Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRY PTOGRAPHY .

Draft of a chapter
on Signature Schemes

(revised, posted version Nr. 4.1)

Extracts from a working draft for

Volume 2 of Foundations of Cryptography

Oded Goldreich

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

June 15, 2003

See copyright notice.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

to Dana

©Copyright 2003 by Oded Goldreich.

Permission to make copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that new copies bear this notice and the full citation on the

first page. Abstracting with credit is permitted.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

II

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Preface

The current manuscript is a preliminary draft of the chapter on
signature schemes (Chapter 6) of the second volume of the work
Foundations of Cryptography. This manuscript subsumes a previous
versions posted in May 2000 and Feb. 2002.

The bigger picture. The current manuscript is part of a working draft of
Part 2 of the three-part work Foundations of Cryptography (see Figure 0.1). The
three parts of this work are Basic Tools, Basic Applications, and Beyond the Ba-
sics. The first part (containing Chapters 1-4) has been published by Cambridge
University Press (in June 2001). The second part, counsists of Chapters 5-7 (re-
garding Encryptioni Schemes, Signatures Schemes, and General Cryptographic
Protocols, respectively). We hope to publish the second part with Cambridge
University Press within a couple of years.

Part 1: Introduction and Basic Tools
Chapter 1: Introduction
Chapter 2: Computational Difficulty (One-Way Functions)
Chapter 3: Pseudorandom Generators
Chapter 4: Zero-Knowledge Proofs
Part 2: Basic Applications
Chapter 5: Encryption Schemes
Chapter 6: Signature Schemes
Chapter 7: General Cryptographic Protocols
Part 3: Beyond the Basics

Figure 0.1: Organization of this work

II1

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

v

The partition of the work into three parts is a logical one. Furthermore, it
offers the advantage of publishing the first part without waiting for the comple-
tion of the other parts. Similarly, we hope to complete the second part within a
couple of years, and publish it without waiting for the third part.

Prerequisites. The most relevant background for this text is provided by
basic knowledge of algorithms (including randomized ones), computability and
elementary probability theory. Background on (computational) number theory,
which is required for specific implementations of certain constructs, is not really
required here.

Using this text. The text is intended as part of a work that is aimed to serve
both as a textbook and a reference text. That is, it is aimed at serving both the
beginner and the expert. In order to achieve this aim, the presentation of the
basic material is very detailed so to allow a typical CS-undergraduate to follow
it. An advanced student (and certainly an expert) will find the pace (in these
parts) way too slow. However, an attempt was made to allow the latter reader
to easily skip details obvious to him/her. In particular, proofs are typically
presented in a modular way. We start with a high-level sketch of the main ideas,
and only later pass to the technical details. Passage from high-level descriptions
to lower level details is typically marked by phrases such as details follow.

In a few places, we provide straightforward but tedious details in in-
dented paragraphs as this one. In some other (even fewer) places such
paragraphs provide technical proofs of claims that are of marginal rele-
vance to the topic of the book.

More advanced material is typically presented at a faster pace and with less
details. Thus, we hope that the attempt to satisfy a wide range of readers will
not harm any of them.

Teaching. The material presented in the full (three-volume) work is, on one
hand, way beyond what one may want to cover in a course, and on the other
hand falls very short of what one may want to know about Cryptography in
general. To assist these conflicting needs we make a distinction between basic
and advanced material, and provide suggestions for further reading (in the last
section of each chapter). In particular, sections, subsections, and subsubsections
marked by an asterisk (*) are intended for advanced reading.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Table of Contents

Preface 111
6 Signatures and Message Authentication 489
6.1 The Setting and Definitional Issues 489
6.1.1 The two types of schemes: a brief overview 490
6.1.2 Introduction to the unified treatment 491
6.1.3 Basic mechanism 493
6.1.4 Attacks and security oL 494
6.1.5 *Variants 496
6.1.5.1 Augmenting the attack with a verification oracle 496
6.1.5.2 Inessential generalities 498

6.1.5.3 Weaker notions of security and some popular schemes498
6.2 Length-restricted signature scheme 498
6.2.1 Definition oo o o 499
6.2.2 The power of length-restricted signature schemes 499
6.2.2.1 Signing (augmented) blocks 500
6.2.2.2 Signing a hash value 504
6.2.3 * Constructing collision-free hashing functions 508
6.2.3.1 A construction based on claw-free permutations 509
6.2.3.2 Collision-free hashing via block-chaining 511
6.2.3.3 Collision-free hashing via tree-hashing 513
6.3 Constructions of Message Authentication Schemes 515
6.3.1 Applying a pseudorandom function to the document . . . 515
6.3.1.1 A simple construction and a plausibility result . 516
6.3.1.2 * Using the hash-and-sign paradigm 518

6.3.1.3 * A variation on the hash-and-sign paradigm (or
using non-cryptographic hashing plus hiding) . . 519

6.3.2 * More on Hash-and-Hide and state-based MACs 523
6.3.2.1 The definition of state-based MACs 524

6.3.2.2 State-based hash-and-hide MACs 526

6.4 Constructions of Signature Schemes 530
6.4.1 One-time signature schemes 530
6.4.1.1 Definitions L. 531

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1

6.4.1.2 Constructing length-restricted one-time signature
schemes 532
6.4.1.3 From length-restricted schemes to general ones . 535
6.4.2 From one-time signature schemes to general ones 535
6.4.2.1 The refreshing paradigm 536
6.4.2.2 Authentication—trees. 538
6.4.2.3 The actual construction 549
6.4.2.4 Conclusions and comments 552
6.4.3 * Universal One-Way Hash Functions and using them . . 554
6.4.3.1 Definition oL oL 554
6.4.3.2 Constructions, 556
6.4.3.3 One-time signature schemes based on UOWHF . 565
6.4.3.4 Conclusions and comments 569
6.5 * Additional Properties 570
6.5.1 Unique signatures 570
6.5.2 Super-secure signature schemes 571
6.5.3 Off-line/on-line signing 575
6.5.4 Incremental signatures 576
6.5.5 Fail-stop signatures. L. 578
6.6 Miscellaneous L 579
6.6.1 On Using Signature Schemes 579
6.6.2 On Information Theoretic Security 580
6.6.3 On Some Popular Schemes 581
6.6.4 Historical Notes 582
6.6.4.1 Signature Schemes 582
6.6.4.2 Message Authentication Schemes 583
6.6.4.3 Additional topics. 584
6.6.5 Suggestion for Further Reading 584
6.6.6 Open Problems 585

6.6.7 Exercises 585

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

488

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Chapter 6

Digital Signatures and
Message Authentication

Message authentication and (digital) signatures were the first tasks that joined
encryption to form modern cryptography. Both message authentication and dig-
ital signatures are concerned with the “authenticity” of data, and the difference
between them is analogous to the difference between private-key and public-key
encryption schemes.

In this chapter, we define message authentication and digital signatures, and
the security notions associated to them. We show how to construct message
authentication schemes using pseudorandom functions, and how to construct
signature schemes using one-way permutations. We stress that the latter con-
struction employs arbitrary one-way permutations, which do not necessarily have
a trapdoor. Towards presenting these constructions, we discuss restricted types
of message authentication and signature schemes, which are of independent in-
terest, such as length-restricted schemes (see Section 6.2) and one-time signature
schemes (see Section 6.4.1).

Teaching Tip: Do not skip Section 6.2, because it does play an important
role in the following sections. As in Chapter 5, we assume that the reader is
familiar with the material in Chapters 2 and 3 (and specifically with Sections 2.2,
2.4, and 3.6). This familiarity is important not only because we use some of
the notions and results presented in these sections, but rather because we use
similar proof techniques (and do so while assuming that this is not the reader’s
first encounter with these techniques).

6.1 The Setting and Definitional Issues

Both signature schemes and message authentication schemes are methods for
“validating” data; that is, verifying that the data was approved by a certain

489

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

490 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

party (or set of parties). The difference between signature schemes and message
authentication schemes is that “signatures” should be “universally verifiable”,
whereas “authentication tags” are only required to be verifiable by parties that
are also able to generate them. It is customary to discuss each of these two
types of schemes separately, and we start by providing a brief overview of such
a nature. We then turn to our actual treatment, which applies to both types of
schemes in a unified manner.

6.1.1 The two types of schemes: a brief overview

The need to discuss “digital signatures” has arise with the introduction of com-
puter communication to the business environment (in which parties need to
commit themselves to proposals and/or declarations that they make). Discus-
sions of “unforgeable signatures” did take place also in previous centuries, but
the objects of discussion were handwritten signatures (and not digital ones), and
the discussion was not perceived as related to “cryptography”. Loosely speaking,
a scheme for unforgeable signatures should satisfy the following:
e each user can efficiently produce his own signature on documents of his
choice;
e every user can efficiently verify whether a given string is a signature of
another (specific) user on a specific document; but

e it is infeasible to produce signatures of other users to documents they did
not sign.

We note that the formulation of unforgeable digital signatures provides also
a clear statement of the essential ingredients of handwritten signatures. The
ingredients are each person’s ability to sign for himself, a universally agreed
verification procedure, and the belief (or assertion) that it is infeasible (or at least
hard) to forge signatures in a manner that pass the verification procedure. It is
not clear to what extent do handwritten signatures meet these requirements. In
contrast, our treatment of digital signatures schemes provides precise statements
concerning the extend by which digital signatures meet the above requirements.
Furthermore, unforgeable digital signature schemes can be constructed based on
the existence of one-way functions.

Message authentication is a task related to the setting considered for encryp-
tion schemes; that is, communication over an insecure channel. This time, we
consider an active adversary that is monitoring the channel and may alter the
messages sent on it. The parties communicating through this insecure channel
wish to authenticate the messages they send so that their counterpart can tell
an original message (sent by the sender) from a modified one (i.e., modified by
the adversary). Loosely speaking, a scheme for message authentication should
satisfy the following:

e cach of the communicating parties can efficiently produce an authentication

tag to any message of his choice;

e each of the communicating parties can efficiently verify whether a given
string is an authentication tag of a given message; but

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. THE SETTING AND DEFINITIONAL ISSUES 491

e it is infeasible for an external adversary (i.e., a party other than the com-
municating parties) to produce authentication tags to messages not sent by
the communicating parties.

Note that in contrast to the specification of signature schemes we do not require
universal verification: only the designated receiver is required to be able to verify
the authentication tags. Furthermore, we do not require that the receiver can not
produce authentication tags by itself (i.e., we only require that ezternal parties
can not do so). Thus, message authentication schemes cannot convince a third
party that the sender has indeed sent the information (rather than the receiver
having generated it by itself). In contrast, signatures can be used to convince
third parties: in fact, a signature to a document is typically sent to a second
party so that in the future this party may (by merely presenting the signed
document) convince third parties that the document was indeed generated (or
sent or approved) by the signer.

6.1.2 Introduction to the unified treatment

Loosely speaking, message authentication and signature schemes are supposed
to enable reliable transmission of data between parties. That is, the basic setting
consists of a sender and a receiver, where the receiver may be either predeter-
mined or determined only after the data was sent. Loosely speaking, the receiver
wishes to be guaranteed that the data received was actually sent by the sender,
rather than modified (or even concocted) by somebody else (i.e., an adversary).
The receiver may be a party that shares an explicit (unreliable) point-to-point
communication line with the sender; this is indeed the typical setting in which
message authentication is employed. However, in other cases (typically when sig-
nature schemes are employed), the receiver may be any party that obtains the
data in the future and wishes to verify that it was indeed sent by the declared
sender. In both cases, the reliability (or authenticity) of the data is established
by an authentication process that consists of two main procedures:

1. A signing procedure that is employed by the alleged sender in order to
produce signatures to data of its choice.

2. A verification procedure that is employed by the receiver in order to deter-
mine the authenticity of the data using the provided signature.

As in case of encryption schemes, the authentication process presupposes also a
third (implicit) procedure called key-generation that allows the sender to generate
a signing-key (to be used in the signing procedure), along with a verification-
key (to be used in the verification procedure). The key-generation procedure
is typically invoked by the sender, and the possession of the signing-key con-
stitutes the sender’s advantage over the adversary (see analogous discussion in
Chapter 5). That is, without the signing-key, it is infeasible to generate valid
signatures (with respect to the corresponding verification-key). Furthermore,
even after receiving signatures to messages of its choice, an adversary (lacking
the signing-key) cannot generate a valid signature to any other message.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

492 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

type verification-key known verification possible
Message auth. | to the designated for the designated
schemes (trusted) receiver(s) only | (trusted) receiver(s) only
Signature to everybody for anybody

schemes (including the adversary) | (including the adversary)

Figure 6.1: Message authentication versus signature schemes.

As stated above, the ability to produce valid signatures is linked to the
knowledge of the signing-key. Loosely speaking, “security” (or “unforgeabil-
ity”) means the infeasibility of producing valid signatures without knowledge of
the signing-key, where validity means passing verification with respect to the
corresponding verification-key. The difference between message authentication
and signature schemes amounts to the question of whether “security” holds also
when the verification-key is publicly known: In the case of message authenti-
cation schemes the verification-key is assumed to be kept secret (and so these
schemes are of the “private-key” type), whereas in the case of signature schemes
the verification-key may be made public (and so these schemes are of the “public-
key” type). Thus, the difference between message authentication and signature
schemes is captured by the security definition, and effects the possible applica-
tions of these schemes.

From the point of view of their functionality, the difference between message
authentication and signature schemes arises from the difference in the settings
for which they are intended, which amounts to a difference in the identity of the
receiver and in the level of trust that the sender has in the receiver. Typically,
message authentication schemes are employed in cases where the receiver is pre-
determined (at the time of message transmission) and is fully trusted by the
sender, whereas signature schemes allow verification of the authenticity of the
data by anybody (which is certainly not trusted by the sender). In other words,
signature schemes allow for universal verification, whereas message authentica-
tion schemes may only allow predetermine parties to verify the authenticity of
the data. Thus, in signature schemes the verification-key must be known to
anybody, and in particular is known to the adversary. In contrast, in message-
authentication schemes, the verification-key is only given to a set of predeter-
mined receivers that are all trusted not to abuse this knowledge; that is, in such
schemes it is postulated that the verification-key is not (a-priori) known to the
adversary.

Summary and terminology: Message authentication and signature schemes
differ in the question of whether the verification-key is “private” (i.e., a secret un-
known to the adversary) or “public” (i.e., known to all and in particular known
to the adversary). Thus, in a sense, these are private-key and public-key versions
of a task that lacks a good name (since both authentication and signatures are

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. THE SETTING AND DEFINITIONAL ISSUES 493

already taken by one of the two versions). Still, seeking a uniform terminol-
ogy, we shall sometimes refer to message authentication schemes (also known as
message authentication codes (MAC)) as to private-key signature schemes. Anal-
ogously, we shall sometimes refer to signature schemes as to public-key signature
schemes.

6.1.3 Basic mechanism

We start by defining the basic mechanism of message-authentication and signa-
ture schemes. Recall that this basic mechanism will support both the private-key
and public-key versions, and the difference between the two versions will only be
reflected in the definition of security. Indeed, the definition of the basic mech-
anism says nothing about the security of the scheme (which is the subject of
the next section), and thus is the same for both the private-key and public-key
versions. In both cases, the scheme consists of three efficient algorithms: key
generation, signing (or authenticating) and verification. The basic requirement
is that signatures that are produced by the signing algorithm be accepted as
valid by the verification algorithm, when fed a verification-key corresponding to
the signing-key used by the signing algorithm.

Definition 6.1.1 (signature scheme): A signature scheme is a triple, (G,S,V),
of probabilistic polynomial-time algorithms satisfying the following two condi-
tions

1. On input 1™, algorithm G (called the key generator) outputs a pair of bit
strings.

2. For every pair (s,v) in the range of G(1"), and for every a € {0,1}*,
algorithms S (signing) and V (verification) satisfy

PriV(v,a, S(s,a))=1]=1

where the probability is taken over the internal coin tosses of algorithms S
and V.

The integer n serves as the security parameter of the scheme. Each (s,v) in
the range of G(1™) constitutes a pair of corresponding signing/verification keys.
The string S(s,) is a signature to the document « € {0,1}* using the signing
key s.

We stress that Definition 6.1.1 says nothing about security, and so trivial (i.e.,

insecure) algorithms may satisfy it (e.g., S(s, @) € 0 and V(v,a,) def 1, for

all s,v,a and B). Furthermore, Definition 6.1.1 does not distinguish private-key
signature schemes from public-key ones. The difference between the two types
is introduced in the security definitions: In a public-key scheme the “adversary”
gets the verification key (i.e., v) as an additional input (and thus v # s follows),
whereas in private-key schemes v is not given to the “adversary” (and thus one
may assume, without loss of generality, that v = s).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

494 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Notation: In the rest of this work, we shall write S;(«) instead of S(s,«) and
Vi(a, B) instead of V (v, o, B). Also, we let G1(1™) (resp., G2(1™)) denote the first
(resp., second) element in the pair G(1™). That is, G(1™) = (G1(1™), G2(1™)).
Without loss of generality, we may assume that |G1(1™)| and |G2(1™)| are poly-
nomially related to n, and that each of these integers can be efficiently computed
from the other.

Comments: Definition 6.1.1 may be relaxed in several ways without signif-
icantly harming its usefulness. For example, we may relax Condition (2) and
allow a negligible verification error (e.g., Pr[V,(a, Ss(a)) # 1] < 27™). Alter-
natively, one may postulate that Condition (2) holds for all but a negligible
measure of the key-pairs generated by G(1™). At least one of these relaxations
is essential for many suggestions of (public-key) signature schemes.

Another relaxation consists of restricting the domain of possible documents.
However, unlike the situation with respect to encryption schemes, such a restric-
tion is non-trivial in the current context, and is discussed at length in Section 6.2.

6.1.4 Attacks and security

We shall consider a very strong definition of security. That is, we consider very
powerful attacks on the signature scheme as well as a very liberal notion of
breaking it. Specifically, during the course of the attack, the attacker is allowed
to obtain signatures to any document of its choice. One may argue that in many
applications such a general attack is not possible (because, in these applications,
documents to be signed must have a specific format). Yet, our view is that it is
impossible to define a general (i.e., application-independent) notion of admissible
documents, and thus a general/robust definition of an attack seems to have to
be formulated as suggested here. (Note that at worst, our approach is overly
cautious.) Likewise, the attacker is said to be successful if it can produce a
valid signature to ANY document for which it has not asked for a signature
during its attack. Again, this defines the ability to form signatures to possibly
“nonsensical” documents as a breaking of the scheme. Yet, again, we see no
way to have a general (i.e., application-independent) notion of “meaningful”
documents (so that only forging signatures to them will be consider a breaking
of the scheme). The above discussion leads to the following (slightly informal)
formulation.

e A chosen message attack is a process that can obtain signatures to strings
of its choice, relative to some fixed signing-key that is generated by G. We
distinguish two cases.

The private-key case: Here the attacker is given 1™ as input, and the sig-
natures are produced relative to s, where (s,v) — G(1™).

The public-key case: Here the attacker is given v as input, and the signa-
tures are produced relative to s, where (s,v) < G(1™).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. THE SETTING AND DEFINITIONAL ISSUES 495

e Such an attack is said to succeed (in existential forgery) if it outputs a valid
signature to a string for which it has NOT requested a signature during
the attack. That is, the attack is successful if it outputs a pair («,) such
that « is different from all strings for which a signature has been required
during the attack and V,(«, 8) = 1, where v is as above. (Indeed, suppose,
for simplicity, that algorithm V is deterministic.)!

e A signature scheme is secure (or unforgeable) if every feasible chosen mes-
sage attack succeeds with at most negligible probability.

Formally, a chosen message attack is modeled by a probabilistic oracle machine
that is given oracle access to a “keyed signing process” (i.e., the signing algorithm
combined with a signing-key). Depending on the version (i.e., public-key or not),
the attacker may get the corresponding verification-key as input. We stress that
this is the only difference between the two cases (i.e., private-key and public-key),
which are spelled out in Definition 6.1.2. We refer the reader to the clarifying
discussion that follows Definition 6.1.2; in fact, some readers may prefer to read
that discussion first.

Definition 6.1.2 (unforgeable signatures): For a probabilistic oracle machine,
M, we denote by Q?/[(CC) the set of queries made by M on input T and access
to oracle O. As usual, M©(z) denotes the output of the corresponding compu-
tation. We stress that Q(x) and MO (z) are dependent random variables that
represents two aspects of the same probabilistic computation.

The private-key case: A private-key signature scheme is secure if for every prob-
abilistic polynomial-time oracle machine M, every polynomial p and all
sufficiently large n, it holds that

o [Vol =1 & g Q517) L
where (s,v) « G(1™) and («, B) « M (1) (1)

where the probability is taken over the coin tosses of algorithms G, S and
V' as well as over the coin tosses of machine M.

The public-key case: A public-key signature scheme is secure if for every prob-
abilistic polynomial-time oracle machine M, every polynomial p and all
sufficiently large n, it holds that

pr [Vel p)=1& a & Q3i(v) P
' where (s,v) « G(1") and (a, 8) « M (v) p(n)

where the probability is taken over the coin tosses of algorithms G, S and
V' as well as over the coin tosses of machine M.

! In fact, all natural signature schemes employ a deterministic verification algorithm (see
Exercise 1). In the case of proabilistic verification algorithms, we may define a signature as
valid if Pr[V, (e, 8) = 1] > % The threshold 1/2 used here is quite arbitrary. The definition is
essentially robust under the replacement of 1/2 by either 1/poly(n) or 1 — 2=P°¥ (%) Indeed,
robustness follows by “amplification” (i.e., error-reduction) of the verification algorithm. For
example, given V as above, one may consider V' that applies V to the tested pair for a linear
number of times and accepting if and only if V has accepted in all tries.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

496 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

The definition refers to the following experiment. First a pair of keys, (s,v), is
generated by invoking G(1™), and is fixed for the rest of the discussion. Next,
an attacker is invoked on input 1™ or v, depending if we are in the private-key or
public-key case. In both cases, the attacker is given oracle access to S5, where
the latter may be a probabilistic oracle rather than a standard deterministic one
(e.g., if queried twice for the same value then the probabilistic signing oracle may
answer in different ways). Finally, the attacker outputs a pair of strings («, 3).
The attacker is deemed successful if and only if the following two conditions
hold:

1. The string « is different than all queries (i.e., requests for signatures)
made by the attacker; that is, the first string in the output pair M °+(z) is
different from any string in Qi}(z), where x = 1" or « = v depending on
whether we are in the private-key or public-key case.

We stress that both M5+(z) and Q%:(z) are random variables that are
defined based on the same random execution of M (on input x and oracle
access to S;).

2. The pair (a,3) corresponds to a valid document-signature pair relative
to the verification key v. In case V is deterministic (which is typically
the case) this means that V,(a,8) = 1. The same applies also in case
V is probabilistic, and when viewing V,(«, 3) = 1 as a random variable.
(Alternatively, in the latter case, a condition such as Pr[V,(a, 8) = 1] > 1/2
may replace the condition V,(a, 3) = 1.)

6.1.5 * Variants

Clearly, any signature scheme that is secure in the public-key model is also secure
in the private-key model. The converse is not true: consider, for example,
the private-key scheme presented in Construction 6.3.1 (as well as any other
“natural” message authentication scheme). Following are a few other comments
regarding the definitions.

6.1.5.1 Augmenting the attack with a verification oracle

It is natural to augment Definition 6.1.2 by providing the adversary with un-
limited access to the corresponding verification oracle V,,. We stress that (in
this augmented definition) the documents that (only) appear in the verification
queries are not added to the set Qij; that is, the output (o, 3) is considered a
successful forgery even if the adversary made the verification-query (o, 3), but
provided (as before) that the adversary did not make the signing-query « (and
that V,(a, 8) = 1).

Indeed, in the public-key case, the verification-oracle adds no power to the ad-
versary, because the adversary (which is given the verification-key) can emulate
the verification-oracle by itself. Furthermore, typically, also in the private-key
model, the verification-oracle does not add much power. Specifically, we have:

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. THE SETTING AND DEFINITIONAL ISSUES 497

Proposition 6.1.3 (cases in which security extends to the augmented model):

1. Any secure public-key signature scheme is secure also under attacks that
utilize a verification-oracle (in addition to the signing-oracle).

2. Any secure private-key signature scheme that has unique valid signatures
(as defined in Section 6.5.1) is secure also under attacks that utilize a
verification-oracle (in addition to the signing-oracle).

A signature scheme (G, S,V) is said to have unique signatures if for every
verification-key v and document «, there exists a unique 3 such that Vs(a, 8) =1
(or, such that Pr[V,(«, 8) = 1] > 1/poly(]s|)). As discussed in Section 6.5.1 (see
also Exercises 1 and 2), any secure private-key signature scheme can be trans-
formed into one having a deterministic verification algorithm and unique valid
signatures. In fact, all private-key signature schemes presented in Section 6.3
have unique valid signatures. We comment that the unique signature property
is essential for the validity of Part 2; see Exercise 3.

Proof Sketch: As stated above, Part 1 is obvious (because a standard adver-
sary can emulate the verification-oracle by using the verification-key given to
it). We prove Part 2 by showing that also in that case a standard adversary
can emulate the verification-oracle. However, in this case the emulation is less
obvious, because the standard adversary cannot test the validity of signatures
by itself. Still, considering an arbitrary combined attack on such a private-key
signature scheme, we emulate the verification-queries (in the standard model)
as follows:

e For a verification-query («,) if a equals a previous signing-query, then
we can emulate the answer by ourselves. Specifically, if the signing-query
« was answered with 3 then we we answer the verification-query positively
else we answer it negatively. The correctness of the emulation follows from
the hypothesis that this signature scheme has unique valid signatures.

e Otherwise (i.e., for a verification-query («,) such that a does not equal
any previous signing-query), we may choose to either halt and output («,)
as a candidate forgery (gambling on V, («, 8) = 1) or continue and emulate
a negative answer by ourselves (gambling on V,(«,3) = 0). Specifically,
for every such verification-query, we may choose the first possibility with
probability 1/¢(n) and the second possibility otherwise, where t(n) is a
bound on the number of verification-queries performed by the original
augmented attack (which we emulate). It can be shown that the success
probability of the resulting standard adversary is at least a 1/t(n) fraction
of the success probability of the given adversary. For details see Exercise 3.

Thus, insecurity in the augmented model implies insecurity in the original model,
and the proposition follows.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

498 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

6.1.5.2 Inessential generalities

The definitions presented above (specifically, Definition 6.1.1) were aimed at gen-
erality and flexibility. We comment that several levels of freedom can be elimi-
nated without loss of generality (but with some loss of convenience). Firstly, as
in the case of encryption schemes, one may modify the key-generation algorithm
so that on input 1™ it outputs a pair of n-bit long keys. Two more fundamental
restrictions, which actually do not affect the existence of secure schemes, follow.

Randomization in the signing process: In contrast to the situation with
respect to encryption schemes (see Sections 5.2 and 5.3), randomization is not
essential to the actual signing and verifying processes (but is, as usual, essential
to key generation). That is, without loss of generality (but with possible loss in
efficiency), the signing algorithm may be deterministic, and in all schemes we
present (in the current chapter) the verification algorithm is deterministic. For
further discussion, see Exercise 1.

Canonical verification in the private-key version: As hinted above, in

the private-key case, we may just identify the signing and verification keys (i.e.,

ks = v). Furthermore (following the comment about deterministic signing),

without loss of generality, verification may amount to comparing the alleged
signature to one produced by the verification algorithm itself (which may just

produce signatures exactly as the signing algorithm). That is, for a deterministic

signing process Sk, we may let Vi («, 3) 4 1 ifand ounly if 8 = Sk (). For details,

see Exercise 2.

6.1.5.3 Weaker notions of security and some popular schemes

Weaker notion of security have been considered in the literature. The various
notions refer to two parameters: (1) the type of attack, and (2) when is the
adversary considered to be a success. Indeed, Definition 6.1.2 refers to the most
severe type of attacks (i.e., unrestricted chosen message attacks) and to the most
liberal notion of success (i.e., the ability to produce a valid signature to any new
message). The interested reader is referred to Section 6.6.3.

We note that plain RSA as well as plain versions of Rabin’s scheme and
the DSS are not secure under Definition 6.1.2. However, these schemes sat-
isfy weaker notions of security, provided that some (standard) intractability
assumptions hold. Furthermore, variants of these signature schemes (in which
the function is not applied directly to the document itself) may be secure (under
Definition 6.1.2).

6.2 Length-restricted signature scheme

Restricted types of (public-key and private-key) signature schemes play an im-
portant role in our exposition. The first restriction we consider is the restriction

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 499

of signature schemes to (apply only to) documents of a certain predetermined
length. We call the resulting schemes length-restricted. The effect of the length-
restriction is more dramatic here (in the context of signature schemes) than it is
in the context of encryption schemes; this can be appreciated by comparing (the
length of) Section 6.2.2 to (the length of) Section 5.3.2.2. Nevertheless, as we
shall show (see Theorem 6.2.2 below), if the length restriction is not too low then
the full power of signature schemes can be regained; that is, length-restricted
signature schemes yield full-fledged ones.

6.2.1 Definition

The essence of the length-restriction is that security is guaranteed only with
respect to documents of the predetermined length. Note that the question of
what is the result of invoking the signature algorithm on a document of im-
proper length is immaterial. What is important is that an attacker (of a length-
restricted scheme) is deemed successful only if it produces a signature to a (dif-
ferent) document of proper length. Still, for sake of concreteness (and simplicity
of subsequent treatment), we define the basic mechanism only for documents of
proper length.

Definition 6.2.1 (signature scheme for fixed length documents): Let £ : N —
N. An (-restricted signature scheme is a triple, (G, S,V), of probabilistic polynomial-
time algorithms satisfying the following two conditions

1. As in Definition 6.1.1, on input 1™, algorithm G outputs a pair of bit
strings.

2. Analogously to Definition 6.1.1, for every n and every pair (s,v) in the
range of G(1™), and for every a € {0,1}™) algorithms S and V satisfy
PrVu(e, Ss(a))=1] = 1.

Such a scheme is called secure (in the private-key or public-key model) if the
(corresponding) requirements of Definition 6.1.2 hold when restricted to attack-
ers that only make queries of length £(n) and output a pair («, B) with |a| = £(n).

We stress that the essential modification is presented in the security condition.
The latter considers an adversary to be successful only in case it forges a signa-
ture to a (different) document « of the proper length (i.e., |a| = €(n)).

6.2.2 The power of length-restricted signature schemes

We comment that ¢-restricted private-key signature schemes for £(n) = O(logn)
are trivial (since the signing and verification keys may contain a table look-up
associating a secret with each of the 2°") = poly(n) possible documents).? In
contrast, this triviality does not hold for public-key signature schemes. (For

2 Recall, that such triviality does not hold in the context of encryption schemes; not even
in the private-key case. See Section 5.3.2.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

500 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

details on both claims, see Exercise 5.) On the other hand, in both (private-key
and public-key) cases, ¢-restricted signature schemes for any super-logarithmic
¢ (e.g., {(n) = n or even £(n) = logan) are as powerful as ordinary signature
schemes:

Theorem 6.2.2 Suppose that £ is a super-logarithmically growing function. Then,
given an L-restricted signature scheme that is secure in the private-key (resp.,
public-key) model, one can construct a full-fledged signature scheme that is se-
cure in the same model.

Results of the above flavor can be established in two different ways, correspond-
ing to two methods of converting an /(-restricted signature scheme into a full-
fledged one. Both methods are applicable both to private-key and public-key
signature schemes. The first method (presented in Section 6.2.2.1) consists of
parsing the original document into blocks (with adequate “linkage” between
blocks), and applying the f-restricted scheme to each block. The second method
(presented in Section 6.2.2.2) consists of hashing the document into an ¢(n)-bit
long value (via an adequate hashing scheme), and applying the restricted scheme
to the resulting value. Thus, the second method requires an additional assump-
tion (i.e., the existence of “collision-free” hashing), and so Theorem 6.2.2 (as
stated) is actually proved using the first method. The second method is pre-
sented because it offers other benefits; in particular, it yields signatures of fized
length (i.e., the signature-length only depends on the key-length) and uses a sin-
gle invocation of the restricted scheme. The latter feature will play an important
role in subsequent sections (e.g., in Sections 6.3.1.2 and 6.4.1.3).

6.2.2.1 Signing (augmented) blocks

In this subsection we present a simple method for constructing general signa-
ture schemes out of length-restricted ones, and doing so we establish Theo-
rem 6.2.2. Loosely speaking, the method consists of parsing the original doc-
ument into blocks (with adequate “linkage” between blocks), and applying the
length-restricted scheme to each (augmented) block.

Let £ and (G, S,V) be as in Theorem 6.2.2. We construct a general signature
scheme, (G',S", V"), with G' = G, by viewing documents as sequences of strings,
each of length ¢'(n) = ¢(n)/O(1). That is, we associate @ = ag - - - ay with the
sequence (aq, ...,), where each «; has length ¢'(n). (At this point, the reader
may think of ¢'(n) = £(n), but actually we will use ¢/(n) = ¢(n)/4 in order to
make room for some auxiliary information.)

To motivate the actual construction, we counsider first the following sim-
pler schemes all aimed at producing secure signatures for arbitrary (documents
viewed as) sequences of ¢'(n)-bit long strings. The simplest scheme consists
of just signing each of the strings in the sequence. That is, the signature to
the sequence (ay,...,a;), is a sequence of §;’s each being a signature (w.r.t the
length-restricted scheme) to the corresponding «;. This will not do, because
an adversary, given the (single) signature (31, 32) to the sequence (a1, a2) with

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 501

a1 # ag, can present (fs, 41) as a valid signature to (o, 1) # (a1, as). So how
about foiling this forgery by preventing a re-ordering of the “atomic” signatures
(i.e., the §;’s); that is, how about signing the sequence («q, ..., ay) by applying
the restricted scheme to each pair (i, ;), rather than to «; itself? This will not
do either, because an adversary, given a signature to the sequence (a1, as, as)
can easily present a signature to the sequence (a1, @z2). So we need to include in
each ¢(n)-bit string also the total number of @;’s in the sequence. But even this
is not enough, because given signatures to the sequences (a1, az) and (af, o),
with ag # o} and as # o), an adversary can easily generate a signature to
(a1,0a%). Thus, we have to prevent the forming of new sequences of “basic sig-
natures” by combining elements from different signature sequences. This can
be done by associating (say at random) an identifier with each sequence and in-
corporating this identifier in each ¢(n)-bit string to which the basic (restricted)
signature scheme is applied. This discussion yields the signature scheme pre-
sented next, where a signature to a message (o, ..., ;) consists of a sequence
of (basic) signatures to statements of the (effective) form the string «; is the i*®
block, out of t blocks, in a message associate with identifier r.

Construction 6.2.3 (signing augmented blocks): Let ¢ and (G,S,V) be as
in Theorem 6.2.2. We construct a general signature scheme, (G',S", V"), with

G' = G, by considering documents as sequences of strings. We construct S' and
V' as follows, using G' = G and ¢'(n) = ¢(n)/4.

Signing with S': On input a signing-key s (in the range of G1(1™)) and a doc-
ument o € {0,1}*, algorithm S’ first parses a into a sequence of blocks
(a1,...,aq) such that « is uniquely reconstructed from the o;’s and each «;
is an €'(n)-bit long string.® Next, S' uniformly selects r € {0,1}'("). For
1=1,...,t, algorithm S’ computes

ﬂi — Ss(’rataiaai)

where © and t are represented as €'(n)-bit long strings. That is, B; is
essentially a signature to the statement “a; is the i*? block, out of ¢ blocks,
in a sequence associate with identifier 7. Finally, S’ outputs as signature
the sequence

(Tataﬂla ""7/6t)

Verification with V': On input a verifying-key v (in the range of G2(1")), a
document a € {0,1}*, and a sequence (r,t,B1,...., 3¢), algorithm V' first
parses « into aq, ..., ay, using the same parsing rule as used by S'. Algo-
rithm V' accepts if and only if the following two conditions hold:

1. t' = t, where t' is obtained in the parsing of a and t is part of the
alleged signature.

3 The parsing rule should apply to strings of arbitrary length, regardless of whether or
not this length is a multiple of #/(n). For example, we may parse o as (o, ..., a¢) such that
ai---ar = a-109 and j€{0,1,...,£/(n) — 1}. (Note that, under this parsing rule, if |a| is a
multiple of £'(n) then |ay - at| = |a| + £'(n).)

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

502 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

2. Fori =1,..,t, it holds that V,((r,t,i,;),;), where «; is obtained
in the parsing of a and the rest are as in the corresponding parts of
the alleged signature.

Clearly, the triplet (G, S’, V') satisfies Definition 6.1.1. We need to show that
is also inherits the security of (G, S, V). That is:

Proposition 6.2.4 Suppose that (G,S,V) is an {-restricted signature scheme
that is secure in the private-key (resp., public-key) model. Then (G',S',V'), as
defined in Construction 6.2.3 is a full-fledged signature scheme that is secure in
the private-key (resp., public-key) model.

Theorem 6.2.2 follows immediately from Proposition 6.2.4.

Proof: Intuitively, ignoring the unlikely case that two messages signed by S
were assigned the same random identifier, a forged signature with respect to
(G',S', V') must contain some S,-signature that was not contained in any of the
S!-signatures (provided in the attack). Thus, forgery with respect to (G', S', V')
yields forgery with respect to (G,S,V). Indeed, the proof is by a reducibility
argument, and holds for both the private-key and the public-key models.

Given an adversary A’ attacking the complex scheme (G’,S’,V'), we con-
struct an adversary A that attacks the l-restricted scheme, (G,S,V). In partic-
ular, A invokes A’ with input identical to its own input (which is the security
parameter or the verification-key depending on the model), and uses its own ora-
cle in order to emulate the oracle S’ for A’. This can be done in a straightforward
manner; that is, algorithm A will act as S’ does by using the oracle S,. Specif-
ically, A parses each query o of A" into a corresponding sequence (o, ..., a}.),
uniformly selects an identifier r’, and obtains Ss-signatures to (r',t', j,a}), for
j=1,..,t'". When A’ outputs a document-signature pair relative to the com-
plex scheme (G',S', V'), algorithm A tries to use this pair in order to form a
document-signature pair relative to the ¢-restricted scheme, (G, S, V).

We stress that from the point of view of adversary A’, the distribution of
keys and oracle answers that A provides it with is exactly as in a real attack
on (G',S',V'). This is a crucial point because we use the fact that events that
occur in a real attack of A’ on (G',S’,V'), occur with the same probability in
the emulation of (G, S’, V') by A.

Assume that with (non-negligible) probability ¢'(n), the (probabilistic polynomial-
time) algorithm A’ succeeds in existentially forging relative to the complex
scheme (G',S",V'). We consider the following cases regarding the forging event:

1. The identifier supplied in the forged signature is different from the all ran-
dom identifiers supplied (by A) as part of the signatures given to A’. In this
case, each (-restricted signature supplied as part of the forged (complex)
signature, yields existential forgery relative to the ¢-restricted scheme.
Formally, let o), ..., (™) be the sequence of queries made by A’, and let
(r(H, t(l),ﬁ(l)), . (r(m),t(m),ﬁ(m)) be the corresponding (complex) signa-
tures supplied to A’ by A (using S, to form the B(l)’s). It follows that

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 503

each B(l) consists of a sequence of Ss-signatures to £(n)-bit strings starting
with 7(9) € {0, 1}¥(")/4 and that the oracle S, was invoked (by A) only on
strings of this form. Let («,(r,t,051,....,0:)) be the output of A’ where
« is parsed as (ai,...,a:), and suppose that applying V! to the output
of A’ yields 1 (i.e., the output is a valid document-signature pair for the
complex scheme). The case hypothesis states that r # r for all #’s. It
follows that each of the 3;’s is an S,-signature to a string starting with
r € {0, l}l(”)/‘*, and thus different from all queries made to the oracle S;.
Thus, each pair ((r,t,,;), ;) is a valid document-signature pair (because
Ve, (1, t, B, vy Bt)) = 1 implies V,,((r,t,4,«;), 3;) = 1), with a document
different than all queries made to Ss. This yields a successful forgery with
respect to the f-restricted scheme.

2. The identifier supplied in the forged signature equals the random identifier
supplied (by A) as part of ezactly one of the signatures given to A’. In this
case, existential forgery relative to the f-restricted scheme is obtained by
considering the relation between the output of A" and the single supplied
signature having the same identifier.

As in the previous case, let a(!)| ..., a{™) be the sequence of queries made
by A’, and let (r(l),t(l),ﬁ(l)), ey (r(m),t(m),ﬁ(m)) be the corresponding
(complex) signatures supplied to A" by A. Let (a, (1,¢,01,...., 5t)) be the
output of A’, where « is parsed as (v, ..., a;), and suppose that a # a for
all ¢’s and that V!(«, (r,t, B1, ..., Bt)) = 1. The hypothesis of the current
case is that there exists a unique i so that r = (9.

We consider two subcases regarding the relation between ¢ and ¢(*):

o t #), In this subcase, each (-restricted signature supplied as part
of the forged (complex) signature, yields existential forgery relative
to the l-restricted scheme. The argument is analogous to the one
employed in the previous case. Specifically, here each of the 3;’s
is an Sg-signature to a string starting with (r,¢), and thus different
from all queries made to the oracle S (because these queries either
start with (") #£ r or start with (), () £ (r,t)). Thus, each pair
((r,t,4,a;),8;) is a valid document-signature pair with a document
different than all queries made to Si.

et = ¢, In this subcase we use the hypothesis o # a9, which
(combined with ¢ = ¢(V)) implies that there exists a j such that a; #
agl), where agz) is the j* block in the parsing of a(). For this j, the
string 3, (supplied as part of the forged complex-signature) yields
existential forgery relative to the f-restricted scheme. Specifically, we

have V., ((r,t,J,a;), 3;) = 1, whereas (r,t, j,a;) is different from each
query (r(*) () 5. ag-f)) made by A to Ss.
Justification for (r,t, j, ;) # (r(i’),t(il),j',a](,fl)). In case i’ # 4, it
must holds that r(*") # 7 (by the (Case 2) hypothesis regarding

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

504 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

the uniqueness of 7 s.t.) =r). Otherwise (i.e., in case 7' = 1),
either j' # j or oz;f) = a](.z) # «j, where the inequality is due to
the hypothesis regarding j.

Thus, ((r,t,7,a5),0;) is a valid document-signature pair with a doc-

ument different than all queries made to Sj.

3. The identifier supplied in the forged signature equals the random identifiers
supplied (by A) as part of at least two signatures given to A’. In particular,
it follows that two signatures given to A use the same random identifier.
The probability that this event occurs is at most

<m) L9t < . g—tn)/4
2

However, m = poly(n) (since A’ runs in polynomial-time), and 2-4(")/4 ig
negligible (since £ is super-logarithmic). So this case occurs with negligible
probability, and may be ignored.

Note that A can easily determine which of the cases occurs and act accordingly.*
Thus, assuming that A’ forges relative to the complex scheme with non-negligible
probability €'(n), it follows that A forges relative to the length-restricted scheme
with non-negligible probability £(n) > ¢’(n) — poly(n) - 24"/ in contradiction
to the proposition’s hypothesis.

Comment: We call the reader’s attention to the essential role of the hypothesis
that ¢ is super-logarithmic in the proof of Proposition 6.2.4. Indeed, Construc-
tion 6.2.3 is insecure in case £(n) = O(logn). The reason being that, by asking
for polynomially-many signatures, the adversary may obtain two S!.-signatures
that use the same (random) identifier. Furthermore, with some care, these sig-
natures yield existential forgery (see Exercise 6).

6.2.2.2 Signing a hash value

In this subsection we present an alternative method for constructing general
signature schemes out of length-restricted ones. Loosely speaking, the method
counsists of hashing the document into a short (fixed-length) string (via an ade-
quate hashing scheme), and applying the length-restricted signature scheme to
the resulting hash-value. This two-stage process is referred to as the hash and
sign paradigm.

Let ¢ and (G, S,V) be as in Theorem 6.2.2. The second method of con-
structing a general signature scheme out of (G,S,V) consists of first hashing
the document into an £(n)-bit long value, and then applying the f-restricted

4 This observation only saves us a polynomial factor in the forging probability. That is, if
A did not know which part of the forged complex-signature to use for its own forgery, it could
have just selected one at random (and be correct with probability 1/poly(n) because there are
only poly(n)-many possibilities).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 505

scheme to the hashed value. Thus, in addition to an /-restricted scheme, this
method employs an adequate hashing scheme. In particular, one way of im-
plementing this method is based on “collision-free hashing” (defined next). An
alternative implementation, based on “universal one-way hashing” is deferred to
Section 6.4.3.

Collision-free hashing functions. Loosely speaking, a collision-free hash-
ing scheme (a.k.a collision-resistent hashing scheme) consists of a collection of
functions {hs : {0,1}* — {0,1}‘S|}s€{071}* such that given s and z it is easy
to compute hs(x), but given a random s it is hard to find x # ' such that
hs(x) = hs(z').

Definition 6.2.5 (collision-free hashing functions): Let £ : N — N. A collec-
tion of functions {hs : {0,1}* — {0, 1}*0sD} 1o 13- is called collision-free hashing
if there exists a probabilistic polynomial-time algorithm I such that the following
holds

1. (admissible indexing — technical):> For some polynomial p, all sufficiently
large n’s and every s in the range of I(1™) it holds that n < p(|s|). Fur-
thermore, n can be computed in polynomial-time from s.

2. (efficient evaluation): There exists a polynomial-time algorithm that given
s and x, returns hs(z).

3. (hard to form collisions): We say that the pair (z,x') forms a collision
under the function h if h(x) = h(z') but © # '. We require that every
probabilistic polynomial-time algorithm, given I(1™) as input, outputs a
collision under hyiny with negligible probability. That is, for every proba-
bilistic polynomial-time algorithm A, every polynomial p and all sufficiently

large n’s,
1
Pr|A(I(1™)) is a collision under hrin)| < —=
[A(r1")] < =i
where the probability is taken over the internal coin tosses of algorithms I
and A.

The function € is called the range specifier of the collection.

Note that the range specifier must be super-logarithmic (or else one may easily
find a collisions by selecting 2¢™) 4 1 different preimages and computing their
image under the function). In Section 6.2.3, we show how to construct collision-
free hashing functions using claw-free collections. But first, we show how to
use the former in order to convert a length-restricted signature scheme into a
full-fledged one.

5 This condition is made merely in order to avoid annoying technicalities. In particular,
this condition allows the collision-forming adversary to run for poly(n)-time (because by this
condition n = poly(|s|)) as well as allows to determine n from s. Note that |s| = poly(n) holds
by definition of I.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

506 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Construction 6.2.6 (hash and sign): Let{ and (G, S,V) be as in Theorem 6.2.2,
and let {h, : {0,1}* — {0, 1}‘3(|")}TE{071}* be as in Definition 6.2.5. We con-
struct a general signature scheme, (G',S', V"), as follows:

Key-generation with G': On input 1™, algorithm G’ first invokes G to obtain
(s,v) « G(1™). Next it invokes I, the indexing algorithm of the collision-
free hashing collection, to obtain v «— I(1™). Finally, G' outputs the pair
((r,s), (r,v)), where (r,s) serves as a signing-key and (r,v) serves as a
verification-key.

Signing with S': On input a signing-key (r,s) (in the range of G| (1")) and a
document o € {0,1}*, algorithm S' invokes S once to produce and output

Ss(hr ().

Verification with V': On input a verifying-key (r,v) (in the range of G4(1™)), a
document a € {0,1}*, and an alleged signature 3, algorithm V' invokes
V', and outputs V,(h, (), B).

Note that the resulting applies the original one once (per each invocation of the
resulting scheme). We stress that the length of resulting signatures only depend
on the length of the signing-key and is independent of the document being signed
(ie., |5 s(@)] = [Ss(hr())], which in turn is bounded by poly(|s|, £(|r]))).

Proposition 6.2.7 Suppose that (G,S,V) is an {-restricted signature scheme
that is secure in the private-key (resp., public-key) model. Suppose that {h, :
{0,1}* = {0,1}0"D}, c .13+ is indeed a collision-free hashing collection. Then
(G',S", V"), as defined in Construction 6.2.6 is a full-fledged signature scheme
that is secure in the private-key (resp., public-key) model.

Proof: Intuitively, the security of (G',S’, V') follows from the security of
(G, S,V) and the collision-freeness property of the collection {h,}. Specifically,
forgery relative to (G',S’, V') can be obtained by either a forged S-signature
to a hash-value different from all hash-values that appeared in the attack or by
forming a collision under the hash function. The actual proof is by a reducibility
argument. Given an adversary A’ attacking the complex scheme (G', S, V'), we
construct an adversary A that attacks the (-restricted scheme, (G, S,V), as well
as an algorithm B forming collisions under the hashing collection {h,}. Both A
and B will have running-time related to that of A’. We show if A’ is successful
with non-negligible probability than the same holds for either A or B. Thus, in
either case, we reach a contradiction. We start with the description of algorithm
A, which is designed to attack the f-restricted scheme (G, S, V). We stress that
almost the same description applies both in the private-key and public-key case.

On input z, which equals the security parameter 1™ in the private-key case
and a verification-key v otherwise (i.e., in the public-key case), the adversary
A operates as follows. First A uses I (the indexing algorithm of the collision-
free hashing collection) to obtain r « I(1™), exactly as done in the second step
of G'. Next, A invokes A’ (on input 1™ or (r,v) depending on the case), and

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 507

uses 7 as well as its own oracle S5 in order to emulate the oracle S ; for A'.
The emulation is done in a straightforward manner; that is, algorithm A will
act as S, , does by using the oracle S, (i.e., to answer query ¢, algorithm A
makes the query h,(¢)). When A’ outputs a document-signature pair relative
to the complex scheme (G',S’, V'), algorithm A tries to use this pair in order
to form a document-signature pair relative to the ¢-restricted scheme, (G, S, V).
That is, if A" outputs the document-signature pair («,), then A will output
the document-signature pair (h,(a), 8).

As in the proof of Proposition 6.2.4, we stress that the distribution of keys
and oracle answers that A provides A’ is exactly as in a real attack of A’ on
(G',S',V"). This is a crucial point, because we use the fact that events that
occur in a real attack of A" on (G',S’, V') occur with the same probability in
the emulation of (G, S’, V') by A.

Assume that with (non-negligible) probability ¢'(n), the (probabilistic polynomial-
time) algorithm A’ succeeds in existentially forging relative to the complex
scheme (G',S",V'). We consider the following two cases regarding the forg-
ing event, letting (a(*), 3(?)) denote the i*" query and answer pair made by A’,
and (a, 8) denote the forged document-signature pair that A’ outputs (in case
of success):

Case 1: hy(a) # h,.(a(?) for all #’s. (That is, the hash value used in the forged
signature is different from all hash values used in the queries to Ss.) In this
case, the pair (h,(«), 8) constitutes a success in existential forgery relative
to the f-restricted scheme.

Case 2. h,(a) = h,(a(?) for some 4. (That is, the hash value used in the forged
signature equals the hash value used in the i*" query to S, although
a # o)) In this case, the pair (o, o(?) forms a collision under A, (and
we do not obtain success in existential forgery relative to the f-restricted
scheme).

Thus, if Case 1 occurs with probability at least €'(n)/2 then A succeeds in
its attack on (G, S,V) with probability at least '(n)/2, which contradicts the
security of the f-restricted scheme (G, S, V). On the other hand, if Case 2 occurs
with probability at least £/(n)/2 then we derive a contradiction to the collision-
freeness of the hashing collection {h, : {0,1}* — {0,1}Z(‘T|)}T€{071}*. Details
(regarding the second case) follow.

We construct an algorithm, denoted B, that given r « I(1"), attempts to
form collisions under h, as follows. On input 7, algorithm B generates (s,v) «
G(1™), and emulates the attack of A on this instance of the f-restricted scheme,
with the exception that B does not invoke algorithm I to obtain an index of a
hash function but rather uses the index r (given to it as input). Recall that A,
in turn, emulates an attack of A" on the signing oracle S; , and that A answers
the query ¢’ made by A’ by forwarding the query ¢ = h.(¢') to S;. Thus, B
actually emulates the attack of A" (on the signing oracle ;.), and does so in
a straightforward manner; that is, to answer query ¢’ made by A’, algorithm B
first obtains ¢ = h,-(¢') (using its knowledge of r) and then answers with S,(q)

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

508 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

(using its knowledge of s). Finally, when A’ outputs a forged document-signature
pair, algorithm B checks whether Case 2 occurs (i.e., whether h,.(a) = h,(a?)
holds for some ¢), in which case it obtains (and outputs) a collision under h,..
(Note that in the public-key case B invokes A’ on input (r,v), whereas in the
private-key case B invokes A’ on input 1™. Thus, in the private-key case, B
actually does not use r but rather only uses an oracle access to h,.)

We stress that from the point of view of the emulated adversary A, the
execution is distributed exactly as in its attack on (G, S,V). Thus, since we
assumed that the (above) second case occurs with probability at least &'(n)/2
in a real attack, it follows that B succeeds to form a collision under hj») with
probability at least €'(n)/2. This contradicts the collision-freeness of the hashing
functions, and the proposition follows.

Comment: For the private-key case, the proof of Proposition 6.2.7 actually
established a stronger claim than stated. Specifically, the proof holds even for
a weaker definition of collision-free hashing in which the adversary is not given
a description of the hashing function, but can rather obtain its value at any
preimage of its choice. This observation is further pursued in Section 6.3.1.3.

On using the hash-and-sign paradigm in practice. The hash-and-sign
paradigm, underlying Construction 6.2.6, is often used in practice. Specifically,
a document is signed using a two-stage process: first the document is hashed
into a (relatively) short bit string, and next a basic signature scheme is applied
to the resulting string. One appealing feature of this process is that the length
of resulting signatures only depend on the length of the signing-key (and is in-
dependent of the document being signed). We stress that this process yields
a secure signature scheme only if the hashing scheme is collision-free (as de-
fined above). In Section 6.2.3, we present several constructions of collision-free
hashing functions (based on general assumptions). Alternatively, one may in-
deed postulate that certain off-the-shelf products (such as MD5 or SHA) are
collision-free, but such assumptions need to be seriously examined (and indeed
may turn out false®). We stress that using a hashing scheme, in the above two-
stage process, without seriously evaluating whether or not it is collision-free is
a very dangerous practice.

We comment that a variant on the hash-and-sign paradigm will be presented
in Construction 6.4.30. The two variants are compared in Section 6.4.3.4.

6.2.3 * Constructing collision-free hashing functions

In view of the relevance of collision-free hashing to signature schemes, we now
take a small detour from the main topic and consider the construction of collision-
free hashing. We show how to construct collision-free hashing functions using a
claw-free collection of permutations, and how restricted notions of collision-free
hashing may be used to obtain full-fledged collision-free hashing.

6 See, for example, [95].

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 509

6.2.3.1 A construction based on claw-free permutations

In this subsection we show how to construct collision-free hashing functions using
a claw-free collection of permutations as defined in Section 2.4.5. Recall that
such a collection consists of pairs of permutations, (f°, f!), such that both f7’s
are permutations over a set D;, augmented with a probabilistic polynomial-time
index selection algorithm I such that the following conditions hold:

1. The domain is easy to sample: there exists a probabilistic polynomial-time
algorithm that given s outputs a string uniformly distributed over D;.

2. The permutations are easy to evaluate: there exists a polynomial-time
algorithm that given s,0 and x € Dy, outputs fZ(z).

3. It is hard to form claws: every probabilistic polynomial-time algorithm,
given s « I(1™), outputs a pair (z,y) such that fO(z) = fl(y) with at
most negligible probability. That is, a pair (z,y) satisfying f°(z) = fi(y)
is called a claw for index s. (We stress that x = y may hold.) Then, it is
required that for every probabilistic polynomial-time algorithm, A’, every
positive polynomial p(-), and all sufficiently large n’s

Pr [A'(I(ln)) € Cl(lﬂ)] < ﬁ

where C, denote the set of claws for index s.

Note that since f0 and f! are permutations over the same set, many claws do
exists (i.e., |Cs| = |Ds|). However, the third item above postulates that for
s generated by I(1™) such claws are hard to find. We may assume, without
loss of generality, that for some ¢ : N — N and all s’s it holds that D, C
{0,1}*UsD. Indeed, ¢ must be polynomially bounded. For simplicity we assume
that I(1™) € {0,1}". Recall that such collections of permutation pairs can be
constructed based on the standard DLP or factoring intractability assumptions
(see Section 2.4.5).

Construction 6.2.8 (collision-free hashing based on claw-free permutations
pairs): Given an index selecting algorithm I for a collection of permutation
pairs {(f2, f})}s as above, we construct a collection of hashing functions {h(. :

{0,13* = {0, 1"} (s ryeqo.13+ xqo,13+ as follows:

Index selection algorithm: On input 1, we first invoke I to obtain s «— I(1™),
and nexwt use the domain sampler to obtain a string r that is uniformly
distributed in D,. We output the index (s,r) € {0,1}" x {0, 1} which
corresponds to the hashing function

def o
hisy(z) = fPf2 - f2(r)
where yy - - -y iS a prefiz-free encoding of x; that is, for any x # x' the
coding of © is not a prefiz of the coding of ©'. For example, we may code
T1T2 T DY T1T1T2X2 + - Ty Ty 01

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

510 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Evaluation algorithm: Given an index (s,r) and a string x, we compute h(s ()
in a straightforward manner. That is, first we compute the prefiz-free
encoding of x, denoted y; ---y:. Next, we use the evaluation algorithm of
the claw-free collection to compute fY¥* f¥2--- f¥¢(r), which is the desired
output.

Actually, as will become evident from the proof of Proposition 6.2.9, as far as
Construction 6.2.8 is concerned, the definition of claw-free permutations can be
relaxed: we do not need an algorithm that given an index s generates a uniformly
distributed element in Dy; any efficient algorithm that generates elements in D
will do (regardless of the distribution induced on Dy, and in particular even if
the algorithm always outputs the same element in D).

Proposition 6.2.9 Suppose that the collection of permutation pairs {(f0, f1)}s
together with the index selecting algorithm I constitutes a claw-free collection.
Then, the function ensemble {h(s,) : {0,1}* — {071}|T‘}(5,T)€{071}*X{O,l}* as
defined in Construction 6.2.8 constitutes a collision-free hashing with a range
specifying function €' satisfying £'(n + €(n)) = £(n).

Proof: Intuitively, forming collisions under A, ,) means finding two different
sequences of functions from {f?, f!} that (when applied to r) yield the same
image (e.g., flo fQo fo(r) = flo f1(r) o f1(r)). Since these two sequences
cannot be a prefix of one another, it must be that somewhere along the process
(of applying these f7’s) the application of two different functions yield the same
image (i.e., a claw).

The proof is by a reducibility argument. Given an algorithm A’ that, on input
(s,7), forms a collision under h(, ., we construct an algorithm A that on input s
forms a claw for index s. On input s (supposedly generated by I(1™)), algorithm
A selects r (uniformly) in Dy, and invokes algorithm A’ on input (s,r). Suppose
that A" outputs a pair (z,2") so that h(,) (z) = h(sr(2") but # 2’. Without
loss of generality,” assume that the coding of x equals y; - - -1; 10241 - - - z¢, and
that the coding of 2’ equals y; ---y; 112{,, - - - 2. By the definition of A, .., it
follows that

fore fgi_lfsostiH e fR () = fg:.—1fslf::i+1 .. st;I (r) (6.1)

Since each of the f7’s is 1-1, Eq. (6.1) implies that

FOFE () = PR R () (6.2)

Computing w % f&+! <+« f2(r) and w' N (r), algorithm A obtains
a pair (w,w') such that fO(w) = f1(w'). Thus, algorithm A forms claws for index

S

I(1™) with probability that is bounded below by the probability that A’ forms

7 Let C(z) (resp., C(z')) denote the prefix-free coding of x (resp., «'). Then C(z) is not a
prefix of C(z'), and C(a') is not a prefix of C(z). It follows that C(z) = uv and C(z') = uv’,
where v and v’ differ in their leftmost bit. Without loss of generality, we may assume that the
leftmost bit of v is is 0, and the leftmost bit of v’ is 1.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 511

a collision under hy/(;n), where I is the index selection algorithm as defined in
Construction 6.2.8. Using the hypothesis that the collection of pairs (together
with I) is claw-free, the proposition follows. [l

6.2.3.2 Collision-free hashing via block-chaining

In this subsection we show how a restricted type of collision-free hashing (CFH)
can be used to obtain full-fledge collision-free hashing (CFH). Specifically, we
refer to the following restriction of Definition 6.2.5.

Definition 6.2.10 (length-restricted collision-free hashing functions): Let ¢', ¢ :
N — N. A collection of functions {h, : {0,1}¢ s — {0, 130D} cro.0y- s
called ¢'-restricted collision-free hashing if there exists a probabilistic polynomial-
time algorithm I such that the following holds

1. (admissible indexing — technical): As in Definition 6.2.5.

2. (efficient evaluation): There exists a polynomial-time algorithm that given
s and x € {0,1}UsD | returns hy(z).

3. (hard to form collisions): As in Definition 6.2.5, we say that the pair
(z,z") forms a collision under the function h if h(z) = h(z') but = # z'.
We require that every probabilistic polynomial-time algorithm, given I(1™)
as input, outputs a pair in {0, 1}“'5‘) x {0, 1}“'5‘) that forms a collision
under hyiny with negligible probability. That is, for every probabilistic
polynomial-time algorithm A, every polynomial p and all sufficiently large
n’s,

o p! n 1
Pr|A(I(1™)) € {0,132 (1D is a collision under hyn)| < o)
p(n

where the probability is taken over the internal coin tosses of algorithms I
and A.

Indeed, we focus on the case £'(n) = poly(n), or else the hardness condition
holds vacuously (since no polynomial-time algorithm can print a pair of strings
of super-polynomial length). On the other hand, we only care about the case
¢'(n) > €(n) (or else the functions may be 1-1). Finally, recall that ¢ must be
super-logarithmic.

Construction 6.2.11 (from 2¢-restricted CFH to full-fledged CFH): Let {h/ :
{0,132 — {0,130} 113+ be a collection of functions. Consider the col-
lection {hs : {0,1}* — {0, 1}22(‘50}56{071}*, where hs(x) is defined by the follow-
ing process, which we call block chaining:

1. Break z intot < [lz|/€(|s])] consecutive blocks, while possibly padding the
last block with 0’s, such that each block has length €(|s|). Denote these
£(|s])-bit long blocks by x1,...,x¢. That is, x1 -+ x4 = z0ttsD—=lel

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

512 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

For sake of uniformity, in case |z| < £(|s]|), we let t = 2 and z1z5 =
20%4UsD=121 " On the other hand, we may assume that |z| < 241D and so
|z| can be represented by an £(|s|)-bit long string.®

2. Let y, def x1. Fori=2,..,t, compute y; = h.(yi_1x;).
3. Set hs(z) to equal (yq, |x|)-

An interesting property of Construction 6.2.11 is that it allows to compute the
hash-value of an input string while processing the input in an on-line fashion;
that is, the implementation of the hashing process may process the input x in a
block-by-block manner, while storing only the current block and a small amount
of state information (i.e., the current y; and the number of blocks encountered
so far). This property is important in applications in which one wishes to hash
a long stream of input bits.

Proposition 6.2.12 Let {h’ : {0,1}%('5‘) — {0,1}Z(‘S|)}se{071}* and {hs :
{0,1}* — {0,1}”(‘5')}5&{071}* be as in Construction 6.2.11, and suppose that
the former is a collection of 2{-restricted collision-free hashing functions. Then
the latter constitutes a (full fledged) collection of collision-free hashing functions.

Proof: Recall that forming a collision under hs means finding = # z’ such that
hs(z) = hs(z'). By the definition of hg, this means that (yq,|z|) = hs(z) =
hs(z') = (yp,|2']), where ¢,¢" and y4,y; are determined by h(z) and hy(z'). In
particular, it follows that |«| = |2'| and so t =t (where, except when |z| < £(]s]),
it holds that ¢ = [|z|/€(|s])] = [|='|/€(|s|)] = t'). Recall that y; = y; and
consider two cases:

Case 1: If (yi—1,2:) # (y;_q, ;) then we obtain a collision under A! (since
M. (yi—1xe) = vy = y; = hl(yj_,z})), and derive a contradiction to its
collision-free hypothesis.

Case 2: Otherwise (y;—1,2:) = (y;_q,2}), and we consider the two corresponding
cases with respect to the relation of (yi—2,xt—1) to (y;_,,x}_4); that is,
we further consider whether or not (y;—2,¢—1) equals (y;_,,z}_;).

Eventually, since z # ', we get to a situation in which y; = y! and
(Yi—1,%;) # (yi_,,x}), which is handled as in the first case.

We now provide a formal implementation of the above intuitive argument. Sup-
pose towards the contradiction that there exist a probabilistic polynomial-time
algorithm A that on input s forms a collision under h, (with certain proba-
bility). Then, we construct an algorithm that will, with similar probability,
succeeds to form a suitable (i.e., length restricted) collision under h’. Algorithm
A'(s) operates as follows:

8 The adversary trying to form collisions with respect to hs runs in poly(|s|)-time. Using
£(|s]) = w(log|s|), it follows that such an adversary cannot output a string of length 2¢(1sD),
(The same holds, of course, also for legitimate usage of the hashing function.)

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 513

1. A'(s) invokes A(s) and obtains (z,z') «— A(s).

If either hy(z) # hs(z') or x = z’ then A failed, and A’ halts without
output. In the sequel, we assume that hs(z) = hs(z') and = # z'.

2. A'(s) computes t,zy,...,x; and y1, ...,y (vesp., t',z}, ...,z}; and yi, ..., y;) as
in Construction 6.2.11. Next, A'(s) finds an ¢ € {2, ...,t} such that y; = y!
!

and (y;—1,%;) # (yj_1,2}), and outputs the pair (y; 12;,y;_,2}). (We will
show next that such an ¢ indeed exists.)

Note that (since hs(xz) = hs(z')) it holds that ¢t = ¢ and y; = y;. On
the other hand, (x1,...,2:) # (2],...,2}). As argued in the motivating
discussion (above), it follows that there exists an ¢ € {2,...,t} such that

yi = y; and (yi—1,%;) # (yi_1,75).

On the existence of a suitable 7 (more details): Suppose, towards the
contradiction that, for every i € {2, ...,¢}, it holds that either y; # y;
or (yi—1,7;) = (yi_1, ;). Using the hypothesis y: = yi, it follows (by
descending induction on j) that (y;—1,z;) = (y;_1,2}), for j =¢, .., 2.
Using y1 = »1 and y; = 1, it follows that z; = z} forevery j = 1, .., ¢,
which contradicts the hypothesis (z1, ..., z¢) # (21, ..., T4).

Clearly, the output pair (y;—12;,y, ;) constitutes a collision under A/
(because hl(y;—12:) = yi =y, = bl (y,_,z}) whereas y;_1x; # y,_,z}).

Thus, whenever A(s) forms a collision under hs, it holds that A’(s) outputs a
pair of 2{(s)-bit long strings that form a collision under h.. The proposition
follows. W

Variants on Construction 6.2.11. The said construction can be generalized
to use any (non-trivial) length-restricted collision-free hashing. That is, for any
¢ > ¢, let {I', : {0,1}¢ (D = {o, 134050} 40,13+ be a collection of ¢'-restricted
collision-free hashing functions, and consider a parsing of the input string z
into a sequence xy,...,z; of (¢'(|s]) — £(|s]))-bit long blocks. Then we get a
full-fledged collision-free hashing family {h, : {0,1}* — {0,1}2(sD} by letting
hs(x) = (y¢,|z|), where y; = b (y;_1z;) for ¢ = 2,...;¢t. (Construction 6.2.11 is
obtained as a special case, for ¢'(n) = 2¢(n).) In case ¢'(n) — £(n) = w(logn),
we obtain another variant by letting hs(x) = hl(y,|z|) (rather than hs(z) =
(yt, |z])), where y; is as above. The latter variant is quite popular. In establishing
its security, when considering a collision hs(z) = hy(z'), we distinguish the case
(yt, |z]) = (yy,]2'|) (which is handled as above) from the case (yq, |2|) # (v}, |2'])
(which yields an immediate collision under hY).

6.2.3.3 Collision-free hashing via tree-hashing

Using 2¢-restricted collision-free hashing functions, we now present an alternative
construction of (full fledged) collision-free hashing functions. The alternative
construction will have the extra property of supporting verification of a bit in

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

514 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

the input (with respect to the hash value) within complexity that is independent
of the length of the input (see below).

Construction 6.2.13 (from 2/-restricted CFH to full-fledged CFH — an alter-
native construction): Let {h’ : {0, 1}24IsD — {0, I}Z(M)}SE{OJ}* be a collection
of functions. Consider the collection {hy : {0,1}* — {0,1}20sD} (cro 13+, where
hs(x) is defined by the following process, called tree hashing:

1. Break x into t % 2Moga(I21/¢(sD copsecutive blocks, while possibly adding

dummy 0-blocks and padding the last block with 0’s, such that each block
has length €(|s]). Denote these £(|s|)-bit long blocks by x1,...,x¢. That is,
xq - xy = a0t tsh=lel,

Let d =logy t, and note that d is a positive integer.

Again, for sake of uniformity, in case |x| < €(|s|), we let t = 2 and 125 =
20?UsD=1=l " On the other hand, again, we assume that |z| < 240D and
so |z| can be represented by an £(|s])-bit long string.

2. Leti=1,..,t, let ya def xi.
3. FO?"j = d—]., ceey].,0 and © =]., ...,2j, compute Yji = hls(yj+172i_1yj+172i).
4. Set hs(z) to equal (yo1,|x]).

That is, hashing is performed by placing the £(|s|)-bit long blocks of z at the
leaves of a binary tree of depth d, and computing the values of internal nodes
by applying h! to the values associated with the two children (of the node).
The final hash-value consists of the value associated with the root (i.e., the only
level-0 node) and the length of .

Proposition 6.2.14 Let {h} : {0,1}**IsD) — {0,1}*0sD} o 13- and {h, :
{0,1}* — {0,1}”(‘5')}5&{071}* be as in Construction 6.2.13, and suppose that
the former is a collection of 2¢-restricted collision-free hashing functions. Then
the latter constitutes a (full fledged) collection of collision-free hashing functions.

Proof Sketch: Recall that forming a collision under h; means finding = # z'
such that h,(x) = hs(z'). By the definition of h,, this means that (yo 1, |z]) =
hs(z) = hs(2") = (yp1,|2'[), where (¢,d) and yo,1 (resp., (¥',d') and yg,) are
determined by hs(z) (resp., hs(z')). In particular, it follows that |z| = |z'| and
so d = d' (because 2¢ = ¢t = ' = 27). Recall that yo, = Yp,1, and let us state
this fact by saying that for j = 0 and for every i € {1,...,27} it holds that
Yji = Yj; Starting with j = 0, we consider two cases (for level j + 1 in the
tree):

Case 1: If for some i € {1,...,27*'} it holds that y;41: # ¥}, ; then we obtain
a collision under A, and derive a contradiction to its collision-free hypothe-
sis. Specifically, the collision is obtained because z def Yj+1,2[i/21-1Y5+1,2[i/2]
. def
is different from 2’ = Yii120i/21-1Y541,20i/2)> Whereas hi(2) = yj iz =

! — ! !
Yj iz = Ps(2),

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES515

Case 2: Otherwise for every i € {1,...,2771} it holds that yj1,; = Yjy14- In
this case, we consider the next level.

Eventually, since x # ', we get to a situation in which for some j €
{1,...,d—1} and some i € {1,...,27 71} it holds that z def Yj+1,2[i/2]1—1Y5+1,2[i/2]
. def

is different from 2/ = y;+172[i/21_1y;+172w2], whereas h(z) = yj rij2] =

Y; 1121 = hs(z'). This situation is handled as in the first case.

The actual argument proceeds as in the proof of Proposition 6.2.12. [l

A local verification property. Counstruction 6.2.13 has the extra property of
supporting efficient verification of bits in « with respect to the hash value. That
is, suppose that for a randomly selected hs, one party holds x and the other
party holds hs(z). Then, for every i, the first party may provide a short (effi-
ciently verifiable) certificate that z; is indeed the " block of x. The certificate
consists of the sequence of pairs (yYa,2i/21-1,Ya,2[i/21)s -+ (Y1,2i/24] 15 Y1,2[i/24])
where d and the y; ;’s are computed as in Construction 6.2.13 (and (yo.1,|z|) =
hs(x)). The certificate is verified by checking whether or not y; y ;/2a-i+17 =
h;(yj72|'i/2d—3+1'|_1y]'72|'z'/2d—3+1'|), for every j € {]., ,d} Note that if the first
party can present two different values for the i*" block of z along with cor-
responding certificates then it can also form collisions under h.. Construc-
tion 6.2.13 and its local-verification property were already used in this work
(i.e., in the construction of highly-efficient argument systems, presented in Sec-
tion 4.8.4). Jumping ahead, we note the similarity between the local-verification
property of Construction 6.2.13 and the authentication-tree of Section 6.4.2.2.

6.3 Constructions of Message Authentication
Schemes

In this section we present several constructions of secure message authentication
schemes (referred to above as secure private-key signature schemes). Below, we
sometimes refer to such a scheme by the popular abbreviation MAC (which ac-
tually abbreviates the more traditional term of a Message Authentication Code).

6.3.1 Applying a pseudorandom function to the document

A scheme for message authentication can be obtained by applying a pseudoran-
dom function (specified by the key) to the message (which one wishes to authen-
ticate). The simplest implementation of this idea is presented in Section 6.3.1.1,
whereas more sophisticated implementations are presented in Sections 6.3.1.2
and 6.3.1.3.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

516 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

6.3.1.1 A simple construction and a plausibility result

Message authentication schemes can be easily constructed using pseudorandom
functions (as defined in Section 3.6). Specifically, by Theorem 6.2.2, it suf-
fices to construct an f-restricted message authentication scheme, for any super-
logarithmically growing £. Indeed, this is our starting point.

Construction 6.3.1 (an f-restricted MAC based on pseudorandom functions):

Let £ be a super-logarithmically growing function, and { f, : {0,1}*1s) — {0, 1}“'3‘)}56{071}*
be as in Definition 3.6.4. We construct an {-restricted message authentication

scheme, (G,S,V), as follows:

Key-generation with G: On input 1™, we uniformly select s € {0,1}", and out-
put the key-pair (s,s). (Indeed, the verification-key equals the signing-key.)

Signing with S: On input a signing-key s € {0,1}" and an €(n)-bit string a, we
compute and output fs(a) as a signature of .

Verification with V: On input a verification-key s € {0,1}", an {(n)-bit string
a, and an alleged signature B, we accept if and only if B = fs(a).

Indeed, signing amounts to applying fs to the given document string, and veri-
fication amounts to comparing a given value to the result of applying fs to the
document. Analogous constructions can be presented by using the generalized
notions of pseudorandom functions defined in Definitions 3.6.9 and 3.6.12 (see
further comments in the following subsections). In particular, using a pseu-
dorandom function ensemble of the form {fs : {0,1}* — {0, 1}|3‘}S€{071}*, we
obtain a general message authentication scheme (rather than a length-restricted
one). Below, we only prove the security of the (-restricted message authen-
tication scheme of Construction 6.3.1. (The security of the general message
authentication scheme can be established analogously; see Exercise 8.)

Proposition 6.3.2 Suppose that {f, : {0,1}*15) — {0,1}41sD} ceg 1y, is a
pseudorandom function, and that £ is a super-logarithmically growing function,
Then Construction 6.3.1 constitutes a secure (-restricted message authentication
scheme.

Proof: The proof follows the general methodology suggested in Section 3.6.3.
Specifically, we consider the security of an ideal scheme in which the pseudo-
random function is replaced by a truly random function (mapping £(n)-bit long
strings to £(n)-bit long strings). Clearly, an adversary that obtains the values
of this random function at arguments of its choice, cannot predict its value at
a new point with probability greater than 27" Thus, an adversary attack-
ing the ideal scheme may succeed in existential forgery with at most negligible
probability. The same must hold for any efficient adversary that attacks the
actual scheme, because otherwise such an adversary yields a violation of the
pseudorandomness of {f, : {0,1}4(s) — {0, 1}“'5‘)}56{0,1}*. Details follow.
The actual proof is by a reducibility argument. Given a probabilistic polynomial-

time A attacking the scheme (G, S, V'), we consider what happens when A attacks

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES517

an ideal scheme in which a random function is used instead of a pseudorandom
one. That is, we refer to two experiments:

1. Machine A attacks the actual scheme: On input 1™, machine A is given
oracle access to (the signing process) f, : {0,1}*™) — {0,1}(") where s
is uniformly selected in {0,1}™. After making some queries of its choice,
A outputs a pair («a, 8), where « is different from all its queries. Machine
A is deem successful if and only if 5 = fs(«).

2. Machine A attacks the ideal scheme: On input 1", machine A is given
oracle access to a function ¢ : {0,1}4™) — {0,1}4™) uniformly selected
among all such possible functions. After making some queries of its choice,
A outputs a pair («, 8), where « is different from all its queries. Again, A
is deem successful if and only if 8 = ¢(«).

Clearly, A’s success probability in this experiment is at most 27"), which
is a negligible function (since ¢ is super-logarithmic).

Assuming that A’s success probability in the actual attack is non-negligible, we
derive a contradiction to the pseudorandomness of the function ensemble {f,}.
Specifically, we consider a distinguisher D that on input 1™ and oracle access to
a function f : {0,1}(") — {0,1}4") behaves as follows: First D emulates the
actions of A, while answering A’s queries using its oracle f. When A outputs a
pair («, 8), the distinguisher makes one additional oracle query to f and outputs
1 if and only if f(a) = 5.

Note that when f is selected uniformly among all possible {0,1}™) —
{0,1}*™) functions, D emulates an attack of A on the ideal scheme, and thus
outputs 1 with negligible probability (as explained above). On the other hand,
if f is uniformly selected in {fs}scf0,1}» then D emulates an attack of A on the
actual scheme, and thus (due to the contradiction hypothesis) outputs 1 with
non-negligible probability. We reach a contradiction to the pseudorandomness
of {fs}seqo,13»- The proposition follows. Il

A plausibility result: Combining Theorem 6.2.2, Proposition 6.3.2, and Corol-
lary 3.6.7, it follows that the existence of one-way functions implies the existence
of message authentication schemes. The converse also holds; see Exercise 7.
Thus, we have:

Theorem 6.3.3 Secure message authentication schemes exist if and only if one-
way functions exist.

In contrast the the feasibility result stated in Theorem 6.3.3, we now present
alternative ways of using pseudorandom functions to obtain secure message au-
thentication schemes (MACs). These alternatives yield more efficient schemes,
where efficiency is measures it terms of the length of the signatures and the time
it takes to produce and verify them.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

518 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

6.3.1.2 * Using the hash-and-sign paradigm

Theorem 6.3.3 was proved by combining the length-restricted MAC of Construc-
tion 6.3.1 with the simple but wasteful idea of providing signatures (authentica-
tion tags) for each block of the document (i.e., Construction 6.2.3). In particular,
the signature produced this way is longer than the document. Instead, here we
suggest to use the second method of converting length-restricted MACs into
full-fledged ones; that is, the hash-and-sign method of Construction 6.2.6. This
will yield signatures of a fized length (i.e., independent of the length of the doc-
ument). Combining the hash-and-sign method with a length-restricted MAC of
Construction 6.3.1 (which is based on pseudorandom functions), we obtain the
following construction.

Construction 6.3.4 (hash and sign using pseudorandom functions): Let {f; :
{0,1}*l — {0,1}'5‘}56{071}* be a pseudorandom function ensemble and {h, :
{0,1}* — {O,l}"‘}re{m}* be a collection of collision-free hashing functions.
Furthermore, for simplicity we assume that, when invoked on input 1™, the in-
dexing algorithm I of the collision-free hashing collection outputs an n-bit long
index. The general message authentication scheme, (G,S,V), is as follows:

Key-generation with G: On input 1™, algorithm G selects uniformly s € {0,1}",
and invokes the indexing algorithm I to obtain r — I(1™). The key-pair
output by G is ((r, s),(r,s)).

Signing with S: On input a signing-key (r,s) in the range of G1(1™) and a doc-
ument a € {0,1}*, algorithm S outputs the signature/tag fs(h-(a)).

Verification with V: On input a verification-key (r, s) in the range of G2(1"), a
document o € {0,1}*, and an alleged signature (3, algorithm outputs 1 if
and only if fs(h.(a)) = B.

Combining Propositions 6.2.7 and 6.3.2, it follows that Construction 6.3.4 con-
stitutes a secure message authentication scheme (MAC), provided that the ingre-
dients are as postulated. In particular, this means that Construction 6.3.4 yields
a secure MAC, provided that collision-free hashing functions exist (and are used
in Construction 6.3.4). While this result uses a seemingly stronger assumption
than the existence of one-way functions (used to establish the Theorem 6.3.3),
it yields more efficient MACs both in terms of signature length (as discussed
above) and authentication time (to be discussed next).

Construction 6.3.4 yields faster signing and verification algorithms than the
construction resulting from combining Constructions 6.2.3 and 6.3.1, provided
that hashing a long string is less time-consuming than applying a pseudorandom
function to it (or to all its blocks). The latter assumption is consistent with the
current state-of-art regarding the implementation of both primitives. Further
speed improvements are discussed in Section 6.3.1.3.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES519

An alternative presentation: Construction 6.3.4 was analyzed by invoking
the hash-and-sign paradigm (i.e., Proposition 6.2.7), while referring to the fixed-
length MAC arising from the pseudorandom function ensemble {f, : {0,1}/*l —
{0, 1}‘S|}se{071}*. An alternative analysis may proceed by first establishing that
{9s,r = fs © he}scqo,13 rer(11+1) 18 @ generalized pseudorandom function (as per
Definition 3.6.12), and next observing that any such ensemble yields a full-
fledged MAC (see Exercise 8).

6.3.1.3 * A variation on the hash-and-sign paradigm (or using non-
cryptographic hashing plus hiding)

Construction 6.3.4 combines the use of a collision-free hashing function with the
application of a pseudorandom function. Here we take another step towards
speeding-up message authentication by showing that the collision-free hashing
can be replaced with ordinary (i.e., non-cryptographic) hashing, provided that
a pseudorandom function (rather than a generic MAC) is applied to the result.
Consequently, we also reduce the intractability assumptions used in the analy-
sis of the construction. Before getting into details, let us explain why we can
use non-cryptographic hashing and why this may lead to reduced intractability
assumptions and to efficiency improvements.

e Since we are in the private-key setting, the adversary does not get the
description of the hash function used in the hash-and-sign process. Fur-
thermore, applying the pseudorandom function to the hash-value hides it
from the adversary. Thus, when trying to form collisions under the hash
function, the adversary is in “total darkness” and may only rely on the
collision probability of the hashing function (as defined below). (Recall
that in case the adversary fails to form collision, it must succeed in forg-
ing with respect to the length-restricted scheme if it wishes to forge with
respect to the full-fledged scheme.)

e Using an ordinary hashing instead of a collision-free hash function means
that the only intractability assumption used is the existence of pseudoran-
dom functions (or, equivalently, of one-way functions).

The reason that applying an ordinary hashing, rather than a collision-free
hash function, may yield an efficiency improvement is that the former is
likely to be more efficient than the latter. This is to be expected given
that ordinary hashing needs only satisfy a weak (probabilistic) condition,
whereas collision-free hashing refers to a more complicated (intractability)
condition.”

By ordinary hashing we mean function ensembles as defined in Section 3.5.1.1. For
starters, recall that these are collections of functions mapping ¢(n)-bit strings

9 This intuition may not hold when comparing a construction of ordinary hashing that
is rigorously analyzed with an ad-hoc suggestion of a collision-free hashing. But it certainly
holds when comparing the former to the constructions of collision-free hashing that are based
on a well-established intractability assumption.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

520 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

to m(n)-bit strings. These collections are associated with a set of strings, de-
noted S’;Zg), and we may assume that S’;Zg) = {0,1}". Specifically, we call

m(n
{5

p n))}neN a hashing ensemble if it satisfies the following three conditions:

1. Succinctness: n = poly(£(n), m(n)).

2. Efficient evaluation: there exists a polynomial-time algorithm that, on in-
put a representation of a function, A (in S;'(LT(L;L)), and a string € {0, 1}4™),
returns h(z).

3. Pairwise independence: for every x # y € {0,1}*(V if h is uniformly
selected in S’Zg) then h(z) and h(y) are independent and uniformly dis-
tributed in {0,1}™("). That is, for every a, 8 € {0,1}™("),

Pru[h(z) =a A h(y) =p] = 9—2m(n)

In fact, for the current application, we can replace the third condition by the
following weaker condition, parameterized by a function cp : N — [0,1] (s.t.
cp(n) > 27™™): for every x # y € {0,1}4"),

Prah(z) = h(y)] < cp(n) (6.3)

Indeed, the pairwise independence condition implies that Eq. (6.3) is satisfied
with cp(n) = 2™, Note that Eq. (6.3) asserts that the collision probability of

SZ"(LT(L;L) is at most cp(n), where the collision probability refers to the probability

that h(z) = h(y) when h is uniformly selected in S’;Zg) and z # y € {0,1}¢™
are arbitrary fixed strings.

Hashing ensembles with n < £(n) + m(n) and cp(n) = 2-™™ can be
constructed (for a variety of functions £,m : N — N, e.g., £(n) = 2n/3 and
m(n) = n/3); see Exercise 21. Using such ensembles, we first present a con-
struction of length-restricted message authentication schemes (and later show
how to generalize the construction to obtain full-fledged message authentication

schemes).

Construction 6.3.5 (Counstruction 6.3.4, revisited — length-restricted version):

Let {hy : {0,107 — {0,130}, oy and {f, = {0,1370) = {0,100} g0 -
be efficiently computable function ensembles. We construct the following (-
restricted scheme, (G,S,V):

Key-generation with G: On input 1", algorithm G selects independently and
uniformly r,s € {0,1}". The key-pair output by G is ((r,s),(r,s)).

Signing with S: On input a signing-key (r,s) in the range of G1(1™) and a doc-
ument o € {0,1}Y algorithm S outputs the signature/tag f(h.()).

Verification with V: On input a verifying-key (r,s) in the range of G2(1™), a
document o € {0, 1}“"), and an alleged signature B3, algorithm outputs 1
if and only if fs(h.(a)) = B.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES521

Note that a generalization of Construction 6.3.5 in which the pseudorandom
function is replaced by an arbitrary (length-restricted) secure message authen-
tication scheme may be insecure; see Exercise 9.

Proposition 6.3.6 Suppose that {f, : {0,1}"s) — {0,1}m(‘s|)}se{071}* is
a pseudorandom function, and that the collision probability of the collection
{h, :{0,1}40") — {o, l}m(‘r|)}re{071}* is a negligible function of |r|. Then Con-
struction 6.3.5 constitutes a secure {-restricted message authentication scheme.

In particular, the second hypothesis requires that 2~"(") be a negligible function
in n. By the above discussion, adequate collections of hashing functions (i.e.,
with collision probability 27™(™)) exists for £(n) = 2n/3 (and m(n) = n/3). We
comment that, under the above hypothesis, the collection {g,,, : fs © hy}isj=r|
constitutes a pseudorandom function ensemble: This is implicitly shown in the
following proof, and is related to Exercise 31 in Chapter 3.

Proof Sketch: As in the proof of Proposition 6.3.2, we first consider the secu-
rity of an ideal scheme in which the pseudorandom function is replaced by a truly
random function (mapping m(n)-bit long strings to m(n)-bit long strings). Con-
sider any (probabilistic polynomial-time) adversary attacking the ideal scheme.
Such an adversary may obtain the signatures to polynomially-many £(n)-bit long
strings of its choice. However, except with negligible probability, these strings
are hashed to different m(n)-bit long strings, which in turn are mapped by the
random function to totally independent and uniformly distributed m(n)-bit long
strings. Furthermore, except with negligible probability, the £(n)-bit long string
« contained in the adversary’s (alleged message-signature) output pair is hashed
to an m(n)-bit long string that is different from all the previous hash-values, and
so the single valid signature corresponding to « is a uniformly distributed m(n)-
bit long string that is independent of all previously seen signatures.

On the distribution of signatures in the ideal scheme: Suppose that the
hashing collection {h, : {0,1}*I"D — {0,1}™U"D} 5 110 has collision
probability cp(n), and ¢ : {0,1}™™ — {0,1}™™ is a random function.
Then, we claim that an adversary that obtains signatures to t(n) — 1
strings of its choice, succeeds in forging a signature to a new string with
probability at most t(n)? - cp(n) + 27" | regardless of its computational
powers. The claim is proved by showing that, except with probability at
most t(n)? - cp(n), the t(n) strings selected by the adversary are mapped
by h, to distinct values. The latter claim is proved by induction on the
number of selected strings, denoted 7, where the base case (i.e., 7« = 1) holds
vacuously. Let si1,...,s; denote the strings selected so far, and suppose
that with probability at least 1 — i - cp(n) the i hash-values h,(s;)’s are
distinct. The adversary only sees the corresponding ¢(h.(s;))’s, which
are uniformly and independently distributed (in a way independent of the
values of the h,(s;)’s). Thus, loosely speaking, the adversary’s selection of
the next string, denoted s;1, is independent of the values of the h.(s;)’s,
and so a collision of hr(si+1) with one of the previous h,(s;)’s occurs with
probability at most 4 - cp(n). The induction step follows (since 1 — i? -

ep(n) — i - cp(n) > L — (i +1)* - cp(n)).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

522 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

It follows that any adversary attacking the ideal scheme may succeed in exis-
tential forgery with at most negligible probability (provided it makes at most
polynomially-many queries). The same must hold for any efficient adversary that
attacks the actual scheme, since otherwise such an adversary yields a violation
of the pseudorandomness of {f, : {0,1}™(s) — {0,1}mUsD} ;.. The exact
implementation of the above argument follows the details given in the proof of
Proposition 6.3.2. W

Obtaining full-fledged M ACs. Construction 6.3.5 can be generalized to ob-
tain full-fledged MACs by using generalized hashing families that map arbitrary
strings (rather than fixed-length ones) to fixed length strings. Specifically, for
¢:N— Nand cp: N — [0,1], we call {h, : {0,1}* — {0,1}™U"D} _\ a gener-
alized hashing ensemble with a (¢, cp)-collision property if it satisfies the following
two conditions:

1. Efficient evaluation: there exists a polynomial-time algorithm that, on
input r (representing the function h,) and a string z € {0,1}*, returns
hy(x).

2. Collision probability:'® For every n € N and z # y such that |z|, |y| < €(n),
the probability that h,.(z) = h,(y) when r is uniformly selected in {0,1}"
is at most cp(n).

For our construction of a full-fledged MAC, we need a generalized hashing en-
semble with a (¢, cp)-collision property for some super-polynomial £(n) and neg-
ligible cp(n) (e.g., £(n) = 1/cp(n) = 2" for some constant ¢ > 0). The existence
of such ensembles will be discussed below.

Proposition 6.3.7 (Construction 6.3.4, revisited — full-fledged version): Sup-
pose that {f, : {0,1}™sD — {0,1}”’('5‘)}5&{071}* is a pseudorandom function
ensemble. For some super-polynomial £ : N — N and negligible cp : N — [0, 1],
suppose that {h, : {0,1}* — {0,1}"‘(‘”)}%{071}* is a generalized hashing en-
semble with a (¢, cp)-collision property. Then (G,S,V) as in Construction 6.3.4
constitutes a secure MAC. That is, we refer to the following scheme:

Key-generation with G: On input 1", algorithm G selects independently and
uniformly r,s € {0,1}", and outputs ((r, s), (r, s)).

Signing with S: On input a signing-key (r, s) and a document a € {0,1}*, algo-
rithm S outputs the signature/tag fs(h-(a)).

Verification with V: On input a verifying-key (r,s), a document « € {0,1}*, and
an alleged signature 3, algorithm outputs 1 if and only if fs(h.(a)) = B.

10 Note that it is essential to restrict the collision condition to strings of bounded length.
In contrast, for every finite family of functions H, there exists two different strings that are
mapped to the same image by each function in H. For details, see Exercise 20.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES523

Proof Sketch: The proof is identical to the proof of Proposition 6.3.6, except
that here the (polynomial-time) adversary attacking the scheme may query for
the signatures of strings of various lengths. Still, all these queries (as well as
the final output) are of polynomial length and thus shorter than ¢(n). Thus,
the (¢, cp)-collision property implies that, except with negligible probability, all
these queries (as well as the relevant part of the output) are hashed to different
values. |

On constructing adequate hashing ensembles. For some ¢ > 0 and
f(n) = 2™, generalized hashing ensembles with a (f,1/f)-collision property
can be constructed is several ways. One such way is by applying a tree-hashing
scheme as in Construction 6.2.13; see Exercise 22. For further details about
constructions of generalized hashing ensembles, see Section 6.6.5. Combining
any of these constructions with Proposition 6.3.7, we get

Theorem 6.3.8 Assuming the existence of one-way functions, there exist mes-
sage authentication schemes with fived-length signatures; that is, signatures of
length that depends on the length of the signing-key but not on the length of the
document.

An alternative presentation: The proofs of Propositions 6.3.6 and 6.3.7
actually establish that {g,, = fs o h’"}SE{O,l}*,TE{O,l}M is a generalized pseudo-
random function (as per Definition 3.6.12). For further discussion of this aspect
see Section C.2. Hence, the actual claim of these propositions (i.e., the secu-
rity of the constructed MAC) can be derived from the fact that any generalized
pseudorandom function yields a full-fledged MAC (see Exercise 8).

6.3.2 * More on Hash-and-Hide and state-based M ACs

The basic idea underlying Construction 6.3.5 (as well as Proposition 6.3.7) is to
combine a “weak tagging scheme” with an adequate “hiding scheme”. Specifi-
cally, the “weak tagging scheme” should be secure against forgery provided that
the adversary does not have access to the scheme’s outcome, and the “hiding
scheme” implements the latter provision in a setting in which the actual adver-
sary does obtain the value of the MAC. In Construction 6.3.5 (and in Propo-
sition 6.3.7), the “tagging scheme” was implemented by ordinary hashing and
“hiding” was obtained by applying a pseudorandom function to the string that
one wishes to hide.!!

One more natural “hiding scheme” (which can also be implemented using
pseudorandom functions) is obtained by using certain private-key encryption
schemes. For example, we may use Construction 5.3.9 (in which the plaintext =

11 We comment that this specific hiding method is not 1-1, and furthermore it is not clear
whether it can be efficiently inverted also when given the “secret key” (i.e., the seed of the
pseudorandom function). In contrast, the alternative hiding method described below is 1-1
and can be efficiently inverted when given the “secret key”.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

524 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

is encrypted/hidden by the pair (u,z @ fs(u)), where u is uniformly selected),
instead of hiding z by the value fs(z) (as above). The resulting MAC is as
follows:

Key-generation: On input 1™, we select independently and uniformly r,s €
{0,1}™, where r specifies a hashing'? function &, : {0,1}* — {0,1}™("D
and s specifies a pseudorandom function f, : {0,1}™s) — {0, 1},
We output the key-pair ((r, s), (r, $)).

Signing: On input a signing-key (r, s) and a document « € {0, 1}*, we uniformly
select u € {0,1}™*D and output the signature/tag (u,h,(a) ® fs(u)).

Verification: On input a verifying-key (r,s), a document a € {0,1}*, and an
alleged signature (u,v), we outputs 1 if and ounly if v = h,(a) & fs(u).

Alternative implementations of the same underlying idea are more popular, es-
pecially in the context of state-based MACs. We start by defining state-based
MACGs, and then show how to construct them based on the hash-and-hide (or
rather tag-and-hide) paradigm.

6.3.2.1 The definition of state-based M ACs

As in the case of steam-ciphers discussed in Section 5.3.1, we extend the mech-
anism of message-authentication schemes (MACs) by allowing the signing and
verification processes to maintain and update a state. Formally, both the signing
and the verification algorithms take an additional input and emit an additional
output, corresponding to their state before and after the operation. The length
of the state is not allowed to grow by too much during each application of the
algorithm (see Item 3 below), or else efficiency of the entire “repeated signing”
process can not be guaranteed. For sake of simplicity, we incorporate the key in
the state of the corresponding algorithm. Thus, the initial state of each of the
algorithms is set to equal its corresponding key. Furthermore, one may think of
the intermediate states as of updated values of the corresponding key.

In the following definition, we follow similar conventions to those used in
defining state-based ciphers (i.e., Definition 5.3.1). Specifically, for simplicity,
we assume that the verification algorithm (i.e., V') is deterministic (otherwise
the formulation would be more complex). Intuitively, the main part of the
verification condition (i.e., Item 2) is that the (proper) iterative signing-verifying
process always accepts. The additional requirement in Item 2 is that the state of
the verification algorithm is updated correctly as long as it is fed with strings of
length equal to the length of the valid document-signature pairs. The importance
of this condition was discussed in Section 5.3.1 and is further discussed below.

Definition 6.3.9 (state-based MAC — the mechanism): A state-based message-
authentication scheme is a triple, (G,S,V'), of probabilistic polynomial-time al-
gorithms satisfying the following three conditions

12 The hashing function should belong to an AXU family, as defined in Section 6.3.2.2.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES525

1. On input 1™, algorithm G outputs a pair of bit strings.

2. For every pair (509,) in the range of G(1"), and every sequence of
oD %5, the following holds: if (s,) « S(st D o) and (v(), D) —
V(D o 30 fori=1,2,..., then v\ =1 for every i.

Furthermore, for every i and every («, 3) € {0, 1}‘““” x {0, I}WU)‘, it holds
that V(0= a, B) = (v,). That is, v\ is actually determined by v(—")
and (|al)],50)]).13

3. There exists a polynomial p such that for every pair (3(0),1)(0)) in the range
of G(1™), and every sequence of a s and s9’s as above, it holds that
|5 < [sC=D| + || - p(n). Similarly for the v()’s.

That is, as in Definition 6.1.1, the signing-verification process operates prop-
erly provided that the corresponding algorithms get the corresponding keys
(states). Note that in Definition 6.3.9 the keys are modified by the signing-
verification process, and so correct verification requires holding the correctly-
updated verification-key. We stress that the furthermore clause in Item 2 guar-
antees that the verification-key is correctly updated as long as the verification
process is fed with strings of the correct lengths (but not necessarily with the
correct document-signature pairs). This extra requirement implies that given
the initial verification-key and the current document-signature pair as well as
the lengths of all previous pairs (which may be actually incorporated in the cur-
rent signature), one may correctly decide whether or not the current document-
signature pair is valid. As in case of state-based ciphers (cf. Section 5.3.1), this
fact is interesting for two reasons:

A theoretical Teason: It implies that, without loss of generality (alas with possi-
ble loss in efficiency), the verification algorithm may be stateless. Further-
more, without loss of generality (alas with possible loss in efficiency), the
state of the signing algorithm may consist of the initial signing-key and
the lengths of the messages signed so far. (We assume here and below that
the length of the signature is determined by the length of the message and
the length of the signing-key.)

A practical reason: It allows to recover from the loss of some of the message-
signature pairs. That is, assuming that all messages have the same length
(which is typically the case in MAC applications), if the receiver knows
(or is given) the total number of messages sent so far then it can verify
the authenticity of the current message-signature pair, even if some of the
previous message-signature pairs were lost.

We stress that Definition 6.3.9 refers to the signing of multiple messages
(and is meaningless when considering the signing of a single message). However,

13 Alternatively, we may decompose the verification (resp., signing) algorithm into two
algorithms, where the first takes care of the actual verification (resp., signing) and the second
takes care of updating the state. For details see Exercise 17.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

526 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Definition 6.3.9 (by itself) does not explain why one should sign the ith message
using the updated signing-key s(*~1), rather than by reusing the initial signing-
key s(°) (where all corresponding verifications are done by reusing the initial
verification-key v(%)). Indeed, the reason for updating these keys is provided by
the following security definition that refers to the signing of multiple messages,
and holds only in case the signing-keys in use are properly updated (in the
multiple-message authentication process).

Definition 6.3.10 (security of state-based MACs):

e A chosen message attack on a state-based MAC, (G, S,V), is an interactive
process that is initiated with (s°),v(°)) «— G(1™), and proceed as follows:
In the it! iteration, based on the information gathered so far, the attacker
selects a string V), and obtains B, where (s(), 3()) «— S(s(=1) (),

e Such an attack is said to succeed if it outputs a valid signature to a string
for which it has NOT requested a signature during the attack. That is, the
attack is successful if it outputs a pair (a, B) such that « is different from
all signature-queries made during the attack, and V(v0~Y o,) = (-, 1)
holds for some intermediate state (verification-key) v*=1) (as above).'*

o A state-based MAC is secure if every probabilistic polynomial-time chosen
message attack as above succeeds with at most negligible probability.

Note that Definition 6.3.10 (only) differs from Definition 6.1.2 in the way that the
signatures B(")’s are produced (i.e., using the updated signing-key st=1) rather
than the initial signing-key s(®)). Furthermore, Definition 6.3.10 guarantees
nothing regarding a signing process in which the signature to the ¢th message is
obtained by invoking S(s(%),-) (as in Definition 6.1.2).

6.3.2.2 State-based hash-and-hide MACs

We are now ready to present alternative implementations of the hash-and-hide
paradigm. Recall that in Section 6.3.1.3, the document was hashed (by using an
adequate hashing function) and the resulting hash-value was (authenticated and)
hidden by applying a pseudorandom function to it. In the current subsection,
hiding will be obtained in a more natural (and typically more efficient) way;
that is, by XORing the hash-value with a new portion of a (pseudorandom) one-
time pad. Indeed, the state is used in order to keep track of what part of the
(one-time) pad was already used (and should not be used again). Furthermore,
to obtain improved efficiency, we let the state encode information that allows

14 Tn fact, one may strengthen the definition by using a weaker notion of success in which it
is only required that a # a(?) (rather than requiring that a € {a()};). That is, the attack is
successful if, for some ¢, it outputs a pair (a, 8) such that o # a® and V(v(i’l),a, B8)=(,1),
where the @)’s and v(@)’s are as above. The stronger definition provides “replay protection”
(i.e., even if the adversary obtains a valid signature that authenticates o as the jth message
it cannot produce a valid signature that authenticates « as the ith message, unless a was
actually authenticated as the ith message).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES527

fast generation of the next portion of the (pseudorandom) one-time pad. This is
obtained using (on-line) pseudorandom generator (see Sections 3.3.3 and 5.3.1).

Recall that on-line pseudorandom generators are a special case of variable-
output pseudorandom generators (see Section 3.3.3), in which a hidden state
is maintained and updated so to allow generation of the next output bit in
time polynomial in the length of the initial seed, regardless of the number of
bits generated so far. Specifically, the next (hidden) state and output bit are
produced by applying a (polynomial-time computable) function g : {0,1}" —
{0,1}"*1! to the current state (i.e., (s',0) < g(s), where s is the current state, s’
is the next state and o is the next output bit). Analogously to Construction 5.3.3,
the suggested state-based MAC will use an on-line pseudorandom generator in
order to generate the required pseudorandom one-time pad, and the latter will be
used to hide (and authenticate) the hash-value (obtained by hashing the original
document).

Construction 6.3.11 (a state-based MAC): Let g:{0,1}* — {0,1}* such that
lg(s)| = |s| + 1, for every s€{0,1}*. Let {h, : {0,1}* — {0, l}m”")}re{m}* be
a family of functions having an efficient evaluation algorithm.

Key-generation and initial state: Uniformly select s,r € {0,1}™, and output the
key-pair ((s,), (s,7)). The initial state of each algorithm is set to (s,71,0, s).

(We maintain the initial key (s,r) and a step-counter in order to allow
recovery from loss of message-signature pairs.)

Signing message « with state (s,r,¢,s"): Let so s Fori=1, —eym(n), com-
pute s;0; = g(s,—1), where |s;| =n and o; € {0,1}. Output the signature
h(a) © 01+ Opn), and set the new state to (s,7,t +m(n), Sp(n))-

Verification of the pair («,) with respect to the state (s,r,t,s'): Compute oy -+ -0 (n)
and Sm(n) a8 in the signing process; that is, for i = 1,...,m(n), compute

s:0; = g(si—1), where sg def o1 Set the new state to (s,r,t +m(n), smmn)),
and accept if and only if B = h.(a) @ 01+ Opm(n)-

Special recovery procedure: When notified that some message-signature
pairs may have been lost and that the current message-signature pair has
index t', one first recovers the correct current state, which as above will be
denoted so. This is done by setting s_y e 5 and computing S;—y Oi—y =
g(si_¢ 1), fori =1,...,t". Indeed, recovery of so is required only if t' # t.*°

Note that both the signing and verification algorithms are deterministic, and that
the state after authentication of ¢ messages has length 3n +log,(t - m(n)) < 4n,
provided that t < 2™/m(n).

We now turn to analyze the security of Construction 6.3.11. The hashing
property of the collection of h,’s should be slightly stronger than the one used

15 More generally, if the verification procedure holds the state at time t < ¢ then it needs
only compute s;41_y, .., 50-

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

528 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

in Section 6.3.1.3. Specifically, rather than a bound on the collision probability
(i.e., the probability that h,.(z) = h,(y) for any relevant fixed z,y and a random
r), we need a bound on the probability that h,(z) ® h,(y) equals any fixed string
(again, for any relevant fixed x,y and a random 7). This property is commonly
referred to by the name Almost-Xor-Universal (AXU). That is, {h, : {0,1}* —
{0, l}m”")}re{m}* is called a (¢,)-AXU family if for every n € N, every = # y
such that |z|,|y| < £(n), and every z, it holds that

Prlhy, (z) ® hu, (y) = 2] < e(n) (6.4)
References to constructions of such families are provided in Section 6.6.5.

Proposition 6.3.12 Suppose that g is a pseudorandom generator,'® and that
{h.} is a (£,e)-AXU family, for some super-polynomial £ and negligible €. Then
Construction 6.3.11 constitutes a secure state-based MAC. Furthermore, security
holds even with respect to the stronger notion discussed in Footnote 14.

Proof Sketch: By Exercise 21 of Chapter 3, if g is a pseudorandom generator
then for every polynomial p the ensemble {G? }, .y is pseudorandom, where G?,
is defined by the following random process:

Uniformly select sp € {0,1}™;
For i =1 to p(n), let s;0; « g(si—1), where o; € {0,1} (and s; € {0,1}");
Output o109 - - Op(n)-

Recall that, in such a case, we said that g is a next-step function of an on-line
pseudorandom generator.

As in previous cases, it suffices to establish the security of an ideal scheme in
which the sequence (of m(n)-bit long blocks) produced by iterating the next-step
function g is replaced by a truly random sequence (of m(n)-bit long blocks). In
the ideal scheme, all that the adversary may obtain via a chosen message attack
is a sequence of m(n)-bit long blocks, which is uniformly distributed among all
such possible sequences. Note that each of the signatures obtained during the
attack as well as the forged signature refers to a single block in this sequence
(e.g., the ith obtained signature refers to the ith block). We consider two types
of forgery attempts:

1. In case the adversary tries to forge a signature referring to an unused
(during the attack) block, it may succeed with probability at most 2~™(™)
because we may think of this block as being chosen after the adversary
makes its forgery attempt. Note that 2~"(") is negligible, because (n) >
2-™(") must hold (i.e., 2-™™ lower-bounds the collision probability).

2. The more interesting case is when the adversary tries to forge a signature
referring to a block, say the ith one, that was used (to answer the ith
query) during the attack. Denote the jth query by al?), the (random)

16 In fact, as shown in the proof, it suffices to assume that ¢ is a next-step function of an
on-line pseudorandom generator.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES529

jth block by b, and the forged document by . Then, at the time
of outputting the forgery attempt («,3), the adversary only knows the
sequence of b)) @ h,.(a))’s (as well as the a(9)’s which were chosen by
it), but this yields no information on r (because the b/)’s are random and
unknown to the adversary). Note that the adversary succeeds if and only
if) @ h,(a) = B, where () € 5() @ h,(a)) is known to it. Thus,
the adversary succeeds if and only if h,(a'”) @ h,.(a) =) @ 3, where
a9, 30 o, B are known to the adversary and r is uniformly distributed.

Further clarification: Considering the distribution of r conditioned on
partial transcripts of the attack (i.e., the sequence of queries and
answers), we claim that at any time r is uniformly distributed in
{0,1}™. The claim holds because, for each possible value of r, the
answers to the different queries are all uniformly distributed (be-
cause they are XORed with random b(j)’s). Thus, 7 is uniformly
distributed also conditioned on the transcript at the time that the
adversary outputs its forgery attack, which in turn is successful if
and only if b @ h,(a) = § holds, where b®) = h, (o) @) and
a®, W o, 3 are fixed by this transcript. Thus, a successful forgery
implies h, (&) & h,(a) = D & 3, for fixed a?, %, o, 3 and uni-
formly distributed r.

Hence, by the AXU property, the probability that the adversary succeeds
is at most g(n).

The security of the real scheme follows (or else one could have distinguished the
sequence produced by iterating the next-step function g from a truly random
sequence). [l

Construction 6.3.11 versus the constructions of Section 6.3.1.3. Recall
that all these schemes are based on the hash-and-hide paradigm. The difference
between the schemes is that in Section 6.3.1.3 a pseudorandom function is applied
to the hash-value (i.e., the signature to « is fs(h.(a))), whereas in Construc-
tion 6.3.11 the hash-value is XORed with a pseudorandom value (i.e., we may
view the signature as consisting of (¢, h.-(a) @ fs(c)), where c is a counter value
and f,(c) is the cth block produced by iterating the next-step function g starting
with the initial seed s). We note two advantages of the state-based MAC over
the MACs presented in Section 6.3.1.3: First, applying an on-line pseudorandom
generator is likely to be more efficient than applying a pseudorandom function.
Second, a counter allows to securely authenticate more messages than can be se-
curely authenticated by applying a pseudorandom function to the hashed value.
Specifically, the use of an a m-bit long counter allows to securely authenticate
2™ messages, whereas using an m-bit long hash-value suffers from the “birth-
day effect” (i.e., collisions are likely to occur when V2™ messages are authenti-
cated). Indeed, these advantages are relevant only in applications in which using
state-based MACs is possible, and are most advantageous in applications where

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

530 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

verification is performed in the same order as signing (e.g., in FIFO communica-
tion). In the latter case, Construction 6.3.11 offers another advantage: “replay
protection” (as discussed in Footnote 14).

6.4 Constructions of Signature Schemes

In this section we present several constructions of secure public-key signature
schemes. In the sequel, we refer to such schemes as signature schemes, which is
indeed the traditional term.

Two central paradigms in the construction of signature schemes are the “re-
freshing” of the “effective” signing-key (see Section 6.4.2.1), and the usage of
an “authentication tree” (see Section 6.4.2.2). In addition, the “hash-and-
sign paradigm” (employed also in the construction of message authentication
schemes), plays a even more crucial role in the following presentation. In ad-
dition to the above, we use the notion of a one-time signature scheme (see
Section 6.4.1).

The current section is organized as follows. In Section 6.4.1 we define and
construct various types of one-time signature schemes. The “hash-and-sign
paradigm” plays a crucial role in one of these constructions, which in turn is
essential for Section 6.4.2. In Section 6.4.2 we show how to use one-time signa-
ture schemes to construct general signature schemes. This construction utilizes
the “refreshing paradigm” (as employed to one-time signature schemes) and an
“authentication tree”. Thus, assuming the existence of collision-free hashing, we
obtain (general) signature schemes.

In Section 6.4.3, wishing to relax the conditions under which signature schemes
can be constructed, we define universal one-way hashing functions, and show how
to use them instead of collision-free hashing (in the above constructions and in
particular within a modified “hash-and-sign paradigm”). Indeed, the gain in
using universal one-way hashing (rather than collision-free hashing) is that the
former can be constructed based on any one-way function (whereas this is not
known for collision-free hashing). Thus, we obtain:

Theorem 6.4.1 Secure signature schemes exist if and only if one-way functions
eTist.

The difficult direction is to show that the existence of one-way functions implies
the existence of signature schemes. For the opposite direction, see Exercise 7.

6.4.1 One-time signature schemes

In this section we define and construct various types of one-time signature
schemes. Specifically, we first define one-time signature schemes, next define
a length-restricted version of this notion (analogous to Definition 6.2.1), then
present a simple construction of the latter, and finally we show how such a con-
struction combined with collision-free hashing yields a general one-time signature
scheme.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 531

6.4.1.1 Definitions

Loosely speaking, one-time signature schemes are signature schemes for which
the security requirement is restricted to attacks in which the adversary asks
for at most one string to be signed. That is, the mechanics of one-time signa-
ture schemes is as of ordinary signature schemes (see Definition 6.1.1), but the
security requirement is relaxed as follows.

e A chosen one-message attack is a process that can obtain a signature to at
most one string of its choice. That is, the attacker is given v as input, and
obtains a signature relative to s, where (s,v) «— G(1") for an adequate n.

(Note that in this section we focus on public-key signature schemes and
thus we present only the definition for this case.)

e Such an attack is said to succeed (in ezxistential forgery) if it outputs a valid
signature to a string for which it has NOT requested a signature during the
attack.

(Indeed, the notion of success is exactly as in Definition 6.1.2.)

e A one-time signature scheme is secure (or unforgeable) if every feasible
chosen one-message attack succeeds with at most negligible probability.

Moving to the formal definition, we again model a chosen message attack as a
probabilistic oracle machine; however, since here we only care about one-message
attacks, we consider only oracle machines that make at most one query. Let M
be such a machine. As before, we denote by Q% (x) the set of queries made by
M on input x and access to oracle O, and let M©(x) denote the output of the
corresponding computation. Note that here |Q,(z)| < 1 (i.e., M may either
make no queries or a single query).

Definition 6.4.2 (security for one-time signature schemes): A one-time signa-
ture scheme is secure if for every probabilistic polynomial-time oracle machine
M that makes at most one query, every polynomial p and all sufficiently large
n, it holds that

b | Vole,B)=1& a ¢ QF;(1") . < b
where (s,v) «— G(1™) and (a, 8) «— M?*:(v) p(n)

where the probability is taken over the coin tosses of algorithms G, S and V as
well as over the coin tosses of machine M.

We now define a length-restricted version of one-time signature schemes. The
definition is indeed analogous to Definition 6.2.1:

Definition 6.4.3 (length-restricted one-time signature schemes): Let £ : N —
N. An f-restricted one-time signature scheme is a triple, (G, S,V), of probabilis-
tic polynomial-time algorithms satisfying the the mechanics of Definition 6.2.1.
That is, it satisfies the following two conditions

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

532 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

1. As in Definition 6.1.1, on input 1™, algorithm G outputs a pair of bit
strings.

2. Analogously to Definition 6.1.1, for every n and every pair (s,v) in the
range of G(1™), and for every a € {0,1}™) algorithms S and D satisfy
PrVu(a, Ss(a))=1] = 1.

Such a scheme is called secure (in the one-time model) if the requirement of
Definition 6.4.2 holds when restricted to attackers that only make queries of
length €(n) and output a pair (a, §) with |o| = €(n). That is, we consider only
attackers that make at most one query, this query has to be of length £(n), and
the output (o, B) must satisfy |a| = €(n).

Note that even the existence of secure 1-restricted one-time signature schemes
implies the existence of one-way functions: see Exercise 13.

6.4.1.2 Constructing length-restricted one-time signature schemes

We now present a simple construction of length-restricted one-time signature
schemes. The construction works for any length restriction function ¢, but the
keys will have length greater than ¢. The latter fact limits the applicability
of such schemes, and will be removed in the next subsection. But first, we
construct f-restricted one-time signature schemes based on any one-way function
f. Loosely speaking, the verification-key will consist of £ pairs of images (of f)
and a signature will consist of ¢ preimages (under f) corresponding to ¢ out of
these 2¢ images, where the selection of images is determined by the corresponding
bits of the message. We may assume for simplicity that f is length preserving.

Construction 6.4.4 (an (-restricted one-time signature scheme): Let ¢ : N —
N be polynomially-bounded and polynomial-time computable, and f : {0,1}* —
{0,1}* be polynomial-time computable and length-preserving. We construct an
L-restricted one-time signature scheme, (G,S,V), as follows:

Key-generation with G: On input 1™, we uniformly select 9, s}, ..., sg(n), s}(n) €
{0,1}™, and compute vf = (5{), fori=1,...4(n) and j = 0,1. We let
s = ((s?,s%),....,(sg(n),s}z(n))), and v = ((v?,v%),....,(vg(n),vl}(n))), and

output the key-pair (s,v).
(Note that |s| = |v| =2 €(n)-n.)

Signing with S: On input a signing-key s = ((s7,51), -, (}(n)> 8i(n))) and an

€(n)-bit string a = 01 -+ 0y(n), we output (s7*,...., SZ(ET(L’S’) as a signature of
Q.
Verification with V: On input a verification-key v = ((v},01), ..., (V}(,), Vi)

an €(n)-bit string a = o1 - - - 04(n), and an alleged signature 8 = (B1, ..., Be(n))s
we accept if and only if v' = f(B;), fori =1,...,¢(n).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 533

Proposition 6.4.5 If f is a one-way function then Construction 6.4.4 consti-
tutes a secure [-restricted one-time signature scheme.

Note that Construction 6.4.4 does NOT constitute a (general) f-restricted sig-
nature scheme: An attacker that obtains signatures to two strings (e.g., to the
strings 0°™) and 1¢("™)), can present a valid signature to any £(n)-bit long string
(and thus totally break the system). However, here we consider only attackers
that may ask for at most one string (of their choice) to be signed. As a corollary
to Proposition 6.4.5, we obtain:

Corollary 6.4.6 If there exist one-way functions then, for every polynomially-
bounded and polynomial-time computable {:N— N, there exist secure £-restricted
one-time signature schemes.

Proof of Proposition 6.4.5: Intuitively, forging a signature (after seeing at
most one signature to a different message) requires inverting f on some random
image (corresponding to a bit location on which the two £(n)-bit long messages
differ). The actual proof is by a reducibility argument. Given an adversary A
attacking the scheme (G, S, V), while making at most one query, we construct
an algorithm A’ for inverting f.

As a warm-up, let us first deal with the case in which A makes no queries
at all. In this case, on input y (supposedly in the range of f), algorithm A’
proceeds as follows. First A’ selects uniformly and independently a position
pin {1,..,¢(n)}, a bit b, and a sequence of (2¢(n) many) n-bit long strings
59,51,,sg(n),s%(n). (Actually, s is not used and needs not be selected.) For

every i € {1,...,¢(n)}\ {p}, and every j € {0,1}, algorithm A’ computes v} =
f(sf) Algorithm A" also computes vzl,’b = f(sllfb), and sets 'Uf, =y and v =
((v7,01), o5 (V1) Viy))- Note that if y = f(), for a uniformly distributed
x € {0,1}", then for each possible choice of p and b, the sequence v is distributed
identically to the public-key generated by G(1™). Next, A" invokes A on input
v, hoping that A will forge a signature, denoted 3 = 71 -+~ 7y(,), to a message
@ = 01+ 0y(n) s0 that g, = b. If this event occurs, A’ obtains a preimage of y
under f, because the validity of the signature implies that f(7,) = v;" = v} =y.
Observe that conditioned on the value of v and the internal coin tosses of A, the
value b is uniformly distributed in {0,1}. Thus, A’ inverts f with probability
e(n)/2, where e(n) denotes the probability that A succeeds in forgery.

We turn back to the actual case in which A may make a single query. Without
loss of generality, we assume that A always makes a single query; see Exercise 11.
In this case, on input y (supposedly in the range of f), algorithm A’ selects p, b
and the s!’s, and forms the v]’s and v exactly as in the warm-up discussion
(above). Recall that if y = f(z), for a uniformly distributed =z € {0,1}", then
for each possible choice of p and b, the sequence v is distributed identically to
the public-key generated by G(1™). Also note that for each v} other than vz =y,
algorithm A’ holds a random preimage (of vf) under f. Next, A" invokes A on
input v, and tries to answer its query, denoted o = o1 -+ - 0¢(,). We consider two
cases regarding this query:

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

534 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

1. If 0p = b then A’ can not supply the desired signature because it lacks a
preimage of sz = y under f. Thus, in this case A’ aborts. However, this
case occurs with probability %, independently of the actions of A (because
v yields no information on either p or b).

(That is, conditioned on the value of v and the internal coin tosses of A,
this case occurs with probability %.)17

2. If 0, =1 — b then A’ can supply the desired signature because it holds all
the relevant sg’s (i.e., random preimages of the relevant 'U{’s under f). In
particular, A’ holds both s!’s, for i # p, as well as sll,’b. Thus, A’ answers
with (s7?, ..., SZ{;’;)).

Note that conditioned on the value of v, the internal coin tosses of A and on the
second case occuring, p is uniformly distributed in {1, ...,€(n)}. When the second
case occurs, A obtains a signature to o and this signature is distributed exactly
as in a real attack. We stress that since A asks at most one query, no additional
query will be asked by A. Also note that, in this case (i.e., 0, = 1—b), algorithm
A outputs a forged message-signature pair, denoted (', '), with probability
exactly as in a real attack.

We now turn to the analysis of A’, and consider first the emulated attack
of A. Recall that a = 01 ---0y(,) denotes the (single) query'® made by A, and
let o/ =0y - "”Z(n) and ' = s - --sz(n), where (o', 3") is the forged message—
signature pair output by A. By our hypothesis (that this is a forgery-success

event) it follows that o' # « and that f(s}) = vfg for all i’s. Now, considering
the emulation of A by A’, recall that (conditioned on all the above) p is uniformly

distributed in {1,...,¢(n)}. Hence, with probability 1% > -1 it holds

that o, # 0,, and in that case A" obtains a preimage of y under f (since s,
satisfies f(s)) = v,?, which in turn equals v;_op =) =y).

To summarize, assuming that A succeeds in a single-message attack on
(G, S, V) with probability £(n), algorithm A’ inverts f on a random image (i.e.,
on f(U,)) with probability

(iol#adl o <)

1
M3 T m) = 20(n)

Thus, if A is a probabilistic polynomial-time chosen one-message attack that
forges signatures with non-negligible probability then A’ is a probabilistic polynomial-
time algorithm that inverts f with non-negligible probability (in violation of the
hypothesis that f is a one-way function). The proposition follows. i

17 This follows from an even stronger statement by which conditioned on the value of v, the
internal coin tosses of A and on the value of p, the current case happens with probability %
The stronger statement holds because conditioned on all the above, b is uniformly distributed
in {0,1} (and so o, = b happens with probability exactly %)

18 Recall that, without loss of generality, we may assume that A always makes a single
query; see Exercise 11.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 535

6.4.1.3 From length-restricted schemes to general ones

Using the hash-and-sign paradigm (i.e., Construction 6.2.6), we transform length-
restricted one-time signature schemes into one-time signature schemes. That
is, we use collision-free hashing, and apply Construction 6.2.6 except that here
(G, S,V) is an {-restricted one-time signature scheme rather than an ¢-restricted
(general) signature scheme. Analogously to Proposition 6.2.7, we obtain:

Proposition 6.4.7 Suppose that (G,S,V) is a secure £-restricted one-time sig-
nature scheme, and that {h, : {0,1}* — {O,I}ZW')}TE{M}* is a collision-free
hashing collection. Then (G',S', V'), as defined in Construction 6.2.6, is a se-
cure one-time signature scheme.

Proof: The proof is identical to the proof of Proposition 6.2.7; we merely no-
tice that if the adversary A’, attacking (G',S’,V'), makes at most one query
then the same holds for the adversary A that we construct (in that proof) to
attack (G, S, V). In general, the adversary A constructed in the proof of Propo-
sition 6.2.7 makes a single query per each query of the adversary A’.

Combining Proposition 6.4.7, Corollary 6.4.6, and the fact that collision-free
hashing collections imply one-way functions (see Exercise 14), we obtain:

Corollary 6.4.8 If there exist collision-free hashing collections then there exist
secure one-time signature schemes. Furthermore, the length of the resulting
signatures only depends on the length of the signing-key.

Comments: We stress that when using Construction 6.2.6, signing each docu-
ment under the (general) scheme (G, S’, V') only requires signing a single string
under the f-restricted scheme (G, S, V). This is in contrast to Construction 6.2.3
in which signing a document under the (general) scheme (G',S',V’) requires
signing many strings under the l-restricted scheme (G, S, V'), where the number
of such strings depends (linearly) on the length of the original document.

Construction 6.2.6 calls for the use of collision-free hashing. The latter can be
constructed using any claw-free permutation collection (see Proposition 6.2.9),
however it is not know whether collision-free hashing can be constructed based
on any one-way function. Wishing to construct signature schemes based on
any one-way function, we later avoid (in Section 6.4.3) the use of collision-free
hashing. Instead, we use “universal one-way hashing functions” (to be defined),
and present a variant of Construction 6.2.6 that uses these functions rather than
collision-free ones.

6.4.2 From one-time signature schemes to general ones

In this section we show how to construct general signature schemes using one-
time signature schemes. That is, we shall prove:

Theorem 6.4.9 If there exist secure one-time signature schemes then secure
(general) signature schemes exist as well.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

536 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Actually, we can use length-restricted one-time signature schemes, provided that
the length of the strings being signed is at least twice the length of the verification-
key. Unfortunately, Construction 6.4.4 does not satisfy this condition. Neverthe-
less, Corollary 6.4.8 does provide one-time signature schemes. Thus, combining
Theorem 6.4.9 and Corollary 6.4.8, we obtain:

Corollary 6.4.10 If there exist collision-free hashing collections then there exist
secure signature schemes.

Note that Corollary 6.4.10 asserts the existence of secure (public-key) signature
schemes, based on an assumption that does not mention trapdoors. We stress
this point because of the contrast to the situation with respect to public-key
encryption schemes, where a trapdoor property seems necessary for the con-
struction of secure schemes.

6.4.2.1 The refreshing paradigm

The so-called “refreshing paradigm” plays a central role in the proof of Theo-
rem 6.4.9. Loosely speaking, the “refreshing paradigm” suggests to reduce the
dangers of a chosen message attack on the signature scheme by using “fresh”
instances of the scheme for signing each new document. Of course, these fresh
instances should be authenticated by the original instance (corresponding to the
verification-key that is publicly known), but such an authentication refers to a
string selected by the legitimate signer rather than by the adversary.

Example: To demonstrate the refreshing paradigm, consider a basic signature
scheme (G, S, V') used as follows. Suppose that the user U has generated a key-
pair, (s,v) « G(1™), and has placed the verification-key v on a public-file. When
a party asks U to sign some document «, the user U generates a new (fresh)
key-pair, (s',v") <« G(1™), signs v’ using the original signing-key s, signs « using
the new (fresh) signing-key s, and presents (Ss(v'),v’, Sy (a)) as a signature
to @. An alleged signature, (f;,v',32), is verified by checking whether both
Vo(v', 1) =1 and Vi (a,B2) =1 hold. Intuitively, the gain in terms of security
is that a full-fledged chosen message attack cannot be launched on (G, S, V). All
that an attacker may obtain (via a chosen message attack on the new scheme)
is signatures, relative to the original signing-key s, to randomly chosen strings
(taken from the distribution G2(1™)) as well as additional signatures each relative
to a random and independently chosen signing-key.

We refrain from analyzing the features of the signature scheme presented in
the above example. Instead, as a warm-up to the actual construction used in
the next section (in order to establish Theorem 6.4.9), we present and analyze a
similar construction (which is, in some sense, a hybrid of the two constructions).
The reader may skip this warm-up, and proceed directly to Section 6.4.2.2.

Construction 6.4.11 (a warm-up): Let (G,S,V) be a signature scheme and
(G, 8", V') be a one-time signature scheme. Consider a signature scheme, (G",S", V'),
with G" = G, as follows:

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 537

Signing with S”: On input a signing-key s (in the range of G (1™)) and a docu-
ment a € {0,1}*, first invoke G' to obtain (s',v") «— G'(1™). Next, invoke
S to obtain 1 — S,(v'), and S’ to obtain Bz — S., (a). The final output
is (B1,v', B2).

Verification with V"': On input a verifying-key v, o document o € {0,1}*, and
an alleged signature B = (B1,v',B2), we output 1 if and only if both
Vo', 1) =1 and V! (e, B2) = 1.

Construction 6.4.11 differs from the above example only in that a one-time
signature scheme is used to generate the “second signature” (rather than using
the same ordinary signature scheme). The use of a one-time signature scheme is
natural here, because it is unlikely that the same signing-key s’ will be selected
in two invocations of S".

Proposition 6.4.12 Suppose that (G,S,V) is a secure signature scheme, and
that (G',S',V') is a secure one-time signature scheme. Then (G",S", V"), as
defined in Construction 6.4.11 is a secure signature scheme.

We comment that the proposition holds even if (G, S, V') is only secure against
attackers that select queries according to the distribution G5(1™). Furthermore,
(G, S,V) need only be f-restricted, for some suitable function £: N — .

Proof Sketch: Consider an adversary A" attacking the scheme (G",S",V").
We may ignore the case in which two queries of A" are answered by triplets
containing the same one-time verification-key v’ (because if this event occurs
with non-negligible probability then the one-time scheme (G',S’, V') cannot be
secure). We consider two cases regarding the relation of the one-time verification-
keys included in the signatures provided by S and the one-time verification-key
included in the signature forged by A".

1. In case, for some i, the one-time verification-key v’ contained in the forged
message equals the one-time verification-key v(*) contained in the answer
to the i*? query, we derive violation to the security of the one-time scheme
(G,s',vh.

Specifically, consider an adversary A’ that on input a verification-key v’
for the one-time scheme (G’,S',V'), generates (s,v) « G(1™) at ran-
dom, selects i at random (among polynomially many possibilities), in-
vokes A" on input v, and answers its queries as follows. The *" query of
A" denoted oV, is answered by making the only query to S',, obtaining
B =S’ (a?), and returning (Ss(v'),v',#") to A”. (Note that A’ holds
s.) Each other query of A”, denoted o'7), is answered by invoking G’
to obtain (s\9),v)) « G'(1"), and returning (Ss(v(j)),v(j),S’;(j,(a(j)) to
A", If A" answers with a forged signature and v’ is the verification-key
contained in it, then A’ obtains a forged signature relative to the one-time
scheme (G, S’, V') (i.e., a signature to a message different from o(?), which
is valid w.r.t the verification-key v'). Furthermore, conditioned on the case

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

538 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

hypothesis and a forgery event, the second event (i.e., v is the verification-
key contained in the forged signature) occurs with probability 1/poly(n).
Note that indeed A’ makes at most one query to S’,, and that the distri-
bution seen by A" is exactly as in an actual attack on (G",S",V").

2. In case, for all i, the one-time verification-key v’ contained in the forged
message is different from the one-time verification-key v(*) contained in the
answer to the i*® query, we derive violation to the security of the scheme
(G, S, V).

Specifically, consider an adversary A that on input a verification-key v for
the scheme (G,S,V), invokes A" on input v, and answers its queries as
follows. To answer the j* query of A", denoted a(?), algorithm A invokes
G' to obtain (s),v)) «— G'(1"), queries S, for a signature to v), and
returns (S,(v)),v(9)] S;m(a(j)) to A”. When A" answers with a forged
signature and v’ € {v() : j = 1,...,poly(n)} is the one-time verification-
key contained in it, A obtains a forged signature relative to the scheme
(G, S,V) (ie., a signature to a string v' different from all v()’s, which is
valid w.r.t the verification-key v). (Note again that the distribution seen
by A" is exactly as in an actual attack on (G",S"” V"))t

Thus in both cases we derive a contradiction to some hypothesis, and the propo-
sition follows. [

6.4.2.2 Authentication—trees

The refreshing paradigm by itself (i.e., as employed in Construction 6.4.11) does
not seem to suffice for establishing Theorem 6.4.9. Recall that our aim is to
construct a general signature scheme based on a one-time signature scheme.
The refreshing paradigm suggests to use a fresh instance of a one-time signature
scheme in order to sign the actual document; however, whenever we do so (as
in Construction 6.4.11), we must authenticate this fresh instance relative to the
single verification-key that is public. A straightforward implementation of this
scheme (as presented in Construction 6.4.11) calls for many signatures to be
signed relative to the single verification-key that is public, and so a one-time sig-
nature scheme cannot be used (for this purpose). Instead, a more sophisticated
method of authentication is called for.

Let us try to sketch the basic idea underlying the new authentication method.
The idea is to use the public verification-key (of a one-time signature scheme) in
order to authenticate several (e.g., two) fresh instances (of the one-time signature
scheme), use each of these instances to authenticate several fresh instances, and
so on. We obtain a tree of fresh instances of the one-time signature, where
each internal node authenticates its children. We can now use the leaves of this
tree in order to sign actual documents, where each leaf is used at most once.
Thus, a signature to an actual document consists of (1) a one-time signature to

19 Furthermore, all queries to S are distributed according to G2(1™), justifying the comment
made just before the proof sketch.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 539

this document authenticated with respect to the verification-key associated with
some leaf, and (2) a sequence of one-time verification-keys associated with the
nodes along the path from the root to this leaf, where each such verification-key
is authenticated with respect to the verification-key of its parent (see Figures 6.2
and 6.3). We stress that each instance of the one-time signature scheme is used
to sign at most one string (i.e., several verification-keys if the instance resides in
an internal node, and an actual document if the instance resides in a leaf).

77

The (verification-key of a) node labeled = authenticates (the verification-
keys of) its children, labeled z0 and z1, respectively. The authentication
is via a one-time signature of the text v,ov,1 using the signing-key s,, and
it is verifiable with respect to the verification-key v,.

Figure 6.2: Authentication trees: the basic authentication step.

The above description may leave the reader wondering as to how one actually
signs (and verifies signatures) using the process outlined above. We start with
a description that does not fit our definition of a signature scheme, because it
requires the signer to keep a record of its actions during all previous invocations
of the signing process.?’ We refer to such a scheme as memory dependent, and
define this notion first.

Definition 6.4.13 (memory-dependent signature schemes):

Mechanics: Item 1 of Definition 6.1.1 stays as it is, and the initial state (of
the signing algorithm) is defined to equal the output of the key-generator.

20 This (memory) requirement will be removed in the next section.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

540 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Item 2 is modified such that the signing algorithm is given a state, denoted
v, as auziliary input and returns a modified state, denoted 6, as auxiliary
output. It is required that for every pair (s,v) in the range of G(1™),
and for every a,y € {0,1}*, if (8,6) « Ss(a,7) then Vy,(a,8) = 1 and
6] < [7[+ | - poly(n).

(That is, the verification algorithm accepts the signature and the state
does not grow by too much.)

Security: The motion of a chosen message attack is modified so that the oracle
Ss now maintains a state that it updates in the natural manner; that is,
when in state v and faced with query «, the oracle sets (8,6) «— Ss(a,7),
returns B and updates its state to 6. The notions of success and security
are defined as in Definition 6.1.2, except that they now refer to the modified
notion of an attack.

The definition of memory-dependent signature schemes (i.e., Definition 6.4.13) is
related to the definition of state-based MACs (i.e., Definition 6.3.10). However,
there are two differences between the two definitions: First, Definition 6.4.13
refers to (public-key) signature schemes, whereas Definition 6.3.10 refers to
MACs. Second, in Definition 6.4.13 only the signing algorithm is state-based (or
memory-dependent), whereas in Definition 6.3.10 also the verification algorithm
is state-based. The latter difference reflects the difference in the applications
envisioned for both types of schemes. (Typically, MACs are indented for com-
munication between a predetermined set of “mutually synchronized” parties,
whereas signature schemes are intended for production of signatures that may
be universally verifiable at any time.)

We note that memory-dependent signature schemes may suffice in many
applications of signature schemes. Still, it is preferable to have memoryless (i.e.,
ordinary) signature schemes. Below we use any one-time signature schemes to
construct a memory-dependent signature scheme. The memory requirement will
be removed in the next section, so to obtain a (memoryless) signature scheme
(as in Definition 6.1.1).

The memory-dependent signature scheme presented (in Construction 6.4.14)
below maintains a binary tree of depth n, associating to each node an instance
of a one-time signature scheme. Each node in the tree is labeled by a binary
string, denoted oy - - 0; for some ¢ € {0,1,...,n}, and is associated with a (sign-
ing and verification) key-pair, denoted (s4,...0;, Vo, .-.0;)- Lhe root of the tree is
labeled by the empty string, A, and the the verification-key vy associated with
it is used as the verification-key of the entire (memory-dependent) signature
scheme. The children of an internal node labeled oy - - - o; are labeled oy - - - 0;0
and o1 - -+ 0,1, and their verification-keys (i.e., vy,...0;0 and vy, ...,;,1) are authen-
ticated with respect to the verification-key vg,....,. With the exception of the
(one-time) instance associated with the root of the tree, all the other instances
are generated (when needed) on-the-fly, and are stored in memory (along with
their authentication with respect to their parents). A new document is signed
by allocating a new leaf, authenticating the actual document with respect to

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 541
A
S v
+ auth;\

V \
S10 Voo S Vou
+ authyo + authy,

Figure 6.3: An authentication path for nodes 010 and 011.

the verification-key associated with this leaf, and authenticating each relevant
verification-key with respect to the verification-key associated with its parent.
The relevant key-pairs (as well as their authentication with respect to their par-
ents) are generated on-the-fly, unless they are already stored in memory (which
means that they were generated in the course of signing a previous document).
Thus, the verification-key associated with the relevant leaf is authenticated with
respect to the verification-key associated with its parent, which in turn is au-
thenticated with respect to the verification-key associated with its own parent,
and so on up to the authentication (of the verification-keys of the root’s chil-
dren) with respect to the verification-key associated with the root. The latter
sequence of authentications (of each node’s verification-key with respect to the
verification-key of its parent) is called an authentication path (see Figure 6.3).
We stress that the (one-time) instance associated with each node is used to au-
thenticate at most one string. A formal description of this memory-dependent
signature scheme follows.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

542 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Construction 6.4.14 (a memory-dependent signature scheme): Let (G,S,V)
be a one-time signature scheme. Consider the following memory-dependent sig-
nature scheme, (G',S", V'), with G' = G. On security parameter n, the scheme
uses a full binary tree of depth n. FEach of the nodes in this tree is labeled by a
binary string so that the root is labeled by the empty string, denoted A, and the
left (resp., right) child of a node labeled by x is labeled by z0 (resp., x1). Below
we refer to the current state of the signing process as to a record.

Initiating the scheme: To initiate the scheme, on security parameter n, we in-
voke G(1™) and let (s,v) «— G(1™). We record (s,v) as the key-pair asso-
ciated with the root, and output v as the (public) verification-key.

In the rest of the description, we denote by (s.,v,) the key-pair associated
with the node labeled x; thus, (sx,vx) = (s,v).

Signing with S’ using the current record: Recall that the current record contains
the signing-key s = sx, which is used to produce authy (defined below).

To sign a new document, denoted o, we first allocate an unused leaf. Let
o1 -0y be the label of this leaf. For example, we may keep a counter of
the number of documents signed, and determine oy - - -0y, according to the
counter value (e.g., if the counter value is ¢ then we use the ¢ string in
lezicographic order).?!

Next, for everyi =1,...,n and every T € {0,1}, we try to retrieve from our
record the key-pair associated with the node labeled o1 ---0;—17. In case
such a pair is not found, we generate it by invoking G(1™) and store it (i.e.,
add it to our record) for future use; that is, we let (Soy..os_17sVoyeos_q7) —
G(1™).

Next, for every i = 1,...,n, we try to retrieve from our record a signature to
the String Vo, ...0;_10 Voy--0:_,1 Telative to the signing-key Sqy...o,_, . In case
such a signature is not found, we generate it by invoking Ss, .., . and
store it for future use; that is, we obtain Ss, ., (Voy..c; 10Voy-0; 11)-
(The ability to retrieve this signature from memory, for repeated use, is
the most important place in which we rely on the memory-dependence of
our signature scheme.)?? We let

def
a‘utho'l"'o'i—l = (Uﬂl"'tﬁ—ﬂ) y UVoy-eoii1l s Ssal---ai,l (Uﬂl"'ﬂi—ﬂ) U01"'U,:—11))

(Intuitively, via auth,,...,,_,, the node labeled o7 - - - 0;_; authenticates the
verification-keys associated with its children.)

Finally, we sign a by invoking S and output

Sop-on?

(o1 -+ - o, authy, auth,, ,...,authy, ..o, ., Ssoyeon ()

21 Alternatively, as done in Construction 6.4.16, we may select the leaf at random (while
ignoring the negligible probability that the selected leaf is not unused).

22 This allows the signing process S’ to use each (one-time) signing-key s, for producing a
single S, -signature. In contrast, the use of a counter for determining a new leaf can be easily
avoided, by selecting a leaf at random.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 543

Verification with V': On input a verification-key v, a document «, and an al-
leged signature B we accept if and only if the following conditions hold:

1. 3 has the form

(01 *rOn, (Uo,o,vo,hﬂo)a (U1,0,U1,1,ﬂ1),) (Un—1,o,Un—1,1,ﬂn—1),ﬂn)

where the o;’s are bits and all other symbols represent strings.
(Jumping ahead, we mention that v; ; is supposed to equal vg,...¢,7;
that is, the verification-key associated by the signing process with
the node labeled oy - - - o;7. In particular, v;_; -, is supposed to equal
Voyvcrs-)

2. Vv(’l}0701}071,ﬂo) =1.
(That is, the public-key (i.e., v) authenticates the two strings vy o and
vp,1 claimed to correspond to the instances of the one-time signature
scheme associated with the nodes labeled 0 and 1, respectively.)

8. Fori=1,..,n—1, it holds that V,, , . (viovi1,Bi) = 1.
(That is, the verification-key v;_1 ,,, which is already believed to be
authentic and supposedly corresponds to the instance of the one-time
signature scheme associated with the node labeled o; - - - 0;, authen-
ticates the two strings v; o and v;; that are supposed to correspond
to the instances of the one-time signature scheme associated with the
nodes labeled oy - -+ 0;0 and o7 - - - 0,1, respectively.)

4- Vouzra, (@, Bn) = 1.
(That is, the verification-key v,,_1 4, , which is already believed to be
authentic, authenticates the actual document «.)

Regarding the verification algorithm, note that Conditions 2 and 3 establish
that v;o,,, is authentic (i.e., equals v,,...0c,0,,,). That is, v = v\ authenticates
Us,, which authenticates v,,,,, and so on up-to vs,..,,,. The fact that the
.41 S are also proven to be authentic (i.e., equal the v,,...c,;7,,,’s, where & =
1—0) is not really useful (when signing a message using the leaf associated with
o1 ---0p). This excess is merely an artifact of the need to use s,,...,, only once
during the entire operation of the memory-dependent signature scheme: In the
currently (constructed) S!-signature we may not care about the authenticity of
SOMe Vg, ...0;5,,,, DUt we may care about it in some other S(-signatures. For
example, if we use the leaf labeled 0™ to sign the first document and the leaf
labeled 0™ 1 to sign the second, then in the first Sl-signature we only care
about the authenticity of vg», whereas in the second S!-signature we care about
the authenticity of vgn-171.

Uiz

Proposition 6.4.15 If (G,S,V) is a secure one-time signature scheme then
Construction 6.4.14 constitutes a secure memory-dependent signature scheme.

Proof: Recall that a S¢, -signature to a document « has the form

(o1 0n,authy,authy,, ..., authy, ..o, _;, s, . (a)) (6.5)

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

544 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

where the auth,’s, v,’s and s.’s satisfy
auth, = (vg0, V21, Ss, (V20 Vz1)) (6.6)

(See Figure 6.2.) In this case we say that this S.-signature uses the leaf labeled
o1---0p. Foreveryi = 1,...,n, we call the sequence (authy, auth, ,...,authy, ...,)
an authentication path for v,,....,; see Figure 6.3. (Note that the above sequence
is also an authentication path for v,,..,,_,7,, where @ = 1 — ¢.) Thus, a valid
S!-signature to a document « consists of an n-bit string oy - - - 0y, authentica-
tion paths for each v,,...,; (i =1,...,n), and a signature to a with respect to the
one-time scheme (G, S, V') using the signing-key s4,...s, -

Intuitively, forging an S!-signature requires either using an (n-element long)
authentication path supplied by the signer (i.e., supplied by S! as part of an
answer to a query) or producing an authentication path different from all paths
supplied by the signer. In both cases, we reach a contradiction to the security
of the one-time signature scheme (G, S, V). Specifically, in the first case, the
forged S!-signature contains a one-time signature that is valid with respect to
the one-time verification-key associated by the signing process with the leaf
labeled oy - - - 0, because by the case’s hypothesis the forged signature utilizes
an authentication path provided by the signer for this leaf. This yields forgery
with respect to the instance of the one-time signature scheme associated with
the leaf labeled oy - - -0, (because the document that is S!-signed by the forger
must be different from all S!-signed documents, and thus the forged document
is different from all strings to which a one-time signature associated with a leaf
was applied).??> We now turn to the second case (i.e., forgery with respect to
(G',S',V') is obtained by producing an authentication path different from all
paths supplied by the signer). In this case there must exists an i € {0,...,n—1}
and an (i — 1)-bit long string oy - - - 0;—1 such that authy,...,auth,,...,,_, is the
longest prefix of the authentication path produced by the forger that is a prefix
of some authentication path supplied by the signer. (Note that i = 0 corresponds
to an empty prefix, whereas ¢ < n — 1 by the case hypothesis.) For this ¢, the
triple auth,, ..., = (v] ¢, v}, 3;) that is contained in the S{-signature produced
by the forger, contains a one-time signature (i.e., 5!) that is valid with respect
to the one-time verification-key associated by the signing process with the node
labeled o7 - - -0;. Furthermore, by maximality of ¢, the latter signature is to a
string (i.e., v; v ;) that is different from the string to which the S;-signer has
applied S, .. This yields forgery with respect to the instance of the one-time
signature scheme associated with the node labeled o1 ---0;.

The actual proof is by a reducibility argument. Given an adversary A’ attack-
ing the complex scheme (G',S’, V'), we construct an adversary A that attacks
the one-time signature scheme, (G,S,V). In particular, the adversary A will
use its (one-time) oracle access to Ss in order to emulate the memory-dependent
signing oracle for A’. We stress that the adversary A may make at most one

23 Note that what matters is merely that the document S’-signed by the forger is different
from the (single) document to which Ssal---a was applied by the Sé—signer7 in case Ssal---u,,,,

n

was ever applied by the S!-signer.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 545

query to its Ss-oracle. Below is a detailed description of the adversary A. Since
we care only about probabilistic polynomial-time adversaries, we may assume
that A" makes at most ¢ = poly(n) many queries, where n is the security param-
eter.

The construction of adversary A: Suppose that (s,v) is in the range of G(1™).
On input v and one-query oracle access to S, adversary A proceeds as follows:

1. Initial choice: A uniformly selects j € {1,...,(2n + 1) - t}.

(The integer j specifies an instance of (G, S, V') generated during the em-
ulated attack of A" on (G',S’,V'). This instance will be attacked by A.
Note that since 2n + 1 instances of (G, S, V) are referred to in each sig-
nature relative to (G, S', V'), the quantity (2n + 1) - ¢t upper bounds the
total number of instances of (G, S, V') that appear during the entire attack
of A’. This upper bound is not tight.)

2. Invoking A': If 7 = 1 then A sets vy = v and invokes A’ on input v. In
this case A does not know sy, which is defined to equal s, yet A can obtain
a single signature relative to the signing-key s by making a (single) query
to the its own oracle (i.e., the oracle S).

Otherwise (i.e., j > 1), machine A invokes G, obtains (s',v') «— G(1™),
sets (sa,vx) = (s',v') and invokes A’ on input v'. We stress that in this
case A knows s,.

Indeed, in both cases, A’ is invoked on input vy. Also, in both cases,
the one-time instance associated with the root (i.e., the node labeled M) is
called the first instance.

3. Emulating the memory-dependent signing oracle for A': The emulation is
analogous to the operation of the signing procedure as specified in Con-
struction 6.4.14. The only exception refers to the j*" instance of (G, S, V)
that occurs in the memory-dependent signing process. Here, A uses the
verification key v, and if an S,-signature needs to be produced then A
queries S5 for it. We stress that at most one signature needs ever be
produced with respect to each instance of (G,S,V) that occurs in the
memory-dependent signing process, and therefore S, is queried at most
once. Details follow.

Machine A maintains a record of all key-pairs and one-time signatures it
has generated and/or obtained from S,. When A is asked to supply a
signature to a new document, denoted «, it proceeds as follows:

(a) A allocates a new leaf-label, denoted oy - - - 0, exactly as done by the
signing process.

(b) Forevery i =1,...,n and every 7 € {0, 1}, machine A tries to retrieve
from its record the one-time instance associated with the node labeled
o1 ---0;—17. If such an instance does not exist in the record (i.e., the
one-time instance associated with the node labeled oy ---0;_17 did
not appear so far) then A distinguishes two cases:

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

546 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

i. If the record so far contains exactly j — 1 one-time instances (i.e.,
the current instance is the j** one to be encountered) then A sets
Ugy-oi_qr < U, and adds it to its record. In this case, A does not
know s4,...s;_,r, which is defined to equal s, yet A can obtain a
single signature relative to s by making a (single) query to its
own oracle (i.e., the oracle Sy).

From this point on, the one-time instance associated with the
node labeled oy - - o;_1 7 will be called the j*" instance.

ii. Otherwise (i.e., the current instance is NOT the j*% one to be en-

countered), A acts as the signing process: It invokes G(1™), ob-
tains (Sgy...0; 17, Voy0i_yr) — G(1™), and adds it to the record.
(Note that in this case A knows $4,...0,_,+, and can generate by
itself signatures relative to it.)
The one-time instance just generated is given the next serial num-
ber. That is, the one-time instance associated with the node la-
beled oy ---0;_17 will be called the k! instance if the current
record (i.e., after the generation of the one-time key-pair asso-
ciated with the node labeled oy - --0;_17) contains exactly k in-
stances.

(c¢) For every i = 1,...,n, machine A tries to retrieve from its record a
(one-time) signature to the string vy, ..., _,0 Vo, ..0;_,1, relative to the
signing-key s4,....,_,. If such a signature does not exist in the record
then A distinguishes two cases:

i. If the one-time signature instance associated with the node la-
beled o - - - ;1 is the j*" such instance then A obtains the one-
time signature Ss.yl...ai,l(vo1---a.._10 Vgyos_11) Dy querying S,
and adds this signature to the record.

Note that by the previous steps (i.e., Step 3(b)i as well as Step 2),
s is identified with s,,...,,_,, and that the instance associated
with a node labeled oy ---0;_1 is only used to produce a single
signature; that is, to the string vy,...o;_,0 Voy---0;_,1. Thus, in this
case, A queries S; at most once.

We stress that the above makes crucial use of the fact that, for
every 7, the verification-key associated with the node labeled
01+ 0;—17 is identical in all executions of the current step. This
fact guarantees that A only needs a single signature relative to
the instance associated with a node labeled o; ---0;_1, and thus
queries S, at most once (and retrieves this signature from memory
if it ever needs this signature again).

ii. Otherwise (i.e., the one-time signature instance associated with
the node labeled oy ---0;_1 is NOT the jth such instance), A
acts as the signing process: It invokes SSUI""’i—l’ obtains the
one-time signature Ss, . (Voy.-0; 10 Voy-0; 41), and adds it
to the record. (Note that in this case A knows s4,....,_,, and can
generate by itself signatures relative to it.)

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 547

Thus, in both cases, A obtains auth,,....; ;, = (Vo,--.0i 105 Voy-0s_11 5 Biz1),
where 8; 1 =Ss, ., (Voy-0i 10 Voy0i 11)-

(d) Machine A now obtains a one-time signature of « relative to S5, _, .
(Since a new leaf is allocated for each query made by A’, we need
to generate at most one signature relative to the one-time instance
Ssal___an associated with the leaf oy - - - 0,,.) This is done analogously
to the previous step (i.e., Step 3c). Specifically:

i. If the one-time signature instance associated with the (leaf) node

labeled o1 - -0, is the jth instance then A obtains the one-time
signature Ss, . («) by querying S,.
Note that, in this case, s is identified with s;,...,, , and that an
instance associated with a leaf is only used to produce a single
signature. Thus, also in this case (which is disjoint of Case 3(c)i),
A queries S, at most once.

ii. Otherwise (i.e., the one-time signature instance associated with
the node labeled oy - - - o, is NOT the j*® instance), A acts as the
signing process: It invokes Ssal_,_gn, and obtains the one-time
signature Ss, _, («). (Again, in this case A knows s4,..., , and
can generate by itself signatures relative to it.)

Thus, in both cases, A obtains 8, = Ss, ., ().
(e) Finally, A answers the query « with

(01 - - - op,authy,auth,,,...,auth,, ..., _,,0Bn)

4. Using the output of A': When A’ halts with output (¢/, '), machine A
checks whether this is a valid document-signature pair with respect to
V,, and whether the document o' did not appear as a query of A'. If
both conditions hold then A tries to obtain forgery with respect to Ss.
To explain how this is done, we need to take a closer look at the valid
document-signature pair, (', '), output by A’. Specifically, suppose that
B’ has the form

(0'1 T U;u (U(’),Ov U(,),la ﬂ(’))a (U£,07 U;,l: ﬂi)a sy (’U;L—1707 U;L—l,la ﬂ;—l): ﬂ;)

and that the various components satisfy all conditions stated in the verifica-

tion procedure. (In particular, the sequence (vg o, 00 1,30); -+ (V51,00 V1,15 Bn—1)

is the authentication path (for v;,_, ,,) output by A".) Recall that strings

of the form v; , denote the verification-keys included in the output of A’,

whereas strings of the form v, denote the verification-keys (as used in the

answers given to A’ by A and) as recorded by A.

Let i be mazimal such that the sequence of key-pairs (vg o, g 1), -+, (Vi1 0,Vi 11)

appears in some authentication path supplied to A’ (by A).2* Note that
i € {0,...,n}, where i = 0 means that (vgg,vp ;) differs from (vo,v1),

24 That is, i is such that for some Bo, ..., 8i—1 (which may but need not equal), ..., 8, ;) the

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

548 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

and ¢ = n means that the sequence ((v{ g, V0 1), (Vh_1.05Vh_11)) €quals
the sequence ((vo, v1), ..., (Vo! 07 _ 0,Vor o' _ 1)) In general, the sequence

n—1

((v0,0,00,1), -+ (Vi_1,0,vi_1,1)) equals the sequence ((vo, V1), -, (Vg) .ot 05 Vo0t 1))
In particular, for ¢ > 1, it holds that vLLa; = Vgt ..o, Whereas for i =0

we shall only refer to vy (which is the verification-key attacked by A’).
In both cases, the output of A’ contains a one-time signature relative to
Vgt ...or, and this signature is to a string different from the (possibly) only
one to which a signature was supplied to A’ by A. Specifically, as in the
motivating discussion above, we distinguish the cases ¢ = n and i < n:

(a) In case i = n, the output of A’ contains the (one-time) signature £,
that satisfies V,, , , (o', ;) = 1. Furthermore, o' is different from
1 m

the (possibly) only document to which S, , , was applied during the
1 I3

emulation of the S’-signer by A, since by our hypothesis the document
o/ did not appear as a query of A’. (Recall that, by the construction of
A, instances of the one-time signature scheme associated with leaves
are only applied to the queries of A'.)

(b) In case i < n, the output of A’ contains the (one-time) signature 3,
that satisfies V,,_, _, (v]ovi,3;) = 1. Furthermore, v yv; ; is differ-
1ot \Ui0 Y, 0Y%,

ent from v,:...510 Vo; ...o10, Which is the (possibly) only string to which
Ss,, ..., was applied during the emulation of the S’-signer by A, where
1 i

the last assertion is due to the maximality of ¢ (and the construction
of A).

Thus, in both cases, A obtains from A’ a valid (one-time) signature rela-

tive to the (one-time) instance associated with the node labeled of - -- .

K2
Furthermore, in both cases, this (one-time) signature is to a string that
did not appear in the record of A. The question is whether the instance
associated with the node labeled o} - -- o} is the j*® instance, for which A
set v = vy1...0r. In case the answer is yes, A obtains forgery with respect

to the (one—tirhe) verification-key v (which it attacks).

In view of the above discussion, A acts as follows. It determines ¢ as

in the discussion, and checks whether v = LRI, (or, almost equiva-
lently, whether the j*® instance is the one associated with the node la-
beled of ---0}). In case ¢ = n, machine A outputs the string-signature
pair (¢, 3)), otherwise (i.e., i < m) it outputs the string-signature pair

(v§,0”§717 Bi)-

sequence (v(’),o,v(’),l,,ﬁ'o), . (v£—1,07v£—1,17ﬁi—1) is a prefix of some authentication path (for

some v supplied to A’ by A. We stress that here we only care about whether

otorpion)
or not some v;cﬂ_’s equal the corresponding verification-keys supplied by A, and ignore the
question of whether (in case of equality) the verification-keys were authenticated using the
very same (one-time) signature. We mention that things will be different in the analogous
part of the proof of Theorem 6.5.2 (which refers to super-security).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 549

This completes the (admittingly long) description of adversary A. We repeat
again some obvious observations regarding this construction. Firstly, A makes
at most one query to its (one-time) signing oracle Ss. Secondly, assuming that
A’ is probabilistic polynomial-time, so is A. Thus, all that remains is to relate
the success probability of A (when attacking a random instance of (G, S,V)) to
the success probability of A" (when attacking a random instance of (G, S’,V')).
As usual the main observation is that the view of A’, during the emulation of
the memory-dependent signing process (by A), is identically distributed to its
view in an actual attack on (G',S’,V'). Furthermore, this holds conditioned
on any possible fixed value of j (selected in the first step of A). It follows
that if A’ succeeds to forge signatures in an actual attack on (G, S', V') with
probability €’(n) then A succeeds to forge signatures with respect to (G, S, V)
with probability at least %, where the (2n 4+ 1) - ¢ factor is due to the
probability that the choice of j is a good one (i.e., so that the j*! instance is
the one associated with the node labeled o} - - - ¢!, where o] --- ¢!, and i are as
defined in Step 4 of A’s construction).

We conclude that if (G',S’, V') can be broken by a probabilistic polynomial-
time chosen message attack with non-negligible probability then (G,S,V) can
be broken by a probabilistic polynomial-time single-message attack with non-
negligible probability, in contradiction to the proposition’s hypothesis. The
proposition follows.

6.4.2.3 The actual construction

In this section, we remove the memory-dependency of Construction 6.4.14, and
obtain an ordinary (rather than memory-dependent) signature scheme. Towards
this end, we use pseudorandom functions (as defined in Definition 3.6.4). The
basic idea is that the record maintained in Construction 6.4.14 can be determined
(on-the-fly) by an application of a pseudorandom function to certain strings. For
example, instead of generating and storing an instance of a (one-time) signature
scheme for each node that we encounter, we can determine the randomness for
the (corresponding invocation of the) key-generation algorithm as a function of
the label of that node. Thus, there is no need to store the key-pair generated,
because if we ever need it again then re-generating it (in the very same way)
will yield exactly the same result. The same idea applies also to the generation
of (one-time) signatures. In fact, the construction is simplified, because we need
not check whether or not we are generating an object for the first time.

For simplicity, let us assume that, on security parameter n, both the key-
generation and signing algorithms (of the one-time signature scheme (G, S, V))
use exactly n internal coin tosses. (This assumption can be justified by us-
ing pseudorandom generators, which exist anyhow under the assumptions used
here.) For r € {0,1}", we denote by G(1™,r) the output of G on input 1™ and
internal coin-tosses r. Likewise, for r € {0, 1}", we denote by S,(«,) the output
of S, on input a signing-key s and a document «, when using internal coin-tosses
r. For simplicity, we shall be actually using generalized pseudorandom functions

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

550 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

as in Definition 3.6.12 (rather than pseudorandom functions as defined in Defini-
tion 3.6.4).2° Furthermore, for simplicity, we shall consider applications of such
pseudorandom functions to sequences of characters containing {0,1} as well as
a few additional special characters.

Construction 6.4.16 (Removing the memory requirement from Construction 6.4.14):
Let (G, S,V) be a one-time signature scheme, and { f. : {0,1}* — {0, 1}|T‘}TE{0,1}*

be a generalized pseudorandom function ensemble as in Definition 3.6.12. Con-

sider the following signature scheme, (G',S', V'), which refers to a full binary

tree of depth n as in Construction 6.4.14.

Key-generation algorithm G’: On input 1™, algorithm G’ obtains (s,v) «— G(1™)
and selects uniformly r € {0,1}". Algorithm G’ outputs the pair ((r, s),v),
where (1, 8) is the signing-key and v is the verification-key.?S

Signing algorithm S': On input a signing-key (r, s) (in the range of G| (1™)) and
a document «, the algorithm proceeds as follows.

1. It selects uniformly oy -~ -0, € {0,1}™.
(Algorithm S" will use the leaf labeled o4 - - - 04, € {0,1}™ to sign the
current document. Indeed, with exponentially-vanishing probability
the same leaf may be used to sign two different documents, and this
will lead to forgery (but only with negligible probability).)
(Alternatively, to obtain a deterministic signing algorithm, one may
set o1 - -0, «— fr(select-leaf,a), where select-leaf is a special
character.)?”

2. Next, for everyi =1,...,n and every T € {0,1}, the algorithm invokes
G and sets

(301---01'71'” vLTl--'Ui—lT) — G(ln; fr(kQY‘gen; o1 - U'iflT))
where key-gen is a special character.?®

3. For every i =1,...,n, the algorithm invokes S and sets

Sgyoi_

def
authy ..., , = (val...gl;lg s Voyeoi 11

Ssal---ai,I (Uﬂl"'tﬁ—lo Voy-0i-11> fT(Signa [Ui—l)))

25 We shall make comments regarding the minor changes required in order to use ordinary
pseudorandom functions. The first comment is that we shall consider an encoding of strings
of length up-to n + 2 by strings of length n + 3 (e.g., for 4 < n + 2, the string = € {0,1}* is
encoded by z10m+2-%),

26 In case we use ordinary pseudorandom functions, rather than generalized ones, we select
r uniformly in {0,1}"*3 such that f, : {0,1}"*3 — {0,1}"*3. Actually, we shall be using the
function f, : {0,1}"+3 — {0,1}™ derived from the above by dropping the last 3 bits of the
function value.

27 In case we use ordinary pseudorandom functions, rather than generalized ones, this alter-
native can be (directly) implemented only if it is guaranteed that |a| < n. In such a case, we
apply the f, to the (n + 3)-bit encoding of 00c.

28 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-
ment to f, is the (n 4 3)-bit encoding of 1007 -+ o;_17.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 551

where sign is a special character.?®

4. Finally, the algorithm invokes S, ., and outputs®
(01---0n,authy,auth,,, ...;auths, ..o, _,, s, .. (a, fr(sign,o1---04)))

Verification algorithm V': On input a verification-key v, a document «, and an
alleged signature 8 algorithm V' behaves exactly as in Construction 6.4.14.
Specifically, assuming that 8 has the form

(o1 0n, (v0,0,v0,1,50), (V1,0,v1,1,81); s (Vn—-1,0,Vn—1,1, Bn-1), Bn)
algorithm V' accepts if and only if the following three conditions hold:

e Vi (vo,0v0,1,50) = 1.
e Fori=1,..,n—1, it holds that Vy, , . (viovi1,Bi) = 1.

hd an—l,a" (aa/g’ﬂ) = 1

Proposition 6.4.17 If (G,S,V) is a secure one-time signature scheme and
{fr:{0,1}* — {0, 1}‘T|}TE{071}* is a generalized pseudorandom function ensem-
ble then Construction 6.4.16 constitutes a secure (general) signature scheme.

Proof: Following the general methodology suggested in Section 3.6.3, we con-
sider an ideal version of Construction 6.4.16 in which a truly random function is
used (rather than a pseudorandom one). The ideal version is almost identical to
Construction 6.4.14, with the only difference being the way in which oy --- oy, is
selected. Specifically, applying a truly random function to determine (one-time)
key-pairs and (one-time) signatures is equivalent to generating these keys and
signatures at random (on-the-fly) and re-using the stored values whenever nec-
essary. Regarding the way in which oy - - -0, is selected, observe that the proof
of Proposition 6.4.15 is oblivious of this way, except for the assumption that the
same leaf is never used to sign two different documents. However, the probabil-
ity that the same leaf is used twice by the (memoryless) signing algorithm, when
serving polynomially-many signing requests, is exponentially-vanishing and thus
can be ignored in our analysis. We conclude that the ideal scheme (in which a
truly random function is used instead of f,) is secure. It follows that also the
actual signature scheme (as in Construction 6.4.16) is secure, or else one can
efficiently distinguish a pseudorandom function from a truly random one (which
is impossible). Details follow.

Assume towards the contradiction that there exists a probabilistic polynomial-
time adversary A’ that succeeds to forge signatures with respect to (G',S’, V')
with non-negligible probability, but succeeds only with negligible probability
when attacking the ideal scheme. We construct a distinguisher D that on input

29 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-
ment to f, is the (n + 3)-bit encoding of 1107 + - 0j_1.

30 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-
ment to f, is the (n + 3)-bit encoding of 1107 « - oy

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

552 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

1™ and oracle access to f : {0,1}* — {0,1}™ behaves as follows. Machine D
generates ((r',s),v) « G'(1™), and invokes A’ on input v. Machine D answers
the queries of A’ by running the signing process, using the signing-key (r', s),
with the exception that it replaces the values f,.(z) by f(z). That is, whenever
the signing process calls for the computation of the value of the function f,» on
some string z, machine D queries its oracle (i.e., f) on the string z, and uses
the respond f(z) instead of f,/(z). When A’ outputs an alleged signature to a
new document, machine M evaluates whether or not the signature is valid (with
respect to V,) and output 1 if and only if A’ has indeed succeeded (i.e., the
signature is valid). Observe that if D is given oracle access to a truly random
function then the emulated A’ attacks the ideal scheme, whereas if D is given
oracle access to a pseudorandom function f, then the emulated A’ attacks the
real scheme. It follows that D distinguishes the two cases, in contradiction to
the pseudorandomness of the ensemble {f,}. Wl

6.4.2.4 Conclusions and comments

Theorem 6.4.9 follows by combining Proposition 6.4.17 with the fact that the
existence of secure one-time signature schemes implies the existence of one-
way functions (see Exercise 13), which in turn imply the existence of (general-
ized) pseudorandom functions. Recall that combining Theorem 6.4.9 and Corol-
lary 6.4.8, we obtain Corollary 6.4.10 that states that the existence of collision-
free hashing collections implies the existence of secure signature schemes. Fur-
thermore, the length of the resulting signatures only depends on the length of
the signing-key.

We comment that Constructions 6.4.14 and 6.4.16 can be generalized as
follows. Rather than using a (depth n) full binary tree, one can use any tree
that has a super-polynomial (in n) number of leaves, provided that one can
enumerate the leaves (resp., uniformly select a leaf), and generate the path from
the root to a given leaf. We consider a few possibilities:

e For any d : N— N bounded by a polynomial in n (e.g., d =2 or d(n) =n
are indeed “extreme” cases), we may consider a full d(n)-ary tree of depth
e(n) so that d(n)°("™ is greater than any polynomial in n. The choice of
parameters in Constructions 6.4.14 and 6.4.16 (i.e., d = 2 and e(n) = n)
is probably the simplest one.

Natural complexity measures for a signature scheme include the length of
signatures and the signing and verification times. In a generalized con-
struction, the length of the signatures is linear in d(n) - e(n), and the num-
ber of applications of the underlying one-time signature scheme (per each
general signature) is linear in e(n), where in internal nodes the one-time
signature scheme is applied to string of length linear in d(n). Assuming
that the complexity of one-time signatures is linear in the document length,
all complexity measures are linear in d(n) - e(n), and so d = 2 is the best
generic choice. However, the above assumption may not hold when some

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 553

specific one-time signatures are used. For example, the complexity of pro-
ducing a signature to an £-bit long string in a one-time signature scheme
may be of the form p(n) + p'(n) - £, where p’'(n) < p(n). In such (special)
cases, one may prefer to use a larger d : N— N (see Section 6.6.5).

e For the memory-dependent construction, it may be preferable to use un-
balanced trees (i.e., having leaves at various levels). The advantage is that
if one utilizes first the leaves closer to the root then one can obtain a saving
on the cost of signing the first documents.

For example, consider using a ternary tree of super-logarithmic depth
(i.e., d = 3 and e(n) = w(logn)) in which each internal node of level
i € {0,1,...,e(n) — 2} has a two children that are internal nodes and a
single child that is a leaf (and the internal nodes of level e(n) — 1 have only
leaves as children). Thus, for i > 1, there are 3'~! leaves at level i. If we
use all leaves of level ¢ before using any leaf of level ¢ + 1 then the length
of the j'" signature in this scheme is linear in logs j (and so is the number
of applications of the underlying one-time signature scheme).

When actually applying these constructions, one should observe that in variants
of Construction 6.4.14 the size of the tree determines the number of documents
that can be signed, whereas in variants of Construction 6.4.16 the tree size has
even a more drastic effect on the number of documents that can be signed.3
In some cases a hybrid of Constructions 6.4.14 and 6.4.16 may be preferable:
We refer to a memory-dependent scheme in which leaves are assigned as in
Construction 6.4.14 (i.e., according to a counter), but the rest of the operation
is done as in Construction 6.4.16 (i.e., the one-time instances are re-generated
on-the-fly, rather than being recorded and retrieved from memory). In some
applications, the introduction of a document-counter may be tolerated, and the
gain is the ability to use a smaller tree (i.e., of size merely greater than the
number of documents that should be ever signed).

More generally, we wish to stress that each of the following ingredients of the
above constructions, is useful in a variety of related and unrelated settings. We
refer specifically to the refreshing paradigm, the authentication tree construction,
and the notion (and constructions) of one-time signatures. For example:

e It is common practice to authenticate messages sent during a “commu-
nication session” via a (fresh) session-key that is typically authenticated
by a master-key. One of the reasons for this practice is the prevention
of a chosen message attack on the (more valuable) master-key. (Other
reasons include allowing the use of a faster (alas less secure) authentica-
tion scheme for the actual communication, and introducing independence
between sessions.)

31 In particular, the number of documents that can be signed should definitely be smaller
than the square root of the size of the tree (or else two documents are likely to be assigned
the same leaf). Furthermore, we cannot use a small tree (e.g., of size 1000) even if we know
that the total number of documents that will ever be signed is small (e.g., 10), because in this
case the probability that two documents are assigned the same leaf is too big (e.g., 1/20).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

554 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

e Observe the analogy between the tree-hashing (of Construction 6.2.13)
and the authentication tree (of Construction 6.4.14). Despite the many
differences, in both cases, the value of each internal node authenticates
the values of its children. Thus, the value of the root may be used to
authenticate a very large number of values (associated with the leaves).
Furthermore, the value associated with each leaf can be verified within
complexity that is linear in the depth of the tree.

e Recall the application of one-time signatures to the construction of CCA-
secure public-key encryption schemes (see the proof of Theorem 5.4.30).

6.4.3 * Universal One-Way Hash Functions and using them

So far, we have established that the existence of collision-free hashing collections
implies the existence of secure signature schemes (cf. Corollary 6.4.10). We seek
to weaken the assumption under which secure signature schemes can be con-
structed, and bear in mind that the existence of one-way functions is certainly a
necessary condition (cf., for example, Exercise 13). In view of Theorem 6.4.9, we
may focus on constructing secure one-time signature schemes. Furthermore, re-
call that secure length-restricted one-time signature schemes can be constructed
based on any one-way function (cf. Corollary 6.4.6). Thus, the only bottleneck
we face (with respect to the assumption used) is the transformation of length-
restricted one-time signature schemes into (general) one-time signature schemes.
For the latter transformation we have used a specific incarnation of the “hash-
and-sign paradigm” (i.e., Proposition 6.4.7, which refers to Construction 6.2.6).
This incarnation utilizes collision-free hashing, and our goal is to replace it by
a variant (of Construction 6.2.6) that uses a seemingly weaker notion called
Universal One-Way Hash Functions.

6.4.3.1 Definition

A collection of universal one-way hash functions is defined analogously to a
collection of collision-free hash functions. The only difference is that the hardness
(to form collisions) requirement is relaxed. Recall that in case of (a collection of)
collision-free hash functions it was required that given the function’s description
it is hard to form an arbitrary collision under the function. In case of (a collection
of) universal one-way hash functions we only require that given the function’s
description h and a preimage z it is hard to find an = # ¢ so that h(z) = h(zo).
We refer to this requirement as to hardness to form designated collisions.

Our formulation of the hardness to form designated collisions is actually
seemingly stronger. Rather than being supplied with a (random) preimage o,
the collision-forming algorithm is allowed to select zy by itself, but must do so
before being presented with the function’s description. That it, the attack of the
collision-forming algorithm proceeds in three stages: first the algorithm selects a
preimage g, next it is given a description of a randomly selected function h, and
finally it is required to output x # xo such that h(x) = h(xo). We stress that

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 555

the third stage in the attack is also given the random coins used for producing
the initial preimage (at the first stage). This yields the following definition,
where the first stage is captured by a deterministic polynomial-time algorithm
Ap (which maps a sequence of coin tosses, denoted Uy(,), to a preimage of the
function) and the third stage is captured by algorithm A (which is given the
very same coins Uy(,) as well as the function’s description).

Definition 6.4.18 (universal one-way hash functions - UOWHF): Let £ : N —
N. A collection of functions {hs : {0,1}* — {0,1}UsD} 1y is called uni-
versal one-way hashing (UOWHF) if there ezists a probabilistic polynomial-time
algorithm I so that the following holds

1. (admissible indexing — technical):32 For some polynomial p, all sufficiently
large n’s and every s in the range of I(1™) it holds that n < p(|s|). Fur-
thermore, n can be computed in polynomial-time from s.

2. (efficient evaluation): There exists a polynomial-time algorithm that given
s and x, returns hs(z).

3. (hard to form designated collisions): For every polynomial q, every deter-
ministic polynomial-time algorithm Ag, every probabilistic polynomial-time
algorithm A, every polynomial p and all sufficiently large n’s

By (AI(1™), Uy(n) = hiany(Ao(Uyny)) 1
Pr and A(I(l"), Uq(n)) a AO(Uq(n)) = p(?’b) (67)

where the probability is taken over U,(,) and the internal coin tosses of
algorithms I and A.

The function ¢ is called the range specifier of the collection.

We stress that the hardness to form designated collisions condition refers to the
following three-stage process: first, using a uniformly distributed » € {0,1}9(%),
the (initial) adversary generates a preimage zo = Ao(r); next, a function h is
selected (by invoking I(1™)); and, finally, the (residual) adversary A is given h
(as well as r used at the first stage), and tries to find a preimage x # o such that
h(z) = h(zg). Indeed, Eq. (6.7) refers to the probability that x Lef A(h,7) # x0
and yet h(z) = h(xo)-

Note that the range specifier (i.e., £) must be super-logarithmic (or else, given
s and zg « U,, one is too likely to find an = # z(such that hs(z) = hs(zo),
by uniformly selecting = in {0,1}"™). Also note that any UOWHF collection
yields a collection of one-way functions (see Exercise 18). Finally, note that any
collision-free hashing is universally one-way hashing, but the converse is false (see
Exercise 19). Furthermore, it is not known whether collision-free hashing can
be constructed based on any one-way functions (in contrast to Theorem 6.4.29
below).

32 This condition is made merely to avoid annoying technicalities. Note that |s| = poly(n)
holds by definition of I.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

556 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

6.4.3.2 Constructions

We construct UOWHF collections in several steps, starting with a related but
restricted notion, and relaxing the restriction gradually (until we reach the un-
restricted notion of UOWHEF collections). The abovementioned restriction refers
to the length of the arguments to the function. Most importantly, the hardness
(to form designated collisions) requirement will refer only to argument of this
length. That is, we refer to the following technical definition.

Definition 6.4.19 ((d,7)-UOWHFs): Let d,r : N — N. A collection of func-
tions {hs : {0,130 — {0,137 UsD} ey is called (d,7)-UOWHF if there
exists a probabilistic polynomial-time algorithm I so that the following holds

1. For all sufficiently large n’s and every s in the range of I(1™) it holds that
|s| = n.33

2. There exists a polynomial-time algorithm that given s and z € {0, 1}d(|5‘),
returns hs(x).

3. For every polynomial q, every deterministic polynomial-time algorithm Ay
mapping q(n)-bit long strings to d(|s|)-bit long strings, every probabilistic
polynomial-time algorithm A, every polynomial p and all sufficiently large
n’s Eq. (6.7) holds.

Of course, we care only about (d,7)-UOWHF for functions d,r : N — N satisfy-
ing d(n) > r(n). (The case d(n) < r(n) is trivial since collisions can be avoided
altogether; say, by the identity map.) The “minimal” non-trivial case is when
d(n) = r(n) + 1. Indeed, this is our starting point. Furthermore, the construc-
tion of such a minimal (d,d —1)-UOWHF (undertaken in the first step below) is
the most interesting step to be taken on our entire way towards the construction
of full-fledged UOWHF. We start with an overview of the steps taken along the
way.

Step I: Constructing (d,d — 1)-UOWHFs. This construction utilizes a one-way per-
mutation f and a family of hashing functions mapping n-bit long strings
to (n —1)-bit long strings. A generic function in the constructed collection
is obtained by composing a hashing function with f; that is, the resulting
function is ho f : {0,1}" — {0,1}"~L, where h : {0,1}" — {0,1}" ! is a
hashing function. Hence, the constructed functions shrink their input by
a single bit.

Intuitively, a random hashing function h maps the f-images in a random
manner, whereas the preimages under ho f are the f-inverses of the preim-
ages under h. Thus, seeking to invert f on y, we may select zo € {0,1}"
and h at random such that h(f(zo)) = h(y), and seek a collision with the

33 Here we chose to make a more stringent condition, requiring that |s| = n rather than
n < poly(|s]). In fact, one can easily enforce this more stringent condition by modifying I into
I' so that I'(1/(™)) = [(1™) for a suitable function [: N- N satisfying l(n) < poly(n) and
n < poly(I(n)).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 557

designated preimage zy under h o f. It follows that the ability to form
designated collisions can be translated to inverting f on a random image.
Transforming this intuition into an actual proof is the most interesting
part of the current section.

Step Il: Constructing (d', d’/2)-UOWHFs. Here we merely compose random func-
tions taken from collections as constructed in Step I. Successively applying
d'/2 such functions, we map the d’'-bit long preimage to a d'/2-bit long im-
age.

Intuitively, ability to form designated collisions with respect to the con-
structed collection yields such an ability with respect to (one of) the orig-
inal collections. (In the actual argument, we rely on the fact that the
definition of (d,d — 1)-UOWHEF refers also to adversaries that get the ran-
dom coins used for producing the designated preimage, and not merely the
designated preimage itself.)

Step Ill: In this step, we construct (length-unrestricted) quasi-UOWHFSs that
shrink their input by a factor of two. These functions are constructed by
applying a (single) random function taken from a collection as constructed
in Step II to each block of d' consequetive bits of the preimage. (Clearly,
a collision of the entire sequence of blocks yields collisions at some block.)

Step IV: Obtaining full-fledged UOWHFs. This construction is analogous to the
one used in Step II: We merely compose random functions taken from a
collection as constructed in Step III. Successively applying ¢ such functions,
we essentially map 2¢n-bit long preimages to n-bit long images.

Detailed descriptions of these four steps follow.

Step I: Constructing (d,d — 1)-UOWHFs. We show how to construct
length-restricted UOWHFs that shrink their input by a single bit. Our con-
struction can be carried out using any one-way permutation. In addition, we
use a family of hashing functions, S"~!, as defined in Section 3.5.1.1. Recall that
a function selected uniformly in S”~! maps {0,1}" to {0,1}"~! in a pairwise
independent manner, that the functions in S?~! are easy to evaluate, and that
for some polynomial p it holds that log, |S™ | = p(n).

Counstruction 6.4.20 (a (d,d—1)-UOWHF): Let f : {0,1}* — {0,1}* be a 1-1
and length preserving function, and let S"=1 be a family of hashing functions
such that log, |S" | = p(n), for some polynomial p. (Specifically, suppose that

log, |Sn 1| € {3n—2,2n}, as in Ezercises 22.2 and 23 of Chapter 3.) Then, for

every s € S*~1 = {0,1}7(") and every x € {0,1}", we define h'.(z) e hs(f(x))-

Tedious details: In case |s| € {p(n) : n € N}, we define h, S h!. where s'
is the longest prefiz of s satisfying |s'| € {p(n) : n € N} We refer to an
index selection algorithm that, on input 1™, uniformly selects s € {0,1}™.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

558 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

That is, A’ : {0,1}4UsD — {0,1}20sD=1 where d(m) is the largest integer n
satisfying p(n) < m. Note that d is monotonically non-decreasing, and that for
1-1 p’s the corresponding d is onto (i.e., d(p(n)) = n for every n).

The analysis presented below uses, in an essential way, an additional prop-
erty of the above-mentioned families of hashing functions; specifically, we assume
that give two preimage—image pairs it is easy to uniformly generate a hashing
function (in the family) that is consistent with these two mapping conditions.
Furthermore, to facilitate the analysis we use a specific family of hashing func-
tions, presented in Exercise 23 of Chapter 3: functions in S?~! are described by
a pair of elements of the finite field GF(2") so that the pair (a,b) describes the
function hgp that maps « € GF(2") to the (n — 1)-bit prefix of the n-bit repre-
sentation of ax + b, where the arithmetics is of the field GF(2™). This specific
family satisfies all the additional properties required in the next proposition (see
Exercise 23).

Proposition 6.4.21 Suppose that f is a one-way permutation, and that S71 is
a family of hashing functions (as defined in Section 3.5.1.1) such that log, |SI~t| =
2n. Furthermore, suppose that S~ satisfies the following two conditions:

C1 All but a negligible fraction of the functions in ST~ are 2-to-1.

C2 There exists a probabilistic polynomial-time algorithm that given yi,ys €
{0,1}" and 21,22 € {0,1}"7L, outputs a uniformly distributed element of
{s€ St he(y:) = 2 Vie{1,2}}.

Then {h}seqo,1y+ as in Construction 6.4.20 is a (d,d—1)-UOWHF', for d(m) =
[m/2].

Proof Sketch: Intuitively, forming designated collisions under h!, = hso f yields
the ability to invert f on a random y, because the collisions are due to hg, which
may be selected such that hs(y) = hs(f(xo)) for any given y and xy. We stress
that typically there are only two preimages of hl(z¢) under ', one being xy itself
(which is given to the collision-finder) and the other being f~'(y). Thus, ability
to form a designated collision with z, yields ability to invert f on a random
¥, by selecting a random s such that hs(y) = h!(z¢), and forming a designated
collision under h!. More precisely, suppose we wish to invert f on a random
image y. Then we may invoke a collision-finder, which first outputs some xy,
supply it with a random s satisfying hs(y) = h’(zp), and hope that it forms a
collision (i.e., finds a different preimage x satisfying h’(z) = h’(zp)). Indeed,
typically, the different preimage must be f~!(y), which means that whenever
the collision-finder succeeds we also succeed (i.e., invert f on y). Details follow.

Evidently, the proof is by a reducibility argument. Suppose that we are given
a probabilistic polynomial-time algorithm A’ that forms designated collisions
under {h.}, with respect to preimages produced by a deterministic polynomial-
time algorithm Aj, which maps p(n)-bit strings to n-bit strings. Then, we
construct an algorithm A that inverts f. Oninput y = f(x), where n = |y| = ||,
algorithm A proceeds as follows:

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 559

(1) Select ro uniformly in {0, 1}?(") and compute o = A}(ry) and yo = f (o).
(2) Select s uniformly in {s € S ! : hy(yo) = hs(y)}

(Recall that y is the input to A, and yo is generated by A at Step (1).)
(3) Invoke A’ on input (s,79), and output whatever A’ does.

By Condition C2, Step (2) can be implemented in probabilistic polynomial-time.

Turning to the analysis of algorithm A, we consider the behavior of A on
input y = f(x) for a uniformly distributed z € {0,1}", which implies that y
is uniformly distributed over {0,1}"™. We first observe that for every fixed rg
selected in Step (1), if y is uniformly distributed in {0,1}™ then s as determined
in Step (2) is almost uniformly distributed in S"~1.

On the distribution of s as selected in Step (2): Fixing ro € {0, l}q("), means
that yo = f(Ap(ro)) € {0,1}" is fixed. Using the pairwise independence
property of St it follows that, for each y € {0,1}"\{yo}, the cardinality
of Sy f {s € S : hs(yo) = hs(y)} equals |SZ™1|/2" 7. Furthermore,
in case h is 2-to-1, the string s resides in exactly two sets S,’s (one being
Syo)- Recalling that all but a negligible fraction of the h,’s are 2-to-1
(i.e., Condition C1), it follows that each such function is selected with
probability 2 - 27" . (|Sp=t|/2""1)™ = |Sp™ 7!, Other functions (i.e.,
non-2-to-1 functions) are selected with negligible probability.

By the construction of A (which ignores y in Step (1)), the probability that
f(xo) = y is negligible (but we could have taken advantage of this case too, by
augmenting Step (1) such that if yo = y then A halts with output zp). Note
that, in case f(xo) # y and h, is 2-to-1, if A’ returns x' such that =’ # zp and
hl(z") = hl(zp) then it holds that f(z') =y.

Justifying the last claim: Let v = hs(y) and suppose that h, is 2-to-1.
Then, by Step (2) and f(zo) # v, it holds that = f~'(y) and o are the
two preimages of v = h(z) = k) (z¢) under b}, where k., = hs o f is 2-to-1
because f is 1-to-1 and h, is 2-to-1. Since =’ # zp is also a preimage of v
under A%, it follows that =’ = x.

We conclude that if A" forms designated collisions with probability &'(n) then
A inverts f with probability ¢'(n) — u(n), where p is a negligible function (ac-
counting for the negligible probability that hs is not 2-to-1). (Indeed, we rely on
the fact that s as selected in Step (2) is distributed almost uniformly, and fur-
thermore that each 2-to-1 function appears with exectly the right probability.)
The proposition follows.

Step II: Constructing (d',d’/2)-UOWHFs. We now take the second step
on our way, and use any (d,d — 1)-UOWHF in order to construct a (d',d'/2)-
UOWHEF. That is, we construct length-restricted UOWHF's that shrink their
input by a factor of 2. The construction is obtained by composing a sequence
of different functions taken from different (d,d — 1)-UOWHFs. That is, each
function in the sequence shrinks the input by one bit, and the composition of

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

560 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

d' /2 functions shrinks the initial d’-bit long input by a factor of 2. For simplicity,
we assume that the function d : N— N is onto and monotonically non-decreasing.
In such a case we denote by d~!(m) the smallest natural number n satisfying
d(n) = m (and so d~1(d(n)) < n).

Construction 6.4.22 (a (d',d'/2)-UOWHF): Let {h, : {0,1}%s) — {0, 1}d(|5‘)_1}s€{071}*,
where d : N— N is onto and non-decreasing. Then, for everys = (s, ..., S87d(n)/2])
where each s; € {0,1}4 (@M +H1=0 and every z € {0,114, we define

def
h;l,...,S"d(n)/Q" (CC) = hs]'d(n.)/2'| (T hsz (hsl (iL")) o)

That is, letting xg Lef z, and x; «— hs,(z;—1) for i = 1,...,[d(n)/2], we set
h(z0) = Ta(n)/2)- (Note that d(|s;]) = d(n) + 1 — i and |z;] = d(n) +1 -
indeed hold.)

Tedious details: We refer to an indez selection algorithm that, on input 1™,
determines the largest integer n such that m > m' def Ziri(l")/ﬂ 1dil(d(n)+
1 — 1), uniformly selects s1, ..., Sra(ny 21 such that s; € {0,1}* (d(m)+1-1)
and sg € {0, 1}"’_"”, and lets b/, def

= h'
O RCANTEEE) STd(n)/2] - ST 5eees Srd(n)/2] "

That is, for m = [3|, we have hL : {0,1}4™) — {0,1}4("/2] where n is the
largest integer such that m > Zgi(l")m d=t(d(n) + 1 —1). Thus, d'(m) = d(n),
where n is as above; that is, we have AL : {0, 1}d’(\§|) — {O,I}W(‘E')/Z], with
d'(|5]) = d(n). Note that, for d(n) = O(n) (as in Construction 6.4.20), it
holds that d'(O(n?)) > d(n) and d'(m) = Q(y/m) follows. More generally, if
for some polynomial p it holds that p(d(n)) > n > d(n) (for all n’s) then for
some polynomial p’ it holds that p'(d'(m)) > m > d'(m) (for all m’s), because
d'(d(n)-n) > d(n). We call such a function sufficiently-growing; that is, d : N— N
is sufficiently-growing if there exists a polynomial p so that for every n it holds
that p(d(n)) > n. (E.g., for every fixed €,e’ > 0, the function d(n) = &'n® is
sufficiently-growing.)

Proposition 6.4.23 Suppose that {h,}cfo0,1}+ is a (d,d —1)-UOWHF, where
d : N=N is onto, non-decreasing and sufficiently-growing. Then, for some
sufficiently-growing function d' : N—N, Construction 6.4.22 is a (d',[d'/2])-
UOWHEF.

Proof Sketch: Intuitively, a designated collision under hf yields a des-

yeeesSd /2
ignated collision under one of the hy,’s. That is, let xg def x and z; « hs, (1)
for i = 1,...,[d(n)/2]. Then if given x and 5 = (s1,...,54/2), one can find an
x' # x such that hi(x) = hi(z'), then there exists an 4 so that z;_; # «}_, and
T = hs;(zi-1) = hs,(z;_;) = z}, where the z’’s are defined analogously to the
z;’s. Thus, we obtain a designated collision under h,,. We stress that, because
h% does not shrink its input too much, the length of s; is polynomially related
to the length of 5 (and thus forming collisions with respect to hs, by using the
collision-finder for AL yields a contradiction).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 561

The actual proof uses the hypothesis that it is hard to form designated col-
lisions when one is also given the coins used in the generation of the preimage
(and not merely the preimage itself). In particular, we construct an algorithm
that forms designated collision under one of the hs,’s, when given not only z;_;
but rather also z¢ (which yields z;—; as above). The following details are quite
tedious, and merely provide an implementation of the above idea.

As stated, the proof is by a reducibility argument. We are given a prob-
abilistic polynomial-time algorithm A’ that forms designated collisions under
{RhL}, with respect to preimages produced by a deterministic polynomial-time
algorithm A that maps p'(n)-bit strings to n-bit strings. We construct al-
gorithms Ay and A such that A forms designated collisions under {h,} with
respect to preimages produced by algorithm Ay, which maps p(n)-bit strings to
n-bit strings, for a suitable polynomial p. (Specifically, p : N— N is 1-1 and
p(n) > p'(d~1(2d(n))) + n+n-d *(2d(n)), where the factor of 2 appearing in
the expression is due to the shrinking factor of hL.)

We start with the description of Ag; that is, the algorithm that generates
preimages of {hs}. Intuitively, Ay selects a random j, uses Af to obtain a
preimage xy of {hL}, generates random so,...,s;_1, and outputs a preimage
xj 1 of {hs, }, computed by z; = hs,(z; 1) fori =1,...,j — 1. (Algorithm A will
be given z;_; (or rather the coins used to generate z;_;) and a random hs; and
will try to form a collision with x;_; under hy;.)

Detailed description of Ap: Recall that p' is a polynomial, d(n) < n and

d~'(n) = poly(n). Let p(n) = n+n-q(n) +p'(q(n)), where q(n) =

d=*(2d(n)). On input r € {0,1}*™) algorithm Ao proceeds as follows:

(1) Write r = rirarg such that |r1| = n, |r2| = n - q(n) and |r3| = p'(¢(n)).
Using r1, determine m in {n+1,...,n-g(n)} and j € {1,...,¢(n)} such that
both m and j are almost uniformly distributed in the corresponding sets.
(2) Compute the largest integer n' such that m < Zi[ig",)/z] d='(d(n') + 1 —1).
(3) If d~*(d(n') + 1 —) # n then output the d(n)-bit long suffix of r3.
(Comment: the output in this case is immaterial to our proof.)
(4) Otherwise (i.e., n =d ™" (d(n') + 1 — j), which is the case we care about), do:
(4.1) Let sos1---sj—1 be a prefix of r such that
Jso = m = S d ') + 1),
and |s;| =d ' (d(n') +1 —i), fori=1,....,5 — 1.
(4.2) Let xo «— Ap(r'), where r' is the p'(d~*(d(n’)))-bit long suffix of r3.
(Comment: zy € {0, l}d("l).)
(4.3) For i = 1,...,j — 1, compute z; «— hs, (zi—1).
Output z;—1 € {0,1}*™. (Note that d(n) = d(n') — (j —1).)
As stated above, we only care about the case in which Step (4) is applied.
This case occurs with noticeable probability, and the description of the
following algorithm A refers to it.

Algorithm A will be given x;_; as produced above (along with (or actually
only) the coins used in its generation) as well as a random h,, and will try
to form a collision with z;_; under hy,. On input s € {0,1}" (viewed as s;)

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

562 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

and the coins given to Ay, algorithm A operates as follows. First, A selects
J and sg, S1,..., 851 exactly as Ay does (which is the reason that A needs the
coins used by Ap). Next, A tries to obtain a collision under hy by invoking
A'(r',s"), where ' is the sequence of coins that Ay handed to Aj and s’ =
(805815, 85—158, 8541, 8d(n)/2); Where 8;11,...,54(n)/2 are uniformly selected
by A. Finally, A outputs hs; , (--- (hs, (A'(r',5"))---).

Detailed description of A: On input s € {0,1}" and r € {0, 1}p("), algo-
rithm A proceeds as follows.

(1-2) Using r, determine m, j and n' exactly as done by Ay.
(3) Ifd7'(d(n') +1 —j) # n then abort.
(4) Otherwise (i.e., n =d ' (d(n') + 1 — j)), do:
(4.1) Determine sq, s1, ..., s;—1 and ' exactly as Ap does (at its Step (4)).
4.2) Uniformly select s;i1, ..., Srq(nr)y/27 such that s; € {0, 1 d7H(dn)+1-0)
y J+1y -y S[d(n’)/2] ’)
and set s" = (50,51, ..., 85 1,5, Sj 41, S[d(n')/2])-
(4.3) Invoke A’ on input (s',7'), and obtain z(— A'(s', 7).
(Comment: z; € {0, l}d("l).)
(4.4) Fori =1,...,5 — 1, compute z} «— hs, (z}_;).
Output zj_; € {0, 1}d(").

Clearly, if algorithms A" and Aj run in polynomial-time then so do A and Ay
(and if p' is a polynomial then so is p). We now lower bound the probability that
A succeeds to form designated collisions under {h,}, with respect to preimages
produced by Ap. We start from the contradiction hypothesis by which the
corresponding probability for A’ (w.r.t Aj) is non-negligible.

Let use denote by £'(m) the success probability of A" on uniformly distributed
input (s',7") € {0,1}™ x {0, l}P’(m). Let n' be the largest integer so that m <
Zz[i(ln’)/ﬂ d1(d(n')+1—1). Then, thereexistsaj € {1,...,d(n’)} such that, with
probability at least ¢'(m)/d'(n'), on input (s',r'), where s' = s¢, 51, ..., S[a(n)/2]

is as above, A’ outputs an ' # z = Ap(r') such that hg; (- (hs, (2)--) #

B,y (- (hsy(x) - -+) and hg, (- (hs, (2")) = hs, (-~ (hs, (w) -+ -). Fixing this
m, j and n', let n = d=(d(n') + 1 — j), and consider what happens when A is
invoked on uniformly distributed (s,r) € {0,1}" x {0,1}?(™), With probability
at least 6(n) e 1/(ng(n))? over the possible 7’s, the values of m and j are
determined to equal the above. Conditioned on this case, A’ is invoked on
uniformly distributed input (s',7') € {0,1}™ x {0,1}*'(™) and so a collision
at the j'® hashing function occurs with probability at least €'(m)/d’(n'). Note
that m = poly(n), 6(n) > 1/poly(n) and d'(n') = poly(n). This implies that A
succeeds with probability at least e(n) Lef 8(n) - ;:g:,)) = E’;icl’;,y(g)b))
to preimages produced by Ag. Thus, if £’ is non-negligible then so is €, and the
proposition follows.

, with respect

Step III: Constructing (length-unrestricted) quasi-UOWHF's that shrink
their input by a factor of two. The third step on our way consists of us-
ing any (d,d/2)-UOWHF in order to construct “quasi UOWHFs” that are ap-

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 563

plicable to any input length but shrink each input to half its length (rather
than to a fixed length that only depends on the function description). The re-
sulting construct does not fit Definition 6.4.19, because the function’s output
length depends on the function’s input length, yet the function can be applied
to any input length (rather than only to a single length determined by the func-
tion’s description). Thus, the resulting construct yields a (d’,d'/2)-UOWHEF for
any polynomially-bounded function d’ (e.g., d'(n) = n?), whereas in Construc-
tion 6.4.22 the function d’ is fixed and satisfies d'(n) < n. The construction
itself amounts to parsing the input into blocks and applying the same function
(taken from a (d,d/2)-UOWHF) to each block.

Construction 6.4.24 (a (d',d'/2)-UOWHF for any d'): Let {h, : {0,1}(sD) —
{0, 1}1sD/2Y (g 1y, where d : N—N is onto and non-decreasing. Then, for
every s € {0,1}" and every x € {0,1}*, we define

() © h(z1) - ho(z 104 Izl =1y
where © = 1 -+ x4, 0 < |z¢] < d(n) and |z;| = d(n) fori =1,..,t — 1. The
index selection algorithm of {h.} is identical to the one of {hs}.

Clearly, |h!(z)| = [(|z| +1)/d(n)] - |d(n)/2], which is approximately |z|/2 (pro-
vided |z| > d(n)). Furthermore, Construction 6.4.24 satisfies Conditions 1 and 2
of Definition 6.4.18, provided that {hs} satisfies the corresponding conditions of
Definition 6.4.19. We thus focus of the hardness to form designated collisions
(i.e., Condition 3).

Proposition 6.4.25 Suppose that {hs}.cqo1}+ is a (d,d/2)-UOWHF, where
d : N—=N is onto, non-decreasing and sufficiently-growing. Then Construc-
tion 6.4.22 satisfies Condition 8 of Definition 6.4.18.

Proof Sketch: Intuitively, a designated collision under h} yields a designated
collision under h,. That is, consider the parsing of each string into blocks of
length d(n), as in the above construction. Now if, given z = z; - - - z; and s, one
can find an o' = 2 -- -z}, # x such that hl(x) = h.(z'), then ¢’ = ¢ and there
exists an 7 such that z; # 2 and hs(x;) = hs(x}). Details follow.

The actual proof is by a reducibility argument. Given a probabilistic polynomial-
time algorithm A’ that forms designated collisions under {h.}, with respect to
preimages produced by a polynomial-time algorithm Af, we construct algorithms
Ap and A such that A forms designated collisions under {hs} with respect to
preimages produced by algorithm A,. Specifically, algorithm Ay invokes Aj,
and uses extra randomness (supplied in its input) to uniformly select one of the
d(n)-bit long blocks in the standard parsing of the output of Aj. That is, the
random-tape used by algorithm Ay has the form (7/,i), and Ay outputs the i‘"
block in the parsing of the string Aj(r'). Algorithm A is derived analogously.
That is, given s € {0,1}" and the coins r = (r',7) used by Ay, algorithm A
invokes A’ on input s and r’, obtains the output z’, and outputs the i*" block
in the standard parsing of z'.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

564 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Note that whenever we have a collision under b/ (i.e., a pair z # z' such
that hl(z) = hl(z')), we obtain at least one collision under the corresponding
hs (i.e., for some i, the ith blocks of x and 2 differ, and yet both blocks are
mapped by h, to the same image). Thus, if algorithm A’ succeeds (in forming
designated collisions w.r.t {h’}) with probability £'(n) then algorithm A succeeds
(in forming designated collisions w.r.t {h,}) with probability at least ¢'(n)/¢(n),
where #(n) is a bound on the running-time of A’ (which also upper-bounds the
length of the output of A’, and so 1/¢(n) is a lower bound on the probability that
the colliding strings differ at a certain uniformly selected block). The proposition
follows. W

Step IV: Obtaining full-fledged UOWHFs. The last step on our way
cousists of using any quasi-UOWHFs as constructed (in Step IIT) above to obtain
full-fledged UOWHFs. That is, we use quasi-UOWHFs that are applicable to
any input length but shrink each input to half its length (rather than to a fixed
length that only depends on the function description). The resulted construct
is a UOWHF (as defined in Definition 6.4.18). The construction is obtained by
composing a sequence of different functions (each taken from the same quasi-
UOWHTF); that is, the following construction is analogous to Construction 6.4.22.

Construction 6.4.26 (a UOWHF): Let {h, : {0,1}* — {0,1}"}seq0,1}+, such
that |hs(x)| = |2|/2, for every x € {0,1}?"!sl where i € N. Then, for every
81,0, 8n € {0,1}", every t € N and x € {0, l}zt'”, we define

Ry (@) € (8 b, (- iy (B (2)))

That is, we let xq def x, and x; — hs,(xi—1), fori=1,...,t.

Tedious details: Strings of length that is not of the form 2¢ - n are padded
wnto strings of such form in a standard manner. We refer to an index
selection algorithm that, on input 1™, determines n = |[\/m|, uniformly

selects s1,...,sn € {0,1}" and so € {0,1}m_"2, and lets h! def

SO ,81enes Sn

hoy,. . om-
Observe that hy . o (z) = hy ,, , (2') implies that both equal the pair
(&, s, (- - hsy (B, () - +)), where t = [logy(|z|/n)] = [logy(|z'|/n)]. Note that
Pepsrosn 2 40,13 — {0,1}7F19827 and that m = |so, 51, ..., sn| < (n 4+ 1)2.

Proposition 6.4.27 Suppose that {hs}.cqo,1}+ satisfies the conditions of Defi-
nition 6.4.18, except that it maps arbitrary input strings to outputs having half
the length (rather than a length determined by |s|). Then Construction 6.4.26
constitutes a collection of UOWHFss.

The proof of Proposition 6.4.27 is omitted because it is almost identical to the
proof of Proposition 6.4.23.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 565

Conclusion: Combining the above four steps, we obtain a construction of (full-
fledged) UOWHEFs (based on any one-way permutation). That is, combining
Proposition 6.4.21, 6.4.23, 6.4.25 and 6.4.27, we obtain:3*

Theorem 6.4.28 If one-way permutations exist then universal one-way hash
functions exist.

Note that the only barrier towards constructing UOWHEF based on arbitrary
one-way functions is Proposition 6.4.21, which refers to one-way permutations.
Thus, if we wish to construct UOWHF based on any one-way function then
we need to present an alternative construction of a (d,d — 1)-UOWHF (i.e., an
alternative to Construction 6.4.20, which fails in case f is 2-to-1).3> Such a
construction is actually known, and so the following result is known to hold (but
its proof it too complex to fit in this work):

Theorem 6.4.29 Universal one-way hash functions exist if and only if one-way
functions exist.

We stress that the difficult direction is the one referred to above (i.e., from one-
way functions to UOWHEF collections). For the much easier (converse) direction,
see Exercise 18.

6.4.3.3 One-time signature schemes based on UOWHF

Using universal one-way hash functions, we present an alternative construc-
tion of one-time signature schemes based on length-restricted one-time signature
schemes. Specifically, we replace the hash-and-sign paradigm (i.e., Construc-
tion 6.2.6) in which collision-free hashing functions were used by the following
variant (i.e., Construction 6.4.30) in which universal one-way hash functions are
used instead. The difference between the two constructions is that here the (de-
scription of the) hashing function is not a part of the signing and verification
keys, but is rather selected on-the-fly by the signing algorithm (and appears as
part of the signature). Furthermore, the description of the hash function is being
authenticated (by the signer) together with the hash value. It follows that the
forging adversary, which is unable to break the length-restricted one-time sig-
nature scheme, must form a designated collision (rather than an arbitrary one).
However, the latter is infeasible too (by virtue of the UOWHEF collection in use).
We comment that the same (new) construction is applicable to length-restricted
signature schemes (rather than to one-time ones): we stress that, in the lat-
ter case, a new hashing function is selected at random each time the signing
algorithm is applied. In fact, we present the more general construction.

34 Actually, there is a minor gap between Constructions 6.4.24 and 6.4.26. In the former
we constructed functions that hash every x into a value of length [(|z| + 1)/d(n)] - |d(r)/2],
whereas in the latter we used functions that hash every = € {0,1}2*" into a value of length
i-n.

35 For example, if f(o,z') = (0, f'(z")), for o € {0, 1}, then forming designated collisions
under Construction 6.4.20 is easy: Given (0,z'), one outputs (1,z’), and indeed a collision is
formed (already under f).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

566 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Construction 6.4.30 (the hash and sign paradigm, revisited): Let ¢,¢' : N— N
such that ¢(n) = ¢'(n) + n. Let (G,S,V) be an L-restricted signature scheme as
in Definition 6.2.1, and {h, : {0,1}* — {0,1}[(‘”)}%{071}* be a collection of
functions with an indexing algorithm I (as in Definition 6.4.18). We construct
a general signature scheme, (G',S", V"), with G' identical to G, as follows:

Signing with S': On input a signing-key s (in the range of G1(1™)) and a docu-
ment o € {0,1}*, algorithm S’ proceeds in two steps:

1. Algorithm S invokes I to obtain By «— I(1™).
2. Algorithm S' invokes S to produce Bz — Ss(f1, hs, (a)).

Algorithm S" outputs the signature (51, B2).

Verification with V': On input o verifying-key v, a document o € {0,1}*, and an
alleged signature (81, B2), algorithm V' invokes V', and outputs V,((B1, hg, (a)), B2).

Recall that secure ¢-restricted one-time signature schemes exist for any poly-
nomial ¢, provided that one-way function exist. Thus, the fact that Construc-
tion 6.4.30 requires £(n) > n is not a problem. In applying Construction 6.4.30,
one should first choose a family of UOWHFs {h,. : {0,1}* — {0, 1}[(“')}%{071}*,
then determine ¢(n) = ¢'(n)+n, and use a corresponding secure ¢-restricted one-
time signature scheme.

Let us pause to compare Construction 6.2.6 with Construction 6.4.30. Re-
call that in Construction 6.2.6 the function description §; « I(1") is produced
(and fixed as part of both keys) by the key-generation algorithm. Thus, the
function description (; is trivially authenticated (i.e., by merely being part of
the verification-key). Consequently, in Construction 6.2.6, the S'-signature (of
a) equals Ss(hg, (). In contrast, in Construction 6.4.30 a fresh new (function
description) f; is selected per each signature, and thus 8; needs to be authen-
ticated. Hence, the S’-signature equals the pair (81, Ss(81, hg, (@))). Since we
want to be able to use (length-restricted) one-time signatures, we let the signing
algorithm authenticate both 3; and hg, («) via a single signature. (Alternatively,
we could have used two instances of the one-time signature scheme (G, S, V),
one for signing the function description g, and the other for signing the hash
value hg, (a).)

Proposition 6.4.31 Suppose that (G,S,V) is a secure (-restricted signature
scheme and that {h, : {0,1}* — {0, 1}{IrD=I"} oy 1y is a collection of UOWHFs.
Then (G',S", V"), as defined in Construction 6.4.30, is a secure (full-fledged) sig-
nature scheme. Furthermore, if (G,S,V) is only a secure {-restricted one-time
signature scheme then (G',S',V') is a secure one-time signature scheme.

Proof Sketch: The proof follows the underlying principles of the proof of
Proposition 6.2.7. That is, forgery with respect to (G',S’,V') yields either
forgery with respect to (G, S, V) or a collision under the hash function, where in
the latter case a designated collision is formed (in contradiction to the hypothesis

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 567

regarding the UOWHF). For the furthermore-part, the observation underlying
the proof of Proposition 6.4.7 still holds (i.e., the number of queries made by
the forger constructed for (G, S, V) equals the number of queries made by the
forger assumed (towards the contradiction) for (G', S',V')). Details follow.
Given an adversary A’ attacking the complex scheme (G',S’, V'), we con-
struct an adversary A that attacks the (-restricted scheme, (G, S, V). The ad-
versary A uses I (the indexing algorithm of the UOWHF collection) and its
oracle Sy in order to emulate the oracle S’ for A’. This is done in a straightfor-
ward manner; that is, algorithm A emulates S. by using the oracle S, (exactly
as S’ actually does). Specifically, to answer a query ¢, algorithm A generates
a; «— I(1"), forwards (a1, ha, (¢)) to its own oracle (i.e., S), and answers with
(a1,a2), where az = Ss(a1, ha,(q)). (We stress that A issues a single S,-query
per each S!-query made by A'.) When A’ outputs a document-signature pair
relative to the complex scheme (G, S',V’), algorithm A tries to use this pair
in order to form a document-signature pair relative to the ¢-restricted scheme,
(G,S,V). That is, if A" outputs the document-signature pair («,), where

8 = (B1,02), then A will output the document-signature pair (as,32), where
def

s & (B, By ().
Assume that with (non-negligible) probability ¢'(n), the (probabilistic polynomial-

time) algorithm A’ succeeds in existentially forging relative to the complex

scheme (G',S",V'). Let (a(?, 3")) denote the i*" query and answer pair made

by A', and («, 8) be the forged document-signature pair that A’ outputs (in case

of success), where 3(9) = (ﬁy),ﬁéz)) and 3 = (81, 82). We consider the following

two cases regarding the forging event:

Case 1: (B1, hg, (o)) # (ﬂy), hﬂ(,.,(a(i))) for all i’s. (That is, the S,-signed value
1
in the forged signature (i.e., the value (81, hg,(c))) is different from all

queries made to Ss.) In this case, the document-signature pair ((51, hg, («)), B2)
constitutes a success in existential forgery relative to the /-restricted scheme

(G,S,V).

Case 2: (B1,hp,(a)) = (,By), hﬁi“ () for some i. (That is, the S,-signed value
used in the forged signature equals the i*® query made to S,, although
a # o)) Thus, B = B and hs, (o) = h g0 (), although a # o). In
this case, the pair (o, a(?)) forms a designated collision under hﬁii) (and
we do not obtain success in existential forgery relative to the f-restricted

scheme). We stress that A’ selects a(?) before it is given the description of
the function h), and thus its ability to later produce a # a(? such that
1

hg, (@) = h g (') yields a violation of the UOWHEF property.

1
Thus, if Case 1 occurs with probability at least £'(n)/2 then A succeeds in
its attack on (G, S,V) with probability at least '(n)/2, which contradicts the
security of the f-restricted scheme (G, S, V). On the other hand, if Case 2 occurs
with probability at least £(n)/2 then we derive a contradiction to the difficulty

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

568 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

of forming designated collision with respect to {h,}. Details regarding Case 2
follow.

We start with a sketch of the construction of an algorithm that attempts
to form designated collisions under a randomly selected hash function. Loosely
speaking, we construct an algorithm B’ that tries to form designated collisions
by emulating the attack of A" on an random instance of (G',S’, V') that B’
selects by itself. Thus, B’ can easily answer any signing-query referred to it by
A’, but in one of these queries (the index of which is selected at random by B')
algorithm B’ will use a hash function given to it from the outside (rather than
generating such a function at random by itself). In case A’ forges a signature
while using this specific function-value pair (as in Case 2), algorithm B’ obtains
and outputs a designated collision.

We now turn to the actual construction of algorithm B’ (which attempts to
form designated collisions under a randomly selected hash function). Recall that
such an algorithm operates in three stages (see discussion in Section 6.4.3.1): first
the algorithm selects a preimage zg, next it is given a description of a function
h, and finally it is required to output = # =zo such that h(z) = h(zo). We
stress that the third stage in the attack is also given the random coins used for
producing the preimage o (at the first stage). Now, on input 1", algorithm B’
proceeds in three stages:

Stage 1: Algorithm B’ selects uniformly ¢ € {1,...,¢(n)}, where ¢(n) bounds the
running-time of A'(G{(1")) (and thus the number of queries it makes).
Next B’ selects (s,v) «— G'(1"), and emulate the attack of A’(v) on SI,
while answering the queries of S’ as follows. All queries except the i*" one
are emulated in the straightforward manner (i.e., by executing the program
of §' as stated). That is, for j # i, the j*" query, denoted a(?), is answered

by producing ﬂy) «— I(1™), computing ﬂéj) — Ss(ﬂy),h,@m(a(j))) (using

the knowledge of s), and answering with the pair (ﬁy), éj)). The i** query
of A', denoted a(?, will be used as the designated preimage. Once (¥ is
issued (by A’), algorithm B’ completes its first stage (without answering
this query), and the rest of the emulation of A" will be conducted by the
third stage of B'.

Stage 2: At this point (i.e., after B has selected the designated preimage a(?)),
B' obtains a description of a random hashing function A, (thus completing
its second operation stage). That is, this stage consists of B’ being given
r— I(1™).

Stage 3: Next, algorithm B’ answers the i*® query (i.e., a(?)) by applying S, to
the pair (r, h,((?)). Subsequent queries are emulated in the straightfor-
ward manner (as in Stage 1). When A’ halts, B’ checks whether A’ has
output a valid document-signature pair (a, 3) as in Case 2 (i.e., /1 = ,3?)
and hg, (a) = hﬁij)(a(j)) for some j), and whether the collision formed is

indeed on the i" query (i.e., j = 4, which means that h,.(a) = h.(a(?)).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 569

When this happens, B’ outputs « (which is different than a(¥)), and doing
s0 it succeeded in forming a designated collision (with ¥ under h,.).

Now, if Case 2 occurs with probability at least @ (and A’ makes at most t(n)
queries) then B’ succeeded in forming a designated collision with probability at

least t(l—n) . E’g"), because the actions of A’ are oblivious of the random value of

i. This contradicts the hypothesis that {h,} is UOWHEF.

As mentioned above, the furthermore part of the proposition follows by ob-
serving that if the forging algorithm A’ makes at most one query then the same
holds for the algorithm A constructed above. Thus, if (G',S’, V") can be broken
via a single-message attack then either (G,S,V) can be broken via a single-
message attack or one can form designated collisions (w.r.t {h,}). In both cases,
we reach a contradiction. [}

Conclusion: Combining the furthermore-part of Proposition 6.4.31, Corol-
lary 6.4.6, and the fact that UOWHEF collections imply one-way functions (see
Exercise 18), we obtain:

Theorem 6.4.32 If there exist universal one-way hash functions then secure
one-time signature schemes exist too.

6.4.3.4 Conclusions and comments

Combining Theorems 6.4.28, 6.4.32 and 6.4.9, we obtain:

Corollary 6.4.33 If one-way permutations exists then there exist secure signa-
ture schemes.

Like Corollary 6.4.10, Corollary 6.4.33 asserts the existence of secure (public-
key) signature schemes, based on an assumption that does not mention trap-
doors. Furthermore, the assumption made in Corollary 6.4.33 seems weaker
than the one made in Corollary 6.4.10. We can further weaker the assump-
tion by using Theorem 6.4.29 (which was stated without a proof) rather than
Theorem 6.4.28. Specifically, combining Theorems 6.4.29, 6.4.32 and 6.4.9, we
establish Theorem 6.4.1. That is, secure signature schemes exist if and only
if one-way functions exist. Furthermore, as in the case of MACs (see Theo-
rem 6.3.8), the resulting signature schemes have signatures of fized length.

Comment: the hash-and-sign paradigm, revisited. We wish to high-
light the revised version of the hash-and-sign paradigm that underlies Construc-
tion 6.4.30. Similar to the original instantiation of the hash-and-sign paradigm
(i.e., Construction 6.2.6), Construction 6.4.30 is useful in practice. We warn
that using the latter construction requires verifying that {h,} is a UOWHF
(rather than collision-free). The advantage of Construction 6.4.30 over Con-
struction 6.2.6 is that the former relies on a seemingly weaker construct; that is,
hardness of forming designated collisions (as in UOWHF) is a seemingly weaker

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

570 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

condition than hardness of forming any collision (as in collision-free hashing).
On the other hand, Construction 6.2.6 is simpler and more efficient (e.g., one
need not generate a new hashing function per each signature).

6.5 * Additional Properties

We briefly discuss several properties of interest that some signature schemes
enjoy. We first discuss properties that seem unrelated to the original purpose of
signature schemes, but are useful towards utilizing signature scheme as a building
block towards constructing other primitives (e.g., see Section 5.4.4.4). These
(related) properties are having unique valid signatures and being super-secure,
where the latter term indicates the infeasibility of finding a different signature
even to a document for which a signature was obtained during the attack. We
next turn to properties that offer some advantages in the originally-intended
applications of signature schemes. Specifically, we consider properties that allow
to speed-up response-time in some settings (see Sections 6.5.3 and 6.5.4), and a
property supporting legitimate revoking of forged signatures (see Section 6.5.5).

6.5.1 Unique signatures

Loosely speaking, we say that a signature scheme (G, S, V') (either a private-key
or a public-key one) has unique signatures if for every possible verification-key v
and every document « there is a unique 3 such that V,(«, 8) = 1.

Note that this property is related, but not equivalent, to the question of
whether or not the signing algorithm is deterministic (which is considered in
Exercise 1). Indeed, if the signing algorithm is deterministic then, for every key
pair (s,v) and document «, the result of applying S, to « is unique (and indeed
Vol(a, Ss(a)) = 1). Still, this does not mean that there is no other 8 (which
is never produced by applying S, to a) such that V,(a,3) = 1. On the other
hand, the unique signature property may hold even in case the signing algorithm
is randomized, but (as mentioned above) this randomization can be eliminated
anyhow.

Can secure signature schemes have unique signatures? The answer
is definitely affirmative, and in fact we have seen several such schemes in the
previous sections. Specifically, all private-key signature schemes presented in
Section 6.3 have unique signatures. Furthermore, every secure private-key sig-
nature scheme can be transformed into one having unique signatures (e.g., by
combining deterministic signing as in Exercise 1 with canonical verification as
in Exercise 2). Turning to public-key signature schemes, we observe that if the
one-way function f used in Construction 6.4.4 is 1-1, then the resulting secure
length-restricted one-time (public-key) signature scheme has unique signatures
(because each f-image has a unique preimage). In addition, Construction 6.2.6
(i-e., the basic hash-and-sign paradigm) preserves the unique signature property.
Let use summarize all these observations.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 571

Theorem 6.5.1 (secure schemes with unique signatures):

1. Assuming the existence of one-way functions, there exist secure message
authentication schemes having the unique signature property.

2. Assuming the ezistence of 1-1 one-way functions, there exist secure length-
restricted one-time (public-key) signature schemes having the unique sig-
nature property.

3. Assuming the existence of 1-1 one-way functions and collision-free hash-
ing collections, there exist secure one-time (public-key) signature schemes
having the unique signature property.

In addition, it is known that secure (full-fledged) signature schemes having the
unique signature property can be constructed based on a mild variant on the
standard RSA assumption (see reference in Section 6.6.5). Still, this leaves
open the question of whether or not secure signature schemes having the unique
signature property exist if and only if secure signature schemes exist.

6.5.2 Super-secure signature schemes

In case the signature scheme does not posses the unique signature property,
it makes sense to ask whether given a message-signature pair it is feasible to
produce a different signature to the same message. More generally, we may
ask whether it is feasible for a chosen message attack to produce a different
signature to any of the messages to which it has obtained signatures. Such
ability may be of concern in some applications (but, indeed, not in the most
natural applications). Combining the new concern with the standard notion of
security, we derive the following notion, which we call super-security. A signature
scheme is called super-secure if it is infeasible for a chosen message attack to
produce a valid message-signature pair that is different from all query-answer
pairs obtained during the attack, regardless of whether or not the message used
in the new pair equals one of the previous queries. (Recall that ordinary security
only requires the infeasibility of producing a valid message-signature pair such
that the message part is different from all queries made during the attack.)

Do super-secure signature schemes exist? Indeed, every secure signature
scheme that has unique signatures is super-secure, but the question is whether
super-security may hold for a signature scheme that does not posses the unique
signature property. We answer this question affirmatively.

Theorem 6.5.2 (super-secure signature schemes): Assuming the existence of
one-way functions, there exist super-secure (public-key) signature schemes.

In other words, super-secure signature schemes exist if and only if secure signa-
ture schemes exist. We comment that the signature scheme constructed in the
following proof does not have the unique signature property.

Proof: Starting from (Part 2 of) Theorem 6.5.1, we can use any 1-1 one-way
function to obtain super-secure length-restricted one-time signature schemes.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

572 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

However, wishing to use arbitrary one-way functions, we will first show that uni-
versal one-way hashing functions can be used (instead of 1-1 one-way functions)
in order to obtain super-secure length-restricted one-time signature schemes.
Next, we will show that super-security is preserved by two transformations
presented in Section 6.4: specifically, the transformation of length-restricted
one-time signature schemes into one-time signature schemes (i.e., Construc-
tion 6.4.30), and the transformation of the latter to (full-fledged) signature
schemes (i.e., Construction 6.4.16). Applying these transformations (to the
first scheme), we obtained the desired super-secure signature scheme. Recall
that Construction 6.4.30 also uses universal one-way hashing functions, but the
latter can be constructed using any one-way function (cf. Theorem 6.4.29).3¢

Claim 6.5.2.1: If there exist universal one-way hashing functions then, for every
polynomially-bounded £:N— NN, there exist super-secure f-restricted one-time
signature schemes.

Proof sketch: We modify Construction 6.4.4 by using universal one-way hashing
functions (UOWHFSs) instead of one-way functions. Specifically, for each preim-
age placed in the signing-key, we select at random and independently a UOWHF,
and place its description both in the signing and verification keys. That is,
on input 1", we uniformly select s, s},,sg(n),s}(n) € {0,1}" and UOWHFs
Ry, hi,,hg(n),h}(n), and compute v = hl(s?), for i = 1,...,4(n) and j = 0, 1.
We let 5 = ((s9,51), ..., (52(n)75%(n))): h=((hY,hd), ..., (hg(n),hi(n))), and v =
((v7,01), -5 (V51 Vi), and output the key-pair (s,v) = ((h,3), (h,7)) (or,
actually, we may set (s,v) = (3, (h,?))). Signing and verification are modified
accordingly; that is, the sequence (fi,...,3¢) is accepted as a valid signature
of the string oy --- 0y (w.r.t the verification-key v) if and only if h]*(5;) = v}
for every ¢. In order to show that the resulting scheme is super-secure under
a chosen one-message attack, we adapt the proof of Proposition 6.4.5. Specifi-
cally, fixing such an attacker A, we consider the event in which A violated the
super-security of the scheme. There are two cases to consider:

1. The valid signature formed by A is to the same document for which A has
obtained a different signature (via its single query). In this case, for at least
one of the UOWHFSs contained in the verification-key, we obtain a preim-
age (of the image also contained in the verification-key) that is different
from the one contained in the signing-key. Adapting the construction pre-
sented in the proof of Proposition 6.4.5, we derive (in this case) an ability
to form designated collisions (in contradiction to the UOWHEF property).
We stress that the preimages contained in the signing-key are selected
independently of the description of the UOWHFs (because both are se-
lected independently by the key-generation process). In fact, we obtain a
designated collision for a uniformly selected preimage.

36 We comment that a simpler proof suffices in case we are willing to use a one-way permu-
tation (rather than an arbitrary one-way function). In this case, we can start from (Part 2
of) Theorem 6.5.1 (rather than prove Claim 6.5.2.1), and use Theorem 6.4.28 (rather than
Theorem 6.4.29, which has a more complicated proof).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 573

2. The valid signature formed by A is to a document that is different from
the one for which A has obtained a signature (via its single query). In
this case, the proof of Proposition 6.4.5 yields ability to invert a randomly
selected UOWHF (on a randomly selected image), which contradicts the
UOWHTF property (as shown in Exercise 18).

Thus, in both cases we derive a contradiction, and the claim follows. O

Claim 6.5.2.2: When applying the revised-hash-and-sign construction (i.e., Con-
struction 6.4.30) to a super-secure length-restricted signature scheme the result
is a super-secure signature scheme. In case the length-restricted scheme is only
super-secure under a chosen one-message attack, the same holds for the the
resulting (length-unrestricted) scheme.

Proof sketch: We follow the proof of Proposition 6.4.31, and use the same con-
struction of a forger for the length-restricted scheme (based on the forger for the
complex scheme). Furthermore, we consider the two forgery cases analyzed in
the proof of Proposition 6.4.31:37

Case 1: (B1, hp, (a)) # (ﬂii),hﬁu)(a(i))) for all ¢’s. In this case, the analysis is
1
exactly as in the original proof. Note that it does not matter whether or
not a # (¥, since in both subcases we obtain a valid signature for a new
string with respect to the length-restricted signature scheme. Thus, in this
case, we derive a violation of the (ordinary) security of the length-restricted
scheme.

Case 2: (B1, hp, (a)) = (,By), hﬁ(,.)(a(i))) for some 7. The case a # o) was han-
1
dled in the original proof (by showing that it yields a designated collision
(under h) which is supposedly a UOWHEF)), so here we only handle the
1
case a = a(?. Now, suppose that super-security of the complex scheme
was violated; that is, (831, 32) # (Y),ﬂél)). Then, by the case hypothesis
(which implies 8; = [39), it must be that f; # ﬂéz). This means that we
derive a violation of the super-security of length-restricted scheme, because
By is a different valid S,-signature of (81, g, () = (81", by ().
1

Actually, we have to consider all ¢’s for which (51, kg, () = (,3?), hﬂ(i) (@))
1

holds, and observe that violation of super-security for the complex
scheme means that 82 must be different from each of the correspond-
ing ﬁél)’s. Alternatively, we may first prove that, with overwhelmingly

high probability, all 8{)’s must be distinct.

37 Recall that (a,) denotes the document-signature pair output by the original forger
(i.e., for the complex scheme), whereas (a(l),ﬂ(‘)) denotes the i*? query-answer pair (to that
scheme). The document-signature pair that we output (as a candidate forgery w.r.t length-

restricted scheme) is (a2, 82), where as def (B1,hp, (a)) and B = (B1, B2). Recall that a generic
valid document-signature for the complex scheme has the form (o', "), where 8’ = (3!, 5})

satisfies V, ((6], hﬁi ('), By) = 1.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

574 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Thus, in both cases we reach a contradiction to the super-security of the length-
restricted signature scheme, which establishes our claim that the resulting (com-
plex) signature scheme must be super-secure. We stress that, like in Proposi-
tion 6.4.31, the above proof establishes that super-security for one-time attacks
is preserved too (because the constructed forger makes a single query per each
query made by the original forger). O

Claim 6.5.2.3: Construction 6.4.16, when applied to super-secure one-time sig-
nature schemes yields super-secure signature schemes.

Proof sketch: We follow the proof of Proposition 6.4.17, which actually means
following the proof of Proposition 6.4.15. Specifically, we use almost the same
construction of a forger for the one-time scheme (G, S, V) (based on the forger
for the complex scheme (G’,S’,V")). The only difference is in the last step (i.e.,
the use of the output), where we consider two forgery cases that are related (but
not equal) to the forgery cases analyzed in the proof of Proposition 6.4.15:3%

1. The first case is when the forged signature for the complex scheme (G', S’, V')
contains an authentication path (for a leaf) that equals some authentica-
tion path provided by the signing-oracle (as part of the answer to some
oracle-query of the attacker). In this case, the (one-time) verification-key
associated with this leaf must be authentic (i.e., equal the one used by
the signing-oracle), and we derive violation of the super-security of the in-
stance of (G, S, V) associated with it. We consider two subcases (regarding
the actual document authenticated via this leaf):

(a) The first subcase is when no oracle-answer has used the instance
associated with this leaf for signing an actual document. (This may
happen if the instance associated with the sibling of this leaf was used
for signing an actual document.) In this subcase, as in the proof of
Proposition 6.4.15, we obtain (ordinary) forgery with respect to the
instance of (G, S,V) associated with the leaf (without making any
query to that instance of the one-time scheme).

(b) Otherwise (i.e., the instance associated with this leaf was used for
signing an actual document), the forged document-signature pair dif-
fers from the query-answer pair that used the same leaf. The differ-
ence is either in the actual document or in the part of the complex-
signature that corresponds to the one-time signature produced at the
leaf (because, by the case hypothesis, the authentication paths are
identical). In both subcases this yields violation of the super-security
of the instance of (G, S,V) associated with that leaf. Specifically,
in the first sub-subcase we obtain a one-time signature to a different

38 Recall that forging a signature for the general scheme requires either using an authen-
tication path supplied by the (general) signing-oracle or producing an authentication path
different from all paths supplied by the (general) signing-oracle. These are the cases consid-
ered below. In contrast, in the proof of Proposition 6.4.15 we only considered the “text part” of
these paths, ignoring the question of whether or not the authenticating (one-time) signatures
(provided as part of these paths) are equal.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 575

document (i.e., violation of ordinary security), whereas in the sec-
ond sub-subcase we obtain a different one-time signature to the same
document (i.e., only a violation of super-security). We stress that,
in both subcases, the violating signature is obtained after making a
single query to the instance of (G, S, V') associated with that leaf.

2. We now turn to the second case (i.e., forgery with respect to (G, S', V")
is obtained by producing an authentication path different from all paths
supplied by the signing-oracle). In this case, we obtain violation of the
(one-time) super-security of the scheme (G,S,V) associated with one of
the internal nodes (specifically the first node on which the relevant paths
differ). The argument is similar (but not identical) to the one given in the
proof of Proposition 6.4.15. Specifically, we consider the maximal prefix of
the authentication path provided by the forger that equals a corresponding
prefix of an authentication path provided by the signing-oracle (as part of
its answer). The extension of this path in the complex-signature provided
by the forger either uses a different pair of (one-time) verification-keys or
uses a different (one-time) signature to the same pair. In the first subcase
we obtain a one-time signature to a different document (i.e., violation of
ordinary security), whereas in the second subcase we obtain a different
one-time signature to the same document (i.e., only a violation of super-
security). We stress that, in both subcases, the violating signature is
obtained after making a single query to the instance of (G, S, V') associated
with that internal node.

Thus, in both cases we reach a contradiction to the super-security of the one-
time signature scheme, which establishes our claim that the general signature
scheme must be super-secure. O

Combining the three claims (and recalling that universal one-way hashing func-
tions can be constructed using any one-way function (cf. Theorem 6.4.29)), the
theorem follows. [l

6.5.3 Off-line/on-line signing

Loosely speaking, we say that a signature scheme (G, S,V) (either a private-
key or a public-key one) has an off-line/on-line signing process if signatures are
produced in two steps, where the first step is independent of the actual message
to be signed. That is, the computation of S,(«) can be decoupled into two steps,
5off ang son

performed by randomized algorithms that are denoted respectively

such that Sy(a) «— S9(a, S°f(s)). Thus, one may prepare (or precompute)
SOH(S) before the document is known (i.e., “off-line”), and produce the actual
signature (on-line) once the document « is presented (by invoking algorithm
SO on input (a, SOH(S))). This yields improvement in on-line response-time
to signing requests, provided that SO is significantly faster than S itself. This

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

576 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

improvement is worthwhile in many natural settings in which on-line response-
time is more important than off-line processing time.

We stress that SO must be randomized (because, otherwise, SOH(S) can be

incorporated in the signing-key). Indeed, one may view algorithm 5ot as an
augmentation of the key-generation algorithm that produces random extensions
of the signing-key on-the-fly (i.e., after the verification-key was already deter-
mined). We stress that algorithm SO i5 invoked once per each document to
be signed, but this invocation can take place at any time (and even before the

document to be signed is even determined). (In contrast, it may be insecure to
re-use the result obtained from S for two different signatures.)

Can secure signature schemes employ meaningful off-line/on-line sign-
ing algorithms? Of course, any algorithm can be vacuously decoupled into
two steps, but we are only interested in meaningful decouplings in which the
off-line step takes most of the computational load. Interestingly, schemes based
on the refreshing paradigm (cf. Section 6.4.2.1) lend themselves to such a de-
coupling. Specifically, in Construction 6.4.16, only the last step in the signing
process depends on the actual document (and needs to be performed on-line).
Furthermore, this last step amounts to applying the signing algorithm of a one-
time signature scheme, which is typically much faster than all the other steps
(which can be performed off-line).3?

6.5.4 Incremental signatures

Loosely speaking, we say that a signature scheme (G, S, V') (either a private-key
or a public-key one) has an incremental signing process if the signing process
can be sped-up when given a valid signature to a (textually) related document.
The actual definition refers to a set of text editing operations such as delete
word and insert word (where more powerful operations like cutting a document
into two parts and pasting two documents may be supported too). Specifically,
we require that given a signing-key, a document-signature pair («,), and a
sequence of edit operations (i.e., specifying the operation type and its location),
one may modify 3 into a valid signature 3’ for the modified document «' in
time proportional to the number of edit operations (rather than proportional to
|&/|). Indeed, here time is measured in a direct-access model of computation. Of
course, the time saving on the “signing side” should not come at the expense of
a significant increase in verification time. In particular, verification time should
only depend on the length of the final document (and not on the number of edit

39 For example, when using the one-time signature scheme suggested in Proposition 6.4.7,
producing one-time signatures amounts to applying a collision-free hashing function and out-
putting corresponding parts of the signing-key. This is all that needs to be performed in the
on-line step of Construction 6.4.16. In contrast, the off-line step (of Construction 6.4.16) calls
for n applications of a pseudorandom function, n applications of the key-generation algorithm
of the one-time signature scheme, and n applications of the signing algorithm of the one-time
signature scheme.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES S7T

operations).*°

An incremental signing process is beneficial in settings where one needs to
sign many textually related documents (e.g., in simple contracts much of the
text is almost identical and the few edit changes refer to the party’s specific
details as well as to specific clauses that may be modified from their standard
form in order to meet the party’s specific needs). In some cases the privacy
of the edit sequence may be of concern; that is, one may require that the final
signature be distributed in a way that only depends on the final document (rather
than depend also on documents that “contributed” signatures to the process of
generating the final signature).

Can secure signature schemes employ a meaningful incremental sign-
ing process? Here meaningful refers to the set of supported text-modification
operations. The answer is affirmative, and furthermore these schemes may even
protect the privacy of the edit sequence. Below, we refer to edit operations that
delete/insert fix-length bit-strings called blocks from/to a document (as well as
to the cut and paste operations mentioned above).

Theorem 6.5.3 (secure schemes with incremental signing process):

1. Assuming the existence of one-way functions, there exist secure message
authentication schemes having an incremental signing process that supports
block deletion and insertion. Furthermore, the scheme uses a fized-length
authentication tag.

2. Assuming the existence of one-way functions, there exist secure (private-
key and public-key) signature schemes having an incremental signing pro-
cess that supports block deletion and insertion as well as cut and paste.

Furthermore, in both parts, the resulting schemes protect the privacy of the edit
sequence.

Part 1 is proved by using a variant of an efficient message authentication scheme
that is related to the schemes presented in Section 6.3.1. Part 2 is proved by using
an arbitrary secure (private-key or public-key) signature scheme that produces n-
bit long signatures to O(n)-bit long strings, where n is the security parameter.
(Indeed, the scheme need only be secure in the O(n)-restricted sense.) The
document is stored in the leaves of a 2-3 tree, and the signature essentially
consists of the tags of all internal nodes, where each internal node is tagged by
applying the basic signature scheme to the tags of its children. One important
observation is that a 2-3 tree supports the said operations while incurring only a
logarithmic (in its size) cost; that is, by modifying only the links of logarithmic
many nodes in the tree. Thus, only the tags of these nodes and their ancestors

40 This rules out the naive (unsatisfactory) solution of providing a signature of the original
document along with a signature of the sequence of edit operations. More sophisticated variants
of this naive solution (e.g., refreshing the signature whenever enough edits have occurred) are
not ruled out here, but typically they will not satisfy the privacy requirement discussed in the
sequel.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

578 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

in the tree needs to be modified in order to form the correspondingly modified
signature. (Privacy of the edit sequence is obtained by randomizing the standard
modification procedure for 2-3 trees.) By analogy to Construction 6.2.13 (and
Proposition 6.2.14), the incremental signature scheme is secure.

6.5.5 Fail-stop signatures

Loosely speaking, a fail-stop signature scheme is a signature scheme augmented
by a (non-interactive) proof system that allows the legitimate signer to prove
to anybody that a particular (document,signature)-pair was not generated by
him/her. Actually, key-generation involves interaction with an administrating
entity (which publicizes the resulting verification-keys), rather than just hav-
ing the user publicize his/her verification-key. In addition, we allow memory-
dependent signing procedures (as in Definition 6.4.13).4! The system guarantees
the following four properties, where the first two properties are the standard
ones:

1. Proper operation: In case the user is honest, the signatures produced by
it will pass the verification procedure (with respect to the corresponding
verification-key).

2. Infeasibility of forgery: In case the user is honest, forgery is infeasible in
the standard sense. That is, every feasible chosen message attack may suc-
ceed (to generate a valid signature to a new message) only with negligible
probability.

3. Revocation of forged signatures: In case the user is honest and forgery
is committed, the user can prove that indeed forgery has been commit-
ted. That is, for every chosen message attack (even a computationally-
unbounded one)*? that produces a valid signature to a new message, ex-
cept for with negligible probability, the user can efficiently convince anyone
(which knows the verification-key) that this valid signature was forged (i.e.,
produced by somebody else).

4. Infeasibility of revoking unforged signatures: 1t is infeasible for a user to
create a valid signature and later convince someone that this signature was
forged (i.e., produced by somebody else). Indeed, it is possible (but not
feasible) for a user to cheat here.

Furthermore, Property 3 (i.e., revocation of forged signatures) holds also in
case the administrating entity participates in the forgery and even if it behaves
improperly at the key-generation stage. (In contrast, the other items hold only
if the administrating entity behaves properly during the key-generation stage.)

41 Allowing memory-dependent signing is essential to the existence of secure fail-stop signa-
ture schemes; see Exercise 24.

42 Tt seems reasonable to restrict even computationally-unbounded adversaries to
polynomially-many signing requests.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 579

To summarize, fail-stop signature schemes allow to prove that forgery has oc-
curred, and so offer an information-theoretic security guarantee to the potential
signers (yet the guarantee to potential signature-recipients is only a computa-
tional one).*3 In contrast, when following the standard semantics of signature
schemes, the potential signers have only a computational security guarantee and
the signature recipients have an absolute guarantee: whenever the verification
algorithm accepts a signature, it is by definition an unrevocable one.

Do secure fail-stop signature schemes exist? Assuming the intractability
of either the Discrete Logarithm Problem or of integer factorization, the answer
is affirmative. Indeed, in fail-stop signature schemes, each document must have
super-polynomially many possible valid signatures (with respect to the publicly
known verification-key), but only a negligible fraction of these will be (properly)
produced by the legitimate signer (who knows a corresponding signing-key, which
is not uniquely determined by the verification-key). Furthermore, any strategy
(even an infeasible one), is unlikely to generate signatures corresponding to the
actual signing-key. On the other hand, it is infeasible given one signing-key to
produce valid signatures (i.e., w.r.t the verification-key) that do not correspond
to the proper signing with this signing-key.

6.6 Miscellaneous

6.6.1 On Using Signature Schemes

Once defined and constructed, signature schemes may be (and are actually)
used as building blocks towards various goals that are different from the original
motivation. Still, the original motivation (i.e., reliable communication of infor-
mation) is of great importance, and in this subsection we discuss several issues
regarding the use of signature schemes towards achieving it. The discussion is
analogous to a similar discussion conducted in Section 5.5.1, but the analogous
issues discussed here are even more severe.

Using private-key schemes — the key exchange problem. As discussed
in Section 6.1, using a private-key signature scheme (i.e., a message authentica-
tion scheme) requires the communicating parties to share a secret key. This key
can be generated by one party and secretly communicated to the other party
by an alternative (expensive) secure and reliable channel. Often, a preferable
solution consists of employing a key-ezchange (or rather key-generation) proto-
col, which is executed over the standard (unreliable) communication channel.
We stress that here (unlike in Section 5.5.1) we must consider active adver-
saries. Comnsequently, the focus should be on key-exchange protocols that are
secure against active adversaries and are called unauthenticated key-exchange

43 The above refers to the natural convention by which a proof of forgery frees the signer of
any obligations implied by the document. In this case, when accepting a valid signature the
recipient is only guaranteed that it is infeasible for the signer to revoke the signature.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

580 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

protocols (because the messages received over the channel are not necessarily
authentic). Such protocols are too complex to be treated in this section, and
the interested reader is referred to [37, 38, 23].

Using state-dependent message authentication schemes. In many com-
munication settings it is reasonable to assume that the authentication device may
maintain (and modify) a state (e.g., a counter or a clock). Furthermore, in many
applications, a changing state (e.g., a clock) must be employed anyhow in order
to prevent reply of old messages (i.e., each message is authenticated along with
its transmission time). In such cases, state-dependent schemes as discussed in
Section 6.3.2 may be preferable. (See further discussion in Section 6.3.2 and
analogous discussion in Section 5.5.1.)

Using signature schemes — public-key infrastructure. The standard use
of (public-key) signature schemes in real-life applications requires a mechanism
for providing the verifiers with the signer’s authentic verification-key. In small
systems, one may assume that each user holds a local record of the verification-
keys of all other users. However, this is not realistic in large-scale systems, and
so the verifier must obtain the relevant verification-key on-the-fly in a “reliable”
way (i.e., typically, certified by some trusted authority). In most theoretical
work, one assumes that the verification-keys are posted and can be retrieved
from a public-file that is maintained by a trusted party (which makes sure that
each user can post only verification-keys bearing its own identity). Alternatively,
such trusted party may provide each user with a (signed) certificate stating the
authenticity of the user’s verification-key. In practice, maintaining such a public-
file (and/or handling such certificates) is a major problem, and mechanisms
that implement these abstractions are typically referred to by the generic term
“public-key infrastructure” (PKI). For a discussion of the practical problems
regarding PKI deployment see, e.g., [212, Chap. 13].

6.6.2 On Information Theoretic Security

In contrast to the bulk of our treatment, which focuses on computationally-
bounded adversaries, in this section we consider computationally-unbounded ad-
versaries. Specifically, we consider computationally-unbounded chosen message
attacks, but do bound (as usual, by an unknown polynomial) the total number
of bits in the signing-queries made by such attackers. We call a (private-key or
public-key) signature scheme perfectly-secure (or information-theoretically secure)
if even such computationally-unbounded attackers may succeed (in forgery) only
with negligible probability.

It is easy to see that no (public-key) signature scheme may be perfectly-
secure, not even in a length-restricted one-time sense. The reason is that a
computationally-unbounded adversary that is given a verification-key can find
(without making any queries) a corresponding signing-key, which allows it to
forge signatures to any message of its choice.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 581

In contrast, restricted types of message authentication schemes (i.e., private-
key signature schemes) may be perfectly-secure. Specifically, given any poly-
nomial bound on the total number of messages to be authenticated, one may
construct a corresponding state-based perfectly-secure message authentication
scheme. In fact, a variant of Construction 6.3.11 will do, where a truly random
one-time pad is used instead of the pseudorandom sequence generated using the
next-step function g. Indeed, this one-time pad will be part of the key, which
in turn must be longer than the total number of messages to be authenticated.
We comment that the use of a state is essential for allowing several messages to
be authenticated (in a perfectly-secure manner). (Proofs of both statements can
be derived following the ideas underlying Exercise 7.3.)

6.6.3 On Some Popular Schemes

The reader may note that we have avoided the presentation of several popular
signature schemes (i.e., public-key ones). As noted in Section 6.1.5.3, some of
these schemes (e.g., RSA [251] and DSS [225]) seem to satisfy some weak (i.e.,
weaker than Definition 6.1.2) notions of security. Variants of these schemes can
be proven to be secure in the random oracle model, provided some standard
intractability assumptions hold (cf., e.g., [39]). However, we are not satisfied
with either of these types of results, and articulate our opinion next.

On using weaker definitions. We distinguish between weak definitions that
make clear reference to the abilities of the adversary (e.g., one-message attacks,
length-restricted message attacks) and weak notions that make hidden and un-
specified assumptions regarding what may be beneficial to the adversary (e.g.,
“forgery of signatures for meaningful documents”). In our opinion, the fact that
the hidden assumptions often “feel right” makes them even more dangerous,
because it means that they are never seriously considered (and not even formu-
lated). For example, it is often claimed that ezistential forgery (see Section 6.1.4)
is “merely of theoretical concern”, but these claims are never supported by any
evidence or by a specification of the types of forgery that are of “real practical
concern”. Furthermore, it has been demonstrated that this “merely theoretical”
issue yields a real security breach in some important practical applications. Still,
weak definition of security may make sense, provided that they are clearly stated
and that one realizes their limitations (and in particular their “non-generality”).
The interested reader is referred to [167] for a comprehensive treatment of var-
ious security notions. Since the current work focuses on generally-applicable
definitions, we chose not to discuss such weaker notions of security and not to
present schemes that can be evaluated only with respect to these weaker notions.

On the Random Oracle Methodology. The Random Oracle Methodol-
ogy [114, 36] consists of two steps: First, one designs an ideal system in which all
parties (including the adversary) have oracle access to a truly random function,
and proves this ideal system to be secure (in which case one says that the system

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

582 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

is secure in the random oracle model). Next, one replaces the random oracle by
a “good cryptographic hashing function”, providing all parties (including the
adversary) with the succinct description of this function, and hopes that the re-
sulting (actual) scheme is secure.®* We warn that this hope has no justification.
Furthermore, there exist encryption and signature schemes that are secure in
the Random Oracle Model, but replacing the random function (used in them)
by any function ensemble yields a totally insecure scheme (cf., [70]).

6.6.4 Historical Notes

As in case of encryption schemes, the rigorous study of the security of private-
key signature schemes (i.e., message authentication schemes) has lagged behind
the corresponding study of public-key signature schemes. The current section is
organized accordingly.

6.6.4.1 Signature Schemes

The notion of a (public-key) signature scheme was introduced by Diffie and
Hellman [94], who also suggested to implement it using trapdoor permutations.
Concrete implementations were suggested by Rivest, Shamir and Adleman [251]
and by Rabin [246]. However, definitions of security for signature schemes were
presented only a few years afterwards.

A first rigorous treatment of security notions for signature schemes was sug-
gested by Goldwasser, Micali and Yao [169], but their definition is weaker than
the one followed in our text. (Specifically, the adversary’s queries in the defini-
tion of [169] are determined non-adaptively and obliviously of the public-key.)
Assuming the intractability of factoring, they also presented a signature scheme
that is secure under their definition. We mention that the security definition
of [169] considers existential forgery, and is thus stronger than security notions
considered before [169).

A comprehensive treatment of security notions for signature schemes, which
culminates in the notion used in our text, was presented by Goldwasser, Micali
and Rivest [167]. Assuming the intractability of factoring, they also presented a
signature scheme that is secure (in the sense of Definition 6.1.2). This was the
first time that a signature scheme was proven secure under a simple intractability
assumption such as the intractability of factoring. Their proof has refuted a
folklore (attributed to Ron Rivest) by which no such “constructive proof” may
exist (because the mere existence of such a proof was believed to yield a forging
procedure).*> Whereas the (two) schemes of [169] were inherently memory-

44 Recall that, in contrast, the methodology of Section 3.6.3 (which is applied often in the
current chapter) refers to a situation in which the adversary does not have direct oracle access
to the random function, and does not obtain the description of the pseudorandom function
used in the latter implementation.

45 The flaw in this folklore is rooted in implicit (unjustified) assumptions regarding the
notion of a “constructive proof of security” (based on factoring). In particular, it was implicitly
assumed that the signature scheme uses a verification-key that equals a composite number,
and that the proof of security reduces the factoring of such a composite N to forging with

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS o83

dependent, the scheme of [167] has a “memoryless” variant (cf. [125] and [167]).

Following Goldwasser, Micali and Rivest [167], research has focused on con-
structing secure signature schemes under weaker assumptions. In fact, as noted
in [167], their construction of secure signature schemes can be carried out using
any collection of claw-free, trapdoor permutation pairs. The claw-free require-
ment was omitted in [34], whereas the seemingly more fundamental trapdoor
requirement was omitted by Naor and Yung [231]. Finally, Rompel showed that
one may use arbitrary one-way functions rather one-way permutations [253], and
thus established Theorem 6.4.1. The progress briefly summarized above was en-
abled by the use of many important ideas and paradigms, some of them were
introduced in that body of work and some were “only” revisited and properly
formalized. Specifically, we refer to the introduction of the refreshing paradigm
in [167], the use of authentication trees (cf., [214, 215] and [167]), the use of the
hash-and-sign paradigm (rigorously analyzed in [88]), the introduction of Univer-
sal One-Way Hash Functions (and the adaptation of the hash-and-sign paradigm
to them) in [231], and the use of one-time signature schemes (cf., [245]).

We comment that our presentation of the construction of signature schemes
is different from the one given in any of the above cited papers. Specifically, the
main part of Section 6.4 (i.e., Sections 6.4.1 and 6.4.2) is based on a variant of
the signature scheme of [231], in which collision-free hashing (cf. [88]) are used
instead of universal one-way hashing (cf. [231]).

6.6.4.2 Message Authentication Schemes

Message authentication schemes were first discussed in the information theoretic
setting, where a one-time pad was used. Such schemes were first suggested
in [124], and further developed in [274]. The one-time pad can be implemented
by a pseudorandom function (or a on-line pseudorandom generator), yielding
only computational security, as we have done in Section 6.3.2. Specifically,
Construction 6.3.11 is based on [192, 193]. In contrast, in Section 6.3.1 we
have followed a different paradigm that amounts to applying a pseudorandom
function to the message (or its hashed-value), rather than using a pseudorandom
function (or a on-line pseudorandom generator) to implement a one-time pad.
This alternative paradigm is due to [141], and is followed in works such as [33, 30,
21]. Indeed, following this paradigm, one may focus on constructing generalized
pseudorandom function ensembles (as in Definition 3.6.12), based on ordinary
pseudorandom functions (as in Definition 3.6.4). See comments on alternative

respect to the verification-key N. In such a case, the folklore suggested that the reduction
yields an oracle machine for factoring the verification-key, where the oracle is the corresponding
signing-oracle (associated with N), and that the factorization of the verification-key allows to
efficiently produce signatures to any message. However, none of these assumptions is justified.
In contrast, the verification-key in the scheme of [167] consists of a pair (IV, z), and its security
is proven by reducing the factoring of N to forging with respect to the verification-key (N, r),
where r is randomly selected by the reduction. Furthermore, on input N, the (factoring)
reduction produces a verification-key (N, r) that typically does not equal the verification-key
(N, z) being attacked, and so given access to a corresponding signing-oracle does not allow to
factor V.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

584 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

presentations at the end of Sections 6.3.1.2 and 6.3.1.3 as well as in Section C.2.

6.6.4.3 Additional topics

Collision-free hashing was first defined in [88]. Construction 6.2.8 is also due
to [88], with underlying principles that can be traced to [167]. Construction 6.2.11
is due to [89]. Construction 6.2.13 is due to [216].

Unique signatures and super-security have been used in several works, but
were not treated explicitly before. The notion of off-line/on-line signature scheme
was introduced (and first instantiated) in [105]. The notion of incremental cryp-
tographic schemes (and in particular incremental signature schemes) was intro-
duced and instantiated in [26, 27]. In particular, the incremental MAC of [27]
(i.e., Part 1 of Theorem 6.5.3) builds on the message authentication scheme
of [30], and the incremental signature scheme that protects the privacy of the
edit sequence is due to [221] (building upon [27]). Fail-stop signatures were
defined and constructed in [240].

6.6.5 Suggestion for Further Reading

As mentioned above, the work of Goldwasser, Micali and Rivest contains a
comprehensive treatment of security notions for signature schemes [167]. Their
treatment refers to two parameters: (1) the type of attack, and (2) the type
of forgery that follows from it. The most severe type of attack allows the ad-
versary to adaptively select the documents to be signed (as in Definition 6.1.2).
The most liberal notion of forgery refers to producing a signature to any doc-
ument for which a signature was not obtained during the attack (again, as in
Definition 6.1.2). Thus, the notion of security presented in Definition 6.1.2 is
the strongest among the notions discussed in [167]. (Still, in some applications,
weaker notions of security may suffice.) We stress that one may still benefit from
the definitional part of [167], but the constructive part of [167] should be ignored
because it is superseded by later work (on which our presentation is based).

Pfitzmann’s book [241] contains a comprehensive discussion of many aspects
involved in the integration of signature schemes in real-life systems. In addition,
her book surveys variants and augmentations of the notion of signature schemes,
viewing the one treated in the current book as “ordinary”. The focus is on fail-
stop signature schemes [241, Chap. 7-11], but much attention is given to the
presentation of a general framework [241, Chap. 5] and to review of other “non-
ordinary” schemes [241, Sec. 2.7 & 6.1].

As hinted in Section 6.6.4.2, our treatment of the construction of message
authentication schemes is merely the tip of an iceberg. The interested reader
is referred to [267, 192, 193, 48] for details on the “one-time pad” approach,
and to [33, 30, 21, 22, 28, 7] for alternative approaches. Constructions and dis-
cussion of AXU hashing functions (which are stronger than generalized hashing
functions) can be found in [192, 193].

The constructions of universal one-way hash functions presented in Sec-
tion 6.4.3 use any one-way permutation, and do so in a generic way. The number

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 585

of applications of the one-way permutation in these constructions is linearly re-
lated to the difference between the number of input and output bits in the hash
function. In [123], it is shown that as far as generic (black-box) constructions
go, this is essentially the best performance that one can hope for.

In continuation to the discussion in Section 6.4.2.4 (regarding the construc-
tion of signature schemes based on authentication trees), we refer to reader
to [101, 85], in which specific implementations (of a generalization) of Construc-
tions 6.4.14 and 6.4.16 are presented. Specifically, these works utilize an authen-
tication tree of large degree (rather than binary trees as in Section 6.4.2.2).

In continuation to the discussion in Section 6.5.1, we mention that signature
schemes having unique signatures are related (but not equivalent) to verifiable
pseudorandom functions (as defined and constructed in [218]). In particular,
the construction in [218] does yield signature schemes having unique signatures,
and thus the latter exist under a quite standard assumption (regarding RSA).
We comment that signature schemes having unique signatures are stronger than
invariant signature schemes (as defined in [170] and studied in [29, 170]).

6.6.6 Open Problems

The known construction of signature schemes from arbitrary one-way func-
tions [253] is merely a feasibility result. It is indeed an important open problem
to provide an alternative construction that may be practical and still utilize an
arbitrary one-way function. We believe that providing such a construction may
require the discovery of important new paradigms.

6.6.7 Exercises
Exercise 1: Deterministic Signing and Verification algorithms:

1. Using a pseudorandom function ensemble, show how to transform
any (private-key or public-key) signature scheme into one employing
a deterministic signing algorithm.

2. Using a pseudorandom function ensemble, show how to transform
any message authentication scheme into one employing deterministic
signing and verification algorithms.

3. Verify that all signature schemes presented in the current chapter
employ a deterministic verification algorithm.

4. (By Boaz Barak:) Show that any length-restricted signature scheme
can be easily transformed into one employing a deterministic verifi-
cation algorithm.

Guideline (for Part 1): Augment the signing-key with a description of
a pseudorandom function, and apply this function to the string to be signed

in order to extract the randomness used by the original signing algorithm.

Guideline (for Part 2): Analogous to Part 1. (Highlight your use of
the private-key hypothesis.) Alternatively, see Exercise 2.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

586 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Guideline (for Part 4): First transform the signature scheme into one
in which all valid signatures are of length that is bounded by a polynomial in
the security parameter (and the length of the messages). Let £(n) denote the
length of the documents and m(n) denote the length of the corresponding
signatures. Next, amplify the verification algorithm such that its error
probability is smaller than 2~ (¢()+m(n)+n) pinally, incorporate the coin
tosses of the verification algorithm in the verification-key, making the former

deterministic.

Exercise 2: Canonical verification in the private-key version: Show that, with-
out loss of generality, the verification algorithm of a private-key signature
scheme may consist of comparing the alleged signature to one produced
by the verification algorithm itself; that is, the verification algorithm uses
a verification-key that equals the signing-key and produces signatures ex-
actly as the signing algorithm.

Why does this claim fail with respect to public-key schemes?

Guideline: Use Part 1 of Exercise 1, and conclude that the on a fixed
input the signing algorithm always produces the same output. Use the
fact that (by Exercise 7.3) the existence of message authentication schemes
implies the existence of pseudorandom functions, which are used in Part 1

of Exercise 1.

Exercise 3: Augmented attacks in the private-key case: In continuation to the
discussion in Section 6.1.5.1, consider the definition of an augmented at-
tack (on a private-key signature scheme) in which the adversary is allowed
verification-queries.

1. Show that in case the private-key signature scheme has unique valid
signatures, it is secure against augmented attacks if and only if it is
secure against ordinary attacks (as in Definition 6.1.2).

2. Assuming the existence of secure private-key signature schemes (as in
Definition 6.1.2), present such a secure scheme that is insecure under
augmented attacks.

Guideline (Part 1): Analyze the emulation outlined in the proof of
Proposition 6.1.3. Specifically, ignoring the redundant verification-queries
(for which the answer is determined by previous answers), consider the
probability that the emulation has gambled correctly on all the verification-
queries up-to (and including) the first such query that should be answered

affirmatively.

Guideline (Part 2): Given any secure MAC, (G, S, V), assume without
loss of generality that in the key-pairs output by G the verification-key
equals the signing-key. Consider the scheme (G',S’, V') (with G' = G),
where Sl (a) = (Ss(a),0), V/(x,(8,0)) = Vo(a, B) and V) (a,(B,i,0)) =1
if both V,(a, 8) = 1 and the *" bit of v is 0. Prove that (G’,S’, V) is secure
under ordinary attacks, and present an augmented attack that totally breaks
it (i.e., obtains the signing-key s = v).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 587

Exercise 4: The signature may reveal the document: Both for private-key and
public-key signature schemes, show that if such secure schemes exist then
there exist secure signature schemes in which any valid signature to a
message allows to efficiently recover the entire message.

Exercise 5: On the triviality of some length-restricted signature schemes:

1. Show that for logarithmically bounded ¢, secure ¢-restricted private-
key signature schemes (i.e., message authentication schemes) can be
trivially constructed (without relying on any assumption).

2. In contrast, show that the existence of a secure ¢-restricted public-
key signature scheme, even for £ = 1, implies the existence of one-way
functions.

Guideline (Part 1): On input 1™, the key generator uniformly selects
s € {0, l}ze(")'", and outputs the key pair (s,s). View s = 51+ 55(n),
where each s; is an n-bit long string, and consider any fixed ordering of the
24(n) strings of length £(n). The signature to « € {0,1}¢(") is defined as s;,

where 7 is the index of « in the latter ordering.

Guideline (Part 2): Let (G, S, V) be a 1-restricted public-key signature
scheme. Define f(1™,r) = v if, on input 1™ and coins r, algorithm G
generates a key-pair of the form (-,v). Assuming that algorithm A inverts
f with probability e(n), we construct a forger that attacks (G,S,V) as
follows. On input a verification key v, the forger invokes A on input wv.
With probability £(n), the forger obtains r such that f(1™,7) = v. In such
a case, the forger obtains a matching signing-key s (i.e., (s,v) is output by
G(1™) on coins r), and so can produce valid signatures to any string of its

choice.

Exercise 6: Fuailure of Construction 6.2.3 in case £(n) = O(logn): Show that
if Construction 6.2.3 is used with a logarithmically bounded ¢ then the
resulting scheme is insecure.

Guideline: Note that by asking for polynomially-many signatures, the ad-
versary may obtain two S’-signatures that use the same (random) identifier.
Specifically, consider making the queries aa, for all possible a € {0, 1}2(")7
and note that if aa and a’a’ are S!-signed using the same identifier then

we can derive a valid S!-signature to aa/.

Exercise 7: Secure MACs imply one-way functions: Prove that the existence
of secure message authentication schemes implies the existence of one-way
functions. Specifically, let (G, S, V) be as in the hypothesis.

1. To simplify the following two items, show that, without loss of gen-
erality, G(1™) uses n coins and outputs a signing-key of length n.

2. Assume first that S is a deterministic signing algorithm. Prove that

def .
flryar,...,am) = (Ss(a1),...,Ss(am), a1, ...,am,) is a one-way func-

tion, where s = G1(r) is the signing-key generated with coins r, all
a;’s are of length n = |r| and m = O(n).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

588 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

3. Extend the proof to handle randomized signing algorithms, thus es-
tablishing the main result.

Guideline (Parts 2 and 3): Note that with high probability (over
the choice of the «;’s) the m signatures (i.e., Ss(e;)’s) determine a set
R such that for every r’ € R it holds that Sg, ()(a) = Ss(c) for most
a € {0,1}™. (Note that G1(r’) does not necessarily equal s.) Show that this
implies that the ability to invert f yields the ability to forge (under a chosen
message attack). (Hint: use m random signing-queries to produce a random
image of f, and use the obtained preimage under f, which contains an
adequate signing-key, to forge a signature to a new random message.) The
extension to randomized signing is obtained by augmenting the preimage
of the one-way function with the coins used by the m invocations of the

signing algorithm.

Exercise 8: General pseudorandom functions yield general secure MACs: Us-
ing a pseudorandom function ensemble of the form {f, : {0,1}* — {0, 1}|5‘ }seqo,13
construct a general secure message authentication scheme (rather than a
length-restricted one).

Guideline: The construction is identical to Construction 6.3.1, except
that here we use a general pseudorandom function ensemble rather than
the one used there. The proof of security is analogous to the proof of

Proposition 6.3.2.

Exercise 9: Consider a generalization of Construction 6.3.5 in which the pseu-
dorandom function is replaced by an arbitrary secure MAC such that on
input a signing-key (r,s) a document a € {0,1}*("™ is signed by applying
the MAC (with signing-key s) to h,(«). Show that, for some secure MAC
and some collections of hash functions with negligible collision probability,
the above scheme is insecure.

Guideline: Use the fact that the MAC may reveal the first part of its
argument, whereas the hashing function may yield an output value in which
the second part is fixed. Furthermore, it may be easy to infer the hashing
function from sufficiently many input-output pairs and it may be easy to
find a random preimage of a given hash function on a given image. Present
constructions that satisfy all these conditions, and show how combining

them yields the desired result.

Exercise 10: Easily obtaining pseudorandom functions from certain MACs (ad-
vanced exercise, based on [230]): Let (G,S,V) be a secure message au-
thentication schemes, and suppose that S is deterministic. Furthermore,

suppose that |G1(1™)| = n and that for every s,z € {0,1}" it holds

that |Ss(z)| = £(n) e |Ss(1™)]. Consider the Boolean function ensem-

ble {fs, s, : {0,1}5t) — {0,1}},,s,, where s; is selected according to
G1(1™) and sy € {0,1}4"™ is uniformly distributed, such that f;, ,,(a) is
defined to equal the inner-product mod 2 of S, () and s;. Prove that
this function ensemble is pseudorandom (as defined in Definition 3.6.9 for
the case d(n + £(n)) = n and r(n) = 1).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 589

Guideline: Consider hybrid experiments such that in the sth hybrid the
first ¢ queries are answered by a truly random Boolean function and the
rest of the queries are answered by a uniformly distributed fs, s,. (Note
that it seems important to use this non-standard order of random versus
pseudorandom answers.) Show that distinguishability of the ith and 7+ 1st
hybrids implies that a probabilistic polynomial-time oracle machine can
have a non-negligible advantage in the following game. In the game, the
machine is first asked to select o, next fs; s, is uniformly selected and the
machine is given s as well as oracle access to S (but is not allowed the
query «), and is asked to guess fs; s,(a) (or, equivalently, to distinguish
fs1,s2 () from a truly random bit).46 At this point, one may apply the
proof of Theorem 2.5.2, and deduce that the said oracle machine can be
modified to construct Sy, (a) with non-negligible probability (when given
oracle access to Ss; but not being allowed the query), in contradiction to
the security of the MAC.

Exercise 11: Prove that, without loss of generality, one can always assume that
a chosen message attack makes at least one query. (This holds for general
signature schemes as well as for length-restricted and/or one-time ones.)

Guideline: Given an adversary A’ that outputs a message-signature pair
Y P ge-sig. p

(a', 8") without making any query, modify it such that it makes an arbitrary
!

query a € {0,1}/* '\ {a'} just before producing that output.

Exercise 12: On perfectly-secure one-time message authentication (MAC) schemes:

By perfect (or information-theoretic) security we mean that even computationally-
unbounded chosen message attacks may succeed (in forgery) only with
negligible probability.
Define perfect (or information-theoretic) security for one-time MACs and
length-restricted one-time MACs. (Be sure to bound the length of docu-
ments (e.g., by some super-polynomial function) also in the unrestricted
case; see Part 3 of the current exercise as well as Exercise 20.)

Prove the following, without relying on any (intractability) assumptions
(which are useless anyhow in the information-theoretic context):

1. For any polynomially-bounded and polynomial-time computable func-
tion £ : N — N, perfectly-secure f-restricted one-time MACs can be
trivially constructed.

2. Using a suitable AXU family of hashing functions, present a construc-
tion of a perfectly-secure one-time MAC. Furthermore, present such
a MAC in which the authentication-tags have fixed length (i.e., de-
pending on the length of the key but not on the length of the message
being authenticated).

46 Note that the particular order (of random versus pseudorandom answers in the hybrids)
allows this oracle machine to generate the (corresponding) hybrid while playing this game
properly. That is, the player answers the first ¢ queries at random, sets « to equal the ¢ + 1st
query, uses the tested bit value as the corresponding answer, and uses s and the oracle Ss;
to answer the subsequent queries. It is also important that the game be defined such that s»
is given only after the machine has selected «; see [230].

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

590 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

3. Show that any perfectly-secure one-time MAC that utilizes fixed length
authentication-tags and a deterministic signing algorithm yields a
generalized hashing ensemble with negligible collision probability. Specif-
ically, for any polynomial p, this ensemble has a (p,1/p)-collision

property.

Guideline: For Part 1, combine the ideas underlying Exercise 5.1 and
Construction 6.4.4. For Part 2, use the ideas underlying Construction 6.3.11
and the proof of Proposition 6.3.12. For Part 3, given a MAC as in the
claim, consider the functions h,(z) def Ss(z), where s is selected as in the

key-generation algorithm.

Exercise 13: Secure one-time (public-key) signatures imply one-way functions.
In contrast to Exercise 12, prove that the existence of secure one-time sig-
nature schemes implies the existence of one-way functions. Furthermore,
prove that this holds even for 1-restricted signature schemes that are secure
(only) under attacks that make no signing-queries.

Guideline: See guideline for Item 2 in Exercise 5.

Exercise 14: Prove that the existence of collision-free hashing collections im-
plies the existence of one-way functions.

Guideline: Given a collision-free hashing collection, {h, : {0,1}* —
{0, 1}“"‘)},,6{071}*, consider the function f(r,x) = (r, hr(x)), where (say)
|z| = £(|r|) + |r|- Prove that f is a one-way function, by assuming towards
the contradiction that f can be efficiently inverted with non-negligible prob-
ability, and deriving an efficient algorithm that forms collisions on random
h,’s. Given r, form a collision under the function h,, by uniformly se-
lecting = € {0,1}¢U"DH"land feeding the inverting algorithm with input
(r, hr(z)). Observe that with non-negligible probability a preimage is ob-
tained, and that only with exponentially vanishing probability this preimage
is (r, z) itself. Thus, with non-negligible probability, we obtain a preimage
(r,2") # (r,x) such that h.(z') = h.(z).

Exercise 15: Secure MACSs that hide the message: In contrast to Exercise 4,
show that if secure message authentication schemes exist then there exist
such schemes in which it is infeasible (for a party not knowing the key)
to extract from the signature any partial information about the message
(except for the message length). (Indeed, privacy of the message is for-
mulated as the definition of semantic security of encryption schemes; see
Chapter 5.)

Guideline: Combine a message authentication scheme with an adequate
private-key encryption scheme. Refer to issues such as the type of secu-
rity required of the encryption scheme, and why the hypothesis yields the

existence of the ingredients used in the construction.

Exercise 16: In continuation to Exercise 15, show that if there exist collision-
free hashing functions then there exist message authentication schemes in

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 991

which it is infeasible (for a party not knowing the key) to extract from the
signature any partial information about the message including the message
length. How come we can hide the message length in this context, whereas
we cannot do this in the context of encryption schemes?

Guideline: Combine a message authentication scheme having fixed length
signatures with an adequate private-key encryption scheme. Again, refer to

issues as in Exercise 15.

Exercise 17: Alterntaive formulation of state-based MACs (by Boaz Barak).
For § = (5',58") and V = (V',V"), consider the following reformula-
tion of Item 2 of Definition 6.3.9: For every pair (s(°),v(%)) in the range
of G(1™), every sequence of messages a(?)’s, and every i, it holds that

V(00D oD §(s(D o)) = 1, where s) = S"(s(j_l),l‘a(j)‘) and
W) = V(a1 qlal?] 118 (Dl
equivalence of the two formulations.

) for j = 1,...,i — 1. Prove the

Exercise 18: Prove that the existence of collections of UOWHEF implies the
existence of one-way functions. Furthermore, show that uniformly chosen
functions in any collection of UOWHF's are hard to invert (in the sense of
Definition 2.4.3).

Guideline: Note that the guidelines provided in Exercise 14 can be mod-
ified to fit the current context. Specifically, the suggested collision-forming
algorithm is given uniformly distributed r and z, and invokes the inverter
on input (7, h,(z)), hoping to obtain a designated collision with under h,.
Note that the furthermore clause is implicit in the proof.

Exercise 19: Assuming the existence of one-way functions, show that there ex-
ists a collection of universal one-way hashing functions that is not collision-
free.

Guideline: Given a collection of universal one-way hashing functions,
{fs : {0,1}* — {0,1}¢1}, consider the collection F' = {f! : {0,1}* —
{0,1}!51} defined so that f’(z) = (0, fs(x)) if the |s|-bit long prefix of z is
different from s, and f!(sz') = (1, s) otherwise. Clearly, F' is not collision-

free. Show that F' is a collection of universal one-way hashing functions.

Exercise 20: Show that for every finite family of functions H, there exists
x # y such that h(x) = h(y) for every h € H. Furthermore, show that, for
H ={h:{0,1}* — {0,1}™}, this holds even for |z|, |y| < m - |H]|.

Guideline: Consider the mapping = +— (h1(z),...,ht(x)), where H =
{hi}t_,. Since the number of possible images is at most (2™)*, we get a

collision as soon as we consider more than 2™! preimages.

Exercise 21: Constructions of Hashing Families with Bounded Collision Prob-
ability: In continuation to Exercise 22.2 in Chapter 3, consider the set of
functions Sj* associated with ¢-by-m Toeplitz matrix; that is hr(z) = Tz,
where T' = (T} ;) is a Toeplitz matrix (i.e., T;; = Tiy1,;41 for all 4, 7).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

592 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Show that this family has collision probability 2=™. (Note that each £-by-
m Toeplitz matrix is specified using ¢ + m — 1 bits.)

Guideline: Note that we have eliminated the shifting vector b used in
Exercise 22.2 of Chapter 3, but this does not effect the relevant analysis.

Exercise 22: Constructions of Generalized Hashing Families with Bounded Col-
lision Property: (See definition in Section 6.3.1.3.)

1. Using a variant of the tree-hashing scheme of Construction 6.2.13,
construct a generalized hashing ensemble with a (f,1/f)-collision
property, where f(n) = 2vV"/2. (Hint: use a different hashing function
at each level of the tree.)

2. (By Hugo Krawczyk): Show that the tree-hashing scheme of Con-
struction 6.2.13, where the same hashing function is used in all levels
of the tree, fails in the current context. That is, there exists a hashing
ensemble {h, : {0,1}*™(7) — {0,1}™("D}, with negligible collision
probability such that applying Construction 6.2.13 to it (even with
depth two) yields an ensemble with high collision probability.

3. As in Part 2, show that the block-chaining method of Construc-
tion 6.2.11 fails in the current context (even for three blocks).

Guideline (Part 1): Let {h, : {0,1}?>"() — {0,1}™U"D},, be a
hashing ensemble with collision probability cp. Recall that such ensem-
bles with m(n) = n/3 and cp(n) = 2-m(n) can be constructed (see Exer-
cise 21). Then, consider the function ensemble {h”,___mm(") 0 {0,1}* —
{0, 1}2’"(")}neN7 where all 7;’s are of length n, such that th,___,Tm(n) (z) is
defined as follows

1. As in Construction 6.2.13, break « into ¢ ef 2Mogz(I21/m(n)1 consec-

utive blocks, denoted z1,...,z¢, and let d = log, t.

. def . . ;
2. Let e = 1,..,¢ let yg; = x;. Forj=d—1,..,1,0and ¢ = 1,...,27,
let yj; = hr; (Yj+1,2i—1Yj+1,2i)- The hash value equals (yo,1, |=]).

The above functions have description length N def m(n)-n and map strings
of length at most om(n) to strings of length 2m(n). It is easy to bound
the collision probability (for strings of equal length) by the probability of
collision occuring in each of the levels of the tree. In fact, for 1 - z¢ #
x| ---x} such that x; # =z}, it suffices to bound the sum of the probabil-
ities that y; ri/yi=i] = Yj r;jpayq holds (given that y; y r;/pa-Gng #

!
Yit1,ri/2d-G+07
ensemble has a (¥, €)-collision property, where £(N) = 2"(") and ¢(N) =

) for 5 = d—1,...,1,0. Thus, this generalized hashing

m(n) - cp(n). We stress that the collision probability of the tree-hashing
scheme grows linearly with the depth of the tree (rather than linearly with
its size). Recalling that we may use m(n) = n/3 and cp(n) = 2="(") we
obtain (using N = n2/3 = 3m(n)?), &(N) = o(N/3)1/2 > o(N/)ME 4
e(N) < (N/E(N)) < 2= N/DY? (as desired).

Guideline (Part 2): Given a hashing family as in the hypothesis, mod-
ify it into {h]. ; : {0,1}>™ — {0,1}™}, s, where s € {0,1}"™, such that

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 993

h; s(02™) = s, h}. (sv) = 0™ for all v € {0,1}™, and A}, ,(w) = hr(w) for
each other w € {0,1}?™. Note that the new family maintains the collision
probability of the original one up-to an additive term of O(27"). On the
other hand, for every w € {0,1}2™, it holds that TreeHash, ;(02™ w) =
hys (hy s (02™) i (w)) = Ry, (s v) = 0™, where v = h; (w).

Guideline (Part 3): For h} , as in Part 2 and every v € {0,1}™, it
holds that ChainHa.shr,s(O2m v) = h;’,s(h’ms((ﬁm) v) = h;,ys(sv) =0™.

Exercise 23: On the additional properties required in Proposition 6.4.21: In
continuation to Exercise 23 of Chapter 3, show that the function family
Sn—1 presented there satisfies the following two properties:

1. All but a negligible fraction of the functions in S?~! are 2-to-1.

2. There exists a probabilistic polynomial-time algorithm that given
y1,92 € {0,1}" and 21,20 € {0,1}"~!, outputs a uniformly dis-
tributed element of {s € S2~1 : hy(y;) = 2; Vi € {1,2}}.

Guideline: Recall that each function in S?~! is described by a pair
of elements of the finite field GF(2™), where the pair (a,b) describes the
function hgp that maps @ € GF(2™) to the (n — 1)-bit prefix of the n-bit
representation of axz + b, where the arithmetics is of the field GF(2™). The
first condition follows by observing that the function hy p is 2-to-1 if and
only if @ # 0. The second condition follows by observing that hq p(y;) = 2;
if and only if ay; + b = v; for some v; that is a single-bit extension of z;.
Thus, generating a pair (a, b) such that h, ,(y;) = z; for both i’s, amounts to
selecting random single-bit extensions v;’s, and (assuming y1 # y2) solving
the system {ay; + b = v;};=1,2 (for the variables a and b).

Exercise 24: Fuil-stop signatures require a memory-dependent signing process:
In continuation to Section 6.5.5, prove that a secure fail-stop signature
scheme must employ a memory-dependent signing process (as in Defini-
tion 6.4.13).

Guideline: Suppose towards the contradiction that there exist a secure
memoryless fail-stop signature scheme. For every signing-key s € {0, 1}",
consider the randomized process Ps in which one first selects uniformly
z € {0,1}", produces a (random) signature y < Ss(z), and outputs the
pair (z,y). Show that, given polynomially-many samples of Ps, one can
find (in exponential time) a string s’ € {0,1}" such that with probability
at least 0.99 the statistical distance between Py and P, is at most 0.01.
Thus, a computationally unbounded adversary making polynomially-many
signing queries, can find a signing-key that typically produces the same
signatures as the true signer. It follows that either these signatures cannot

be revoked or that the user may also revoke its own signatures.

Author's Note: First draft written mainly in May 2000. Major re-
visions completed and posted in Feb. 2002 and Feb. 2003. Minor
revision completed and posted in June 2003.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Bibliography

[1] L.M. Adleman and M. Huang. Primality Testing and Abelian Varieties
Over Finite Fields. Springer-Verlag Lecture Notes in Computer Science
(Vol. 1512), 1992. Preliminary version in 19th ACM Symposium on the
Theory of Computing, 1987.

[2] W. Aiello and J. Hastad. Perfect Zero-Knowledge Languages can be Rec-
ognized in Two Rounds. In 28th IEEE Symposium on Foundations of
Computer Science, pages 439448, 1987.

[3] M. Ajtai. Generating Hard Instances of Lattice Problems. In 28th ACM
Symposium on the Theory of Computing, pages 99-108, 1996.

[4] M. Ajtai, J. Komlos, E. Szemerédi. Deterministic Simulation in LogSpace.
In 19th ACM Symposium on the Theory of Computing, pages 132-140,
1987.

[5] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions:
Certain Parts are As Hard As the Whole. SIAM Journal on Computing,
Vol. 17, April 1988, pages 194-209.

[6] N. Alon and J.H. Spencer. The Probabilistic Method, John Wiley & Sons,
Inc., 1992.

[7] J.H. An and M. Bellare. Constructing VIL-MACs from FIL-MACs: Mes-
sage Authentication under Weakened Assumptions. In Crypto99, Springer
Lecture Notes in Computer Science (Vol. 1666), pages 252—269.

[8] T.M. Apostol. Introduction ot Analytic Number Theory. Springer, 1976.

[9] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simula-
tions and Advanced Topics. McGraw-Hill, 1998.

[10] L. Babai. Trading Group Theory for Randomness. In 17th ACM Sympo-
stum on the Theory of Computing, pages 421-420, 1985.

[11] E. Bach. Analytic Methods in the Analysis and Design of Number-
Theoretic Algorithms. ACM Distinguished Dissertation (1984), MIT Press,
Cambridge MA, 1985.

779

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

780 BIBLIOGRAPHY

[12] E. Bach and J. Shallit. Algorithmic Number Theory (Volume I: Efficient
Algorithms). MIT Press, 1996.

[13] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd
IEEE Symposium on Foundations of Computer Science, pages 106-115,
2001.

[14] B. Barak. Constant-Round Coin-Tossing with a Man in the Middle or
Realizing the Shared Random String Model. In 43th IEEE Symposium on
Foundations of Computer Science, to appear, 2002.

[15] B. Barak and O. Goldreich, Universal arguments and their applications. In
the 17th IEEE Conference on Computational Complexity, pages 194-203,
2002.

[16] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang. On the (im)possibility of software obfuscation. In Crypto01,
Springer-Verlag Lecture Notes in Computer Science (Vol. 2139), pages 1
18.

[17] B. Barak and Y. Lindell. Strict Polynomial-time in Simulation and Ex-
traction. In 34th ACM Symposium on the Theory of Computing, pages
484-493, 2002.

[18] D. Beaver. Foundations of Secure Interactive Computing. In Crypto91,
Springer-Verlag Lecture Notes in Computer Science (Vol. 576), pages 377—
391.

[19] D. Beaver. Secure Multi-Party Protocols and Zero-Knowledge Proof Sys-
tems Tolerating a Faulty Minority. Journal of Cryptology, Vol. 4, pages
75-122, 1991,

[20] M. Bellare. A Note on Negligible Functions. Journal of Cryptology, Vol. 15,
pages 271-284, 2002.

[21] M. Bellare, R. Canetti and H. Krawczyk. Pseudorandom functions Revis-
ited: The Cascade Construction and its Concrete Security. In 37th IEEFE
Symposium on Foundations of Computer Science, pages 514-523, 1996.

[22] M. Bellare, R. Canetti and H. Krawczyk. Keying Hash Functions for
Message Authentication. In Crypto96, Springer Lecture Notes in Computer
Science (Vol. 1109), pages 1-15.

[23] M. Bellare, R. Canetti and H. Krawczyk. Modular Approach to the Design
and Analysis of Authentication and Key Exchange Protocols. In $0th ACM
Symposium on the Theory of Computing, pages 419-428, 1998.

[24] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among no-
tions of security for public-key encryption schemes. In Crypto98, Springer
Lecture Notes in Computer Science (Vol. 1462), pages 26-45.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 781

[25] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In
Crypto92, Springer-Verlag Lecture Notes in Computer Science (Vol. 740),
pages 390-420.

[26] M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptography:
the Case of Hashing and Signing. In Crypto94, Springer-Verlag Lecture
Notes in Computer Science (Vol. 839), pages 216-233, 1994.

[27] M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptography
and Application to Virus Protection. In 27th ACM Symposium on the
Theory of Computing, pages 45-56, 1995.

[28] M. Bellare, O. Goldreich and H. Krawczyk. Stateless Evaluation of Pseu-
dorandom Functions: Security beyond the Birthday Barrier. In Crypto99,
Springer Lecture Notes in Computer Science (Vol. 1666), pages 270-287.

[29] M. Bellare and S. Goldwasser. New Paradigms for Digital Signatures
and Message Authentication Based on Non-Interative Zero Knowledge
Proofs. In Crypto89, Springer-Verlag Lecture Notes in Computer Science
(Vol. 435), pages 194-211.

[30] M. Bellare, R. Guerin and P. Rogaway. XOR MACs: New Methods
for Message Authentication using Finite Pseudorandom Functions. In
Crypto95, Springer-Verlag Lecture Notes in Computer Science (Vol. 963),
pages 15-28.

[31] M. Bellare, S. Halevi, A. Sahai and S. Vadhan. Trapdoor Functions and
Public-Key Cryptosystems. In Crypto98, Springer Lecture Notes in Com-
puter Science (Vol. 1462), pages 283-298.

[32] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower
the Error in Computationally Sound Protocols? In 88th IEEE Symposium
on Foundations of Computer Science, pages 374-383, 1997.

[33] M. Bellare, J. Kilian and P. Rogaway. The Security of Cipher Block Chain-
ing. In Crypto94, Springer-Verlag Lecture Notes in Computer Science
(Vol. 839), pages 341-358.

[34] M. Bellare and S. Micali. How to Sign Given Any Trapdoor Function.
Journal of the ACM, Vol. 39, pages 214-233, 1992.

[35] D. Beaver, S. Micali and P. Rogaway. The Round Complexity of Secure
Protocols. In 22nd ACM Symposium on the Theory of Computing, pages
503-513, 1990.

[36] M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigm
for Designing Efficient Protocols. In 1st Conf. on Computer and Commu-
nications Security, ACM, pages 62-73, 1993.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

782 BIBLIOGRAPHY

[37] M. Bellare and P. Rogaway. Entity Authentication and Key Distribu-
tion. In Crypto93, Springer-Verlag Lecture Notes in Computer Science
(Vol. 773), pages 232-249, 1994.

[38] M. Bellare and P. Rogaway. Provably Secure Session Key Distribution:
The Three Party Case. In 27th ACM Symposium on the Theory of Com-
puting, pages 57-66, 1995.

[39] M. Bellare and P. Rogaway. The Exact Security of Digital Signatures: How
to Sign with RSA and Rabin. In EuroCrypt96, Springer Lecture Notes in
Computer Science (Vol. 1070).

[40] M. Bellare and M. Yung. Certifying Permutations: Noninteractive Zero-
Knowledge Based on Any Trapdoor Permutation. Journal of Cryptology,
Vol. 9, pages 149-166, 1996.

[41] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Av-
erage Case Complexity. Journal of Computer and System Science, Vol. 44,
No. 2, April 1992, pages 193-219.

[42] M. Ben-Or, R. Canetti and O. Goldreich. Asynchronous Secure Computa-
tion. In 25th ACM Symposium on the Theory of Computing, pages 52—61,
1993. See details in [65].

[43] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Hastad, J. Kilian, S. Micali
and P. Rogaway. Everything Provable is Probable in Zero-Knowledge. In
Crypto88, Springer-Verlag Lecture Notes in Computer Science (Vol. 403),
pages 37-56, 1990

[44] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover In-
teractive Proofs: How to Remove Intractability. In 20th ACM Symposium
on the Theory of Computing, pages 113-131, 1988.

[45] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems
for Non-Cryptographic Fault-Tolerant Distributed Computation. In 20th
ACM Symposium on the Theory of Computing, pages 1-10, 1988.

[46] E.R. Berlekamp. Factoring Polynomials over Large Finite Fields. Mathe-
matics of Computation, Vol. 24, pages 713-735, 1970.

[47] E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg. On the Inher-
ent Intractability of Certain Coding Problems. IEEE Trans. on Inform.
Theory, 1978.

[48] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC:
Fast and Secure Message Authentication. In Crypto99, Springer Lecture
Notes in Computer Science (Vol. 1666), pages 216-233.

[49] M. Blum. How to Exchange Secret Keys. ACM Trans. Comput. Sys.,
Vol. 1, pages 175-193, 1983.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 783

[50] M. Blum. Coin Flipping by Phone. In the 24th IEEE Computer Confer-
ence (CompCon), pages 133-137, February 1982. See also SIGACT News,
Vol. 15, No. 1, 1983.

[51] L. Blum, M. Blum and M. Shub. A Simple Secure Unpredictable Pseudo-
Random Number Generator. SIAM Journal on Computing, Vol. 15, 1986,
pages 364-383.

[52] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-
Knowledge Proof Systems. SIAM Journal on Computing, Vol. 20, No. 6,
pages 1084-1118, 1991. (Considered the journal version of [53].)

[53] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and
its Applications. In 20th ACM Symposium on the Theory of Computing,
pages 103-112, 1988. See [52].

[54] M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key En-
cryption Scheme which hides all partial information. In Crypto84, Lecture
Notes in Computer Science (Vol. 196) Springer-Verlag, pages 289-302.

[55] M. Blum and S. Micali. How to Generate Cryptographically Strong Se-
quences of Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13,
pages 850-864, 1984. Preliminary version in 28rd IEEE Symposium on
Foundations of Computer Science, 1982.

[56] R. Boppana, J. Hastad, and S. Zachos. Does Co-NP Have Short Interactive
Proofs? Information Processing Letters, 25, May 1987, pp. 127-132.

[57] J.B. Boyar. Inferring Sequences Produced by Pseudo-Random Number
Generators. Journal of the ACM, Vol. 36, pages 129-141, 1989.

[58] G. Brassard. A Note on the Complexity of Cryptography. IEEE Trans.
on Inform. Th., Vol. 25, pages 232-233, 1979.

[59] G. Brassard. Quantum Information Processing: The Good, the Bad
and the Ugly. In Crypto97, Springer Lecture Notes in Computer Science
(Vol. 1294), pages 337-341.

[60] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of
Knowledge. Journal of Computer and System Science, Vol. 37, No. 2,
pages 156-189, 1988. Preliminary version by Brassard and Crépeau in
27th IEEE Symposium on Foundations of Computer Science, 1986.

[61] G. Brassard and C. Crépeau. Zero-Knowledge Simulation of Boolean Cir-
cuits. In Crypto86, Springer-Verlag Lecture Notes in Computer Science
(Vol. 263), pages 223-233, 1987.

[62] G. Brassard, C. Crépeau and M. Yung. Constant-Round Perfect Zero-
Knowledge Computationally Convincing Protocols. Theoretical Computer
Science, Vol. 84, pages 23-52, 1991.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

784 BIBLIOGRAPHY

[63] E.F. Brickell and A.M. Odlyzko. Cryptanalysis: A Survey of Recent Re-
sults. In Proceedings of the IEEFE, Vol. 76, pages 578-593, 1988.

[64] C. Cachin and U. Maurer. Unconditional security against memory-
bounded adversaries. In Crypto97, Springer Lecture Notes in Computer
Science (Vol. 1294), pages 292-306.

[65] R. Canetti. Studies in Secure Multi-Party Computation and Applications.
Ph.D. Thesis, Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel, June 1995. Available from
from http://theory.lcs.mit.edu/~tcryptol/BO0KS/ran-phd.html.

[66] R. Canetti. Security and Composition of Multi-party Cryptographic Pro-
tocols. Journal of Cryptology, Vol. 13, No. 1, pages 143-202, 2000.

[67] R. Canetti. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In 42nd IEEE Symposium on Foundations of Com-
puter Science, pages 136-145, 2001. Full version (with different title) is
available from Cryptology ePrint Archive, Report 2000/067.

[68] R. Canetti, I. Damgard, S. Dziembowski, Y. Ishai and T. Malkin. On
adaptive versus non-adaptive security of multiparty protocols. Journal of
Cryptology, to appear.

[69] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Multi-
party Computation. In 28th ACM Symposium on the Theory of Comput-
ing, pages 639-648, 1996.

[70] R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology,
Revisited. In 30th ACM Symposium on the Theory of Computing, pages
209-218, 1998.

[71] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-
Knowledge. In 32nd ACM Symposium on the Theory of Computing, pages
235244, 2000.

[72] R. Canetti, S. Halevi and A. Herzberg. How to Maintain Authenticated
Communication in the Presence of Break-Ins. Journal of Cryptology,
Vol. 13, No. 1, pages 61-106, 2000.

[73] R. Canetti and A. Herzberg. Maintaining Security in the Presence of
Transient Faults. In Crypto9/, Springer-Verlag Lecture Notes in Computer
Science (Vol. 839), pages 425-439.

[74] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent
Zero-Knowledge Requires (logn) Rounds. In 83rd ACM Symposium on
the Theory of Computing, pages 570-579, 2001.

[75] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Com-
posable Two-Party and Multi-Party Secure Computation. In 34th ACM
Symposium on the Theory of Computing, pages 494-503, 2002.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 785

[76] E.R. Canfield, P. Erdos, and C. Pomerance. On a problem of Oppenheim
concerning “factorisatio numerorum”. J. Number Theory, Vol. 17, pages
1-28, 1983.

[77] L. Carter and M. Wegman. Universal Hash Functions. Journal of Com-
puter and System Science, Vol. 18, 1979, pages 143-154.

[78] D. Chaum. Blind Signatures for Untraceable Payments. In Crypto82,
Plenum Press, pages 199-203, 1983.

[79] D. Chaum, C. Crépeau and I. Damgard. Multi-party unconditionally Se-
cure Protocols. In 20th ACM Symposium on the Theory of Computing,
pages 11-19, 1988.

[80] B. Chor, S. Goldwasser, S. Micali and B. Awerbuch. Verifiable Secret
Sharing and Achieving Simultaneity in the Presence of Faults. In 26th
IEEE Symposium on Foundations of Computer Science, pages 383-395,
1985.

[81] B. Chor and E. Kushilevitz. A Zero-One Law for Boolean Privacy. SIAM
J. on Disc. Math., Vol. 4, pages 36-47, 1991.

[82] R. Cleve. Limits on the Security of Coin Flips when Half the Processors
are Faulty. In 18th ACM Symposium on the Theory of Computing, pages
364-369, 1986.

[83] J.D. Cohen and M.J. Fischer. A Robust and Verifiable Cryptographically
Secure Election Scheme. In 26th IEEE Symposium on Foundations of
Computer Science, pages 372—-382, 1985.

[84] A. Cohen and A. Wigderson. Dispensers, Deterministic Amplification,
and Weak Random Sources. 30th IEEE Symposium on Foundations of
Computer Science, 1989, pages 14-19.

[85] R. Cramer and I. Damgard. New Generation of Secure and Practical
RSA-based Signatures. In Crypto96, Springer Lecture Notes in Computer
Science (Vol. 1109), pages 173-185.

[86] R. Cramer and V. Shoup. A Practical Public-Key Cryptosystem Prov-
ably Secure Against Adaptive Chosen Ciphertext Attacks. In Crypto98,
Springer-Verlag Lecture Notes in Computer Science (Vol. 1462), pages 13—
25.

[87] C. Crépeau. Efficient Cryptographic Protocols Based on Noisy Channels.
In EuroCrypt97, Springer, Lecture Notes in Computer Science (Vol. 1233),
pages 306-317.

[88] I. Damgard. Collision Free Hash Functions and Public Key Signature
Schemes. In EuroCrypt87, Springer-Verlag, Lecture Notes in Computer
Science (Vol. 304), pages 203-216.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

786 BIBLIOGRAPHY

[89] I. Damgard. A Design Principle for Hash Functions. In Crypto89, Springer-
Verlag Lecture Notes in Computer Science (Vol. 435), pages 416-427.

[90] I. Damgard. Concurrent Zero-Knowledge in Easy in Practice. Theory
of Cryptography Li-
brary, 99-14, June 1999. http://philby.ucsd.edu/cryptolib. See also
“Efficient Concurrent Zero-Knowledge in the Auxiliary String Model” (in
Eurocrypt’00, 2000).

[91] I. Damgard, O. Goldreich, T. Okamoto and A. Wigderson. Honest Verifier
vs Dishonest Verifier in Public Coin Zero-Knowledge Proofs. In Crypto95,
Springer-Verlag Lecture Notes in Computer Science (Vol. 963), pages 325—
338, 1995.

[92] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai.
Robust Non-interactive Zero-Knowledge. In Crypto0I, Springer Lecture
Notes in Computer Science (Vol. 2139), pages 566—598.

[93] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In Crypto89,
Springer-Verlag Lecture Notes in Computer Science (Vol. 435), pages 307—
315.

[94] W. Diffie, and M.E. Hellman. New Directions in Cryptography. IEEFE
Trans. on Info. Theory, IT-22 (Nov. 1976), pages 644-654.

[95] H. Dobbertin. The Status of MD5 after a Recent Attack. In CryptoBytes,
RSA Lab., Vol. 2, No. 2, 1996.

[96] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In 23rd
ACM Symposium on the Theory of Computing, pages 542-552, 1991. Full
version available from authors.

[97] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message
transmission. Journal of the ACM, Vol. 40 (1), pages 17-47, 1993.

[98] D. Dolev and A.C. Yao. On the Security of Public-Key Protocols. IEEE
Trans. on Inform. Theory, Vol. 30, No. 2, pages 198—208, 1983.

[99] D. Dolev and H.R. Strong. Authenticated Algorithms for Byzantine Agree-
ment. SIAM Journal on Computing, Vol. 12, pages 656—666, 1983.

[100] C. Dwork, U. Feige, J. Kilian, M. Naor and S. Safra. Low Communication
Perfect Zero Knowledge Two Provers Proof Systems. In Crypto92, Springer
Verlag, Lecture Notes in Computer Science (Vol. 740), pages 215-227.

[101] C. Dwork, and M. Naor. An Efficient Existentially Unforgeable Signature
Scheme and its Application. Journal of Cryptology, Vol. 11 (3), pages
187-208, 1998

[102] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th
STOC, pages 409-418, 1998.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 787

[103] S. Even and O. Goldreich. On the Security of Multi-party Ping-Pong
Protocols. In 24th IEEE Symposium on Foundations of Computer Science,
pages 34-39, 1983.

[104] S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for Signing
Contracts. CACM, Vol. 28, No. 6, 1985, pages 637—647.

[105] S. Even, O. Goldreich and S. Micali. On-line/Off-line Digital signatures.
Journal of Cryptology, Vol. 9, 1996, pages 35-67.

[106] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Prob-
lems with Applications to Public-Key Cryptography. Inform. and Control,
Vol. 61, pages 159-173, 1984.

[107] S. Even and Y. Yacobi. Cryptography and NP-Completeness. In proceed-
ings of 7th ICALP, Springer-Verlag Lecture Notes in Computer Science
(Vol. 85), pages 195-207, 1980. See [106].

[108] U. Feige. Error reduction by parallel repetition — the state of the art. Tech-
nical report C395-32, Computer Science Department, Weizmann Institute
of Science, Rehovot, ISREAL, 1995.

[109] U. Feige, A. Fiat and A. Shamir. Zero-Knowledge Proofs of Identity.
Journal of Cryptology, Vol. 1, 1988, pages 77-94.

[110] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-
Knowledge Proofs Under General Assumptions. SIAM Journal on Com-
puting, Vol. 29 (1), pages 1-28, 1999.

[111] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two
Rounds. In Crypto89, Springer-Verlag Lecture Notes in Computer Science
(Vol. 435), pages 526-544.

[112] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding
Protocols. In 22nd ACM Symposium on the Theory of Computing, pages
416-426, 1990.

[113] W. Feller. An Introduction to Probability Theory and Its Applications.
John Wiley, New York, 1968.

[114] A.Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Iden-
tification and Signature Problems. In Crypto86, Springer-Verlag Lecture
Notes in Computer Science (Vol. 263), pages 186-189, 1987.

[115] M. Fischer, S. Micali, C. Rackoff, and D.K. Wittenberg. An Oblivi-
ous Transfer Protocol Equivalent to Factoring. Unpublished manuscript,
1986. Preliminary versions were presented in EuroCrypt84, and in the NSF
Workshop on Mathematical Theory of Security, Endicott House (1985).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

788 BIBLIOGRAPHY

[116] R. Fischlin and C.P. Schnorr. Stronger Security Proofs for RSA and Ra-
bin Bits. In EuroCrypt97, Springer Lecture Notes in Computer Science
(Vol. 1233), pages 267-279, 1997.

[117] L. Fortnow, The Complexity of Perfect Zero-Knowledge. In 19th ACM
Symposium on the Theory of Computing, pages 204-209, 1987.

[118] A.M. Frieze, J. Hastad, R. Kannan, J.C. Lagarias, and A. Shamir. Re-
constructing Truncated Integer Variables Satisfying Linear Congruences.
SIAM Journal on Computing, Vol. 17, pages 262—-280, 1988.

[119] O. Gaber and Z. Galil. Explicit Constructions of Linear Size Superconcen-
trators. Journal of Computer and System Science, Vol. 22, pages 407—-420,
1981.

[120] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, New York,
1979.

[121] P.S. Gemmell. An Introduction to Threshold Cryptography. In Crypto-
Bytes, RSA Lab., Vol. 2, No. 3, 1997.

[122] R. Gennaro, M. Rabin and T. Rabin. Simplified VSS and Fast-track Mul-
tiparty Computations with Applications to Threshold Cryptography. In
17th ACM Symposium on Principles of Distributed Computing, pages 101—
112, 1998.

[123] R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. ECCC, TR00-022, May 2000.

[124] E.N. Gilbert, F.J. MacWilliams, and N.J.A. Sloane. Codes which detect
deception. Bell Syst. Tech. J., Vol. 53, pages 405-424, 1974.

[125] O. Goldreich. Two Remarks Concerning the GMR Signature Scheme. In
Crypto86, Springer-Verlag Lecture Notes in Computer Science (Vol. 263),
pages 104-110, 1987.

[126] O. Goldreich. Towards a Theory of Software Protection and Simulation by
Oblivious RAMs. In 19th ACM Symposium on the Theory of Computing,
pages 182-194, 1987.

[127] O. Goldreich. Foundation of Cryptography — Class Notes. Preprint, Spring
1989. Superseded by the current work.

[128] O. Goldreich. Lecture Notes on Encryption, Signatures and
Cryptographic Protocol. Extracts from [127]. Available from
http://www.wisdom.weizmann.ac.il/~oded/foc.html Superseded by
the current work.

[129] O. Goldreich. A Note on Computational Indistinguishability. Information
Processing Letters, Vol. 34, pages 277-281, May 1990.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 789

[130] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-
Knowledge. Journal of Cryptology, Vol. 6, No. 1, pages 21-53, 1993.

[131] O. Goldreich. Foundation of Cryptography — Fragments of a Book. Febru-
ary 1995. Available from
http://www.wisdom.weizmann.ac.il/~oded/foc.html Superseded by
the current work.

[132] O. Goldreich. Notes on Levin’s Theory of Average-Case Complexity.
ECCC, TR97-058, Dec. 1997.

[133] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudoran-
domness. Algorithms and Combinatorics series (Vol. 17), Springer, 1999.

[134] O. Goldreich. Secure Multi-Party Computation. Unpublished manuscript,
1998. Available from
http://www.wisdom.weizmann.ac.il/~oded/foc.html Superseded by
the current work.

[135] O. Goldreich.
Encryption Schemes — fragments of a chapter. December 1999. Avail-
able from http://www.wisdom.weizmann.ac.il/~oded/foc-book.html
Superseded by the current work.

[136] O. Goldreich. Signature Schemes — fragments of a chapter. May 2000.
Avail-
able from http://www.wisdom.weizmann.ac.il/~oded/foc-book.html
Superseded by the current work.

[137] O. Goldreich. Foundation of Cryptography — Basic Tools. Cambridge
University Press, 2001.

[138] O. Goldreich. Concurrent Zero-Knowledge With Timing, Revisited. In
34th ACM Symposium on the Theory of Computing, pages 332—-340, 2002.

[139] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-Free Hashing from
Lattice Problems. ECCC, TR95-042, 1996.

[140] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random
Functions. Journal of the ACM, Vol. 33, No. 4, pages 792-807, 1986.

[141] O. Goldreich, S. Goldwasser, and S. Micali. On the Cryptographic Appli-
cations of Random Functions. In Crypto84, Springer-Verlag Lecture Notes
in Computer Science (Vol. 263), pages 276-288, 1985.

[142] O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuck-
erman. Security Preserving Amplification of Hardness. In 31st IEEE
Symposium on Foundations of Computer Science, pages 318-326, 1990.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

790 BIBLIOGRAPHY

[143] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-
Knowledge Proof Systems for NP. Journal of Cryptology, Vol. 9, No. 2,
pages 167-189, 1996. Preliminary versions date to 1988.

[144] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge
Proof Systems. SIAM Journal on Computing, Vol. 25, No. 1, February
1996, pages 169-192.

[145] O. Goldreich and H. Krawczyk. On Sparse Pseudorandom Ensembles.
Random Structures and Algorithms, Vol. 3, No. 2, (1992), pages 163—174.

[146] O. Goldreich, H. Krawcyzk and M. Luby. On the Existence of Pseudo-
random Generators. SIAM Journal on Computing, Vol. 22-6, pages 1163—
1175, 1993.

[147] O. Goldreich and E. Kushilevitz. A Perfect Zero-Knowledge Proof for a
Decision Problem Equivalent to Discrete Logarithm. Journal of Cryptol-
ogy, Vol. 6 (2), pages 97-116, 1993.

[148] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Func-
tion. In 21st ACM Symposium on the Theory of Computing, pages 25-32,
1989.

[149] O. Goldreich and Y. Lindell. Session-Key Generation using Human Pass-
words. In Crypto01, Springer-Verlag Lecture Notes in Computer Science
(Vol. 2139), pages 408-432.

[150] O. Goldreich, Y. Lustig and M. Naor. On Chosen Ciphertext Security of
Multiple Encryptions. Cryptology ePrint Archive, Report 2002/089, 2002.

[151] O. Goldreich and B. Meyer. Computational Indistinguishability — Algo-
rithms vs. Circuits. Theoretical Computer Science, Vol. 191, pages 215—
218, 1998.

[152] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing
but their Validity or All Languages in NP Have Zero-Knowledge Proof
Systems. Journal of the ACM, Vol. 38, No. 1, pages 691-729, 1991. Pre-
liminary version in 27th IEEE Symposium on Foundations of Computer
Science, 1986.

[153] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game
— A Completeness Theorem for Protocols with Honest Majority. In 19th
ACM Symposium on the Theory of Computing, pages 218—229, 1987.

[154] O. Goldreich, N. Nisan and A. Wigderson. On Yao’s XOR-Lemma. ECCC,
TR95-050, 1995.

[155] O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge
Proof Systems. Journal of Cryptology, Vol. 7, No. 1, pages 1-32, 1994.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 791

[156] O. Goldreich and E. Petrank. Quantifying Knowledge Complexity. Com-
putational Complexity, Vol. 8, pages 50-98, 1999.

[157] O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials with
queries: the highly noisy case. To appear in SIAM Journal on Discrete
Mathematics.

[158] O. Goldreich, A. Sahai, and S. Vadhan. Honest-Verifier Statistical Zero-
Knowledge equals general Statistical Zero-Knowledge. In $0th ACM Sym-
posium on the Theory of Computing, pages 399—408, 1998.

[159] O. Goldreich and M. Sudan. Computational Indistinguishability: A Sam-
ple Hierarchy. Journal of Computer and System Science, Vol. 59, pages
253-269, 1999.

[160] O. Goldreich and S. Vadhan. Comparing Entropies in Statistical Zero-
Knowledge with Applications to the Structure of SZK. In 14th IEEE
Conference on Computational Complexity, pages 5473, 1999.

[161] O. Goldreich and R. Vainish. How to Solve any Protocol Problem — An
Efficiency Improvement. In Crypto87, Springer Verlag, Lecture Notes in
Computer Science (Vol. 293), pages 73-86.

[162] S. Goldwasser and J. Kilian. Primality Testing Using Elliptic Curves.
Journal of the ACM, Vol. 46, pages 450-472, 1999. Preliminary version in
18th ACM Symposium on the Theory of Computing, 1986.

[163] S. Goldwasser and L.A. Levin. Fair Computation of General Functions
in Presence of Immoral Majority. In Crypto90, Springer-Verlag Lecture
Notes in Computer Science (Vol. 537), pages 77-93.

[164] S. Goldwasser and Y. Lindell. Secure Computation Without Agree-
ment. In 16th International Symposium on Distributed Computing (DISC),
Springer-Verlag (LNCS 2508), pages 17-32, 2002.

[165] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Com-
puter and System Science, Vol. 28, No. 2, pages 270-299, 1984. Preliminary
version in 14th ACM Symposium on the Theory of Computing, 1982.

[166] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of
Interactive Proof Systems. SIAM Journal on Computing, Vol. 18, pages
186—208, 1989. Preliminary version in 17th ACM Symposium on the Theory
of Computing, 1985.

[167] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Se-
cure Against Adaptive Chosen-Message Attacks. SIAM Journal on Com-
puting, April 1988, pages 281-308.

[168] S. Goldwasser, S. Micali and P. Tong. Why and How to Establish a Private
Code in a Public Network. In 23rd IEEE Symposium on Foundations of
Computer Science, 1982, pages 134-144.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

792 BIBLIOGRAPHY

[169] S. Goldwasser, S. Micali and A.C. Yao. Strong Signature Schemes. In 15th
ACM Symposium on the Theory of Computing, pages 431-439, 1983.

[170] S. Goldwasser and R. Ostrovsky. Invariant Signatures and Non-Interactive
Zero-Knowledge Proofs are Equivalent. In Crypto92, Springer-Verlag Lec-
ture Notes in Computer Science (Vol. 740), pages 228-245, 1992.

[171] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interac-
tive Proof Systems. Advances in Computing Research: a research annual,
Vol. 5 (Randomness and Computation, S. Micali, ed.), pages 73-90, 1989.

[172] S. Haber and S. Micali. Private communication, 1986.

[173] J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom
Generator from any One-way Function. SIAM Journal on Computing,
Volume 28, Number 4, pages 1364-1396, 1999. Preliminary versions by
Impagliazzo et. al. in 21st ACM Symposium on the Theory of Computing
(1989) and Hastad in 22nd ACM Symposium on the Theory of Computing
(1990).

[174] J. Hastad, A. Schrift and A. Shamir. The Discrete Logarithm Modulo a
Composite Hides O(n) Bits. Journal of Computer and System Science,
Vol. 47, pages 376-404, 1993.

[175] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable
in secure multi-party computation. Journal of Cryptology, Vol. 13, No. 1,
pages 31-60, 2000.

[176] R. Impagliazzo and M. Luby. One-Way Functions are Essential for Com-
plexity Based Cryptography. In 30th IEEE Symposium on Foundations of
Computer Science, pages 230-235, 1989.

[177] R. Impagliazzo and M. Naor. Efficient Cryptographic Schemes Provable as
Secure as Subset Sum. Journal of Cryptology, Vol. 9, 1996, pages 199-216.

[178] R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of
One-Way Permutations. In 21st ACM Symposium on the Theory of Com-
puting, pages 44-61, 1989.

[179] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential cir-
cuits: Derandomizing the XOR Lemma. In 29th ACM Symposium on the
Theory of Computing, pages 220-229, 1997.

[180] R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. In
30th IEEE Symposium on Foundations of Computer Science, 1989, pages
248-253.

[181] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. In
Crypto87, Springer-Verlag Lecture Notes in Computer Science (Vol. 293),
pages 40-51, 1987.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 793

[182] A. Juels, M. Luby and R. Ostrovsky. Security of Blind Digital Signatures.
In Crypto97, Springer Lecture Notes in Computer Science (Vol. 1294).

[183] J. Justesen. A class of constructive asymptotically good alegbraic codes.
IEEFE Trans. Inform. Theory, Vol. 18, pages 652—656, 1972.

[184] N. Kahale. Eigenvalues and Expansion of Regular Graphs. Journal of the
ACM, Vol. 42 (5), pages 1091-1106, 1995.

[185] J. Kahn, M. Saks, and C. Smyth. A Dual Version of Reimer’s Inequality
and a Proof of Rudich’s Conjecture. In 15th IEEE Conference on Compu-
tational Complexity, 2000.

[186] B.S. Kaliski. Elliptic Curves and Cryptography: A Pseudorandom Bit
Generator and Other Tools. Ph.D. Thesis, LCS, MIT, 1988.

[187] J. Katz and M. Yung. Complete Characterization of Security Notions for
Probabilistic Private-Key Encryption. In $2nd ACM Symposium on the
Theory of Computing, pages 245-254, 2000.

[188] J. Kilian. Basing Cryptography on Oblivious Transfer. In 20th ACM
Symposium on the Theory of Computing, pages 20-31, 1988.

[189] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In
24th ACM Symposium on the Theory of Computing, pages 723-732, 1992.

[190] J. Kilian and E. Petrank. An Efficient Non-Interactive Zero-Knowledge
Proof System for NP with General Assumptions. Journal of Cryptology,
Vol. 11, pages 1-27, 1998.

[191] J. Kilian and E. Petrank Concurrent and Resettable Zero-Knowledge in
Poly-logarithmic Rounds In 33rd ACM Symposium on the Theory of Com-
puting, pages 560-569, 2001.

[192] H. Krawczyk. LFSR-based Hashing and Authentication. In Crypto94,
Lecture Notes in Computer Science (Vol. 839), Springer-Verlag, pages 129
139.

193] H. Krawczyk. New Hash Functions For Message Authentication. In Euro-
g
Crypt95, Springer-Verlag, Lecture Notes in Computer Science (Vol. 921),
pages 301-310.

[194] J.C. Lagarias and A.M. Odlyzko. Solving Low-Density Subset Sum Prob-
lems. Journal of the ACM, Vol. 32, pages 229-246, 1985.

[195] D. Lapidot and A. Shamir. Fully parallelized multi-prover protocols for
NEXP-time. Journal of Computer and System Science, Vol. 54 (2), pages
215-220, April 1997.

[196] A. Lempel. Cryptography in Transition. Computing Surveys, Dec. 1979.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

794 BIBLIOGRAPHY

[197] A.K. Lenstra, H.W. Lenstra, L. Lovasz. Factoring polynomials with ratio-
nal coefficients. Mathematische Annalen 261, pages 515-534, 1982.

[198] L.A. Levin. Average Case Complete Problems. SIAM Journal on Com-
puting, Vol. 15, pages 285-286, 1986.

[199] L.A. Levin. One-Way Function and Pseudorandom Generators. Combina-
torica, Vol. 7, pages 357-363, 1987.

[200] L.A. Levin. Randomness and Non-determinism. J. Symb. Logic, Vol. 58(3),
pages 1102-1103, 1993.

[201] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complezity and its
Applications. Springer Verlag, August 1993.

[202] Y. Lindell. A Simpler Construction of CCA2-Secure Public-Key Encryp-
tion Under General Assumptions. In EuroCrypt03, Springer Lecture Notes
in Computer Science (Vol. 2656), pages 241-254, 2003.

[203] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party
Computation. In Crypto01, Springer Lecture Notes in Computer Science
(Vol. 2139), pages 171-189, 2001.

[204] Y. Lindell, A. Lysyanskaya and T. Rabin. On the Composition of Authen-
ticated Byzantine Agreement. In 34th ACM Symposium on the Theory of
Computing, pages 514-523, 2002.

[205] J.H. van Lint. Introduction to Coding Theory. Springer-Verlag, Graduate
Texts in Mathematics (#88), New York, 1982.

[206] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan Graphs. Combinatorica,
Vol. 8, pages 261-277, 1988.

[207] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton
University Press, 1996.

[208] M. Luby and C. Rackoff. How to Construct Pseudorandom Permutations
from Pseudorandom Functions. SIAM Journal on Computing, Vol. 17,
1988, pages 373-386.

[209] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for
Interactive Proof Systems. Journal of the ACM, Vol. 39, No. 4, pages
859-868, 1992.

[210] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San
Mateo, CA, 1996.

[211] U. Maurer. Secret Key Agreement by Public Discussion from Common
Information. IEEE Trans. on Inform. Th. , Vol. 39 (No. 3), pages 733—
742, May 1993.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 795

[212] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[213] R.C. Merkle. Secure Communication over Insecure Channels. CACM,
Vol. 21, No. 4, pages 294-299, 1978.

[214] R.C. Merkle. Protocols for public key cryptosystems. In Proc. of the 1980
Symposium on Security and Privacy.

[215] R.C. Merkle. A Digital Signature Based on a Conventional Encryption
Function. In Crypto87, Springer-Verlag Lecture Notes in Computer Science
(Vol. 293), 1987, pages 369-378.

[216] R.C. Merkle. A Certified Digital Signature Scheme. In Crypto89, Springer-
Verlag Lecture Notes in Computer Science (Vol. 435), pages 218-238.

[217] R.C. Merkle and M.E. Hellman. Hiding Information and Signatures in
Trapdoor Knapsacks. IEEE Trans. Inform. Theory, Vol. 24, pages 525—
530, 1978.

[218] S. Micali, M.O. Rabin, and S. Vadhan. Verifiable Random Functions. In
40th IEEE Symposium on Foundations of Computer Science, pages 120—
130, 1999.

[219] S. Micali, C. Rackoft, and B. Sloan. The Notion of Security for Probabilistic
Cryptosystems. SIAM Journal on Computing, Vol. 17, pages 412-426,
1988.

[220] S. Micali and P. Rogaway. Secure Computation. In Crypto91, Springer-
Verlag Lecture Notes in Computer Science (Vol. 576), pages 392-404.

[221] D. Micciancio. Oblivious Data Structures: Applications to Cryptography.
In 29th ACM Symposium on the Theory of Computing, pages 456—464,
1997.

[222] G.L. Miller. Riemann’s Hypothesis and Tests for Primality. Journal of
Computer and System Science, Vol. 13, pages 300-317, 1976.

[223] R. Motwani and P. Raghavan. Randomized Algorithms, Cambridge Uni-
versity Press, 1995.

[224] National Bureau of Standards. Federal Information Processing Standards,
Publ. 46 (DES 1977).

[225] National Institute for Standards and Technology. Digital Signature Standard
(Dss), Federal Register, Vol. 56, No. 169, August 1991.

[226] M. Naor. Bit Commitment using Pseudorandom Generators. Journal of
Cryptology, Vol. 4, pages 151-158, 1991.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

796 BIBLIOGRAPHY

[227] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Zero-Knowledge
Arguments for NP can be Based on General Assumptions. Journal of
Cryptology, Vol. 11, pages 87-108, 1998.

[228] M. Naor and O. Reingold. Synthesizers and their Application to the Paral-
lel Construction of Pseudo-Random Functions. In $6th IEEE Symposium
on Foundations of Computer Science, pages 170-181, 1995.

[229] M. Naor and O. Reingold. On the Construction of Pseudo-Random Per-
mutations: Luby-Rackoft Revisited. Journal of Cryptology, Vol. 12 (1),
pages 29-66, 1999.

[230] M. Naor and O. Reingold. From Unpredictability to Indistinguishabil-
ity: A Simple Construction of Pseudorandom Functions from MACs. In
Crypto98, Springer Lecture Notes in Computer Science (Vol. 1464), pages
267-282.

[231] M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryp-
tographic Application. 21st ACM Symposium on the Theory of Computing,
1989, pages 33-43.

[232] M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure
Against Chosen Ciphertext Attacks. In 22nd ACM Symposium on the
Theory of Computing, pages 427-437, 1990.

[233] N. Nisan and D. Zuckerman. Randomness is Linear in Space. Journal of
Computer and System Science, Vol. 52 (1), pages 43-52, 1996.

[234] A.M. Odlyzko. The future of integer factorization. CryptoBytes (The
technical newsletter of RSA Laboratories), Vol. 1 (No. 2), pages 5-12,
1995. Available from http://www.research.att.com/~amo

[235] A.M. Odlyzko. Discrete logarithms and smooth polynomials. In Finite
Fields: Theory, Applications and Algorithms, G. L. Mullen and P. Shiue,
eds., Amer. Math. Soc., Contemporary Math. Vol. 168, pages 269278,
1994. Available from http://www.research.att.com/~amo

[236] T. Okamoto. On relationships between statistical zero-knowledge proofs.
In 28th ACM Symposium on the Theory of Computing, pages 649-658,
1996.

[237] R. Ostrovsky, R. Venkatesan and M. Yung, “Secure Commitment Against
Powerful Adversary: A Security Primitive based on Average Intractability.

In Proceedings of the 9th Symposium on Theoretical Aspects of Computer
Science (STACS92), pages 439-448.

[238] R. Ostrovsky and A. Wigderson. One-Way Functions are essential for Non-
Trivial Zero-Knowledge. In 2nd Israel Symp. on Theory of Computing and
Systems, IEEE Comp. Soc. Press, pages 3—17, 1993.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 797

[239] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks.
In 10th ACM Symposium on Principles of Distributed Computing, pages
51-59, 1991.

[240] T.P. Pedersen and B. Pfitzmann. Fail-Stop Signatures. SIAM Journal on
Computing, Vol. 26/2, pages 291-330, 1997. Based on several earlier work
(see first footnote in the paper).

[241] B. Pfitzmann. Digital Signature Schemes (General Framework and Fail-
Stop Signatures). Springer Lecture Notes in Computer Science (Vol. 1100),
1996.

[242] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-Knowledge
Proofs in Logarithmic Number of Rounds. In 43rd IEEE Symposium on
Foundations of Computer Science, 2002.

[243] V. Pratt. Every Prime has a Succinct Certificate. SIAM Journal on
Computing, Vol. 4, pages 214-220, 1975.

[244] M.O. Rabin. Probabilistic Algorithm for Testing Primality. Journal of
Number Theory, Vol. 12, pages 128-138, 1980.

[245] M.O. Rabin. Digitalized Signatures. In Foundations of Secure Computa-
tion (R.A. DeMillo et. al. eds.), Academic Press, 1977.

[246] M.O. Rabin. Digitalized Signatures and Public Key Functions as In-
tractable as Factoring. MIT/LCS/TR-212, 1979.

[247] M.O. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo
TR-81, Aiken Computation Laboratory, Harvard U., 1981.

[248] C. Rackoff and D.R. Simon. Non-Interactive Zero-Knowledge Proof of
Knowledge and Chosen Ciphertext Attack. In Crypto91, Springer Verlag,
Lecture Notes in Computer Science (Vol.), pages 433-444.

[249] R. Raz. A Parallel Repetition Theorem. SIAM Journal on Computing,
Vol. 27 (3), pages 763-803, 1998.

[250] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-
Knowledge Proofs. In EuroCrypt99, Springer LNCS 1592, pages 415—413.

[251] R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital
Signatures and Public Key Cryptosystems. CACM, Vol. 21, Feb. 1978,
pages 120-126.

[252] P. Rogaway. The
Round Complexity of Secure Protocols. MIT Ph.D. Thesis, June 1991.
Available from http://www.cs.ucdavis.edu/~rogaway/papers.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

798 BIBLIOGRAPHY

[253] J. Rompel. One-way Functions are Necessary and Sufficient for Secure
Signatures. In 22nd ACM Symposium on the Theory of Computing, 1990,
pages 387-394.

[254] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Achieving
Chosen-Ciphertext Security. In 40th IEEE Symposium on Foundations of
Computer Science, pages 543-553, 1999.

[255] A. Sahai. Improved Constructions Achieving Chosen-Ciphertext Security.
In preparation, 2001. See [92].

[256] A. Sahai and S. Vadhan. A Complete Promise Problem for Statistical
Zero-Knowledge. In 38th IEEE Symposium on Foundations of Computer
Science, pages 448-457, 1997.

[257] C.P. Schnorr and H.H. Horner, Attacking the Chor-Rivest Cryptosystem
by Improved Lattice Reduction. In FuroCrypt95, Springer-Verlag Lecture
Notes in Computer Science (Vol. 921), pages 1-12.

[258] A. Shamir. On the Cryptocomplexity of Knapsack systems. 11th ACM
Symposium on the Theory of Computing, pages 118-129, 1979.

[259] A. Shamir. How to Share a Secret. CACM, Vol. 22, Nov. 1979, pages
612-613.

[260] A. Shamir. A Polynomial-Time Algorithm for Breaking the Merkle-
Hellman Cryptosystem. In 23rd IEEE Symposium on Foundations of Com-
puter Science, pages 145-152, 1982.

[261] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages
869-877, 1992.

[262] A.Shamir, R.L. Rivest, and L. Adleman. Mental Poker. MIT /LCS Report
TM-125, 1979.

[263] C.E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech.
J., Vol. 28, pages 656715, 1949.

[264] M. Sipser. A Complexity Theoretic Approach to Randomness. In 15th
ACM Symposium on the Theory of Computing, pages 330-335, 1983.

[265] M. Sipser. Introduction to the Theory of Computation. PWS Publishing
Company, 1997.

[266] R. Solovay and V. Strassen. A Fast Monte-Carlo Test for Primality. SIAM
Journal on Computing, Vol. 6, pages 84-85, 1977. Addendum in SIAM
Journal on Computing, Vol. 7, page 118, 1978.

[267] D. Stinson Universal hashing and authentication codes. Designs, Codes
and Cryptography, Vol. 4, pages 369-380, 1994.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 799

[268] M. Sudan. Decoding of Reed-Solomon Codes beyond the error-correction
Bound. Jour. of Complezity, Vol. 13 (1), pages 180-193, 1997.

[269] M. Tompa and H. Woll, Random Self-Reducibility and Zero-Knowledge
Interactive Proofs of Possession of Information. In 28th IEEE Symposium
on Foundations of Computer Science, pages 472482, 1987.

[270] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD Thesis,
Department of Mathematics, MIT, 1999.

[271] S. Vadhan. On Constructing Locally Computable Extractors and Cryp-
tosystems in the Bounded Storage Model. Cryptology ePrint Archive, Re-
port 2002/162, 2002.

[272] A. Vardi. Algorithmic Complexity in Coding Theory and the Minimun
Distnace Problem. In 29th ACM Symposium on the Theory of Computing,
pages 92-108, 1997.

[273] U.V. Vazirani and V.V. Vazirani. Efficient and Secure Pseudo-Random
Number Generation. 25th IEEE Symposium on Foundations of Computer
Science, pages 458-463, 1984.

[274] M. Wegman and L. Carter. New Hash Functions and their Use in Au-
thentication and Set Equality. Journal of Computer and System Science,
Vol. 22, 1981, pages 265-279.

[275] A. D. Wyner. The Wire-Tap Channel. Bell System Technical Journal,
Vol. 54 (No. 8), pages 1355-1387, Oct. 1975.

[276] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE
Symposium on Foundations of Computer Science, pages 80-91, 1982.

[277] A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Sympo-
stum on Foundations of Computer Science, pages 162—-167, 1986.

