
Fragments of a chapter on Signature Schemes(Extracts from Foundations of Cryptography { in preparation)Oded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.July 25, 2000

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



Contents
1 Introduction 91.1 Cryptography { Main Topics : : : : : : : : : : : : : : : : : : : : 91.1.1 Encryption Schemes : : : : : : : : : : : : : : : : : : : : : 101.1.2 Pseudorandom Generators : : : : : : : : : : : : : : : : : : 121.1.3 Digital Signatures : : : : : : : : : : : : : : : : : : : : : : 121.1.4 Fault-Tolerant Protocols and Zero-Knowledge Proofs : : : 141.2 Some Background from Probability Theory : : : : : : : : : : : : 161.2.1 Notational Conventions : : : : : : : : : : : : : : : : : : : 161.2.2 Three Inequalities : : : : : : : : : : : : : : : : : : : : : : 181.3 The Computational Model : : : : : : : : : : : : : : : : : : : : : : 211.3.1 P, NP, and NP-completeness : : : : : : : : : : : : : : : : 211.3.2 Probabilistic Polynomial-Time : : : : : : : : : : : : : : : 221.3.2.1 Randomized algorithms { an example : : : : : : 221.3.2.2 Randomized algorithms { two points of view : : 231.3.2.3 Associating \e�cient" computations with BPP : 24Negligible function : : : : : : : : : : : : : : : : : : : : : : 241.3.3 Non-Uniform Polynomial-Time : : : : : : : : : : : : : : : 251.3.4 Intractability Assumptions : : : : : : : : : : : : : : : : : 271.3.5 Oracle Machines : : : : : : : : : : : : : : : : : : : : : : : 291.4 Motivation to the Rigorous Treatment : : : : : : : : : : : : : : : 291.4.1 The Need for a Rigorous Treatment : : : : : : : : : : : : 301.4.2 Practical Consequences of the Rigorous Treatment : : : : 321.4.3 The Tendency to be Conservative : : : : : : : : : : : : : : 331.5 Miscellaneous : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 341.5.1 Historical Notes : : : : : : : : : : : : : : : : : : : : : : : 341.5.2 Suggestion for Further Reading : : : : : : : : : : : : : : : 361.5.3 Open Problems : : : : : : : : : : : : : : : : : : : : : : : : 371.5.4 Exercises : : : : : : : : : : : : : : : : : : : : : : : : : : : 37I Basic Tools 392 Computational Di�culty 412.1 One-Way Functions: Motivation : : : : : : : : : : : : : : : : : : 421

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



2 CONTENTS2.2 One-Way Functions: De�nitions : : : : : : : : : : : : : : : : : : : 432.2.1 Strong One-Way Functions : : : : : : : : : : : : : : : : : 43Negligible probability : : : : : : : : : : : : : : : : : : : : 462.2.2 Weak One-Way Functions : : : : : : : : : : : : : : : : : : 462.2.3 Two Useful Length Conventions : : : : : : : : : : : : : : 472.2.3.1 Functions de�ned only for some lengths : : : : : 472.2.3.2 Length-regular and length-preserving functions : 502.2.4 Candidates for One-Way Functions : : : : : : : : : : : : : 522.2.4.1 Integer factorization : : : : : : : : : : : : : : : : 522.2.4.2 Decoding of random linear codes : : : : : : : : : 522.2.4.3 The subset sum problem : : : : : : : : : : : : : 532.2.5 Non-Uniformly One-Way Functions : : : : : : : : : : : : : 532.3 Weak One-Way Functions Imply Strong Ones : : : : : : : : : : : 542.3.1 The Construction and its Analysis : : : : : : : : : : : : : 562.3.2 Illustration by a toy example : : : : : : : : : : : : : : : : 602.3.3 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : 622.3.3.1 Reducibility arguments { a digest : : : : : : : : 622.3.3.2 The information theoretic analogue : : : : : : : 632.3.3.3 OWF: weak versus strong { a summary : : : : : 632.4 One-Way Functions: Variations : : : : : : : : : : : : : : : : : : : 632.4.1 * Universal One-Way Function : : : : : : : : : : : : : : : 642.4.2 One-Way Functions as Collections : : : : : : : : : : : : : 652.4.3 Examples of One-way Collections : : : : : : : : : : : : : : 682.4.3.1 The RSA function : : : : : : : : : : : : : : : : : 682.4.3.2 The Rabin function : : : : : : : : : : : : : : : : 692.4.3.3 The Factoring Permutations : : : : : : : : : : : 692.4.3.4 Discrete Logarithms : : : : : : : : : : : : : : : : 702.4.4 Trapdoor one-way permutations : : : : : : : : : : : : : : 702.4.4.1 De�nitions : : : : : : : : : : : : : : : : : : : : : 702.4.4.2 The RSA (and factoring) Trapdoor : : : : : : : 722.4.5 * Claw-free Functions : : : : : : : : : : : : : : : : : : : : 732.4.5.1 The De�nition : : : : : : : : : : : : : : : : : : : 732.4.5.2 The DLP Claw-free Collection : : : : : : : : : : 742.4.5.3 Claw-free Collections based on Factoring : : : : 752.4.6 * On Proposing Candidates : : : : : : : : : : : : : : : : : 762.5 Hard-Core Predicates : : : : : : : : : : : : : : : : : : : : : : : : 772.5.1 De�nition : : : : : : : : : : : : : : : : : : : : : : : : : : : 772.5.2 Hard-Core Predicates for any One-Way Function : : : : : 782.5.2.1 Preliminaries : : : : : : : : : : : : : : : : : : : : 792.5.2.2 A motivating discussion : : : : : : : : : : : : : : 802.5.2.3 Back to the actual proof : : : : : : : : : : : : : 812.5.2.4 * More e�cient reductions : : : : : : : : : : : : 832.5.3 * Hard-Core Functions : : : : : : : : : : : : : : : : : : : : 872.6 * E�cient Ampli�cation of One-way Functions : : : : : : : : : : 912.6.1 The construction : : : : : : : : : : : : : : : : : : : : : : : 93

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



CONTENTS 32.6.2 Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : 942.7 Miscellaneous : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1022.7.1 Historical Notes : : : : : : : : : : : : : : : : : : : : : : : 1022.7.2 Suggestion for Further Reading : : : : : : : : : : : : : : : 1032.7.3 Open Problems : : : : : : : : : : : : : : : : : : : : : : : : 1052.7.4 Exercises : : : : : : : : : : : : : : : : : : : : : : : : : : : 1063 Pseudorandom Generators 1173.1 Motivating Discussion : : : : : : : : : : : : : : : : : : : : : : : : 1183.1.1 Computational Approaches to Randomness : : : : : : : : 1183.1.2 A Rigorous Approach to Pseudorandom Generators : : : 1193.2 Computational Indistinguishability : : : : : : : : : : : : : : : : : 1193.2.1 De�nition : : : : : : : : : : : : : : : : : : : : : : : : : : : 1203.2.2 Relation to Statistical Closeness : : : : : : : : : : : : : : 1223.2.3 Indistinguishability by Repeated Experiments : : : : : : : 123The hybrid technique { a digest : : : : : : : : : : : : : : : 1263.2.4 * Indistinguishability by Circuits : : : : : : : : : : : : : : 1273.2.5 Pseudorandom Ensembles : : : : : : : : : : : : : : : : : : 1283.3 De�nitions of Pseudorandom Generators : : : : : : : : : : : : : : 1293.3.1 Standard De�nition of Pseudorandom Generators : : : : : 1293.3.2 Increasing the Expansion Factor : : : : : : : : : : : : : : 1303.3.3 * Variable-output pseudorandom generators : : : : : : : : 1343.3.4 The Applicability of Pseudorandom Generators : : : : : : 1353.3.5 Pseudorandomness and unpredictability : : : : : : : : : : 1353.3.6 Pseudorandom Generators imply One-Way Functions : : 1403.4 Constructions based on One-Way Permutations : : : : : : : : : : 1403.4.1 Construction based on a Single Permutation : : : : : : : : 1413.4.1.1 The preferred presentation : : : : : : : : : : : : 1413.4.1.2 An alternative presentation : : : : : : : : : : : : 1443.4.2 Construction based on Collections of Permutations : : : : 1473.4.2.1 An abstract presentation : : : : : : : : : : : : : 1483.4.2.2 Concrete instantiations : : : : : : : : : : : : : : 1493.4.3 * Using Hard-Core Functions rather than Predicates : : : 1513.5 * Constructions based on One-Way Functions : : : : : : : : : : : 1513.5.1 Using 1-1 One-Way Functions : : : : : : : : : : : : : : : : 1523.5.1.1 Hashing Functions : : : : : : : : : : : : : : : : : 1523.5.1.2 The basic construction : : : : : : : : : : : : : : 1543.5.1.3 Obtaining pseudorandom generators : : : : : : : 1563.5.2 Using Regular One-Way Functions : : : : : : : : : : : : : 1583.5.3 Going beyond Regular One-Way Functions : : : : : : : : 1643.6 Pseudorandom Functions : : : : : : : : : : : : : : : : : : : : : : 1653.6.1 De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : 1663.6.2 Construction : : : : : : : : : : : : : : : : : : : : : : : : : 1683.6.3 Applications { A general methodology : : : : : : : : : : : 1753.6.4 * Generalizations : : : : : : : : : : : : : : : : : : : : : : : 1763.6.4.1 Functions that are not length preserving : : : : 176

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



4 CONTENTS3.6.4.2 Functions de�ned on all strings : : : : : : : : : : 1793.7 * Pseudorandom Permutations : : : : : : : : : : : : : : : : : : : 1823.7.1 De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : 1823.7.2 Construction : : : : : : : : : : : : : : : : : : : : : : : : : 1843.8 Miscellaneous : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1873.8.1 Historical Notes : : : : : : : : : : : : : : : : : : : : : : : 1873.8.2 Suggestion for Further Reading : : : : : : : : : : : : : : : 1883.8.3 Open Problems : : : : : : : : : : : : : : : : : : : : : : : : 1903.8.4 Exercises : : : : : : : : : : : : : : : : : : : : : : : : : : : 1904 Zero-Knowledge Proof Systems 2054.1 Zero-Knowledge Proofs: Motivation : : : : : : : : : : : : : : : : 2074.1.1 The Notion of a Proof : : : : : : : : : : : : : : : : : : : : 2084.1.1.1 A static object versus an interactive process : : 2084.1.1.2 Prover and Veri�er : : : : : : : : : : : : : : : : : 2094.1.1.3 Completeness and Soundness : : : : : : : : : : : 2104.1.2 Gaining Knowledge : : : : : : : : : : : : : : : : : : : : : : 210Knowledge versus information : : : : : : : : : : : : : : : : 2114.2 Interactive Proof Systems : : : : : : : : : : : : : : : : : : : : : : 2124.2.1 De�nition : : : : : : : : : : : : : : : : : : : : : : : : : : : 2124.2.1.1 Interaction : : : : : : : : : : : : : : : : : : : : : 2124.2.1.2 Conventions regarding interactive machines : : : 2144.2.1.3 Proof systems : : : : : : : : : : : : : : : : : : : 2144.2.2 An Example (Graph Non-Isomorphism in IP) : : : : : : : 2174.2.3 * The Structure of the Class IP : : : : : : : : : : : : : : : 2214.2.4 Augmentation to the Model : : : : : : : : : : : : : : : : : 2224.3 Zero-Knowledge Proofs: De�nitions : : : : : : : : : : : : : : : : : 2234.3.1 Perfect and Computational Zero-Knowledge : : : : : : : : 223The simulation paradigm : : : : : : : : : : : : : : : : : : 2234.3.1.1 Perfect Zero-Knowledge : : : : : : : : : : : : : : 2244.3.1.2 Computational Zero-Knowledge : : : : : : : : : 2254.3.1.3 An alternative formulation of zero-knowledge : : 2264.3.1.4 * Almost-Perfect (Statistical) Zero-Knowledge : 2274.3.1.5 * Complexity classes based on Zero-Knowledge : 2274.3.1.6 * Expected polynomial-time simulators : : : : : 2284.3.1.7 * Honest-veri�er zero-knowledge : : : : : : : : : 2294.3.2 An Example (Graph Isomorphism in PZK) : : : : : : : : 2304.3.3 Zero-Knowledge w.r.t. Auxiliary Inputs : : : : : : : : : : 237Implicit non-uniformity in the de�nition of ZK : : : : : : 238Why not go for a fully non-uniform formulation of ZK : : 2394.3.4 Sequential Composition of Zero-Knowledge Proofs : : : : 240What about parallel composition? : : : : : : : : : : : : : 2464.4 Zero-Knowledge Proofs for NP : : : : : : : : : : : : : : : : : : : 2474.4.1 Commitment Schemes : : : : : : : : : : : : : : : : : : : : 2474.4.1.1 De�nition : : : : : : : : : : : : : : : : : : : : : : 2484.4.1.2 Construction based on any one-way permutation 250

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



CONTENTS 54.4.1.3 Construction based on any one-way function : : 2504.4.1.4 Extensions : : : : : : : : : : : : : : : : : : : : : 2524.4.2 Zero-Knowledge Proof of Graph Coloring : : : : : : : : : 2524.4.2.1 Motivating discussion : : : : : : : : : : : : : : : 2534.4.2.2 The interactive proof : : : : : : : : : : : : : : : 2544.4.2.3 The simulator : : : : : : : : : : : : : : : : : : : 2554.4.2.4 Concluding remarks : : : : : : : : : : : : : : : : 2654.4.3 The General Result and Some Applications : : : : : : : : 2664.4.4 Second Level Considerations : : : : : : : : : : : : : : : : 2694.4.4.1 Standard e�ciency measures : : : : : : : : : : : 2704.4.4.2 Knowledge Tightness : : : : : : : : : : : : : : : 2704.5 * Negative Results : : : : : : : : : : : : : : : : : : : : : : : : : : 2724.5.1 On the importance of interaction and randomness : : : : 2734.5.2 Limitations of unconditional results : : : : : : : : : : : : 2744.5.3 Limitations of Statistical ZK proofs : : : : : : : : : : : : 2764.5.4 Zero-Knowledge and Parallel Composition : : : : : : : : : 2774.5.4.1 Failure of the Parallel Composition Conjecture : 2774.5.4.2 Problems occurring with \natural" candidates : 2784.6 * Witness Indistinguishability and Hiding : : : : : : : : : : : : : 2804.6.1 De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : 2804.6.1.1 Witness indistinguishability : : : : : : : : : : : : 2814.6.1.2 Witness hiding : : : : : : : : : : : : : : : : : : : 2834.6.2 Parallel Composition : : : : : : : : : : : : : : : : : : : : : 2844.6.3 Constructions : : : : : : : : : : : : : : : : : : : : : : : : : 2854.6.3.1 Constructions of witness indistinguishable proofs 2864.6.3.2 Constructions of witness hiding proofs : : : : : : 2864.6.4 Applications : : : : : : : : : : : : : : : : : : : : : : : : : 2884.7 * Proofs of Knowledge : : : : : : : : : : : : : : : : : : : : : : : : 2884.7.1 De�nition : : : : : : : : : : : : : : : : : : : : : : : : : : : 2884.7.1.1 A motivating discussion : : : : : : : : : : : : : : 2884.7.1.2 Technical preliminaries : : : : : : : : : : : : : : 2894.7.1.3 Knowledge veri�ers : : : : : : : : : : : : : : : : 2904.7.1.4 Discussion : : : : : : : : : : : : : : : : : : : : : 2924.7.2 Reducing the knowledge error : : : : : : : : : : : : : : : : 2934.7.3 Zero-Knowledge Proofs of Knowledge for NP : : : : : : : 2954.7.4 Applications : : : : : : : : : : : : : : : : : : : : : : : : : 2954.7.4.1 Non-oblivious commitment schemes : : : : : : : 2964.7.4.2 Protecting against chosen message attacks : : : 2964.7.4.3 A zero-knowledge proof system for GNI : : : : : 2964.7.5 Proofs of Identity (Identi�cation schemes) : : : : : : : : : 2974.7.5.1 De�nition : : : : : : : : : : : : : : : : : : : : : : 2974.7.5.2 Identi�cation schemes and proofs of knowledge : 2994.7.5.3 Identi�cation schemes and proofs of ability : : : 3004.7.6 Strong Proofs of Knowledge : : : : : : : : : : : : : : : : : 3014.7.6.1 De�nition : : : : : : : : : : : : : : : : : : : : : : 301

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



6 CONTENTS4.7.6.2 An example of a strong ZK proof of knowledge : 3024.7.6.3 Strong ZK proofs of knowledge for NP : : : : : : 3034.8 * Computationally-Sound Proofs (Arguments) : : : : : : : : : : : 3044.8.1 De�nition : : : : : : : : : : : : : : : : : : : : : : : : : : : 3054.8.2 Perfectly-Hiding Commitment Schemes : : : : : : : : : : 3054.8.2.1 De�nition : : : : : : : : : : : : : : : : : : : : : : 3064.8.2.2 Construction based on one-way permutations : : 3084.8.2.3 Construction based on claw-free collections : : : 3094.8.2.4 Nonuniform computational unambiguity : : : : : 3114.8.2.5 Commitment Schemes with a posteriori secrecy : 3114.8.3 Perfect Zero-Knowledge Arguments for NP : : : : : : : : 312ZK Proofs vs Perfect-ZK Arguments { which to prefer? : 3144.8.4 Arguments of Polylogarithmic E�ciency : : : : : : : : : : 3144.9 * Constant-Round Zero-Knowledge Proofs : : : : : : : : : : : : : 3164.9.1 Using commitment schemes with perfect secrecy : : : : : 3184.9.2 Bounding the power of cheating provers : : : : : : : : : : 3234.9.2.1 Non-oblivious commitment schemes : : : : : : : 3234.9.2.2 Modifying Construction 4.9.1 : : : : : : : : : : : 3244.9.2.3 An alternative construction : : : : : : : : : : : : 326Commitment schemes with trapdoor : : : : : : : : : : : : 3264.10 * Non-Interactive Zero-Knowledge Proofs : : : : : : : : : : : : : 3274.10.1 Basic De�nitions : : : : : : : : : : : : : : : : : : : : : : : 3274.10.2 Constructions : : : : : : : : : : : : : : : : : : : : : : : : : 329The Hidden Bits Model : : : : : : : : : : : : : : : : : : : 329Emulating the Hidden Bits Model : : : : : : : : : : : : : 330Hidden Bits proofs for NP : : : : : : : : : : : : : : : : : : 3314.10.3 Extensions : : : : : : : : : : : : : : : : : : : : : : : : : : 3354.10.3.1 Proving many assertions of varying length : : : 3354.10.3.2 Adaptive zero-knowledge : : : : : : : : : : : : : 3384.11 * Multi-Prover Zero-Knowledge Proofs : : : : : : : : : : : : : : : 3404.11.1 De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : 3404.11.1.1 The two-partner model : : : : : : : : : : : : : : 3414.11.1.2 Two-prover interactive proofs : : : : : : : : : : : 3414.11.2 Two-Senders Commitment Schemes : : : : : : : : : : : : 3424.11.2.1 A De�nition : : : : : : : : : : : : : : : : : : : : 3424.11.2.2 A Construction : : : : : : : : : : : : : : : : : : : 3454.11.3 Perfect Zero-Knowledge for NP : : : : : : : : : : : : : : : 3474.11.4 Applications : : : : : : : : : : : : : : : : : : : : : : : : : 3494.12 Miscellaneous : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3504.12.1 Historical Notes : : : : : : : : : : : : : : : : : : : : : : : 3504.12.2 Suggestion for Further Reading : : : : : : : : : : : : : : : 3524.12.3 Open Problems : : : : : : : : : : : : : : : : : : : : : : : : 3534.12.4 Exercises : : : : : : : : : : : : : : : : : : : : : : : : : : : 354

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



CONTENTS 75 Encryption Schemes 3635.1 The Basic Setting : : : : : : : : : : : : : : : : : : : : : : : : : : : 3635.1.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : 3645.1.2 A Formulation of Encryption Schemes : : : : : : : : : : : 3655.2 De�nitions of Security : : : : : : : : : : : : : : : : : : : : : : : : 3665.2.1 Semantic Security : : : : : : : : : : : : : : : : : : : : : : 367Discussion of some de�nitional choices : : : : : : : : : : : 3695.2.2 Indistinguishability of Encryptions : : : : : : : : : : : : : 3705.2.3 Equivalence of the Security De�nitions : : : : : : : : : : : 3715.2.4 Multiple Messages : : : : : : : : : : : : : : : : : : : : : : 3755.2.4.1 De�nitions : : : : : : : : : : : : : : : : : : : : : 3755.2.4.2 In the public-key model : : : : : : : : : : : : : : 3775.2.4.3 In the private-key model : : : : : : : : : : : : : 3785.2.5 * A uniform-complexity treatment : : : : : : : : : : : : : 3795.2.5.1 The de�nitions : : : : : : : : : : : : : : : : : : : 3805.2.5.2 Equivalence of the multiple-message de�nitions : 3815.2.5.3 Single-message versus multiple-message : : : : : 3845.2.5.4 The gain of a uniform treatment : : : : : : : : : 3855.3 Constructions of Secure Encryption Schemes : : : : : : : : : : : 385Probabilistic Encryption : : : : : : : : : : : : : : : : : : : 3865.3.1 * Stream{Ciphers : : : : : : : : : : : : : : : : : : : : : : 3865.3.2 Preliminaries: Block{Ciphers : : : : : : : : : : : : : : : : 3895.3.3 Private-key encryption schemes : : : : : : : : : : : : : : : 3905.3.4 Public-key encryption schemes : : : : : : : : : : : : : : : 3925.3.4.1 Simple schemes : : : : : : : : : : : : : : : : : : : 3935.3.4.2 An alternative scheme : : : : : : : : : : : : : : : 3965.4 * Beyond eavesdropping security : : : : : : : : : : : : : : : : : : 3985.4.1 Key-dependent passive attacks : : : : : : : : : : : : : : : 4015.4.2 Chosen plaintext attack : : : : : : : : : : : : : : : : : : : 4015.4.3 Chosen ciphertext attack : : : : : : : : : : : : : : : : : : 4015.4.4 Non-malleable encryption schemes : : : : : : : : : : : : : 4015.5 Miscellaneous : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4025.5.1 Historical Notes : : : : : : : : : : : : : : : : : : : : : : : 4025.5.2 Suggestion for Further Reading : : : : : : : : : : : : : : : 4035.5.3 Open Problems : : : : : : : : : : : : : : : : : : : : : : : : 4035.5.4 Exercises : : : : : : : : : : : : : : : : : : : : : : : : : : : 4046 Digital Signatures and Message Authentication 4016.1 De�nitional Issues : : : : : : : : : : : : : : : : : : : : : : : : : : 4016.1.1 Message authentication versus signature schemes : : : : : 4026.1.2 Basic mechanism : : : : : : : : : : : : : : : : : : : : : : : 4026.1.3 Attacks and security : : : : : : : : : : : : : : : : : : : : : 4036.2 Signing �xed length documents versus abritrary ones : : : : : : : 406Length-restricted signature scheme : : : : : : : : : : : : : : : : : 4066.2.1 First method: signing (augmented) blocks : : : : : : : : : 4076.2.2 Second method: signing a hash value : : : : : : : : : : : : 410

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



8 CONTENTSCollision-free hashing functions : : : : : : : : : : : : : : : 4106.2.3 * Constructing collision-free hashing functions : : : : : : 4136.3 Constructions of Message Authentication Schemes : : : : : : : : 4156.3.1 By using pseudorandom functions : : : : : : : : : : : : : 4156.3.2 * Other alternatives : : : : : : : : : : : : : : : : : : : : : 4176.4 Constructions of Signature Schemes : : : : : : : : : : : : : : : : 4176.4.1 One-time signature schemes : : : : : : : : : : : : : : : : : 4186.4.1.1 De�nitions : : : : : : : : : : : : : : : : : : : : : 4186.4.1.2 Length-restricted one-time signature schemes : : 4196.4.1.3 From length-restricted schemes to general ones : 4226.4.2 From one-time signature schemes to general ones : : : : : 4236.4.2.1 The refreshing paradigm : : : : : : : : : : : : : 4246.4.2.2 Authentication{trees : : : : : : : : : : : : : : : : 4266.4.2.3 The actual construction : : : : : : : : : : : : : : 4356.4.2.4 Conclusions and comments : : : : : : : : : : : : 4386.4.3 * Universal One-Way Hash Functions and using them : : 4396.4.3.1 De�nition : : : : : : : : : : : : : : : : : : : : : : 4396.4.3.2 Constructions : : : : : : : : : : : : : : : : : : : 4416.4.3.3 One-time signature schemes based on UOWHF : 4486.4.3.4 Conclusions and comments : : : : : : : : : : : : 4506.5 Miscellaneous : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4516.5.1 Historical Notes : : : : : : : : : : : : : : : : : : : : : : : 4516.5.2 Suggestion for Further Reading : : : : : : : : : : : : : : : 4526.5.3 Open Problems : : : : : : : : : : : : : : : : : : : : : : : : 4536.5.4 Exercises : : : : : : : : : : : : : : : : : : : : : : : : : : : 453A Background in Computational Number Theory 555A.1 Prime Numbers : : : : : : : : : : : : : : : : : : : : : : : : : : : : 555A.1.1 Quadratic residues modulo a prime : : : : : : : : : : : : : 555A.1.2 Extracting square roots modulo a prime : : : : : : : : : : 556A.1.3 Primality testers : : : : : : : : : : : : : : : : : : : : : : : 556A.1.4 On uniform selection of primes : : : : : : : : : : : : : : : 557A.2 Composite Numbers : : : : : : : : : : : : : : : : : : : : : : : : : 558A.2.1 Quadratic residues modulo a composite : : : : : : : : : : 559A.2.2 Extracting square roots modulo a composite : : : : : : : 559A.2.3 The Legendre and Jacobi Symbols : : : : : : : : : : : : : 560A.2.4 Blum Integers and their quadratic residue structure : : : 561Bibliography 563

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



400 CONTENTS
Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



Chapter 6Digital Signatures andMessage AuthenticationMessage authentication and (digital) signatures were the �rst tasks that joinedencryption to form modern cryptography. Both message authentication and dig-ital signatures are concerned with the \authenticity" of data, and the di�erencebetween them is analogous to the di�erence between private-key and public-keyencryption schemes.In this chapter, we de�ne message authentication and digital signatures, andthe security notions associated to them. We show how to construct messageauthentication schemes using pseudorandom functions, and how to constructsignature schemes using one-way permutations. We stress that the latter con-struction employ one-way permutations that do not necessarily have a trapdoor.6.1 De�nitional IssuesMessage authetication and signature schemes are supposed to enable reliabletransmission of data between parties. Loosely speaking, the receiver wishesto be guaranteed that the data received was actually sent by the sender, ratherthan modi�ed (or even totally injected) by a third party. The di�erence betweenmessage authetication and signature schemes lies in the identity of the receiverand the level of trust that the sender has in it. Typically, message authenti-cation schemes are employed in cases where the receiver is predetermined (atthe time of message transmission), whereas signature shemes allow veri�cationof the authenticity of the data by anybody. In other words, signature schemesallow for universal veri�cation, whereas message authentication schemes mayonly allow predetermine parties to verify the authenticity of the data. In bothcases, the authentication process consists of two main processes: the generationof message-authentication tags or signatures by the allenged sender, and theveri�cation of such tags or signatures by the receiver. As in case of encryptionschemes, there is a third (implicit) process that allows the sender to generate a401
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402CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONtagging/signing key, along with a veri�cation key. (The possession of the for-mer key constitutes the sender's advantage over the adversary; see analogousdiscussion in the previous chapter.)6.1.1 Message authentication versus signature schemesThe di�erence between message-authentication and signature schemes amountsto the question of whether the adversary knows the veri�cation key. In message-authentication schemes, the veri�cation key is only given to a set of predeter-mined receivers that are all trusted not to abuse this knowledge; that is, insuch schemes it is postulated that the veri�cation key is not (a-priori) knownto the adversary. On the other hand, in signature schemes, the aim is universalveri�cation and so the veri�cation key is public, and hence known also to theadversary.Summary and terminology: Message authentication and signature schemesdi�er in the question of whether the veri�cation key is secret (i.e., unknownto the adversary) or public (and also known to the adversary). Thus, in asense these are private-key and public-key versions of a task which lacks a goodname (since both authentication and signatures are already taken by one ofthe versions). Still, seeking a uniform terminology, we shall sometimes refer tomessage authentication schemes (also known as message authentication codes(mac)) as to private-key signature schemes. Analogously, we shall sometimesrefer to signature schemes as to public-key signature schemes.6.1.2 Basic mechanismWe start by de�ning the basic mechanism of message-authentication and signa-ture schemes. Recall that there are private-key and public-key versions, but thedi�erence between the two version is only re
ected in the de�nition of security.In contrast, the de�nition of the basic mechanism says nothing about the secu-rity of the scheme (which is the subject of the next section), and thus is the samefor both the private-key and public-key versions. In both cases, the scheme con-sists of three e�cient algorithms: key generation, signing (or authenticating) andveri�cation. The basic requirement is that signatures that are produced by thesigning algorithm be accepted as valid by the veri�cation algorithm, when fed averi�cation-key corresponding to the signing-key used by the signing algorithm.De�nition 6.1.1 (signature scheme): A signature scheme is a triple, (G;S; V ),of probabilistic polynomial-time algorithms satisfying the following two condi-tions1. On input 1n, algorithm G (called the key generator) outputs a pair of bitstrings.
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6.1. DEFINITIONAL ISSUES 4032. For every pair (s; v) in the range of G(1n), and for every � 2 f0; 1g�,algorithms S (signing) and D (veri�cation) satisfyPr[V (v; �; S(s; �))=1] = 1where the probability is taken over the internal coin tosses of algorithms Sand V .The integer n serves as the security parameter of the scheme. Each (s; v) in therange of G(1n) consitutes a pair of corresponding signing/veri�cation keys. Thestring S(s; �) is a signature to the document � 2 f0; 1g� using the signing keys.We stress that De�nition 6.1.1 says nothing about security, and so trivial (in-secure) algorithms may satisfy it (e.g., S(s; �) def= 0 and V (v; �; �) def= 1). Fur-thermore, De�nition 6.1.1 does not distinguish private-key signature schemesfrom public-key ones. The di�erence between the two types is introduced inthe security de�nitions: In a public-key scheme the \forging algorithm" gets theveri�cation key (i.e., v) as an additional input (and thus v 6= s follows); whilein private-key schemes v is not given to the \forging algorithm" (and thus onemay assume, without loss of generality, that v = s).Notation: In the rest of this book, we write Ss(�) instead of S(s; �) andVv(�; �) instead of V (v; �; �). Also, we let G1(1n) (resp., G2(1n)) denote the �rst(resp., second) element in the pair G(1n). That is, G(1n) = (G1(1n); G2(1n)).Without loss of generality, we may assume that jG1(1n)j and jG2(1n)j are poly-nomially related to n, and that each of these integers can be e�ciently computedfrom the other.Comments: The above de�nition may be relaxed in several ways withoutsigni�cantly harming its usefulness. For example, we may relax Condition (2)and allow a negligible veri�cation error (e.g., Pr[V (v; �; S(s; �)) 6= 1] = 2�n).Alternatively, one may postulate that Condition (2) holds for all but a negligiblemeasure of the key-pairs generated by G(1n). At least one of these relaxationsis essential for many suggestions of (public-key) signature schemes.Another relaxation consists of restricting the domain of possible documents.However, unlike the situation with respect to encryption schemes, such a restric-tion is non-trivial in the current context, and is discussed at length in Section 6.2.6.1.3 Attacks and securityWe consider very powerful attacks on the signature scheme as well as a veryliberal notion of breaking it. Speci�cally, the attacker is allowed to obtain signa-tures to any document of its choice. One may argue that in many applicationssuch a general attack is not possible (as documents to be signed must have
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404CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONa speci�c format). Yet, our view is that it is impossible to de�ne a general(i.e., application-independent) notion of admissible documents, and thus a gen-eral/robust de�nition of an attack seems to have to be formulated as suggestedhere. (Note that at worst, our approach is overly cautious.) Likewise, the adver-sary is said to be successful if it can produce a valid signature to any documentfor which it has not asked for a signature during its attack. Again, this de�nesthe ability to form signatures to possibly \nonsensical" documents as a breakingof the scheme. Yet, again, we see no way to have a general (i.e., application-independent) notion of \meaningful" documents (so that only forging signaturesto them will be consider a breaking of the scheme). The above discussion leadsto the following de�nition.De�nition 6.1.2 (unforgeable signatures): We start with a slightly imformaloutline.� A chosen message attack is a process that can obtain signatures to stringsof its choice, relative to some �xed signing-key that is generated by G. Wedistinguish two cases.The private-key case: Here the attacker is given 1n as input, and the sig-natures are produced relative to s, where (s; v) G(1n).The public-key case: Here the attacker is given v as input, and the signa-tures are produced relative to s, where (s; v) G(1n).� Such an attack is said to succeeds (in existential forgery) if it outputs avalid signature to a string for which it has not requested a signature duringthe attack. That is, the attack is successful if it outputs a pair (�; �) sothat � is di�erent from all strings for which a signature has been requiredduring the attack, and Pr[Vv(�; �) = 1] � 12 , where v is as above.1� A signature scheme is secure (or unforgeable) if every probabilistic polynomial-time chosen message attack succeeds with at most negligible probability.Formally, a chosen message attack is modelled by a probabilistic oracle machine.Let M be such a machine. We denote by QOM (x) the set of queries made by Mon input x and access to oracle O, and let MO1 (x) denote the �rst string in thepair of strings output by M on input x and access to oracle O.The private-key case: A private-key signature scheme is secure if for every prob-abilistic polynomial-time oracle machine M , every polynomial p and allsu�ciently large n, it holds thatPr hVG2(1n)(MSG1(1n)(1n))=1 &MSG1(1n)1 (1n) 62 QSG1(1n)M (1n)i < 1p(n)1 The threshold of 1=2 used above is quite arbitrary. The de�nition is essentially robustunder the replacement of 1=2 by either 1=poly(n) or 1 � 2�poly(n), by ampli�cation of theveri�cation algorithm. For example, given V as above, one may consider V 0 that applies V tothe tested pair for a linear number of times and accepting if and only if V has accepted in alltries.
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6.1. DEFINITIONAL ISSUES 405where the probability is taken over the coin tosses of algorithms G, S andV as well as over the coin tosses of machine M .The public-key case: A public-key signature scheme is secure if for every prob-abilistic polynomial-time oracle machine M , every polynomial p and allsu�ciently large n, it holds thatPr24 VG2(1n)(MSG1(1n)(G2(1n)))=1andMSG1(1n)1 (G2(1n)) 62 QSG1(1n)M (G2(1n)) 35 < 1p(n)where the probability is taken over the coin tosses of algorithms G, S andV as well as over the coin tosses of machine M .The de�nition refers to the following experiment. First a pair of keys, (s; v), isgenerated by invoking G(1n), and is �xed for the rest of the discussion. Next,an attacker is given oracle access to Ss, where the latter may be a probabilisticoracle rather than a standard deterministic one (e.g., if queried twice for thesame value then the signing oracle may answer in di�erent ways). Finally, theattacker outputs a pair of strings (�; �), and is deemed successful if and only ifthe following two conditions hold:1. The string � is di�erent than all queries (i.e., requests for signatures)made by the attacker; that is, MSs1 (x) 62 QSsM (x), where x = 1n or x = vdepending on whether we are in the private-key or public-key case. (Westress that both MSs1 (x) and QSsM (x) are random variables that are de�nedbased on the same random execution of M on input x and oracle accessto Ss.)2. The pair (�; �) corresponds to a valid document-signature pair relativeto the veri�cation key v. In case V is deterministic (which is typicallythe case) this means that V (�; �) = 1. The same applies also in caseV is probabilistic, and when viewing V (�; �) = 1 as a random variable.(Alternatively, in the latter case, a condition such as Pr[V (�; �) = 1] � 1=2may replace the condition V (�; �) = 1.)Clearly any signature scheme that is secure in the public-key model is also securein the private-key model. The converse is not true: consider, for example, theprivate-key scheme presented in Construction 6.3.1 (below).Failure of some popular schemes: We stress that plain RSA (alike plainversions of Rabin's scheme and DSS) is not secure under the above de�nition.However, variants of these signature schemes may be secure if the message is\randomized" before RSA (or the other schemes) is applied. In general, therandomization paradigm (see Section 5.3) will play a pivotal role in this chaptertoo.
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406CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATION6.2 Signing �xed length documents versus abri-trary onesRestricted types of (public-key and private-key) signature schemes play an im-portant role in our exposition. The �rst restriction we consider is the one ofschemes capable of signing only documents of certain predetermined length.The e�ect of this restriction is more dramatic here (in the context of signatureschemes) than it was in the context of encryption schemes; compare Section 5.3.2.Still, we shall show (see Theorem 6.2.2 below) that if the length restriction isnot too low then the full power of signature schemes can be regained.De�nition 6.2.1 (signature scheme for �xed length documents): Let ` : N !N . An `-restricted signature scheme is a triple, (G;S; V ), of probabilistic polynomial-time algorithms satisfying the following two conditions1. As in De�nition 6.1.1, on input 1n, algorithm G outputs a pair of bitstrings.2. Analogously to De�nition 6.1.1, for every n and every pair (s; v) in therange of G(1n), and for every � 2 f0; 1g`(n), algorithms S and D satisfyPr[V (v; �; S(s; �))=1] = 1.Such a scheme is called secure (in the private-key or public-key model) if the(corresponding) requirements of De�nition 6.1.2 hold when restricted to attack-ers that only make queries of length `(n) and output a pair (�; �) with j�j = `(n).We comment that `-restricted private-key signature schemes for `(n) = O(log n)are trivial (since the signing and veri�cation keys may contain a table look-up associating a secret with each of the 2`(n) = poly(n) possible documents;see Exercise 1). (In contrast, this triviality does not arise in the context ofencryption schemes; compare Section 5.3.2.) On the other hand, `-restrictedsignature schemes for super-logarithmic ` (e.g., `(n) = n or even `(n) = log22 nwill do) are as powerful as ordinary signature schemes:Theorem 6.2.2 Suppose that ` is a super-logarithmically growing function Then,given an `-restricted signature scheme that is secure in the private-key (resp.,public-key) model, one can construct a full-
edged signature scheme that is se-cure in the same model.The theorem can be proved in two di�erent ways, corresponding to two meth-ods of converting an `-restricted signature scheme into a full-
edged one. The�rst method consists of parsing the original document into blocks (with properbinding between blocks!), and applying the `-restricted scheme to each block.The second method consists of hashing the document into an `(n)-bit long value(via an adequate hashing scheme!), and applying the restricted scheme to theresulting value. Although the theorem can be proved using each of the two
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6.2. SIGNING FIXED LENGTHDOCUMENTS VERSUS ABRITRARY ONES407methods, we only prove the theorem using the �rst method. The second methodis presented because it is actually much more important (as we may see in Sec-tion 6.4).6.2.1 First method: signing (augmented) document blocksLet ` and (G;S; V ) be as in Theorem 6.2.2. We construct a general signaturescheme, (G0; S0; V 0), with G0 = G, by considering documents as sequences ofstrings each of length `0(n) = `(n)=O(1). That is, associate � = �1 � � ��t withthe sequence (�1; :::; �t), where each �i has length `0(n).To motivate the following construction, consider the following simpler schemesaimed at producing secure signatures for sequences of `0(n)-bit long strings. Thesimplest idea is to just sign each of the strings in the sequence. That is, the sig-nature to the sequence (�1; :::; �t), is a sequence of �i's each being a signature(w.r.t the length-restricted scheme) to the corresponding �i. This will not dosince an adversary, given a single signature (�1; �2) to the sequence (�1; �2) with�1 6= �2, can present (�2; �1) as a signature to (�2; �1). So how about signingthe sequence (�1; :::; �t) by applying the restricted scheme to each pair (i; �i),so to foil the above attack? This will not do either, since an adversary, given asignature to the sequence (�1; �2) can easily present a signature to the sequence(�1). So we need to include in each `(n)-bit string also the total number of �i'sin the sequence. But even this is not enough, since an adversary given signaturesto the sequences (�1; �2) and (�01; �02), with �1 6= �01 and �2 6= �02, can easilygenerate a signature to (�1; �02). Thus, we have to prevent the forming of newsequences of basic signatures by combination of elements from di�erent signa-ture sequences. This can be done by associating (say at random) an identi�catorwith each sequence and incorporating this identi�cator in each `(n)-bit stringto which the restricted scheme is applied. This yields the following signaturescheme:Construction 6.2.3 (signing augmented blocks): Let ` and (G;S; V ) be asin Theorem 6.2.2. We construct a general signature scheme, (G0; S0; V 0), withG0 = G, by considering documents as sequences of strings. We construct S0 andV 0 as follows, using G0 = G and `0(n) = `(n)=4.signing with S0: On input a signing-key s 2 G1(1n) and a document � 2 f0; 1g�,algorithm S0 �rst parses � into �1; :::; �t so that � is uniquely reconstructedfrom the �i's and each �i is an `0(n)-bit long string.2 Next, S0 uniformlyselects r 2 f0; 1g`0(n). For i = 1; :::; t, algorithm S0 computes�i  Ss(r; t; i; �i)That is, �i is a signature to the statement \�i is the ith block, out of tblocks, in a sequence associate with identi�cator r". Finally, S0 outputsas signature the sequence (r; t; �1; ::::; �t)2 For example, we may require that � � 10j = �1 � � ��t and j < `0(n).
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408CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONveri�cation with V 0: On input a verifying-key v 2 G2(1n), a document � 2f0; 1g�, and a sequence (r; t; �1; ::::; �t), algorithm V 0 �rst parses � into�1; :::; �t0 , using the same parsing rule as S0. Algorithm V 0 accepts if andonly if the following two conditions hold:1. t0 = t, where t0 is obtained in the parsing of � and t is part of thealledge signature.2. For i = 1; :::; t, it holds that Vv((r; t; i; �i); �i), where �i is obtainedin the parsing of � and the rest are as in the corresponding parts ofthe alledge signature.Clearly, the triplet (G0; S0; V 0) satis�es De�nition 6.1.1. We need to show thatis also inherits the security of (G;S; V ). That is,Proposition 6.2.4 Suppose that (G;S; V ) is an `-restricted signature schemethat is secure in the private-key (resp., public-key) model. Then (G0; S0; V 0), asde�ned in Construction 6.2.3 is a full-
edged signature scheme that is secure inthe private-key (resp., public-key) model.Theorem 6.2.2 follows immediately from Proposition 6.2.4.Proof: The proof is by a reducibility argument. Given an adversary A0 attack-ing the complex scheme (G0; S0; V 0), we construct an adversary A that attacksthe `-restricted scheme, (G;S; V ). In particular, the adversary A will have touse its oracle access in order to emulate the oracle S0s for A0. This can be donein a straightforward manner; that is, algorithm A will act as S0s does using theoracle Ss. (Speci�cally, A parses each query �0 of A0 into a corresponding se-quence (�01; :::; �0t0), uniformly selects an identi�er r0, and obtains Ss signaturesto (r0; t0; j; �0j), for j = 1; :::; t0.) When A0 outputs a document-signature pairrelative to the complex scheme (G0; S0; V 0), algorithm A tries to use it in orderto form a document-signature pair relative to the `-restricted scheme, (G;S; V ).We stress that from the point of view of adversary A0, the distribution ofkeys and oracle answers that A provides it with is exactly as in a real attackon (G0; S0; V 0). This is a crucial point since we use the fact that events thatoccur in a real attack of A0 on (G0; S0; V 0), occur with the same probability inthe emulation of (G0; S0; V 0) by A.Assume that with (non-negligible) probability "0(n), the (probabilistic polynomial-time) algorithm A0 succeeds in existentially forging relative to the complexscheme (G0; S0; V 0). We consider the following cases regarding the forging event:1. The identi�cator supplied in the forged signature is di�erent from therandom identi�cators supplied (by A) as part of the signatures given toA0. In this case, each `-restricted signature supplied as part of the forged(complex) signature, yields existential forgery relative to the `-restrictedscheme.
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6.2. SIGNING FIXED LENGTHDOCUMENTS VERSUS ABRITRARY ONES409Formally, let �(1); :::; �(m) be the sequence of queries made by A0, and let(r(1); t(1); �(1)); :::; (r(m); t(m); �(m)) be the corresponding (complex) signa-tures supplied to A0 byA (using Ss to form the �(i)'s). Let (�; (r; t; �1; ::::; �t))be the output of A0, and suppose that applying V 0v to it yields 1 (i.e., it isa valid document-signature pair for the complex scheme). It follows thateach �(i) consists of a sequence of Ss-signatures to `(n)-bit strings startingwith r(i) 2 f0; 1g`(n)=4, and that the oracle Ss was invoked (by A) only onstrings of this form. The case hypothesis states that r 6= r(i), for all i's.It follows that each of the �j 's is an Ss-signature to a string starting withr 2 f0; 1g`(n)=4, and thus di�erent from all queries made to the oracle Ss.Thus, each pair ((r; t; i; �i); �i) is a valid document-signature pair (sinceV 0v(�; (r; t; �1; ::::; �t)) = 1 implies Vv((r; t; i; �i); �i) = 1), with a documentdi�erent than all queries made to Ss. This yields a forgery success relativeto the `-restricted scheme.2. The identi�cator supplied in the forged signature equals the random iden-ti�cator supplied (by A) as part of one of the signatures given to A0. (Westress that the latter signature is unique, and deal with the event in whichit is not unique in the next case.)Formally, let �(1); :::; �(m) be the sequence of queries made by A0, and let(r(1); t(1); �(1)); :::; (r(m); t(m); �(m)) be the corresponding (complex) signa-tures supplied to A0 byA (using Ss to form the �(i)'s). Let (�; (r; t; �1; ::::; �t))be the output of A0, and suppose that applying V 0v to it yields 1 (i.e., it isa valid document-signature pair for the complex scheme). The hypothesisof the current case is that there exists a unique i so that r = r(i).We consider two subcases regarding the relation between t and t(i):� t 6= t(i). In this subcase, each `-restricted signature supplied as partof the forged (complex) signature, yields existential forgery relativeto the `-restricted scheme. The argument is analogous to the oneemployed in the previous case. Speci�cally, here each of the �j 'sis an Ss-signature to a string starting with (r; t), and thus di�erentfrom all queries made to the oracle Ss (since these queries eitherstart with r(i0) 6= r or start with (r(i); t(i)) 6= (r; t)). Thus, each pair((r; t; j; �j); �j) is a valid document-signature pair with a documentdi�ernt than all queries made to Ss.� t = t(i). In this case we use the hypothesis � 6= �(i), which impliesthat there exists a j so that �j 6= �(i)j , where �(i)j is the jth blockin the parsing of �(i). In this subcase, �j (supplied as part of theforged complex-signature), yields existential forgery relative to the`-restricted scheme. Speci�cally, we have Vv((r; t; j; �j); �j) = 1, andin each query (r(i0); t(i0); j0; �(i0)j0 ) made by A to Ss either r(i0) 6= r(i.e., i0 6= i) or j0 6= j or �j 6= �(i)j . Thus, ((r; t; j; �j); �j) is a valid
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410CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONdocument-signature pair with a document di�ernt than all queriesmade to Ss.3. The identi�cator supplied in the forged signature equals the random iden-ti�cators supplied (by A) as part of at least two signatures given to A0. Inparticular, it follows that two signatures given to A use the same randomidenti�cator. The probability that this event occurs is at most�m2� � 2�`0(n) < m2 � 2�`(n)=4However, m = poly(n) (since A0 runs in polynomial-time), and 2�`(n)=4 isnegligible (since ` is super-logarithmic). So this case occurs with negligibleprobability, and may be ignored.Note that A can easily determine which of the cases occurs and act accordingly.3Thus, assuming that A0 forges relative to the complex scheme with non-negligibleprobability "0(n), it follows that A forges relative to the complex scheme withnon-negligible probability "(n) � "0(n) �m2 � 2�`(n)=4, in contradiction to theproposition's hypothesis.6.2.2 Second method: signing a hash valueLet ` and (G;S; V ) be as in Theorem 6.2.2. The second method of construct-ing a general signature scheme out of (G;S; V ) is based on the hash then signparadigm. That is, �rst the document is hashed to an `(n)-bit long value, andthen the `-restricted scheme is applied to the hashed value. Thus, in additionto an `-restricted scheme, this method employs an adequate hashing scheme.In particular, one way of implementing this method is based on \collision-freehashing" (de�ned next). An alternative implementation, based on \universalone-way hashing" is deferred to Section 6.4.3.Loosely speaking, a collision-free hashing scheme consists of a collection offunctions fhs : f0; 1g� ! f0; 1gjsjgs2f0;1g� so that given s and x it is easy tocompute hs(x), but given s it is hard to �nd x 6= x0 so that hs(x) = hs(x0).De�nition 6.2.5 (collision-free hashing functions): Let ` : N ! N . A collec-tion of functions fhs : f0; 1g� ! f0; 1g`(jsj)gs2f0;1g� is called collision-free hashingif there exists a probabilistic polynomial-time algorithm I so that the followingholds1. (admissible indexing { technical):4 For some polynomial p, all su�cientlylarge n's and every s in the range of I(1n) it holds that n � p(jsj).3 This observation only saves us a polynomial factor in the forging probability. That is, ifA did not know which part of the forged complex-signature to use in its own forgery, it couldhave selected one at random (and be correct with 1=poly(n) probability).4 This condition is made merely to avoid annoying technicalities. Note that jsj = poly(n)holds by de�nition of I.
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6.2. SIGNING FIXED LENGTHDOCUMENTS VERSUS ABRITRARY ONES4112. (e�cient evaluation): There exists a polynomial-time algorithm that givens and x, returns hs(x).3. (hard to form collisions): We say that the pair (x; x0) forms a collisionunder the function h if h(x) = h(x0) but x 6= x0. We require that everyprobabilistic polynomial-time algorithm, given I(1n) as input, outputs acollision under hI(1n) with negligible probability. That is, for every proba-bilistic polynomial-time algorithm A, every polynomial p and all su�cientlylarge n's, Pr �A(I(1n)) is a collision under hI(1n)� < 1p(n)where the probability is taken over the internal coin tosses of algorithms Iand A.The function ` is called the range speci�er of the collection.Note that the range speci�er must be super-logarithmic (or else one may easily�nd a collisions by selecting 2`(n) + 1 preimages and computing there imageunder the function). In Section 6.2.3, we show how to construct collision-freehashing functions using claw-free collections. But �rst, we show how to use theformer in order to convert a length-restricted signature scheme into a full-
edgedone.Construction 6.2.6 (hash and sign): Let ` and (G;S; V ) be as in Theorem 6.2.2,and let fhr : f0; 1g� ! f0; 1g`(jrj)gr2f0;1g� be as in De�nition 6.2.5. We con-struct a general signature scheme, (G0; S0; V 0), as follows:key-generation with G0: On input 1n, algorithm G0 �rst invokes G to obtain(s; v) G(1n). Next it invokes I, the indexing algorithm of the collision-free hashing collection, to obtain r  I(1n). Finally, G0 outputs the pair((r; s); (r; v)), where (r; s) serves as a signing-key and (r; v) serves as averi�cation-key.signing with S0: On input a signing-key (r; s) 2 G01(1n) and a document � 2f0; 1g�, algorithm S0 invokes S once to produce and output Ss(hr(�)).veri�cation with V 0: On input a verifying-key (r; v) 2 G02(1n), a document � 2f0; 1g�, and a alledged signature �, algorithm V 0 invokes V , and outputsVv(hr(�); �).Proposition 6.2.7 Suppose that (G;S; V ) is an `-restricted signature schemethat is secure in the private-key (resp., public-key) model. Suppose that fhr :f0; 1g� ! f0; 1g`(jrj)gr2f0;1g� is indeed a collision-free hashing collection. Then(G0; S0; V 0), as de�ned in Construction 6.2.6 is a full-
edged signature schemethat is secure in the private-key (resp., public-key) model.
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412CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONProof: Intuitively, the security of (G0; S0; V 0) follows from the security of(G;S; V ) and the collision-freeness property of the collection fhrg. Speci�cally,forgery relative to (G0; S0; V 0) can be obtained by either a forged S-signatureto a hash-value di�erent from all hash-values that appeared in the attack or byforming a collision under the hash function. That is, the actual proof is by areducibility argument. Given an adversary A0 attacking the complex scheme(G0; S0; V 0), we construct an adversary A that attacks the `-restricted scheme,(G;S; V ), as well as an algorithm B forming collisions under the hashing col-lection fhrg. Both A and B will have running-time related to that of A0. Weshow if A0 is successful with non-negligible probability than the same holds foreither A or B. Thus, in either case, we recah a contradiction. We start with thedescription of algorithm A, which is designed to attack the `-restricted scheme(G;S; V ).The adversary A operates as follows. First it uses I (the indexing algorithmof the collision-free hashing collection) to obtain r  I(1n), exactly as done inthe second step of G0. Next, it uses r and its oracle Ss in order to emulatethe oracle S0r;s for A0. This can be done in a straightforward manner; thatis, algorithm A will act as S0r;s does using the oracle Ss. When A0 outputs adocument-signature pair relative to the complex scheme (G0; S0; V 0), algorithmA tries to use this pair in order to form a document-signature pair relative tothe `-restricted scheme, (G;S; V ).We stress again that from the point of view of adversary A0, the distributionof keys and oracle answers that A provides it with is exactly as in a real attackof A0 on (G0; S0; V 0). This is a crucial point since we use the fact that eventsthat occur in a real attack of A0 on (G0; S0; V 0), occur with the same probabilityin the emulation of (G0; S0; V 0) by A.Assume that with (non-negligible) probability "0(n), the (probabilistic polynomial-time) algorithm A0 succeeds in existentially forging relative to the complexscheme (G0; S0; V 0). We consider the following cases regarding the forging event,letting (�i; �i) denote the ith query and answer pair made by A0, and (�; �)denote the forged document-signature pair that A0 outputs (in case of success):1. hr(�) 6= hr(�i) for all i's. (That is, the hash value used in the forgedsignature is di�erent from all hash values used in the queries to Ss.) Inthis case, the pair (hr(�); �) constitutes a success in existential forgeryrelative to the `-restricted scheme.2. hr(�) = hr(�i) for some i. (That is, the hash value used in the forgedsignature equals the hash value used in the ith query to Ss, although� 6= �i.) In this case, the pair (�; �i) forms a collision under hr (andwe do not obtain success in existential forgery relative to the `-restrictedscheme).Thus, if the �rst case occurs with probability at least "0(n)=2 then A succeeds inits attack on (G;S; V ) with probability at least "0(n)=2, which contradicts thesecurity of the `-restricted scheme (G;S; V ). On the other hand, if the secondcase occurs with probability at least "0(n)=2 then we derive a contradiction to the
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6.2. SIGNING FIXED LENGTHDOCUMENTS VERSUS ABRITRARY ONES413collision-freeness of the hashing collection fhr : f0; 1g� ! f0; 1g`(jrj)gr2f0;1g� .Details (regarding the second case) follow.We construct an algorithm, B, that given r  I(1n), attempts to formcollisions under hr as follows. On input r, algorithm B generates (s; v) G(1n),and emulates the attack of A on this instance of the `-restricted scheme, withthe exception that B does not invoke algorithm I to obtain an index of a hashfunction but rather uses the index r. Finally, when A0 (emulated by A) outputsa forged signature, algorithm B checks if the second case occurs in which caseit obtains and outputs a collision under hr.We stress that from the point of view of the emulated adversary A, theexecution is distributed exactly as in its attack on (G;S; V ). Thus, since thesecond case above occurs with probability at least "0(n)=2 in a real attack, itfollows that B succeeds to form a collision under hI(1n) with probability at least"0(n)=2. This contradicts the collision-freeness of the hashing functions, and theproposition follows.Using the hashing paradigm in practice: The hash-then-sign paradigm,underlying Construction 6.2.6, is often used in practice. Speci�cally, a docu-ment is signed using a two-stage process: �rst the document is hashed into a(relatively) short bit string, and next a basic signature scheme is applied to theresulting string. We stress that this process yields a secure signature schemeonly if the hashing scheme is collision-free (as de�ned above). In Section 6.2.3,we present a way to construct collision-free hashing functions. Alternatively, onemay indeed postulate that certain o�-the-shelf products (such as MD5 or SHA)are collision-free, but such assumptions need to be seriously examined (and in-deed may turn out false). We stress that using a hashing scheme, in the abovetwo-stage process, without seriously evaluating whether it is collision-free is avery dangerous practice.6.2.3 * Constructing collision-free hashing functionsIn this subsection we show how to construct collision-free hashing functions usinga claw-free collection of permutations as de�ned in Section 2.4.5. Recall thatsuch a collection consists of pairs of permutations, (f0s ; f1s ), so that both f�s 'sare permutations over a set Ds and of a probabilistic polynomial-time indexselection algorithm I so that1. The domain is easy to sample: there exists a probabilistic polynomial-timealgorithm that given s outputs a string uniformly distributed over Ds.2. The permutations are easy to evaluate: there exists a polynomial-timealgorithm that given s; � and x 2 Ds, outputs f�s (x).3. Hard to form claws: every probabilistic polynomial-time algorithm, givens  I(1n) outputs a pair (x; y) so that f0s (x) = f1s (y) with at most neg-ligible probability. That is, a pair (x; y) satisfying f0s (x) = f1s (y) is called
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414CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONa claw for index s, and Cs denote the set of claws for index s. Then, it isrequired that for every probabilistic polynomial-time algorithm, A0, everypositive polynomial p(�), and all su�ciently large n'sPr �A0(I(1n)) 2 CI(1n)� < 1p(n)Note that since f0s and f1s are permutations over the same set, many claws doexists (i.e., jCsj = jDsj). However, the third item above postulates that fors generated by I(1n) such claws are hard to �nd. We may assume, withoutloss of generality, that for some ` : N ! N and all s's it holds that Ds �f0; 1g`(jsj). Indeed, ` must be polynomially bounded. For simplicity we assumethat I(1n) 2 f0; 1gn. Recall that such collections of permutation pairs can beconstructed based on the standard DLP or factoring intractability assumptions(see Section 2.4.5).Construction 6.2.8 (collision-free hashing based on claw-free permutationspairs): Given an index selecting algorithm I for a collection of permutationpairs f(f0s ; f1s )gs as above, we construct a collection of hashing functions fh(s;r) :f0; 1g� ! f0; 1gjrjg(s;r)2f0;1g��f0;1g� as follows:index selection algorithm: On input 1n, we �rst invoke I to obtain s  I(1n),and next use the domain sampler to obtain a string r that is uniformlydistributed in Ds. We output the index (s; r), de�ning a hashing functionh(s;r)(x) def= fy1s fy2s � � � fyts (r)where y1 � � � yt is a pre�x-free encoding of x; that is, for any x 6= x0 thecoding of x is not a pre�x of the coding of x0. For example, code x1x2 � � �xmby x1x1x2x2 � � �xmxm01.evaluation algorithm: Given an index (s; r) and a string x, we compute h(s;r)(x)in a straightforward manner. That is, �rst we compute the pre�x-freeencoding of x, denoted y1 � � � yt. Next, we use the evaluation algorithm ofthe claw-free collection to compute fy1s fy2s � � � fyts (r), which is the desiredoutput.Proposition 6.2.9 Suppose that the collection of permutation pairs f(f0s ; f1s )gstogether with the index selecting algorithm I constitute a claw-free collection.Then, the function ensemble fh(s;r) : f0; 1g� ! f0; 1gjrjg(s;r)2f0;1g��f0;1g� asde�ned in Construction 6.2.8 constitute a collision-free hashing with a rangespecifying function `0 satisfying `0(n+ `(n)) = `(n).Proof: The proof is by a reducibility argument. Given an algorithm A0 that,on input (s; r), forms a collision under h(s;r), we construct an algorithm A thaton input s forms a claw for index s.
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6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES415On input s (supposedly generated by I(1n)), algorithm A selects r uniformlyin Ds, and invokes algorithm A0 on input (s; r). Suppose that A0 outputs a pair(x; x0) so that h(s;r)(x) = h(s;r)(x0) but x 6= x0. Without loss of generality,5assume that the coding of x equals y1 � � � yi�10zi+1 � � � zt, and that the coding ofx0 equals y1 � � � yi�11z0i+1 � � � z0t0 . By the de�nition of h(s;r), it follows thatfy1s � � � fyi�1s f0s fzi+1s � � � fzts (r) = fy1s � � � fyi�1s f1s fz0i+1s � � � fz0t0s (r) (6.1)Since each of the f�s 's is 1-1, Eq. (6.1) implies thatf0s fzi+1s � � � fzts (r) = f1s fz0i+1s � � � fz0t0s (r) (6.2)Computing w def= fzi+1s � � � fzts (r) and w0 def= fz0i+1s � � � fz0t0s (r), algorithm A obtainsa pair (w;w0) so that f0s (w) = f1s (w0). Thus, algorithm A forms claws for indexI(1n) with probability that is bounded below by the probability that A0 formsa collision under hI0(1n), where I 0 is the index selection algorithm as de�ned inConstruction 6.2.8. Using the hypothesis that the collection of pairs (togetherwith I) is claw-free, the proposition follows.6.3 Constructions of Message AuthenticationSchemesIn this section we present several constructions of secure message authenticationschemes (referred to above as secure private-key signature schemes). Below, wesometimes refer to a message authentication scheme as to a Message Authenti-cation Code (which is the traditional term), abbreviated by MAC.6.3.1 By using pseudorandom functionsMessage authentication schemes can be easily constructed using pseudorandomfunctions (as de�ned in Section 3.6). Speci�cally, by Theorem 6.2.2, it su�cesto construct an `-restricted message authentication scheme, for any superloga-rithmically growing `.Construction 6.3.1 (an `-restricted MAC based on pseudorandom functions):Let ` be a superlogarithmically growing function, and ffs : f0; 1g`(jsj) ! f0; 1g`(jsj)gs2f0;1g�be as in De�nition 3.6.4. We construct an `-restricted message authenticationscheme, (G;S; V ), as follows:key-generation with G: On input 1n, we uniformly select s 2 f0; 1gn, and outputthe key-pair (s; s).(Indeed, the veri�cation-key equals the signing-key.)5 Let C(x) (resp., C(x0)) denote the pre�x-free coding of x (resp., x0). Then C(x) is not apre�x of C(x0), and C(x0) is not a pre�x of C(x). It follows that C(x) = uv and C(x0) = uv0,where v and v0 di�er in their leftmost bit. Without loss of generality, we may assume that theleftmost bit of v is is 0, and the leftmost bit of v0 is 1.
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416CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONsigning with S: On input a signing-key s 2 f0; 1gn and an `(n)-bit string �, wecompute and output fs(�) as a signature of �.veri�cation with V : On input a veri�cation-key s 2 f0; 1gn, an `(n)-bit string�, and an alledge signature �, we accept if and only if � = fs(�).Analogous constructions can be presented using the generalized notions of pseu-dorandom functions de�ned in De�nitions 3.6.9 and 3.6.12. In particular, usinga pseudorandom function ensemble of the form ffs : f0; 1g� ! f0; 1gjsjgs2f0;1g� ,we obtain a general message authentication scheme (rather than a length-restrictedone). We prove only the security of the `-restricted message authenticationscheme of Construction 6.3.1. (The security of the general message authentica-tion scheme can be established analogously; see Exercise 2.)Proposition 6.3.2 Suppose that ffs : f0; 1g`(jsj) ! f0; 1g`(jsj)gs2f0;1g� is apseudorandom function, and that ` is a superlogarithmically growing function,Then Construction 6.3.1 constitutes a secure `-restricted message authenticationscheme.Proof: The proof follows the general methodology suggested in Section 3.6.3.Speci�cally, we consider the security of an ideal scheme in which the pseudoran-dom function is replaced by a truely random function (mapping `(n)-bit longstrings to `(n)-bit long strings). Clearly, an adversary that obtains the valuesof this random function at arguments of its choice, cannot predict its value ata new point with probability greater than 2�`(n). Thus, an adversary attackingthe ideal scheme may succeed in existential forgery with at most negligible prob-ability. The same must hold for any e�cient adversary that attacks the actualscheme, since otherwise such an adversary yields a violation of the pseudoran-domness of ffs : f0; 1g`(jsj) ! f0; 1g`(jsj)gs2f0;1g� . Details follow.The actual proof is by a reducibility argument. Given a probabilistic polynomial-time A attacking the scheme (G;S; V ), we consider what happens when A isattacking an ideal scheme in which a random function is used instead of a pseu-dorandom one. That is, we refer to two experiments:1. A attacks the actual scheme: On input 1n, machine A is given oracle accessto fs : f0; 1g`(n) ! f0; 1g`(n), where s is uniformly selected in f0; 1gn.After making some queries of its choice, A outputs a pair (�; �), where� is di�erent from all its queries, and is deem successful if and only if� = fs(�).2. A attacks the ideal scheme: On input 1n, machine A is given oracle accessto a function F : f0; 1g`(n)! f0; 1g`(n), uniformly selected among all suchpossible functions. After making some queries of its choice, A outputs apair (�; �), where � is di�erent from all its queries, and is deem successfulif and only if � = F (�).Clearly, A's success probability in this experiment is at most 2�`(n), whichis a negligible function (since ` is super-logarithmic).
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 417Assuming that A's success probability in the actual attack is non-negligible, wederive a contradiction to the pseudorandomness of the function ensemble ffsg.Speci�cally, we consider a distinguisher D that on input 1n and oracle access toa function f : f0; 1g`(n) ! f0; 1g`(n), behaves as follows: First D emulates theactions of A, while answering A's queries using its oracle f . When A outputs apair (�; �), the distinguisher makes one additional oracle query to f and outputs1 if and only if f(�) = �.Note that when f is selected uniformly among all possible f0; 1g`(n) !f0; 1g`(n) functions, D emulates an attack of A on the ideal scheme, and thusoutputs 1 with negligible probability (as explained above). On the other hand,if f is uniformly selected in ffsgs2f0;1gn then D emulates an attack of A on theactual scheme, and thus (due to the contradiction hypothesis) outputs 1 withnon-negligible probability. We reach a contradiction to the pseudorandomnessof ffsgs2f0;1gn . The proposition follows.A plausibility result: Combining Theorem 6.2.2, Proposition 6.3.2, and Corol-lary 3.6.7, it follows that the existence of one-way functions implies the existenceof message authentication schemes. The converse also holds; see Exercise 3.Thus, we have:Theorem 6.3.3 Secure message authentication schemes exist if and only if one-way functions exist.6.3.2 * Other alternativesAuthor's Note: a second look at hash-then-mac vs direct-PRFAuthor's Note: .... and more e�cient schemes may be obtained basedon other cryptographic primitives. Work out the following para-graph....Fingerprinting the message using a scheme which is secure against forgeryprovided that the adversary does not have access to the scheme's outcome (e.g.,using Universal Hashing [48]), and \hiding" the result using a non-malleablescheme (e.g., a private-key encryption or a pseudorandom function). (Non-malleability is not required in certain cases; see [208].)6.4 Constructions of Signature SchemesIn this section we present several constructions of secure public-key signatureschemes. Here we refer to such schemes as signature schemes, which is indeedthe traditional term.Two central paradigms in the construction of signature schemes are the \re-freshing" of the \e�ective" signing-key, and the usage of an \authenticationtree". In addition, the \hashing paradigm" (employed also in the construction

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



418CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONof message authentication schemes), plays a even more central role in the fol-lowing presentation. In addition to the above, we use the notion of one-timesignature scheme de�ned in Section 6.4.1.The current section is organized as follows. In Section 6.4.1 we de�ne andconstruct various types of one-time signature schemes. The \hashing paradigm"plays a central role in one of these constructions, which in turn is essential forSection 6.4.2. In Section 6.4.2 we show how to use one-time signature schemesto construct general signature schemes. This construction utilizes \refreshingparadigm" (as employed to one-time signature schemes) and an \authenticationtree". In Section 6.4.3, we de�ne Universal One-Way Hashing and show how touse it (in the previous constructions) instead of collision-free hashing. The gainin using Universal One-Way Hashing (rather than collision-free hashing) is thatthe former can be constructed based on any one-way function (whereas this isnot known for collision-free hashing). Thus, we obtain:Theorem 6.4.1 Secure signature schemes exist if and only if one-way functionsexist.The di�cult direction is to show that the existence of one-way functions impliesthe existence of signature schemes. For the other direction, see Exercise 3.6.4.1 One-time signature schemesIn this section we de�ne and construct various types of one-time signatureschemes. Speci�cally, we �rst de�ne one-time signature schemes, next a length-restricted version of this notion (analogous to De�nition 6.2.1), then presenta simple construction of the latter, and �nally show how such a constructioncombined with collision-free hashing yields a general one-time signature scheme.6.4.1.1 De�nitionsLoosely speaking, one-time signature schemes are signature schemes for whichthe security requirement is restricted to attacks in which the adversary asks forat most one string to be signed. That is, the mechanics of one-time signatureschemes are as of ordinary signature schemes (see De�nition 6.1.1), but thesecurity requirement is relaxed as follows.� A chosen one-message attack is a process that can obtain a signature to atmost one string of its choice. That is, the attacker is given v as input, andobtains a signature relative to s, where (s; v) G(1n) for an adequate n.(Note that in this section we focus on public-key signature schemes andthus we present only the de�nition for this case.)� Such an attack is said to succeeds (in existential forgery) if it outputsa valid signature to a string for which it has not requested a signatureduring the attack.(Indeed, the notion of success is exactly as in De�nition 6.1.2.)
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 419� A one-time signature scheme is secure (or unforgeable) if every probabilisticpolynomial-time chosen one-message attack succeeds with at most negli-gible probability.Moving to the formal de�nition, we again model a chosen message attack as aprobabilistic oracle machine; however, since here we are only about one-messageattacks, we consider only oracle machines that make at most one query. Let Mbe such a machine. As before, we denote by QOM (x) the set of queries made byM on input x and access to oracle O, and let MO1 (x) denote the �rst string inthe output of M on input x and access to oracle O. Note that here jQOM (x)j � 1(i.e., M may either make no queries or a single query).De�nition 6.4.2 (security for one-time signature schemes): A one-time signa-ture scheme is secure if for every probabilistic polynomial-time oracle machineM that makes at most one query, every polynomial p and all su�ciently largen, it holds thatPr24 VG2(1n)(MSG1(1n)(G2(1n)))=1andMSG1(1n)1 (G2(1n)) 62 QSG1(1n)M (G2(1n)) 35 < 1p(n)where the probability is taken over the coin tosses of algorithms G, S and V aswell as over the coin tosses of machine M .We now de�ne a length-restricted version of one-time signature schemes. Thede�nition is indeed analogous to De�nition 6.2.1:De�nition 6.4.3 (length-restricted one-time signature schemes): Let ` : N !N . An `-restricted one-time signature scheme is a triple, (G;S; V ), of probabilis-tic polynomial-time algorithms satisfying the the mechanics of De�nition 6.2.1.That is, it satis�es the following two conditions1. As in De�nition 6.1.1, on input 1n, algorithm G outputs a pair of bitstrings.2. Analogously to De�nition 6.1.1, for every n and every pair (s; v) in therange of G(1n), and for every � 2 f0; 1g`(n), algorithms S and D satisfyPr[V (v; �; S(s; �))=1] = 1.Such a scheme is called secure (in the one-time model) if the requirement ofDe�nition 6.4.2 holds when restricted to attackers that only make queries oflength `(n) and output a pair (�; �) with j�j = `(n). That is, we consider onlyattackers that make at most one query, this query has to be of length `(n), andthe output (�; �) must satisfy j�j = `(n).6.4.1.2 Length-restricted one-time signature schemesWe now present a simple construction of length-restricted one-time signatureschemes. The construction works for any length restriction function `, but the
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420CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONkeys will have length greater than `. The latter fact limits the applicability ofsuch schemes, and will be removed in the next subsection. But �rst, we construct`-restricted one-time signature schemes based on any one-way function f . Wemay assume for simplicity that f is length preserving.Construction 6.4.4 (an `-restricted one-time signature scheme): Let ` : N !N be polynomially-bounded and polynomial-time computable, and f : f0; 1g� !f0; 1g� be polynomial-time computable and length-preserving. We construct an`-restricted one-time signature scheme, (G;S; V ), as follows:key-generation with G: On input 1n, we uniformly select s01; s11; ::::; s0̀(n); s1̀(n) 2f0; 1gn, and compute vji = f(sji ), for i = 1; :::; `(n) and j = 0; 1. Welet s = ((s01; s11); ::::; (s0̀(n); s1̀(n))), and v = ((v01 ; v11); ::::; (v0̀(n); v1̀(n))), andoutput the key-pair (s; v).(Note that jsj = jvj = 2 � `(n) � n.)signing with S: On input a signing-key s = ((s01; s11); ::::; (s0̀(n); s1̀(n))) and an`(n)-bit string � = �1 � � ��`(n), we output (s�11 ; ::::; s�`(n)`(n) ) as a signature of�.veri�cation with V : On input a veri�cation-key v = ((v01 ; v11); ::::; (v0̀(n); v1̀(n))),an `(n)-bit string � = �1 � � ��`(n), and an alledge signature � = (�1; :::; �`(n)),we accept if and only if v�ii = f(�i), for i = 1; :::; `(n).Proposition 6.4.5 If f is a one-way function then Construction 6.4.4 consti-tutes a secure `-restricted one-time signature scheme.Note that Construction 6.4.4 does not constitute a (general) `-restricted sig-nature scheme: An attacker that obtains signatures to two strings (e.g., to thestrings 0`(n) and 1`(n)), can present a valid signature to any `(n)-bit long string(and thus totally break the system). However, here we consider only attackersthat may ask for at most one string (of their choice) to be signed. As a corollaryto Proposition 6.4.5, we obtain:Corollary 6.4.6 If there exist one-way functions then, for every polynomially-bounded and polynomial-time computable ` : N ! N , there exist secure `-restricted one-time signature schemes.Proof of Proposition 6.4.5: Intuitively, forging a signature (after seeing atmost one signature to a di�erent message) requires inverting f on some image.The actual proof is by a reducibility argument. Given an adversary A attackingthe scheme (G;S; V ), while making at most one query, we construct an algorithmA0 for inverting f .As a warm-up, let us �rst deal with the case in which A makes no queries atall. In this case, on input y (supposedly in the range of f), algorithm A0 proceedsas follows. First A0 selects p uniformly in f1; :::; `(n)g, q uniformly in f0; 1g, and
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 421s01; s11; ::::; s0̀(n); s1̀(n) each independently and uniformly in f0; 1gn. (Actaully,sqp is not used and needs not be selected.) For every i 2 f1; :::; `(n)g n fpg, andevery j 2 f0; 1g, algorithm A0 computes vji = f(sji ). Algorithm A0 also computesv1�qp = f(s1�qp ), and sets vqp = y and v = ((v01 ; v11); ::::; (v0̀(n); v1̀(n))). Note thatif y = f(x), for a uniformly distributed x 2 f0; 1gn, then for each possible choiceof p and q, the sequence v is distributed identically to the public-key generatedby G(1n). Next, A0 invokes A on input v, hoping that A will forge a signature,denoted � = �1 � � � �`(n), to a message � = �1 � � ��`(n) so that �p = q. If this eventoccurs, A0 obtains a preimage of y under f , since the validity of the signatureimplies that f(�p) = v�pp = vqp = y. Observe that conditioned on the value of vand the internal coin tosses of A, the value q is uniformly distributed in f0; 1g.Thus, A0 inverts f with probability "(n)=2, where "(n) denotes the probabilitythat A succeeds in forgery.We turn back to the actual case in which A may make a single query. (With-out loss of generality, we may assume that A always makes a single query; seeExercise 4.) In this case, on input y (supposedly in the range of f), algorithmA0 selects p; q and the sji 's, and forms the vji 's and v exactly as in the warm-upabove.6 Recall that if y = f(x), for a uniformly distributed x 2 f0; 1gn, then foreach possible choice of p and q, the sequence v is distributed identically to thepublic-key generated by G(1n). Also note that for each vji other than vqp = y,algorithm A0 holds a random preimage under f . Next, A0 invokes A on input v,and tries to answer its query, denoted � = �1 � � ��`(n). We consider two casesregarding the signature required by A.1. If �p = q then A0 can not supply the desired signature since it lacks apreimage of y = sqp under f . Thus, in this case A0 aborts. However, thiscase occurs with probability 12 , independently of the actions of A (since vyields no information on either p or q).(That is, conditioned on the value of v and the internal coin tosses of A,this case occurs with probability 12 .)72. If �p = 1 � q then A0 can supply the desired signature since it holds allthe relevant sji 's (i.e., random preimages of the relevant vji 's under f). Inparticular, A0 holds both sji 's, for i 6= p, as well as s1�qp . Thus, A0 answerswith (s�11 ; ::::; s�`(n)`(n) ).Note that conditioned on the value of v, the internal coin tosses of A and on thesecond case occuring, p is uniformly distributed in f1; :::; `(n)g. When the second6 That is, �rst A0 selects p uniformly in f1; :::; `(n)g, q uniformly in f0; 1g, ands01; s11; ::::; s0̀(n); s1̀(n) each independently and uniformly in f0; 1gn. For every i 2 f1; :::; `(n)gnfpg, and every j 2 f0; 1g, algorithm A0 computes vji = f(sji ). Algorithm A0 also computesv1�qp = f(s1�qp ), and sets vqp = y and v = ((v01 ; v11); ::::; (v0̀(n); v1̀(n))).7 This follows from an even stronger statement by which conditioned on the value of v, theinternal coin tosses of A and on the value of p, the current case happens with probability 12 .The stronger statement holds since conditioned on all the above, q is uniformly distributed inf0; 1g (and so �p = q happens with probability exectly 12 ).
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422CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONcase occurs, A obtains a signature to � and this signature is distributed exactlyas in a real attack. We stress that since A asks at most one query, no additionalquery will be asked by A. Also note that, in this case (i.e., �p = 1�q), algorithmA outputs a forged mesasage{signature pair, denoted (�0; �0), with probabilityexactly as in a real attack.For simplicity we assume below that A has indeed made a single query �(otherwise one may consider � and the �i's to be some non-boolean dummyvalues and apply the following reasoning nevertheless).8 Let �0 = �01 � � �� 0̀(n) and�0 = s01 � � � s0̀ (n), where (�0; �0) is the forged mesasage{signature pair output byA. By our hypothesis (that this is a forgery-success event) it follows that �0 6= �and that f(s0i) = v�0ii for all i's. Since (conditioned on all the above) p is uniformlydistributed in f1; :::; `(n)g, it follows that with probability jfi:�0i 6=�igj`(n) � 1`(n)it holds that �0p 6= �p, and then A0 obtains a preimage of y under f (since s0psatis�es f(s0p) = v�0pp , which in turn equals v1��pp = vqp = y).To summarize, assuming that A succeeds in a single-message attack on(G;S; V ) with probability "(n), algorithm A0 inverts f on a random image (i.e.,on f(Un)) with probability"(n) � 12 � jfi : �0i 6= �igj`(n) � "(n)2`(n)Thus, if A is a probabilistic polynomial-time chosen one-message attack thatforges signatures with non-negligible probability then A0 is a probabilistic polynomial-time algorithm that inverts f with non-negligible probability (in violation of thehypothesis that f is a one-way function). The proposition follows.6.4.1.3 From length-restricted schemes to general onesWe now combine a length-restricted one-time signature scheme with collision-free hashing to obtain a general one-time signature scheme. The construction isidentical to Construction 6.2.6, except that here (G;S; V ) is an `-restricted one-time signature scheme rather than an `-restricted (general) signature scheme.Analogously to Proposition 6.2.7, we obtain.Proposition 6.4.7 Suppose that (G;S; V ) is a secure `-restricted one-time sig-nature scheme, and that fhr : f0; 1g� ! f0; 1g`(jrj)gr2f0;1g� is a collision-freehashing collection. Then (G0; S0; V 0), as de�ned in Construction 6.2.6 is a se-cure one-time signature scheme.Proof: The proof is identical to the proof of Proposition 6.2.7; we merely noticethat if the adversary A0, attacking (G0; S0; V 0), makes at most one query thenthe same holds for the adversary A that we constract to attack (G;S; V ). In8 Alternatively, recall that, without loss of generality, we may assume that A always makesa single query; see Exercise 4.
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 423general, the adversary A constructed in the proof of Proposition 6.2.7 makes aone query per each query of the adversary A0.Combining Proposition 6.4.7, Corollary 6.4.6, and the fact that collision-freehashing collections imply one-way functions (see Exercise 7), we obtain:Corollary 6.4.8 If there exist collision-free hashing collections then there existsecure one-time signature schemes.Comments: We stress that when using Construction 6.2.6, signing each docu-ment under the (general) scheme (G0; S0; V 0) requires signing a single string un-der the `-restricted scheme (G;S; V ). This is in contrast to Construction 6.2.3in which signing a document under the (general) scheme (G0; S0; V 0) requiressigning many strings under the `-restricted scheme (G;S; V ), where the numberof such strings depends (linearly) on the length of the original document.Construction 6.2.6 calls for the use of collision-free hashing. The latter can beconstructed using any claw-free permutation collection (see Proposition 6.2.9),however it is not know whether collision-free hashing can be constructed based onany one-way function. Wishing to construct signature schemes based on any one-way function, in Section 6.4.3 we avoid the use of collision-free hashing. Instead,we use \universal one-way hashing functions" (to be de�ned), and present avaraint of Construction 6.2.6 that uses these functions rather than collision-freeones.6.4.2 From one-time signature schemes to general onesIn this section we show how to construct general signature schemes using one-time signature schemes. That is, we shall prove:Theorem 6.4.9 If there exist secure one-time signature schemes then securesignature schemes exist as well.Actually, we can use length-restricted one-time signature schemes, provided thatthe length of the strings being signed is at least twice the length of the veri�-cation key. Unfortunately, Construction 6.4.4 does not satisfy this condition.Nevertheless, Corollary 6.4.8 does provide one-time signature schemes. Thus,combining Theorem 6.4.9 and Corollary 6.4.8, we obtain:Corollary 6.4.10 If there exist collision-free hashing collections then there existsecure signature schemes.Note that Corollary 6.4.10 asserts the existence of secure (public-key) signatureschemes, based on an assumption that does not mention trapdoors. We stressthis point because of the contrast to the situation with respect to public-key en-cryption schemes, where a trapdoor property seem necessary for the constructionof secure schemes.
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424CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATION6.4.2.1 The refreshing paradigmThe so-called \refreshing paradigm" plays a central role in the proof of Theo-rem 6.4.9. Loosely speaking, the \refreshing paradigm" suggests to reduce thedangers of a chosen message attack on the signature scheme by using \fresh"instances of the scheme for signing. Of course, these fresh instances should beauthenticated by the original instance (corresponding to the veri�cation-key thatis publically known).Example: To demonstrate the refreshing paradigm, consider a basic signaturescheme (G;S; V ) used as follows. Suppose that the user U has generated a key-pair, (s; v) G(1n), and has placed the veri�cation-key v on a public-�le. Whena party asks U to sign some document �, the user U generates a new (fresh)key-pair, (s0; v0) G(1n), signs v0 using the original signing-key s, signs � usingthe new (fresh) signing-key s0, and presents (Ss(v0); v0; Ss0(�)) as a signatureto �. An alledged signature, (�1; v0; �2), is veri�ed by checking whether bothVv(v0; �1) = 1 and Vv0 (�; �2) = 1. Intuitively, the gain in terms of security isthat a full-
edged chosen message attack cannot be lounched on (G;S; V ). Allthat an attacker may obtain (via a chosen message attack on the new scheme)is signatures, relative to the original signing-key s, to randomly chosen strings(taken from the distributionG2(1n)) as well as additional signatures each relativeto a random and independently chosen signing-key.We refrain from analyzing the features of the signature scheme presented inthe above example. Instead, as a warm-up to the actual construction used in thenext section (in order to establish Theorem 6.4.9), we present and analyze a sim-ilar construction (which is { in some sense { a hybrid of the two constructions).The reader may skip this warm-up, and proceed directly to Section 6.4.2.2.Construction 6.4.11 (a warm-up): Let (G;S; V ) be a signature scheme and(G0; S0; V 0) be a one-time signature scheme. Consider a signature scheme, (G00; S00; V 00),with G00 = G, as follows:signing with S00: On input a signing-key s and a document � 2 f0; 1g�, �rstinvoke G0 to obatin (s0; v0)  G0(1n). Next, invoke S to obtain �1  Ss(v0), and S0 to obatin �2  S0s0(�). The �nal output is (�1; v0; �2).veri�cation with V 00: On input a verifying-key v, a document � 2 f0; 1g�, and aalledged signature � = (�1; v0; �2), we output 1 if and only if both Vv(v0; �1) =1 and V 0v0(�; �2) = 1.Construction 6.4.11 di�ers from the above example only in that a one-timesignature scheme is used to generate the \second signature" (rather than usingthe same ordinary signature scheme). The use of a one-time signature schemeis natural here, since it is unlikely that the same signing-key s0 will be selectedin two invocations of S00.
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 425Proposition 6.4.12 Suppose that (G;S; V ) is a secure signature scheme, andthat (G0; S0; V 0) is a secure one-time signature scheme. Then (G00; S00; V 00), asde�ned in Construction 6.4.11 is a secure signature scheme.We comment that the proposition holds even if (G;S; V ) is only secure againstattackers that select queries according to the distribution G02(1n). Furthermore,(G;S; V ) need only be `-restricted, for some suitable function ` : N ! N .Proof Sketch: Consider an adversary A00 attacking the scheme (G00; S00; V 00).We may ignore the case in which two queries of A00 are answered by tripletscontaining the same one-time veri�cation-key v0 (since if this event occurs withnon-negligible probability then the one-time scheme (G0; S0; V 0) cannot be se-cure). We consider two cases regarding the relation of the values of the one-timeveri�cation-key in the signatures provided by S00s and its value in the signatureforged by A00.1. In case, for some i, the one-time veri�cation-key v0 contained in the forgedmessage equals the one-time veri�cation-key v(i) contained in the answerto the ith query, we derive violation to the security of the one-time scheme(G0; S0; V 0).Speci�cally, consider an adversary A0 that on input a veri�cation-key v0for the one-time scheme (G0; S0; V 0), generates (s; v)  G(1n) at ran-dom, selects i at random (among polynomially many possibilities), in-vokes A00 on input v, and answers its queries as follows. The ith query ofA00, denoted �(i), is answered by making the only query to S0s0 , obtaining�0 = S0s0(�(i)), and returning (Ss(v0); v0; �0) to A00. (Note that A0 holds s.)Each other query of A00, denoted �(j), is answered by invoking G0 to obtain(s(j); v(j)) G0(1n), and returning (Ss(v(j)); v(j); S0s(j) (�(j)) to A00. If A00answers with a forged signature and v0 is the veri�cation-key containedin it, then A0 obtains a forged signature relative to the one-time scheme(G0; S0; V 0) (i.e., a signature to a message di�erent from �(i), which is validw.r.t the veri�cation-key v0). Conditioned on the case hypothesis and aforgery event, the second event (i.e., v0 is the veri�cation-key containedin the forged signature) occurs with 1=poly(n) probability. (Note that in-deed A0 made a single query to S0s0 , and that the distribution seen by A00is exactly as in an actual attack on (G00; S00; V 00).)2. In case, for all i, the one-time veri�cation-key v0 contained in the forgedmessage is di�erent from the one-time veri�cation-key v(i) contained in theanswer to the ith query, we derive violation to the security of the scheme(G;S; V ).Speci�cally, consider an adversary A that on input a veri�cation-key v forthe scheme (G;S; V ), invokes A00 on input v, and answers its queries asfollows. To answer the jth query of A00, denoted �(j), algorithm A invokesG0 to obtain (s(j); v(j))  G0(1n), queries Ss for a signature to v(j), andreturns (Ss(v(j)); v(j); S0s(j) (�(j)) to A00. When A00 answers with a forged
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426CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONsignature and v0 62 fv(j) : j = 1; :::; poly(n)g is the one-time veri�cation-key contained in it, A obtains a forged signature relative to the scheme(G;S; V ) (i.e., a signature to a string v0 di�erent from all v(j)'s, which isvalid w.r.t the veri�cation-key v). (Note again that the distribution seenby A00 is exactly as in an actual attack on (G00; S00; V 00).)9Thus in both cases we derive a contradiction to some hypothesis, and the propo-sition follows. 26.4.2.2 Authentication{treesThe refreshing paradigm by itself (i.e., as employed in Construction 6.4.11) doesnot seem to be enough for establishing Theorem 6.4.9. Recall that our aim isto construct a general signature scheme based on a one-time signature scheme.The refreshing paradigm suggests to use a fresh instance of a one-time signaturescheme in order to sign the actual document; however, whenever we do so (asin Construction 6.4.11), we must autheticate this fresh instance relative to thesingle veri�cation-key that is public. A straightforward implementation of thisscheme (as presented in Construction 6.4.11) calls for many signatures to besigned relative to the single veri�cation-key that is public, and so a one-time sig-nature scheme cannot be used (for this purpose). Instead, a more sophisticatedmethod of authentication is required.Let us try to sketch the basic idea underlying the new authentication method.The idea is to use the public veri�cation-key (of a one-time signature scheme)in order to authenticate several (e.g., two) fresh instances, use each of theseinstances to authenticate several fresh instances, and so on. We obtain a tree offresh instances of the one-time signature, where each internal node authenticatesits children. See Figure 6.1 (below). We can now use the leaves of this tree inorder to sign actual documents, where each leave is used at most once. We stressthat each instance of the one-time signature scheme is used to sign at most onestring (i.e., a sequence of veri�cation-keys if the instance resides in an internalnode, and an actual document if the instance resides in a leaf).The above description may leave the reader wondering as to how one actuallysigns (and veri�es signatures) using the suggested signature scheme. We startwith a description that does not �t our de�nition of a signature scheme, becauseit requires the signer to keep a record of its actions during previous invocationsof the signing process.10 We refer to such a scheme as memory dependent.De�nition 6.4.13 (memory-dependent signature schemes):mechanics: Item 1 of De�nition 6.1.1 stays as it is, and the initial state (ofthe signing algorithm) is de�ned to equal the output of the key-generator.Item 2 is modi�ed so that the signing algorithm is given a state, denoted
, as auxiliary input and returns a modi�ed state, denoted �, as auxiliary9 Furthermore, all queries to Ss are distributed according to G2(1n), justifying the commentmade just before the proof sketch.10 This (memory) requirement will be removed in the next section.
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 427
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Figure 6.1: A node labeled x authenticates its children, labeled x0 and x1,respectively. The authentication is via a one-time signature of the text vx0vx1using signing-key sx.output. It is required that for every pair (s; v) in the range of G(1n),and for every �; 
 2 f0; 1g�, if Ss(�; 
) = (�; �) then Vv(�; �) = 1 andj�j � j
j+ j�j � poly(n).(That is, the veri�cation algorithm accepts the signature � and the statedoes not grow by too much.)security: The notion of a chosen message attack is modi�ed so that the oracleSs now maintains a state that it updates in the natural manner; that is,when in state 
 and faced with query �, the oracle sets (�; �)  Ss(�; 
),returns � and updates its state to �. The notions of success and securityare de�ned as in De�nition 6.1.2, except that they now refer to the modi�ednotion of an attack.We note that memory-dependent signature schemes may su�ce in many ap-plications of signature schemes. Still, it is preferable to have memoryless (i.e.,ordinary) signature schemes. Below we use any one-time signature schemes toconstruct a memory-dependent signature scheme. The memory requirement willbe removed in the next section, so to obtain a (memoryless) signature scheme(as in De�nition 6.1.1).Construction 6.4.14 (a memory-dependent signature scheme): Let (G;S; V )be a one-time signature scheme. Consider the following memory-dependent sig-nature scheme, (G0; S0; V 0), with G0 = G. On security parameter n, the schemeuses a full binary tree of depth n. Each of the nodes in this tree is labeled by a
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428CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONbinary string so that the root is labeled by the empty string, denoted �, and theleft (resp., right) child of a node labeled by x is labeled by x0 (resp., x1). Belowwe refer to the current state of the signing process as to a record.initiating the scheme: To initiate the scheme, on security parameter n, we in-voke G(1n) and let (s; v)  G(1n). We record (s; v) as the key-pair asso-ciated with the root, and output v as the (public) veri�cation-key.In the rest of the description, we denote by (sx; vx) the key-pair associatedwith the node labeled x; thus, (s�; v�) = (s; v).signing with S0 using the current record: Recall that the current recond containsthe signing-key s = s�, which is used to produce auth� (de�ned below).To sign a new document, denoted �, we �rst allocate an unused leaf. Let�1 � � ��n be the label of this leaf. For example, we may keep a counter ofthe number of documents signed, and determine �1 � � ��n according to thecounter value (e.g., if the counter value is c then we use the cth string inlexicographic order).Next, for every i = 1; :::; n and every � 2 f0; 1g, we try to retreive from ourrecord the key-pair associated with the node labeled �1 � � ��i�1� . In casesuch a pair is not found, we generate it by invoking G(1n) and store it (i.e.,add it to our record) for future use; that is, we let (s�1����i�1� ; v�1����i�1� ) G(1n).For every i = 1; :::; n, we try to retreive from our record a signature tothe string v�1����i�10 v�1����i�11 relative to the signing-key s�1����i�1 . In casesuch a signature is not found, we generate it by invoking Ss�1����i�1 , andstore it for future use; that is, we obtain Ss�1����i�1 (v�1 ����i�10 v�1����i�11).We letauth�1����i�1 def= �v�1����i�10 ; v�1����i�11 ; Ss�1����i�1 (v�1����i�10 v�1����i�11)�(Intuitively, via auth�1����i�1 the node labelled �1 � � ��i�1 authenticates theveri�cation-keys associated with its children.)Finally, we sign � by invoking Ss�1����n , and output(�1 � � ��n; auth�; auth�1 ; :::; auth�1����n�1 ; Ss�1����n (�))veri�cation with V 0: On input a veri�cation-key v, a document �, and an alledgesignature � we accept if and only if the following conditions hold:1. � has the form(�1 � � ��n; (v0;0; v0;1; �0); (v1;0; v1;1; �1); :::; (vn�1;0; vn�1;1; �n�1); �n)where the �i's are bits and all other symbols represent strings.(Jumping ahead, we mention that vi;� is supposed to equal v�1����i�1� ,the veri�cation-key associated by the signing process with the nodelabeled �1 � � ��i�1� . In particular, vi;�i is supposed to equal v�1����i .)
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 4292. Vv(v0;0v0;1; �0) = 1.(That is, the public-key (i.e., v) authenticates the two strings v0;0 andv0;1 claimed to correspond to the instances of the one-time signaturescheme associated with the nodes labeled 0 and 1, respectively.)3. For i = 1; :::; n� 1, it holds that Vvi�1;�i (vi;0vi;1; �i) = 1.(That is, the veri�cation-key vi�1;�i , which is already beleived to beauthentic and supposedly corresponds to the instance of the one-timesignature scheme associated with the node labeled �1 � � ��i, authen-ticates the two strings vi;0 and vi;1 that are supposed to correspondto the instances of the one-time signature scheme associated with thenodes labeled �1 � � ��i0 and �1 � � ��i1, respectively.)4. Vvn�1;�n (�; �n) = 1.(That is, the veri�cation-key vn�1;�n , which is already beleived to beauthentic, authenticates the actual document �.)Regarding the veri�cation algorithm, note that Conditions 2 and 3 establish thatvi;�i+1 is authentic (i.e., equals v�1����i;�i+1). That is, v = v� authenticates v�1 ,which authenticates v�1�2 , and so on up-to v�1����n . The fact that the vi;1��i+1 'sare proven to be authentic (i.e., equal the v�1����i;1��i+1 's) is not really useful.This is merely an artifact of the fact that s�1����i can be (securely) used toproduce a single signature, during the entire operation of the memory-dependentsignature scheme. In the currently (constructed) S0s-signature we may not careabout the authenticity of some v�1����i;1��i+1 , but we may care about it in someother S0s-signature. For example, if we use the leaf labeled 0n to sign the �rstdocument and the leaf labeled 0n�11 to sign the second, then in the �rst S0s-signature we only care about the authenticity of v0n , whereas in the secondS0s-signature we care about the authenticity of v0n�11.Proposition 6.4.15 If (G;S; V ) is a secure one-time signature scheme thenConstruction 6.4.14 constitutes a secure memory-dependent signature scheme.Proof: Recall that a S0s� -signature to a document � has the form(�1 � � ��n; auth�; auth�1 ; :::; auth�1����n�1 ; Ss�1����n (�)) (6.3)where the authx's, vx's and sx's satisfyauthx = (vx0 ; vx1 ; Ssx(vx0 vx1)) (6.4)(See Figure 6.1.) In this case we say that this S0s-signature uses the leaf labeled�1 � � ��n. For every i = 1; :::; n, we call the sequence (auth�; auth�1 ; :::; auth�1����i�1)an authentication path for v�1����i . Note that the above sequence is also an au-thentication path for v�1����i�1�i , where � = 1��. Thus, a valid S0s-signature toa document � consists of an n-bit string �1 � � ��n, authentication paths for eachv�1����i (i = 1; :::; n), and a signature to � with respect to the one-time scheme(G;S; V ) using the signing-key s�1����n .
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430CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONIntuitively, forging an S0s-signature requires either using an authenticationpath supplied by the signer (i.e., supplied by S0s as part of an answer to a query)or producing an authentication path di�erent from all paths supplied by thesigner. In both cases, we reach a contradiction to the security of the one-timesignature scheme (G;S; V ). Speci�cally, in the �rst case, the forged S0s-signaturecontains a signature relative to (G;S; V ) using the signing-key s�1����n . The lat-ter Ss�1����n -signature is veri�able using the veri�cation-key v�1����n , which is au-thentic by the case hypothesis. This yields forgery with respect to the instanceof the one-time signature scheme associated with the leaf labeled �1 � � ��n (sincethe document S0s-signed by the forger must be di�erent from all S0s-signed doc-uments, and thus the forged document is di�erent from all strings to which aone-time signature was applied).11 We now turn to the second case (i.e., forgerywith respect to (G0; S0; V 0) is obtained by producing an authentication path dif-ferent from all paths supplied by the signer). In this case there must exists ani 2 f1; :::; ng and an i-bit long string �1 � � ��i so that auth�; :::; auth�1����i�1 isthe shortest pre�x of the authentication path produced by the forger that is nota pre�x of any authentication path supplied by the signer. (Note that i > 0 musthold, since empty sequences are equal, whereas i � n by the case hypothesis.)In this case auth�1����i�1 , which contains a signature relative to (G;S; V ) usingthe signing-key s�1����i�1 , is produced by the forger. The latter signature is ver-i�able using the veri�cation-key v�1����i�1 , which is authentic by the minimalityof i. Furthermore, by de�nition of i, the latter signature is to a string di�erentfrom the string to which the S0s-signer has applied Ss�1����i�1 . This yields forgerywith respect to the instance of the one-time signature scheme associated withthe node labeled �1 � � ��i�1.The actual proof is by a reducibility argument. Given an adversaryA0 attack-ing the complex scheme (G0; S0; V 0), we construct an adversary A that attacksthe one-time signature scheme, (G;S; V ). In particular, the adversary A will useits oracle access Ss in order to emulate the memory-dependent signing oracle forA0. Recall that the adversary A can make at most one query to its Ss-oracle.Below is a detailed description of the adversary A. Since we care only aboutprobabilistic polynomial-time adversaries, we may assume that A0 makes at mostt = poly(n) many queries, where n is the security parameter.The construction of adversary A: Suppose that (s; v) is in the range ofG(1n). On input v and one-query oracle access to Ss, adversary A proceeds asfollows:1. Initial choice: A uniformly selects j 2 f1; :::; (2n+ 1) � tg.(The integer j speci�es an instance of (G;S; V ) produced during the attackof A0. This instance will be attacked by A. Note that since 2n+1 instancesof (G;S; V ) are refered to in each signature relative to (G0; S0; V 0), the11 Note that what matter is merely that the document S0s-signed by the forger is di�erentfrom the (single) document to which Ss�1����n was applied by the S0s-signer, in case Ss�1����nwas ever applied by the S0s-signer.
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 431quantity (2n+1)�t upper bounds the total number of instances of (G;S; V )that appear in some oracle response. This upper bound is not tight.)2. Invoking A0: If j = 1 then A sets v� = v and invokes A0 on input v. Inthis case A does not know s�, which is de�ned to equal s, but can obtaina single signature relative to it by making a (single) query to oracle Ss.Otherwise (i.e., j > 1), machine A invokes G, obtains (s0; v0)  G(1n),sets (s�; v�) = (s0; v0) and invokes A0 on input v0. We stress that in thiscase A knows s�.In fact, in both case, A0 is invoked on input v�. Also, in both cases, theone-time instance associated with the root (i.e., the node labeled �) iscalled the �rst instance.3. Emulating the signing oracle for A0: A emulates the memory-dependentsigning oracle for A0. The emulation is analogous to the operation of thesigning procedure as speci�ed in Construction 6.4.14. The only execptionrefer to the jth instance of (G;S; V ) that occurs in the memory-dependentsigning process. Here, A uses the veri�cation key v, and if an Ss-signatureneeds to be produced then A queries Ss for it. We stress that at most onesignature needs ever be produced with respect to each instance of (G;S; V )that occurs in the memory-dependent signing process, and therefore Ss isqueried at most once. Details follow.A maintains a recond of all key-pairs and one-time signatures it has gen-erated and/or obtained from Ss. When A is asked to supply a signatureto a new document, denoted �, it proceeds as follows:(a) A allocates a new leaf-label, denoted �1 � � ��n, exactly as done by thesigning process.(b) For every i = 1; :::; n and every � 2 f0; 1g, machine A tries to retreivefrom its record the one-time instance associated with the node labeled�1 � � ��i�1� . If such an instance does not exist in the record (i.e., theone-time instance associated with the node labeled �1 � � ��i�1� didnot appear so far) then A distinguishes two cases:i. If the record so far contains exactly j�1 one-time instances (i.e.,the current instance is the jth one to be encountered) then A setsv�1����i�1�  v, and adds it to its record. In this case, A doesnot know s�1����i�1� , which is de�ned to equal s, but can obtain asingle signature relative to it by making a (single) query to oracleSs.From this point on, the one-time instance associated with thenode labeled �1 � � ��i�1� will be called the jth instance.ii. Otherwise (i.e., the current instance is not the jth one to be en-countered), A acts as the signing process: It invokes G(1n), ob-tains (s�1����i�1� ; v�1����i�1� ) G(1n), and adds it to the record.
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432CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATION(Note that in this case A knows s�1����i�1� , and can generate byitself signatures relative to it.)The one-time instance just generated is given the next serial num-ber. That is, the one-time instance associated with the node la-beled �1 � � ��i�1� will be called the kth instance if the currentrecord (i.e., after the generation of the one-time key-pair asso-ciated with the node labeled �1 � � ��i�1�) contains exactly k in-stances.(c) For every i = 1; :::; n, machine A tries to retreive from its record a(one-time) signature to the string v�1����i�10 v�1����i�11, relative to thesigning-key s�1����i�1 . If such a signature does not exist in the recordthen A distinguishes two cases:i. If the one-time signature instance associated with the node la-beled �1 � � ��i�1 is the jth such instance then A obtains the one-time signature Ss�1����i�1 (v�1����i�10 v�1����i�11) by querying Ss,and adds this signature to the record.Note that by the previous steps (i.e., Step 3(b)i as well as Step 2),s is indenti�ed with s�1����i�1 , and that the instance associatedwith a node labeled �1 � � ��i�1 is only used to produce a singlesignature; that is, to the string v�1����i�10 v�1����i�11. Thus, in thiscase, A queries Ss at most once.We stress that the above makes crucial use of the fact that, forevery � , the veri�cation-key associated with the node labeled�1 � � ��i�1� is identical in all executions of the current step, re-gardless of whether it is generated in Step 3(b)ii or �xed to equalv (in Step 3(b)i). This fact guarantees that A only needs a singlesignature relative to the instance associated with a node labeled�1 � � ��i�1, and thus queries Ss at most once. (The validity ofthis fact is the most important place in which we rely on thememory-dependence of our signature scheme.)12ii. Otherwise (i.e., the one-time signature instance associated withthe node labeled �1 � � ��i�1 is not the jth such instance), A actsas the signing process: It invokes Ss�1����i�1 , obtains the one-timesignature Ss�1����i�1 (v�1 ����i�10 v�1����i�11)v�1����i�1� ), and adds itto the record. (Note that in this case A knows s�1����i�1 , and cangenerate by itself signatures relative to it.)Thus, A obtains auth�1����i�1 .(d) Machine A now obtains a one-time signature of � relative to Ss�1����n .(Recall that since A0 never makes the same query twice,13 we need12 In contrast, the use of a counter for determining a new leaf can be easily avoided, byselecting a leaf at random.13 This assertion can be justi�ed, without loss of generality. Otherwise, we may modify A0so that retreives from its own memory the answer to a query that it wishes to ask for thesecond time.
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 433to generate at most one signature relative to the one-time instanceSs�1����n .) This is done analogously to the previous step (i.e., Step 3c).Speci�cally:i. If the one-time signature instance associated with the leaf labeled�1 � � ��n is the jth instance (associated with any node) then Aobtains the one-time signature Ss�1����n (�) by querying Ss.Note that, in this case, s is indenti�ed with s�1����n , and that aninstance associated with a leaf is only used to produce a singlesignature. Thus, also in this case (which is disjoint of Case 3(c)i),A queries Ss at most once.ii. Otherwise (i.e., the one-time signature instance associated withthe node labeled �1 � � ��n is not the jth instance), A acts as thesigning process: It invokes Ss�1����n , obtains the one-time signa-ture Ss�1����n (�), and adds it to the record. (Again, in this caseA knows s�1����n , and can generate by itself signatures relative toit.)Thus, A obtains �n = Ss�1����n (�).(e) Finally, A answers the query � with(�1 � � ��n; auth�; auth�1 ; :::; auth�1����n�1 ; �n)4. Using the output of A0: When A0 halts with output (�0; �0), machine Achecks whether this is a valid document-signature pair with respect toV 0v� and whether the document �0 did not appear as a query of A0. Ifboth conditions hold then A tries to obtain forgery with respect to Ss.To explain how this is done, we need to take a closer look at the validdocument-signature pair, (�0; �0), output by A0. Speci�cally, suppose that�0 has the form(�01 � � ��0n; (v00;0; v00;1; �00); (v01;0; v01;1; �01); :::; (v0n�1;0; v0n�1;1; �0n�1); �0n)and that the various components satisfy all conditions stated in the veri�ca-tion procedure. (In particular, the sequence (v00;0; v00;1; �00); :::; (v0n�1;0; v0n�1;1; �0n�1)is the authentication path (for v0n�1;�0n) output by A0.) Let i be maximalso that for some �0; :::; �i�1 (which may but need not equal �00; :::; �0i�1)the sequence (v00;0; v00;1; �0); :::; (v0i�1;0; v0i�1;1; �i�1) is a pre�x of some au-thentication path (for some v�01����0i�i+1����n) supplied to A0 by A. Note thati 2 f0; :::; ng, where i = 0 means that (v00;0; v00;1) di�ers from (v0; v1), andi = n means that the sequence ((v00;0; v00;1); :::; (v0n�1;0; v0n�1;1)) equals thesequence ((v0; v1); :::; (v�01����0n�10; v�01����0n�11)).Recall that the v0k;� s are strings included in the output of A0, and thatthe vxs are veri�cation-keys as recorded by A. In general, the sequence((v00;0; v00;1); :::; (v0i�1;0; v0i�1;1)) equals the sequence ((v0; v1); :::; (v�01 ����0i�10; v�01����0i�11)).In particular, for i � 1, it holds that v0i�1;�0i�1 = v�01����0i , whereas for i = 0
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434CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONwe shall only refer to v� (which is the veri�cation-key attacked by A0).In both cases, the output of A0 contains a one-time signature relative tov�01����0i , and this signature is to a string di�erent from the only (possible)one to which a signature was supplied to A0 by A. Analogously to themotivating discussion above, we distinguish the cases i = n and i < n:(a) In case i = n, the output of A0 contains the (one-time) signature �0nthat satis�es Vv�01����0n (�0; �0n) = 1. Furthermore, �0 is di�erent fromthe (possibly) only document to which Ss�01����0n was applied during theemulation of the S0-signer by A, since by our hypothesis the document�0 did not appear as a query of A0. (Recall that, by the construction ofA, instances of the one-time signature scheme associated with leavesare only applied to the queries of A0.)(b) In case i < n, the output of A0 contains the (one-time) signature �0ithat satis�es Vv�01����0i (v0i;0v0i;1; �0i) = 1. Furthermore, v0i;0v0i;1 is di�er-ent from v�01����0i0 v�01 ����0i0, which is the (possibly) only string to whichSs�01����0i was applied during the emulation of the S0-signer by A, wherethe last assertion is due to the maximality of i (and the constructionof A).Thus, in both cases, A obtains from A0 a valid (one-time) signature rela-tive to the (one-time) instance associated with the node labeled �01 � � ��0i.Furthermore, in both cases, this (one-time) signature is to a string thatdid not appear in the record of A. The question is whether the instanceassociated with the node labeled �01 � � ��0i is the jth instance, for which Aset v = v�01����0i . In case the answer is yes, A obtains forgery with respectto the (one-time) veri�cation-key v (which it attacks).In view of the above discussion, A acts as follows. It determines i as in thediscussion, and checks whether v = v�01����0i (almost equivalently, whetherthe jth instance is the one associated with the node labeled �01 � � ��0i). Incase i = n, machine A outputs the string-signature pair (�0; �0n), otherwise(i.e., i < n) it outputs the string-signature pair (v0i;0v0i;1; �0i).This completes the (admittingly long) description of adversary A. We repeatagain some obvious observations regarding this construction. Firstly, A makesat most one query to its (one-time) signature oracle Ss. Secondly, assuming thatA0 is probabilistic polynomial-time, so is A. Thus, all that remains is to relatethe success probability of A (when attacking a random instance of (G;S; V )) tothe success probability of A0 (when attacking a random instance of (G0; S0; V 0)).As usual the main observation is that the view of A0, during the emulation (ofthe memory-dependent signing process) by A, is identically distributed to itsview in an actual attack on (G0; S0; V 0). Furthermore, this holds conditionedon any possible �xed value of j (selected in the �rst step of A). It followsthat if A0 succeeds to forge signatures in an actual attack on (G0; S0; V 0) withprobability "0(n) then A succeeds to forge signatures with respect to (G;S; V )
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 435with probability at least "0(n)(2n+1)�t , where the (2n + 1) � t factor is due to theprobability that the choice of j is a good one (i.e., so that the jth instance isthe one associated with the node labeled �01 � � ��0i, where �01 � � ��0n and i are asde�ned in Step 4).We conclude that if (G0; S0; V 0) can be broken by a probabilistic polynomial-time chosen message attack with non-negligible probability then (G;S; V ) canbe broken by a probabilistic polynomial-time single-message attack with non-negligible probability, in contradiction to the proposition's hypothesis. Theproposition follows.6.4.2.3 The actual constructionIn this section, we remove the memory-dependency of Construction 6.4.14, andobtain an ordinary (rather than memory-dependent) signature scheme. Towardsthis end, we use pseudorandom functions (as de�ned in De�nition 3.6.4). The ba-sic idea is that the record maintained in Construction 6.4.14 can be determined(on-the-
y) by an application of a pseudorandom function to certain strings.For example, instead of generating and storing an instance of a (one-time) sig-nature scheme for each node we encounter, we can determine the randomnessfor the key-generation algorithm as a function of the label of that node. Thus,there is no need to store the key-pair generated, since if we ever need it againthen re-generating it (in the very same way) will yield exectly the same result.The same idea applies also to the generation of (one-time) signatures. In fact,the construction is simpli�ed, since we need not check whether or not we aregenerating an object for the �rst time.For simplicity, let us assume that on security parameter n both the key-generation and signing algorithms (of the one-time signature scheme (G;S; V ))use exactly n internal coin tosses. (This assumption can be justi�ed by us-ing pseudorandom generators, which exist anyhow under the assumptions usedhere.) For r 2 f0; 1gn, we denote by G(1n; r) the output of G on input 1n andinternal coin-tosses r. Likwise, for r 2 f0; 1gn, we denote by Ss(�; r) the outputof S, on input a signing-key s and a document �, when using internal coin-tossesr. For simplicity, we shall be actually using generalized pseudorandom functionsas in De�nition 3.6.12 (rather than pseudorandom functions as de�ned in De�ni-tion 3.6.4).14 Furthermore, for simplicity, we shall consider applications of suchpseudorandom functions to sequences of characters containing f0; 1g as well asa few additional special characters.Construction 6.4.16 (Removing the memory requirement from Construction 6.4.14):Let (G;S; V ) be a one-time signature scheme, and ffr : f0; 1g� ! f0; 1gjrjgr2f0;1g�be a generalized pseudorandom function ensemble as in De�nition 3.6.12. Con-14 We shall make comments regarding the minor changes required in order to use ordinarypseudorandom functions. The �rst comment is that we shall consider an encoding of stringsof length up-to n + 2 by strings of length n + 3 (e.g., for i � n + 2, the string x 2 f0; 1gi isencoded by x10n+2�i).
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436CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONsider the following signature scheme, (G0; S0; V 0), which refers to a full binarytree of depth n as in Construction 6.4.14.key-generation algorithm G0: On input 1n, algorithm G0 obtains (s; v) G(1n)and selects uniformly r 2 f0; 1gn. Algorithm G0 outputs the pair ((r; s); v),where (r; s) is the signing-key and v is the veri�cation-key.15signing algorithm S0: On input a signing-key (r; s) and a document �, the algo-rithm proceeds as follows.1. It selects uniformly �1 � � ��n 2 f0; 1gn.(Algorithm S0 will use the leaf labeled �1 � � ��n 2 f0; 1gn to sign thecurrent document. Indeed, with exponentially-vanishing probabilitythe same leaf may be used to sign two di�erent documents, and thiswill lead to forgey (but only with negligible probability).)(Alternatively, to obtain a deterministic signing algorithm, one mayset �1 � � ��n  fr(select-leaf; �), where select-leaf is a specialcharacter.)162. Next, for every i = 1; :::; n and every � 2 f0; 1g, the algorithm invokesG and sets(s�1����i�1� ; v�1����i�1� ) G(1n; fr(key-gen; �1 � � ��i�1�))where key-gen is a special character.173. For every i = 1; :::; n, the algorithm invokes Ss�1����i�1 and setsauth�1����i�1 def= �v�1����i�10 ; v�1����i�11 ;Ss�1����i�1 (v�1 ����i�10 v�1����i�11; fr(sign; �1 � � ��i�1))�where sign is a special character.184. Finally, the algorithm invokes Ss�1����n and outputs19(�1 � � ��n; auth�; auth�1 ; :::; auth�1����n�1 ; Ss�1����n (�; fr(sign; �1 � � ��n)))15 In case we use ordinary pseudorandom functions, rather than generalized ones, we selectr uniformly in f0; 1gn+3 so that fr : f0; 1gn+3 ! f0; 1gn+3. Actually, we shall be using thefunction fr : f0; 1gn+3 ! f0; 1gn derived from the above by droping the last 3 bits of thefunction value.16 In case we use ordinary pseudorandom functions, rather than generalized ones, this alter-native can be (directly) implemented only if it is guaranteed that j�j � n. In such a case, weapply the fr to the (n+ 3)-bit encoding of 00�.17 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-ment to fr is the (n+ 3)-bit encoding of 10�1 � � ��i�1� .18 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-ment to fr is the (n+ 3)-bit encoding of 11�1 � � ��i�1.19 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-ment to fr is the (n+ 3)-bit encoding of 11�1 � � ��n.
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 437veri�cation algorithm V 0: On input a veri�cation-key v, a document �, and analledge signature � algorithm V 0 behaves exactly as in Construction 6.4.14.Speci�cally, assuming that � has the form(�1 � � ��n; (v0;0; v0;1; �0); (v1;0; v1;1; �1); :::; (vn�1;0; vn�1;1; �n�1); �n)algorithm V 0 accepts if and only if the following three conditions hold:� Vv(v0;0v0;1; �0) = 1.� For i = 1; :::; n� 1, it holds that Vvi�1;�i (vi;0vi;1; �i) = 1.� Vvn�1;�n (�; �n) = 1.Proposition 6.4.17 If (G;S; V ) is a secure one-time signature scheme andffr : f0; 1g� ! f0; 1gjrjgr2f0;1g� is a generalized pseudorandom function en-semble then Construction 6.4.16 constitutes a secure signature scheme.Proof: Following the general methodology suggested in Section 3.6.3, we con-sider an ideal version of Construction 6.4.16 in which a truely random functionis used (rather than a pseudorandom one). The ideal version is almost identicalto Construction 6.4.14, with the only di�erence being the way in which �1 � � ��nis selected. Speci�cally, applying a random function to determine (one-time)key-pairs and (one-time) signatures, is equivalent to generating these keys andsignatures at random (on-the-
y) and re-using the strored values whenever nec-essary. Regarding the way in which �1 � � ��n is selected, observe that the proofof Proposition 6.4.15 is oblivious of this way except for the assumption that thesame leaf is never used to sign two di�erent documents. However, the probabil-ity that the same leaf is used twice by the (memoryless) signing algorithm, whenserving polynomially-many signing requests, is exponentially-vanishing and thuscan be ignored in our analysis. We conclude that the ideal scheme (in whicha truely random function is used instead of fr) is secure. It follows that alsothe actual signature scheme (as in Construction 6.4.16) is secure, or else onecan e�ciently distinguish a pseudorandom function from a truely random one(which is impossible). Details follow.Assume towards the contradiction that there exists a probabilistic polynomial-time adversary A0 that succeeds to forge signatures with respect to (G0; S0; V 0)with non-negligible probability, but succeeeds only with negligible probabilitywhen attacking the ideal scheme. We construct a distinguisher D that on input1n and oracle access to f : f0; 1g� ! f0; 1gn bevaves as follows. Machine Dgenerates ((r; s); v)  G0(1n), and invokes A0 on input v. Machine D answersthe queries of A0 by running the signing process, using the signing-key (r; s),with the exception that it replaces the values fr(x) by f(x). That is, wheneverthe signing process calls for the computation of the value of the function fr onsome string x, machine D queries its oracle (i.e., f) on the string x, and usesthe respond f(x) instead of fr(x). When A0 outputs an alledge signature toa new documment, machine M evaluates whether the signature is valid (withrespect to Vv) and output 1 if and only if A0 has indeed succeeded (i.e., the
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438CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONsignature is valid). Observe that if D is given oracle access to a truely randomfunction then the emulated A0 attacks the ideal scheme, whereas if D is givenoracle access to a pseudorandom function fr then the emulated A0 attacks thereal scheme. It follows that D distinguishes the two cases, in contradiction tothe pseudorandomness of the ensemble ffrg.6.4.2.4 Conclusions and commentsTheorem 6.4.9 follows by combining Proposition 6.4.17 with the fact that theexistence of secure one-time signature schemes implies the existence of one-wayfunctions (see Exercise 6), which in turn imply the existence of (generalized)pseudorandom functions. Recall that combining Theorem 6.4.9 and Corol-lary 6.4.8, we obtain Corollary 6.4.10 that states that the existence of collision-free hashing collections implies the existence of secure signature schemes.We comment that Constructions 6.4.14 and 6.4.16 can be generalized asfollows. Rather than using a depth n full binary tree, one can use any tree thathas a super-polynomial (in n) number of leaves, provided that one can enumeratethe leaves (resp., uniformly select a leaf), and generate the path from the rootto a given leaf. We consider a few possibilities:� For any d : N!N bounded by a polynomial in n (e.g., d � 2 or d(n) = nare indeed \extreme" cases), we may consider a full d(n)-ary tree of depthe(n) so that d(n)e(n) is greater than any polynomial in n. The above choiceof pramaters (i.e., d � 2 and e(n) = n) is probably the simplest one. Notethat the length of the signatures in a generalized construction is linear ind(n) �e(n), the number of applications of the underlying one-time signaturescheme (per each general signature) is linear in e(n), and that in internalnodes the one-time signature scheme is applied to string of length linear ind(n). Thus, the choice of parameters may depend on the underlying one-time signature scheme. In fact, d � 2 seems a reasonable generic choice,but in some special cases (see Section 6.5.2) one may prefer to use largerd : N!N .� For the memory-dependent construction, it may be preferable to use un-balanced trees (i.e., having leaves at various levels). The advantage is thatif one utilizes �rst the leaves closer to the root then one can obtain a savingon the cost of signing the �rst documents.For example, consider using a ternary tree of super-logarithmic depth(i.e., d � 3 and e(n) = !(logn)) in which each internal node of leveli 2 f0; 1; :::; e(n) � 2g has a two children that are internal nodes and asingle child that is a leaf (and the internal nodes of level e(n)�1 have onlyleaves as children). Thus, for i � 1, there are 3i�1 leaves at level i. If weuse all leaves of level i before using any leave of level i+1 then the lengthof the jth signature in this scheme is linear in log3 j (and so is the numberof applications of the underlying one-time signature scheme).
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 439In actual applications, one should observe that in variants of Construction 6.4.14the size of the tree determines the total number of documents that can be signed,whereas in variants of Construction 6.4.16 the tree size has even a more dras-tic e�ect on the number of documents that can be signed.20 In some casesa hybrid of Constructions 6.4.14 and 6.4.16 may be preferable: We refer to amemory-dependent scheme in which leaves are assigned as in Construction 6.4.14(i.e., according to a counter), but the rest of the operation is done as in Con-struction 6.4.16 (i.e., the one-time instances are re-generated on-the-
y, ratherthan being generated and recorded). In some applications, the introduction of adocument-counter may be tolerated, and the gain is the ability to use a smallertree of size merely greater than the total number of documents that should beever signed.6.4.3 * Universal One-Way Hash Functions and using themSo far, we have established that the existence of collision-free hashing collectionsimplies the existence of secure signature schemes (cf. Corollary 6.4.10). We seekto weaken the assumption under which secure signature schemes can be con-structed, and bear in mind that the existence of one-way functions is certainly anecessary condition (cf., for example, Exercise 6). In view of Theorem 6.4.9, wemay focus on constructing secure one-time signature schemes. Furthermore, re-call that secure length-restricted one-time signature schemes can be constructedbased on any one-way function (cf. Corollary 6.4.6). Thus, the only bottleneckwe face (with respect to the assumption used) is Proposition 6.4.7, which refersto Construction 6.2.6 and utilizes collision-free hashing. Our aim in this section,is to replace this component in the construction. We use a variant of Construc-tion 6.2.6 in which, instead of using collision-free hashing, we use a seeminglyweaker notion called Universal One-Way Hash Functions.6.4.3.1 De�nitionA collection of universal one-way hash functions is de�ned analogously to acollection of collision-free hash functions. The only di�erence is that the hard-ness (to form collisions) requirement is relaxed. Recall that for a collection ofcollision-free hash functions it was required that given the function's descriptionit is hard to form an arbitrary collision under the function. For a collectionof universal one-way hash functions we only require that given the function'sdescription h and a preimage x it is hard to �nd an x0 6= x so that h(x0) = h(x).We refer to this requirement as to hardness to form designated collisions.Our formulation of the hardness to form designated collisions is actuallyseemingly stronger. Rather than being supplied with a (random) preimage x,20 In particular, the number of documents that can be signed should de�nitely be smallerthan the square root of the size of the tree (or else two documents are likely to be assigned thesame leaf). Furthermore, we cannot use a small tree (e.g., of size 1000) even if we know thatthe total number of documents that will ever be signed is small (e.g., 10), since otherwise theprobability that two documents are assigned the same leaf is too big.
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440CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONthe collision-forming algorithm is allowed to select x by itself, but must do sobefore being presented with the function's description. That it, the attack of thecollision-forming algorithm proceeds in three stages: �rst the algorithm selectsa preimage x, next it is given a description of a randomly selected function h,and �nally it is required to output x0 6= x such that h(x0) = h(x). We stressthat the third stage in the attack is also given the random choices made whileproducing the preimage in the �rst stage. This yields the following de�nition,where the �rst stage is captured by a deterministic polynomial-time algorithmA0 (which maps a sequence of coin tosses, denoted Uq(n), to a preimage) andthe third stage is captured by algorithm A (which is given the very same Uq(n)as well as the function's description).De�nition 6.4.18 (universal one-way hash functions { UOWHF): Let ` : N !N . A collection of functions fhs : f0; 1g� ! f0; 1g`(jsj)gs2f0;1g� is called uni-versal one-way hashing (UOWHF) if there exists a probabilistic polynomial-timealgorithm I so that the following holds1. (admissible indexing { technical):21 For some polynomial p, all su�cientlylarge n's and every s in the range of I(1n) it holds that n � p(jsj).2. (e�cient evaluation): There exists a polynomial-time algorithm that givens and x, returns hs(x).3. (hard to form designated collisions): For every polynomial q, every deter-ministic polynomial-time algorithm A0, every probabilistic polynomial-timealgorithm A, every polynomial p and all su�ciently large n'sPr � hI(1n)(A(I(1n); Uq(n))) = hI(1n)(A0(Uq(n)))and A(I(1n); Uq(n)) 6= A0(Uq(n)) � < 1p(n) (6.5)where the probability is taken over Uq(n) and the internal coin tosses ofalgorithms I and A.The function ` is called the range speci�er of the collection.We stress that the hardness to form designated collisions condition refers to thefollowing three stage process: �rst, using a uniformly distributed r 2 f0; 1gq(n),the adversary generates a preimage x = A0(r); next, a function h is selected;and, �nally, the adversary A is given h (as well as r used in the �rst stage), andtries to �nd a preimage x0 6= x such that h(x0) = h(x). Indeed, Eq. (6.5) refersto the probability that x0 def= A(h; r) 6= x and yet h(x0) = h(x).Note that the range speci�er must be super-logarithmic (or else, given s andx Un, one is too likely to �nd an x0 6= x so that hs(x) = hs(x0), by uniformlyselecting x0 in f0; 1gn). Also note that any UOWHF collection yields a collec-tion of one-way functions (see Exercise 8). Finally, note that any collision-freehashing is universally one-way hashing, but the converse is false (see Exercise 9).Furthermore, it is not known whether collision-free hashing can be constructedbased on any one-way functions (in contrast to Theorem 6.4.29 below).21 This condition is made merely to avoid annoying technicalities. Note that jsj = poly(n)holds by de�nition of I.
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 4416.4.3.2 ConstructionsWe construct UOWHF collections in several steps, starting with related butrestricted notions, and relaxing the restrictions gradually (untill we reach unre-stricted UOWHF collections). The restriction we refer to is on the length of thearguments to the function. Most importantly, the hardness (to form designatedcollisions) requirement will refer only to argument of this length. That is, werefer to the following technical de�nition.De�nition 6.4.19 ((d; r)-UOWHF): Let d; r : N ! N . A collection of func-tions fhs : f0; 1gd(jsj) ! f0; 1gr(jsj)gs2f0;1g� is called (d; r)-UOWHF if thereexists a probabilistic polynomial-time algorithm I so that the following holds1. For all su�ciently large n's and every s in the range of I(1n) it holds thatjsj = n.222. There exists a polynomial-time algorithm that given s and x 2 f0; 1gd(jsj),returns hs(x).3. For every polynomial q, every deterministic polynomial-time algorithm A0mapping q(n)-bit long strings to d(jsj)-bit long strings, every probabilisticpolynomial-time algorithm A, every polynomial p and all su�ciently largen's Eq. (6.5) holds.O� course, we care only of (d; r)-UOWHF for functions d; r : N ! N satisfyingd(n) > r(n). (The case d(n) � r(n) is trivial since collisions can be avoidedaltogether; say by the identity map.) The \minimal" non-trivial case is whend(n) = r(n) + 1. Indeed, this is our starting point. In fact, the current stepis the least obvious step to be taken on our way towards the construction offull-
edged UOWHF.Step I: constructing (d; d�1)-UOWHFs. We show how to construct length-restricted UOWHF that shrink their input by a single bit. Our construction canbe carried out using any one-way permutation. In addition, we use a family ofhashing functions, Sn�1n , as de�ned in Section 3.5.1.1. Recall that a functionselected uniformly in Sn�1n maps f0; 1gn to f0; 1gn�1 in a pairwise independentmanner, that the functions in Sn�1n are easy to evaluate, and that for somepolynomial p it holds that log2 jSn�1n j = p(n).Construction 6.4.20 (a (d; d�1)-UOWHF): Let f : f0; 1g� ! f0; 1g� be a 1-1and length preserving function, and let Sn�1n be a family of hashing functionssuch that log2 jSn�1n j = p(n), for some polynomial p. (Speci�cally, suppose thatlog2 jSn�1n j 2 f3n�2; 2ng, as in Exercises 22.2 and 23 of Chapter 3.) Then, for22 Here we chose to make a more stringent condition, requiring that jsj = n rather thann � poly(jsj). In fact, one can easily enforce this more stringent condition by modifying I intoI0 so that I0(1l(n)) = I(1n) for a suitable function l : N!N satisfying l(n) � poly(n) andn � poly(l(n)).
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442CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONevery s 2 Sn�1n � f0; 1gp(n) and every x 2 f0; 1gn, we de�ne h0s(x) def= hs(f(x)).In case jsj 62 fp(n) : n 2 Ng, we de�ne h0s(x) def= h0s0 where s0 is the longest pre�xof s satisfying js0j 2 fp(n) : n 2 Ng. We refer to an index selection algorithmthat, on input 1m, uniformly selects s 2 f0; 1gm.That is, h0s : f0; 1gd(jsj) ! f0; 1gd(jsj)�1, where d(m) is the largest integer nsatisfying p(n) � m.The analysis presented below uses, in an essential way, an additional propertyof the above-mentioned families of hashing functions; speci�cally, we assumethat give two preimage{image pairs it is easy to uniformly generate a hashingfunction (in the family) that is consistent with these two mapping conditions.Furthermore, to facilitate the analysis we use a speci�c family of hasing functions,presented in Exercise 23 of Chapter 3: functions in Sn�1n are described by a pairof elements of the �nite �eld GF(2n) so that the pair (a; b) describes the functionha;b that maps x 2 GF(2n) to the (n�1)-bit pre�x of the n-bit representation ofax+ b, where the arithmetics is of the �eld GF(2n). This speci�c family satis�esall additional properties required in the next proposition.Proposition 6.4.21 Suppose that f is a one-way permutation, and that log2 jSn�1n j =2n. Furthermore, suppose that all but a negligible fraction of the functions inSn�1n are 2-to-1, and that there exists a probabilistic polynomial-time algorithmthat given y1; y2 2 f0; 1gn and z1; z2 2 f0; 1gn�1, outputs a uniformly distributedelement of fs 2 Sn�1n : hs(yi) = zi 8i 2 f1; 2gg. Then fh0sgs2f0;1g� as in Con-struction 6.4.20 is a (d; d� 1)-UOWHF, for d(m) = bm=2c.Proof Sketch: Intuitively, forming designated collisions under h0s � hs�f yieldsability to invert f . Speci�cally, if on input x0 and h0s one can �nd an x 6= x0so that h0s(x) = h0s(x0) then one basically inverts f on y = f(x) (by generatingx0 and s so that hs(y) = hs(f(x0)), and trying to form a designated collisionwith the preimage x0). Thus, with a suitable random choice of s (i.e., so thaths(f(x0)) = hs(y), where x0 is selected before s), we can invert f on a randompreimage y.The actual proof is by a reducibility argument. Suppose that we are givena probabilistic polynomial-time algorithm A0 that forms designated collisionsunder fh0sg, with respect to preimages produced by a deterministic polynomial-time algorithmA00 that maps p(n)-bit strings to n-bit strings. Then, we constructan algorithmA that inverts f . On input y = f(x), where n = jyj = jxj, algorithmA proceeds as follows.(1) Select r0 uniformly in f0; 1gp(n), and compute x0 = A00(r0) and y0 = f(x0).(2) Select s uniformly in fs 2 Sn�1n : hs(y0) = hs(y)g.(Recall that y is the input to A, and y0 is generated by A in Step (1).)(3) Invoke A0 on input (s; r0), and output whatever A0 does.By the second extra condition regarding Sn�1n , Step (2) can be implemented inprobabilistic polynomial-time.
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 443Turning to the analysis of algorithm A, we consider the behavior of A oninput y = f(x) for a uniformly distributed x 2 f0; 1gn (which implies that yis uniformly distributed over f0; 1gn). We �rst observe that for every �xed r0selected in Step (1), if y is uniformly distributed in f0; 1gn then s as determinedin Step (2) is uniformly distributed in Sn�1n . Using the �rst extra conditionregarding Sn�1n , it follows that the probability that hs is not 2-to-1 is negligible.By the construction of A, the probability that f(x0) = y is also negligible (butwe could have taken advantage of this case too, by augmenting Step (1) so thatif y0 = y then A halts with output x0). We now claim that, in case f(x0) 6= yand hs is 2-to-1, if A0 returns x00 so that x00 6= x0 and h0s(x00) = h0s(x0) thenf(x00) = y.The claim is proven as follows: By de�nitions of h0s and A (i.e., itsStep (2)), we have h0s(x) = hs(f(x)) = hs(f(x0)) = h0s(x0), which equalsh0s(x00) by one of the claim's hypotheses. By other two hypotheses x0 6= x00and hs is 2-to-1. Thus, x0 6= x00 are the only two preimages of hs(y) = h0s(x)under hs, and so x 2 fx0; x00g. Using the last of the hypotheses (i.e.,y = f(x) 6= f(x0)) and the fact that f is 1-1, it follows that x 6= x0, whichin turn implies x = x00 and y = f(x00).We conclude that if A0 forms designated collisions with probability "0(n) thenA inverts f with probability "0(n)� �(n), where � is a negligible function. Theproposition follows. 2Step II: constructing (d0; d0=2)-UOWHFs. We now take the second stepon our way, and use any (d; d � 1)-UOWHF in order to constact a (d0; d0=2)-UOWHF. That is, we construct length-restricted UOWHF that shrink theirinput by a factor of 2. For simplicity, we assume that the function d : N!Nis onto and monotonically non-decreasing. In such a case we denote by d�1(m)the smallest natural number n satisfying d(n) = m.Construction 6.4.22 (a (d0; d0=2)-UOWHF): Let fhs : f0; 1gd(jsj) ! f0; 1gd(jsj)�1gs2f0;1g�,where d : N!N is onto and non-decreasing. Then, for every s1; :::; sbd(n)=2c,where each si 2 f0; 1gd�1(d(n)+1�i), and every x 2 f0; 1gd(n), we de�neh0s1;:::;sbd(n)=2c(x) def= hsbd(n)=2c(� � �hs1(x) � � �)That is, we let x0 def= x, and xi  hsi(xi�1), for i = 1; :::; bd(n)=2c. (Note thatd(jsij) = d(n) + 1 � i and jxij = d(n) + 1 � i indeed hold.) We refer to anindex selection algorithm that, on input 1m, determines the largest integer n sothat m � m0 def= Pbd(n)=2ci=1 d�1(d(n) + 1� i), uniformly selects s1; :::; sbd(n)=2c sothat si 2 f0; 1gd�1(d(n)+1�i), and s0 2 f0; 1gm�m0, and lets h0s0;s1;:::;sbd(n)=2c def=h0s1;:::;sbd(n)=2c .That is, m = jsj and h0s : f0; 1gd(n) ! f0; 1gbd(n)=2c, where n is largest so thatm �Pbd(n)=2ci=1 d�1(d(n) + 1� i). Thus, d0(m) = d(n), where n is as above; that
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444CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONis, we have h0s : f0; 1gd0(jsj) ! f0; 1gbd0(jsj)=2c, with d0(jsj) = d(n). Note that,for d(n) = 
(n) (as in Construction 6.4.20), it holds that d0(O(n2)) � d(n) andd0(m) = 
(pm) follows. More generally, if for some polynomial p it holds thatp(d(n)) � n (for all n's) then for some polynomial p0 it holds that p0(d0(m)) � m(for all m's), since d0(p(n) � d(n)) � d(n). We call a function su�ciently-growing;that is, d : N!N is su�ciently-growing if there exists a polynomial p so thatfor every n it holds that p(d(n)) � n.Proposition 6.4.23 Suppose that fhsgs2f0;1g� is a (d; d � 1)-UOWHF, whered : N!N is onto, non-decreasing and su�ciently-growing. Then, for somesu�ciently-growing function d0 : N!N , Construction 6.4.22 is a (d0; bd0=2c)-UOWHF.Proof Sketch: Intuitively, a designated collision under h0s1;:::;sd=2 yields a desig-nated collision under one of the hsi 's. That is, let x0 def= x, and xi  hsi(xi�1),for i = 1; :::; bd(n)=2c. Then if given x and s = (s1; :::; sd=2), one can �nd anx0 6= x so that h0s(x) = h0s(x0), then there exists an i so that xi�1 6= x0i�1 andhsi(xi�1) = hsi(x0i�1), where the x0i's are de�ned analogously to the xi's. Thus,we obtain a designated collision under hsi .The actual proof uses the hypothesis that it is hard to form designated col-lisions when one is also given the coins used in the generation of the preimage(and not merely the preimage itself). Speci�cally, we construct an algorithmthat forms designated collision under one of the hsi 's, when given not only xi�1but rather also x0 (which yields xi�1 as above). The proof is by a reducibil-ity argument. We are given a probabilistic polynomial-time algorithm A0 thatforms designated collisions under fh0sg, with respect to preimages produced by adeterministic polynomial-time algorithm A00 that maps p0(n)-bit strings to n-bitstrings. We construct algorithms A0 and A so that A forms designated colli-sions under fhsg with respect to preimages produced by algorithm A0, whichmaps p(n)-bit strings to n-bit strings, for a suitable polynomial p. Speci�cally,p : N!N is 1-1 and p(n) � p0(d�1(2d(n))) + n+ n � d�1(2d(n)).We strat with the description of A0, which at this point may seem strange.On input r 2 f0; 1gp(n), algorithm A0 proceeds as follows, where q(n) def=d�1(2d(n)).Write r = r1r2r3 so that jr1j = n and jr3j = p0(q(n)).(1) Using r1, determine m in fn+ 1; :::; n � q(n)g and j 2 f1; :::; q(n)g so thatboth m and j are almost uniformly distributed in the corresponding sets.(2) Compute the largest integer n0 so that m �Pbd(n0)=2ci=1 d�1(d(n0) + 1� i).(3) If d�1(d(n0) + 1� j) 6= n then output the d(n)-bit long su�x of r3.(Comment: the output in this case is immaterial to our proof.)(4) Otherwise (i.e., n = d�1(d(n0) + 1� j), which is the case we care about), do:(4.1) Let s0s1 � � � sj�1 be a pre�x of r2 so thatjs0j = m�Pbd(n0)=2ci=1 d�1(d(n0) + 1� i),and jsij = d�1(d(n0) + 1� i), for i = 1; :::; j � 1.(4.2) Let x0  A00(r0), where r0 is the p0(d�1(d(n0)))-bit long su�x of r3.
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 445(4.3) For i = 1; :::; j � 1, compute xi  hsi(xi�1).Output xj�1.As stated above, we only care about the case in which Step (4) is applied. Thiscase occurs with noticeable probability, and the description of the followingalgorithm A refers to it. On input s 2 f0; 1gn and r 2 f0; 1gp(n), algorithm Aproceeds as follows.(1{2) Using r, determine m, j and n0 exactly as done by A0.(3) If d�1(d(n0) + 1� j) 6= n then abort.(4) Otherwise (i.e., n = d�1(d(n0) + 1� j)), do:(4.1) Determine s0; s1; :::; sj�1 and r0 exactly as A0 does in Step (4).(4.2) Uniformly select sj+1; :::; sbd(n0)=2c so that si 2 f0; 1gd�1(d(n0)+1�i),and set s0 = s0; s1; :::; sj�1; s; sj+1; :::; sbd(n0)=2c.(4.3) Invoke A0 on input (s0; r0), and output whatever A0 does.Clearly, if algorithms A0 and A00 run in polynomial-time then so do A and A0.We now lower bound the probability that A succeeds to form designated colli-sions under fhsg, with respect to images produced by A0. We start from thecontradiction hypothesis by which the corresponding probability for A0 (w.r.tA00) is non-negligible.Let use denote by "0(m) the success probability of A0 on uniformly distributedinput (s0; r0) 2 f0; 1gm � f0; 1gp0(m). Let n0 be the largest integer so that m �Pbd(n0)=2ci=1 d�1(d(n0) + 1� i). Then, there exists a j 2 f1; :::; d(n0)g so that withprobability at least "0(m)=d0(n0) on input (s0; r0), where s0 = s0; s1; :::; sbd(n0)=2cas above, A0 outputs an x0 6= x def= A00(r0) so that hsj�1(� � � (hs1(x0) � � �) 6=hsj�1 (� � � (hs1(x0) � � �) and hsj (� � � (hs1(x0) � � �) = hsj (� � � (hs1(x0) � � �). Fixing thism, j and n0, let n = d�1(d(n0) + 1 � j), consider what happens when A isinvoked on uniformly distributed (s; r) 2 f0; 1gn � f0; 1gp(n). With probabil-ity at least 1=m2 over the possible r's, the values of m and j are determinedto equal the above. Conditioned on this case, A0 is invoked on uniformly dis-tributed input (s0; r0) 2 f0; 1gm�f0; 1gp0(m), and so a collision at the jth hashingfunction occurs with probability at least "0(m)=d0(n0). Note that m = poly(n)and d0(n0) = poly(n). This implies that A succeeds with probability at least"(n) def= "0(poly(n))poly(n) , with respect to images produced by A0. Thus, if "0 is non-negligible then so is ", and the proposition follows. 2Step III: Length-restricted UOWHFs that shrink each input by a fac-tor of two. The third step on our way consists of using any (d; d=2)-UOWHFin order to construct length-restricted UOWHFs that are applicable to any inputlength but shrink each input to half it length (rather than to a �xed length thatonly depends on the function description). The resulted construct does not �tDe�nition 6.4.19, since it can be applied to any input length (rather than onlyto a single length determined by the function's description). Yet, the resultingconstruct yields a (d0; d0=2)-UOWHF for any polynomially-bounded function d0,whereas in Construction 6.4.22 the function d0 satis�es d0(n)� n.
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446CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONConstruction 6.4.24 (a (d0; d0=2)-UOWHF for any d0): Let fhs : f0; 1gd(jsj)!f0; 1gbd(jsj)=2cgs2f0;1g� , where d : N!N is onto and non-decreasing. Then, forevery s 2 f0; 1gn, every t 2 N and every x 2 f0; 1g�, we de�neh0s(x) def= hs(x1) � � �hs(xt10d(n)�jxtj�1)where x = x1 � � �xt, 0 � jxtj < d(n) and jxij = d(n) for i = 1; :::; t � 1. Theindex selection algorithm of fh0sg is identical to the one of fh0sg.Clearly, Construction 6.4.24 satis�es Conditions 1 and 2 of De�nition 6.4.18,provided that fhsg satis�es the corresponding conditions of De�nition 6.4.19.We thus focus of the hardness to form designated collisions property.Proposition 6.4.25 Suppose that fhsgs2f0;1g� is a (d; d=2)-UOWHF, whered : N!N is onto, non-decreasing and su�ciently-growing. Then Construc-tion 6.4.22 satis�es Condition 3 of De�nition 6.4.18.Proof Sketch: Intuitively, a designated collision under h0s yields a designatedcollision under hs. That is, consider the parsing of each string into blocks oflength d(n), as in the above construction. Then if given x = x1 � � �xt and s, onecan �nd an x0 = x01 � � �x0t0 6= x so that h0s(x) = h0s(x0), then t0 = t and thereexists an i so that xi 6= x0i and hs(xi) = hs(x0i).The actual proof is by a reducibility argument. Given a probabilistic polynomial-time algorithm A0 that forms designated collisions under fh0sg, with respect toimages produced by a deterministic polynomial-time algorithm A00, we constructalgorithms A0 and A so that A forms designated collisions under fhsg with re-spect to images produced by algorithm A0. Speci�cally, algorithm A0 invokesA00, and uses extra randomness (supplied in its input) to uniformly select one ofthe d(n)-bit long blocks in the standard parsing of the output of A00. That is,the random-tap used by algorithm A0 has the form (r0; i), and A0 outputs theith block in the parsing of A00(r0). Algorithm A is obtained analogously. Thatis, given s 2 f0; 1gn and coins r = (r0; i) used by A0, algorithm A invokes A0 oninput s and r0, obtains the output x0, and outputs the ith block in the standardparsing of x0.Clearly, if algorithm A0 succeeds (in forming designated collisions w.r.t fh0sg)with probability "0(n) then algorithm A succeeds (in forming designated colli-sions w.r.t fhsg) with probability at least "0(n)=t(n), where t(n) is a bound onthe running-time of A0 (which also bounds the length of the output of A0). Theproposition follows. 2Step IV: Full-
edged UOWHFs. The last step on our way consists of us-ing any length-restricted UOWHFs as constructed above to obtain full-
edgedUOWHFs. That is, we use length-restricted UOWHFs that are applicable toany input length but shrink each input to half its length (rather than to a �xedlength that only depends on the function description). The resulted constructis a UOWHF (as de�ned in De�nition 6.4.18).
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 447Construction 6.4.26 (a UOWHF): Let fhs : f0; 1g� ! f0; 1g�gs2f0;1g�, sothat jhs(x)j � jxj=2, for all x's. Then, for every s1; :::; sn 2 f0; 1gn, every t 2 Nand x 2 f0; 1g2t�n, we de�neh0s1;:::;sn(x) def= hst(� � �hs1(x) � � �)That is, we let x0 def= x, and xi  hsi(xi�1), for i = 1; :::; t. Strings x oflength that is not of the form 2t � n are padded into such strings in a standardmanner. We refer to an index selection algorithm that, on input 1m, determinesn = bpmc, uniformly selects s1; :::; sn 2 f0; 1gn and s0 2 f0; 1gm�n2, and letsh0s0;s1;:::;sn def= h0s1;:::;sn.Note that h0s1;:::;sn : f0; 1g� ! f0; 1gn.Proposition 6.4.27 Suppose that fhsgs2f0;1g� satis�es the conditions of De�-nition 6.4.18, except that it maps arbitrary input strings to outputs having halfthe length (rather than a length determined by jsj). Then Construction 6.4.26constritues a collection of UOWHF.Proof Sketch: The proof is almost identical to the proof of Proposition 6.4.23.2Conclusion: Combining Proposition 6.4.21, 6.4.23, 6.4.25 and 6.4.27, we ob-tain:Theorem 6.4.28 If one-way permutations exist then universal one-way hashfunctions exist.Note that the only barrier towards constructing UOWHF based on arbitraryone-way functions is Proposition 6.4.21, which refers to one-way permutations.In fact, if we wish to construct UOWHF based on any one-way function thenwe need to present an alternative construction of (d; d � 1)-UOWHF (i.e., analternative to Construction 6.4.20 which fails in case f is 2-to-1).23 Such aconstruction is actually known, and so the following result is known to hold (butis not proven here):Theorem 6.4.29 Universal one-way hash functions exist if and only if one-wayfunctions exist.We stress that the di�cult direction is the one referred to above (i.e., fromone-way functions to UOWHF collections). For the much easier converse, seeExercise 8.23 For example, if f(�; x0) = (0; f 0(x0)), for � 2 f0; 1g, then forming designated collisionsunder Construction 6.4.20 is easy: Given (0; x0), one outputs (1; x0), and indeed a collision isformed already under f .
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448CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATION6.4.3.3 One-time signature schemes based on UOWHFUsing universal one-way hash functions, we present an alternative construc-tion of one-time signature schemes based on length-restricted one-time signatureschemes. Speci�cally, we replace Construction 6.2.6 in which collision-free hash-ings were used by the following construction in which universal one-way hashfunctions are used instead. The di�erence between the two constructions is thathere the (description of the) hashing function is not a part of the signing andveri�cation keys, but is rather selected on the 
y by the signing algorithm (andappears as part of the signature). Furthermore, the description of the hash func-tion is being authenticated (by the signer) together with the hash function. Itfollows that the forging adversary, which is unable to break the length-restrictedone-time signature scheme, must form a designated collision (rather than anarbitrary one). However, the latter is infeasible too (by virtue of the UOWHFcollection in use). We comment that the same (new) construction is applicableto length-restricted signature schemes (rather than to one-time ones): we stressthat, in this case, a new hashing function is selected at random each time thesigning algorithm is applied. In fact, we present the more general construction.Construction 6.4.30 (the hash and sign paradigm, revisited): Let ` : N!Nand (G;S; V ) be an `-restricted signature scheme as in De�nition 6.2.1, and letfhr : f0; 1g� ! f0; 1g`(jrj)�jrjgr2f0;1g� be a UOWHF as in De�nition 6.4.18.We construct a general signature scheme, (G0; S0; V 0), with G0 identical to G, asfollows:signing with S0: On input a signing-key s 2 G01(1n) and a document � 2 f0; 1g�,algorithm S0 proceeds in two steps:1. Algorithm S0 invokes I, the indexing algorithm of the UOWHF col-lection, to obtain �0  I(1n).2. Algorithm S0 invokes S (once) to produce �00  Ss(�0; h�0(�)).Algorithm S0 outputs (�0; �00).veri�cation with V 0: On input a verifying-key v 2 G02(1n), a document � 2f0; 1g�, and a alledged signature (�0; �00), algorithm V 0 invokes V , andoutputs Vv((�0; h�0(�)); �00).Recall that secure `-restricted one-time signature schemes exist for any poly-nomial `, provided that one-way function exist. Thus, the fact that the aboveconstruction requires `(n)� n is not a problem.Proposition 6.4.31 Suppose that (G;S; V ) is a secure `-restricted signaturescheme and that fhr : f0; 1g� ! f0; 1g`(jrj)�jrjgr2f0;1g� is indeed a collectionof UOWHF. Then (G0; S0; V 0), as de�ned in Construction 6.2.6, is a secure(full-
edged) signature scheme. Furthermore, if (G;S; V ) is only a secure `-restricted one-time signature scheme then (G0; S0; V 0) is a secure one-time sig-nature scheme.
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6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 449Proof Sketch: The proof follows the underlying principles of the proof of Propo-sition 6.2.7. That is, forgery with respect to (G0; S0; V 0) yields either forgey withrespect to (G;S; V ) or a collision under the hash function, where in the lattercase a designated collision is formed (in contradiction to the hypothesis regardingthe UOWHF). For the furthermore-part, the observation underlying the proofof Proposition 6.4.7 still holds. Details follow.Given an adversary A0 attacking the complex scheme (G0; S0; V 0), we con-struct an adversary A that attacks the `-restricted scheme, (G;S; V ). The ad-versary A uses I (the indexing algorithm of the UOWHF collection) and itsoracle Ss in order to emulate the oracle S0s for A0. This is done in a straightfor-ward manner; that is, algorithm A emulates S0s by using the oracle Ss (exactly asS0s actually does). That is, to answer query �, algorithm A generates �0  I(1n)forwards (�0; h�0(�)) to its own oracle (i.e., Ss), and answers with (�0; �00), where�00  Ss(�0; h�0(�)). When A0 outputs a document-signature pair relative tothe complex scheme (G0; S0; V 0), algorithm A tries to use it in order to form adocument-signature pair relative to the `-restricted scheme, (G;S; V ).Assume that with (non-negligible) probability "0(n), the (probabilistic polynomial-time) algorithm A0 succeeds in existentially forging relative to the complexscheme (G0; S0; V 0). Let (�i; �i) denote the ith query and answer pair madeby A0, and (�; �) be the forged document-signature pair that A0 outputs (incase of success), where �i = (�0i; �00i ) and � = (�0; �00). We consider the followingcases regarding the forging event:1. (�0; h�0(�)) 6= (�0i; h�0i(�i)) for all i's. (That is, the Ss-signed value inthe forged signature is di�erent from all values used in the queries to Ss.)In this case, the pair ((�0; h�0(�)); �00) constitutes a success in existentialforgery relative to the `-restricted scheme.2. (�0; h�0(�)) = (�0i; h�0i(�i)) for some i. (That is, the Ss-signed value usedin the forged signature equals the ith query made to Ss, although � 6= �i.)Thus, �0 = �0i and h�0(�) = h�0i(�i), although � 6= �i. In this case, thepair (�; �i) forms a designated collision under h�0i (and we do not obtainsuccess in existential forgery relative to the `-restricted scheme).Thus, if the �rst case occurs with probability at least "0(n)=2 then A succeeds inits attack on (G;S; V ) with probability at least "0(n)=2, which contradicts thesecurity of the `-restricted scheme (G;S; V ). On the other hand, if the secondcase occurs with probability at least "0(n)=2 then we derive a contradiction to thedi�culty of forming designated collision with respect to fhrg. Details (regardingthe second case) follow.We start with a sketch of a construction of an algorithm that attempts to formdesignated collisions under a uniformly selected hash function. Recall that suchan algorithm operates in three stages (see discussion preceding De�nition 6.5):�rst the algorithm selects a preimage x, next it is given a description of a functionh, and �nally it is required to output x0 6= x such that h(x0) = h(x). We stressthat the third stage in the attack is also given the random choices made while
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450CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONproducing the preimage x in the �rst stage. Loosely speaking, we constructan algorithm B0 that tries to form designated collisions by selecting at randomthe index i of the query of A0 for which the Ss-signed value used in the forgedsignature equals the ith query made to Ss. Algorithm B0 will generate (s; v) G0(1n), and emulate the attack of A0 on S0s, while also answering the queries ofS0s. In particular, all queries except the ith one are emulated in the straightfowardmanner (i.e., by executing the program of S0s as stated). The ith query of A0 willbe used as the designated preimage: once it is issued, B0 completes its �rst stage,and obtains a description of a random hashing function hr (thus completing itssecond operation stage). Next, algorithm B0 answers the ith query, denoted �i,by applying Ss to (r; hr(�i)). (This operation belongs to the third stage of B0.)As siad above, subsequent queries are emulated in the straightfoward manner(but this done by the third stage of B0, in contrast to the i � 1 �rst queriesthat are handled by the �rst stage of B0). When A0 halts, B0 checks whetherA0 has output a valid signature as in the second case above, and whether thecollision formed is indeed on the ith query. When this happens, B0 has succeededin forming a designated collision. In particular, if the second case occurs withprobability at least "0(n)2 and A0 makes at most t(n) queries then B0 succeededin forming a designated collision with probability at least 1t(n) � "0(n)2 , whichcontradicts the hypothesis that fhrg is UOWHF.The furthermore part of the proposition follows by observing that if theforging algorithm A0 makes at most one query then the same holds for thealgorithm A constructed above. Thus, if (G0; S0; V 0) can be broken via a single-message attack that either (G;S; V ) can be broken via a single-message attackor one can form designated collisions (w.r.t fhrg). In both cases, we reach acontradiction. 2Author's Note: Should I augment the above proof sketch?Conclusion: Combining the furthermore-part of Proposition 6.4.31, Corol-lary 6.4.6, and the fact that UOWHF collections imply one-way functions (seeExercise 8), we obtain:Theorem 6.4.32 If there exist universal one-way hash functions then secureone-time signature schemes exist too.6.4.3.4 Conclusions and commentsCombining Theorems 6.4.28, 6.4.32 and 6.4.9, we obtain:Corollary 6.4.33 If one-way permutations exists then there exist secure signa-ture schemes.Like Corollary 6.4.10, Corollary 6.4.33 asserts the existence of secure (public-key) signature schemes, based on an assumption that does not mention trap-doors. Furthermore, the assumption made in Corollary 6.4.33 seems weaker
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6.5. MISCELLANEOUS 451than the one made in Corollary 6.4.10. We can further weaker the assump-tion by using Theorem 6.4.29 (which was stated without a proof) rather thanTheorem 6.4.28. Speci�cally, combining Theorems 6.4.29, 6.4.32 and 6.4.9, weestablish Theorem 6.4.1. That is, secure signature schemes exist if and only ifone-way functions exist.Author's Note: Further discuss the revised hash-then-sign paradigm.That is, call attention to Construction 6.4.30...6.5 Miscellaneous6.5.1 Historical NotesThe notion of a (public-key) signature scheme was introduced by Di�e andHellman [62], who also suggested to implement it using trapdoor permutations.Concrete implementations were suggested by Rivest, Shamir and Adleman [191]and by Rabin [187]. However, de�nitions of security for signature schemes werepresented only a few years afterwards.A �rst rigorous treatment of security notions for signature schemes was sug-gested by Goldwasser, Micali and Yao [127], but their de�nition is weaker thanthe one followed in our text (above). (Speci�cally, the adversary's queries in thede�nition of [127] are determined non-adaptively and obliviously of the public-key.) Assuming the intractability of factoring, they also presented a signaturescheme that is secure under their de�nition. We stress that the security de�nitionof [127] is natural and signi�catly stronger than all security notions consideredbefore [127].A comprehensive treatment of security notions for signature schemes, whichculminates in the notion used in our text, was presented by Goldwasser, Micaliand Rivest [125]. Assuming the intractability of factoring, they also presented asignature scheme that is secure (in the sense of De�nition 6.1.2). This was the�rst time that a signature scheme was proven secure under a simple intractabilityassumption such as the intractability of factoring. Their proof has refuted a folk-lore (attributed to Ron Rivest) by which no such \constructive proof" may exist(as its mere existence was believed to yield a forging procedure). Whereas the(two) schemes of [127] were inherently memory-dependent, the scheme of [125]have a \memoryless" variant (cf. [89] and [125]).Following [125], research has focused on constructing secure signature schemesunder weaker assumptions. In fact, as stated in [125], their construction can becarried out using any collection of claw-free trapdoor permutation pairs. Theclaw-free requirement was omitted in [20], whereas the trapdoor requirementwas omitted by Naor and Yung [175]. Finally, Rompel showed that one may usearbitrary one-way functions rather one-way permutations [192], and thus estab-lished Theorem 6.4.1. The progress brie
y summarized above was enables by theuse of many important ideas and/or paradigms, some of them were introducedin this body of work and some were \only" revisited and properly formalized.
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452CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONWe refer speci�cally to the introduction of the refreshing paradigm in [125], tothe use of authentication trees (cf., [160, 161] and [125]), to the introduction ofUniversal One-Way Hash Functions in [175], and to the use of one-time signatureschemes (cf., [186]).We comment that our presentation is di�erent from the one available in anyof the above cited papers. Speci�cally, the main part of Section 6.4 is based ona variant of the signature scheme of [175], using collision-free hashing (cf. [57])instead of universal one-way hashing (cf. [175]).Message authentication schemes. As in case of encryption schemes, therigorous study of the security of private-key signature schemes (i.e., messageauthentication schemes) has legged behind the corresponding study of public-key signature schemes. The construction of message authentication schemesbased on pseudorandom functions is due to [103]. (Alternative constructions arepresented and discussed in [?, ?, 14, 15].)6.5.2 Suggestion for Further ReadingAs mentioned above, the work of Goldwasser, Micali and Rivest contains acomprehensive treatment of security notions for signature schemes [125]. Theirtreatment refers to two parameters: (1) the type of attack, and (2) the type offorgery that follows from it. The most severe type of attack allows the adversaryto adaptively select the documents to be signed (as in De�nition 6.1.2). The mostliberal notion of forgey refers to producing a signature to any document for whicha signature was not obtained during the attack (again, as in De�nition 6.1.2).Thus, the notion of security presented in De�nition 6.1.2 is the strongest amongthe notions discussed in [125]. (Still, in some applications, weaker notions ofsecurity may su�ce.) We stress that one may bene�t from the de�nitionalpart of [125], but the constructive part of [125] is should be ignored since it issuperseeded by later work (on which our presentation is based).P�tzmann's book [183] contains a comprehensive discussion of many aspectsinvolved in the integration of signature schemes in real-life systems. In addition,her book surveys variants and augmentations of the notion of signature schemes,viewing the one treated in the current book as \ordinary". The focus is on \fail-stop" signature schemes [183, Chap. 7{11], but much attention is given to thepresentation of a general framework [183, Chap. 5] and to review of other \non-ordinary" schemes [183, Sec. 2.7 & 6.1].Author's Note: For further discussion of message authentication schemes,the reader in referred to [15].Author's Note: The constructions of universal one-way hash func-tions presented above use any one-way permutation, in a genericway, so that the number of applications of the one-way permutationis linearly related to the di�erence between the number of input andoutput bits in the hash function. In [88], it is shown that as as far
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6.5. MISCELLANEOUS 453as generic (black-box) constructions go, this is essentially the bestperformance that one can hope for.Author's Note:Add comment about the scheme of Dwork{Naor (cf. [65]).Author's Note:Add comment about the o�ine/online signature scheme(cf. [71]).6.5.3 Open ProblemsThe known construction of signature schemes from arbitrary one-way functionshas no practical signi�cance [192]. It is indeed an important open problem toprovide an alternative construction that may be practical and still utilize anarbitrary one-way function. We believe that providing such a construction mayrequire the discovery of new important paradigms.6.5.4 ExercisesExercise 1: On the triviality of `-restricted signature schemes, for logarithmi-cally bounded `:1. Show that for logarithmically bounded `, secure `-restricted private-key signature schemes (i.e., message authentication schemes) can beconstructed, without relying on any assumptions.Guideline: On input 1n, the key generator uniformly selects s 2f0; 1g2`(n) �n, and outputs the key pair (s; s). View s = s1 � � � s2`(n) ,where each si is an n-bit long string, and consider any �xed orderingof the 2`(n) strings of length `(n). The signature to � 2 f0; 1g`(n) isde�ned as si, where i is the index of � in the latter ordering.2. In contrast, show that the existence of a secure `-restricted public-key signature scheme, even for ` � 1, implies the existence of one-wayfunctions.Guideline: Let (G;S; V ) be a 1-restricted public-key signature scheme.De�ne f(1n; r) = v if on input 1n and coins r, algorithm G generatesthe key-pair of the form (�; v). Assuming that algorithm A inverts fwith probability "(n), we construct a forger that attacks (G;S; V ) asfollows. On input a veri�cation key v, the forger invokes A on inputv. With probability "(n), the forger obtains r so that f(1n; r) = v. Insuch a case, the forger obtains a matching signing-key s (i.e., (s; v) isoutput by G(1n) on coins r), and so can produce valid signatures (e.g.,Ss(0) is accepted by Vv as a signature to 0).Exercise 2: Using a pseudorandom function ensemble of the form ffs : f0; 1g� !f0; 1gjsjgs2f0;1g� , construct a general secure message authentication scheme(rather than a length-restricted one).Guideline: The construction is identical to Construction 6.3.1, exceptthat here we use a general pseudorandom function ensemble rather than
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454CHAPTER 6. DIGITAL SIGNATURES ANDMESSAGEAUTHENTICATIONthe one used there. The proof of security is analogous to the proof ofProposition 6.3.2.Exercise 3: Prove that the existence of secure message authentication schemesimplies the existence of one-way functions.Guideline: First show how to use any message authentication scheme inorder to construct a boolean pseudorandom function (as de�ned in De�ni-tion 3.6.12 for the case r(n) = 1), and then show that the latter gives riseto a pseudorandom generator (analogously to Exercise 28 of Chapter 3).The �rst step is the more challenging one: de�ne the function fs;r so thatfs;r(�) equals the inner-product mod 2 of r and Ss(�), where Ss is the ef-fect of the signing algorithm with signing-key s. The argument is analogousthe proof of Theorem 2.5.2, but is more subtle here (see [174]).Exercise 4: Prove that, without loss of generality, one can always assume thata chosen message attack makes at least one query. (This holds for generalsignature schemes as well as for length-restricted and/or one-time ones.)Guideline: Given an adversary A0 that outputs a message-signature pair(�; �) without making any query, modify it so that it makes an arbitraryquery �0 2 f0; 1gj�j n f�g just before making that output.Exercise 5: On the triviality of length-restricted one-time message authenti-cation schemes: De�ne one-time and length-restricted one-time messageauthentication schemes. Show that for any polynomially-bounded andpolynomial-time computable function ` : N ! N , secure `-restricted one-time message authentication schemes can be constructed, without relyingon any assumptions.Guideline: Combine the ideas underlying Exercise 1 and Construction 6.4.4.Exercise 6: Prove that the existence of secure one-time signature schemes im-plies the existence of one-way functions.Guideline: See guideline for Item 2 in Exercise 1.Exercise 7: Prove that the existence of collision-free hashing collections impliesthe existence of one-way functions.Guideline: Given a collision-free hashing collection, fhr : f0; 1g� !f0; 1g`(jrj)gr2f0;1g� , consider the function f(r; x) = (r; hr(x)), where (say)jxj = `(jrj) + jrj. Prove that f is a one-way function, by assuming towardsthe contradiction that f can be e�ciently inverted with non-negligible prob-ability, and deriving an e�cient algorithm that forms collisions on randomhr's. Given r, form a collision under the function hr, by uniformly se-lecting x 2 f0; 1g`(jrj)+jrj, and feeding the inverting algorithm with input(r; hr(x)). Observe that with non-negligible probability a preimage is ob-tained, and that with exponentially vanishing probability this preimage is(r; x) itself. Thus, with non-negligible probability, we obtain a preimage(r; x0) 6= (r; x) and it holds that hr(x0) = hr(x).
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6.5. MISCELLANEOUS 455Exercise 8: Prove that the existence of collections of UOWHF implies the ex-istence of one-way functions.Guideline: Note that the guidelines provided in Exercise 7 apply heretoo.Exercise 9: Assuming the existence of one-way functions, show that there ex-ists a collection of universal one-way hashing functions that is not collision-free. Guideline: Given a collection of universal one-way hashing functions,ffs : f0; 1g� ! f0; 1gjsjg, consider the collection F 0 = ff 0s : f0; 1g� !f0; 1gjsjg de�ned so that f 0s(x) = fs(x) if the jsj-bit long pre�x of x isdi�erent from s, and f 0s(sx0) = s otherwise. Clearly, F 0 is not collision-free.Show that F 0 remains universal one-way hashing.Author's Note: First draft written mainly in May 2000.
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