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Chapter 6

Digital Signatures and
Message Authentication

Message authentication and (digital) signatures were the first tasks that joined
encryption to form modern cryptography. Both message authentication and dig-
ital signatures are concerned with the “authenticity” of data, and the difference
between them is analogous to the difference between private-key and public-key
encryption schemes.

In this chapter, we define message authentication and digital signatures, and
the security notions associated to them. We show how to construct message
authentication schemes using pseudorandom functions, and how to construct
signature schemes using one-way permutations. We stress that the latter con-
struction employ one-way permutations that do not necessarily have a trapdoor.

6.1 Definitional Issues

Message authetication and signature schemes are supposed to enable reliable
transmission of data between parties. Loosely speaking, the receiver wishes
to be guaranteed that the data received was actually sent by the sender, rather
than modified (or even totally injected) by a third party. The difference between
message authetication and signature schemes lies in the identity of the receiver
and the level of trust that the sender has in it. Typically, message authenti-
cation schemes are employed in cases where the receiver is predetermined (at
the time of message transmission), whereas signature shemes allow verification
of the authenticity of the data by anybody. In other words, signature schemes
allow for universal verification, whereas message authentication schemes may
only allow predetermine parties to verify the authenticity of the data. In both
cases, the authentication process consists of two main processes: the generation
of message-authentication tags or signatures by the allenged sender, and the
verification of such tags or signatures by the receiver. As in case of encryption
schemes, there is a third (implicit) process that allows the sender to generate a

401



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

402CHAPTER 6. DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

tagging/signing key, along with a verification key. (The possession of the for-
mer key constitutes the sender’s advantage over the adversary; see analogous
discussion in the previous chapter.)

6.1.1 Message authentication versus signature schemes

The difference between message-authentication and signature schemes amounts
to the question of whether the adversary knows the verification key. In message-
authentication schemes, the verification key is only given to a set of predeter-
mined receivers that are all trusted not to abuse this knowledge; that is, in
such schemes it is postulated that the verification key is not (a-priori) known
to the adversary. On the other hand, in signature schemes, the aim is universal
verification and so the verification key is public, and hence known also to the
adversary.

Summary and terminology: Message authentication and signature schemes
differ in the question of whether the verification key is secret (i.e., unknown
to the adversary) or public (and also known to the adversary). Thus, in a
sense these are private-key and public-key versions of a task which lacks a good
name (since both authentication and signatures are already taken by one of
the versions). Still, seeking a uniform terminology, we shall sometimes refer to
message authentication schemes (also known as message authentication codes
(MAC)) as to private-key signature schemes. Analogously, we shall sometimes
refer to signature schemes as to public-key signature schemes.

6.1.2 Basic mechanism

We start by defining the basic mechanism of message-authentication and signa-
ture schemes. Recall that there are private-key and public-key versions, but the
difference between the two version is only reflected in the definition of security.
In contrast, the definition of the basic mechanism says nothing about the secu-
rity of the scheme (which is the subject of the next section), and thus is the same
for both the private-key and public-key versions. In both cases, the scheme con-
sists of three efficient algorithms: key generation, signing (or authenticating) and
verification. The basic requirement is that signatures that are produced by the
signing algorithm be accepted as valid by the verification algorithm, when fed a
verification-key corresponding to the signing-key used by the signing algorithm.

Definition 6.1.1 (signature scheme): A signature scheme is a triple, (G,S,V),
of probabilistic polynomial-time algorithms satisfying the following two condi-
tions

1. On input 1™, algorithm G (called the key generator) outputs a pair of bit
strings.
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2. For every pair (s,v) in the range of G(1"), and for every a € {0,1}*,
algorithms S (signing) and D (verification) satisfy

PriV(v,a, S(s,a))=1]=1

where the probability is taken over the internal coin tosses of algorithms S
and V.

The integer n serves as the security parameter of the scheme. Fach (s,v) in the
range of G(1™) consitutes a pair of corresponding signing/verification keys. The
string S(s,a) is a signature to the document o € {0,1}* using the signing key
S.

We stress that Definition 6.1.1 says nothing about security, and so trivial (in-
secure) algorithms may satisfy it (e.g., S(s,a) 0 and V(v,a,B) def 1). Fur-
thermore, Definition 6.1.1 does not distinguish private-key signature schemes
from public-key ones. The difference between the two types is introduced in
the security definitions: In a public-key scheme the “forging algorithm” gets the
verification key (i.e., v) as an additional input (and thus v # s follows); while
in private-key schemes v is not given to the “forging algorithm” (and thus one
may assume, without loss of generality, that v = s).

Notation: In the rest of this book, we write Ss(a) instead of S(s,a) and
Vi (a, B) instead of V (v, «, 8). Also, we let G1(1™) (resp., G2(1™)) denote the first
(resp., second) element in the pair G(1™). That is, G(1™) = (G1(1™), G2(1™)).
Without loss of generality, we may assume that |G1(1")| and |G2(1™)| are poly-
nomially related to n, and that each of these integers can be efficiently computed
from the other.

Comments: The above definition may be relaxed in several ways without
significantly harming its usefulness. For example, we may relax Condition (2)
and allow a negligible verification error (e.g., Pr[V(v,a, S(s,a)) # 1] = 27™).
Alternatively, one may postulate that Condition (2) holds for all but a negligible
measure of the key-pairs generated by G(1™). At least one of these relaxations
is essential for many suggestions of (public-key) signature schemes.

Another relaxation consists of restricting the domain of possible documents.
However, unlike the situation with respect to encryption schemes, such a restric-
tion is non-trivial in the current context, and is discussed at length in Section 6.2.

6.1.3 Attacks and security

We consider very powerful attacks on the signature scheme as well as a very
liberal notion of breaking it. Specifically, the attacker is allowed to obtain signa-
tures to any document of its choice. One may argue that in many applications
such a general attack is not possible (as documents to be signed must have



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

404CHAPTER 6. DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

a specific format). Yet, our view is that it is impossible to define a general
(i.e., application-independent) notion of admissible documents, and thus a gen-
eral/robust definition of an attack seems to have to be formulated as suggested
here. (Note that at worst, our approach is overly cautious.) Likewise, the adver-
sary is said to be successful if it can produce a valid signature to ANY document
for which it has not asked for a signature during its attack. Again, this defines
the ability to form signatures to possibly “nonsensical” documents as a breaking
of the scheme. Yet, again, we see no way to have a general (i.e., application-
independent) notion of “meaningful” documents (so that only forging signatures
to them will be consider a breaking of the scheme). The above discussion leads
to the following definition.

Definition 6.1.2 (unforgeable signatures): We start with a slightly imformal
outline.

e A chosen message attack is a process that can obtain signatures to strings
of its choice, relative to some fized signing-key that is generated by G. We
distinguish two cases.

The private-key case: Here the attacker is given 1™ as input, and the sig-
natures are produced relative to s, where (s,v) — G(1™).

The public-key case: Here the attacker is given v as input, and the signa-
tures are produced relative to s, where (s,v) — G(1™).

e Such an attack is said to succeeds (in existential forgery) if it outputs a
valid signature to a string for which it has NOT requested a signature during
the attack. That is, the attack is successful if it outputs a pair (a, ) so
that o is different from all strings for which a signature has been required

during the attack, and Pr[V,(a,B) = 1] > %, where v is as above.!

o A signature scheme is secure (or unforgeable) if every probabilistic polynomial-
time chosen message attack succeeds with at most negligible probability.

Formally, a chosen message attack is modelled by a probabilistic oracle machine.
Let M be such a machine. We denote by QS () the set of queries made by M
on input x and access to oracle O, and let MP(x) denote the first string in the
pair of strings output by M on input x and access to oracle O.

The private-key case: A private-key signature scheme is secure if for every prob-
abilistic polynomial-time oracle machine M, every polynomial p and all
sufficiently large n, it holds that

Se,an _ Sgiam) S am) 1
Pr [V (1) (M5e20m (17) =1 & My (1) ¢ Q3 (17)] < —=—
p(n)
1 The threshold of 1/2 used above is quite arbitrary. The definition is essentially robust
under the replacement of 1/2 by either 1/poly(n) or 1 — 27 P°¥(") by amplification of the
verification algorithm. For example, given V as above, one may consider V' that applies V' to

the tested pair for a linear number of times and accepting if and only if V' has accepted in all
tries.
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where the probability is taken over the coin tosses of algorithms G, S and
V' as well as over the coin tosses of machine M.

The public-key case: A public-key signature scheme is secure if for every prob-
abilistic polynomial-time oracle machine M, every polynomial p and all
sufficiently large n, it holds that

Va,am (M5610m (Gy(17))) =1 1
Pr and < ﬁ
S, an n Sayan n n

ME0™ (Gy (1)) & Q1™ (G (1)) P

where the probability is taken over the coin tosses of algorithms G, S and
V' as well as over the coin tosses of machine M.

The definition refers to the following experiment. First a pair of keys, (s,v), is
generated by invoking G(1™), and is fixed for the rest of the discussion. Next,
an attacker is given oracle access to S, where the latter may be a probabilistic
oracle rather than a standard deterministic one (e.g., if queried twice for the
same value then the signing oracle may answer in different ways). Finally, the
attacker outputs a pair of strings («, ), and is deemed successful if and only if
the following two conditions hold:

1. The string « is different than all queries (i.e., requests for signatures)
made by the attacker; that is, Mls (z) & Qi}(az), where £ = 1™ or x = v
depending on whether we are in the private-key or public-key case. (We
stress that both M*(z) and Q7; (x) are random variables that are defined
based on the same random execution of M on input = and oracle access
to Ss.)

2. The pair (a,3) corresponds to a valid document-signature pair relative
to the verification key v. In case V is deterministic (which is typically
the case) this means that V(«,8) = 1. The same applies also in case
V' is probabilistic, and when viewing V(«a, ) = 1 as a random variable.
(Alternatively, in the latter case, a condition such as Pr[V (o, 3) = 1] > 1/2
may replace the condition V(a, ) = 1.)

Clearly any signature scheme that is secure in the public-key model is also secure
in the private-key model. The converse is not true: consider, for example, the
private-key scheme presented in Construction 6.3.1 (below).

Failure of some popular schemes: We stress that plain RSA (alike plain
versions of Rabin’s scheme and DSS) is not secure under the above definition.
However, variants of these signature schemes may be secure if the message is
“randomized” before RSA (or the other schemes) is applied. In general, the
randomization paradigm (see Section 5.3) will play a pivotal role in this chapter
too.
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6.2 Signing fixed length documents versus abri-
trary ones

Restricted types of (public-key and private-key) signature schemes play an im-
portant role in our exposition. The first restriction we consider is the one of
schemes capable of signing only documents of certain predetermined length.
The effect of this restriction is more dramatic here (in the context of signature
schemes) than it was in the context of encryption schemes; compare Section 5.3.2.
Still, we shall show (see Theorem 6.2.2 below) that if the length restriction is
not too low then the full power of signature schemes can be regained.

Definition 6.2.1 (signature scheme for fixed length documents): Let £ : N —
N. An (-restricted signature scheme is a triple, (G, S,V), of probabilistic polynomial-
time algorithms satisfying the following two conditions

1. As in Definition 6.1.1, on input 1™, algorithm G outputs a pair of bit
strings.

2. Analogously to Definition 6.1.1, for every n and every pair (s,v) in the
range of G(1™), and for every a € {0,1}™) algorithms S and D satisfy
PrV(v,a, S(s,a))=1] = 1.

Such a scheme is called secure (in the private-key or public-key model) if the
(corresponding) requirements of Definition 6.1.2 hold when restricted to attack-
ers that only make queries of length £(n) and output a pair («, B) with |a| = €(n).

We comment that ¢-restricted private-key signature schemes for £(n) = O(logn)
are trivial (since the signing and verification keys may contain a table look-
up associating a secret with each of the 2/ = poly(n) possible documents;
see Exercise 1). (In contrast, this triviality does not arise in the context of
encryption schemes; compare Section 5.3.2.) On the other hand, ¢-restricted
signature schemes for super-logarithmic ¢ (e.g., £(n) = n or even {(n) = logsn
will do) are as powerful as ordinary signature schemes:

Theorem 6.2.2 Suppose that £ is a super-logarithmically growing function Then,
given an {-restricted signature scheme that is secure in the private-key (resp.,
public-key) model, one can construct a full-fledged signature scheme that is se-
cure in the same model.

The theorem can be proved in two different ways, corresponding to two meth-
ods of converting an f-restricted signature scheme into a full-fledged one. The
first method consists of parsing the original document into blocks (with proper
binding between blocks!), and applying the f-restricted scheme to each block.
The second method consists of hashing the document into an £(n)-bit long value
(via an adequate hashing scheme!), and applying the restricted scheme to the
resulting value. Although the theorem can be proved using each of the two
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methods, we only prove the theorem using the first method. The second method
is presented because it is actually much more important (as we may see in Sec-
tion 6.4).

6.2.1 First method: signing (augmented) document blocks

Let £ and (G, S,V) be as in Theorem 6.2.2. We construct a general signature
scheme, (G',S', V'), with G' = G, by considering documents as sequences of
strings each of length ¢'(n) = £(n)/O(1). That is, associate & = a3 - - -y with
the sequence (a1, ..., ), where each «; has length ¢'(n).

To motivate the following construction, consider the following simpler schemes
aimed at producing secure signatures for sequences of ¢'(n)-bit long strings. The
simplest idea is to just sign each of the strings in the sequence. That is, the sig-
nature to the sequence (ay,...,ay), is a sequence of f3;’s each being a signature
(w.r.t the length-restricted scheme) to the corresponding «;. This will not do
since an adversary, given a single signature (81, 82) to the sequence (a1, o) with
a1 # g, can present (fs, 1) as a signature to (e, a1). So how about signing
the sequence (a1, ..., ;) by applying the restricted scheme to each pair (i, ),
so to foil the above attack? This will not do either, since an adversary, given a
signature to the sequence (a1, o) can easily present a signature to the sequence
(a1). So we need to include in each ¢(n)-bit string also the total number of «;’s
in the sequence. But even this is not enough, since an adversary given signatures
to the sequences (aq,as) and (af,a)), with oy # of and as # ), can easily
generate a signature to (aq,aj). Thus, we have to prevent the forming of new
sequences of basic signatures by combination of elements from different signa-
ture sequences. This can be done by associating (say at random) an identificator
with each sequence and incorporating this identificator in each ¢(n)-bit string
to which the restricted scheme is applied. This yields the following signature
scheme:

Construction 6.2.3 (signing augmented blocks): Let ¢ and (G,S,V) be as

in Theorem 6.2.2. We construct a general signature scheme, (G',S", V"), with

G' = G, by considering documents as sequences of strings. We construct S' and

V' as follows, using G' = G and ¢'(n) = {(n)/4.

signing with S": On input a signing-key s € G1(1™) and a document o € {0,1}*,
algorithm S’ first parses a into aq, ..., ay so that « is uniquely reconstructed
from the a;’s and each a; is an £'(n)-bit long string.? Next, S' uniformly
selects T € {0, 1}[(”). Fori=1,...,t, algorithm S' computes

ﬂi — SS(Tataiaai)

That is, B; is a signature to the statement “a; is the i*" block, out of ¢
blocks, in a sequence associate with identificator 7. Finally, S' outputs
as signature the sequence

(T’taﬂla ""7/6t)

2 For example, we may require that o - 107 = g -~ and j < £/(n).
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verification with V': On input a verifying-key v € G2(1™), a document a €
{0,1}*, and a sequence (r,t, [, ...., 3t), algorithm V' first parses « into
ai, ..., a , using the same parsing rule as S'. Algorithm V' accepts if and
only if the following two conditions hold:

1. t' = t, where t' is obtained in the parsing of a and t is part of the
alledge signature.

2. For i =1,..,t, it holds that V,((r,t,1,a;),5:), where «; is obtained
in the parsing of a and the rest are as in the corresponding parts of
the alledge signature.

Clearly, the triplet (G, S’, V') satisfies Definition 6.1.1. We need to show that
is also inherits the security of (G, S, V). That is,

Proposition 6.2.4 Suppose that (G,S,V) is an {-restricted signature scheme
that is secure in the private-key (resp., public-key) model. Then (G',S’, V'), as
defined in Construction 6.2.3 is a full-fledged signature scheme that is secure in
the private-key (resp., public-key) model.

Theorem 6.2.2 follows immediately from Proposition 6.2.4.

Proof: The proof is by a reducibility argument. Given an adversary A’ attack-
ing the complex scheme (G',S’,V"), we construct an adversary A that attacks
the ¢-restricted scheme, (G, S, V). In particular, the adversary A will have to
use its oracle access in order to emulate the oracle S, for A’. This can be done
in a straightforward manner; that is, algorithm A will act as S’ does using the
oracle Ss. (Specifically, A parses each query o' of A’ into a corresponding se-
quence (af,...,a} ), uniformly selects an identifier 7/, and obtains S, signatures
to (r',t',j,a}), for j = 1,...,#".) When A’ outputs a document-signature pair
relative to the complex scheme (G',S’, V'), algorithm A tries to use it in order
to form a document-signature pair relative to the ¢-restricted scheme, (G, S, V).

We stress that from the point of view of adversary A’, the distribution of
keys and oracle answers that A provides it with is exactly as in a real attack
on (G',S',V'). This is a crucial point since we use the fact that events that
occur in a real attack of A’ on (G',S’, V'), occur with the same probability in
the emulation of (G, S’, V') by A.

Assume that with (non-negligible) probability ¢'(n), the (probabilistic polynomial-
time) algorithm A’ succeeds in existentially forging relative to the complex
scheme (G',S",V'). We consider the following cases regarding the forging event:

1. The identificator supplied in the forged signature is different from the
random identificators supplied (by A) as part of the signatures given to
A’. In this case, each (-restricted signature supplied as part of the forged
(complex) signature, yields existential forgery relative to the ¢-restricted
scheme.
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Formally, let oY) ..., al™) be the sequence of queries made by A’, and let
(rH), t(l),ﬁ(l)), - (T(m),t(m),ﬁ(m)) be the corresponding (complex) signa-
tures supplied to A’ by A (using S, to form the B(z)’s). Let (a, (r,t, 81, ..., Bt))
be the output of A’, and suppose that applying V, to it yields 1 (i.e., it is
a valid document-signature pair for the complex scheme). It follows that
each B(l) consists of a sequence of Ss-signatures to £(n)-bit strings starting
with () € {0, 1}*(")/4 and that the oracle S, was invoked (by A) only on
strings of this form. The case hypothesis states that r # r(*), for all i’s.
It follows that each of the §;’s is an S,-signature to a string starting with
r € {0, l}l(”)/‘*, and thus different from all queries made to the oracle S;.
Thus, each pair ((r,t,7,q;),5;) is a valid document-signature pair (since
Vi(a, (ryt,B1, ..., Bt)) = 1 implies V,((r, ¢,4,«;), B;) = 1), with a document
different than all queries made to Ss. This yields a forgery success relative
to the l-restricted scheme.

2. The identificator supplied in the forged signature equals the random iden-
tificator supplied (by A) as part of one of the signatures given to A’. (We
stress that the latter signature is unique, and deal with the event in which
it is not unique in the next case.)

Formally, let a(!), ..., a{™ be the sequence of queries made by A’, and let
(rH), t(l),ﬁ(l)), - (T(m),t(m),ﬁ(m)) be the corresponding (complex) signa-
tures supplied to A’ by A (using S, to form the B(z)’s). Let (a, (r,t, 81, ...y Bt))
be the output of A’, and suppose that applying V, to it yields 1 (i.e., it is

a valid document-signature pair for the complex scheme). The hypothesis
of the current case is that there exists a unique 4 so that r = (9.

We consider two subcases regarding the relation between ¢ and t("):

o t # ), In this subcase, each (-restricted signature supplied as part
of the forged (complex) signature, yields existential forgery relative
to the f-restricted scheme. The argument is analogous to the one
employed in the previous case. Specifically, here each of the 3;’s
is an Ss-signature to a string starting with (7,¢), and thus different
from all queries made to the oracle S (since these queries either
start with 7(*) # r or start with (r(),#9)) # (r,t)). Thus, each pair
((r,t,4,a;),8;) is a valid document-signature pair with a document
differnt than all queries made to S,.

e t = t(Y)_ In this case we use the hypothesis o # (), which implies
that there exists a j so that «; # ag-i), where ag-i) is the j* block
in the parsing of a(¥. In this subcase, B; (supplied as part of the
forged complex-signature), yields existential forgery relative to the

(-restricted scheme. Specifically, we have V,,((r,t,7,«;),5;) = 1, and

in each query (T(’),t(’),j’,ay’)) made by A to S, either r(*) # r

(e, i #£d)orj' #jora; # ag-i). Thus, ((r,t,7,;),0;) is a valid



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

410CHAPTER 6. DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

document-signature pair with a document differnt than all queries
made to S,.

3. The identificator supplied in the forged signature equals the random iden-
tificators supplied (by A) as part of at least two signatures given to A’. In
particular, it follows that two signatures given to A use the same random
identificator. The probability that this event occurs is at most

<m) L9t < . g—tn)/4
2

However, m = poly(n) (since A’ runs in polynomial-time), and 2~¢™)/4 is
negligible (since £ is super-logarithmic). So this case occurs with negligible
probability, and may be ignored.

Note that A can easily determine which of the cases occurs and act accordingly.?
Thus, assuming that A’ forges relative to the complex scheme with non-negligible
probability €'(n), it follows that A forges relative to the complex scheme with
non-negligible probability e(n) > &'(n) —m? - 2=¢"/% in contradiction to the
proposition’s hypothesis.

6.2.2 Second method: signing a hash value

Let £ and (G, S,V) be as in Theorem 6.2.2. The second method of construct-
ing a general signature scheme out of (G, S,V) is based on the hash then sign
paradigm. That is, first the document is hashed to an ¢(n)-bit long value, and
then the (-restricted scheme is applied to the hashed value. Thus, in addition
to an f-restricted scheme, this method employs an adequate hashing scheme.
In particular, one way of implementing this method is based on “collision-free
hashing” (defined next). An alternative implementation, based on “universal
one-way hashing” is deferred to Section 6.4.3.

Loosely speaking, a collision-free hashing scheme consists of a collection of
functions {hs : {0,1}* — {0, 1}|5‘}S€{071}* so that given s and z it is easy to
compute hg(x), but given s it is hard to find = # 2’ so that hs(z) = hs(z’).

Definition 6.2.5 (collision-free hashing functions): Let £ : N — N. A collec-
tion of functions {hs : {0,1}* — {0, 1}2(‘”)}56{071}* is called collision-free hashing
if there exists a probabilistic polynomial-time algorithm I so that the following
holds

1. (admissible indexing — technical):* For some polynomial p, all sufficiently
large n’s and every s in the range of I(1™) it holds that n < p(|s]).

3 This observation only saves us a polynomial factor in the forging probability. That is, if
A did not know which part of the forged complex-signature to use in its own forgery, it could
have selected one at random (and be correct with 1/poly(n) probability).

4 This condition is made merely to avoid annoying technicalities. Note that |s| = poly(n)
holds by definition of I.
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2. (efficient evaluation): There exists a polynomial-time algorithm that given
s and x, returns hs(z).

3. (hard to form collisions): We say that the pair (z,z') forms a collision
under the function h if h(z) = h(z') but = # z'. We require that every
probabilistic polynomial-time algorithm, given I(1™) as input, outputs a
collision under hyny with negligible probability. That is, for every proba-
bilistic polynomial-time algorithm A, every polynomial p and all sufficiently

large n’s,
PrA(I(1™)) is a collision under hyin)| < L
p(n)
where the probability is taken over the internal coin tosses of algorithms I
and A.

The function € is called the range specifier of the collection.

Note that the range specifier must be super-logarithmic (or else one may easily
find a collisions by selecting 2¢(™) + 1 preimages and computing there image
under the function). In Section 6.2.3, we show how to construct collision-free
hashing functions using claw-free collections. But first, we show how to use the
former in order to convert a length-restricted signature scheme into a full-fledged
one.

Construction 6.2.6 (hash and sign): Let{ and (G, S,V) be as in Theorem 6.2.2,
and let {h, : {0,1}* — {0,1}*I"D} 1414+ be as in Definition 6.2.5. We con-
struct a general signature scheme, (G', S5, V'), as follows:

key-generation with G': On input 1™, algorithm G' first invokes G to obtain
(s,v) « G(1™). Newt it invokes I, the indexing algorithm of the collision-
free hashing collection, to obtain v «— I(1™). Finally, G' outputs the pair
((r,s),(r,v)), where (r,s) serves as a signing-key and (r,v) serves as a
verification-key.

signing with S": On input a signing-key (r,s) € G{(1™) and a document o €
{0,1}*, algorithm S" invokes S once to produce and output Ss(h,(a)).

verification with V': On input a verifying-key (r,v) € G4(1"), a document o €
{0,1}*, and a alledged signature (3, algorithm V' invokes V, and outputs
Vo (hr(a), B).

Proposition 6.2.7 Suppose that (G,S,V) is an {-restricted signature scheme
that is secure in the private-key (resp., public-key) model. Suppose that {h, :
{0,1}* — {0, I}ZW')}TE{OJ}* is indeed a collision-free hashing collection. Then
(G', S, V"), as defined in Construction 6.2.6 is a full-fledged signature scheme
that is secure in the private-key (resp., public-key) model.
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Proof: Intuitively, the security of (G',S’, V') follows from the security of
(G, S,V) and the collision-freeness property of the collection {h,}. Specifically,
forgery relative to (G',S’, V') can be obtained by either a forged S-signature
to a hash-value different from all hash-values that appeared in the attack or by
forming a collision under the hash function. That is, the actual proof is by a
reducibility argument. Given an adversary A’ attacking the complex scheme
(G',S", V"), we construct an adversary A that attacks the f-restricted scheme,
(G,S,V), as well as an algorithm B forming collisions under the hashing col-
lection {h,}. Both A and B will have running-time related to that of A’. We
show if A’ is successful with non-negligible probability than the same holds for
either A or B. Thus, in either case, we recah a contradiction. We start with the
description of algorithm A, which is designed to attack the f-restricted scheme
(G, S, V).

The adversary A operates as follows. First it uses I (the indexing algorithm
of the collision-free hashing collection) to obtain r « I(1™), exactly as done in
the second step of G'. Next, it uses r and its oracle S, in order to emulate
the oracle S; ; for A'. This can be done in a straightforward manner; that
is, algorithm A will act as S}, does using the oracle S;. When A’ outputs a
document-signature pair relative to the complex scheme (G’,S’,V"’), algorithm
A tries to use this pair in order to form a document-signature pair relative to
the ¢-restricted scheme, (G, S, V).

We stress again that from the point of view of adversary A’, the distribution
of keys and oracle answers that A provides it with is exactly as in a real attack
of A" on (G',S',V'). This is a crucial point since we use the fact that events
that occur in a real attack of A’ on (G',S’, V'), occur with the same probability
in the emulation of (G',S’,V') by A.

Assume that with (non-negligible) probability ¢'(n), the (probabilistic polynomial-
time) algorithm A’ succeeds in existentially forging relative to the complex
scheme (G',S',V'). We consider the following cases regarding the forging event,
letting (o, ;) denote the i*" query and answer pair made by A’, and (a, 3)
denote the forged document-signature pair that A’ outputs (in case of success):

1. hy(a) # hr(a;) for all i’s. (That is, the hash value used in the forged
signature is different from all hash values used in the queries to Ss.) In
this case, the pair (h.(a), ) constitutes a success in existential forgery
relative to the f-restricted scheme.

2. hr(a) = h,(a;) for some . (That is, the hash value used in the forged
signature equals the hash value used in the i*" query to S,, although
a # «;.) In this case, the pair («, ;) forms a collision under h, (and
we do not obtain success in existential forgery relative to the f-restricted
scheme).

Thus, if the first case occurs with probability at least £'(n)/2 then A succeeds in
its attack on (G, S,V) with probability at least '(n)/2, which contradicts the
security of the ¢-restricted scheme (G, S, V). On the other hand, if the second
case occurs with probability at least '(n)/2 then we derive a contradiction to the



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. SIGNING FIXED LENGTH DOCUMENTS VERSUS ABRITRARY ONES413

collision-freeness of the hashing collection {h, : {0,1}* — {0, I}ZW')}TE{M}*.
Details (regarding the second case) follow.

We construct an algorithm, B, that given r «— I(1™), attempts to form
collisions under A, as follows. Oun input r, algorithm B generates (s,v) «— G(1™),
and emulates the attack of A on this instance of the f-restricted scheme, with
the exception that B does not invoke algorithm I to obtain an index of a hash
function but rather uses the index r. Finally, when A’ (emulated by A) outputs
a forged signature, algorithm B checks if the second case occurs in which case
it obtains and outputs a collision under h,..

We stress that from the point of view of the emulated adversary A, the
execution is distributed exactly as in its attack on (G,S,V). Thus, since the
second case above occurs with probability at least €’(n)/2 in a real attack, it
follows that B succeeds to form a collision under hy(;») with probability at least
e’(n)/2. This contradicts the collision-freeness of the hashing functions, and the
proposition follows.

Using the hashing paradigm in practice: The hash-then-sign paradigm,
underlying Construction 6.2.6, is often used in practice. Specifically, a docu-
ment is signed using a two-stage process: first the document is hashed into a
(relatively) short bit string, and next a basic signature scheme is applied to the
resulting string. We stress that this process yields a secure signature scheme
only if the hashing scheme is collision-free (as defined above). In Section 6.2.3,
we present a way to construct collision-free hashing functions. Alternatively, one
may indeed postulate that certain off-the-shelf products (such as MD5 or SHA)
are collision-free, but such assumptions need to be seriously examined (and in-
deed may turn out false). We stress that using a hashing scheme, in the above
two-stage process, without seriously evaluating whether it is collision-free is a
very dangerous practice.

6.2.3 * Constructing collision-free hashing functions

In this subsection we show how to construct collision-free hashing functions using
a claw-free collection of permutations as defined in Section 2.4.5. Recall that
such a collection consists of pairs of permutations, (f2, f1), so that both f7’s

are permutations over a set D, and of a probabilistic polynomial-time index
selection algorithm I so that

1. The domain is easy to sample: there exists a probabilistic polynomial-time
algorithm that given s outputs a string uniformly distributed over D;.

2. The permutations are easy to evaluate: there exists a polynomial-time
algorithm that given s,o and z € Dj, outputs f7(x).

3. Hard to form claws: every probabilistic polynomial-time algorithm, given
s « I(1™) outputs a pair (z,y) so that f(z) = fl(y) with at most neg-
ligible probability. That is, a pair (z,y) satisfying f0(z) = f1(y) is called

S
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a claw for index s, and C, denote the set of claws for index s. Then, it is
required that for every probabilistic polynomial-time algorithm, A’, every
positive polynomial p(-), and all sufficiently large n’s

1
Pr [A’(I(].n)) S C[(ln)] < m

Note that since f and f! are permutations over the same set, many claws do
exists (i.e., |Cs| = |Ds|). However, the third item above postulates that for
s generated by I(1™) such claws are hard to find. We may assume, without
loss of generality, that for some £ : N — N and all s’s it holds that D, C
{0, I}Z(M). Indeed, ¢ must be polynomially bounded. For simplicity we assume
that I(1™) € {0,1}™ Recall that such collections of permutation pairs can be
constructed based on the standard DLP or factoring intractability assumptions
(see Section 2.4.5).

Construction 6.2.8 (collision-free hashing based on claw-free permutations
pairs): Given an index selecting algorithm I for a collection of permutation
pairs {(f2, f})}s as above, we construct a collection of hashing functions {h . :

{0,1}* — {0, 1}‘T|}(s,r)6{0,1}*><{0,1}* as follows:

index selection algorithm: On input 1™, we first invoke I to obtain s «— I(1™),
and nmext use the domain sampler to obtain a string r that is uniformly
distributed in Dy. We output the index (s,r), defining a hashing function

def

hismy(z) = fIfE - f2(r)

where y1 -+ yy 15 a prefiz-free encoding of x; that is, for any x # ' the
coding of © is not a prefiz of the coding of x'. For example, code T1x2 -+ T,
by t101T2T2 - -+ Ty Ty, 01,

evaluation algorithm: Given an index (s,r) and a string x, we compute hs ()
in a straightforward manner. That is, first we compute the prefiz-free
encoding of x, denoted y, ---y;. Next, we use the evaluation algorithm of
the claw-free collection to compute f¥'f¥2 .- f¥(r), which is the desired
output.

Proposition 6.2.9 Suppose that the collection of permutation pairs {(f0, f1)}s
together with the index selecting algorithm I constitute a claw-free collection.
Then, the function ensemble {h(s,) : {0,1}* — {071}|T‘}(5,T)€{071}*X{O,l}* as
defined in Construction 6.2.8 constitute a collision-free hashing with a range
specifying function €' satisfying £'(n + €(n)) = £(n).

Proof: The proof is by a reducibility argument. Given an algorithm A’ that,
on input (s,r), forms a collision under h(, ), we construct an algorithm A that
on input s forms a claw for index s.
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On input s (supposedly generated by I(1™)), algorithm A selects r uniformly
in D;, and invokes algorithm A’ on input (s,7). Suppose that A’ outputs a pair
(z,2") so that A,y (x) = R (@) but « # 2’. Without loss of generality,®
assume that the coding of z equals y; - -+ y;-10z;41 - - - 2, and that the coding of
o' equals y; - -+ yi—112},, -+ z;. By the definition of h,,,), it follows that

P JE R ) = S RO ) e)
Since each of the f7’s is 1-1, Eq. (6.1) implies that

POz () = FLE L R () (6.2)

Computing w % f&+! <+« fZ(r) and w' N (r), algorithm A obtains
a pair (w,w’) so that fO(w) = fi(w'). Thus, algorithm A forms claws for index
I(1™) with probability that is bounded below by the probability that A’ forms
a collision under A/ (yn), where I’ is the index selection algorithm as defined in
Construction 6.2.8. Using the hypothesis that the collection of pairs (together

with I) is claw-free, the proposition follows. [l

6.3 Constructions of Message Authentication
Schemes

In this section we present several constructions of secure message authentication
schemes (referred to above as secure private-key signature schemes). Below, we
sometimes refer to a message authentication scheme as to a Message Authenti-
cation Code (which is the traditional term), abbreviated by MAC.

6.3.1 By using pseudorandom functions

Message authentication schemes can be easily constructed using pseudorandom
functions (as defined in Section 3.6). Specifically, by Theorem 6.2.2, it suffices
to construct an f-restricted message authentication scheme, for any superloga-
rithmically growing .

Construction 6.3.1 (an {-restricted MAC based on pseudorandom functions):

Let { be a superlogarithmically growing function, and { f, : {0,1}41s) — {0, 1}2(‘50}56{071}*
be as in Definition 3.6.4. We construct an {-restricted message authentication

scheme, (G,S,V), as follows:

key-generation with G: On input 1™, we uniformly select s € {0,1}", and output
the key-pair (s, s).
(Indeed, the verification-key equals the signing-key.)

5 Let C(z) (resp., C(z')) denote the prefix-free coding of  (resp., '). Then C(z) is not a
prefix of C(z'), and C(a') is not a prefix of C(z). It follows that C(z) = uv and C(z') = uv’,
where v and v’ differ in their leftmost bit. Without loss of generality, we may assume that the
leftmost bit of v is is 0, and the leftmost bit of v’ is 1.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

416CHAPTER 6. DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

signing with S: On input a signing-key s € {0,1}™ and an €(n)-bit string a, we
compute and output fs(a) as a signature of .

verification with V: On input a verification-key s € {0,1}"™, an £(n)-bit string
a, and an alledge signature B, we accept if and only if = fs(a).

Analogous constructions can be presented using the generalized notions of pseu-
dorandom functions defined in Definitions 3.6.9 and 3.6.12. In particular, using
a pseudorandom function ensemble of the form {f; : {0,1}* — {0, 1}|5‘}S€{071}*,
we obtain a general message authentication scheme (rather than a length-restricted
one). We prove only the security of the f-restricted message authentication
scheme of Construction 6.3.1. (The security of the general message authentica-
tion scheme can be established analogously; see Exercise 2.)

Proposition 6.3.2 Suppose that {f, : {0,1}15D) — {0,1}40sD} ey 140 is a
pseudorandom function, and that £ is a superlogarithmically growing function,
Then Construction 6.3.1 constitutes a secure (-restricted message authentication
scheme.

Proof: The proof follows the general methodology suggested in Section 3.6.3.
Specifically, we consider the security of an ideal scheme in which the pseudoran-
dom function is replaced by a truely random function (mapping ¢(n)-bit long
strings to £(n)-bit long strings). Clearly, an adversary that obtains the values
of this random function at arguments of its choice, cannot predict its value at
a new point with probability greater than 24", Thus, an adversary attacking
the ideal scheme may succeed in existential forgery with at most negligible prob-
ability. The same must hold for any efficient adversary that attacks the actual
scheme, since otherwise such an adversary yields a violation of the pseudoran-
domness of {f, : {0,1}%15D — {0,1}1*D} (g 13-. Details follow.

The actual proof is by a reducibility argument. Given a probabilistic polynomial-
time A attacking the scheme (G,S,V’), we consider what happens when A is
attacking an ideal scheme in which a random function is used instead of a pseu-
dorandom one. That is, we refer to two experiments:

1. A attacks the actual scheme: On input 1™, machine A is given oracle access
to fo : {0,1}%™ — {0,1}*") where s is uniformly selected in {0,1}".
After making some queries of its choice, A outputs a pair («, ), where
« is different from all its queries, and is deem successful if and only if

B = fs(a)'

2. A attacks the ideal scheme: On input 1™, machine A is given oracle access
to a function F : {0,1}*") — {0, 1} uniformly selected among all such
possible functions. After making some queries of its choice, A outputs a
pair («, ), where « is different from all its queries, and is deem successful
if and only if f = F(«).

Clearly, A’s success probability in this experiment is at most 27("), which
is a negligible function (since ¢ is super-logarithmic).
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Assuming that A’s success probability in the actual attack is non-negligible, we
derive a contradiction to the pseudorandomness of the function ensemble {f,}.
Specifically, we consider a distinguisher D that on input 1™ and oracle access to
a function f : {0,1}(") — {0,1}%"), behaves as follows: First D emulates the
actions of A, while answering A’s queries using its oracle f. When A outputs a
pair (a, 3), the distinguisher makes one additional oracle query to f and outputs
1if and only if f(a) = 5.

Note that when f is selected uniformly among all possible {0,1}%™) —
{0,1}*™) functions, D emulates an attack of A on the ideal scheme, and thus
outputs 1 with negligible probability (as explained above). On the other hand,
if f is uniformly selected in {fs}scf0,1}» then D emulates an attack of A on the
actual scheme, and thus (due to the contradiction hypothesis) outputs 1 with
non-negligible probability. We reach a contradiction to the pseudorandomness
of {fs}seqo,13»- The proposition follows. Il

A plausibility result: Combining Theorem 6.2.2, Proposition 6.3.2, and Corol-
lary 3.6.7, it follows that the existence of one-way functions implies the existence
of message authentication schemes. The converse also holds; see Exercise 3.
Thus, we have:

Theorem 6.3.3 Secure message authentication schemes exist if and only if one-
way functions exist.

6.3.2 * Other alternatives

Author's Note: a second look at hash-then-mac vs direct-PRF

Author's Note: .... and more efficient schemes may be obtained based
on other cryptographic primitives. Work out the following para-
graph....

Fingerprinting the message using a scheme which is secure against forgery
provided that the adversary does not have access to the scheme’s outcome (e.g.,
using Universal Hashing [48]), and “hiding” the result using a non-malleable
scheme (e.g., a private-key encryption or a pseudorandom function). (Non-
malleability is not required in certain cases; see [208].)

6.4 Constructions of Signature Schemes

In this section we present several constructions of secure public-key signature
schemes. Here we refer to such schemes as signature schemes, which is indeed
the traditional term.

Two central paradigms in the construction of signature schemes are the “re-
freshing” of the “effective” signing-key, and the usage of an “authentication
tree”. In addition, the “hashing paradigm” (employed also in the construction
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of message authentication schemes), plays a even more central role in the fol-
lowing presentation. In addition to the above, we use the notion of one-time
signature scheme defined in Section 6.4.1.

The current section is organized as follows. In Section 6.4.1 we define and
construct various types of one-time signature schemes. The “hashing paradigm”
plays a central role in one of these constructions, which in turn is essential for
Section 6.4.2. In Section 6.4.2 we show how to use one-time signature schemes
to construct general signature schemes. This construction utilizes “refreshing
paradigm” (as employed to one-time signature schemes) and an “authentication
tree”. In Section 6.4.3, we define Universal One-Way Hashing and show how to
use it (in the previous constructions) instead of collision-free hashing. The gain
in using Universal One-Way Hashing (rather than collision-free hashing) is that
the former can be constructed based on any one-way function (whereas this is
not known for collision-free hashing). Thus, we obtain:

Theorem 6.4.1 Secure signature schemes exist if and only if one-way functions
eTist.

The difficult direction is to show that the existence of one-way functions implies
the existence of signature schemes. For the other direction, see Exercise 3.

6.4.1 One-time signature schemes

In this section we define and construct various types of one-time signature
schemes. Specifically, we first define one-time signature schemes, next a length-
restricted version of this notion (analogous to Definition 6.2.1), then present
a simple construction of the latter, and finally show how such a construction
combined with collision-free hashing yields a general one-time signature scheme.

6.4.1.1 Definitions

Loosely speaking, one-time signature schemes are signature schemes for which
the security requirement is restricted to attacks in which the adversary asks for
at most one string to be signed. That is, the mechanics of one-time signature
schemes are as of ordinary signature schemes (see Definition 6.1.1), but the
security requirement is relaxed as follows.

e A chosen one-message attack is a process that can obtain a signature to at
most one string of its choice. That is, the attacker is given v as input, and
obtains a signature relative to s, where (s,v) «— G(1™) for an adequate n.

(Note that in this section we focus on public-key signature schemes and
thus we present only the definition for this case.)

e Such an attack is said to succeeds (in ezistential forgery) if it outputs
a valid signature to a string for which it has NOT requested a signature
during the attack.

(Indeed, the notion of success is exactly as in Definition 6.1.2.)
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e A one-time signature scheme is secure (or unforgeable) if every probabilistic
polynomial-time chosen one-message attack succeeds with at most negli-
gible probability.

Moving to the formal definition, we again model a chosen message attack as a
probabilistic oracle machine; however, since here we are only about one-message
attacks, we consider only oracle machines that make at most one query. Let M
be such a machine. As before, we denote by Q%,(x) the set of queries made by
M on input x and access to oracle O, and let M (x) denote the first string in
the output of M on input  and access to oracle O. Note that here |Q%(z)| < 1
(i.e., M may either make no queries or a single query).

Definition 6.4.2 (security for one-time signature schemes): A one-time signa-
ture scheme is secure if for every probabilistic polynomial-time oracle machine
M that makes at most one query, every polynomial p and all sufficiently large
n, it holds that

[ Vi, (1m) (MP010™) (G2 (1)) =1 ]
and < —

Pr -
L@y g @i @any |7

where the probability is taken over the coin tosses of algorithms G, S and V as
well as over the coin tosses of machine M.

We now define a length-restricted version of one-time signature schemes. The
definition is indeed analogous to Definition 6.2.1:

Definition 6.4.3 (length-restricted one-time signature schemes): Let £ : N —
N. An f-restricted one-time signature scheme is a triple, (G, S,V), of probabilis-
tic polynomial-time algorithms satisfying the the mechanics of Definition 6.2.1.
That is, it satisfies the following two conditions

1. As in Definition 6.1.1, on input 1™, algorithm G outputs a pair of bit
strings.

2. Analogously to Definition 6.1.1, for every n and every pair (s,v) in the
range of G(1™), and for every a € {0,1}™) algorithms S and D satisfy
PrV(v,a, S(s,a))=1] = 1.

Such a scheme is called secure (in the one-time model) if the requirement of
Definition 6.4.2 holds when restricted to attackers that only make queries of
length €(n) and output a pair (a, §) with |«| = €(n). That is, we consider only
attackers that make at most one query, this query has to be of length £(n), and
the output (o, B) must satisfy |a| = £(n).

6.4.1.2 Length-restricted one-time signature schemes

We now present a simple construction of length-restricted one-time signature
schemes. The construction works for any length restriction function ¢, but the
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keys will have length greater than ¢. The latter fact limits the applicability of
such schemes, and will be removed in the next subsection. But first, we construct
{-restricted one-time signature schemes based on any one-way function f. We
may assume for simplicity that f is length preserving.

Construction 6.4.4 (an (-restricted one-time signature scheme): Let ¢ : N —
N be polynomially-bounded and polynomial-time computable, and f : {0,1}* —
{0,1}* be polynomial-time computable and length-preserving. We construct an
L-restricted one-time signature scheme, (G, S,V), as follows:

key-generation with G: On input 1™, we uniformly select s9, sl ...., 52(7’1,)’ s}(n) €
{0,1}™, and compute v{ = f(sf), fori=1,...,¢(n) and j = 0,1. We
let s = ((sY, 1), ens (sg(n),sé(n))), and v = ((v],01), ..., (vg(n),vl}(n))), and

output the key-pair (s,v).
(Note that |s| = |v| =2 €(n)-n.)

signing with S: On input a signing-key s = ((s9,51),...., (sg(n),s}(n))) and an
U(n)-bit string o = 01 - - - 0¢(n), we output (s7*, ..., SZ(ZT(:)L)) as a signature of
a.

verification with V: On input a verification-key v = ((v9,0}), ..., (v?(n),vl}(n))),

an £(n)-bit string a = 01 - - 0y(n), and an alledge signature 3 = (B1, ..., Byn)),
we accept if and only if v]' = f(B:), fori=1,..,{(n).
Proposition 6.4.5 If f is a one-way function then Construction 6.4.4 consti-
tutes a secure [-restricted one-time signature scheme.

Note that Construction 6.4.4 does NOT constitute a (general) f-restricted sig-
nature scheme: An attacker that obtains signatures to two strings (e.g., to the
strings 09" and 1¢(™), can present a valid signature to any £(n)-bit long string
(and thus totally break the system). However, here we consider only attackers
that may ask for at most one string (of their choice) to be signed. As a corollary
to Proposition 6.4.5, we obtain:

Corollary 6.4.6 If there exist one-way functions then, for every polynomially-
bounded and polynomial-time computable £ : N — N, there exist secure (-
restricted one-time signature schemes.

Proof of Proposition 6.4.5: Intuitively, forging a signature (after seeing at
most one signature to a different message) requires inverting f on some image.
The actual proof is by a reducibility argument. Given an adversary A attacking
the scheme (G, S, V'), while making at most one query, we construct an algorithm
A’ for inverting f.

As a warm-up, let us first deal with the case in which A makes no queries at
all. In this case, on input y (supposedly in the range of f), algorithm A’ proceeds
as follows. First A’ selects p uniformly in {1, ...,4(n)}, ¢ uniformly in {0,1}, and
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89,51, ....,sg(n),si(n) each independently and uniformly in {0,1}". (Actaully,
s% is not used and needs not be selected.) For every i € {1,...,4(n)} \ {p}, and
every j € {0,1}, algorithm A’ computes vf = f(sf) Algorithm A’ also computes
v 1 = f(sp ), and sets vi =y and v = (0], 7), ..., (V)()» Vg(n)))- Note that
if y = f(z), for a uniformly distributed = € {0,1}", then for each possible choice
of p and ¢, the sequence v is distributed identically to the public-key generated
by G(1™). Next, A’ invokes A on input v, hoping that A will forge a signature,
denoted 8 = 71 -+ - Ty(n), t0 @ message o = 01 - - 0y (y) 50 that o, = ¢. If this event
occurs, A’ obtains a preimage of y under f, since the validity of the signature
implies that f(m,) = v," = v} = y. Observe that conditioned on the value of v
and the internal coin tosses of A, the value ¢ is uniformly distributed in {0, 1}.
Thus, A’ inverts f with probability €(n)/2, where e(n) denotes the probability
that A succeeds in forgery.

We turn back to the actual case in which A may make a single query. (With-
out loss of generality, we may assume that A always makes a single query; see
Exercise 4.) In this case, on input y (supposedly in the range of f), algorithm
A’ selects p,q and the s!’s, and forms the v]’s and v exactly as in the warm-up
above.5 Recall that if y = f(x), for a uniformly distributed = € {0,1}", then for
each possible choice of p and g, the sequence v is distributed identically to the
public-key generated by G(1™). Also note that for each v} other than vl =y,
algorithm A’ holds a random preimage under f. Next, A’ invokes A on input v,
and tries to answer its query, denoted o = 01 ---0y(n). We consider two cases
regarding the signature required by A.

1. If o, = g then A’ can not supply the desired signature since it lacks a
preimage of y = s under f. Thus, in this case A" aborts. However, this
case occurs with probability %, independently of the actions of A (since v
yields no information on either p or g).

(That is, conditioned on the value of v and the internal coin tosses of A,
this case occurs with probability %)7

2. If o, = 1 — g then A’ can supply the desired signature since it holds all
the relevant s!’s (i.e., random preimages of the relevant v}’s under f). In
particular, A’ holds both s!’s, for i # p, as well as sllfq. Thus, A’ answers

with (s7?, ..., SZ(ZT(L";)).

Note that conditioned on the value of v, the internal coin tosses of A and on the
second case occuring, p is uniformly distributed in {1, ...,€(n)}. When the second

6 That is, first A’ selects p uniformly in {1,...,£(n)}, ¢ uniformly in {0,1}, and
s9, sk, sg(n), s%(n) each independently and uniformly in {0,1}". For every i € {1,...,4(n)}\
{p}, and every j € {0,1}, algorithm A’ computes v{ = f(si) Algorithm A’ also computes

1=~ 1—
vy 1 = f(s,”7), and sets v} = y and v = ((v?,v1), ....,(v?(n),vl}(n))).

7 This follows from an even stronger statement by which conditioned on the value of v, the

internal coin tosses of A and on the value of p, the current case happens with probability %

The stronger statement holds since conditioned on all the above, ¢ is uniformly distributed in
{0,1} (and so o, = g happens with probability exectly %)
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case occurs, A obtains a signature to o and this signature is distributed exactly
as in a real attack. We stress that since A asks at most one query, no additional
query will be asked by A. Also note that, in this case (i.e., o, = 1—g¢), algorithm
A outputs a forged mesasage-signature pair, denoted (o', "), with probability
exactly as in a real attack.

For simplicity we assume below that A has indeed made a single query «
(otherwise one may consider a and the o;’s to be some non-boolean dummy
values and apply the following reasoning nevertheless).® Let o' = o} - - - ”Z(n) and
B =sy-- SZ(n)’ where (¢, ') is the forged mesasage-signature pair output by
A. By our hypothesis (that this is a forgery-success event) it follows that o' # «
and that f(s}) = ’U?; for all i’s. Since (conditioned on all the above) p is uniformly

distributed in {1,...,4(n)}, it follows that with probability %ﬁ;}‘ > ﬁ

it holds that o, ;élcrp, and then A’ obtains a preimage of y under f (since s,

satisfies f(s),) = v,*, which in turn equals U;ﬂr" =l =y).

To summarize, assuming that A succeeds in a single-message attack on
(G, S, V) with probability £(n), algorithm A’ inverts f on a random image (i.e.,
on f(U,)) with probability

1 [{i:o] #oi}] e(n)
M3 T 2 2w

Thus, if A is a probabilistic polynomial-time chosen one-message attack that
forges signatures with non-negligible probability then A’ is a probabilistic polynomial-
time algorithm that inverts f with non-negligible probability (in violation of the
hypothesis that f is a one-way function). The proposition follows. [l

6.4.1.3 From length-restricted schemes to general ones

We now combine a length-restricted one-time signature scheme with collision-
free hashing to obtain a general one-time signature scheme. The construction is
identical to Construction 6.2.6, except that here (G,S,V) is an f-restricted one-
time signature scheme rather than an f-restricted (general) signature scheme.
Analogously to Proposition 6.2.7, we obtain.

Proposition 6.4.7 Suppose that (G,S,V) is a secure L-restricted one-time sig-
nature scheme, and that {h, : {0,1}* — {0,1}2(“')}%{071}* is a collision-free
hashing collection. Then (G',S', V'), as defined in Construction 6.2.6 is a se-
cure one-time signature scheme.

Proof: The proof is identical to the proof of Proposition 6.2.7; we merely notice
that if the adversary A', attacking (G',S’, V'), makes at most one query then
the same holds for the adversary A that we constract to attack (G,S,V). In

8 Alternatively, recall that, without loss of generality, we may assume that A always makes
a single query; see Exercise 4.
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general, the adversary A constructed in the proof of Proposition 6.2.7 makes a
one query per each query of the adversary A’. W

Combining Proposition 6.4.7, Corollary 6.4.6, and the fact that collision-free
hashing collections imply one-way functions (see Exercise 7), we obtain:

Corollary 6.4.8 If there exist collision-free hashing collections then there exist
secure one-time signature schemes.

Comments: We stress that when using Construction 6.2.6, signing each docu-
ment under the (general) scheme (G', S’, V') requires signing a single string un-
der the f-restricted scheme (G,S,V). This is in contrast to Construction 6.2.3
in which signing a document under the (general) scheme (G',S', V') requires
signing many strings under the ¢-restricted scheme (G, S, V'), where the number
of such strings depends (linearly) on the length of the original document.

Construction 6.2.6 calls for the use of collision-free hashing. The latter can be
constructed using any claw-free permutation collection (see Proposition 6.2.9),
however it is not know whether collision-free hashing can be constructed based on
any one-way function. Wishing to construct signature schemes based on any one-
way function, in Section 6.4.3 we avoid the use of collision-free hashing. Instead,
we use “universal one-way hashing functions” (to be defined), and present a
varaint of Construction 6.2.6 that uses these functions rather than collision-free
ones.

6.4.2 From one-time signature schemes to general ones

In this section we show how to construct general signature schemes using one-
time signature schemes. That is, we shall prove:

Theorem 6.4.9 If there exist secure one-time signature schemes then secure
signature schemes exist as well.

Actually, we can use length-restricted one-time signature schemes, provided that
the length of the strings being signed is at least twice the length of the verifi-
cation key. Unfortunately, Construction 6.4.4 does not satisfy this condition.
Nevertheless, Corollary 6.4.8 does provide one-time signature schemes. Thus,
combining Theorem 6.4.9 and Corollary 6.4.8, we obtain:

Corollary 6.4.10 If there exist collision-free hashing collections then there exist
secure signature schemes.

Note that Corollary 6.4.10 asserts the existence of secure (public-key) signature
schemes, based on an assumption that does not mention trapdoors. We stress
this point because of the contrast to the situation with respect to public-key en-
cryption schemes, where a trapdoor property seem necessary for the construction
of secure schemes.
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6.4.2.1 The refreshing paradigm

The so-called “refreshing paradigm” plays a central role in the proof of Theo-
rem 6.4.9. Loosely speaking, the “refreshing paradigm” suggests to reduce the
dangers of a chosen message attack on the signature scheme by using “fresh”
instances of the scheme for signing. Of course, these fresh instances should be
authenticated by the original instance (corresponding to the verification-key that
is publically known).

Example: To demonstrate the refreshing paradigm, consider a basic signature
scheme (G, S, V') used as follows. Suppose that the user U has generated a key-
pair, (s,v) « G(1™), and has placed the verification-key v on a public-file. When
a party asks U to sign some document «, the user U generates a new (fresh)
key-pair, (s',v") < G(1™), signs v’ using the original signing-key s, signs a using
the new (fresh) signing-key s, and presents (Ss(v'),v’, Sy (a)) as a signature
to a. An alledged signature, (81,v’,32), is verified by checking whether both
Vo(v', 1) = 1 and Vi («, B2) = 1. Intuitively, the gain in terms of security is
that a full-fledged chosen message attack cannot be lounched on (G,S,V). All
that an attacker may obtain (via a chosen message attack on the new scheme)
is signatures, relative to the original signing-key s, to randomly chosen strings
(taken from the distribution G2(1™)) as well as additional signatures each relative
to a random and independently chosen signing-key.

We refrain from analyzing the features of the signature scheme presented in
the above example. Instead, as a warm-up to the actual construction used in the
next section (in order to establish Theorem 6.4.9), we present and analyze a sim-
ilar construction (which is — in some sense — a hybrid of the two constructions).
The reader may skip this warm-up, and proceed directly to Section 6.4.2.2.

Construction 6.4.11 (a warm-up): Let (G,S,V) be a signature scheme and
(G',S", V') be a one-time signature scheme. Consider a signature scheme, (G",S", V'),
with G" = G, as follows:

signing with S”: On input a signing-key s and a document o € {0,1}*, first
invoke G' to obatin (s',v") «— G'(1™). Newt, invoke S to obtain B «
Ss(v"), and S" to obatin By — Sl (a). The final output is (B1,v', B2).

verification with V": On input a verifying-key v, a document o € {0,1}*, and a
alledged signature § = (f1,v', B2), we output 1 if and only if both V,(v', B1) =
1 and V) (o, B2) = 1.

Construction 6.4.11 differs from the above example only in that a one-time
signature scheme is used to generate the “second signature” (rather than using
the same ordinary signature scheme). The use of a one-time signature scheme
is natural here, since it is unlikely that the same signing-key s’ will be selected
in two invocations of S".
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Proposition 6.4.12 Suppose that (G,S,V) is a secure signature scheme, and
that (G',S',V') is a secure one-time signature scheme. Then (G",S", V"), as
defined in Construction 6.4.11 is a secure signature scheme.

We comment that the proposition holds even if (G, S, V') is only secure against
attackers that select queries according to the distribution G%(1™). Furthermore,
(G, S,V) need only be (-restricted, for some suitable function £: N — .

Proof Sketch: Consider an adversary A" attacking the scheme (G",S",V").
We may ignore the case in which two queries of A" are answered by triplets
containing the same one-time verification-key v’ (since if this event occurs with
non-negligible probability then the one-time scheme (G',S’, V') cannot be se-
cure). We consider two cases regarding the relation of the values of the one-time
verification-key in the signatures provided by S!' and its value in the signature
forged by A”.

1. In case, for some i, the one-time verification-key v’ contained in the forged

message equals the one-time verification-key v(*) contained in the answer
to the i*" query, we derive violation to the security of the one-time scheme
(G",s',vh.
Specifically, consider an adversary A’ that on input a verification-key v’
for the one-time scheme (G',S’,V'), generates (s,v) «— G(1") at ran-
dom, selects i at random (among polynomially many possibilities), in-
vokes A" on input v, and answers its queries as follows. The i*" query of
A" denoted !V, is answered by making the only query to S',, obtaining
B = S' (D), and returning (S,(v'),v', 3') to A”. (Note that A" holds s.)
Each other query of A", denoted a(?), is answered by invoking G’ to obtain
(), 09y — G'(1™), and returning (S,(v)), v\, S;m(a(j)) to A", If A"
answers with a forged signature and v’ is the verification-key contained
in it, then A’ obtains a forged signature relative to the one-time scheme
(G',8",V") (i.e., a signature to a message different from (), which is valid
w.r.t the verification-key v'). Conditioned on the case hypothesis and a
forgery event, the second event (i.e., v' is the verification-key contained
in the forged signature) occurs with 1/poly(n) probability. (Note that in-
deed A’ made a single query to S.,, and that the distribution seen by A"
is exactly as in an actual attack on (G",S",V").)

2. In case, for all i, the one-time verification-key v’ contained in the forged
message is different from the one-time verification-key v(¥) contained in the
answer to the i*® query, we derive violation to the security of the scheme
(G, S, V).

Specifically, consider an adversary A that on input a verification-key v for
the scheme (G, S,V), invokes A" on input v, and answers its queries as
follows. To answer the j* query of A", denoted a(?), algorithm A invokes
G' to obtain (s\7),v9)) «— G'(1™), queries S, for a signature to v(?), and
returns (S,(v),v9), 8!, (ol?) to A”. When A" answers with a forged
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signature and v’ € {v) : j = 1,...,poly(n)} is the one-time verification-
key contained in it, A obtains a forged signature relative to the scheme
(G, S,V) (ie., a signature to a string v’ different from all v()’s, which is
valid w.r.t the verification-key v). (Note again that the distribution seen
by A" is exactly as in an actual attack on (G",S”,V").)?

Thus in both cases we derive a contradiction to some hypothesis, and the propo-
sition follows. O

6.4.2.2 Authentication—trees

The refreshing paradigm by itself (i.e., as employed in Construction 6.4.11) does
not seem to be enough for establishing Theorem 6.4.9. Recall that our aim is
to construct a general signature scheme based on a one-time signature scheme.
The refreshing paradigm suggests to use a fresh instance of a one-time signature
scheme in order to sign the actual document; however, whenever we do so (as
in Construction 6.4.11), we must autheticate this fresh instance relative to the
single verification-key that is public. A straightforward implementation of this
scheme (as presented in Construction 6.4.11) calls for many signatures to be
signed relative to the single verification-key that is public, and so a one-time sig-
nature scheme cannot be used (for this purpose). Instead, a more sophisticated
method of authentication is required.

Let us try to sketch the basic idea underlying the new authentication method.
The idea is to use the public verification-key (of a one-time signature scheme)
in order to authenticate several (e.g., two) fresh instances, use each of these
instances to authenticate several fresh instances, and so on. We obtain a tree of
fresh instances of the one-time signature, where each internal node authenticates
its children. See Figure 6.1 (below). We can now use the leaves of this tree in
order to sign actual documents, where each leave is used at most once. We stress
that each instance of the one-time signature scheme is used to sign at most one
string (i.e., a sequence of verification-keys if the instance resides in an internal
node, and an actual document if the instance resides in a leaf).

The above description may leave the reader wondering as to how one actually
signs (and verifies signatures) using the suggested signature scheme. We start
with a description that does not fit our definition of a signature scheme, because
it requires the signer to keep a record of its actions during previous invocations
of the signing process.'® We refer to such a scheme as memory dependent.

Definition 6.4.13 (memory-dependent signature schemes):

mechanics: Item 1 of Definition 6.1.1 stays as it is, and the initial state (of
the signing algorithm) is defined to equal the output of the key-generator.
Item 2 is modified so that the signing algorithm is given a state, denoted
v, as auziliary input and returns a modified state, denoted 6, as auziliary

9 Furthermore, all queries to S, are distributed according to G2(1™), justifying the comment
made just before the proof sketch.
10 This (memory) requirement will be removed in the next section.
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Figure 6.1: A node labeled = authenticates its children, labeled z0 and 1,
respectively. The authentication is via a one-time signature of the text v, ov.1
using signing-key s,.

output. It is required that for every pair (s,v) in the range of G(1™),
and for every a,vy € {0,1}*, if Ss(a,y) = (8,6) then Vy(a,3) = 1 and
6] < Iyl + |ex| - poly(n).

(That is, the verification algorithm accepts the signature § and the state
does not grow by too much.)

security: The notion of a chosen message attack is modified so that the oracle
Ss now maintains a state that it updates in the natural manner; that is,
when in state v and faced with query «, the oracle sets (3,0) «— Ss(a,7),
returns B and updates its state to 6. The notions of success and security
are defined as in Definition 6.1.2, except that they now refer to the modified
notion of an attack.

We note that memory-dependent signature schemes may suffice in many ap-
plications of signature schemes. Still, it is preferable to have memoryless (i.e.,
ordinary) signature schemes. Below we use any one-time signature schemes to
construct a memory-dependent signature scheme. The memory requirement will
be removed in the next section, so to obtain a (memoryless) signature scheme
(as in Definition 6.1.1).

Construction 6.4.14 (a memory-dependent signature scheme): Let (G,S,V)
be a one-time signature scheme. Consider the following memory-dependent sig-
nature scheme, (G',S", V'), with G' = G. On security parameter n, the scheme
uses a full binary tree of depth n. FEach of the nodes in this tree is labeled by a
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binary string so that the root is labeled by the empty string, denoted A, and the
left (resp., right) child of a node labeled by x is labeled by z0 (resp., x1). Below
we refer to the current state of the signing process as to a record.

initiating the scheme: To initiate the scheme, on security parameter n, we in-
voke G(1™) and let (s,v) — G(1™). We record (s,v) as the key-pair asso-
ciated with the root, and output v as the (public) verification-key.

In the rest of the description, we denote by (s.,v;) the key-pair associated
with the node labeled x; thus, (sx,vx) = (s,v).

signing with S’ using the current record: Recall that the current recond contains
the signing-key s = sx, which is used to produce authy (defined below).

To sign a new document, denoted o, we first allocate an unused leaf. Let
o1 -0y be the label of this leaf. For example, we may keep a counter of
the number of documents signed, and determine oy - - -0y, according to the
counter value (e.g., if the counter value is ¢ then we use the '™ string in
lezicographic order).

Nezt, for everyi =1, ...,n and every T € {0,1}, we try to retreive from our
record the key-pair associated with the node labeled o1 ---0;—17. In case
such a pair is not found, we generate it by invoking G(1™) and store it (i.e.,
add it to our record) for future use; that is, we let (Sg,...o;_y7yVoy-0s_17)
G(1™).

For every v+ = 1,...,n, we try to retreive from our record a signature to
the string Ve, ...0; 10 Voy---0; 11 Telative to the signing-key Sqy...c; ,. In case
such a signature is not found, we generate it by invoking Ss, ., ., and
store it for future use; that is, we obtain Ss, ., (Voy..c; 10Voy-m0; 11)-
We let

def
a‘uthal"'ai—l = (1}01"'01'710 y Vo011 5’501---0,;_1(1}0'1"'0'6—10val"'a'i—ll))

(Intuitively, via auth,,...,,_, the node labelled o7 - - - 0;_; authenticates the
verification-keys associated with its children.)

Finally, we sign a by invoking S and output

Sop-on?
(01 - - - o, authy, auth,, ,...,authy, ..o, ., Ssoyeon ()

verification with V': On input a verification-key v, a document o, and an alledge
signature 3 we accept if and only if the following conditions hold:

1. 3 has the form

(01 *rOn, (Uo,o,vog,ﬁo); (vl,O;vl,laﬁl)a ) (vn7170>7}n71,1>ﬁn71)7ﬁn)

where the o;’s are bits and all other symbols represent strings.

(Jumping ahead, we mention that v; - is supposed to equal vg,...o; ;r,
the verification-key associated by the signing process with the node
labeled o1 - --0;_17. In particular, v; », is supposed to equal v,, ..., .)
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2. Vy(vo,0v0,1,50) = 1.
(That is, the public-key (i.e., v) authenticates the two strings vg o and
vp,1 claimed to correspond to the instances of the one-time signature
scheme associated with the nodes labeled 0 and 1, respectively.)

8. Fori=1,..,n—1, it holds that V,,_, . (vi,0vi1,Bi) = 1.
(That is, the verification-key v;_; »,, which is already beleived to be
authentic and supposedly corresponds to the instance of the one-time
signature scheme associated with the node labeled oy - - - 0;, authen-
ticates the two strings v; o and v;; that are supposed to correspond
to the instances of the one-time signature scheme associated with the
nodes labeled oy - -- 0,0 and oy - - - 0;1, respectively.)

4 Voo 1, (@, 8n) = 1.
(That is, the verification-key v,,_1 4, , which is already beleived to be
authentic, authenticates the actual document a.)

Regarding the verification algorithm, note that Conditions 2 and 3 establish that
Vi,o.4, is authentic (i.e., equals vg,...0; 0,,, ). That is, v = v\ authenticates v, ,
which authenticates v, ,, and so on up-to v,,...,,, . The fact that the v; 14, ,’s
are proven to be authentic (i.e., equal the vs,...0;.1—¢,,,’s) is not really useful.
This is merely an artifact of the fact that s,,..,, can be (securely) used to
produce a single signature, during the entire operation of the memory-dependent
signature scheme. In the currently (constructed) S!-signature we may not care
about the authenticity of some v,,...;;,1-0,,,, but we may care about it in some
other S!-signature. For example, if we use the leaf labeled 0™ to sign the first
document and the leaf labeled 0" 11 to sign the second, then in the first S’-
signature we only care about the authenticity of vy, whereas in the second
S!-signature we care about the authenticity of vgn-1;.

Proposition 6.4.15 If (G,S,V) is a secure one-time signature scheme then
Construction 6.4.14 constitutes a secure memory-dependent signature scheme.

Proof: Recall that a S{, -signature to a document o has the form
(01 op,authy,authy,, ..., authy, ..o, 1, Ss, ., (@) (6.3)
where the auth,’s, v,’s and s.’s satisfy
auth, = (veo , Vet 5 S, (V20 V1)) (6.4)

(See Figure 6.1.) In this case we say that this S.-signature uses the leaf labeled
o1+ -0y Foreveryi = 1,...,n, we call the sequence (authy, auth,,,...,authy,....;_,)
an authentication path for v,,...,,. Note that the above sequence is also an au-
thentication path for vy,...,,_,7,, where @ = 1 —o. Thus, a valid S!-signature to

a document « consists of an n-bit string oy - - - 0,,, authentication paths for each
Vgyo; (0 =1,...,m), and a signature to o with respect to the one-time scheme
(G, S,V) using the signing-key s4,...0,, -
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Intuitively, forging an S!-signature requires either using an authentication
path supplied by the signer (i.e., supplied by S, as part of an answer to a query)
or producing an authentication path different from all paths supplied by the
signer. In both cases, we reach a contradiction to the security of the one-time
signature scheme (G, S, V). Specifically, in the first case, the forged S’-signature
contains a signature relative to (G, S, V') using the signing-key s,,...,, . The lat-
ter S’SUI,_,G" -signature is verifiable using the verification-key v, ..., , which is au-
thentic by the case hypothesis. This yields forgery with respect to the instance
of the one-time signature scheme associated with the leaf labeled oy - - - o, (since
the document S’-signed by the forger must be different from all S!-signed doc-
uments, and thus the forged document is different from all strings to which a
one-time signature was applied).!! We now turn to the second case (i.e., forgery
with respect to (G', S’, V') is obtained by producing an authentication path dif-
ferent from all paths supplied by the signer). In this case there must exists an
i € {1,...,n} and an i-bit long string oy - -+ 0; so that authy,...,auth,,...,,_, is
the shortest prefix of the authentication path produced by the forger that is NOT
a prefix of any authentication path supplied by the signer. (Note that ¢ > 0 must
hold, since empty sequences are equal, whereas i < n by the case hypothesis.)
In this case auth,,...,,_,, which contains a signature relative to (G, S, V) using
the signing-key $,,...o,_,, is produced by the forger. The latter signature is ver-
ifiable using the verification-key wv,,...,,_,, which is authentic by the minimality
of i. Furthermore, by definition of 4, the latter signature is to a string different
from the string to which the S!-signer has applied Ssey.0,_,+ This yields forgery
with respect to the instance of the one-time signature scheme associated with
the node labeled oy -+ 04—1.

The actual proof is by a reducibility argument. Given an adversary A’ attack-
ing the complex scheme (G',S’, V"), we construct an adversary A that attacks
the one-time signature scheme, (G, S, V). In particular, the adversary A will use
its oracle access S, in order to emulate the memory-dependent signing oracle for
A'. Recall that the adversary A can make at most one query to its S-oracle.
Below is a detailed description of the adversary A. Since we care only about
probabilistic polynomial-time adversaries, we may assume that A’ makes at most
t = poly(n) many queries, where n is the security parameter.

The construction of adversary A: Suppose that (s,v) is in the range of
G(1™). On input v and one-query oracle access to Ss, adversary A proceeds as
follows:

1. Initial choice: A uniformly selects j € {1,...,(2n + 1) - t}.

(The integer j specifies an instance of (G, S, V') produced during the attack
of A'. This instance will be attacked by A. Note that since 2n+ 1 instances
of (G,S,V) are refered to in each signature relative to (G',S’, V'), the

1 Note that what matter is merely that the document S’-signed by the forger is different
from the (single) document to which Ssal---a was applied by the Sé—signer7 in case Ssal---u,,,,

n

was ever applied by the S!-signer.
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quantity (2n+1)-¢ upper bounds the total number of instances of (G, S, V)
that appear in some oracle response. This upper bound is not tight.)

2. Invoking A’: If j = 1 then A sets vy = v and invokes A’ on input v. In
this case A does not know sy, which is defined to equal s, but can obtain
a single signature relative to it by making a (single) query to oracle S.

Otherwise (i.e., j > 1), machine A invokes G, obtains (s',v') «— G(1™),
sets (sx,vx) = (s',v") and invokes A’ on input v'. We stress that in this
case A knows s,.

In fact, in both case, A’ is invoked on input vy. Also, in both cases, the
one-time instance associated with the root (i.e., the node labeled A) is
called the first instance.

3. Emulating the signing oracle for A’: A emulates the memory-dependent
signing oracle for A’. The emulation is analogous to the operation of the
signing procedure as specified in Construction 6.4.14. The only execption
refer to the j*" instance of (G, S, V) that occurs in the memory-dependent
signing process. Here, A uses the verification key v, and if an S,-signature
needs to be produced then A queries S, for it. We stress that at most one
signature needs ever be produced with respect to each instance of (G, S, V)
that occurs in the memory-dependent signing process, and therefore S; is
queried at most once. Details follow.

A maintains a recond of all key-pairs and one-time signatures it has gen-
erated and/or obtained from S;. When A is asked to supply a signature
to a new document, denoted «, it proceeds as follows:

(a) A allocates a new leaf-label, denoted o - - - 0, exactly as done by the
signing process.

(b) Forevery i =1,...,n and every 7 € {0, 1}, machine A tries to retreive
from its record the one-time instance associated with the node labeled
o1 ---0;—17. If such an instance does not exist in the record (i.e., the
one-time instance associated with the node labeled oy ---0;_17 did
not appear so far) then A distinguishes two cases:

i. If the record so far contains exactly j — 1 one-time instances (i.e.,
the current instance is the j** one to be encountered) then A sets
Ugyoi_qr < U, and adds it to its record. In this case, A does
not know s,,...s; _,r, which is defined to equal s, but can obtain a
single signature relative to it by making a (single) query to oracle
Ss.

From this point on, the one-time instance associated with the
node labeled oy - - o;_1 7 will be called the j*" instance.

ii. Otherwise (i.e., the current instance is NOT the j*% one to be en-
countered), A acts as the signing process: It invokes G(1™), ob-
tains (Sgy.o;_17sVoyoi_yr) — G(1™), and adds it to the record.
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(Note that in this case A knows s4,...¢;_,r, and can generate by
itself signatures relative to it.)

The one-time instance just generated is given the next serial num-
ber. That is, the one-time instance associated with the node la-
beled o; - -0;_17 will be called the k! instance if the current
record (i.e., after the generation of the one-time key-pair asso-
ciated with the node labeled oy - --0;_17) contains exactly k in-
stances.

(¢) For every i = 1,...,n, machine A tries to retreive from its record a
(one-time) signature to the string vy, ....; 0 Vo, --0;_,1, relative to the
signing-key $4,...0; ,. If such a signature does not exist in the record
then A distinguishes two cases:

i. If the one-time signature instance associated with the node la-
beled oy - - - 0;_; is the j* such instance then A obtains the one-
time signature Ssgll_,ai_l(vgl...giflo Vg, ..0;_,1) Dy querying S,
and adds this signature to the record.

Note that by the previous steps (i.e., Step 3(b)i as well as Step 2),
s is indentified with $,,...,,_,, and that the instance associated
with a node labeled oy ---0;_1 is only used to produce a single
signature; that is, to the string vy,...o; ,0Voy---0;_,1. Thus, in this
case, A queries S at most once.

We stress that the above makes crucial use of the fact that, for
every 7, the verification-key associated with the node labeled
01+ 0;—17 is identical in all executions of the current step, re-
gardless of whether it is generated in Step 3(b)ii or fixed to equal
v (in Step 3(b)i). This fact guarantees that A only needs a single
signature relative to the instance associated with a node labeled
o1+--0i—1, and thus queries Sy at most once. (The validity of
this fact is the most important place in which we rely on the

memory-dependence of our signature scheme.)'?

ii. Otherwise (i.e., the one-time signature instance associated with
the node labeled o1 ---0;_; is NOT the jth such instance), A acts
as the signing process: It invokes Ss,,l___”i1 , obtains the one-time

signature S,, . (Voyoro0i—10 Voyoroi_11) Vo oos 17 ), and adds it
to the record. (Note that in this case A knows s4,...s;_,, and can

generate by itself signatures relative to it.)
Thus, A obtains authy,....;_,-

(d) Machine A now obtains a one-time signature of a relative to S
(Recall that since A’ never makes the same query twice,'?

Sopon "

we need

12 In contrast, the use of a counter for determining a new leaf can be easily avoided, by
selecting a leaf at random.

13 This assertion can be justified, without loss of generality. Otherwise, we may modify A’
so that retreives from its own memory the answer to a query that it wishes to ask for the
second time.
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to generate at most one signature relative to the one-time instance
Ss,, ..., -) This is done analogously to the previous step (i.e., Step 3c).
Specifically:

i. If the one-time signature instance associated with the leaf labeled
o1 -0y, is the 7** instance (associated with any node) then A
obtains the one-time signature S,, ., («) by querying S;.
Note that, in this case, s is indentified with s,,...,,, and that an
instance associated with a leaf is only used to produce a single
signature. Thus, also in this case (which is disjoint of Case 3(c)i),
A queries S; at most once.

ii. Otherwise (i.e., the one-time signature instance associated with
the node labeled oy - - - 0, is NOT the j*" instance), A acts as the
signing process: It invokes Ssq---on.’ obtains the one-time signa-
ture S5, ., («), and adds it to the record. (Again, in this case
A knows s, ...0, , and can generate by itself signatures relative to
it.)

Thus, A obtains 3, = S, .. ().
(e) Finally, A answers the query a with

(01 - - - op,authy,auth,,,...,auth,, ..., ,,0Bn)

4. Using the output of A': When A’ halts with output (¢/, '), machine A
checks whether this is a valid document-signature pair with respect to
V,, and whether the document o' did not appear as a query of A'. If
both conditions hold then A tries to obtain forgery with respect to Ss.
To explain how this is done, we need to take a closer look at the valid
document-signature pair, (', '), output by A’. Specifically, suppose that
B’ has the form

(UZIL U O—;w (1}6707U[I),1aﬁtl))7 (vi,mvi,laﬁi): ) (v:’bfl70’v’:’7,71,1’/87l171)’/87l1)

and that the various components satisfy all conditions stated in the verifica-

tion procedure. (In particular, the sequence (vg o, 00 1,30); -+ (V51,00 V1,15 Bn—1)
is the authentication path (for v;,_, ,, ) output by A".) Let ¢ be mazimal
so that for some By, ..., 5i_1 (which may but need not equal 3}, ..., 3'_,)
the sequence (vg g, v 1,50), - (Vj_1 o,Vi_1 1, Bi—1) is a prefix of some au-
thentication path (for some v,:...o15,,,...0, ) supplied to A" by A. Note that
i € {0,...,n}, where i = 0 means that (vg o, vp ;) differs from (vp,v;), and
i = n means that the sequence ((vfg,g1), . (V},_1,0,v;,—1,1)) equals the
sequence ((vo,v1), ..., ('ngl___gr 0, Vo) -0 1))

n—1 n—1
Recall that the v} s are strings included in the output of A’, and that
the v,s are verification-keys as recorded by A. In general, the sequence
((v0,0,09,1), -+ (Vi—1,0,v{_1,1)) equals the sequence ((vo, V1), -, (Vg! ot 05 Vot 0t 1))

1 i—1
In particular, for ¢ > 1, it holds that v} , , = Vgt ...or, Whereas for i = 0
201 i
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we shall only refer to vy (which is the verification-key attacked by A’).
In both cases, the output of A’ contains a one-time signature relative to
o/ ..o, and this signature is to a string different from the only (possible)
one to which a signature was supplied to A’ by A. Analogously to the
motivating discussion above, we distinguish the cases « = n and i < n:

(a) In case i = n, the output of A’ contains the (one-time) signature (3,
that satisfies V,, , , (o', ;) = 1. Furthermore, o' is different from
1 n

the (possibly) only document to which S, , , was applied during the
1 I3

emulation of the S’-signer by A, since by our hypothesis the document
o/ did not appear as a query of A’. (Recall that, by the construction of
A, instances of the one-time signature scheme associated with leaves
are only applied to the queries of A'.)

(b) In case i < n, the output of A’ contains the (one-time) signature 3,
that satisfies V,,_, _, (v]ovi, ;) = 1. Furthermore, v yv; ; is differ-
1ot \Ui0 Y, 0Y%,
ent from v,:...510 Vo; ...o10, Which is the (possibly) only string to which
Ss,, ..., was applied during the emulation of the S’-signer by A, where
1 i

the last assertion is due to the maximality of ¢ (and the construction
of A).

Thus, in both cases, A obtains from A’ a valid (one-time) signature rela-
tive to the (one-time) instance associated with the node labeled o7 - - - o!.
Furthermore, in both cases, this (one-time) signature is to a string that
did not appear in the record of A. The question is whether the instance
associated with the node labeled o} - -- o} is the j*® instance, for which A
set v = vy1...o. In case the answer is yes, A obtains forgery with respect

to the (one—tiﬂle) verification-key v (which it attacks).

In view of the above discussion, A acts as follows. It determines ¢ as in the
discussion, and checks whether v = v,1...o1 (almost equivalently, whether
the j'I instance is the one associated with the node labeled o - --!). In
case i = n, machine A outputs the string-signature pair (o, 3/,), otherwise
(ie., i <n) it outputs the string-signature pair (v; 4v; ;,3}).

This completes the (admittingly long) description of adversary A. We repeat
again some obvious observations regarding this construction. Firstly, A makes
at most one query to its (one-time) signature oracle Ss. Secondly, assuming that
A’ is probabilistic polynomial-time, so is A. Thus, all that remains is to relate
the success probability of A (when attacking a random instance of (G, S,V)) to
the success probability of A’ (when attacking a random instance of (G, S’,V')).
As usual the main observation is that the view of A’, during the emulation (of
the memory-dependent signing process) by A, is identically distributed to its
view in an actual attack on (G',S’,V'). Furthermore, this holds conditioned
on any possible fixed value of j (selected in the first step of A). It follows
that if A’ succeeds to forge signatures in an actual attack on (G’,S', V') with
probability €’(n) then A succeeds to forge signatures with respect to (G,S,V)
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with probability at least %, where the (2n 4+ 1) - ¢ factor is due to the
probability that the choice of j is a good one (i.e., so that the j*! instance is
the one associated with the node labeled o} - - - ¢!, where o] --- ¢!, and i are as
defined in Step 4).

We conclude that if (G',S’, V') can be broken by a probabilistic polynomial-
time chosen message attack with non-negligible probability then (G,S,V) can
be broken by a probabilistic polynomial-time single-message attack with non-
negligible probability, in contradiction to the proposition’s hypothesis. The
proposition follows.

6.4.2.3 The actual construction

In this section, we remove the memory-dependency of Construction 6.4.14, and
obtain an ordinary (rather than memory-dependent) signature scheme. Towards
this end, we use pseudorandom functions (as defined in Definition 3.6.4). The ba-
sic idea is that the record maintained in Construction 6.4.14 can be determined
(on-the-fly) by an application of a pseudorandom function to certain strings.
For example, instead of generating and storing an instance of a (one-time) sig-
nature scheme for each node we encounter, we can determine the randomness
for the key-generation algorithm as a function of the label of that node. Thus,
there is no need to store the key-pair generated, since if we ever need it again
then re-generating it (in the very same way) will yield exectly the same result.
The same idea applies also to the generation of (one-time) signatures. In fact,
the construction is simplified, since we need not check whether or not we are
generating an object for the first time.

For simplicity, let us assume that on security parameter n both the key-
generation and signing algorithms (of the one-time signature scheme (G, S, V))
use exactly n internal coin tosses. (This assumption can be justified by us-
ing pseudorandom generators, which exist anyhow under the assumptions used
here.) For r € {0,1}", we denote by G(1™,r) the output of G on input 1™ and
internal coin-tosses r. Likwise, for r € {0,1}", we denote by Ss(a, ) the output
of S, on input a signing-key s and a document «, when using internal coin-tosses
r. For simplicity, we shall be actually using generalized pseudorandom functions
as in Definition 3.6.12 (rather than pseudorandom functions as defined in Defini-
tion 3.6.4).'* Furthermore, for simplicity, we shall consider applications of such
pseudorandom functions to sequences of characters containing {0, 1} as well as
a few additional special characters.

Construction 6.4.16 (Removing the memory requirement from Construction 6.4.14):
Let (G, S,V) be a one-time signature scheme, and { f. : {0,1}* — {0, 1}|T‘}TE{0,1}*
be a generalized pseudorandom function ensemble as in Definition 3.6.12. Con-

14 We shall make comments regarding the minor changes required in order to use ordinary
pseudorandom functions. The first comment is that we shall consider an encoding of strings
of length up-to n + 2 by strings of length n + 3 (e.g., for 4 < n + 2, the string = € {0,1}* is
encoded by z10"+2-%),
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sider the following signature scheme, (G',S', V'), which refers to a full binary
tree of depth n as in Construction 6.4.14.

key-generation algorithm G': On input 1™, algorithm G’ obtains (s,v) — G(1™)
and selects uniformly r € {0,1}". Algorithm G' outputs the pair ((r,s),v),
where (1, 8) is the signing-key and v is the verification-key.'®

signing algorithm S’: On input a signing-key (r,s) and a document «, the algo-
rithm proceeds as follows.

1. It selects uniformly oy --- oy, € {0,1}™.

(Algorithm S’ will use the leaf labeled oy - - -0, € {0,1}™ to sign the
current document. Indeed, with exponentially-vanishing probability
the same leaf may be used to sign two different documents, and this
will lead to forgey (but only with negligible probability).)

(Alternatively, to obtain a deterministic signing algorithm, one may
set o1 - -0, «— fr(select-leaf, a), where select-leaf is a special
character.)'®

2. Neat, for everyi =1,...,n and every T € {0,1}, the algorithm invokes
G and sets

(50'1"'0'i—17'7 U01"'0i—1‘r) — G(]-n: fr(key_gena o1--- Ui—lT))

where key-gen is a special character.”

3. For every i =1,....n, the algorithm invokes S and sets

Sopoig

def
authol---oi_l = ('U0'1---0'L'_10 y Voyevoi11

Ssal---ai,I (Uﬂl"'tﬁ—lo Voy-0i-11> fT(Signa [ Ui—l)))

where sign is a special character.'8

4. Finally, the algorithm invokes S, ., and outputs"

(01 -+ - op,authy, auth,, ,...,authy, ..., _,, Ssoriom (o, fr(sign,o1 - 04)))

15 In case we use ordinary pseudorandom functions, rather than generalized ones, we select
r uniformly in {0,1}"*3 so that f, : {0,1}"13 — {0,1}"13. Actually, we shall be using the
function f : {0,1}*+3 — {0,1}" derived from the above by droping the last 3 bits of the
function value.

16 In case we use ordinary pseudorandom functions, rather than generalized ones, this alter-
native can be (directly) implemented only if it is guaranteed that |a| < n. In such a case, we
apply the f, to the (n + 3)-bit encoding of 00c.

17 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-
ment to f, is the (n + 3)-bit encoding of 1007 - o;_17.

18 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-
ment to f, is the (n + 3)-bit encoding of 1107 + - 0j_1.

19 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-
ment to f, is the (n + 3)-bit encoding of 1107 « - - oy
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verification algorithm V': On input a verification-key v, a document o, and an
alledge signature B algorithm V' behaves exactly as in Construction 6.4.14.
Specifically, assuming that 3 has the form

(o1 0, (v0,0,v0,1,50), (V1,0,v1,1,581); s (Vn—1,0,Vn—1,1, Bn-1), Bn)
algorithm V' accepts if and only if the following three conditions hold:

o V,(vo,0v0,1,50) = 1.
e Fori=1,..,n—1, it holds that Vy, , . (viovi1,Bi) = 1.
hd an—l,a" (aa/g’ﬂ) = 1

Proposition 6.4.17 If (G,S,V) is a secure one-time signature scheme and
{fr + {0,1} = {0,1}"},c0.1y is a generalized pseudorandom function en-
semble then Construction 6.4.16 constitutes a secure signature scheme.

Proof: Following the general methodology suggested in Section 3.6.3, we con-
sider an ideal version of Construction 6.4.16 in which a truely random function
is used (rather than a pseudorandom one). The ideal version is almost identical
to Construction 6.4.14, with the ounly difference being the way in which oy --- o,
is selected. Specifically, applying a random function to determine (one-time)
key-pairs and (one-time) signatures, is equivalent to generating these keys and
signatures at random (on-the-fly) and re-using the strored values whenever nec-
essary. Regarding the way in which oy - - -0, is selected, observe that the proof
of Proposition 6.4.15 is oblivious of this way except for the assumption that the
same leaf is never used to sign two different documents. However, the probabil-
ity that the same leaf is used twice by the (memoryless) signing algorithm, when
serving polynomially-many signing requests, is exponentially-vanishing and thus
can be ignored in our analysis. We conclude that the ideal scheme (in which
a truely random function is used instead of f,) is secure. It follows that also
the actual signature scheme (as in Construction 6.4.16) is secure, or else one
can efficiently distinguish a pseudorandom function from a truely random one
(which is impossible). Details follow.

Asgsume towards the contradiction that there exists a probabilistic polynomial-
time adversary A’ that succeeds to forge signatures with respect to (G, S’, V')
with non-negligible probability, but succeeeds only with negligible probability
when attacking the ideal scheme. We construct a distinguisher D that on input
1™ and oracle access to f : {0,1}* — {0,1}" bevaves as follows. Machine D
generates ((r,s),v) « G'(1™), and invokes A’ on input v. Machine D answers
the queries of A’ by running the signing process, using the signing-key (r, s),
with the exception that it replaces the values f.(x) by f(z). That is, whenever
the signing process calls for the computation of the value of the function f, on
some string z, machine D queries its oracle (i.e., f) on the string z, and uses
the respond f(z) instead of f.(z). When A’ outputs an alledge signature to
a new documment, machine M evaluates whether the signature is valid (with
respect to V,) and output 1 if and only if A’ has indeed succeeded (i.e., the
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signature is valid). Observe that if D is given oracle access to a truely random
function then the emulated A’ attacks the ideal scheme, whereas if D is given
oracle access to a pseudorandom function f, then the emulated A’ attacks the
real scheme. It follows that D distinguishes the two cases, in contradiction to
the pseudorandomness of the ensemble {f,}.

6.4.2.4 Conclusions and comments

Theorem 6.4.9 follows by combining Proposition 6.4.17 with the fact that the
existence of secure one-time signature schemes implies the existence of one-way
functions (see Exercise 6), which in turn imply the existence of (generalized)
pseudorandom functions. Recall that combining Theorem 6.4.9 and Corol-
lary 6.4.8, we obtain Corollary 6.4.10 that states that the existence of collision-
free hashing collections implies the existence of secure signature schemes.

We comment that Constructions 6.4.14 and 6.4.16 can be generalized as
follows. Rather than using a depth n full binary tree, one can use any tree that
has a super-polynomial (in n) number of leaves, provided that one can enumerate
the leaves (resp., uniformly select a leaf), and generate the path from the root
to a given leaf. We consider a few possibilities:

e For any d : N— N bounded by a polynomial in n (e.g., d =2 or d(n) =n
are indeed “extreme” cases), we may consider a full d(n)-ary tree of depth
e(n) so that d(n)¢("™ is greater than any polynomial in n. The above choice
of pramaters (i.e., d = 2 and e(n) = n) is probably the simplest one. Note
that the length of the signatures in a generalized construction is linear in
d(n)-e(n), the number of applications of the underlying one-time signature
scheme (per each general signature) is linear in e(n), and that in internal
nodes the one-time signature scheme is applied to string of length linear in
d(n). Thus, the choice of parameters may depend on the underlying one-
time signature scheme. In fact, d = 2 seems a reasonable generic choice,
but in some special cases (see Section 6.5.2) one may prefer to use larger

d: N-N.

e For the memory-dependent construction, it may be preferable to use un-
balanced trees (i.e., having leaves at various levels). The advantage is that
if one utilizes first the leaves closer to the root then one can obtain a saving
on the cost of signing the first documents.

For example, consider using a ternary tree of super-logarithmic depth
(i.e., d = 3 and e(n) = w(logn)) in which each internal node of level
i € {0,1,...,e(n) — 2} has a two children that are internal nodes and a
single child that is a leaf (and the internal nodes of level e(n) — 1 have only
leaves as children). Thus, for 7 > 1, there are 3'~! leaves at level 4. If we
use all leaves of level i before using any leave of level ¢ + 1 then the length
of the j'! signature in this scheme is linear in log, j (and so is the number
of applications of the underlying one-time signature scheme).
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In actual applications, one should observe that in variants of Construction 6.4.14
the size of the tree determines the total number of documents that can be signed,
whereas in variants of Construction 6.4.16 the tree size has even a more dras-
tic effect on the number of documents that can be signed.2® In some cases
a hybrid of Constructions 6.4.14 and 6.4.16 may be preferable: We refer to a
memory-dependent scheme in which leaves are assigned as in Construction 6.4.14
(i.e., according to a counter), but the rest of the operation is done as in Con-
struction 6.4.16 (i.e., the one-time instances are re-generated on-the-fly, rather
than being generated and recorded). In some applications, the introduction of a
document-counter may be tolerated, and the gain is the ability to use a smaller
tree of size merely greater than the total number of documents that should be
ever signed.

6.4.3 * Universal One-Way Hash Functions and using them

So far, we have established that the existence of collision-free hashing collections
implies the existence of secure signature schemes (cf. Corollary 6.4.10). We seek
to weaken the assumption under which secure signature schemes can be con-
structed, and bear in mind that the existence of one-way functions is certainly a
necessary condition (cf., for example, Exercise 6). In view of Theorem 6.4.9, we
may focus on constructing secure one-time signature schemes. Furthermore, re-
call that secure length-restricted one-time signature schemes can be constructed
based on any one-way function (cf. Corollary 6.4.6). Thus, the only bottleneck
we face (with respect to the assumption used) is Proposition 6.4.7, which refers
to Construction 6.2.6 and utilizes collision-free hashing. Our aim in this section,
is to replace this component in the construction. We use a variant of Construc-
tion 6.2.6 in which, instead of using collision-free hashing, we use a seemingly
weaker notion called Universal One-Way Hash Functions.

6.4.3.1 Definition

A collection of universal one-way hash functions is defined analogously to a
collection of collision-free hash functions. The only difference is that the hard-
ness (to form collisions) requirement is relaxed. Recall that for a collection of
collision-free hash functions it was required that given the function’s description
it is hard to form an arbitrary collision under the function. For a collection
of universal one-way hash functions we only require that given the function’s
description h and a preimage z it is hard to find an z' # z so that h(z') = h(z).
We refer to this requirement as to hardness to form designated collisions.

Our formulation of the hardness to form designated collisions is actually
seemingly stronger. Rather than being supplied with a (random) preimage z,

20 In particular, the number of documents that can be signed should definitely be smaller
than the square root of the size of the tree (or else two documents are likely to be assigned the
same leaf). Furthermore, we cannot use a small tree (e.g., of size 1000) even if we know that
the total number of documents that will ever be signed is small (e.g., 10), since otherwise the
probability that two documents are assigned the same leaf is too big.
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the collision-forming algorithm is allowed to select z by itself, but must do so
before being presented with the function’s description. That it, the attack of the
collision-forming algorithm proceeds in three stages: first the algorithm selects
a preimage x, next it is given a description of a randomly selected function A,
and finally it is required to output z’ # x such that h(z') = h(z). We stress
that the third stage in the attack is also given the random choices made while
producing the preimage in the first stage. This yields the following definition,
where the first stage is captured by a deterministic polynomial-time algorithm
Ap (which maps a sequence of coin tosses, denoted Uy, to a preimage) and
the third stage is captured by algorithm A (which is given the very same Uy,
as well as the function’s description).

Definition 6.4.18 (universal one-way hash functions - UOWHF): Let £ : N —
N. A collection of functions {hs : {0,1}* — {0,1}*UsD} 1y is called uni-
versal one-way hashing (UOWHF) if there exists a probabilistic polynomial-time
algorithm I so that the following holds

1. (admissible indexing — technical):2* For some polynomial p, all sufficiently
large n’s and every s in the range of I(1™) it holds that n < p(|s]).

2. (efficient evaluation): There exists a polynomial-time algorithm that given
s and x, returns hs(z).

3. (hard to form designated collisions): For every polynomial q, every deter-
ministic polynomial-time algorithm Ay, every probabilistic polynomial-time
algorithm A, every polynomial p and all sufficiently large n’s

pr | hram(AUI(A"), Uym))) = hian)(Ao(Uywm)) | o L (6.5)
and = A(I(1"), Uy(n)) # Ao(Ug(m)) p(n)
where the probability is taken over U,(,) and the internal coin tosses of
algorithms I and A.

The function € is called the range specifier of the collection.

We stress that the hardness to form designated collisions condition refers to the
following three stage process: first, using a uniformly distributed r € {0, 1}“"),
the adversary generates a preimage x = Ag(r); next, a function h is selected;
and, finally, the adversary A is given h (as well as r used in the first stage), and
tries to find a preimage z' # x such that h(z') = h(z). Indeed, Eq. (6.5) refers
to the probability that x' Lef (h,7) #  and yet h(z') = h(x).

Note that the range specifier must be super-logarithmic (or else, given s and
x « U,, one is too likely to find an z' # x so that hs(z) = hs(z'), by uniformly
selecting z' in {0,1}™). Also note that any UOWHF collection yields a collec-
tion of one-way functions (see Exercise 8). Finally, note that any collision-free
hashing is universally one-way hashing, but the converse is false (see Exercise 9).
Furthermore, it is not known whether collision-free hashing can be constructed
based on any one-way functions (in contrast to Theorem 6.4.29 below).

21 This condition is made merely to avoid annoying technicalities. Note that |s| = poly(n)
holds by definition of I.
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6.4.3.2 Constructions

We construct UOWHEF collections in several steps, starting with related but
restricted notions, and relaxing the restrictions gradually (untill we reach unre-
stricted UOWHEF collections). The restriction we refer to is on the length of the
arguments to the function. Most importantly, the hardness (to form designated
collisions) requirement will refer only to argument of this length. That is, we
refer to the following technical definition.

Definition 6.4.19 ((d,r)-UOWHF): Let d,r : N — N. A collection of func-
tions {hs : {0,1}4Ish — {0,1}’(‘50}36{071}* is called (d,r)-UOWHF if there
exists a probabilistic polynomial-time algorithm I so that the following holds

1. For all sufficiently large n’s and every s in the range of I(1™) it holds that
|s| = n.22

2. There ezists a polynomial-time algorithm that given s and x € {0, l}d“s‘),
returns hs(z).

3. For every polynomial q, every deterministic polynomial-time algorithm Ay
mapping q(n)-bit long strings to d(|s|)-bit long strings, every probabilistic
polynomial-time algorithm A, every polynomial p and all sufficiently large
n’s Eq. (6.5) holds.

Off course, we care only of (d,r)-UOWHF for functions d,7 : N — N satisfying
d(n) > r(n). (The case d(n) < r(n) is trivial since collisions can be avoided
altogether; say by the identity map.) The “minimal” non-trivial case is when
d(n) = r(n) + 1. Indeed, this is our starting point. In fact, the current step
is the least obvious step to be taken on our way towards the construction of
full-ledged UOWHE.

Step I: constructing (d,d—1)-UOWHFs. We show how to construct length-
restricted UOWHEF that shrink their input by a single bit. Our construction can
be carried out using any one-way permutation. In addition, we use a family of
hashing functions, S"~!, as defined in Section 3.5.1.1. Recall that a function
selected uniformly in S~ maps {0,1}" to {0,1}"~! in a pairwise independent
manner, that the functions in S”~! are easy to evaluate, and that for some
polynomial p it holds that log, |S7"!| = p(n).

Construction 6.4.20 (a (d,d—1)-UOWHEF): Let f : {0,1}* — {0,1}* be a 1-1
and length preserving function, and let S~ be a family of hashing functions
such that log, |S"~t| = p(n), for some polynomial p. (Specifically, suppose that
log, |S™71] € {3n—2,2n}, as in Ezercises 22.2 and 23 of Chapter 3.) Then, for

22 Here we chose to make a more stringent condition, requiring that |s| = n rather than
n < poly(|s]). In fact, one can easily enforce this more stringent condition by modifying I into
I' so that I'(1/(™)) = [(1™) for a suitable function [ : N- N satisfying l(n) < poly(n) and
n < poly(I(n)).
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every s € S*~1 = {0,1}*(") and every x € {0,1}", we define h'.(z) e hs(f(x))-
In case |s| € {p(n) : n € N}, we define h',(z) = h’, where s' is the longest prefic
of s satisfying |s'| € {p(n) : n € N}. We refer to an index selection algorithm

that, on input 1™, uniformly selects s € {0,1}™.

That is, A, : {0,1}40sD — {0,1}40sD=1" where d(m) is the largest integer n
satisfying p(n) < m.

The analysis presented below uses, in an essential way, an additional property
of the above-mentioned families of hashing functions; specifically, we assume
that give two preimage—image pairs it is easy to uniformly generate a hashing
function (in the family) that is consistent with these two mapping conditions.
Furthermore, to facilitate the analysis we use a specific family of hasing functions,
presented in Exercise 23 of Chapter 3: functions in S”~! are described by a pair
of elements of the finite field GF(2") so that the pair (a,b) describes the function
hqep that maps z € GF(2") to the (n —1)-bit prefix of the n-bit representation of
az + b, where the arithmetics is of the field GF(2"). This specific family satisfies
all additional properties required in the next proposition.

Proposition 6.4.21 Suppose that f is a one-way permutation, and thatlogy |SP~1| =
2n. Furthermore, suppose that all but o negligible fraction of the functions in
Sn—L gre 2-to-1, and that there exists a probabilistic polynomial-time algorithm

that given y1,ys € {0,1}" and 21,2z, € {0,1}"7L, outputs a uniformly distributed
element of {s € S~ : hy(y:) = z: Vi € {1,2}}. Then {h.}scqo1}- as in Con-
struction 6.4.20 is a (d,d — 1)-UOWHEF, for d(m) = |m/2].

Proof Sketch: Intuitively, forming designated collisions under k!, = h o f yields
ability to invert f. Specifically, if on input z’ and A/ one can find an z # z'
so that hl(z) = h(z') then one basically inverts f on y = f(z) (by generating
x' and s so that hs(y) = hs(f(2')), and trying to form a designated collision
with the preimage z'). Thus, with a suitable random choice of s (i.e., so that
hs(f(z")) = hs(y), where z' is selected before s), we can invert f on a random
preimage y.

The actual proof is by a reducibility argument. Suppose that we are given
a probabilistic polynomial-time algorithm A’ that forms designated collisions
under {h}}, with respect to preimages produced by a deterministic polynomial-
time algorithm A that maps p(n)-bit strings to n-bit strings. Then, we construct
an algorithm A that inverts f. On input y = f(x), where n = |y| = |z|, algorithm
A proceeds as follows.

(1) Select r' uniformly in {0,1}*™) and compute 2’ = A}(r') and y' = f(z').
(2) Select s uniformly in {s € S ! : hy(y') = hs(y)}.

(Recall that y is the input to A, and y' is generated by A in Step (1).)
(3) Invoke A’ on input (s,7'), and output whatever A’ does.

By the second extra condition regarding S”~!, Step (2) can be implemented in
probabilistic polynomial-time.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 443

Turning to the analysis of algorithm A, we consider the behavior of A on
input y = f(x) for a uniformly distributed z € {0,1}"™ (which implies that y
is uniformly distributed over {0,1}™). We first observe that for every fixed r’
selected in Step (1), if y is uniformly distributed in {0,1}" then s as determined
in Step (2) is uniformly distributed in S?~!. Using the first extra condition
regarding S? 1, it follows that the probability that h is not 2-to-1 is negligible.
By the construction of A, the probability that f(z') = y is also negligible (but
we could have taken advantage of this case too, by augmenting Step (1) so that
if y' = y then A halts with output z'). We now claim that, in case f(z') # y
and hg is 2-to-1, if A’ returns z” so that z” # 2’ and hl(z") = h!(z') then
fla") =y,

The claim is proven as follows: By definitions of h; and A (i.e., its
Step (2)), we have h.(z) = hs(f(z)) = hs(f(z")) = hi(z'), which equals
h.(z") by one of the claim’s hypotheses. By other two hypotheses z' # z"
and h, is 2-to-1. Thus, 2’ # "’ are the only two preimages of h,(y) = h(zx)
under h;, and so z € {z',z"}. Using the last of the hypotheses (i.e.,
y = f(z) # f(z')) and the fact that f is 1-1, it follows that = # z', which

in turn implies z = 2" and y = f(z").

We conclude that if A’ forms designated collisions with probability €'(n) then
A inverts f with probability '(n) — p(n), where p is a negligible function. The
proposition follows. O

Step II: constructing (d’',d'/2)-UOWHFs. We now take the second step
on our way, and use any (d,d — 1)-UOWHEF in order to constact a (d',d'/2)-
UOWHF. That is, we construct length-restricted UOWHEF that shrink their
input by a factor of 2. For simplicity, we assume that the function d : N—N
is onto and monotonically non-decreasing. In such a case we denote by d=!(m)
the smallest natural number n satisfying d(n) = m.

Construction 6.4.22 (a (d',d'/2)-UOWHF): Let {h, : {0,1}%s) — {0, 1}d(|5‘)_1}s€{071}*,
where d : N—N is onto and non-decreasing. Then, for every s, s 81d(n)/2] s
where each s; € {0,1}4 (@M +H1=0 and every z € {0,114, we define

def
hlsl,...,SLd(n.)/gj (I) = hs\_d(n.)/zj ( why (I) e )

That 1is, we let xg Lef z, and x; «— hg,(z;—1), fori =1,...,|d(n)/2]. (Note that
d(|s;|) = d(n) +1 — ¢ and |z;| = d(n) + 1 — ¢ indeed hold.) We refer to an
index selection algorithm that, on input 1™, determines the largest integer n so
that m > m’ def Z}i(ln)/zj d=(d(n) + 1 —1), uniformly selects sy, ..., 5|d(n)/2) 80

that s; € {0,1}4 " (+1=9 " gng s € {0,1}™=™', and lets b/ =

, 50,51,--35 [ d(n)/2] -
S$15.098d(n)/2] "
That is, m = [3| and L : {0,1}4™) — {0,1}14V/2] where n is largest so that
m > Z}i(l")m d=(d(n) +1—1). Thus, d'(m) = d(n), where n is as above; that
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is, we have AL : {0,1}2() — {0,1}4'(5D/2] with d'(|3]) = d(n). Note that,
for d(n) = Q(n) (as in Construction 6.4.20), it holds that d’(O(n?)) > d(n) and
d'(m) = Q(v/m) follows. More generally, if for some polynomial p it holds that
p(d(n)) > n (for all n’s) then for some polynomial p' it holds that p'(d'(m)) > m
(for all m’s), since d'(p(n) - d(n)) > d(n). We call a function sufficiently-growing;
that is, d : N— N is sufficiently-growing if there exists a polynomial p so that
for every n it holds that p(d(n)) > n.

Proposition 6.4.23 Suppose that {h,}cfo0,1}+ s a (d,d —1)-UOWHF, where
d : N—=N is onto, non-decreasing and sufficiently-growing. Then, for some
sufficiently-growing function d' : N—N, Construction 6.4.22 is a (d', |[d'/2])-
UOWHEF.

Proof Sketch: Intuitively, a designated collision under h/, yields a desig-

1o 8d/2
nated collision under one of the hy,’s. That is, let zg def z, and x; «— hg, (T;-1),
for i = 1,...,[d(n)/2]. Then if given x and 3 = (s1,...,54/2), one can find an
x' # x so that hi(z) = hi(z'), then there exists an ¢ so that z; ; # z;_; and
hs; (xi—1) = hs, (x5_,), where the x!’s are defined analogously to the z;’s. Thus,
we obtain a designated collision under hs,.

The actual proof uses the hypothesis that it is hard to form designated col-
lisions when one is also given the coins used in the generation of the preimage
(and not merely the preimage itself). Specifically, we construct an algorithm
that forms designated collision under one of the hy,’s, when given not only z;_;
but rather also xy (which yields z;_; as above). The proof is by a reducibil-
ity argument. We are given a probabilistic polynomial-time algorithm A’ that
forms designated collisions under {hL}, with respect to preimages produced by a
deterministic polynomial-time algorithm Aj that maps p'(n)-bit strings to n-bit
strings. We construct algorithms Ay and A so that A forms designated colli-
sions under {hs} with respect to preimages produced by algorithm Ay, which
maps p(n)-bit strings to n-bit strings, for a suitable polynomial p. Specifically,
p: N—>Nis 1-1 and p(n) > p'(d " (2d(n))) + n +n-d 1 (2d(n)).

We strat with the description of Ag, which at this point may seem strange.

On input r € {0,1}?("™), algorithm A, proceeds as follows, where g¢(n) def

d=*(2d(n)).

Write r = 17973 so that |r| = n and |r3]| = p'(g(n)).
(1) Using r1, determine m in {n +1,...,n-¢(n)} and 5 € {1,...,q(n)} so that
both m and j are almost uniformly distributed in the corresponding sets.
(2) Compute the largest integer n' so that m < Z}i(lnr)/zj d=t(d(n') + 1 —1).
(3) Ifd='(d(n') +1—j) # n then output the d(n)-bit long suffix of r3.
(Comment: the output in this case is immaterial to our proof.)
(4) Otherwise (i.e., n = d *(d(n') + 1 — j), which is the case we care about), do:
(4.1) Let sos1---s;—1 be a prefix of ry so that
Jsof = m — 42 d Y d(') +1 ),
and |s;| =d=*(d(n') +1—1i),fori=1,...,5 — 1.
(4.2) Let @ < Af(r"), where 1’ is the p'(d=1(d(n')))-bit long suffix of r3.
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(4.3)Fori=1,...,j — 1, compute z; < h,(z;_1).
Output z;_;.

As stated above, we only care about the case in which Step (4) is applied. This
case occurs with noticeable probability, and the description of the following
algorithm A refers to it. On input s € {0,1}" and 7 € {0,1}?("), algorithm A
proceeds as follows.

(1-2) Using r, determine m, j and n' exactly as done by Aj.
(3) Ifd=(d(n')+1—j) #n then abort.
(4) Otherwise (i.e., n = d=*(d(n') + 1 — 7)), do:
(4.1) Determine sg, s1, ..., 5;—1 and ' exactly as Ay does in Sltep (4). .
(4.2) Uniformly select Sjt+1y -y S|d(n')/2] so that S; € {0, 1}d7 (d(n )+1_Z),
and set s’ = 80,815y 8j—1,5, 8541, -+, S|d(n")/2]-
(4.3) Invoke A’ on input (s',r'), and output whatever A’ does.

Clearly, if algorithms A" and Aj, run in polynomial-time then so do A and Ay.
We now lower bound the probability that A succeeds to form designated colli-
sions under {h,}, with respect to images produced by Ay. We start from the
contradiction hypothesis by which the corresponding probability for A’ (w.r.t
Aj) is non-negligible.

Let use denote by £'(m) the success probability of A’ on uniformly distributed
input (s',7") € {0,1}™ x {0, l}P’(m). Let n' be the largest integer so that m <
Z}i(ln’)/u d=1(d(n') + 1 —14). Then, there exists a j € {1,...,d(n')} so that with
probability at least ¢'(m)/d'(n') on input (s',7'), where s" = sq, 51, ..., S| a(n)/2]

as above, A’ outputs an 7' # z = Ay(r') so that hg,_ (-~ (hs (2') ) #

B,y (- (hsy (') --+) and hg,; (- - (hs, (") -+ +) = hs; (- -+ (hs, (2") - - -). Fixing this
m, j and n/, let n = d~(d(n’) + 1 — j), consider what happens when A is
invoked on uniformly distributed (s,r) € {0,1}" x {0,1}*(™). With probabil-
ity at least 1/m? over the possible 7’s, the values of m and j are determined
to equal the above. Conditioned on this case, A’ is invoked on uniformly dis-
tributed input (s',7') € {0,1}™x{0,1}*'(™) and so a collision at the j*" hashing
function occurs with probability at least ¢'(m)/d'(n'). Note that m = poly(n)
and d'(n') = poly(n). This implies that A succeeds with probability at least
e(n) def %}(753)), with respect to images produced by Ag. Thus, if €' is non-
negligible then so is ¢, and the proposition follows. O

Step III: Length-restricted UOWHFs that shrink each input by a fac-
tor of two. The third step on our way consists of using any (d,d/2)-UOWHF
in order to construct length-restricted UOWHFs that are applicable to any input
length but shrink each input to half it length (rather than to a fixed length that
only depends on the function description). The resulted construct does not fit
Definition 6.4.19, since it can be applied to any input length (rather than only
to a single length determined by the function’s description). Yet, the resulting
construct yields a (d', d’'/2)-UOWHF for any polynomially-bounded function d’,
whereas in Construction 6.4.22 the function d’ satisfies d'(n) < n.
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Construction 6.4.24 (a (d',d'/2)-UOWHF for any d'): Let {h, : {0,1}(sD) —
{0, 1}1sD/2} (v 1y, where d : N—N is onto and non-decreasing. Then, for
every s € {0,1}", every t € N and every x € {0,1}*, we define

h'(z) def ho(z1) - hs(a:tlod(”)*\ztlfl)

where x = 1 -+, 0 < |zg| < d(n) and |z;| = d(n) fori =1,..,t — 1. The
index selection algorithm of {h.} is identical to the one of {h'}.

Clearly, Construction 6.4.24 satisfies Conditions 1 and 2 of Definition 6.4.18,
provided that {h,} satisfies the corresponding conditions of Definition 6.4.19.
We thus focus of the hardness to form designated collisions property.

Proposition 6.4.25 Suppose that {hs}.cq01y+ s a (d,d/2)-UOWHF, where
d : N—=N is onto, non-decreasing and sufficiently-growing. Then Construc-
tion 6.4.22 satisfies Condition 8 of Definition 6.4.18.

Proof Sketch: Intuitively, a designated collision under A/ yields a designated
collision under hs. That is, consider the parsing of each string into blocks of
length d(n), as in the above construction. Then if given z = z; - - - z; and s, one
can find an ' = z} ---x}, # x so that hl(z) = hl(z'), then ¢’ = ¢ and there
exists an 7 so that x; # «} and hs(z;) = hs(}).

The actual proofis by a reducibility argument. Given a probabilistic polynomial-
time algorithm A’ that forms designated collisions under {h.}, with respect to
images produced by a deterministic polynomial-time algorithm A, we construct
algorithms Ay and A so that A forms designated collisions under {h,} with re-
spect to images produced by algorithm Ay. Specifically, algorithm A, invokes
Aj, and uses extra randomness (supplied in its input) to uniformly select one of
the d(n)-bit long blocks in the standard parsing of the output of Af,. That is,
the random-tap used by algorithm Ay has the form (+',i), and Ay outputs the
i*" block in the parsing of Af(r’). Algorithm A is obtained analogously. That
is, given s € {0,1}™ and coins r = (r', 1) used by Ay, algorithm A invokes A’ on
input s and 7', obtains the output z', and outputs the it block in the standard
parsing of z'.

Clearly, if algorithm A’ succeeds (in forming designated collisions w.r.t {h’})
with probability &'(n) then algorithm A succeeds (in forming designated colli-
sions w.r.t {hs}) with probability at least '(n)/t(n), where ¢(n) is a bound on
the running-time of A’ (which also bounds the length of the output of A"). The
proposition follows. O

Step IV: Full-fledged UOWHFs. The last step on our way consists of us-
ing any length-restricted UOWHFs as constructed above to obtain full-fledged
UOWHFs. That is, we use length-restricced UOWHFs that are applicable to
any input length but shrink each input to half its length (rather than to a fixed
length that only depends on the function description). The resulted construct
is a UOWHEF (as defined in Definition 6.4.18).
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Construction 6.4.26 (a UOWHF): Let {hs : {0,1}* — {0,1}"},cq0,13+, S0
that |hs(z)| < |x|/2, for all x’s. Then, for every si,...,s, € {0,1}", every t € N
and x € {0,1}2"", we define

def
Doy, (@) = hs, (- hsy () - -2)

That is, we let xg def x, and x; — hg,(xi—1), for i = 1,....t. Strings = of
length that is not of the form 2! -n are padded into such strings in a standard
manner. We refer to an indez selection algorithm that, on input 1™, determines
n = |/m], uniformly selects sy, ..., s, € {0,1}" and so € {0,1}™™ ™", and lets
X def h

80,81,---75n S1,...,8n "

Note that h’sls :{0,1}* — {0,1}™.

Proposition 6.4.27 Suppose that {hs}.cqo,1}+ satisfies the conditions of Defi-
nition 6.4.18, except that it maps arbitrary input strings to outputs having half
the length (rather than o length determined by |s|). Then Construction 6.4.26
constritues a collection of UOWHEF.

Proof Sketch: The proof is almost identical to the proof of Proposition 6.4.23.
O

Conclusion: Combining Proposition 6.4.21, 6.4.23, 6.4.25 and 6.4.27, we ob-
tain:

Theorem 6.4.28 If one-way permutations exist then universal one-way hash
functions exist.

Note that the only barrier towards constructing UOWHE based on arbitrary
one-way functions is Proposition 6.4.21, which refers to one-way permutations.
In fact, if we wish to construct UOWHEF based on any one-way function then
we need to present an alternative construction of (d,d — 1)-UOWHF (i.e., an
alternative to Construction 6.4.20 which fails in case f is 2-to-1).2> Such a
construction is actually known, and so the following result is known to hold (but
is not proven here):

Theorem 6.4.29 Universal one-way hash functions exist if and only if one-way
functions exist.

We stress that the difficult direction is the one referred to above (i.e., from
one-way functions to UOWHEF collections). For the much easier converse, see
Exercise 8.

23 For example, if f(o,z') = (0, f'(z")), for o € {0, 1}, then forming designated collisions
under Construction 6.4.20 is easy: Given (0,z'), one outputs (1,z'), and indeed a collision is
formed already under f.
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6.4.3.3 One-time signature schemes based on UOWHF

Using universal one-way hash functions, we present an alternative construc-
tion of one-time signature schemes based on length-restricted one-time signature
schemes. Specifically, we replace Construction 6.2.6 in which collision-free hash-
ings were used by the following construction in which universal one-way hash
functions are used instead. The difference between the two constructions is that
here the (description of the) hashing function is not a part of the signing and
verification keys, but is rather selected on the fly by the signing algorithm (and
appears as part of the signature). Furthermore, the description of the hash func-
tion is being authenticated (by the signer) together with the hash function. It
follows that the forging adversary, which is unable to break the length-restricted
one-time signature scheme, must form a designated collision (rather than an
arbitrary one). However, the latter is infeasible too (by virtue of the UOWHF
collection in use). We comment that the same (new) construction is applicable
to length-restricted signature schemes (rather than to one-time ones): we stress
that, in this case, a new hashing function is selected at random each time the
signing algorithm is applied. In fact, we present the more general construction.

Construction 6.4.30 (the hash and sign paradigm, revisited): Let £ : N—N
and (G, S,V) be an (-restricted signature scheme as in Definition 6.2.1, and let
{he = {0,1} — {0,137 D=1"} r5 11+ be @ UOWHF as in Definition 6.4.18.
We construct a general signature scheme, (G',S", V'), with G' identical to G, as
follows:

signing with S’: On input a signing-key s € G{(1™) and a document o € {0,1}*,
algorithm S' proceeds in two steps:

1. Algorithm S’ invokes I, the indexing algorithm of the UOWHF col-
lection, to obtain ' — I(1™).

2. Algorithm S' invokes S (once) to produce ' — S(8', hg ().
Algorithm S" outputs (5',3").

verification with V': On input a verifying-key v € GL(1™), a document o €
{0,1}*, and a alledged signature (B',0"), algorithm V' invokes V, and
outputs Vv((/gla hﬁ’ (a))aﬁ”)'

Recall that secure ¢-restricted one-time signature schemes exist for any poly-
nomial ¢, provided that one-way function exist. Thus, the fact that the above
construction requires ¢(n) > n is not a problem.

Proposition 6.4.31 Suppose that (G,S,V) is a secure (-restricted signature
scheme and that {h, : {0,1}* — {0,1}2(“')*"‘}%{071}* is indeed a collection
of UOWHF. Then (G',S", V'), as defined in Construction 6.2.6, is a secure
(full-fledged) signature scheme. Furthermore, if (G,S,V) is only a secure (-
restricted one-time signature scheme then (G',S',V') is a secure one-time sig-
nature scheme.
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Proof Sketch: The proof follows the underlying principles of the proof of Propo-
sition 6.2.7. That is, forgery with respect to (G',S’, V') yields either forgey with
respect to (G, S,V) or a collision under the hash function, where in the latter
case a designated collision is formed (in contradiction to the hypothesis regarding
the UOWHF). For the furthermore-part, the observation underlying the proof
of Proposition 6.4.7 still holds. Details follow.

Given an adversary A’ attacking the complex scheme (G',S’, V'), we con-
struct an adversary A that attacks the f-restricted scheme, (G, S, V). The ad-
versary A uses I (the indexing algorithm of the UOWHF collection) and its
oracle Sy in order to emulate the oracle S’ for A’. This is done in a straightfor-
ward manner; that is, algorithm A emulates S’ by using the oracle S, (exactly as
S’ actually does). That is, to answer query «, algorithm A generates 5’ — I(1™)
forwards (8', hg () to its own oracle (i.e., S, ), and answers with (4', "), where
8" — Ss(B',hg(a)). When A’ outputs a document-signature pair relative to
the complex scheme (G',S’, V'), algorithm A tries to use it in order to form a
document-signature pair relative to the ¢-restricted scheme, (G, S, V).

Assume that with (non-negligible) probability ¢'(n), the (probabilistic polynomial-
time) algorithm A’ succeeds in existentially forging relative to the complex
scheme (G',S",V'). Let (a;,3;) denote the i'" query and answer pair made
by A’, and («,3) be the forged document-signature pair that A’ outputs (in
case of success), where 8; = (6!, 8) and 8 = (#',8"). We consider the following
cases regarding the forging event:

L (B, hg () # (Bishp (i) for all i’s. (That is, the S,-signed value in
the forged signature is different from all values used in the queries to Ss.)
In this case, the pair ((5', hs (a)), ") constitutes a success in existential
forgery relative to the f-restricted scheme.

2. (B, hg () = (B;, hp()) for some i. (That is, the S,-signed value used
in the forged signature equals the i** query made to S, although a # a;.)
Thus, 8" = B} and hg/(@) = hp(a;), although a # «;. In this case, the
pair (o, a;) forms a designated collision under hg (and we do not obtain
success in existential forgery relative to the ¢-restricted scheme).

Thus, if the first case occurs with probability at least £'(n)/2 then A succeeds in
its attack on (G, S,V) with probability at least '(n)/2, which contradicts the
security of the ¢-restricted scheme (G, S, V). On the other hand, if the second
case occurs with probability at least €'(n)/2 then we derive a contradiction to the
difficulty of forming designated collision with respect to {h,}. Details (regarding
the second case) follow.

We start with a sketch of a construction of an algorithm that attempts to form
designated collisions under a uniformly selected hash function. Recall that such
an algorithm operates in three stages (see discussion preceding Definition 6.5):
first the algorithm selects a preimage x, next it is given a description of a function
h, and finally it is required to output z’ # x such that h(z') = h(x). We stress
that the third stage in the attack is also given the random choices made while
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producing the preimage z in the first stage. Loosely speaking, we construct
an algorithm B’ that tries to form designated collisions by selecting at random
the index i of the query of A’ for which the S,-signed value used in the forged
signature equals the i*" query made to S,. Algorithm B’ will generate (s,v) «
G'(1™), and emulate the attack of A" on S, while also answering the queries of
S!. In particular, all queries except the i*® one are emulated in the straightfoward
manner (i.e., by executing the program of S’ as stated). The i*® query of A" will
be used as the designated preimage: once it is issued, B’ completes its first stage,
and obtains a description of a random hashing function h, (thus completing its
second operation stage). Next, algorithm B’ answers the i*" query, denoted «;,
by applying Ss to (r, h-(;)). (This operation belongs to the third stage of B'.)
As siad above, subsequent queries are emulated in the straightfoward manner
(but this done by the third stage of B’, in contrast to the ¢ — 1 first queries
that are handled by the first stage of B'). When A’ halts, B’ checks whether
A’ has output a valid signature as in the second case above, and whether the
collision formed is indeed on the i** query. When this happens, B’ has succeeded
in forming a designated collision. In particular, if the second case occurs with

probability at least g'gn) and A’ makes at most ¢(n) queries then B’ succeeded
in forming a designated collision with probability at least ﬁ - #, which
contradicts the hypothesis that {h,} is UOWHF.

The furthermore part of the proposition follows by observing that if the
forging algorithm A’ makes at most one query then the same holds for the
algorithm A constructed above. Thus, if (G',S’, V') can be broken via a single-
message attack that either (G,S,V) can be broken via a single-message attack
or one can form designated collisions (w.r.t {h,}). In both cases, we reach a
contradiction. O

Author’s Note: Should I augment the above proof sketch?

Conclusion: Combining the furthermore-part of Proposition 6.4.31, Corol-
lary 6.4.6, and the fact that UOWHEF collections imply one-way functions (see
Exercise 8), we obtain:

Theorem 6.4.32 If there exist universal one-way hash functions then secure
one-time signature schemes exist too.

6.4.3.4 Conclusions and comments
Combining Theorems 6.4.28, 6.4.32 and 6.4.9, we obtain:

Corollary 6.4.33 If one-way permutations exists then there exist secure signa-
ture schemes.

Like Corollary 6.4.10, Corollary 6.4.33 asserts the existence of secure (public-
key) signature schemes, based on an assumption that does not mention trap-
doors. Furthermore, the assumption made in Corollary 6.4.33 seems weaker
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than the one made in Corollary 6.4.10. We can further weaker the assump-
tion by using Theorem 6.4.29 (which was stated without a proof) rather than
Theorem 6.4.28. Specifically, combining Theorems 6.4.29, 6.4.32 and 6.4.9, we
establish Theorem 6.4.1. That is, secure signature schemes exist if and only if
one-way functions exist.

Author's Note: Further discuss the revised hash-then-sign paradigm.
That is, call attention to Construction 6.4.30...

6.5 Miscellaneous

6.5.1 Historical Notes

The notion of a (public-key) signature scheme was introduced by Diffie and
Hellman [62], who also suggested to implement it using trapdoor permutations.
Concrete implementations were suggested by Rivest, Shamir and Adleman [191]
and by Rabin [187]. However, definitions of security for signature schemes were
presented only a few years afterwards.

A first rigorous treatment of security notions for signature schemes was sug-
gested by Goldwasser, Micali and Yao [127], but their definition is weaker than
the one followed in our text (above). (Specifically, the adversary’s queries in the
definition of [127] are determined non-adaptively and obliviously of the public-
key.) Assuming the intractability of factoring, they also presented a signature
scheme that is secure under their definition. We stress that the security definition
of [127] is natural and significatly stronger than all security notions considered
before [127].

A comprehensive treatment of security notions for signature schemes, which
culminates in the notion used in our text, was presented by Goldwasser, Micali
and Rivest [125]. Assuming the intractability of factoring, they also presented a
signature scheme that is secure (in the sense of Definition 6.1.2). This was the
first time that a signature scheme was proven secure under a simple intractability
assumption such as the intractability of factoring. Their proof has refuted a folk-
lore (attributed to Ron Rivest) by which no such “constructive proof” may exist
(as its mere existence was believed to yield a forging procedure). Whereas the
(two) schemes of [127] were inherently memory-dependent, the scheme of [125]
have a “memoryless” variant (cf. [89] and [125]).

Following [125], research has focused on constructing secure signature schemes
under weaker assumptions. In fact, as stated in [125], their construction can be
carried out using any collection of claw-free trapdoor permutation pairs. The
claw-free requirement was omitted in [20], whereas the trapdoor requirement
was omitted by Naor and Yung [175]. Finally, Rompel showed that one may use
arbitrary one-way functions rather one-way permutations [192], and thus estab-
lished Theorem 6.4.1. The progress briefly summarized above was enables by the
use of many important ideas and/or paradigms, some of them were introduced
in this body of work and some were “only” revisited and properly formalized.
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We refer specifically to the introduction of the refreshing paradigm in [125], to
the use of authentication trees (cf., [160, 161] and [125]), to the introduction of
Universal One-Way Hash Functions in [175], and to the use of one-time signature
schemes (cf., [186]).

We comment that our presentation is different from the one available in any
of the above cited papers. Specifically, the main part of Section 6.4 is based on
a variant of the signature scheme of [175], using collision-free hashing (cf. [57])
instead of universal one-way hashing (cf. [175]).

Message authentication schemes. As in case of encryption schemes, the
rigorous study of the security of private-key signature schemes (i.e., message
authentication schemes) has legged behind the corresponding study of public-
key signature schemes. The construction of message authentication schemes
based on pseudorandom functions is due to [103]. (Alternative constructions are
presented and discussed in [?, 7, 14, 15].)

6.5.2 Suggestion for Further Reading

As mentioned above, the work of Goldwasser, Micali and Rivest contains a
comprehensive treatment of security notions for signature schemes [125]. Their
treatment refers to two parameters: (1) the type of attack, and (2) the type of
forgery that follows from it. The most severe type of attack allows the adversary
to adaptively select the documents to be signed (as in Definition 6.1.2). The most
liberal notion of forgey refers to producing a signature to any document for which
a signature was not obtained during the attack (again, as in Definition 6.1.2).
Thus, the notion of security presented in Definition 6.1.2 is the strongest among
the notions discussed in [125]. (Still, in some applications, weaker notions of
security may suffice.) We stress that one may benefit from the definitional
part of [125], but the constructive part of [125] is should be ignored since it is
superseeded by later work (on which our presentation is based).

Pfitzmann’s book [183] contains a comprehensive discussion of many aspects
involved in the integration of signature schemes in real-life systems. In addition,
her book surveys variants and augmentations of the notion of signature schemes,
viewing the one treated in the current book as “ordinary”. The focus is on “fail-
stop” signature schemes [183, Chap. 7-11], but much attention is given to the
presentation of a general framework [183, Chap. 5] and to review of other “non-
ordinary” schemes [183, Sec. 2.7 & 6.1].

Author's Note: For further discussion of message authentication schemes,
the reader in referred to [15].

Author's Note: The constructions of universal one-way hash func-
tions presented above use any one-way permutation, in a generic
way, so that the number of applications of the one-way permutation
is linearly related to the difference between the number of input and
output bits in the hash function. In [88], it is shown that as as far
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as generic (black-box) constructions go, this is essentially the best
performance that one can hope for.

Author's Note: Add comment about the scheme of Dwork—Naor (cf. [65]).

Author's Note: Add comment about the offline/online signature scheme

(cf. [71]).

6.5.3 Open Problems

The known construction of signature schemes from arbitrary one-way functions
has no practical significance [192]. It is indeed an important open problem to
provide an alternative construction that may be practical and still utilize an
arbitrary one-way function. We believe that providing such a construction may
require the discovery of new important paradigms.

6.5.4 Exercises

Exercise 1: On the triviality of {-restricted signature schemes, for logarithmi-
cally bounded £

1. Show that for logarithmically bounded ¢, secure {-restricted private-
key signature schemes (i.e., message authentication schemes) can be
constructed, without relying on any assumptions.

Guideline: On input 17, the key generator uniformly selects s €
{0, 1}28(")'"7 and outputs the key pair (s,s). View s = s1--550(n),
where each s; is an n-bit long string, and consider any fixed ordering
of the 2¢(") strings of length £(n). The signature to a € {0,1}¢(") is
defined as s;, where ¢ is the index of « in the latter ordering.

2. In contrast, show that the existence of a secure f-restricted public-
key signature scheme, even for £ = 1, implies the existence of one-way
functions.

Guideline: Let (G, S,V) be a 1-restricted public-key signature scheme.
Define f(1™,r) = v if on input 1™ and coins r, algorithm G generates
the key-pair of the form (-,v). Assuming that algorithm A inverts f
with probability e(n), we construct a forger that attacks (G, S,V) as
follows. On input a verification key v, the forger invokes A on input
v. With probability ¢(n), the forger obtains r so that f(1™,7) = v. In
such a case, the forger obtains a matching signing-key s (i.e., (s,v) is
output by G(1™) on coins r), and so can produce valid signatures (e.g.,
S5(0) is accepted by Vi, as a signature to 0).

Exercise 2: Using a pseudorandom function ensemble of the form {f, : {0,1}* —
{0, 1}‘S|}se{071}* , construct a general secure message authentication scheme
(rather than a length-restricted one).

Guideline: The construction is identical to Construction 6.3.1, except

that here we use a general pseudorandom function ensemble rather than
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the one used there. The proof of security is analogous to the proof of
Proposition 6.3.2.

Exercise 3: Prove that the existence of secure message authentication schemes
implies the existence of one-way functions.

Guideline: First show how to use any message authentication scheme in
order to construct a boolean pseudorandom function (as defined in Defini-
tion 3.6.12 for the case r(n) = 1), and then show that the latter gives rise
to a pseudorandom generator (analogously to Exercise 28 of Chapter 3).
The first step is the more challenging one: define the function fs . so that
fs,r(a) equals the inner-product mod 2 of r and Ss(c), where S, is the ef-
fect of the signing algorithm with signing-key s. The argument is analogous
the proof of Theorem 2.5.2, but is more subtle here (see [174]).

Exercise 4: Prove that, without loss of generality, one can always assume that
a chosen message attack makes at least one query. (This holds for general
signature schemes as well as for length-restricted and/or one-time ones.)

Guideline: Given an adversary A’ that outputs a message-signature pair
(o, B) without making any query, modify it so that it makes an arbitrary
query o' € {0,1}/%\ {a} just before making that output.

Exercise 5: On the triviality of length-restricted one-time message authenti-
cation schemes: Define one-time and length-restricted one-time message
authentication schemes. Show that for any polynomially-bounded and
polynomial-time computable function £ : N — N, secure f-restricted one-
time message authentication schemes can be constructed, without relying
on any assumptions.

Guideline: Combine the ideas underlying Exercise 1 and Construction 6.4.4.

Exercise 6: Prove that the existence of secure one-time signature schemes im-
plies the existence of one-way functions.

Guideline: See guideline for Item 2 in Exercise 1.

Exercise 7: Prove that the existence of collision-free hashing collections implies
the existence of one-way functions.

Guideline: Given a collision-free hashing collection, {h, : {0,1}* —
{0, 1}“"‘)},,6{071}*, consider the function f(r,x) = (r, hr(x)), where (say)
|| = £(|r|) + |r|. Prove that f is a one-way function, by assuming towards
the contradiction that f can be efficiently inverted with non-negligible prob-
ability, and deriving an efficient algorithm that forms collisions on random
hr’s. Given r, form a collision under the function h,, by uniformly se-
lecting = € {0,1}¢(rDHI7land feeding the inverting algorithm with input
(r, hr(z)). Observe that with non-negligible probability a preimage is ob-
tained, and that with exponentially vanishing probability this preimage is
(r,z) itself. Thus, with non-negligible probability, we obtain a preimage
(r,2") # (r,x) and it holds that h,(z') = h,(z).
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Exercise 8: Prove that the existence of collections of UOWHEF implies the ex-
istence of one-way functions.

Guideline: Note that the guidelines provided in Exercise 7 apply here

too.

Exercise 9: Assuming the existence of one-way functions, show that there ex-
ists a collection of universal one-way hashing functions that is not collision-
free.

Guideline: Given a collection of universal one-way hashing functions,
{fs : {0,1}* — {0,1}!¢1}, consider the collection F' = {f! : {0,1}* —
{0,1}!*!} defined so that f!(z) = fs(x) if the |s|-bit long prefix of x is
different from s, and f!(sz') = s otherwise. Clearly, F' is not collision-free.

Show that F' remains universal one-way hashing.

Author's Note: First draft written mainly in May 2000.

See copyright notice.



