternative protocol forEq. (7.32); that is, a protocol that is fundamentally di�erent from the one inConstruction 7.4.16.Proposition 7.5.29 Construction 7.5.28 securely reduces Eq. (7.50) to Eq. (7.48).Proof Sketch: We transform any real-model adversary A (for the oracle-aidedexecution) into a corresponding ideal-model adversary B. The operation of Bdepends on whether or not Party 1 is honest (i.e., 1 2 �I), and we ignore thetrivial cases of I = ; and I = [m]. In case 1 2 �I (i.e., Party 1 is honest), machineB proceeds as follows:1. Machine B emulates the local actions of the honest parties in Step C1. Inparticular, it uniformly selects (ri; si) for each i 2 �I (including i = 1).2. For every i 2 �I , machine B emulates the ith sub-step of Step C2, byfeeding A with the corresponding ci = Csi(ri) (as if it were the answer ofthe ith oracle call). For every i 2 I , machine B obtains the input (ri; si)that A enters to the ith oracle call of Step C2, and feeds A with adequateemulations of the oracle answers.3. For every i 2 �I n f1g, machine B emulates the ith sub-step of Step C3, byfeeding A with a sequence in fri; (ci; ri)gjIj that corresponds to whetheror not each Party j 2 I has entered the input ci (de�ned in Step 2). Forevery i 2 I , machine B obtains the input (r0i; s0i) that A enters to the ithoracle call of Step C2, records whether or not Csi(ri) = Cs0i(r0i), and feedsA with adequate emulations of the oracle answers.For every i 2 �I , machine B sets r1i = ri. For every i 2 I , machine B setsr1i = ri if Csi(ri) = Cs0i(r0i) and r1i = 0` otherwise. Note that, for every i,this corresponds to the proper setting of r1i in the protocol.4. Machine B invokes the trusted party with input 1n and obtains the answerg(r), for a uniformly distributed r 2 f0; 1g` that is handed to Party 1.58Next, machine B emulates Step C4, by feeding each dishonest party witheither g(r) or ((c1; r1); g(r)), where r1 def= �mi=2r1i . The choice is determineby whether or not (in Step C4) this party has enter the input (c1; r1).Finally, machine B outputs whatever A does.We stress that in this case B never aborts (and in fact, since Party 1 is honest,abort is disallowed in the ideal model). Observe that the only di�erence betweenthe ideal-model execution under B and the real-model execution under A is thatin the former a uniformly distributed r 2 f0; 1g` is used instead of �mi=1r1i =r1� r1. Furthermore, c1 = C(r1) is the only part of the joint-view that dependson r1, where in the real-model r1 always equals r � r1 whereas in the ideal-model equality holds with probability 2�`. Thus, the joint-views di�er only in58 Indeed, this part of the current step could take place also at an earlier stage.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

700 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSwhether or not c1 is a commitment to r�r1, where g(r) and r1 are explicit in thejoint-view. However, by the hiding property of C, this di�erence is undetectable.We now turn to the case that i 2 I (i.e., Party 1 is dishonest). The treatmentof this case di�ers in two main aspects. First, unlike in the previous case, herethe adversary (which controls Party 1) obtains all ri's and so we must guaranteethat in the ideal model the trusted-party's answer (to Party 1) equals �mi=1ri.Second, unlike in the previous case, here the real-model adversarymay e�ectivelyabort Step C4, but this is easy to handle using the allowance to abort theideal-model adversary (i.e., instruct the trusted party not to respond the honestparties). Returning to the �rst issue, we present a di�erent way of emulatingthe real-model execution.59 Speci�cally, we will cheat in our emulation of thehonest parties and use (in Step 1-2) commitments to the value 0` rather thancommitments to the ri's, which will be determined only at the end of Step 2.Details follow.1. Machine B starts by invoking the trusted party, and obtains a uniformlydistributed r 2 f0; 1g`. At this time, B does not decide whether or not toallow the trusted party to answer the honest parties.In addition, B emulates the local actions of the honest parties in Step C1by uniformly selecting only the si's, for each i 2 �I .2. For every i 2 �I , machine B emulates the ith sub-step of Step C2, by feedingA with ci = Csi(0`). For every i 2 I , machine B obtains the input (ri; si)that A enters to the ith oracle call of Step C2. Finally, B uniformly selectsall other ri's (i.e., for i's in �I) such that �mi=1ri = r holds.3. For every i 2 �I , machine B emulates the ith sub-step of Step C3, byfeeding A with a sequence in fri; (ci; ri)gjIj that corresponds to whetheror not each Party j 2 I has entered the input ci. Note that the fact thatci is unlikely to be a commitment to ri is irrelevant here. The rest of thisstep is as in the case that Party 1 is honest.4. Next, machine B emulates Step C4, and determines whether or not Ainstructs Party 1 to abort its oracle call (in Step C4). If Party 1 abortsthen B prevents the trusted party from answering the honest parties, andotherwiseB allows the trusted party to answer. (Indeed, in case the trustedparty answers Party i 6= 1, the answer is g(r)). In addition, B emulates theanswers of the Step C4 oracle call (as in the case that Party 1 is honest).Finally, machine B outputs whatever A does.Observe that the only di�erence between of the ideal-model execution under Band the real-model execution under A is that in the former commitments to 0`(rather than to the ri's, for i 2 �I) are delivered in Step C2. However, by thehiding property of C, this di�erence is undetectable.59 We comment that the alternative emulation strategy can be used also in case Party 1 ishonest.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 701An important special case. An important special case of Eq. (7.50) is wheng(r; s) = Cs(r), where jsj = n � jrj. This special case will be called the augmented(m-party) coin-tossing functionality. That is, for some �xed commitment scheme,C, and a positive polynomial `, we consider the m-ary functionality:(1n; :::; 1n) 7! ((r; s); Cs(r); :::; Cs(r)) (7.51)where (r; s) is uniformly distributed in f0; 1g`(n)�f0; 1g`(n)�n. Combining Propo-sitions 7.5.27 and 7.5.29, we get:Proposition 7.5.30 Assuming the existence of trapdoor permutations, the aug-mented coin-tossing functionality of Eq. (7.51) can be securely implemented inthe �rst malicious model.7.5.4.5 Multi-party input-commitmentThe last functionality needed for the �rst multi-party compiler is a multi-partygeneralization of the input-commitment functionality of Section 7.4.3.6. Speci�-cally, for C and C as in Section 7.5.4.4, we consider them-party input-commitmentfunctionality (x; 1jxj; :::; 1jxj) 7! (r; Cr(x); :::; Cr(x)); (7.52)where r is uniformly distributed in f0; 1gjxj2. By combining a straightforwardgeneralization of Construction 7.4.20 with Propositions 7.5.27 and 7.5.30, weget:Proposition 7.5.31 Assuming the existence of trapdoor permutations, the input-commitment functionality of Eq. (7.52) can be securely implemented in the �rstmalicious model.Proof Sketch: Starting from Construction 7.4.20, we replace each oracle callto a two-party functionality by a call to the corresponding multi-party func-tionality. That is, in Step C2 Party 1 uses the image transmission (or ratherthe authenticated computation) functionality to send c0 def= Cr0(x) to all otherparties, in Step C3 an augmented coin-tossing is used to provide Party 1 with arandom pair (r; r00) whereas each other party gets c00 def= Cr00(r), and in Step C4Party 1 uses the authenticated computation functionality to send Cr(x) to allother parties. Each of the other parties acts exactly as Party 2 acts in Construc-tion 7.4.20.The security of the resulting multi-party oracle-aided protocol is establishedas in the two-party case (treated in Proposition 7.4.21). As in the previousanalysis of multi-party protocols that generalize two-party ones, the two caseshere are according to whether or not Party 1 is honest (resp., 1 62 I or 1 2 I).Finally composing the above oracle-aided protocol with secure implementationsof the adequate multi-party functionalities (as provided by Propositions 7.5.27and 7.5.30), the proposition follows.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

702 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS7.5.4.6 The compiler itselfWe are now ready to present the �rst multi-party compiler. Given a multi-partyprotocol, �, for the semi-honest model, we want to generate an \equivalent"protocol �0 for the �rst malicious model. Recall that the given protocol oper-ates in a communication model consisting of a single broadcast channel. Thecompiled protocol will operate in the same communication model. As in thetwo-party case, we �rst present an oracle-aided version of the compiled protocol(which will actually be a pure oracle-aided protocol and thus the communicationmodel is irrelevant for discussing its own operation). The compiled protocol is ageneralization of the one presented in Construction 7.4.23 (for m = 2), and thereader is referred there for additional clari�cations.Construction 7.5.32 (The �rst multi-party compiler, oracle-aided version):Given an m-party protocol, �, for the semi-honest model, the compiler producesthe following oracle-aided m-party protocol, denoted �0, for the �rst maliciousmodel.Inputs: Party i gets input xi 2 f0; 1gn.Input-commitment phase: Each of the parties commits to its input by using theinput-commitment functionality of Eq. (7.52). That is, for i = 1; :::;m,Party i invokes Eq. (7.52), playing the role of the �rst party with input xi,and obtains the output �i, whereas each other party obtains
i def= C�i(xi).Coin-generation phase: The parties generate random-tapes for the emulation of�. Each party obtains the random-tape to be held by it, whereas eachother party obtains a commitment to this value. This is done by invokingthe augmented coin-tossing functionality of Eq. (7.51). That is, for i =1; :::;m, Party i invokes Eq. (7.51), playing the role of the �rst party, andobtains the output (ri; !i), whereas each other party obtains �i def= C!i(ri).Protocol emulation phase: The parties use the authenticated-computation func-tionality of Eq. (7.48) in order to emulate each step of protocol �. Theparty that is supposed to send a message plays the role of the �rst partyin Eq. (7.48) and the other parties play the other roles. Suppose that thecurrent message in � is to be sent by Party i. Then the functions h; fand the inputs �; �2; :::; �m, for the functionality of Eq. (7.48), are set asfollows (analogously to their setting in Construction 7.4.23):� The string � is set to equal (�1; �2; �3), where �1 = (xi; �i) is thequery and answer of Party i in the oracle call that it initiated in theinput-commitment phase, �2 = (ri; !i) is the answer that Party i ob-tained in the oracle call that it initiated in the coin-generation phase,and �3 is the sequence of messages that Party i obtained so far in theemulation of �. Each �j equals � def= (
i; �i; �3), where
i and �i arethe answers that the other parties obtained in the same oracle calls inthe �rst two phases (and �3 is as above).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 703� The function h is de�ned such that h((v1; s1); (v2; s2); v3) equals (Cs1(v1); Cs2(v2); v3).Indeed, it holds that h(�1; �2; �3) = �.� The function f equals the computation that determines the messageto be sent in �. Note that this message is computable in polynomial-time from the party's input (denoted xi and being part of �1), itsrandom-tape (denoted ri and being part of �2), and the messages ithas received so far (i.e., �3). Indeed, it holds that f(�1; �2; �3) is themessage that Party i should send in �.Recall that each party that play a receiver in the current oracle call, obtainseither f(�) or (h(�); f(�)). It treats the second case as if the sending partyhas aborted, which is also possible per se.Aborting: In case any of the functionalities invoked in any of the above phasesterminates in an abort state, the parties obtaining this indication abort theexecution, and sets their output to ?. Otherwise, outputs are as follows.Outputs: At the end of the emulation phase, each party holds the correspondingoutput of the party in protocol �. The party just locally outputs this value.We note that both the compiler and the protocols produced by it are e�cient,and that their dependence on m is polynomially bounded.7.5.4.7 Analysis of the compilerThe e�ect of Construction 7.5.32 is analyzed analogously to the e�ect of Con-struction 7.4.23. In view of this similarity we combine the two main steps (inthe analysis), and state only the end result {Theorem 7.5.33 (Restating half of Theorem 7.5.15): Suppose that enhancedtrapdoor permutation exist. Then any m-ary functionality can be securely com-putable in the �rst malicious model (using only point-to-point communicationlines). Furthermore, security holds even if the adversary can read all communi-cation among honest parties.Proof Sketch: We start by noting that the de�nition of the augmented semi-honest model (i.e., De�nition 7.4.24) applies without any change to the multi-party context, also in case the communication is via a single broadcast channel.Recall that the augmented semi-honest model allows parties to enter the protocolwith modi�ed inputs (rather than the original ones), and abort the executionat any point in time. We stress that in the multi-party augmented semi-honestmodel, an adversary controls all non-honest parties and coordinates their inputmodi�cations and abort decisions. As in the two-party case, other than thesenon-proper actions, the non-honest parties follow the protocol (as in the semi-honest model).The �rst signi�cant part of the proof is showing that the compiler of Con-struction 7.5.32 transforms any protocol � into a protocol �0 such that exe-cutions of �0 in the �rst malicious real model can be emulated by executions

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

704 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSof � in the augmented semi-honest model. This part is analogous to Proposi-tion 7.4.25, and its proof is analogous to the proof presented in the two-partycase. That is, we transform any real-model adversary (A; I) for �0 into an aug-mented semi-honest adversary, (B; I), for �. The construction of B out of Ain analogous to the construction of Bmal out of Amal (carried out in the proofof Proposition 7.4.25): Speci�cally, B modi�es inputs according to the queriesthat A makes in the input-committing phase, uniformly selects random-tape (inaccordance to the coin-generation phase), and aborts in case the emulated ma-chine does so. Thus, B which is an augmented semi-honest adversary emulatesthe malicious adversary A.The second signi�cant part of the proof is essentially showing that canonicalprotocols (as provided by Theorem 7.5.14) have the property that their executionin the augmented semi-honest model can be emulated in the (�rst) maliciousideal-model of De�nition 7.5.2. This part is analogous to Proposition 7.4.27,and its proof is analogous to the proof presented in the two-party case.Thus, given any m-ary functionality f , we �rst (use Theorem 7.5.14 to) ob-tain a canonical protocol � that privately computes f . Combining the above twoparts, we conclude that when feeding � to the compiler of Construction 7.5.32,the result is an oracle-aided protocol �0 such that executions of �0 in the (�rst)malicious real-model can be emulated in the ideal model of De�nition 7.5.2.Thus, �0 securely computes f in the �rst malicious model.We are almost done, but there are two �nal issues to address. First, �0 is anoracle-aided protocol rather than an ordinary one. However, an ordinary proto-col that securely computes f can be derived by using secure implementations ofthe oracles used by �0 (as provided by Propositions 7.5.27, 7.5.30 and 7.5.31).Second, �0 operates in the broadcast channel communication model, whereas weclaimed a protocol in the point-to-point communication model. This problem isresolved by using the post-compiler (i.e., Proposition 7.5.19).7.5.5 The second complier { E�ectively Preventing AbortWe now show how to transform any protocol for securely computing some func-tionality in the �rst malicious model into a protocol that securely computes thesame functionality in the second malicious model. We stress that again all com-munication, both in the input protocol as well as in the one resulting from thecompilation, is conducted by posting messages on a single broadcast channel.The current compiler has little to do with anything done in the two-partycase. The only similarity is at a technical level; that is, in using a secure imple-mentation of the authenticated computation functionality. The main novelty isin the use of a new ingredient, called Veri�able Secret Sharing (VSS).Interestingly, we use implementations of the authenticated computation func-tionality (of Eq. (7.48)) and of VSS that are (\only") secure in the �rst maliciousmodel. It is what we add on top of these implementations that makes the re-sulting protocol secure in the second malicious model. Following is a high-leveldescription of the multi-party protocols generated by the current compiler. Re-

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 705call that the input to the compiler is a protocol secure in the �rst maliciousmodel, so the random-tape and actions discussed below refer to this protocol.60The sharing phase: Each party shares its input and random-tape, with all theparties so that any strict majority of parties can retrieve the bit. This isdone by using Veri�able Secret Sharing (VSS).Intuitively, the malicious parties (which are in strict minority) are e�ec-tively prevented from aborting the protocol by the following conventions:� If a party aborts the execution prior to completion of the sharingphase, then the honest parties (which are in majority) will set itsinput and random-tape to some default value, and will carry out theexecution (\on its behalf").� If a party aborts the execution after the completion of the sharingphase, then the honest (majority) parties will reveal its input andrandom-tape, and will carry out the execution (\on its behalf"). Theability of the majority parties to reveal the party's input and random-tape relies on the properties of VSS.The fact that communication is conducted over a broadcast channel andthe abovementioned conventions guarantee that the (honest) majority par-ties will always be in consensus as to which parties have aborted (and whatmessages were sent).Protocol emulation phase: The parties emulate the execution of the original pro-tocol with respect to the input and random-tapes shared in the �rst phase.This will be done using a secure (in the �rst malicious model) implemen-tation of the authenticated-computation functionality of Eq. (7.48).We start by de�ning and implementing the only new tool needed; that is, Veri-�able Secret Sharing.7.5.5.1 Veri�able Secret SharingLoosely speaking, a Veri�able Secret Sharing scheme is (merely) a secure (in the�rst malicious model) implementation of a secret sharing functionality. Thus,we �rst de�ne the latter functionality.De�nition 7.5.34 (secret sharing schemes): Let t � m be positive integers. At-out-of-m secret sharing scheme is a pair of algorithms, Gm;t and Rm;t, satisfyingthe following conditions.syntax: The share-generation algorithm, Gm;t, is a probabilistic mapping of secretbits to m-sequences of shares; that is, for every � 2 f0; 1g, the random60 In our application, we feed the current compiler with a protocol generated by the �rstcompiler. Still the random-tape and protocol actions below refer to the compiled protocol, notthe the semi-honest protocol from which it was compiled.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

706 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSvariable Gm;t(�) is distributed over (f0; 1g�)m. The recovering algorithm,Rm;t, maps t-long sequences of pairs in [m]�f0; 1g� into a single bit, where[m] def= f1; :::;mg.The recovery condition: For any � 2 f0; 1g, any sequence (s1; :::; sm) in therange of Gm;t(�), and any t-subset fi1; :::; itg � [m], it holds thatRm;t((i1; si1); :::; (it; sit)) = �The secrecy condition: For any (t � 1)-subset I � [m], the distribution of theI-components of Gm;t(�) is independent of �. That is, for any I =fi1; :::; it�1g � [m], let gI(�) be de�ned to equal ((i1; si1); :::; (it�1; sit�1)),where (s1; :::; sm) Gm;t(�). Then, we require that for any such I therandom variables gI(0) and gI(1) are identically distributed.Indeed, an m-out-of-m secret sharing scheme is implicit in the constructionpresented in Section 7.5.2: To share a bit �, one just generates m random bitsthat sum-up to � (mod 2). E�cient t-out-of-m secret sharing schemes do existsfor any value of t � m. The most popular one, which uses low-degree polynomialsover �nite �elds, is presented next.Construction 7.5.35 (Shamir's t-out-of-m secret sharing scheme): Find thesmallest prime number, denoted p, that is bigger than m, and consider arith-metic over the �nite �eld GF(p).61 The share generating algorithm consists ofuniformly selecting a degree t � 1 polynomial over GF(p) with free term equalto �, and setting the ith share to be the value of this polynomial at i. The re-covering algorithm consists of �nding (by interpolation) the unique degree t� 1polynomial that �ts the given values, and outputting its free term.Construction 7.5.35 is analyzed in Exercise 17. Getting back to our subjectmatter, we derive the basic de�nition of veri�able secret sharing.De�nition 7.5.36 (Veri�able Secret Sharing, basic version): A veri�able secretsharing (VSS) scheme with parameters (m; t) is an m-party protocol that imple-ments (i.e., securely computes in the �rst malicious model) the share-generationfunctionality of some t-out-of-m secret sharing scheme. That is, let Gm;t be ashare-generation algorithm of some t-out-of-m secret sharing scheme. Then, thecorresponding share-generation functionality that the VSS securely computes (inthe �rst malicious model) is((�; 1n); 1n; :::; 1n) 7! Gm;t(�) (7.53)Actually, it will be more convenient to use an augmented notion of Veri�ableSecret Sharing. The augmentation provides each party with an auxiliary inputthat determines the secret � (as in a commitment scheme), and allows Party 1 to61 By the Fundamental Theorem of Number Theory, p � 2m. Thus, p can be found bymerely (brute-force) factoring all integers between m+ 1 and 2m.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 707later conduct authenticated computations depending on this secret. Furthermore,each party is provided with an proof of the validity of its own share (relative topublic information given to all parties). We seize the opportunity to generalizethe de�nition such that it refers to sharing of strings (of a-priori known length)rather than to sharing of bits. From this point on, when we say Veri�able SecretSharing (or VSS), we mean the notion de�ned next (rather the the weaker formin De�nition 7.5.36).De�nition 7.5.37 (Veri�able Secret Sharing, revised): Given a share-generationalgorithm Gm;t of some t-out-of-m secret sharing scheme, we extend it to handlen-bit long strings; that is, Gm;t(�1; :::; �n) def= (s1; :::; sm), where si = si;1 � � � si;nand (s1;j ; :::; sm;j) Gm;t(�j) for every i = 1; :::;m and j = 1; :::; n. Sup-pose that Gm;t(�) 2 (f0; 1g`(j�j))m, and let C be a commitment scheme, and Cbe as in Construction 7.5.28. Consider the corresponding (augmented) share-generation functionality(�; 1j�j; :::; 1j�j) 7! ((s; �); (s2; �2; c); :::; (sm; �m; c)) (7.54)where s def= (s1; :::; sm) Gm;t(�), (7.55)� def= (�1; :::; �m) 2 f0; 1gm�`(j�j)2 (7.56)is uniformly distributed,and c def= (C�1(s1); :::; C�m(sm)). (7.57)Then any m-party protocol that securely computes Eq. (7.54) { (7.57) in the �rstmalicious model is called a veri�able secret sharing (VSS) scheme with parameters(m; t).Observe that each party may demonstrate (to each other party) the validity ofits \primary" share (i.e., the si) with respect to the globally held c by revealingthe corresponding �i. We shall be particularly interested in VSS schemes withparameters (m; dm=2e) (i.e., t = dm=2e). The reason for this focus is that weassume throughout this section that the malicious parties are in strict minority.Thus, by the secrecy requirement, setting t � m=2 guarantees that the (less thant) dishonest parties are not able to obtain any information about the secret fromtheir shares. On the other hand, by the recovery requirement, setting t � dm=2eguarantees that the (at least t) honest parties are able to e�ciently recover thesecret from their shares. Thus, in the sequel, whenever we mention VSS withoutspecifying the parameters, we mean the VSS with parameters (m; dm=2e), wherem is understood from the context.Clearly, by Theorem 7.5.33, Veri�able Secret Sharing schemes exist, providedthat enhanced trapdoor permutation exist. Actually, to establish this result wemerely need to apply the �rst compiler to the straightforward protocol (seeExercise 10) that privately computes Eq. (7.54) { (7.57). For sake of subsequentreference we state the latter result.Proposition 7.5.38 Suppose that trapdoor permutation exist. Then, for everyt � m, there exists a veri�able secret sharing scheme with parameters (m; t).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

708 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSNote that the assumption used is only the one needed for operation of the �rstcompiler, which amounts to the assumption needed for implementing the func-tionalities used in Construction 7.5.32.7.5.5.2 The compiler itselfWe are now ready to present the second compiler. Recall that we are given amulti-party protocol, �, that is secure the �rst malicious model, and we want togenerate an \equivalent" protocol �0 for the second malicious model. Also recallthat both the given protocol and the one generated by the compiler operate ina communication model consisting of a single broadcast channel. Finally, wenote that the generated protocol uses subprotocols that are secure with respectto the �rst malicious model (and yet the entire protocol will be analyzed withrespect to the second malicious model).62Construction 7.5.39 (The second multi-party compiler): Let t def= dm=2e.Given an m-party protocol, �, for the �rst malicious model, the compiler pro-duces the following m-party protocol, denoted �0, for the second malicious model.Inputs: Party i gets input xi 2 f0; 1gn.Random-tape: Party i gets (or uniformly selects) a random-tape, denoted ri 2f0; 1gc(n).The sharing phase: Each party shares its input and random-tape with all the par-ties, using a Veri�able Secret Sharing scheme. That is, for i = 1; :::;m,Party i invokes the VSS scheme playing the �rst party with input xiri,while the other parties play the roles of the other parties in Eq. (7.54) {(7.57) with input 1n+c(n).Regarding the ith VSS invocation,63 we denote the output that Party iobtains by (si; �i), and the outputs that each other Party j obtains by(sij ; �ij ; ci), where si = (si1; :::; sim) Gm;t(xiri), �i = (�i1; :::; �im) is uni-formly distributed, ci = (ci1; :::; cim) and cik = C�ik (sik). Note that eitherall honest parties get the correct outcome or they all detect that Party i ischeating and set their outcome to ?.62 For this reason, we cannot utilize an adequate composition theorem for the second mali-cious model. We comment that such a composition theorem would anyhow be more restrictedthan Theorem 7.5.21. One issue is that the second malicious model depends on a bound onthe fraction of dishonest parties. Thus, if the m-party oracle-aided protocol invokes a k-aryfunctionality with k < m then the bound (on the fraction of dishonest parties) may be violatedin the sub-protocol that replaces the latter. For this reason, when dealing with the secondmalicious model, one should con�ne the treatment to m-party oracle-aided protocols that usem-ary (rather than k-ary) functionalities.63 Indeed this notation is slightly inconsistent with the one used in De�nition 7.5.37. HereParty i plays the �rst party in the VSS, and being consistent with De�nition 7.5.37 wouldrequired calling its share si1 rather than sii. Consequently, the share of Party j in this invocationwould have been denoted si�i(j), where �i(j) is the role that Party j plays in this invocation.However, such notation would have made our exposition more cumbersome.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 709Handling Abort: If Party i aborts the ith VSS invocation, which means thatall honest parties received the outcome ?, then the honest parties set itsinput and random-tape to some default value; that is, they set their recordof the input and random-tape of Party i (which are otherwise unknown tothem) to some default value. Note that by de�nition, the VSS scheme issecure in the �rst malicious model, and thus all honest parties agree onwhether or not the VSS initiator (i.e., Party i) has aborted.64We stress that in case Party i aborts the ith VSS invocation, its (default)input and random-tape become known to all parties. Since the entire exe-cution takes place over a broadcast channel, each party can determine byitself what messages Party i should send in an execution of �. Thus, thereis actually no need to send actual messages on behalf of Party i.Protocol emulation phase: The parties emulate the execution of the protocol �with respect to the input and random-tapes shared in the �rst phase. Thiswill be done by using a secure (in the �rst malicious model) implementationof the authenticated-computation functionality of Eq. (7.48).That is, Party i, which is supposed to send a message in �, plays therole of the �rst party in Eq. (7.48) and the other parties play the otherroles. The inputs �; �2; :::; �m and the functions h; f , for the functionalityof Eq. (7.48), are set as follows:� The string � = (�1; �2) is set such that �1 = (xiri; si; �i) and �2equals the concatenation of all previous messages sent in the emula-tion of previous steps of �. Recall that (xiri; (si; �i)) is the input-output pair of Party i in the ith invocation of the VSS.� The string �j equals � def= (ci; �2), where �2 is as above. Recall thatci is part of the output that each other party got in the ith invocationof the VSS.� The function h is de�ned such that h((z; (s1; :::; sm); (r1; :::; rm));
) =((Cr1(s1); :::; Crm(sm));
). Indeed, h(�1; �2) = �.� The function f is set to be the computation that determines the mes-sage to be sent in �. Note that this message is computable in polynomial-time from the party's input (denoted xi above), its random-tape (de-noted ri), and the previous messages posted so far (i.e., �2).As a result of the execution of the authenticated computation subprotocol,each party either gets an indication that Party i aborted or determines themessage that Party i should have sent in a corresponding execution of �.By de�nition of security in the �rst malicious model, all honest partiesagree on whether or Party i aborted and in case it did not abort on themessage it sent.64 This is re
ected in the corresponding ideal-model adversary that makes all honest partiesoutput either ? or a valid share.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

710 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSHandling Abort: If a party aborts when playing the role of the �rst partyin an invocation of Eq. (7.48) during the emulation phase then the major-ity parties recover its (actual) input and random-tape, and carry out theexecution on its behalf. Speci�cally, if Party j detects that Party i hasaborted then it broadcasts the pair (sij ; �ij) that it has obtained in the shar-ing phase, and each party uses the correctly decomitted shares (i.e., thesij 's) to reconstruct xiri.We note that the completion of the sharing phase (and the de�nition ofVSS) guarantee that the majority parties hold shares that yield the inputand random-tape of any party. Furthermore, the correct shares are veri�-able by each of the other parties, and so reconstruction of the initial secretis e�ciently implementable whenever a majority of parties wishes to do so.Outputs: At the end of the emulation phase, each party holds the correspondingoutput of the party in protocol �. The party just locally outputs this value.Note that the VSS scheme is implicitly used as a commitment scheme for thevalue of xiri; that is, ci = (ci1; :::; cim) serves as a commitment to the sequence ofshares (si1; :::; sim), which in turn determine xiri. Actually, the main steps in theemulation phase only refer to this aspect of the VSS, whereas only the abort-handling procedure refers to the additional aspects (e.g., the fact that Party jholds the value of the share sij that is determined by the commitment cij as wellas the corresponding decommitment information).Comments: We stress that when one applies the two (multi-party) compilersone after the other, the random-tape to which the second compiler refers is theone of the protocol for the �rst malicious model (and not the one of the originalprotocol of the semi-honest model). Applying the two compilers one after theother is indeed wasteful. For example, we enforce proper emulation (via theauthenticated-computation functionality) twice; �rst with respect to the semi-honest protocol, and next with respect to the protocol resulting from the �rstcompiler. Indeed, more e�cient protocols for the second malicious model couldbe derived by omitting the authenticated-computation protocols generated bythe �rst compiler (and have the second compiler refer to the actions of the semi-honest protocol). Similarly, one can omit the input-commit phase in the �rstcompiler.7.5.5.3 Analysis of the compilerOur aim is to establish the following:Theorem 7.5.40 (Restating the second half of Theorem 7.5.15): Suppose thatenhanced trapdoor permutation exist. Then any m-ary functionality can be se-curely computable in the second malicious model (using only point-to-point com-munication lines). Furthermore, security holds even if the adversary can readall communication among honest parties.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 711As will be shown below, given a protocol as guaranteed by Theorem 7.5.33,the second compiler produces a protocol that securely computes (in the secondmalicious model) the same functionality. Thus, for any functionality f , thecompiler transforms protocols for securely computing f in the �rst maliciousmodel into protocols for securely computing f in the second malicious model.This su�ces to establish Theorem 7.5.40, yet it does not say what the compilerdoes when given an arbitrary protocol (i.e., one not provided by Theorem 7.5.33).In order to analyze the action of the second compiler, in general, we introducethe following model which is a hybrid of the semi-honest and the two maliciousmodels. We call this new model, the second-augmented semi-honest model.Unlike the (�rst) augmented semi-honest model (used in the analysis of the �rstcompiler (see proof of Theorem 7.5.33)), the new model allows the dishonestparty to select its random-tape arbitrarily, but does not allow it to abort.De�nition 7.5.41 (the second-augmented semi-honest model): Let � be a multi-party protocol. A coordinated strategy for parties I is admissible as a second-augmented semi-honest behavior (w.r.t �) if the following holds.Entering the execution: Depending on their initial inputs and in coordinationwith each other, the parties in I may enter the execution of � with anyinput of their choice.Selection of random-tape: Depending on the above and in coordination with eachother, the parties in I may arbitrarily select their random-tapes for theexecution of �.Here and in the previous step, the parties in I may employ randomizedprocedures, but the randomization in their procedures is not to be confusedwith the random-tapes for � selected in the current step.Proper message transmission: In each step of �, depending on its view so far,the designated (by �) party sends a message as instructed by �. We stressthat the message is computed as � instructs based on the party's (possiblymodi�ed) input, its (possibly non-uniformly selected) random-tape, andthe messages received so far, where the input and random-tape are as setin the previous two steps.Output: At the end of the interaction, the parties in I produce outputs dependingon their entire view of the interaction. We stress that the view consists oftheir initial inputs and all messages they received.Intuitively, the compiler transforms any protocol � into a protocol �0 so thatexecutions of �0 in the second malicious model correspond to executions of � inthe second augmented semi-honest model. That is:Proposition 7.5.42 (general analysis of the second multi-party compiler): Let�0 be the m-party protocol produced by the compiler of Construction 7.5.39, whengiven the protocol �. Then, for every probabilistic polynomial-time adversary

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

712 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSA for the second malicious model there exists a probabilistic polynomial-timestrategy that is admissible (w.r.t �) in the second-augmented semi-honest model(of De�nition 7.5.41) such that for every I � [m] with jI j < m=2freal�;I;B(x)gx c� freal�0;I;A(x)gxProposition 7.5.42 will be applied to protocols that securely compute a func-tionality in the �rst malicious model. As we shall see below, for such speci�cprotocols, the second augmented semi-honest model (of De�nition 7.5.41) canbe emulated by the second ideal malicious model (of De�nition 7.5.4). Thus,Theorem 7.5.40 will follow. We start by establishing Proposition 7.5.42.Proof Sketch: Given a real-model adversary A, we present a correspondingadversary B that is admissible w.r.t � for the second augmented semi-honestmodel. We stress two points. First, whereas A may abort some parties, theadversary B may not do so (as per De�nition 7.5.41). Second, we may assumethat the number of parties controlled by A (and thus by B) is less than m=2(because nothing is required otherwise).Machine B will use A as well as the ideal-model adversaries (as per De�ni-tion 7.5.2) derived from the behavior of A in the various subprotocols invokedby �0. Furthermore, machine B will also emulate the behavior of the trustedparty in these ideal-model emulations (without communicating with any trustedparty; there is no trusted party in the augmented semi-honest model). Thus, thefollowing description contains an implicit special-purpose composition theorem(in which subprotocols that are secure in the �rst malicious model are used toimplement the oracles of an oracle-aided protocol that is secure in the secondmalicious model).Entering the execution and selecting a random-tape: B invokes A (on the veryinput supplied to it), and decides with what input and random-tape toenter the execution of �. Towards this end, machine B emulates theexecution of the sharing phase of �0, using A (as subroutine). Machine Bsupplies A with the messages it expects to see, thus emulating the honestparties in �0, and obtains the messages sent by the parties in I (i.e., thosecontrolled by A). We stress that this activity is internal to B, and involvesno real interaction (of B in �).Speci�cally, B emulates the executions of the VSS protocol, in attemptto obtain the values that the parties in I share with all parties. Theemulation of each such VSS-execution is done by using the ideal-modeladversary derived from (the residual real-model malicious adversary) A.We stress that in accordance with the de�nition of VSS (i.e., security inthe �rst malicious model), the ideal-model adversary derived from (theresidual) A is in the �rst malicious model, and may abort some parties.Note that (by De�nitions 7.5.3 and 7.5.2) this may happen only if theinitiator of the VSS is dishonest. In case the execution initiated by someparty aborts, its input and random-tape are set to the default value (as inthe corresponding abort-handling of �0). Details follow.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 713� In an execution of VSS initiated by an honest party (i.e., in whichan honest party plays the role of the �rst party in VSS), machine Bobtains the corresponding augmented shares (available to I).65 Ma-chine B will use an arbitrary value, say 0n+c(n), as the �rst party'sinput for the current emulation of the VSS (because the real value isunknown to B). In emulating the VSS, machine B will use the ideal-model adversary, denoted A0, that emulates the behavior of A in thisVSS (in �0), when given the history so far. We stress that since theinitiating party of the VSS is honest, this ideal-model adversary (i.e.,A0) cannot abort any party.Invoking the ideal-model adversaryA0, and emulating both the honest(ideal-model) parties and the trusted party, machine B obtains theoutputs of all parties (i.e., and in particular the output of the initiat-ing party). That is, machine B emulates the sharing of value 0n+c(n)by the initiating party, and emulates the response of the trusted oracle(i.e., by setting s Gm;t(0n+c(n)), uniformly selecting � of adequatelength, and computing the outputs as in Eq. (7.54) { (7.57)).� In an execution of VSS initiated by a party in I (i.e., a dishonestparty plays the role of the �rst party in VSS), machine B obtains thecorresponding input and random-tape of the initiator as well as therandomization used in the commitment to it. As before, machines Buses the derived ideal-model adversary, denoted A0, to emulate theexecution of the VSS. Recall that A0 emulates the behavior of A inthe corresponding execution of the VSS.Suppose that we are currently emulating the instance of VSS initiatedby Party i, where i 2 I . Then, B invokes A0 on input xiri (i.e.,the initial input and random-tape of Party i), and emulating boththe honest (ideal-model) parties and the trusted party, machine Bobtains the outputs of all parties (including the commitment handedto parties not in I). A key point is that machine B has obtained, whileemulating the trusted party, the input handed by A0 to the trustedparty. This value is recorded as the modi�ed input and random-tapeof Party i.In case the emulated machine did not abort the initiator (i.e., Party i),machine B records the above value as well as the randomization usedby VSS in committing to it. Otherwise (i.e., A aborts Party i inthe invocation of VSS initiated by it), the input and random-tapeof Party i are set to the default value (as in �0). In either case, Bconcatenates the emulation of the VSS to the history of the executionof A.Thus, inputs and random-tapes are determined for all parties in I , depend-ing only on their initial inputs. (All this is done before entering the actualexecution of �.) Furthermore, the view of machine A in the sharing phase65 These will be used in the emulation of future message-transmission steps.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

714 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSof �0 has been emulated, and the randomizations used in the sharing of allvalues have been recorded by B. (It su�ces to record the randomizationused by honest parties, and the commitments made by dishonest ones;these will be used in the emulation of the message-transmission steps of�0.)Subsequent steps { message transmission: Machine B now enters the actual ex-ecution of � (with inputs and random-tapes for I-parties as determinedabove). It proceeds in this real execution of �, along with emulating thecorresponding executions of the authenticated-computation of Eq. (7.48)(which are invoked in �0).In a message-transmission step by an honest party in �, machine B obtainsfrom this honest party (in the real execution of �) a message, and emulatesan execution of the authenticated-computation protocol resulting in thismessage as output. In a message-transmission step by dishonest party in �,machine B computes the message to be sent as instructed by �, based onthe input and random-tape determined above, and the messages obtainedso far (in �). In addition, B emulates an execution of the authenticated-computation protocol resulting in this message as output. The emulationof each execution of the authenticated-computation protocol, which se-curely computes (in the �rst malicious model) the functionality Eq. (7.48),is done by using the malicious ideal-model adversary derived from A. Thefact that in these emulations machine B also emulates the trusted partyallows it to set the outcome of the authenticated-computation protocol to�t the message being delivered. We stress that the fact that a (dishonest)party may abort some parties in these emulations of �0 does not result inaborting the real execution of � (and is merely re
ected in the transcriptof these emulations). Details follow.� In a message-transmission step by a honest party in �, machineB �rstobtains from this party (in the real execution of �) a message, denotedmsg. This completes all that is done in this step w.r.t communicationin �.Next, machine B proceeds in emulating the corresponding message-transmission subprotocol of �0. Firstly, machine B derives the ideal-model adversary, denoted A0, which corresponds to the behavior ofA a in the corresponding execution of the authenticated-computationsubprotocol (executed by protocol �0). Invoking the ideal-model ad-versary A0, and emulating both the honest (ideal-model) parties andthe trusted party, machine B sets the trusted-party reply to equalmsg. When emulating the initiator, machine B provides the trustedparty with the same dummy values for the input and random-tape (asin the emulation of the sharing phase in �0) but with correct valuesfor the publicly available values (i.e., the previous message posted inthe execution of �0).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.5. * EXTENSION TO THE MULTI-PARTY CASE 715The emulation is carried out so to produce the output msg, which doesnot necessarily equal the output of the authenticated-computationfunctionality of Eq. (7.48) on the corresponding inputs. However,the machine A0 used in the emulation cannot distinguish the twocases (since the inputs which it gets in the two cases { commit-ments to the values known only to a honest party { are computation-ally indistinguishable). Finally, B concatenates the emulation of theauthenticated-computation protocol to the history of the executionof A. (Note that since the initiator of the authenticated-computationsubprotocol is honest, abort is not possible here, by de�nition of the�rst ideal model.)� In a message-transmission step by a dishonest party in �, machine B�rst computes the message to be sent according to �. This messageis computed based on the input and random-tape determined (andrecorded) in the emulation of the sharing phase of �0, and the mes-sages received so far (in the execution of �). Denote the resultingmessage by msg. Machine B completes the execution of this step in� by posting msg on the broadcast channel.Next, machineB proceeds in emulating the corresponding authenticated-computation subprotocol of �0. Firstly, machine B derives the ideal-model adversary, denoted A0. Invoking A0 and emulating both thehonest (ideal-model) parties and the trusted party, machine B pro-duces an emulation of the corresponding execution of the authenticated-computation protocol. The input used by B in this emulation equalsthe value recorded in the emulation of the sharing phase of �0.Note that this emulation either produces the very same message msgor aborts the sender. In the latter case, we emulate the abort-handlingprocedure of �0. In both cases, B concatenates the emulation ofthe authenticated-computation protocol (and possibly also the abort-handling procedure) to the history of the execution of A.Note that each message-transmission step is implemented in polynomial-time, and each message posted is computed exactly as instructed by �.(We stress again that the emulation of an aborting event in �0 does notresult in aborting the execution of any party in �.)Output: Machine B just outputs whatever machine A outputs given the execu-tion history composed (emulated) as above.Clearly, machine B (described above) implements a second-augmented semi-honest behavior with respect to �. It is left to show thatfreal�0;I;A(x)gx c� freal�;I;B(x)gx (7.58)There are two di�erences between the two ensembles referred to in Eq. (7.58):

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

716 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS1. In the �rst distribution (i.e., real�0;(A;I)(x)), secure (in �rst maliciousmodel) protocols implementing VSS and authenticated-computation (ofEq. (7.54) { (7.57) and Eq. (7.48), respectively) are executed; whereas inthe second distribution (i.e., real�;(B;I)(x)) these executions are emulatedusing the corresponding ideal-model adversaries.2. The emulation of Eq. (7.48) in real�;(B;I)(x) is performed with a poten-tially wrong input; speci�cally, with commitments to dummy values ratherthan to the correct values.However, these di�erences are computationally undetectable.Proof of Theorem 7.5.40: Given an m-ary functionality f , let � be anm-party protocol, as guaranteed by Theorem 7.5.33, for securely computing fin the �rst malicious model. (Actually, we merely need a protocol operatingin the broadcast-channel (rather than point-to-point) communication-model.)We now apply the compiler of Construction 7.5.39 to � and derive a protocol�0. By Proposition 7.5.42, for any e�cient real-model adversary A there existsan e�cient admissible behavior (w.r.t �) in the second-augmented semi-honestmodel, denoted B, such that for every I � [m] with jI j < m=2freal�0;I;A(x)gx c� freal�;I;B(x)gx (7.59)A key observation is that B constitutes a benign form of real-model adversarialbehavior w.r.t � (which is certainly allowed by the �rst malicious model). Specif-ically, the malicious behavior ofB amounts to replacing inputs and random-tapesarbitrarily, and executing � with these replaced values and without aborting anyparty. Thus, by the security of � (in the �rst malicious model), the real-modeladversary B can be emulated by an ideal-model adversary C that operates inthe �rst ideal-model (and so may potentially abort parties). However, since Bdoes not abort parties, then neither does C (except with negligible probability).It follows that C is essentially an admissible ideal-model adversary for the sec-ond malicious party, or, more accurately, C behaves in a way that is statisticallyclose to a second ideal-model adversary C 0. Combining Eq. (7.59) with the latterobservations, we obtain (for every jI j < m=2)freal�0;I;A(x)gx c� freal�;I;B(x)gxc� fideal(1)f;I;C(x)gxs� fideal(2)f;I;C0(x)gxWe are almost done. The only problem is that �0 operates in the communicationmodel of a single broadcast channel. As in the proof of Theorem 7.5.33, thisproblem is resolved by applying the post-compiler (i.e., Proposition 7.5.19).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.6. * THE PRIVATE CHANNEL MODEL 7177.6 * The Private Channel ModelIn this section we present an alternative treatment of general secure multi-partyprotocols. Speci�cally, we assume the existence of private channels between eachpair of parties, and present protocols that are \perfectly secure" (i.e., perfectlyemulate a trusted party) and do so without relying on any intractability as-sumptions. However, security holds only in case the honest parties are in strictmajority, and thus the current treatment is not meaningful for the two-partycase. Let us summarize the Pros and Cons of the current treatment in compar-ison to the treatment in Section 7.5.pros: Abstracting away computational issues. In particular:1. Making no intractability assumptions.2. Emulating a trusted party in a perfect (rather than computationally-indistinguishable) way.cons: Limited applicability. In particular:1. A strict majority of honest parties is required (even for withstandingsemi-honest adversaries).2. Perfectly-private channels are postulated to exist.Again, our ultimate goal is to design protocols that withstand any feasible ad-versarial behavior, and again we proceed in two steps: �rst dealing with thesemi-honest model and next with the malicious model. However, here, protocolsfor the malicious model are derived by extending the ideas that underlie thesemi-honest protocols, rather than by compiling the latter.7.6.1 De�nitionsWe consider both the semi-honest and the malicious models, where in both caseswe refer to explicit bounds on the number of dishonest parties. Furthermore, inboth cases, we consider a communication network consisting of point-to-pointchannels that cannot be wire-taped by the adversary. Finally, in both models,we require the relevant probability ensembles to be statistically indistinguishablerather than computationally indistinguishable.Security in the semi-honest model. The following de�nition is derivedfrom De�nition 7.5.1 by restricting the number of dishonest parties and strength-ening the indistinguishability requirement.De�nition 7.6.1 (t-privacy of m-party protocols): Let f be an m-ary function-ality, and � be an m-party protocol for computing f . As in De�nition 7.5.1, wedenote the joint view of the parties in I � [m] by view�I (x), and the correspond-ing output sequence of all parties by output�(x). We say that � t-privately

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

718 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLScomputes f if there exist polynomial-time algorithm, denoted S, such that forevery I of cardinality at most t it holds thatf(S(I; xI ; fI(x)) ; f(x))gx2(f0;1g�)ms� f(view�I (x) ; output�(x))gx2(f0;1g�)m (7.60)where xI and fI denote projections of the corresponding m-ary sequence on thecoordinates in I. In case the ensembles in Eq. (7.60) are identically distributed,we say that the emulation is perfect.We stress that Eq. (7.60) requires statistical indistinguishability, whereas theanalogue requirement in De�nition 7.5.1 is of computational indistinguishability.As in De�nition 7.5.1, the view of parties in I does not contain messages sentamong parties in �I def= [m] n I .Security in the malicious model. Analogously, the following de�nition isderived from De�nition 7.5.4 by restricting the number of dishonest parties andstrengthening the indistinguishability requirement. Recall that De�nition 7.5.4refers to security in the second malicious model, which is re
ected in the choiceof the ideal model.De�nition 7.6.2 (t-security ofm-party protocols): Let f , �, and ideal(2)f;I;B(z)(x)be exactly as in De�nition 7.5.4. The real-model adversary is de�ned as in De�-nitions 7.5.3 and 7.5.4, except that here the real-model adversary A does not seemessages sent among honest parties (i.e., parties in �I). We say that � t-securelycomputes f if for every probabilistic polynomial-time algorithm A (representinga real-model adversary strategy) there exists a probabilistic polynomial-time al-gorithm B (representing an ideal-model adversary strategy) such that for everyI � [m] of cardinality at most t it holds thatfideal(2)f;I;B(z)(x)gx;z s� freal�;I;A(z)(x)gx;z (7.61)In case the ensembles in Eq. (7.61) are identically distributed, we say that theemulation is perfect.We stress that Eq. (7.61) requires statistical indistinguishability, whereas theanalogue requirement in De�nition 7.5.4 is of computational indistinguishability.7.6.2 Security in the Semi-Honest ModelThe following construction of t-privatem-party protocols, for t < m=2, is a mod-i�cation of the construction presented in Section 7.5.2 (which in turn generalizedthe construction presented in the two-party case (i.e., Section 7.3)). Recall thatthe core of these constructions is the privately-computed propagation of sharesof bits through a circuit that represents the desired computation. In the previ-ous cases (see Sections 7.3 and 7.5.2), we used a very simple m-out-of-m secret

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.6. * THE PRIVATE CHANNEL MODEL 719sharing scheme (i.e., a bit was shared by m random bits that sum-up to thevalue of the secret bit). Here, we use the more sophisticated (t + 1)-out-of-msecret sharing scheme of Construction 7.5.35 (i.e., a bit is shared by the valuesof a random degree t polynomial with free-term that equals the value of thesecret bit). Thus, our focus is on propagating these types of shares through thecircuit, and on doing so via a t-private computation. Again, the heart of theconstruction is performing the propagation through a single multiplication gate.Let us clarify the above discussion by being more speci�c about the details.We �x some prime p > m, and consider polynomials of degree t over GF(p).66Recall that the value of such a polynomial at t+1 arbitrary (known) points allowsto recover the polynomial and speci�cally its free term. On the other hand, thevalue of a random (degree t) polynomial at t arbitrary (known) points does notreveal information about the value of the free term of the polynomial. Thus,each party will share each of its input bits with all other parties, by uniformlyselecting a random (degree t) polynomial with free-term equal the value of thisbit, and hand to Party i the value of this polynomial at point i.Suppose that the parties hold the shares of two GF(p) values and wish toderive shares of the sum of these values, where all arithmetic operations refer toGF(p). Then, letting each party add the two shares it holds, yields the desiredshares. That is, suppose that the values u and v are shared using the (degree t)polynomials a() and b(), such that u = a(0) and v = b(0), and Party i holds theshares ai = a(i) and bi = b(i). Then the ai + bi's are shares of a polynomial c()that has free term u+v (i.e., letting c(z) = a(z)+b(z), it holds that c(i) = ai+biand c(0) = u+v). Furthermore, the degree of c() is at most t. Thus, we are ableto propagate shares through an addition gate, and we do so in a totally privatemanner (because only local computations are used).It is appealing to try to do the same in case of multiplication (rather thanaddition). Indeed, the entire argument goes through, except that the corre-sponding polynomial c may have degree greater than t (but not more than 2t).Thus, we need a more sophisticated way of propagating shares through multi-plication gates. Using the same notations (as above), we consider the following(randomized) process:Construction 7.6.3 (t-privatem-party protocol for propagating shares througha multiplication gate): Recall that t < m=2, and so 2t � m� 1.Input: Party i enters with (ai; bi).1. For every i, Party i (locally) computes ci ai � bi.Indeed, these ci's are the values of the polynomial c(z) def= a(z) � b(z) at thecorresponding i's, and c(0) = u � v. However, c may have degree 2t (ratherthan at most t).66 Here and below, when we say a degree d polynomial we actually mean a polynomial ofdegree at most d.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

720 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS2. For every i, Party i shares ci with all other parties. That is, Party i selectsuniformly a polynomial qi of degree t such that qi(0) = ci, and sends qi(j)to Party j, for every j.Motivation: Extrapolation of the ci's yields the value of c(0) = u�v. Below,we will let each party perform the corresponding operation on the shares itobtained. We will show that this will yield shares with the desired proper-ties.Recall that by the Extrapolation Theorem, there exist constants
1; :::;
msuch that for every polynomial q of degree m� 1 it holds thatq(0) = mXi=1
iq(i) (7.62)(Speci�cally,
i = �(1)i+1 � �mi �.)3. For every j, Party j (locally) computes dj Pmi=1
iqi(j), where
1; :::;
mare the extrapolation constants satisfying Eq. (7.62), and qi(j) is the sharethat Party j received from Party i in Step 2.Output: Party i exists with di.It is clear that Construction 7.6.3 yields no information about u and v to anycoalition of t (or less) parties. The reason being that the only information trans-mitted (i.e., the shares of the ci's) yield no information about the polynomials aand b. It is also clear that every sequence of t of the di's is uniformly distributed(because the values of the qi's at any t points are uniformly distributed). What isless clear is that the di's are indeed shares of the desired value (i.e., di = d(i) forsome degree t polynomial d having free term u � v). This fact will be establishednext.Fact 7.6.4 Let the di's be de�ned as in Construction 7.6.3, and t < m=2. Thenthere exist a degree t polynomial, d, such that d(0) = a(0) � b(0) and d(i) = difor i = 1; :::;m.Proof: Consider the formal polynomial q(z) def= Pmi=1
iqi(z). Since each qihas degree t, this holds also for q. For every j = 1; :::;m, by Step 3, we havedj =Pmi=1
iqi(j) = q(j). Finally, note thatq(0) = mXi=1
iqi(0)= mXi=1
ici= mXi=1
ia(i) � b(i)= a(0) � b(0)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.6. * THE PRIVATE CHANNEL MODEL 721where the second equality is by Step 2, the third equality is by Step 1, and thelast equality is by the Extrapolation Theorem (applied to the 2t < m degreepolynomial a(z) � b(z)).Conclusion: Using Fact 7.6.4, for t < m=2, one can show that Construc-tion 7.6.3 constitute a t-private computation of the (partial) m-ary functionality((a(1); b(1); :::; (a(m); b(m))) 7! (r(1); :::; r(m)) (7.63)where a and b are degree t polynomials and r is a uniformly distributed degree tpolynomial with free term equal a(0) � b(0). By a straightforward adaptation ofConstruction 7.5.10 and its analysis, it follows that any m-ary functionality canbe t-privately reduced to Eq. (7.63). Finally, by using a suitable CompositionTheorem, we obtain:Theorem 7.6.5 For t < m=2, any m-ary functionality is t-privately com-putable. Furthermore, the emulation is perfect.In contrast, very few m-ary functionalities are t-privately computable for t �m=2. In particular, the only m-ary Boolean-valued functions that are m=2-privately computable are linear combinations of Boolean-valued functions of theindividual inputs (i.e., f(x1; :::; xm) =Pmi=1 cifi(xi) mod 2).7.6.3 Security in the Malicious ModelIn order to deal with the malicious model, we replace Construction 7.6.3 by amore robust protocol that t-securely computes Eq. (7.63). In particular, theprotocol should withstand a possible modi�cation of t of the inputs (which inparticular may not �t the domain of the functionality as partially de�ned). Thisturns out to be possible, provided t < m=3, and so we get:Theorem 7.6.6 For t < m=3, any m-ary functionality is t-securely computable.Furthermore, the emulation is perfect.We brie
y sketch the ideas that underlie the proof of Theorem 7.6.6. Let us �rstassume that t < m=4, and note that Steps 2{3 of Construction 7.6.3 constitutea t-private computation of the (partial) m-ary functionality(c(1); :::; c(m)) 7! (r(1); :::; r(m)) (7.64)where c is a degree 2t polynomial and r is a uniformly distributed degree t polyno-mial with free term equal c(0). We wish to t-securely compute Eq. (7.64). Let us�rst consider the related task of t-securely computing c(0). Construction 7.5.10suggests that c(0) can be computed by extrapolation of the c(i)'s, and that ex-trapolation is a linear function, which (as such) can be t-privately computed(see Exercise 18). However, when some parties are malicious, simple extrapo-lation will fail. What we need is \robust extrapolation", which corresponds to

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

722 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSerror-correction of Reed-Solomon codes, which in turn is a linear function ofthe given sequence. Speci�cally, our task may be to �nd the free term of theunique degree 2t polynomial (i.e., c) that �ts at least m�t of the inputs (i.e., thecorrect c(i)'s), and we can perform this task in a t-secure manner. (The desiredpolynomial is indeed unique, because otherwise we get two di�erent degree 2tpolynomials that agree on m� 2t � 2t+ 1 of the inputs.) Finally, observe thatthe parties can t-securely generate shares of a random degree t polynomial withfree term equal zero. Combining the two linear computations, one obtains thedesired t-secure implementation of Eq. (7.64), provided that t < m=4.In order to handle the case m=4 � t < m=3, we have to work directly withEq. (7.63) (rather than with Eq. (7.64)); that is, we use the fact that the partiesactually hold the shares of two degree t polynomials rather than only the productof these shares (which corresponds to shares of a degree 2t polynomial).7.7 Miscellaneous7.7.1 * Three deferred issues7.7.1.1 Partial fairness or on exchanging secretsAs commented in Section 7.2.3, in general, no two-party protocol can guaranteedperfect fairness; that is, it cannot be guaranteed that one party obtains itsdesired output if and only if the other party obtains its own desired output.Intuitively, an adversary may always abort at the �rst possible time at whichit obtains its output, and this means that one of the parties may obtain thedesired output while the other party does not quite get it. In fact, in the speci�c(two-party and multi-party) protocols that we have presented, this phenomenonoccurs in an extreme sense; that is, Party 1 gets the output before any otherparty gains any knowledge regarding its own output. As we will show below, theseverity of this phenomenon can be reduced (but, as shown in [79], can not betotally eliminated). That is, \partial fairness" (alas not \perfect fairness"), maybe achieved in some senses. In the rest of this section, we focus on two-partyprotocols, but similar treatment can be applied to multi-party protocols (lackinga honest majority).A general framework for obtaining \partial fairness" consists of �rst com-puting shares of both desired outputs, and next gradually revealing pieces ofthese shares such that a party reveals the next piece only if its counterpart hasrevealed the previous piece. The parties should be able to verify the correctnessof the revealed pieces, which can be achieved by generating also commitmentsto these pieces (and asking the revealing party to also provide the correspondingdecommitment information). Thus, for a functionality f , which without loss ofgenerality satis�es jf1(x; y)j = jf2(x; y)j, we may proceed in two stages:1. The parties securely compute shares of the desired outputs of f . Speci�-cally, the parties securely compute the functionality(x; y) 7! ((v1 � s1; s2; r1; c) ; (s1; v2 � s2; r2; c))

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 723where (v1; v2) f(x; y), the si's are uniformly distributed in f0; 1gjvij,and c Cr1�r2(v1; v2), for uniformly distributed r1; r2 2 f0; 1gjv1;v2j2 .Note that at this stage each individual party obtain no knowledge of thedesired outputs, but together they hold (veri�able) secrets (i.e., the si's)that yield both outputs.2. The parties gradually exchange the secrets that they hold. That is, Party 1reveals pieces of s2 in exchange for pieces of s1 (revealed by Party 2), whereone piece of s2 is revealed per one piece of s1. The pieces are revealed byusing a secure computation of an adequate functionality. Suppose thatParty i is supposed to obtain the piece �i(si), where �i may be a (prede-termined) Boolean function or a randomized process. Then the parties se-curely compute the functionality that maps ((a1; a2; �1;
1) ; (b1; b2; �2;
2))to (�1(b1); �2(a2)) if
1 =
2 = C�1��2(a1 � b1; a2 � b2) and to (�; �) oth-erwise. Indeed, each party enters this secure computation with the inputit has received in the �rst stage; that is, Party 1 (resp., Party 2) enterswith input (v1 � s1; s2; r1; c) (resp., (s1; v2 � s2; r2; c)).The entire approach (and in particular the gradual exchange of secrets) dependson a satisfactory de�nition of a piece of a secret. Such a de�nition should satisfytwo properties: (1) given su�ciently many pieces of a secret, one should beable to recover the secret, whereas (2) getting yet another piece of the secretcontributes little to the knowledge of the secret. Jumping ahead, we admitthat we do not know of a de�nition that is \uncontroversially satisfactory", stillsome exchange procedure do make sense. For example, consider the randomizedprocess � that maps the n-bit long secret �1 � � ��n to the n-bit long string �1 � � � �nsuch that �i = �i with probability 12 + " and �i = 1� �i otherwise, for every i,independently.67 Then, each piece carries O(n"2) bits of information, whereasafter seeing t such pieces of the secret one can guess it with success probabilityat least 1�n �exp(�t"2), which for t = O(n="2) means practically obtaining thesecret. However, if Party 1 knows that s1 2 f0n; 1ng whereas Party 2 only knowsthat s2 2 f0; 1gn, then �(s1) seems more meaningful to Party 1 than �(s2) isto Party 2. Is it really so or is the proposed exchange actually fair? Note thatthings are not that simple, because the uncertainty of the parties is actually notinformation-theoretic but rather computational.7.7.1.2 The adaptive modelThe de�nitions presented in Section 7.5.1 referred to adversaries, called non-adaptive, that control a predetermine set of parties (which, of course, is notknown to the honest parties).68 In this section we consider a stronger type of67 An alternative randomized process � maps the n-bit string s to the (n+1)-bit long stringr� such that r is uniformly distributed in f0; 1gn and � 2 f0; 1g equals the inner-product(mod 2) of s and r with probability 12 + " (and the complementary value otherwise). In thiscase, each piece carries O("2) bits of information about s, whereas after seeing O(n="2) suchpieces one practically obtains s.68 The issue of adaptivity also arises, but in a more subtle way, in case of two-party protocols.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

724 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSadversaries, called adaptive, that can select the parties that they control as theexecution proceeds. To demonstrate the power of adaptive adversaries, consideran m-party protocol in which Party 1 uniformly selects an m=3-subset J of theparties, publicizes J , and shares its own input with the parties in J as a whole(i.e., it hands each Party j in J a random rj such that Pj2J rj equals its owninput). Treating m as a parameter, this protocol (for computing nothing) issecure with respect to De�nition 7.5.4, essentially because for every set I of lessthan m=2 parties it holds that the probability that a random m=3-subset J iscontained in I is exponentially vanishing in m. However, an adaptive adversarythat selects the set of parties that in controls to equal the publicized set J ,obtained the input of Party 1 without controlling it (and hence demonstratesthat the protocol is insecure with respect to adaptive adversaries).To actually de�ne security with respect to adaptive adversaries, we should�rst de�ne an adequate ideal model, which corresponds to what is unavoidablewhen considering adaptive adversaries. The crucial point is that even in an ideal-model execution, the adversary may select the parties that it controls adaptively,and based on the information it has gathered so far (i.e., the inputs of the partiescontrolled so far).69 We stress that once the adversary seizes control of a party,it knows the party's initial input (and in the real model it also knows its random-tape and the messages that this party has received so far),When de�ning the result of such an ideal-model execution, we include in italso the set of parties that the adversary controls. The same is done when de�n-ing the result of the real-model execution. Consequently, when we require thatthe ideal-model execution can emulate the real-model execution, the executionsmust refer to the same (or computationally indistinguishable) sets of controlledparties. Actually, one should also consider the order in which the controlledparties are selected and distinguish parties that are selected before the outputsare determined and parties selected afterwards. To clarify this discussion, letuse consider an extension of De�nition 7.5.4 (i.e., the second malicious model)to the adaptive model.De�nition 7.7.1 (security in the adaptive model, a sketch): Let f and � be asin Section 7.5.1, and t be a bound on the number of parties that the adversariesare allowed to control (e.g., t < m=2).� A t-adaptive ideal-model adversary is a randomized process that operates inupto t+ 1 steps, which are partitioned into two main phases. In each stepof the �rst phase, based on the information available to it, the adversarydecides whether to seize control of another party or to move to the secondphase. In the �rst case, the adversary also determines the identity of thenew party to be controlled, and obtains its local input. In the second case,the adversary invokes the trusted party, and supplies the trusted party with69 The non-adaptive model can be viewed as a special case in which the adversary selectsthe parties that it controls up-front, before learning any information regarding the currentexecution. But in general (in the adaptive model), only the choice of the �rst controlled partyis oblivious of the execution.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 725inputs of its choice corresponding to the parties that it currently controls.At this point the other parties supply the trusted party with their original in-puts, the trusted party determines the corresponding outputs, and provideseach party with its corresponding output, where the adversary receives allthe outputs of parties that it controls.70In each step of the second phase, based on the information available to it,the adversary decides whether or not to seize control of another party andif so also determines its identity. Consequently, the adversary receives thelocal input and output of this party. The joint computation in the idealmodel, under an adaptive adversary, is de�ned as the concatenation ofthe outputs of the uncontrolled parties, the adversary's output, and thesequence of the parties on which the adversary gained control, with anindication of the phase transition.� A t-adaptive real-model adversary is a randomized strategy that operates intwo main phases. The �rst phase corresponds to the actual execution of theprotocol, where the adversary may adaptively choose upto t parties it wishesto control, and determine their actions. When the protocol halts, we enterthe second phase in which the adversary may select additional parties tocontrol, and obtains their local view of the execution that took place in the�rst phase. The total number of parties selected in both phases is at mostt. The joint computation in the real model, under an adaptive adversary, isde�ned as the concatenation of the outputs of the uncontrolled parties, theadversary's output, and the sequence of the parties on which the adversarygained control, with an indication of the phase transition.� Protocol � for computing f is called t-adaptively secure if for every e�cientt-adaptive real-model adversary A there exists an e�cient t-adaptive ideal-model adversary B such that the joint computation in the real model underA is computationally indistinguishable from the joint computation in theideal model under B.We stress that in the real model, when the adversary seizes control of a party, itgets the party's view of the execution so far. In particular, the protocol's possibleinstructions to erase certain data does not e�ect the party's view, which alwayscontains its input, its random-tape and all messages it has received so far.Theorem 7.7.2 (main results regarding adaptively secure protocols):1. In the private channel model, any m-ary functionality can be computed in ab(m� 1)=3c-adaptively secure manner. Furthermore, as in Theorem 7.6.6,the emulation is perfect.70 As in De�nition 7.5.4 (and unlike in De�nition 7.5.2), the trusted party always answersall parties; that is, the adversary has no option of preventing the trusted party from answeringthe honest parties. Note that here the trusted party is invoked (by the adversary) at the timethe adversary decides that it controls enough parties.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

726 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS2. Assuming the existence of trapdoor permutations, any m-ary functionalitycan be computed in a b(m� 1)=3c-adaptively secure manner, even whenthe adversary can tap all communication lines.Part 1 follows by extending the proof of Theorem 7.6.6; that is, by observingthat the protocols used towards proving the latter result are in fact adaptivelysecure. Proving Part 2 is more problematic. In particular, a straightforwardapplication of the pre-compiler described in Section 7.5.3.1 seems to fail. Thesource of trouble is that ordinary encryption schemes, which may be used toemulate private channels over standard channels, e�ectively \commit" to thesingle value that was sent (which should be consistent with the view of partieson which the adversary later seizes control). Intuitively, the solution is to usenon-standard commitment schemes (i.e., \non-committing" ones).7.7.1.3 Reactive systemsOur treatment so far has focused on functionalities that represent standard(multi-party) computations, mapping (sequences of) inputs to (sequences of)outputs. A more general treatment may refer to (multi-party) reactive systemsthat iteratively respond to inputs presented from the outside, based on a (global)state which they maintain and update. This global state may not be known toany individual party (but is rather the concatenation of the local states thatthe individual parties maintain and update). Thus, we view reactive systems asiterating the following steps (for an a-priori unbounded number of times):� Parties are given inputs for the current iteration; that is, in the jth iterationParty i is given input x(j)i . In addition, there is a global state: The globalstate at the beginning of the jth iteration is denoted s(j), where the initialglobal state is empty (i.e., s(1) = �).� Depending on the current inputs and the global state, the parties aresupposed to compute outputs for the current iteration as well as updatethe global state. That is, the outputs in iteration j are determined bythe x(j)i 's, for all i's, and s(j). The new global state, s(j+1), is determinedsimilarly (i.e., also based on x(j)i 's and s(j)).Being an abstraction, one may think of the global state as being held by a trustedparty. In other words, reactive systems are captured by reactive functionalitiesin which the trusted party maintains a state and interacts with the actual par-ties in iterations. Indeed, in each iteration, the trusted party obtains an inputfrom each party, responds (as directed by the reactive functionality) with cor-responding outputs, depending also on its state, and updates its state. Notethat the latter formulation �ts a de�nition of an ideal model (for computing thereactive functionality), whereas a (real-model) reactive protocol must emulatethis augmented notion of a trusted party. Thus, the reactive protocol shouldemulate the iterative computation of outputs while maintaining the state of theimaginary trusted party. Indeed, it is natural to have the real-model parties

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 727use a secret sharing scheme in order to maintain the latter state (such that thestate remains unknown to individual parties and even to a bounded number ofdishonest parties). In fact, we need to use a veri�able secret sharing scheme(see Section 7.5.5.1), because dishonest parties should be prevented from (ille-gally) modifying the (system's) state (except from the predetermined e�ect ofthe choice of their own inputs).The above discussion suggests that the secure implementation of reactivefunctionalities can be reduced to the secure implementation of ordinary (i.e.,non-reactive) functionalities. For example, we refer to security in the secondmalicious model, as de�ned in De�nition 7.5.4 (for ordinary functionalities).That is, we postulate that a majority of the parties are honest and require thatthe dishonest parties cannot (e�ectively) abort the execution. In such a case, weuse a veri�able secret sharing scheme in which only a majority of the pieces yieldsthe secret. Once a veri�able secret sharing scheme is �xed and the (system's)state is shared using it, the computation of each iteration of the reactive systemcan be cast as an ordinary functionality. The latter maps sequences of theform ((x1; s1); :::; (xm; sm)), where xi denotes the current input of Party i andsi denotes its share of the current state, to the sequence ((y1; r1); :::; (ym; rm)),where yi denotes the next output of Party i and ri denotes its share of theupdated state.We conclude that the results regarding secure computation of ordinary (i.e.,non-reactive) computations, can be extended to reactive systems (obtaining se-cure implementations of the latter).7.7.2 * Concurrent ExecutionsA natural problem regarding cryptographic protocol is whether (or to what ex-tent) they preserve their security when executed concurrently. The problemsthat arise with respect to the preservation of zero-knowledge (see Section C.2.1)are merely an indication to the type of problems that we may encounter. Thelesson to be learned (even from that brief discussion) is that an adversary attack-ing several concurrent executions of the same protocol may be able to cause moredamage than by attacking a single execution (or several sequential executions)of the same protocol.7.7.2.1 De�nitionsOne may say that a protocol is concurrently secure if whatever the adversarymay obtain by invoking and controlling parties in real concurrent executionsof the protocol is also obtainable by a corresponding adversary that controlscorresponding parties making concurrent functionality calls to a trusted party(in a corresponding ideal model). More generally, one may consider concurrentexecutions of many sessions of several protocols, and say that a set of proto-cols is concurrently secure if whatever the adversary may obtain by invoking andcontrolling such real concurrent executions is also obtainable by a correspond-ing adversary that invokes and controls concurrent calls to a trusted party (in a

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

728 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLScorresponding ideal model). Consequently, a protocol is said to be secure with re-spect to concurrent compositions if adding this protocol to any set of concurrentlysecure protocols yields a set of concurrently secure protocols.A much more appealing approach has been recently suggested by Canetti [65].Loosely speaking, he suggests to consider a protocol to be secure (hereafter re-ferred to as environmentally-secure)71 only if it remains secure when executedwithin any (feasible) environment. The notion of an environment is a gener-alization of the notion of an auxiliary-input; in a sense, the environment is anauxiliary oracle (or rather a state-dependent oracle) that the adversary may ac-cess. In particular, the environment may represent other executions of variousprotocols that are taking place concurrently (to the execution that we consider).We stress that the environment is not supposed to assist the proper execution ofthe protocol (and in fact honest parties merely obtain their inputs from it andreturn their outputs to it). In contrast, potentially, the environment may assistthe adversary in attacking the execution. Following the simulation paradigm,we say that a protocol is environmentally-secure if any feasible real-model ad-versary attacking the protocol, with the assistance of any feasible environment,can be emulated by a corresponding ideal-model adversary that uses the sameenvironment, while making similar queries to the environment. In the follow-ing formulation, the environment is implemented by a (non-uniform) family ofpolynomial-size circuits, and is also responsible for providing the parties with in-puts and for trying to distinguish the real-model execution from the ideal-modelexecution.De�nition 7.7.3 (environmentally-secure protocols, a rough sketch): Let f bean m-ary functionality and � be an m-party protocol, and consider the followingreal and ideal models:� As usual, a real-model adversary controls some of the parties in an exe-cution of the protocol �. In addition to executing �, all parties can com-municate with an arbitrary interactive process, which is called an environ-ment. Honest parties only communicate with the environment before theexecution starts and when it ends; they merely obtain their inputs fromthe environment and pass their outputs to it. In contrast, dishonest par-ties (i.e., controlled by the adversary) may communicate freely with theenvironment, and do so concurrently to the entire execution of �.� An ideal-model adversary controls some of the parties in an ideal computa-tion assisted by a trusted-party that behaves according to the functionalityf . In addition, all parties can communicate with an environment (as inthe real model). Indeed, the dishonest parties may communicate exten-sively with the environment before and after their single communicationwith the trusted party, whereas the honest parties merely obtain their in-puts from the environment and pass their outputs to it. Indeed, the honest71 The term used in [65] is Universally Composeable, but we beleive that a reasonable senseof \universal composeability" is only a corollary of the suggested de�nition.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 729parties merely relay inputs and outputs between the environment and thetrusted party.We say that � is an environmentally-secure protocol for computing f if for everyprobabilistic polynomial-time real-model adversary A there exists a probabilisticpolynomial-time ideal-model adversary B such that for any subset I � [m] ofadequate cardinality no family of polynomial-size circuits E = fEngn2N candistinguish the case in which it interacts with parties in the real-model executionof � under adversary (I; A) from the case it interacts with parties in the ideal-model computation of f under adversary (I; B). Schematically,fidealf;I;B(1n);Engn2N c� freal�;I;A(1n);Engn2Nwhere idealf;I;B(1n);En (resp., real�;I;A(1n);En) denotes the output of En afterinteracting with the ideal-model (resp., real-model) execution under (I; B) (resp.,(I; A)).As hinted above, the environment may account for other executions of variousprotocols that are taking place concurrently to the main execution being con-sidered. De�nition 7.7.3 implies that such environments cannot distinguish thereal execution from an ideal one. This means that anything that the real-modeladversary gains from the execution of the protocol and any environment (rep-resenting other concurrent executions), can be also obtained by an adversaryoperating in the ideal model and having access to the same environment. Thus,each single execution of an environmentally-secure protocol can be replaced byan ideal oracle call to the corresponding functionality, without a�ecting theother concurrent executions. Furthermore, one can simultaneously replace allthese concurrent executions by ideal oracle calls, and use a hybrid argumentto show that the behavior is maintained. (One needs to use the fact that asingle replacement does not a�ect the other concurrent executions even in casesome of the other executions are in the real model and the rest are in the idealmodel.) It follows that environmentally-secure protocols are secure with respectto concurrent composition [65]. We wonder whether the reverse direction holds.7.7.2.2 ConstructionsThe main positive result currently known is that environmentally-secure proto-cols for any functionality can be constructed for settings in which more thantwo-thirds of the active parties are honest (cf. [65]). This holds unconditionallyfor the private channel model, and under standard assumptions (e.g., allowingthe construction of public-key encryption schemes) for the standard model (i.e.,without private channel). The immediate consequence of this result is that gen-eral environmentally-secure multi-party computation is possible, provided thatmore than two-thirds of the parties are honest.In contrast, general environmentally-secure two-party computation is notpossible (in the standard sense).72 Still, one can salvage general environmentally-72Of course, some speci�c two-party computations do have environmentally-secure protocols.See [65] for several important examples (e.g., key exchange).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

730 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSsecure two-party computation in the following reasonable model: Consider anetwork that contains servers that are willing to participate (as \helpers", pos-sibly for a payment) in computations initiated by a set of (two or more) users.Now, suppose that two users wishing to conduct a secure computation can agreeon a set of servers so that each user believes that more than two-thirds of theservers (in this set) are honest. Then, with the active participation of this setof servers, the two users can compute any functionality in an environmentally-secure manner.Another reasonable model where general environmentally-secure two-partycomputation is possible is the shared random-string model [72]. In this model,all parties have access to a universal random string (of length related to thesecurity parameter). We stress that the entity trusted to post this universalrandom string is not required to take part in any execution of any protocol, andthat all executions of all protocols may use the same universal random string.7.7.3 Historical NotesThe main results presented in this chapter (i.e., Theorems 7.4.1 and 7.5.15) aredue to Yao [267] and to Goldreich, Micali and Wigderson [147, 148], treatingthe two-party and multi-party cases, respectively. Unfortunately, the originalpapers do not provide a satisfactory presentation of these results. In particular,these papers lack adequate de�nitions of security (which were only developedlater), and provide only a rough sketch of the constructions and no proofs oftheir security. Still, the conference version of [147] provides a rough sketchof the compilation of protocols for the semi-honest model into protocols forthe malicious model, by using zero-knowledge proofs (which are the main focusof [147]) to \force" malicious parties to behave in a semi-honest manner. Yao'swork [267] presents a construction that can be used to derive two-party protocolsfor privately-computing any desirable functionality, whereas the second paper ofGoldreich et. al. [148] presents a di�erent construction for the multi-party case.Our presentation reverses the chronological order (in which these resultswere discovered). Firstly, our treatment of the two-party case is derived, viasome degeneration, from the treatment of the multi-party case (in [147, 148]).Secondly, we start by treating the semi-honest models, and only next compileprotocols for this model into protocols for the (\full-
edged") malicious models.We note that our treatment is essentially symmetric, whereas Yao's originaltreatment of the two-party case [267] is asymmetric (with respect to the twoparties). The latter asymmetry has its own merits as demonstrated in [33, 229,197].In treating the semi-honest model, we follow the framework of Goldreich, Mi-cali and Wigderson [148], while adapting important simpli�cations due to [166]and [156]. In presenting the \semi-honest to malicious" compilers (or the paradigmof \forcing" semi-honest behavior), we follow the outline provided in [147, FOCSVer-sion, Sec. 4] and [148, Sec. 5]. We warn the reader that the original sources(i.e.,[147, 148]) are very terse, and that full details were only provided in [129].Our treatment defers from [129] in using a higher level of modularity, which is

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 731supported by composition theorems for the malicious models.As stated above, a satisfactory de�nitional treatment of secure multi-partycomputation was provided after the presentation of the constructions of [147,148, 267]. The basic approach was developed by Micali and Rogaway [212] andBeaver [17, 18],73 and reached maturity in Canetti's work [64], which provides arelatively simple,
exible and comprehensive treatment of the (basic) de�nitionsof secure multi-party computation. In particular, the composition theorems thatwe use are essentially taken from [64].A variety of cryptographic tools is used in establishing the main results ofthis chapter. Firstly, we mention the prominent role of Oblivious Transfer in theprotocols developed for the semi-honest model.74 An Oblivious Transfer protocolwas �rst suggested by Rabin [239], but our actual de�nition and implementationfollow the ideas of Even, Goldreich and Lempel [99] (as further developed inthe proceedings version of [147]). Several ingredients play a major role in thecompilation of protocols secure in the semi-honest model into generally secureprotocols (for the malicious models). These include commitment schemes, zero-knowledge proofs-of-knowledge, veri�able secret sharing (introduced by Chor,Goldwasser, Micali and Awerbuch [77]), and secure coin-
ipping (introduced byBlum [48]).The private channel model: As opposed to the bulk of this chapter (aswell as the bulk of the entire work), the private channel model (treated in Sec-tion 7.6) allows to present results that do not rely on intractability assumptions.These results (e.g., Theorem 7.6.6), were obtained by Ben-Or, Goldwasser andWigderson [43] and Chaum, Cr�epeau and Damg�ard [76]. These works were doneafter the results of Yao [267] and Goldreich, Micali and Wigderson [147, 148]were known, with the explicit motivation of obtaining results that do not relyon intractability assumptions. Our presentation is based on [43] (cf. [117]). Theessential role of the bound on the number of dishonest parties (even in the semi-honest model) was proven in [78].7.7.4 Suggestion for Further ReadingAs hinted above, Yao's alternative treatment of the two-party case o�ers someadvantages over the treatment presented in Section 7.3. A sketch of Yao's con-struction is provided in Section 7.1.3.2. For more details, see [244].The results mentioned above were originally obtained using protocols thatuse an unbounded number of rounds. In some cases, subsequent works ob-tained secure constant-round protocols (e.g., in case of multi-party computa-tions with honest majority [33], and in case of two-party computations allowing73 The approach of Goldwasser and Levin [158] is more general: it avoids the de�nitionof security (w.r.t a given functionality) and de�nes instead a notion of protocol robustness.Loosely speaking, a protocol is robust if whatever an arbitrary malicious adversary can obtainby attacking it, can also be obtained by a very benign adversarial behavior.74 This is true also for the original two-party solution of Yao [267]. Subsequent results, byKilian [182] further demonstrate the importance of Oblivious Transfer in this context.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

732 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSabort [197]).We have mentioned (e.g., in Section 7.7.1.1) the impossibility of obtainingfairness in secure computations without a honest majority. These statementsare backed by the impossibility of implementing a fair two-party coin-toss, asproven in [79].We have brie
y discussed the notion of adaptive adversaries. A more detaileddiscussion of the de�nitions is provided in [64], which builds on [63]. For a proofof Theorem 7.7.2, the reader is referred to [63, 66].Our treatment of multi-party protocols assumes a synchronous network withpoint-to-point channels between every pair of parties. Results for asynchronouscommunication and arbitrary networks of point-to-point channels were presentedin [40] and [93], respectively.General secure multi-party computation in a model of transient adversarialbehavior was considered in [231]. In this model the adversary may seize controlof each party during the protocol's execution, but can never control more than(say) 10% of the parties at any point in time. We comment that schemes securein this model were later termed \proactive" (cf., [70]).Whenever we have restricted the adversary's control of parties, we have doneso by bounding the cardinality of the set of controlled parties. It is quite naturalto consider (cf. [169]) arbitrary restrictions on the set of controlled parties (i.e.,that this set belongs to a family of sets against which security is guaranteed).7.7.5 Open ProblemsRecall that by Theorem 7.5.12 one can privately-reduce any functionality toOblivious Transfer. Furthermore, the compilation of protocols that are securein the semi-honest model into protocols that are secure in the malicious modelsonly requires one-way functions and private channels, whereas the latter canbe emulated using secure communication protocols (e.g., secure public-key en-cryption schemes). Since Oblivious Transfer implies the existence of the latter(see Exercise 7), general secure computation is reducible to Oblivious Transfer.Thus, determining the complexity assumptions required for the implementationof Oblivious Transfer seems to be of key importance. In particular, we haveshown that Oblivious Transfer can be implemented using enhanced trapdoorpermutations (see Proposition 7.3.6). We wonder whether the enhanced require-ment can be omitted (i.e., whether ordinary trapdoor permutations may su�ce).For further discussion of enhanced trapdoor permutations, see Section C.1.7.7.6 ExercisesExercise 1: Oblivious sampling: Suppose that both parties hold a function(or circuit) that de�nes a distribution in the natural way, and wish toobtain a sample from this distribution without letting any party learn thecorresponding pre-image. Cast this problem as one of securely computinga corresponding functionality, treating di�erently the case in which thefunction (or circuit) is �xed and the case in which it is given as input to

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 733both parties. Consider also the case in which only the �rst party is toobtain the output.Exercise 2: Oblivious signing: In continuation to Exercise 1, consider the casethat the distribution to be sampled is determined by the inputs of bothparties. For example, consider the task of oblivious signing in which oneparty wishes to obtain the signature of the second party to some documentwithout revealing the document to the signer (i.e., the document is theinput of the �rst party whereas the signing-key is the input of the secondparty).Exercise 3: Privacy and Correctness: Following the discussion that proceedsDe�nition 7.2.6, consider the following de�nitions of (partial) privacy andcorrectness (with respect to malicious adversaries). Partial privacy is de-�ned as a restriction of De�nition 7.2.6 to the adversary's component ofthe random variables real�;A(z)(x; y) and idealf;B(z)(x; y), whereas par-tial correctness coincides with a restriction of De�nition 7.2.6 to the honestparty's component of these random variables.1. Show that both properties are implied by De�nition 7.2.6, but eventheir combination does not imply De�nition 7.2.6.2. Why were both properties quali�ed by the term `partial'?Guideline (Item 1): Note that computational indistinguishability ofensembles of pairs implies computational indistinguishability of the ensem-bles resulting by projection to each coordinate, but the converse does notnecessarily hold.Guideline (Item 2): This is related to the need to use the general formu-lation of De�nition 7.2.1 for randomized functionalities; see the discussionthat proceeds De�nition 7.2.1.Exercise 4: On the importance of the length convention: Show that if the equal-length convention is omitted from de�nitions like De�nition 7.2.1 and 7.2.6then they cannot be satis�ed for many natural functionalities. That is,consider these de�nitions when the ensembles are indexed by the set of allpairs of strings, rather than by the set of pairs of equal-length strings.Guideline: Consider the possibility of privately computing the functional-ity (x; y) 7! (f(x; y); f(x; y)), where f(x; y) def= 1 if jxj = jyj and f(x; y) def= 0otherwise. Show that (x; y) 7! (jyj; jxj) can be privately computed but thesimple protocol in which Party 1 sends jxj to Party 2 fails to securely com-pute it (when omitting the equal-length convention). Challenge: Try toshow that (when dropping the length restriction) this functionality is notsecurely computed.Exercise 5: Transitivity of privacy reductions: Show that if f is privately-reducible to f 0, and f 0 is privately-reducible to f 00 then f is privately-reducible to f 00. Note that Theorem 7.3.3 is obtained as a special case(e.g., by setting f 00 to be the identity mapping).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

734 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSGuideline: Generalize the proof of Theorem 7.3.3. Speci�cally, let �f jf 0(resp., �f 0jf 00) be an oracle-aided protocol for f (resp., f 0) using oracle f 0(resp., f 00). Composing these two protocols, obtain and analyze the oracle-aided protocol � = �f jf 00 .Exercise 6: Variants of Oblivious Transfer: In continuation to Section 7.3.2,consider the following two variants of Oblivious Transfer.1. For functions k; ` : N ! N , consider the extension of 1-out-of-kOblivious Transfer to k(n) secrets each of length `(n), where n is thesecurity parameter.2. For a function ` : N ! N , consider the Oblivious Transfer of a single`(n)-bit long secret (denoted �) with probability 1=2. That is, therandomized functionality that maps (�; �) to (�; �) with probability1=2 and to (�; �) otherwise.Assuming that k and ` are polynomially-bounded and e�ciently com-putable, present privacy reductions between all these variants. Speci�cally,show a privacy reduction of the extended 1-out-of-k Oblivious Transfer tothe original 1-out-of-2 Oblivious Transfer of bits, and between 1-out-of-2Oblivious Transfer of `-bit long secrets and Oblivious Transfer of a single`(n)-bit long secret.Guideline: Note that you are only asked to present oracle-aided protocolsthat are secure in the semi-honest model. The only non-obvious reduction isfrom 1-out-of-2 Oblivious Transfer to single-secret Oblivious Transfer (OT),presented next. The �rst party randomly selects r1; r2 2 f0; 1g`(n), and theparties invoke OT twice where the �rst party inputs r1 in the �rst time andr2 in the second time. If the second party wishes to obtain the ith secret,i 2 f1; 2g, then it says OK if and only if it has obtained ri but not r3�i.Otherwise, the parties repeat the experiment. Once the second party saysOK, the �rst party sends it the pair (�1 � r1; �2 � r2), where the �j 's arethe actual secrets.Exercise 7: Oblivious Transfer implies secure communication protocols: A se-cure communication protocol is a two-party protocol that allows the partiesto communicate in secrecy even when the communication line is tappedby an adversary (see Exercise ?? of Chapter 5). Show that any 1-out-of-2Oblivious Transfer (with security with respect to the semi-honest model)implies the existence of a secure communication protocol. Recall that thelatter implies the existence of one-way functions.Guideline: To transmit a bit � the sender invokes the 1-out-of-2 ObliviousTransfer with input (�; 0) while the receiver sets its input to 1, and gets �(i.e., the sender's �rst bit in the OT). Show that if a wire-tapping adversaryviolates the security condition then either the sender can distinguish thecase that the receiver enters 1 from the case it entered 2 or the receiver canapproximate � also in case it set its input to 2.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 735Exercise 8: Privately reducing OT to the functionality of Eq. (7.16){(7.17).Show that 1-out-of-2 Oblivious Transfer can be privately reduced to thefunctionality of Eq. (7.16){(7.17).Guideline: Reduce 1-out-of-2 OT to ((a1 ; b1); (a2; b2)) 7! (�; a1a2+b1b2),and reduce the latter to Eq. (7.16){(7.17).Exercise 9: Alternative analysis of Construction 7.3.7. The said construc-tion can be decoupled into two reductions. First, the functionality ofEq. (7.16){(7.17) is reduced to the deterministic functionality ((a1; b1; c1); (a2; b2)) 7!(�; fa2;b2(a1; b1; c1)), where fa;b(x; y; z) def= z + (x + a) � (y + b)), and nextthe latter is reduced to OT41. Present each of these reductions and provethat each is a privacy reduction.Guideline: When analyzing the second reduction, use the fact that itsaim is to compute a deterministic functionality and thus the simpler formof De�nition 7.2.1 can be used.Exercise 10: Some functionalities that are trivial to privately compute: Showthat each of the following types of functionalities has a trivial protocol forprivately-computing it (i.e., using a single message).1. Each deterministic functionality that only depends on the input ofone party (i.e., (x; 1jxj) 7! (f1(x); f2(x)), for arbitrary functions f1and f2).2. Each randomized functionality of the form (x; 1jxj) 7! (g(x); f(x; g(x))),where g is any randomized process and f is a function.Generalize the above to the multi-party case.Exercise 11: In continuation to Exercise 10, show that all six functionalitiesintroduced in Section 7.4.3 are trivial to compute in a private manner.Guideline: Note that the restricted authenticated computation function-ality of Eq. (7.25) and the image transmission functionality of Eq. (7.29) �twithin Item 1, whereas the basic and augmented coin-tossing functionalitiesas well as the input-commitment functionality �t within Item 2.Exercise 12: On the di�culty of implementing more natural versions of au-thenticated computation: Consider the functionality (�; �) 7! (� ; v), wherev = f(�) if � = h(�) and v = � otherwise.1. Show that the equality functionality (i.e., (�; �) 7! (� ; �), where� = 1 if � = � and � = 0 otherwise) is privately-reducible to aspecial case of the above functionality.2. Show that Oblivious Transfer is privately-reducible to a special case ofthe above functionality. Conclude that there can be no trivial protocolfor privately-computing the latter (e.g., a protocol that privately-computes the above functionality implies the existence of one-wayfunctions).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

736 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLSGuideline (Part 2): Privately-reduce the single secret (bit) version ofOblivious Transfer to the special case of the above functionality in whichh(�) (resp., f(�)) equals the �rst (resp., second) bit of �. On input a secretbit �, Party 1 sets its oracle-query to 1� and Party 2 sets its query to auniformly selected bit (and so if this bit equals 1 = h(1�) then Party 2 getsf(1�) = � and otherwise it gets �).Exercise 13: Transitivity of security reductions: Show that if f is securely-reducible to f 0, and f 0 is securely-reducible to f 00 then f is securely-reducible to f 00. Note that Theorem 7.4.3 is obtained as a special case(e.g., by setting f 00 to be the identity mapping).Guideline: See Exercise 5.Exercise 14: Voting, Elections, and Lottery: Write a speci�cation for somesocial procedure (e.g., voting, elections or lottery), and cast it as a multi-party functionality. Note that allowing appeals and various forms of inter-action requires a reactive functionality (see Section 7.7.1.3), which in turncan be reduced to a standard (non-reactive) functionality.Exercise 15: Threshold Cryptography: Loosely speaking, Threshold Cryptog-raphy is concerned with allowing a set of parties to share the ability toperform certain (cryptographic) operations (cf. [90, 116]). For example,suppose that we wish m parties to hold shares of a signing-key (w.r.t somesignature scheme) such that every t of these parties (but not less) can gen-erate signatures to documents of their choice. Cast this example as well asother versions of Threshold Cryptography as a multi-party functionality.Exercise 16: Failure of a simple protocol for Eq. (7.48). Consider the m-partyoracle-aided protocol for computing Eq. (7.48) in which, for i = 2; :::;m,Parties 1 and i invoke Eq. (7.31) with Party 1 entering the input � andand Party 1 entering the input �i. Show that this oracle-aided protocoldoes not constitute a secure implementation of Eq. (7.48).Exercise 17: Analysis of Shamir's Secret Sharing Scheme: Prove that Con-struction 7.5.35 satis�es the conditions of De�nition 7.5.34.Guideline: For every sequence (x1; y1); :::; (x`; y`), where the xi's aredistinct, consider the set of degree d � ` � 1 polynomials q that satisfyq(xi) = yi for i = 1; :::; `. Denoting the unknown coe�cients of q by qj 's,observe that each equality q(xi) = yi yields a linear equation for the qj 's(i.e., Pdj=0 xji � qj = yi). Furthermore, the equations are linearly inde-pendent, and so the solution space has cardinality pd+1�`. Indeed, it isimportant to consider these equations as referring to the variables qj 's andthe constants xi's, rather than the other way around.Exercise 18: Private computation of linear functions. For any �xed m-by-mmatrix M , over a �nite �eld, show that the m-ary functionality x 7! xMcan be m-privately computed (as per De�nition 7.6.1).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

7.7. MISCELLANEOUS 737Guideline: For starters, consider �rst the functionality (x1; :::; xm) 7!(Pmi=1 cixi; 0; :::; 0), where the ci's are �xed constants. Show that the fol-lowing protocol is m-private. Each party share its input with all otherparties (by uniformly selecting shares that sum-up to its input), then com-pute the linear combination of the shares it has received, and �nally sendthe result to Party 1. Note that this computation would be t-private if wewere to use sharing via a degree t polynomial.Exercise 19: Private generation of vectors in a linear subspace. For M as inExercise 18, show that the m-ary functionality (�; :::; �) 7! r such that r isa random m-ary vector satisfying rM = 0m can be m-privately computed(as per De�nition 7.6.1).Guideline: Consider the generating matrix of the subspace, denoted G.Suppose that G has rank k. Show that, without loss of generality, the k-by-kupper part of G equals the identity matrix. Privately reduce the generationtask to the functionality of Exercise 18.Exercise 20: Alternative presentation of t-private computation of Eq. (7.64).1. In continuation to Exercises 18 and 19, given M1 and M2, considerthe m-ary functionality x 7! xM1 + r such that r is a random m-ary vector satisfying rM2 = 0m. Show that this functionality can bem-privately computed.2. Show that the functionality of Eq. (7.64) is a special case of the classof functionalities considered in Item 1.Guideline (Item 1): Note that privately compute each term of xM1+rseparately will not do. One has to combine these two computations suchthat not to yield information about the value of the individual terms.Guideline (Item 2): Show that the computation of the free term of thepolynomial c can be captured by an adequate M1, whereas the generationof the values of a random degree t polynomial with free-term equal zero canbe captured by an adequate M2.Author's Note: First draft written mainly in 2002.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

678 CHAPTER 7. GENERAL CRYPTOGRAPHIC PROTOCOLS
Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Bibliography[1] L.M. Adleman and M. Huang. Primality Testing and Abelian VarietiesOver Finite Fields. Springer-Verlag Lecture Notes in Computer Science(Vol. 1512), 1992. Preliminary version in 19th ACM Symposium on theTheory of Computing, 1987.[2] W. Aiello and J. H�astad. Perfect Zero-Knowledge Languages can be Rec-ognized in Two Rounds. In 28th IEEE Symposium on Foundations ofComputer Science, pages 439{448, 1987.[3] M. Ajtai. Generating Hard Instances of Lattice Problems. In 28th ACMSymposium on the Theory of Computing, pages 99{108, 1996.[4] M. Ajtai, J. Komlos, E. Szemer�edi. Deterministic Simulation in LogSpace.In 19th ACM Symposium on the Theory of Computing, pages 132{140,1987.[5] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions:Certain Parts are As Hard As the Whole. SIAM Journal on Computing,Vol. 17, April 1988, pages 194{209.[6] N. Alon and J.H. Spencer. The Probabilistic Method, John Wiley & Sons,Inc., 1992.[7] J.H. An and M. Bellare. Constructing VIL-MACs from FIL-MACs: Mes-sage Authentication under Weakened Assumptions. In Crypto99, SpringerLecture Notes in Computer Science (Vol. 1666), pages 252{269.[8] T.M. Apostol. Introduction ot Analytic Number Theory. Springer, 1976.[9] L. Babai. Trading Group Theory for Randomness. In 17th ACM Sympo-sium on the Theory of Computing, pages 421{420, 1985.[10] E. Bach. Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms. ACM Distinguished Dissertation (1984), MIT Press,Cambridge MA, 1985.[11] E. Bach and J. Shallit. Algorithmic Number Theory (Volume I: E�cientAlgorithms). MIT Press, 1996. 679

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

680 BIBLIOGRAPHY[12] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42ndIEEE Symposium on Foundations of Computer Science, pages 106{115,2001.[13] B. Barak. Constant-Round Coin-Tossing with a Man in the Middle orRealizing the Shared Random String Model. In 43th IEEE Symposium onFoundations of Computer Science, to appear, 2002.[14] B. Barak and O. Goldreich, Universal arguments and their applications. Inthe 17th IEEE Conference on Computational Complexity, pages 194{203,2002.[15] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,and K. Yang. On the (im)possibility of software obfuscation. In Crypto01,Springer-Verlag Lecture Notes in Computer Science (Vol. 2139), pages 1{18.[16] B. Barak and Y. Lindell. Non-Black-Box Proofs of Knowledge (tentativetitle). In 34th ACM Symposium on the Theory of Computing, pages 484{493, 2002.[17] D. Beaver. Foundations of Secure Interactive Computing. In Crypto91,Springer-Verlag Lecture Notes in Computer Science (Vol. 576), pages 377{391.[18] D. Beaver. Secure Multi-Party Protocols and Zero-Knowledge Proof Sys-tems Tolerating a Faulty Minority. J. Cryptology, Vol. 4, pages 75{122,1991.[19] M. Bellare. A Note on Negligible Functions. Tech. Rep. CS97-529, Dept.of Computer Science and Engineering, UCSD, March 1997.[20] M. Bellare, R. Canetti and H. Krawczyk. Pseudorandom functions Revis-ited: The Cascade Construction and its Concrete Security. In 37th IEEESymposium on Foundations of Computer Science, pages 514{523, 1996.[21] M. Bellare, R. Canetti and H. Krawczyk. Keying Hash Functions forMessage Authentication. In Crypto96, Springer Lecture Notes in ComputerScience (Vol. 1109), pages 1{15.[22] M. Bellare, R. Canetti and H. Krawczyk. Modular Approach to the Designand Analysis of Authentication and Key Exchange Protocols. In 30th ACMSymposium on the Theory of Computing, pages 419{428, 1998.[23] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among no-tions of security for public-key encryption schemes. In Crypto98, SpringerLecture Notes in Computer Science (Vol. 1462), pages 26{45.[24] M. Bellare and O. Goldreich. On De�ning Proofs of Knowledge. InCrypto92, Springer-Verlag Lecture Notes in Computer Science (Vol. 740),pages 390{420.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 681[25] M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptography:the Case of Hashing and Signing. In Crypto94, Springer-Verlag LectureNotes in Computer Science (Vol. 839), pages 216{233, 1994.[26] M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptographyand Application to Virus Protection. In 27th ACM Symposium on theTheory of Computing, pages 45{56, 1995.[27] M. Bellare, O. Goldreich and H. Krawczyk. Stateless Evaluation of Pseu-dorandom Functions: Security beyond the Birthday Barrier. In Crypto99,Springer Lecture Notes in Computer Science (Vol. 1666), pages 270{287.[28] M. Bellare, R. Guerin and P. Rogaway. XOR MACs: New Methodsfor Message Authentication using Finite Pseudorandom Functions. InCrypto95, Springer-Verlag Lecture Notes in Computer Science (Vol. 963),pages 15{28.[29] M. Bellare, S. Halevi, A. Sahai and S. Vadhan. Trapdoor Functions andPublic-Key Cryptosystems. In Crypto98, Springer Lecture Notes in Com-puter Science (Vol. 1462), pages 283{298.[30] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lowerthe Error in Computationally Sound Protocols? In 38th IEEE Symposiumon Foundations of Computer Science, pages 374{383, 1997.[31] M. Bellare, J. Kilian and P. Rogaway. The Security of Cipher Block Chain-ing. In Crypto94, Springer-Verlag Lecture Notes in Computer Science(Vol. 839), pages 341{358.[32] M. Bellare and S. Micali. How to Sign Given Any Trapdoor Function.Journal of the ACM, Vol. 39, pages 214{233, 1992.[33] D. Beaver, S. Micali and P. Rogaway. The Round Complexity of SecureProtocols. In 22nd ACM Symposium on the Theory of Computing, pages503{513, 1990.[34] M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigmfor Designing E�cient Protocols. In 1st Conf. on Computer and Commu-nications Security, ACM, pages 62{73, 1993.[35] M. Bellare and P. Rogaway. Entity Authentication and Key Distribu-tion. In Crypto93, Springer-Verlag Lecture Notes in Computer Science(Vol. 773), pages 232{249, 1994.[36] M. Bellare and P. Rogaway. Provably Secure Session Key Distribution:The Three Party Case. In 27th ACM Symposium on the Theory of Com-puting, pages 57{66, 1995.[37] M. Bellare and P. Rogaway. The Exact Security of Digital Signatures: Howto Sign with RSA and Rabin. In EuroCrypt96, Springer Lecture Notes inComputer Science (Vol. 1070).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

682 BIBLIOGRAPHY[38] M. Bellare and M. Yung. Certifying Permutations: Noninteractive Zero-Knowledge Based on Any Trapdoor Permutation. Journal of Cryptology,Vol. 9, pages 149-166, 1996.[39] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Av-erage Case Complexity. Journal of Computer and System Science, Vol. 44,No. 2, April 1992, pages 193{219.[40] M. Ben-Or, R. Canetti and O. Goldreich. Asynchronous Secure Computa-tion. In 25th ACM Symposium on the Theory of Computing, pages 52{61,1993. See details in [63].[41] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micaliand P. Rogaway. Everything Provable is Probable in Zero-Knowledge. InCrypto88, Springer-Verlag Lecture Notes in Computer Science (Vol. 403),pages 37{56, 1990[42] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover In-teractive Proofs: How to Remove Intractability. In 20th ACM Symposiumon the Theory of Computing, pages 113{131, 1988.[43] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theoremsfor Non-Cryptographic Fault-Tolerant Distributed Computation. In 20thACM Symposium on the Theory of Computing, pages 1{10, 1988.[44] E.R. Berlekamp. Factoring Polynomials over Large Finite Fields. Mathe-matics of Computation, Vol. 24, pages 713{735, 1970.[45] E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg. On the Inher-ent Intractability of Certain Coding Problems. IEEE Trans. on Inform.Theory, 1978.[46] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC:Fast and Secure Message Authentication. In Crypto99, Springer LectureNotes in Computer Science (Vol. 1666), pages 216{233.[47] M. Blum. How to Exchange Secret Keys. ACM Trans. Comput. Sys.,Vol. 1, pages 175{193, 1983.[48] M. Blum. Coin Flipping by Phone. In the 24th IEEE Computer Confer-ence (CompCon), pages 133{137, February 1982. See also SIGACT News,Vol. 15, No. 1, 1983.[49] L. Blum, M. Blum and M. Shub. A Simple Secure Unpredictable Pseudo-Random Number Generator. SIAM Journal on Computing, Vol. 15, 1986,pages 364{383.[50] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge Proof Systems. SIAM Journal on Computing, Vol. 20, No. 6,pages 1084{1118, 1991. (Considered the journal version of [51].)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 683[51] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge andits Applications. In 20th ACM Symposium on the Theory of Computing,pages 103{112, 1988. See [50].[52] M. Blum and S. Goldwasser. An E�cient Probabilistic Public-Key En-cryption Scheme which hides all partial information. In Crypto84, LectureNotes in Computer Science (Vol. 196) Springer-Verlag, pages 289{302.[53] M. Blum and S. Micali. How to Generate Cryptographically Strong Se-quences of Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13,pages 850{864, 1984. Preliminary version in 23rd IEEE Symposium onFoundations of Computer Science, 1982.[54] R. Boppana, J. H�astad, and S. Zachos. Does Co-NP Have Short InteractiveProofs? Information Processing Letters, 25, May 1987, pp. 127-132.[55] J.B. Boyar. Inferring Sequences Produced by Pseudo-Random NumberGenerators. Journal of the ACM, Vol. 36, pages 129{141, 1989.[56] G. Brassard. A Note on the Complexity of Cryptography. IEEE Trans.on Inform. Th., Vol. 25, pages 232{233, 1979.[57] G. Brassard. Quantum Information Processing: The Good, the Badand the Ugly. In Crypto97, Springer Lecture Notes in Computer Science(Vol. 1294), pages 337{341.[58] G. Brassard, D. Chaum and C. Cr�epeau. Minimum Disclosure Proofs ofKnowledge. Journal of Computer and System Science, Vol. 37, No. 2,pages 156{189, 1988. Preliminary version by Brassard and Cr�epeau in27th IEEE Symposium on Foundations of Computer Science, 1986.[59] G. Brassard and C. Cr�epeau. Zero-Knowledge Simulation of Boolean Cir-cuits. In Crypto86, Springer-Verlag Lecture Notes in Computer Science(Vol. 263), pages 223{233, 1987.[60] G. Brassard, C. Cr�epeau and M. Yung. Constant-Round Perfect Zero-Knowledge Computationally Convincing Protocols. Theoretical ComputerScience, Vol. 84, pages 23{52, 1991.[61] E.F. Brickell and A.M. Odlyzko. Cryptanalysis: A Survey of Recent Re-sults. In Proceedings of the IEEE, Vol. 76, pages 578{593, 1988.[62] C. Cachin and U. Maurer. Unconditional security against memory-bounded adversaries. In Crypto97, Springer Lecture Notes in ComputerScience (Vol. 1294), pages 292{306.[63] R. Canetti. Studies in Secure Multi-Party Computation and Applications.Ph.D. Thesis, Department of Computer Science and Applied Mathematics,Weizmann Institute of Science, Rehovot, Israel, June 1995. Available fromfrom http://theory.lcs.mit.edu/�tcryptol/BOOKS/ran-phd.html.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

684 BIBLIOGRAPHY[64] R. Canetti. Security and Composition of Multi-party Cryptographic Pro-tocols. Journal of Cryptology, Vol. 13, No. 1, pages 143{202, 2000.[65] R. Canetti. Universally Composable Security: A New Paradigm for Cryp-tographic Protocols. In 42nd IEEE Symposium on Foundations of Com-puter Science, pages 136{145, 2001. Full version (with di�erent title) isavailable from Cryptology ePrint Archive, Report 2000/067.[66] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Multi-party Computation. In 28th ACM Symposium on the Theory of Comput-ing, pages 639{648, 1996.[67] R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology,Revisited. In 30th ACM Symposium on the Theory of Computing, pages209{218, 1998.[68] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge. In 32nd ACM Symposium on the Theory of Computing, pages235{244, 2000.[69] R. Canetti, S. Halevi and A. Herzberg. How to Maintain AuthenticatedCommunication in the Presence of Break-Ins. Journal of Cryptology,Vol. 13, No. 1, pages 61{106, 2000.[70] R. Canetti and A. Herzberg. Maintaining Security in the Presence ofTransient Faults. In Crypto94, Springer-Verlag Lecture Notes in ComputerScience (Vol. 839), pages 425{439.[71] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box ConcurrentZero-Knowledge Requires ~
(logn) Rounds. In 33rd ACM Symposium onthe Theory of Computing, pages 570{579, 2001.[72] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Com-posable Two-Party and Multi-Party Secure Computation. In 34th ACMSymposium on the Theory of Computing, pages 494{503, 2002.[73] E.R. Can�eld, P. Erdos, and C. Pomerance. On a problem of Oppenheimconcerning \factorisatio numerorum". J. Number Theory, Vol. 17, pages1{28, 1983.[74] L. Carter and M. Wegman. Universal Hash Functions. Journal of Com-puter and System Science, Vol. 18, 1979, pages 143{154.[75] D. Chaum. Blind Signatures for Untraceable Payments. In Crypto82,Plenum Press, pages 199{203, 1983.[76] D. Chaum, C. Cr�epeau and I. Damg�ard. Multi-party unconditionally Se-cure Protocols. In 20th ACM Symposium on the Theory of Computing,pages 11{19, 1988.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 685[77] B. Chor, S. Goldwasser, S. Micali and B. Awerbuch. Veri�able SecretSharing and Achieving Simultaneity in the Presence of Faults. In 26thIEEE Symposium on Foundations of Computer Science, pages 383{395,1985.[78] B. Chor and E. Kushilevitz. A Zero-One Law for Boolean Privacy. SIAMJ. on Disc. Math., Vol. 4, pages 36{47, 1991.[79] R. Cleve. Limits on the Security of Coin Flips when Half the Processorsare Faulty. In 18th ACM Symposium on the Theory of Computing, pages364{369, 1986.[80] J.D. Cohen and M.J. Fischer. A Robust and Veri�able CryptographicallySecure Election Scheme. In 26th IEEE Symposium on Foundations ofComputer Science, pages 372{382, 1985.[81] A. Cohen and A. Wigderson. Dispensers, Deterministic Ampli�cation,and Weak Random Sources. 30th IEEE Symposium on Foundations ofComputer Science, 1989, pages 14{19.[82] R. Cramer and I. Damg�ard. New Generation of Secure and PracticalRSA-based Signatures. In Crypto96, Springer Lecture Notes in ComputerScience (Vol. 1109), pages 173{185.[83] R. Cramer and V. Shoup. A Practical Public-Key Cryptosystem Prov-ably Secure Against Adaptive Chosen Ciphertext Attacks. In Crypto98,Springer-Verlag Lecture Notes in Computer Science (Vol. 1462), pages 13{25.[84] C. Cr�epeau. E�cient Cryptographic Protocols Based on Noisy Channels.In EuroCrypt97, Springer, Lecture Notes in Computer Science (Vol. 1233),pages 306{317.[85] I. Damg�ard. Collision Free Hash Functions and Public Key SignatureSchemes. In EuroCrypt87, Springer-Verlag, Lecture Notes in ComputerScience (Vol. 304), pages 203{216.[86] I. Damg�ard. A Design Principle for Hash Functions. In Crypto89, Springer-Verlag Lecture Notes in Computer Science (Vol. 435), pages 416{427.[87] I. Damgard. Concurrent Zero-Knowledge in Easy in Practice. Theoryof Cryptography Li-brary, 99-14, June 1999. http://philby.ucsd.edu/cryptolib. See also\E�cient Concurrent Zero-Knowledge in the Auxiliary String Model" (inEurocrypt'00, 2000).[88] I. Damg�ard, O. Goldreich, T. Okamoto and A. Wigderson. Honest Veri�ervs Dishonest Veri�er in Public Coin Zero-Knowledge Proofs. In Crypto95,Springer-Verlag Lecture Notes in Computer Science (Vol. 963), pages 325{338, 1995.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

686 BIBLIOGRAPHY[89] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai.Robust Non-interactive Zero-Knowledge. In Crypto01, Springer LectureNotes in Computer Science (Vol. 2139), pages 566{598.[90] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In Crypto89,Springer-Verlag Lecture Notes in Computer Science (Vol. 435), pages 307{315.[91] W. Di�e, and M.E. Hellman. New Directions in Cryptography. IEEETrans. on Info. Theory, IT-22 (Nov. 1976), pages 644{654.[92] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In 23rdACM Symposium on the Theory of Computing, pages 542{552, 1991. Fullversion available from authors.[93] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure messagetransmission. Journal of the ACM, Vol. 40 (1), pages 17{47, 1993.[94] D. Dolev and A.C. Yao. On the Security of Public-Key Protocols. IEEETrans. on Inform. Theory, Vol. 30, No. 2, pages 198{208, 1983.[95] C. Dwork, U. Feige, J. Kilian, M. Naor and S. Safra. Low CommunicationPerfect Zero Knowledge Two Provers Proof Systems. In Crypto92, SpringerVerlag, Lecture Notes in Computer Science (Vol. 740), pages 215{227.[96] C. Dwork, and M. Naor. An E�cient Existentially Unforgeable SignatureScheme and its Application. Journal of Cryptology, Vol. 11 (3), pages187{208, 1998[97] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30thSTOC, pages 409{418, 1998.[98] S. Even and O. Goldreich. On the Security of Multi-party Ping-PongProtocols. In 24th IEEE Symposium on Foundations of Computer Science,pages 34{39, 1983.[99] S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for SigningContracts. CACM, Vol. 28, No. 6, 1985, pages 637{647.[100] S. Even, O. Goldreich and S. Micali. On-line/O�-line Digital signatures.Journal of Cryptology, Vol. 9, 1996, pages 35{67.[101] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Prob-lems with Applications to Public-Key Cryptography. Inform. and Control,Vol. 61, pages 159{173, 1984.[102] S. Even and Y. Yacobi. Cryptography and NP-Completeness. In proceed-ings of 7th ICALP, Springer-Verlag Lecture Notes in Computer Science(Vol. 85), pages 195{207, 1980. See [101].

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 687[103] U. Feige. Error reduction by parallel repetition { the state of the art. Tech-nical report CS95-32, Computer Science Department, Weizmann Instituteof Science, Rehovot, isreal, 1995.[104] U. Feige, A. Fiat and A. Shamir. Zero-Knowledge Proofs of Identity.Journal of Cryptology, Vol. 1, 1988, pages 77{94.[105] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Under General Assumptions. SIAM Journal on Com-puting, Vol. 29 (1), pages 1{28, 1999.[106] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in TwoRounds. In Crypto89, Springer-Verlag Lecture Notes in Computer Science(Vol. 435), pages 526{544.[107] U. Feige and A. Shamir. Witness Indistinguishability and Witness HidingProtocols. In 22nd ACM Symposium on the Theory of Computing, pages416{426, 1990.[108] W. Feller. An Introduction to Probability Theory and Its Applications.John Wiley, New York, 1968.[109] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Iden-ti�cation and Signature Problems. In Crypto86, Springer-Verlag LectureNotes in Computer Science (Vol. 263), pages 186{189, 1987.[110] M. Fischer, S. Micali, C. Racko�, and D.K. Wittenberg. An Oblivi-ous Transfer Protocol Equivalent to Factoring. Unpublished manuscript,1986. Preliminary versions were presented in EuroCrypt84, and in the NSFWorkshop on Mathematical Theory of Security, Endicott House (1985).[111] R. Fischlin and C.P. Schnorr. Stronger Security Proofs for RSA and Ra-bin Bits. In EuroCrypt97, Springer Lecture Notes in Computer Science(Vol. 1233), pages 267{279, 1997.[112] L. Fortnow, The Complexity of Perfect Zero-Knowledge. In 19th ACMSymposium on the Theory of Computing, pages 204{209, 1987.[113] A.M. Frieze, J. H�astad, R. Kannan, J.C. Lagarias, and A. Shamir. Re-constructing Truncated Integer Variables Satisfying Linear Congruences.SIAM Journal on Computing, Vol. 17, pages 262{280, 1988.[114] O. Gaber and Z. Galil. Explicit Constructions of Linear Size Superconcen-trators. Journal of Computer and System Science, Vol. 22, pages 407{420,1981.[115] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide tothe Theory of NP-Completeness. W.H. Freeman and Company, New York,1979.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

688 BIBLIOGRAPHY[116] P.S. Gemmell. An Introduction to Threshold Cryptography. In Crypto-Bytes, RSA Lab., Vol. 2, No. 3, 1997.[117] R. Gennaro, M. Rabin and T. Rabin. Simpli�ed VSS and Fast-track Mul-tiparty Computations with Applications to Threshold Cryptography. In17th ACM Symposium on Principles of Distributed Computing, pages 101{112, 1998.[118] R. Gennaro and L. Trevisan. Lower bounds on the e�ciency of genericcryptographic constructions. ECCC, TR00-022, May 2000.[119] E.N. Gilbert, F.J. MacWilliams, and N.J.A. Sloane. Codes which detectdeception. Bell Syst. Tech. J., Vol. 53, pages 405{424, 1974.[120] O. Goldreich. Two Remarks Concerning the GMR Signature Scheme. InCrypto86, Springer-Verlag Lecture Notes in Computer Science (Vol. 263),pages 104{110, 1987.[121] O. Goldreich. Towards a Theory of Software Protection and Simulation byOblivious RAMs. In 19th ACM Symposium on the Theory of Computing,pages 182{194, 1987.[122] O. Goldreich. Foundation of Cryptography { Class Notes. Preprint, Spring1989. Superseded by the current book in conjunction with [123].[123] O. Goldreich. Lecture Notes on Encryption, Signatures andCryptographic Protocol. Extracts from [122]. Available fromhttp://theory.lcs.mit.edu/�oded/ln89.html Superseded by thecombination of [130], [131], and [129].[124] O. Goldreich. A Note on Computational Indistinguishability. InformationProcessing Letters, Vol. 34, pages 277{281, May 1990.[125] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-Knowledge. Journal of Cryptology, Vol. 6, No. 1, pages 21{53, 1993.[126] O. Goldreich. Foundation ofCryptography { Fragments of a Book. February 1995. Available fromhttp://theory.lcs.mit.edu/�oded/frag.html Superseded by the cur-rent book in conjunction with [130].[127] O. Goldreich. Notes on Levin's Theory of Average-Case Complexity.ECCC, TR97-058, Dec. 1997.[128] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudoran-domness. Algorithms and Combinatorics series (Vol. 17), Springer, 1999.[129] O. Goldreich. Secure Multi-Party Computation. Unpublished manuscript,1998. Available from http://theory.lcs.mit.edu/�oded/gmw.html.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 689[130] O. Goldreich. En-cryption Schemes { fragments of a chapter. December 1999. Availablefrom http://www.wisdom.weizmann.ac.il/�oded/foc-book.html[131] O. Goldreich. Signature Schemes { fragments of a chapter. May 2000.Available fromhttp://www.wisdom.weizmann.ac.il/�oded/foc-book.html[132] O. Goldreich. Foundation of Cryptography { Basic Tools. CambridgeUniversity Press, 2001.[133] O. Goldreich. Concurrent Zero-Knowledge With Timing, Revisited. In34th ACM Symposium on the Theory of Computing, pages 332{340, 2002.[134] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-Free Hashing fromLattice Problems. ECCC, TR95-042, 1996.[135] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct RandomFunctions. Journal of the ACM, Vol. 33, No. 4, pages 792{807, 1986.[136] O. Goldreich, S. Goldwasser, and S. Micali. On the Cryptographic Appli-cations of Random Functions. In Crypto84, Springer-Verlag Lecture Notesin Computer Science (Vol. 263), pages 276{288, 1985.[137] O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuck-erman. Security Preserving Ampli�cation of Hardness. In 31st IEEESymposium on Foundations of Computer Science, pages 318{326, 1990.[138] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems for NP. Journal of Cryptology, Vol. 9, No. 2,pages 167{189, 1996. Preliminary versions date to 1988.[139] O. Goldreich and H. Krawczyk. On the Composition of Zero-KnowledgeProof Systems. SIAM Journal on Computing, Vol. 25, No. 1, February1996, pages 169{192.[140] O. Goldreich and H. Krawczyk. On Sparse Pseudorandom Ensembles.Random Structures and Algorithms, Vol. 3, No. 2, (1992), pages 163{174.[141] O. Goldreich, H. Krawcyzk and M. Luby. On the Existence of Pseudo-random Generators. SIAM Journal on Computing, Vol. 22-6, pages 1163{1175, 1993.[142] O. Goldreich and E. Kushilevitz. A Perfect Zero-Knowledge Proof for aDecision Problem Equivalent to Discrete Logarithm. Journal of Cryptol-ogy, Vol. 6 (2), pages 97{116, 1993.[143] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Func-tion. In 21st ACM Symposium on the Theory of Computing, pages 25{32,1989.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

690 BIBLIOGRAPHY[144] O. Goldreich and Y. Lindell. Session-Key Generation using Human Pass-words. In Crypto01, Springer-Verlag Lecture Notes in Computer Science(Vol. 2139), pages 408{432.[145] O. Goldreich, Y. Lustig and M. Naor. On Chosen Ciphertext Security ofMultiple Encryptions. Cryptology ePrint Archive, Report 2002/089, 2002.[146] O. Goldreich and B. Meyer. Computational Indistinguishability { Algo-rithms vs. Circuits. Theoretical Computer Science, Vol. 191, pages 215{218, 1998.[147] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothingbut their Validity or All Languages in NP Have Zero-Knowledge ProofSystems. Journal of the ACM, Vol. 38, No. 1, pages 691{729, 1991. Pre-liminary version in 27th IEEE Symposium on Foundations of ComputerScience, 1986.[148] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game{ A Completeness Theorem for Protocols with Honest Majority. In 19thACM Symposium on the Theory of Computing, pages 218{229, 1987.[149] O. Goldreich, N. Nisan and A. Wigderson. On Yao's XOR-Lemma. ECCC,TR95-050, 1995.[150] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-KnowledgeProof Systems. Journal of Cryptology, Vol. 7, No. 1, pages 1{32, 1994.[151] O. Goldreich and E. Petrank. Quantifying Knowledge Complexity. Com-putational Complexity, Vol. 8, pages 50{98, 1999.[152] O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials withqueries: the highly noisy case. To appear in SIAM Journal on DiscreteMathematics.[153] O. Goldreich, A. Sahai, and S. Vadhan. Honest-Veri�er Statistical Zero-Knowledge equals general Statistical Zero-Knowledge. In 30th ACM Sym-posium on the Theory of Computing, pages 399{408, 1998.[154] O. Goldreich and M. Sudan. Computational Indistinguishability: A Sam-ple Hierarchy. Journal of Computer and System Science, Vol. 59, pages253{269, 1999.[155] O. Goldreich and S. Vadhan. Comparing Entropies in Statistical Zero-Knowledge with Applications to the Structure of SZK. In 14th IEEEConference on Computational Complexity, pages 54{73, 1999.[156] O. Goldreich and R. Vainish. How to Solve any Protocol Problem { AnE�ciency Improvement. In Crypto87, Springer Verlag, Lecture Notes inComputer Science (Vol. 293), pages 73{86.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 691[157] S. Goldwasser and J. Kilian. Primality Testing Using Elliptic Curves.Journal of the ACM, Vol. 46, pages 450{472, 1999. Preliminary version in18th ACM Symposium on the Theory of Computing, 1986.[158] S. Goldwasser and L.A. Levin. Fair Computation of General Functionsin Presence of Immoral Majority. In Crypto90, Springer-Verlag LectureNotes in Computer Science (Vol. 537), pages 77{93.[159] S. Goldwasser and Y. Lindell. Secure Computation Without Agreement.In 16th International Symposium on Distributed Computing (DISC), 2002.[160] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Com-puter and System Science, Vol. 28, No. 2, pages 270{299, 1984. Preliminaryversion in 14th ACM Symposium on the Theory of Computing, 1982.[161] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity ofInteractive Proof Systems. SIAM Journal on Computing, Vol. 18, pages186{208, 1989. Preliminary version in 17th ACM Symposium on the Theoryof Computing, 1985.[162] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Se-cure Against Adaptive Chosen-Message Attacks. SIAM Journal on Com-puting, April 1988, pages 281{308.[163] S. Goldwasser, S. Micali and P. Tong. Why and How to Establish a PrivateCode in a Public Network. In 23rd IEEE Symposium on Foundations ofComputer Science, 1982, pages 134{144.[164] S. Goldwasser, S. Micali and A.C. Yao. Strong Signature Schemes. In 15thACM Symposium on the Theory of Computing, pages 431{439, 1983.[165] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interac-tive Proof Systems. Advances in Computing Research: a research annual,Vol. 5 (Randomness and Computation, S. Micali, ed.), pages 73{90, 1989.[166] S. Haber and S. Micali. Private communication, 1986.[167] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. A PseudorandomGenerator from any One-way Function. SIAM Journal on Computing,Volume 28, Number 4, pages 1364{1396, 1999. Preliminary versions byImpagliazzo et. al. in 21st ACM Symposium on the Theory of Computing(1989) and H�astad in 22nd ACM Symposium on the Theory of Computing(1990).[168] J. H�astad, A. Schrift and A. Shamir. The Discrete Logarithm Modulo aComposite Hides O(n) Bits. Journal of Computer and System Science,Vol. 47, pages 376{404, 1993.[169] M. Hirt and U. Maurer. Complete characterization of adversaries tolerablein secure multi-party computation. Journal of Cryptology, Vol. 13, No. 1,pages 31{60, 2000.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

692 BIBLIOGRAPHY[170] R. Impagliazzo and M. Luby. One-Way Functions are Essential for Com-plexity Based Cryptography. In 30th IEEE Symposium on Foundations ofComputer Science, pages 230-235, 1989.[171] R. Impagliazzo and M. Naor. E�cient Cryptographic Schemes Provable asSecure as Subset Sum. Journal of Cryptology, Vol. 9, 1996, pages 199{216.[172] R. Impagliazzo and S. Rudich. Limits on the Provable Consequences ofOne-Way Permutations. In 21st ACM Symposium on the Theory of Com-puting, pages 44{61, 1989.[173] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential cir-cuits: Derandomizing the XOR Lemma. In 29th ACM Symposium on theTheory of Computing, pages 220{229, 1997.[174] R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. In30th IEEE Symposium on Foundations of Computer Science, 1989, pages248{253.[175] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. InCrypto87, Springer-Verlag Lecture Notes in Computer Science (Vol. 293),pages 40{51, 1987.[176] A. Juels, M. Luby and R. Ostrovsky. Security of Blind Digital Signatures.In Crypto97, Springer Lecture Notes in Computer Science (Vol. 1294).[177] J. Justesen. A class of constructive asymptotically good alegbraic codes.IEEE Trans. Inform. Theory, Vol. 18, pages 652{656, 1972.[178] N. Kahale. Eigenvalues and Expansion of Regular Graphs. Journal of theACM, Vol. 42 (5), pages 1091{1106, 1995.[179] J. Kahn, M. Saks, and C. Smyth. A Dual Version of Reimer's Inequalityand a Proof of Rudich's Conjecture. In 15th IEEE Conference on Compu-tational Complexity, 2000.[180] B.S. Kaliski. Elliptic Curves and Cryptography: A Pseudorandom BitGenerator and Other Tools. Ph.D. Thesis, LCS, MIT, 1988.[181] J. Katz and M. Yung. Complete Characterization of Security Notions forProbabilistic Private-Key Encryption. In 32nd ACM Symposium on theTheory of Computing, pages 245{254, 2000.[182] J. Kilian. Basing Cryptography on Oblivious Transfer. In 20th ACMSymposium on the Theory of Computing, pages 20{31, 1988.[183] J. Kilian. A Note on E�cient Zero-Knowledge Proofs and Arguments. In24th ACM Symposium on the Theory of Computing, pages 723{732, 1992.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 693[184] J. Kilian and E. Petrank. An E�cient Non-Interactive Zero-KnowledgeProof System for NP with General Assumptions. Journal of Cryptology,Vol. 11, pages 1{27, 1998.[185] J. Kilian and E. Petrank Concurrent and Resettable Zero-Knowledge inPoly-logarithmic Rounds In 33rd ACM Symposium on the Theory of Com-puting, pages 560{569, 2001.[186] H. Krawczyk. LFSR-based Hashing and Authentication. In Crypto94,Lecture Notes in Computer Science (Vol. 839), Springer-Verlag, pages 129{139.[187] H. Krawczyk. New Hash Functions For Message Authentication. In Euro-Crypt95, Springer-Verlag, Lecture Notes in Computer Science (Vol. 921),pages 301{310.[188] J.C. Lagarias and A.M. Odlyzko. Solving Low-Density Subset Sum Prob-lems. Journal of the ACM, Vol. 32, pages 229{246, 1985.[189] D. Lapidot and A. Shamir. Fully parallelized multi-prover protocols forNEXP-time. Journal of Computer and System Science, Vol. 54 (2), pages215{220, April 1997.[190] A. Lempel. Cryptography in Transition. Computing Surveys, Dec. 1979.[191] A.K. Lenstra, H.W. Lenstra, L. Lov�asz. Factoring polynomials with ratio-nal coe�cients. Mathematische Annalen 261, pages 515{534, 1982.[192] L.A. Levin. Average Case Complete Problems. SIAM Journal on Com-puting, Vol. 15, pages 285{286, 1986.[193] L.A. Levin. One-Way Function and Pseudorandom Generators. Combina-torica, Vol. 7, pages 357{363, 1987.[194] L.A. Levin. Randomness and Non-determinism. J. Symb. Logic, Vol. 58(3),pages 1102{1103, 1993.[195] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and itsApplications. Springer Verlag, August 1993.[196] Y. Lindell. A Simpler Construction of CCA2-Secure Public-Key Encryp-tion Under General Assumptions. In preparation, 2002.[197] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-PartyComputation. In Crypto01, Springer Lecture Notes in Computer Science(Vol. 2139), pages 171{189, 2001.[198] Y. Lindell, A. Lysyanskaya and T. Rabin. On the Composition of Authen-ticated Byzantine Agreement. In 34th ACM Symposium on the Theory ofComputing, pages 514{523, 2002.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

694 BIBLIOGRAPHY[199] J.H. van Lint. Introduction to Coding Theory. Springer-Verlag, GraduateTexts in Mathematics (#88), New York, 1982.[200] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan Graphs. Combinatorica,Vol. 8, pages 261{277, 1988.[201] M. Luby. Pseudorandomness and Cryptographic Applications. PrincetonUniversity Press, 1996.[202] M. Luby and C. Racko�. How to Construct Pseudorandom Permutationsfrom Pseudorandom Functions. SIAM Journal on Computing, Vol. 17,1988, pages 373{386.[203] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic Methods forInteractive Proof Systems. Journal of the ACM, Vol. 39, No. 4, pages859{868, 1992.[204] U. Maurer. Secret Key Agreement by Public Discussion from CommonInformation. IEEE Trans. on Inform. Th. , Vol. 39 (No. 3), pages 733{742, May 1993.[205] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of AppliedCryptography. CRC Press, 1996.[206] R.C. Merkle. Secure Communication over Insecure Channels. CACM,Vol. 21, No. 4, pages 294{299, 1978.[207] R.C. Merkle. Protocols for public key cryptosystems. In Proc. of the 1980Symposium on Security and Privacy.[208] R.C. Merkle. A Digital Signature Based on a Conventional EncryptionFunction. In Crypto87, Springer-Verlag Lecture Notes in Computer Science(Vol. 293), 1987, pages 369-378.[209] R.C. Merkle. A Certi�ed Digital Signature Scheme. In Crypto89, Springer-Verlag Lecture Notes in Computer Science (Vol. 435), pages 218{238.[210] R.C. Merkle and M.E. Hellman. Hiding Information and Signatures inTrapdoor Knapsacks. IEEE Trans. Inform. Theory, Vol. 24, pages 525{530, 1978.[211] S. Micali, C. Racko�, and B. Sloan. The Notion of Security for ProbabilisticCryptosystems. SIAM Journal on Computing, Vol. 17, pages 412{426,1988.[212] S. Micali and P. Rogaway. Secure Computation. In Crypto91, Springer-Verlag Lecture Notes in Computer Science (Vol. 576), pages 392{404.[213] D. Micciancio. Oblivious Data Structures: Applications to Cryptography.In 29th ACM Symposium on the Theory of Computing, pages 456{464,1997.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 695[214] G.L. Miller. Riemann's Hypothesis and Tests for Primality. Journal ofComputer and System Science, Vol. 13, pages 300{317, 1976.[215] R. Motwani and P. Raghavan. Randomized Algorithms, Cambridge Uni-versity Press, 1995.[216] National Bureau of Standards. Federal Information Processing Standards,Publ. 46 (DES 1977).[217] National Institute for Standards and Technology. Digital Signature Standard(dss), Federal Register, Vol. 56, No. 169, August 1991.[218] M. Naor. Bit Commitment using Pseudorandom Generators. Journal ofCryptology, Vol. 4, pages 151{158, 1991.[219] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Zero-KnowledgeArguments for NP can be Based on General Assumptions. Journal ofCryptology, Vol. 11, pages 87{108, 1998.[220] M. Naor and O. Reingold. Synthesizers and their Application to the Paral-lel Construction of Pseudo-Random Functions. In 36th IEEE Symposiumon Foundations of Computer Science, pages 170{181, 1995.[221] M. Naor and O. Reingold. On the Construction of Pseudo-Random Per-mutations: Luby-Racko� Revisited. Journal of Cryptology, Vol. 12 (1),pages 29{66, 1999.[222] M. Naor and O. Reingold. From Unpredictability to Indistinguishabil-ity: A Simple Construction of Pseudorandom Functions from MACs. InCrypto98, Springer Lecture Notes in Computer Science (Vol. 1464), pages267{282.[223] M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryp-tographic Application. 21st ACM Symposium on the Theory of Computing,1989, pages 33{43.[224] M. Naor and M. Yung. Public-Key Cryptosystems Provably SecureAgainst Chosen Ciphertext Attacks. In 22nd ACM Symposium on theTheory of Computing, pages 427-437, 1990.[225] N. Nisan and D. Zuckerman. Randomness is Linear in Space. Journal ofComputer and System Science, Vol. 52 (1), pages 43{52, 1996.[226] A.M. Odlyzko. The future of integer factorization. CryptoBytes (Thetechnical newsletter of RSA Laboratories), Vol. 1 (No. 2), pages 5-12,1995. Available from http://www.research.att.com/�amo[227] A.M. Odlyzko. Discrete logarithms and smooth polynomials. In FiniteFields: Theory, Applications and Algorithms, G. L. Mullen and P. Shiue,eds., Amer. Math. Soc., Contemporary Math. Vol. 168, pages 269{278,1994. Available from http://www.research.att.com/�amo

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

696 BIBLIOGRAPHY[228] T. Okamoto. On relationships between statistical zero-knowledge proofs.In 28th ACM Symposium on the Theory of Computing, pages 649{658,1996.[229] R. Ostrovsky, R. Venkatesan and M. Yung, \Secure Commitment AgainstPowerful Adversary: A Security Primitive based on Average Intractability.In Proceedings of the 9th Symposium on Theoretical Aspects of ComputerScience (STACS92), pages 439{448.[230] R. Ostrovsky and A. Wigderson. One-Way Functions are essential for Non-Trivial Zero-Knowledge. In 2nd Israel Symp. on Theory of Computing andSystems, IEEE Comp. Soc. Press, pages 3{17, 1993.[231] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks.In 10th ACM Symposium on Principles of Distributed Computing, pages51{59, 1991.[232] T.P. Pedersen and B. P�tzmann. Fail-Stop Signatures. SIAM Journal onComputing, Vol. 26/2, pages 291{330, 1997. Based on several earlier work(see �rst footnote in the paper).[233] B. P�tzmann. Digital Signature Schemes (General Framework and Fail-Stop Signatures). Springer Lecture Notes in Computer Science (Vol. 1100),1996.[234] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-KnowledgeProofs in Logarithmic Number of Rounds. In 43rd IEEE Symposium onFoundations of Computer Science, 2002.[235] V. Pratt. Every Prime has a Succinct Certi�cate. SIAM Journal onComputing, Vol. 4, pages 214{220, 1975.[236] M.O. Rabin. Probabilistic Algorithm for Testing Primality. Journal ofNumber Theory, Vol. 12, pages 128{138, 1980.[237] M.O. Rabin. Digitalized Signatures. In Foundations of Secure Computa-tion (R.A. DeMillo et. al. eds.), Academic Press, 1977.[238] M.O. Rabin. Digitalized Signatures and Public Key Functions as In-tractable as Factoring. MIT/LCS/TR-212, 1979.[239] M.O. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. MemoTR-81, Aiken Computation Laboratory, Harvard U., 1981.[240] C. Racko� and D.R. Simon. Non-Interactive Zero-Knowledge Proof ofKnowledge and Chosen Ciphertext Attack. In Crypto91, Springer Verlag,Lecture Notes in Computer Science (Vol.), pages 433{444.[241] R. Raz. A Parallel Repetition Theorem. SIAM Journal on Computing,Vol. 27 (3), pages 763{803, 1998.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 697[242] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In EuroCrypt99, Springer LNCS 1592, pages 415{413.[243] R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining DigitalSignatures and Public Key Cryptosystems. CACM, Vol. 21, Feb. 1978,pages 120{126.[244] P. Rogaway. TheRound Complexity of Secure Protocols. MIT Ph.D. Thesis, June 1991.Available from http://www.cs.ucdavis.edu/�rogaway/papers.[245] J. Rompel. One-way Functions are Necessary and Su�cient for SecureSignatures. In 22nd ACM Symposium on the Theory of Computing, 1990,pages 387{394.[246] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and AchievingChosen-Ciphertext Security. In 40th IEEE Symposium on Foundations ofComputer Science, pages 543{553, 1999.[247] A. Sahai. Improved Constructions Achieving Chosen-Ciphertext Security.In preparation, 2001. See [89].[248] A. Sahai and S. Vadhan. A Complete Promise Problem for StatisticalZero-Knowledge. In 38th IEEE Symposium on Foundations of ComputerScience, pages 448{457, 1997.[249] C.P. Schnorr and H.H. Horner, Attacking the Chor-Rivest Cryptosystemby Improved Lattice Reduction. In EuroCrypt95, Springer-Verlag LectureNotes in Computer Science (Vol. 921), pages 1{12.[250] A. Shamir. How to Share a Secret. CACM, Vol. 22, Nov. 1979, pages612{613.[251] A. Shamir. A Polynomial-Time Algorithm for Breaking the Merkle-Hellman Cryptosystem. In 23rd IEEE Symposium on Foundations of Com-puter Science, pages 145{152, 1982.[252] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages869{877, 1992.[253] A. Shamir, R.L. Rivest, and L. Adleman. Mental Poker. MIT/LCS ReportTM-125, 1979.[254] C.E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech.J., Vol. 28, pages 656{715, 1949.[255] M. Sipser. A Complexity Theoretic Approach to Randomness. In 15thACM Symposium on the Theory of Computing, pages 330{335, 1983.[256] M. Sipser. Introduction to the Theory of Computation. PWS PublishingCompany, 1997.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

698 BIBLIOGRAPHY[257] R. Solovay and V. Strassen. A Fast Monte-Carlo Test for Primality. SIAMJournal on Computing, Vol. 6, pages 84{85, 1977. Addendum in SIAMJournal on Computing, Vol. 7, page 118, 1978.[258] D. Stinson Universal hashing and authentication codes. Designs, Codesand Cryptography, Vol. 4, pages 369{380, 1994.[259] M. Sudan. Decoding of Reed-Solomon Codes beyond the error-correctionBound. Jour. of Complexity, Vol. 13 (1), pages 180{193, 1997.[260] M. Tompa and H. Woll, Random Self-Reducibility and Zero-KnowledgeInteractive Proofs of Possession of Information. In 28th IEEE Symposiumon Foundations of Computer Science, pages 472{482, 1987.[261] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD Thesis,Department of Mathematics, MIT, 1999.[262] A. Vardi. Algorithmic Complexity in Coding Theory and the MinimunDistnace Problem. In 29th ACM Symposium on the Theory of Computing,pages 92{108, 1997.[263] U.V. Vazirani and V.V. Vazirani. E�cient and Secure Pseudo-RandomNumber Generation. 25th IEEE Symposium on Foundations of ComputerScience, pages 458{463, 1984.[264] M. Wegman and L. Carter. New Hash Functions and their Use in Au-thentication and Set Equality. Journal of Computer and System Science,Vol. 22, 1981, pages 265{279.[265] A. D. Wyner. The Wire-Tap Channel. Bell System Technical Journal,Vol. 54 (No. 8), pages 1355{1387, Oct. 1975.[266] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEESymposium on Foundations of Computer Science, pages 80{91, 1982.[267] A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Sympo-sium on Foundations of Computer Science, pages 162{167, 1986.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

