Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Fragments of a chapter on
Signature Schemes

(revised, second posted version)

Extracts from a working draft

for Volume 2 of Foundations of Cryptography

Oded Goldreich

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

February 10, 2002

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

to Dana

©Copyright 2002 by Oded Goldreich.

Permission to make copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that new copies bear this notice and the full citation on the

first page. Abstracting with credit is permitted.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

II

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Preface

The current manuscript is a preliminary draft of the chapter on
signature schemes (Chapter 6) of the second volume of the work
Foundations of Cryptography. This manuscript subsumes a previous
version posted in May 2000.

The bigger picture. The current manuscript is part of a working draft of
Part 2 of the three-part work Foundations of Cryptography (see Figure 0.1). The
three parts of this work are Basic Tools, Basic Applications, and Beyond the Ba-
sics. The first part (containing Chapters 1-4) has been published by Cambridge
University Press (in June 2001). The second part, consists of Chapters 5-7 (re-
garding Encryptioni Schemes, Signatures Schemes, and General Cryptographic
Protocols, respectively). We hope to publish the second part with Cambridge
University Press within a couple of years.

Part 1: Introduction and Basic Tools
Chapter 1: Introduction
Chapter 2: Computational Difficulty (One-Way Functions)
Chapter 3: Pseudorandom Generators
Chapter 4: Zero-Knowledge Proofs
Part 2: Basic Applications
Chapter 5: Encryption Schemes
Chapter 6: Signature Schemes
Chapter 7: General Cryptographic Protocols
Part 3: Beyond the Basics

Figure 0.1: Organization of this work

II1

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

v

The partition of the work into three parts is a logical one. Furthermore, it
offers the advantage of publishing the first part without waiting for the comple-
tion of the other parts. Similarly, we hope to complete the second part within a
couple of years, and publish it without waiting for the third part.

Prerequisites. The most relevant background for this text is provided by
basic knowledge of algorithms (including randomized ones), computability and
elementary probability theory. Background on (computational) number theory,
which is required for specific implementations of certain constructs, is not really
required here.

Using this text. The text is intended as part of a work that is aimed to serve
both as a textbook and a reference text. That is, it is aimed at serving both the
beginner and the expert. In order to achieve this aim, the presentation of the
basic material is very detailed so to allow a typical CS-undergraduate to follow
it. An advanced student (and certainly an expert) will find the pace (in these
parts) way too slow. However, an attempt was made to allow the latter reader
to easily skip details obvious to him/her. In particular, proofs are typically
presented in a modular way. We start with a high-level sketch of the main ideas,
and only later pass to the technical details. Passage from high-level descriptions
to lower level details is typically marked by phrases such as details follow.

In a few places, we provide straightforward but tedious details in in-
dented paragraphs as this one. In some other (even fewer) places such
paragraphs provide technical proofs of claims that are of marginal rele-
vance to the topic of the book.

More advanced material is typically presented at a faster pace and with less
details. Thus, we hope that the attempt to satisfy a wide range of readers will
not harm any of them.

Teaching. The material presented in the full (three-volume) work is, on one
hand, way beyond what one may want to cover in a course, and on the other
hand falls very short of what one may want to know about Cryptography in
general. To assist these conflicting needs we make a distinction between basic
and advanced material, and provide suggestions for further reading (in the last
section of each chapter). In particular, sections, subsections, and subsubsections
marked by an asterisk (*) are intended for advanced reading.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Table of Contents

Preface II1I
6 Signatures and Message Authentication 479
6.1 Definitional Issues L L oL 479
6.1.1 Message authentication versus signature schemes 480
6.1.2 Basic mechanism 481
6.1.3 Attacks and security oL 482
6.1.4 Comments. 484
6.1.4.1 Augmenting the attack with a verification oracle 485
6.1.4.2 Inessential generalities 485

6.1.4.3 Weaker notions of security and some popular schemes486
6.2 Length-restricted signature scheme 486
6.2.1 Definition o 486
6.2.2 The power of length-restricted signature schemes 487
6.2.2.1 Signing (augmented) blocks 488
6.2.2.2 Signing a hash value 492
6.2.3 * Constructing collision-free hashing functions 495
6.2.3.1 A construction based on claw-free permutations 496
6.2.3.2 Collision-free hashing via block-chaining 497
6.2.3.3 Collision-free hashing via tree-hashing 500
6.3 Constructions of Message Authentication Schemes 502
6.3.1 Applying a pseudorandom function to the document . . . 502
6.3.1.1 A simple construction and a plausibility result . 502
6.3.1.2 * Using the hash-and-sign paradigm 504
6.3.1.3 * A variation on the hash-and-sign paradigm . . 505
6.3.2 * More on Hash-and-Hide and state-based MACs 509
6.3.2.1 The definition of state-based MACs 510
6.3.2.2 State-based hash-and-hide MACs 512
6.4 Constructions of Signature Schemes 515
6.4.1 One-time signature schemes 515
6.4.1.1 Definitions 516

6.4.1.2 Constructing length-restricted one-time signature

schemes L L. 517

6.4.1.3 From length-restricted schemes to general ones . 520

\%

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1

6.4.2 From one-time signature schemes to general ones 521
6.4.2.1 The refreshing paradigm 521

6.4.2.2 Authentication—trees. 523

6.4.2.3 The actual construction 533

6.4.2.4 Conclusions and comments 536

6.4.3 * Universal One-Way Hash Functions and using them . . 537
6.4.3.1 Definition o Lo 538

6.4.3.2 Constructions, 539

6.4.3.3 One-time signature schemes based on UOWHF . 547

6.4.3.4 Conclusions and comments 550

6.5 * Additional Properties 551
6.5.1 Unique signatures 551
6.5.2 Super-secure signature schemes 552
6.5.3 Off-line/on-line signing 556
6.5.4 Incremental signatures, 557
6.5.5 Fail-stop signatures. 559
6.6 Miscellaneous 560
6.6.1 On Using Signature Schemes 560
6.6.2 On Information Theoretic Security 561
6.6.3 On Popular Schemes 562
6.6.4 Historical Notes 563
6.6.4.1 Signature Schemes 563

6.6.4.2 Message Authentication Schemes 564

6.6.5 Suggestion for Further Reading 565
6.6.6 Open Problems 566

6.6.7 Exercises 566

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

478

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Chapter 6

Digital Signatures and
Message Authentication

Message authentication and (digital) signatures were the first tasks that joined
encryption to form modern cryptography. Both message authentication and dig-
ital signatures are concerned with the “authenticity” of data, and the difference
between them is analogous to the difference between private-key and public-key
encryption schemes.

In this chapter, we define message authentication and digital signatures, and
the security notions associated to them. We show how to construct message au-
thentication schemes using pseudorandom functions, and how to construct signa-
ture schemes using one-way permutations. We stress that the latter construction
employ one-way permutations that do not necessarily have a trapdoor. Towards
presenting the latter constructions, we discuss restricted types of message au-
thentication and signature schemes, which are of independent interest, such as
length-restricted schemes (see Section 6.2) and one-time signature schemes (see
Section 6.4.1).

Teaching Tip: Indeed, do not skip Section 6.2, since it does play an important
role in the following sections. As in Chapter 5, we assume that the reader is
familiar with the material in Chapters 2 and 3 (and specifically with Sections 2.2,
2.4, and 3.6). This familiarity is important not only because we use some of
the notions and results presented in these sections, but rather because we use
similar proof techniques (and do it while assuming that this is not the reader’s
first encounter with these techniques).

6.1 Definitional Issues

Loosely speaking, message authentication and signature schemes are supposed
to enable reliable transmission of data between parties. That is, the basic setting

479

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

480 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

consists of a sender and a receiver, where the receiver may be either predeter-
mined or determined only after the data was sent. Loosely speaking, the receiver
wishes to be guaranteed that the data received was actually sent by the sender,
rather than modified (or even concocted) by a third party. The receiver may
be a party sharing an unreliable point-to-point communication line with the
sender (which is indeed the typical setting in which message authentication is
employed). However, in other cases (i.e., when signature schemes are employed),
the receiver may be any party that obtains the data in the future and wishes to
verify that it was indeed sent by the declared sender. In both cases, the reliabil-
ity (or authenticity) of the data is established by an authentication process that
consists of two main processes:

1. A signing process that is employed by the alleged sender in order to produce

signatures to data of its choice.

2. A verification process that is employed by the receiver in order to determine
the authenticity of the data using the provided signature.

As in case of encryption schemes, the authentication process presupposes also a
third (implicit) process called key-generation that allows the sender to generate
a signing-key (to be used in the signing process), along with a verification-
key (to be used in the verification process). The possession of the signing-key
counstitutes the sender’s advantage over the adversary (see analogous discussion
in Chapter 5).

6.1.1 Message authentication versus signature schemes

The difference between message authentication and signature schemes arises
from the difference in the settings to which they are intended, which amounts to
a difference in the identity of the receiver and in the level of trust that the sender
has in the receiver. Typically, message authentication schemes are employed in
cases where the receiver is predetermined (at the time of message transmission)
and is fully trusted by the sender, whereas signature schemes allow verification
of the authenticity of the data by anybody (which is certainly not trusted by
the sender). In other words, signature schemes allow for universal verification,
whereas message authentication schemes may only allow predetermine parties to
verify the authenticity of the data. Thus, in signature schemes the verification-
key must be known to anybody, and in particular is known to the adversary. In
contrast, in message-authentication schemes, the verification-key is only given to
a set of predetermined receivers that are all trusted not to abuse this knowledge;
that is, in such schemes it is postulated that the verification-key is not (a-priori)
known to the adversary.

Summary and terminology: Message authentication and signature schemes
differ in the question of whether the verification-key is secret (i.e., unknown
to the adversary) or public (and also known to the adversary). Thus, in a
sense, these are private-key and public-key versions of a task that lacks a good
name (since both authentication and signatures are already taken by one of

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. DEFINITIONAL ISSUES 481
type verification-key known verification possible
Message auth. | to designated for designated
schemes (trusted) receiver(s) only | (trusted) receiver(s) only
Signature to everybody for anybody
schemes (including adversary) (including adversary)

Figure 6.1: Message authentication versus signature schemes.

the versions). Still, seeking a uniform terminology, we shall sometimes refer to
message authentication schemes (also known as message authentication codes
(MAC)) as to private-key signature schemes. Analogously, we shall sometimes
refer to signature schemes as to public-key signature schemes.

6.1.2 Basic mechanism

We start by defining the basic mechanism of message-authentication and sig-
nature schemes. Recall that there will be private-key and public-key versions,
but the difference between the two version is only reflected in the definition of
security. In contrast, the definition of the basic mechanism says nothing about
the security of the scheme (which is the subject of the next section), and thus
is the same for both the private-key and public-key versions. In both cases,
the scheme consists of three efficient algorithms: key generation, signing (or
authenticating) and wverification. The basic requirement is that signatures that
are produced by the signing algorithm be accepted as valid by the verification
algorithm, when fed a verification-key corresponding to the signing-key used by
the signing algorithm.

Definition 6.1.1 (signature scheme): A signature scheme is a triple, (G,S,V),
of probabilistic polynomial-time algorithms satisfying the following two condi-
tions

1. On input 1™, algorithm G (called the key generator) outputs a pair of bit
strings.

2. For every pair (s,v) in the range of G(1"), and for every a € {0,1}*,
algorithms S (signing) and V (verification) satisfy

PriV(v,a, S(s,a))=1] =1

where the probability is taken over the internal coin tosses of algorithms S
and V.

The integer n serves as the security parameter of the scheme. FEach (s,v) in
the range of G(1™) constitutes a pair of corresponding signing/verification keys.
The string S(s,) is a signature to the document « € {0,1}* using the signing
key s.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

482 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

We stress that Definition 6.1.1 says nothing about security, and so trivial (i.e.,
insecure) algorithms may satisfy it (e.g., S(s, @) 2 0 and V(v,a,) def 1, for
all s,v,a and B). Furthermore, Definition 6.1.1 does not distinguish private-key
signature schemes from public-key ones. The difference between the two types
is introduced in the security definitions: In a public-key scheme the “forging
algorithm” gets the verification key (i.e., v) as an additional input (and thus
v # s follows), whereas in private-key schemes v is not given to the “forging
algorithm” (and thus one may assume, without loss of generality, that v = s).

Notation: In the rest of this book, we write Ss(a) instead of S(s,a) and
Vi(a, B) instead of V (v, o, §). Also, we let G1(1™) (resp., G2(1™)) denote the first
(resp., second) element in the pair G(1™). That is, G(1™) = (G1(1™), G2(1™)).
Without loss of generality, we may assume that |G1(1™)| and |G2(1™)| are poly-
nomially related to n, and that each of these integers can be efficiently computed
from the other.

Comments: The above definition may be relaxed in several ways without sig-
nificantly harming its usefulness. For example, we may relax Condition (2) and
allow a negligible verification error (e.g., Pr[V, (e, Ss()) #1] < 27™). Alter-
natively, one may postulate that Condition (2) holds for all but a negligible
measure of the key-pairs generated by G(1™). At least one of these relaxations
is essential for many suggestions of (public-key) signature schemes.

Another relaxation consists of restricting the domain of possible documents.
However, unlike the situation with respect to encryption schemes, such a restric-
tion is non-trivial in the current context, and is discussed at length in Section 6.2.

6.1.3 Attacks and security

We consider very powerful attacks on the signature scheme as well as a very
liberal notion of breaking it. Specifically, the attacker is allowed to obtain signa-
tures to any document of its choice. One may argue that in many applications
such a general attack is not possible (as documents to be signed must have
a specific format). Yet, our view is that it is impossible to define a general
(i.e., application-independent) notion of admissible documents, and thus a gen-
eral/robust definition of an attack seems to have to be formulated as suggested
here. (Note that at worst, our approach is overly cautious.) Likewise, the adver-
sary is said to be successful if it can produce a valid signature to ANY document
for which it has not asked for a signature during its attack. Again, this defines
the ability to form signatures to possibly “nonsensical” documents as a breaking
of the scheme. Yet, again, we see no way to have a general (i.e., application-
independent) notion of “meaningful” documents (so that only forging signatures
to them will be consider a breaking of the scheme). The above discussion leads
to the following (slightly informal) formulation.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. DEFINITIONAL ISSUES 483

e A chosen message attack is a process that can obtain signatures to strings
of its choice, relative to some fixed signing-key that is generated by G. We
distinguish two cases.

The private-key case: Here the attacker is given 1™ as input, and the sig-
natures are produced relative to s, where (s,v) — G(1™).

The public-key case: Here the attacker is given v as input, and the signa-
tures are produced relative to s, where (s,v) <« G(1™).

e Such an attack is said to succeeds (in existential forgery) if it outputs a valid
signature to a string for which it has NOT requested a signature during the
attack. That is, the attack is successful if it outputs a pair (o, §) so that a
is different from all strings for which a signature has been required during
the attack, and Pr[V,(a, 8) = 1] > %, where v is as above.!

e A signature scheme is secure (or unforgeable) if every probabilistic polynomial-
time chosen message attack succeeds with at most negligible probability.

Formally, a chosen message attack is modeled by a probabilistic oracle machine
that is given oracle access to a “keyed signing process” (i.e., the signing algorithm
combined with the signing-key). Depending on the version (i.e., public-key or
not), the attacker may get the corresponding verification-key as input. We
stress that this is the only difference between the two cases (i.e., private-key
and public-key) that are spelled out in Definition 6.1.2. We refer the reader to
the clarifying discussion that follows Definition 6.1.2; in fact, some readers may
prefer that discussion over the technical formulations.

Definition 6.1.2 (unforgeable signatures):

Common notation: Let M be a probabilistic oracle machine. We denote by
Q?/[(m) the set of queries made by M on input x and access to oracle
O, and let MP(x) denote the first string in the pair of strings output by
M on input x and access to oracle O.

The private-key case: A private-key signature scheme is secure if for every prob-
abilistic polynomial-time oracle machine M, every polynomial p and all
sufficiently large n, it holds that

n " 1
Pr Vs (M 010 (1) =1 & M (1) ¢ @307 ()] < o

where the probability is taken over the coin tosses of algorithms G, S and
V' as well as over the coin tosses of machine M.

1 The threshold of 1/2 used above is quite arbitrary. The definition is essentially robust
under the replacement of 1/2 by either 1/poly(n) or 1 — 27 P°¥(") by amplification of the
verification algorithm. For example, given V as above, one may consider V' that applies V' to
the tested pair for a linear number of times and accepting if and only if V' has accepted in all
tries.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

484 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

The public-key case: A public-key signature scheme is secure if for every prob-
abilistic polynomial-time oracle machine M, every polynomial p and all
sufficiently large n, it holds that

V(1) (MS6107) (G2 (17))) =1 .
Pr and < ﬁ
S, an n Sayan n n

M (G (1) g Q™ (G (1)) P

where the probability is taken over the coin tosses of algorithms G, S and
V' as well as over the coin tosses of machine M.

The definition refers to the following experiment. First a pair of keys, (s,v), is
generated by invoking G(1"), and is fixed for the rest of the discussion.? Next,
an attacker is invoked on input 1™ or v, depending if we are in the private-key or
public-key case. In both cases, the attacker is given oracle access to S5, where
the latter may be a probabilistic oracle rather than a standard deterministic one
(e.g., if queried twice for the same value then the signing oracle may answer
in different ways). Finally, the attacker outputs a pair of strings (a,3). The
attacker is deemed successful if and only if the following two conditions hold:

1. The string « is different than all queries (i.e., requests for signatures)
made by the attacker; that is, M, (z) ¢ Q3 (x), where z = 1" or = v
depending on whether we are in the private-key or public-key case.

We stress that both M *(z) and Q% (z) are random variables that are
defined based on the same random execution of M (on input x and oracle
access to S;).

2. The pair (a,) corresponds to a valid document-signature pair relative
to the verification key v. In case V is deterministic (which is typically
the case) this means that V,(a,) = 1. The same applies also in case
V' is probabilistic, and when viewing V,(a,3) = 1 as a random variable.
(Alternatively, in the latter case, a condition such as Pr[V,(a,) = 1] > 1/2
may replace the condition V,(a, 3) = 1.)

6.1.4 Comments

Clearly, any signature scheme that is secure in the public-key model is also secure
in the private-key model. The converse is not true: consider, for example,
the private-key scheme presented in Construction 6.3.1 (as well as any other
“natural” message authentication scheme). Following are a few other comments
regarding the definitions.

2 We stress that G1(1™) and G2(1™) represent related random variables. Thus, given oracle
access to Sg, (1n) means given oracle access to Gs, where s is selected and fixed according to

Gl(ln).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. DEFINITIONAL ISSUES 485

6.1.4.1 Augmenting the attack with a verification oracle

Indeed, it is natural to augment Definition 6.1.2 by providing the adversary with
unlimited access to the corresponding verification oracle V,,. We stress that (in
this augmented definition) the documents that (only) appear in the verification
queries are not added to the set Qij; that is, the output (a, 3) is considered a
successful forgery even if the adversary made the verification-query (¢, 3), but
provided (as before) that the adversary did not make the signing-query « (and
that V,(a, 8) = 1).

Indeed, in the public-key case, the verification-oracle adds no power to the
adversary, since the adversary (which is given the verification-key) can emulate
the verification-oracle by itself. Furthermore, typically, also in the private-key
model, the verification-oracle does not add much power. Specifically, as discussed
in Section 6.5.1 (see also Exercises 1 and 2), any secure private-key signature
scheme can be transformed into one having a deterministic verification algorithm
and unique valid signatures (i.e., for every verification-key v and document «,
there exists a unique f such that Vs(a, §) = 1). In fact, all private-key signature
schemes presented in Section 6.3 have unique valid signatures. Considering an
arbitrary combined attack on such a private-key signature scheme, we emulate
the verification-queries (in the original model) as follows.

e For a verification-query («, 8) if « equals a previous signing-query, then
we can emulate the answer by ourselves. Specifically, if the signing-query
« was answered with 8 then we we answer the verification-query positively
else we answer it negatively.

e Otherwise (i.e., for a verification-query («,) such that a does not equal
any previous signing-query), we may choose either to output («,f) as
a candidate forgery (gambling on V,(a,3) = 1) or emulate a negative
answer by ourselves (gambling on V,(«, 8) = 0). Specifically, for every
such verification-query, we may choose the first possibility with probability
1/t(n) and the second possibility otherwise, where ¢(n) is a bound on the
number of verification-queries performed by the original augmented attack
(which we emulate).

For further discussion see Exercise 3.

6.1.4.2 Inessential generalities

The definitions presented above (specifically, Definition 6.1.1) were aimed at gen-
erality and flexibility. We comment that several levels of freedom can be elimi-
nated without loss of generality (but with some loss of convenience). Firstly, as
in the case of encryption schemes, one may modify the key-generation algorithm
so that on input 1™ it outputs a pair of n-bit long keys. Two more fundamental
restrictions, which actually do not affect the existence of secure schemes, follow.

Randomization in the signing process: In contrast to the situation with
respect to encryption schemes (see Sections 5.2 and 5.3), randomization is not

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

486 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

essential to the actual signing and verifying processes (but is, as usual, essential
to key generation). That is, without loss of generality (but with possible loss in
efficiency), the signing algorithm may be deterministic, and in all schemes we
present (in the current chapter) the verification algorithm is indeed deterministic.
For details, see Exercise 1.

Canonical verification in the private-key version: As hinted above, in

the private-key case, we may just identify the signing and verification keys (i.e.,

ks = v). Furthermore (following the comment about deterministic signing),

without loss of generality, verification may amount to comparing the alleged
signature against the one produced by the verification algorithm (as done by the
signing algorithm). That is, we may let Vi (a, 3) 47 1 if and only if 8 = Si(a).
For details, see Exercise 2.

6.1.4.3 Weaker notions of security and some popular schemes

Weaker notion of security have been considered in the literature. The various
notions refer to two parameters: (1) the type of attack, and (2) when is the
adversary considered to be a success. Indeed, Definition 6.1.2 refers to the most
severe type of attacks (i.e., unrestricted chosen message attacks) and to the most
liberal notion of success (i.e., ability to produce a valid signature to any new
message). The interested reader is referred to Section 6.6.5.

We note that plain RSA as well as plain versions of Rabin’s scheme and
the DSS are not secure under Definition 6.1.2. However, these schemes sat-
isfy weaker notions of security, provided that some (standard) intractability
assumptions hold. Furthermore, variants of these signature schemes (in which
the function is not applied directly to the document itself) may be secure (under
Definition 6.1.2).

6.2 Length-restricted signature scheme

Restricted types of (public-key and private-key) signature schemes play an im-
portant role in our exposition. The first restriction we consider is the one of
schemes yielding secure signatures only to documents of a certain predetermined
length. The effect of the length-restriction is more dramatic here (in the context
of signature schemes) than it was in the context of encryption schemes; compare
the following to Section 5.3.2. Nevertheless, as we shall show (see Theorem 6.2.2
below), if the length restriction is not too low then the full power of signature
schemes can be regained.

6.2.1 Definition

The essence of the length-restriction is in that security is guaranteed only with
respect to documents of the predetermined length. Note that the question of

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 487

what is the result of invoking the signature algorithm on a document of im-
proper length is immaterial. What is important is that an attacker (of a length-
restricted scheme) is deemed successful only if it produces a signature to a (dif-
ferent) document of proper length. Still, for sake of concreteness (and simplicity
of subsequent treatment), we define the basic mechanism only for documents of
proper length.

Definition 6.2.1 (signature scheme for fixed length documents): Let £ : N —
N. An (-restricted signature scheme is a triple, (G, S,V'), of probabilistic polynomial-
time algorithms satisfying the following two conditions

1. As in Definition 6.1.1, on input 1™, algorithm G outputs a pair of bit
strings.

2. Analogously to Definition 6.1.1, for every n and every pair (s,v) in the
range of G(1™), and for every a € {0,1}™) algorithms S and D satisfy
PriV(v,a, S(s,a))=1] = 1.

Such a scheme is called secure (in the private-key or public-key model) if the
(corresponding) requirements of Definition 6.1.2 hold when restricted to attack-
ers that only make queries of length £(n) and output a pair («, B) with |a| = £(n).

We stress that the essential modification is presented in the security condition
is that considers an adversary to be successful only it case it forges a signature
to a (different) document « of the proper length (i.e., |a| = £(n)).

6.2.2 The power of length-restricted signature schemes

We comment that ¢-restricted private-key signature schemes for £(n) = O(logn)
are trivial (since the signing and verification keys may contain a table look-up
associating a secret with each of the 2°™) = poly(n) possible documents).® In
contrast, this triviality does not hold for public-key signature schemes. (For both
claims, see Exercise 5.) On the other hand, in both (private-key and public-key)
cases, (-restricted signature schemes for super-logarithmic ¢ (e.g., £{(n) = n or
even {(n) = logs n will do) are as powerful as ordinary signature schemes:

Theorem 6.2.2 Suppose that € is a super-logarithmically growing function. Then,
given an L-restricted signature scheme that is secure in the private-key (resp.,
public-key) model, one can construct a full-fledged signature scheme that is se-
cure in the same model.

Results of the above flavor can be established in two different ways, correspond-
ing to two methods of converting an /f-restricted signature scheme into a full-
fledged one. Both methods are applicable both to private-key and public-key sig-
nature schemes. The first method (presented in Section 6.2.2.1) consists of pars-
ing the original document into blocks (with proper “linkage” between blocks!),

3 Recall, that such triviality does not hold in the context of encryption schemes; not even
in the private-key case. See Section 5.3.2.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

488 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

and applying the f-restricted scheme to each block. The second method (pre-
sented in Section 6.2.2.2) consists of hashing the document into an ¢(n)-bit long
value (via an adequate hashing scheme!), and applying the restricted scheme to
the resulting value. Thus, the second method requires an additional assumption
(i-e., the existence of “collision-free” hashing), and so Theorem 6.2.2 (as stated)
is actually proved using the first method. The second method is presented be-
cause it offers other benefits; in particular, it will play an important role in
subsequent sections (e.g., in Sections 6.3.1.2 and 6.4.1.3).

6.2.2.1 Signing (augmented) blocks

In this subsection we present a simple method for constructing general signa-
ture schemes out of length-restricted ones, and doing so we establish Theo-
rem 6.2.2. Loosely speaking, the method consists of parsing the original doc-
ument into blocks (with proper “linkage” between blocks!), and applying the
length-restricted scheme to each (augmented) block.

Let £ and (G, S,V) be as in Theorem 6.2.2. We construct a general signature
scheme, (G',S", V"), with G' = G, by viewing documents as sequences of strings,
each of length ¢'(n) = €(n)/O(1). That is, we associate & = «y - -y with the
sequence (aq,...,a;), where each «a; has length ¢'(n). (At this point, the reader
may think of ¢'(n) = £(n), but actually we will use ¢'(n) = ¢(n)/4 in order to
make room for further information.)

To motivate the following construction, consider the following simpler schemes
aimed at producing secure signatures for sequences of ¢'(n)-bit long strings. The
simplest idea is to just sign each of the strings in the sequence. That is, the sig-
nature to the sequence («,...,4), is a sequence of ;s each being a signature
(w.r.t the length-restricted scheme) to the corresponding «;. This will not do
since an adversary, given a single signature (1, 82) to the sequence (a1, as) with
a1 # ag, can present (fs, 1) as a signature to (as,a;). So how about signing
the sequence (a1, ..., a;) by applying the restricted scheme to each pair (¢, a;), so
to foil the above attack? This will not do either, since an adversary, given a sig-
nature to the sequence (a1, as, a3) can easily present a signature to the sequence
(a1,a2). So we need to include in each £(n)-bit string also the total number of
a;’s in the sequence. But even this is not enough, since an adversary given sig-
natures to the sequences (a1, a2) and (af, ab), with a; # o] and as # o), can
easily generate a signature to (ag,a)). Thus, we have to prevent the forming
of new sequences of basic signatures by combination of elements from different
signature sequences. This can be done by associating (say at random) an iden-
tifier with each sequence and incorporating this identifier in each £(n)-bit string
to which the restricted scheme is applied. This yields the following signature
scheme:

Construction 6.2.3 (signing augmented blocks): Let ¢ and (G,S,V) be as
in Theorem 6.2.2. We construct a general signature scheme, (G',S", V"), with

G' = G, by considering documents as sequences of strings. We construct S' and
V' as follows, using G' = G and ¢'(n) = {(n)/4.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 489

signing with S’: On input a signing-key s € G1(1™) and a document o € {0, 1}*,
algorithm S’ first parses « into a, ..., oy so that « is uniquely reconstructed
from the a;’s and each o is an £'(n)-bit long string.* Next, S" uniformly
selects r € {0, 1}[(”). Fori=1,...,t, algorithm S' computes

ﬂi — Ss(’r:taiaai)

where i and t are represented as ¢'(n)-bit long strings. That is, (; is a
signature to the statement “«; is the i*? block, out of ¢ blocks, in a sequence
associate with identifier 7. Finally, S' outputs as signature the sequence

(Tataﬂla ""7/6t)

verification with V': On input o verifying-key v € G2(1™), a document o €
{0,1}*, and a sequence (r,t,[,...., 3t), algorithm V' first parses « into
Qq, ..., , using the same parsing rule as S'. Algorithm V' accepts if and
only if the following two conditions hold:

1. t' = t, where t' is obtained in the parsing of a and t is part of the
alleged signature.

2. For i =1,..,t, it holds that V,((r,t,i,;),;), where «; is obtained
in the parsing of a and the rest are as in the corresponding parts of
the alleged signature.

Clearly, the triplet (G’, S', V') satisfies Definition 6.1.1. We need to show that
is also inherits the security of (G, S, V). That is,

Proposition 6.2.4 Suppose that (G,S,V) is an {-restricted signature scheme
that is secure in the private-key (resp., public-key) model. Then (G',S',V'), as
defined in Construction 6.2.3 is a full-fledged signature scheme that is secure in
the private-key (resp., public-key) model.

Theorem 6.2.2 follows immediately from Proposition 6.2.4.

Proof: The proof is by a reducibility argument, and holds for both the private-
key and the public-key models.

Given an adversary A’ attacking the complex scheme (G',S’, V'), we con-
struct an adversary A that attacks the l-restricted scheme, (G, S,V). In partic-
ular, A invokes A’ with input identical to its own input (which is the security
parameter or the verification-key depending on the model), and uses its own ora-
cle in order to emulate the oracle S’ for A’. This can be done in a straightforward
manner; that is, algorithm A will act as S’ does by using the oracle S,. Specif-
ically, A parses each query o of A" into a corresponding sequence (o}, ..., a}),
uniformly selects an identifier r’, and obtains S signatures to (r',#', j,a}), for
j =1,..,t'. When A’ outputs a document-signature pair relative to the com-
plex scheme (G',S', V'), algorithm A tries to use this pair in order to form a
document-signature pair relative to the ¢-restricted scheme, (G, S, V).

4 For example, we may require that o - 10/ = g -~ ¢ and j < £/(n).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

490 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

We stress that from the point of view of adversary A’, the distribution of
keys and oracle answers that A provides it with is exactly as in a real attack
on (G',S’,V'). This is a crucial point since we use the fact that events that
occur in a real attack of A’ on (G',S’, V"), occur with the same probability in
the emulation of (G, S', V') by A.

Assume that with (non-negligible) probability ¢'(n), the (probabilistic polynomial-
time) algorithm A’ succeeds in existentially forging relative to the complex
scheme (G',S’,V'). We cousider the following cases regarding the forging event:

1. The identifier supplied in the forged signature is different from the random
identifiers supplied (by A) as part of the signatures given to A’. In this
case, each (-restricted signature supplied as part of the forged (complex)
signature, yields existential forgery relative to the ¢-restricted scheme.
Formally, let), ..., (™) be the sequence of queries made by A’, and let
(r(D), t(l),ﬁ(l)), - (r(m),t(m),ﬁ(m)) be the corresponding (complex) signa-
tures supplied to A’ by A (using S, to form the B(z)’s). Let («, (r,t, 81, -, Bt))
be the output of A’, and suppose that applying V, to it yields 1 (i.e., it is
a valid document-signature pair for the complex scheme). It follows that
each B(l) cousists of a sequence of Ss-signatures to £(n)-bit strings starting
with 7(9) € {0, 1}¥(")/4 and that the oracle S, was invoked (by A) only on
strings of this form. The case hypothesis states that r # r(®, for all i’s.
It follows that each of the ;s is an S,-signature to a string starting with
r € {0,1}("/4 and thus different from all queries made to the oracle S,.
Thus, each pair ((r,t,7,;),5;) is a valid document-signature pair (since
Ve, (r,t,B1, vy Bt)) = 1 implies V,((r,t,4,«;), 3;) = 1), with a document
different than all queries made to Ss. This yields a successful forgery with
respect to the l-restricted scheme.

2. The identifier supplied in the forged signature equals the random identifier
supplied (by A) as part of ezactly one of the signatures given to A’.

Formally, let a(?), ..., a{™ be the sequence of queries made by A’, and let
(r(, t(l),ﬁ(l)), . (T(m),t(m),ﬁ(m)) be the corresponding (complex) signa-
tures supplied to A’ by A (using S, to form the B(z)’s). Let (a, (r,t, 81, ..., Bt))
be the output of A’, and suppose that applying V to it yields 1 (i.e., it is

a valid document-signature pair for the complex scheme). The hypothesis
of the current case is that there exists a unique 4 so that r = (9.

We consider two subcases regarding the relation between ¢ and t("):

e ¢ # . In this subcase, each (-restricted signature supplied as part
of the forged (complex) signature, yields existential forgery relative
to the f-restricted scheme. The argument is analogous to the one
employed in the previous case. Specifically, here each of the 3;’s
is an Ss-signature to a string starting with (7,¢), and thus different
from all queries made to the oracle S, (since these queries either
start with 7(*) # 7 or start with (r(),¢()) # (r,t)). Thus, each pair

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 491

((r,t,4,05),5;) is a valid document-signature pair with a document
different than all queries made to S;.

e t = t(¥)_ In this case we use the hypothesis o # (), which implies
that there exists a j so that «; # ag-i), where ag-i) is the j* block
in the parsing of a(¥. In this subcase, B; (supplied as part of the
forged complex-signature), yields existential forgery relative to the
(-restricted scheme. Specifically, we have V,,((r,t, 7, @;),5;) = 1, and
(r,t,j, ;) is different from each query (r(*), () 5!, agf’)) made by A
to S.

Justification for (r,t,j, ;) # (r(il),t(i’),j',ay)). If ' # ¢ then

(by the case hypothesis regarding uniqueness of i s.t. r® #r)

it holds that r(") # r. Otherwise (i.e., i’ = i) either j' # j or

o # oz](,fl) = oz](-i).
Thus, ((r,t,7,a;),3;) is a valid document-signature pair with a doc-
ument different than all queries made to S..

3. The identifier supplied in the forged signature equals the random identifiers
supplied (by A) as part of at least two signatures given to A’. In particular,
it follows that two signatures given to A use the same random identifier.
The probability that this event occurs is at most

@) 9=t < . g=tn)/4

However, m = poly(n) (since A’ runs in polynomial-time), and 2-4(")/4 ig
negligible (since ¢ is super-logarithmic). So this case occurs with negligible
probability, and may be ignored.

Note that A can easily determine which of the cases occurs and act accordingly.’?
Thus, assuming that A’ forges relative to the complex scheme with non-negligible
probability €'(n), it follows that A forges relative to the length-restricted scheme
with non-negligible probability e(n) > ¢’(n) — poly(n)-2~4™)/4 in contradiction
to the proposition’s hypothesis. [l

Comment: We call the reader’s attention to the essential role of the hypothesis
that ¢ is super-logarithmic in the proof of Proposition 6.2.4. Indeed, Construc-
tion 6.2.3 is insecure in case £(n) = O(logn). The reason being that, by asking
for polynomially-many signatures, the adversary may obtain two S.-signatures
that use the same (random) identifier. Furthermore, with some care, these sig-
natures yield existential forgery (see Exercise 6).

5 This observation only saves us a polynomial factor in the forging probability. That is, if
A did not know which part of the forged complex-signature to use in its own forgery, it could
have selected one at random (and be correct with probability 1/poly(n) because there are only
poly(n)-many possibilities).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

492 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

6.2.2.2 Signing a hash value

In this subsection we present an alternative method for constructing general
signature schemes out of length-restricted ones. Loosely speaking, the method
counsists of hashing the document into a short (fixed-length) string (via an ade-
quate hashing scheme), and applying the length-restricted signature scheme to
the resulting hash-value. This two-stage process is referred to as the hash and
sign paradigm.

Let £ and (G, S,V) be as in Theorem 6.2.2. The second method of construct-
ing a general signature scheme out of (G, S,V) is based on the hash then sign
paradigm. That is, first the document is hashed to an ¢(n)-bit long value, and
then the /-restricted scheme is applied to the hashed value. Thus, in addition
to an f-restricted scheme, this method employs an adequate hashing scheme.
In particular, one way of implementing this method is based on “collision-free
hashing” (defined next). An alternative implementation, based on “universal
one-way hashing” is deferred to Section 6.4.3.

Collision-free hashing functions. Loosely speaking, a collision-free hashing
scheme consists of a collection of functions {h, : {0,1}* — {0,1}*} (0,13~ so
that given s and z it is easy to compute h(z), but given a random s it is hard
to find x # z' such that hy(z) = hs(z').

Definition 6.2.5 (collision-free hashing functions): Let £ : N — N. A collec-
tion of functions {hs : {0,1}* — {0, 1}*UsD} 1o 13- is called collision-free hashing
if there exists a probabilistic polynomial-time algorithm I so that the following
holds

1. (admissible indexing — technical):® For some polynomial p, all sufficiently
large n’s and every s in the range of I(1™) it holds that n < p(|s|). Fur-
thermore, n can be computed in polynomial-time from s.

2. (efficient evaluation): There exists a polynomial-time algorithm that given
s and x, returns hs(z).

3. (hard to form collisions): We say that the pair (z,x') forms a collision
under the function h if h(z) = h(z') but © # '. We require that every
probabilistic polynomial-time algorithm, given I(1™) as input, outputs a
collision under hyny with negligible probability. That is, for every proba-
bilistic polynomial-time algorithm A, every polynomial p and all sufficiently

large n’s,
1
Pr|A(I(1™)) is a collision under hriny| < —=
[A(T(1")] < s
where the probability is taken over the internal coin tosses of algorithms I
and A.

6 This condition is made merely to avoid annoying technicalities. In particular, it allows the
collision-forming adversary to run for poly(n)-time (since by this condition poly(n) = poly(|s|))
as well as allows to determine n from s. Note that |s| = poly(n) holds by definition of I.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 493

The function € is called the range specifier of the collection.

Note that the range specifier must be super-logarithmic (or else one may easily
find a collisions by selecting 2/") + 1 different preimages and computing their
image under the function). In Section 6.2.3, we show how to construct collision-
free hashing functions using claw-free collections. But first, we show how to
use the former in order to convert a length-restricted signature scheme into a
full-fledged one.

Construction 6.2.6 (hash and sign): Let £ and (G,S,V) be as in Theorem 6.2.2,
and let {h, : {0,1}* — {0,1}*I"D}, c(o 13+ be as in Definition 6.2.5. We con-
struct a general signature scheme, (G', S, V"), as follows:

key-generation with G': On input 1™, algorithm G' first invokes G to obtain
(s,v) « G(1™). Newt it invokes I, the indexing algorithm of the collision-
free hashing collection, to obtain v «— I(1™). Finally, G' outputs the pair
((r,s),(r,v)), where (r,s) serves as a signing-key and (r,v) serves as a
verification-key.

signing with S": On input a signing-key (r,s) € G{(1™) and a document o €
{0,1}*, algorithm S" invokes S once to produce and output Ss(h,(a)).

verification with V': On input a verifying-key (r,v) € G4(1"), a document o €
{0,1}*, and o alleged signature 3, algorithm V' invokes V', and outputs

Vy(hr(a), B).

Proposition 6.2.7 Suppose that (G,S,V) is an {-restricted signature scheme
that is secure in the private-key (resp., public-key) model. Suppose that {h, :
{0,1}* — {0, I}ZW')}TE{M}* is indeed a collision-free hashing collection. Then
(G', S, V"), as defined in Construction 6.2.6 is a full-fledged signature scheme
that is secure in the private-key (resp., public-key) model.

Proof: Intuitively, the security of (G',S’, V') follows from the security of
(G, S,V) and the collision-freeness property of the collection {h,}. Specifically,
forgery relative to (G',S’, V') can be obtained by either a forged S-signature
to a hash-value different from all hash-values that appeared in the attack or by
forming a collision under the hash function. That is, the actual proof is by a
reducibility argument. Given an adversary A’ attacking the complex scheme
(G',S", V"), we construct an adversary A that attacks the f-restricted scheme,
(G,S,V), as well as an algorithm B forming collisions under the hashing col-
lection {h,}. Both A and B will have running-time related to that of A’. We
show if A’ is successful with non-negligible probability than the same holds
for either A or B. Thus, in either case, we reach a contradiction. We start
with the description of algorithm A, which is designed to attack the ¢-restricted
scheme (G, S, V). We stress that almost the same description applies both in
the private-key and public-key case.

On input z, which equals the security parameter 1™ in the private-key case
and a verification-key v otherwise (i.e., in the public-key case), the adversary

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

494 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

A operates as follows. First A uses I (the indexing algorithm of the collision-
free hashing collection) to obtain r « I(1™), exactly as done in the second step
of G'. Next, A invokes A’ (on input 1™ or (r,v) depending on the case), and
uses 7 as well as its own oracle S in order to emulate the oracle S for A’.
The emulation is done in a straightforward manner; that is, algorithm A will
act as S’LS does by using the oracle S; (i.e., to answer query ¢, algorithm A
makes the query h,(¢)). When A’ outputs a document-signature pair relative
to the complex scheme (G',S’, V'), algorithm A tries to use this pair in order
to form a document-signature pair relative to the ¢-restricted scheme, (G, S, V).
That is, if A" outputs the document-signature pair («,), then A will output
the document-signature pair (h,(a),).

We stress (again) that from the point of view of adversary A’, the distribution
of keys and oracle answers that A provides it with is exactly as in a real attack
of A" on (G',S',V'). This is a crucial point since we use the fact that events
that occur in a real attack of A’ on (G',S’, V'), occur with the same probability
in the emulation of (G, S’,V') by A.

Assume that with (non-negligible) probability ¢'(n), the (probabilistic polynomial-
time) algorithm A’ succeeds in existentially forging relative to the complex
scheme (G',S",V'). We consider the following two cases regarding the forg-
ing event, letting (a(*, 3(?)) denote the i*" query and answer pair made by A’,
and (a, 8) denote the forged document-signature pair that A’ outputs (in case
of success):

Case 1. h,(a) # h.(a) for all i’s. (That is, the hash value used in the forged
signature is different from all hash values used in the queries to Ss.) In this
case, the pair (h,(«), 5) constitutes a success in existential forgery relative
to the l-restricted scheme.

Case 2: h,(a) = h,(a(?) for some 4. (That is, the hash value used in the forged
signature equals the hash value used in the i*® query to S, although
a # oY) In this case, the pair (o, al?) forms a collision under h, (and
we do not obtain success in existential forgery relative to the f-restricted
scheme).

Thus, if Case 1 occurs with probability at least ¢'(n)/2 then A succeeds in
its attack on (G, S,V’) with probability at least €'(n)/2, which contradicts the
security of the f-restricted scheme (G, S, V). On the other hand, if Case 2 occurs
with probability at least ’(n)/2 then we derive a contradiction to the collision-
freeness of the hashing collection {h, : {0,1}* — {0,1}2(“')}%{071}*. Details
(regarding the second case) follow.

We construct an algorithm, denoted B, that given r «— I(1™), attempts to
form collisions under h,. as follows. On input 7, algorithm B generates (s,v) <
G(1™), and emulates the attack of A on this instance of the f-restricted scheme,
with the exception that B does not invoke algorithm I to obtain an index of a
hash function but rather uses the index r (given to it as input). Recall that A,
in turn, emulates an attack of A’ on the signing oracle S’ _, and that A answers

8?7

the query ¢’ made by A’ by forwarding the query ¢ = h.(¢') to Ss. Thus, B

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 495

actually emulates the attack of A’ (on the signing oracle S (), and does so in
a straightforward manner; that is, to answer query ¢’ made by A’, algorithm B
first obtains ¢ = h,-(¢') (using its knowledge of r) and then answers with S,(q)
(using its knowledge of s). Finally, when A’ outputs a forged document-signature
pair, algorithm B checks whether Case 2 occurs (i.e., whether h,.(a) = h,.(a?)
holds for some i), in which case it obtains (and outputs) a collision under h,..
(Note that in the public-key case B invokes A’ on input (r,v), whereas in the
private-key case B invokes A’ on input 1™. Thus, in the private-key case, B
actually does not use r but rather an oracle access to h,..)

We stress that from the point of view of the emulated adversary A, the
execution is distributed exactly as in its attack on (G,S,V). Thus, since the
second case above occurs with probability at least €’(n)/2 in a real attack, it
follows that B succeeds to form a collision under hj(;») with probability at least
e'(n)/2. This contradicts the collision-freeness of the hashing functions, and the
proposition follows.

Comment: For the private-key case, the proof of Proposition 6.2.7 actually
established a stronger claim than stated. The proof holds even for a weaker def-
inition of collision-free hashing in which the adversary is not given a description
of the hashing function, but can rather obtain its values at any preimage of its
choice. This observation is further pursued in Section 6.3.1.3.

On using the hash and sign paradigm in practice. The hash-and-sign
paradigm, underlying Construction 6.2.6, is often used in practice. Specifically, a
document is signed using a two-stage process: first the document is hashed into
a (relatively) short bit string, and next a basic signature scheme is applied to the
resulting string. We stress that this process yields a secure signature scheme only
if the hashing scheme is collision-free (as defined above). In Section 6.2.3, we
present one way of constructing collision-free hashing functions. Alternatively,
one may indeed postulate that certain off-the-shelf products (such as MD5 or
SHA) are collision-free, but such assumptions need to be seriously examined
(and indeed may turn out false). We stress that using a hashing scheme, in
the above two-stage process, without seriously evaluating whether or not it is
collision-free is a very dangerous practice.

6.2.3 * Constructing collision-free hashing functions

In view of the relevance of collision-free hashing to signature schemes, we now
take a small detour from the main topic and consider the construction of collision-
free hashing. We show how to construct collision-free hashing functions using a
claw-free collection of permutations, and how restricted notions of collision-free
hashing may be used to obtain full-fledged collision-free hashing.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

496 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

6.2.3.1 A construction based on claw-free permutations

In this subsection we show how to construct collision-free hashing functions using
a claw-free collection of permutations as defined in Section 2.4.5. Recall that
such a collection consists of pairs of permutations, (f2, f1), so that both fo’s

are permutations over a set D, and of a probabilistic polynomial-time index
selection algorithm I so that

1. The domain is easy to sample: there exists a probabilistic polynomial-time
algorithm that given s outputs a string uniformly distributed over D;.

2. The permutations are easy to evaluate: there exists a polynomial-time
algorithm that given s,0 and = € D, outputs fZ(z).

3. Hard to form claws: every probabilistic polynomial-time algorithm, given
s « I(1™) outputs a pair (z,y) so that f0(z) = fl(y) with at most neg-
ligible probability. That is, a pair (z,y) satisfying f°(z) = fl(y) is called
a claw for index s, and C; denote the set of claws for index s. Then, it is
required that for every probabilistic polynomial-time algorithm, A’, every
positive polynomial p(-), and all sufficiently large n’s

Pr [A'(I(ln)) € C[(lu)] < ﬁ

Note that since fO and f! are permutations over the same set, many claws do
exists (i.e., |Cs| = |Ds|). However, the third item above postulates that for
s generated by I(1™) such claws are hard to find. We may assume, without
loss of generality, that for some £ : N — N and all s’s it holds that D, C
{0, I}Z(M). Indeed, ¢ must be polynomially bounded. For simplicity we assume
that I(1™) € {0,1}™. Recall that such collections of permutation pairs can be
constructed based on the standard DLP or factoring intractability assumptions
(see Section 2.4.5).

Construction 6.2.8 (collision-free hashing based on claw-free permutations
pairs): Given an index selecting algorithm I for a collection of permutation
pairs {(f2, f1)}s as above, we construct a collection of hashing functions {h,.,) :

{0,13* = {0, 13"} 4 1yeqo,13e xqo1y- as follows:

index selection algorithm: On input 1™, we first invoke I to obtain s «— I(1™),
and nexrt use the domain sampler to obtain a string r that is uniformly
distributed in Dy. We output the index (s,r), defining a hashing function

def

hisy () = fFE - f20(r)

where yy - - -y, iS a prefiz-free encoding of x; that is, for any x # x' the
coding of © is not a prefiz of the coding of x'. For example, code T1x2 -+ Ty,
by t101T2T2 - -+ Ty T, 01,

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 497

evaluation algorithm: Given an index (s,r) and a string x, we compute h(s ()
in a straightforward manner. That is, first we compute the prefiz-free
encoding of x, denoted y; ---y:. Next, we use the evaluation algorithm of
the claw-free collection to compute fY¥*f¥2--- f¥(r), which is the desired
output.

Actually, as will become evident from the proof of Proposition 6.2.9, we do
not need an algorithm that given an index s generates a uniformly distributed
element in D,; any efficient algorithm that generates elements in D, (under any
distribution) will do.

Proposition 6.2.9 Suppose that the collection of permutation pairs {(f0, f1)}s
together with the index selecting algorithm I constitute a claw-free collection.
Then, the function ensemble {h(s,) : {0,1}* — {071}|T‘}(5,T)€{0,1}*X{O,l}* as
defined in Construction 6.2.8 constitute a collision-free hashing with a range
specifying function €' satisfying £'(n + €(n)) = £(n).

Proof: The proof is by a reducibility argument. Given an algorithm A’ that,
on input (s,r), forms a collision under h(,), we construct an algorithm A that
on input s forms a claw for index s.

On input s (supposedly generated by I(1™)), algorithm A selects r uniformly
in Dy, and invokes algorithm A’ on input (s,7). Suppose that A’ outputs a pair
(z,2") so that Ay (x) = R, (@) but « # 2’. Without loss of generality,”
assume that the coding of z equals y; - -+ y;-10z;41 - - - 2, and that the coding of
r' equals yy ---y; 112}, -~ z;,. By the definition of h,,), it follows that

Jle JUO PRI f) = R RO f) (6)
Since each of the f7’s is 1-1, Eq. (6.1) implies that

POz) = FLE L R () (6.2)

Computing w o fott e 2 (r) and w' def foF o f3 (r), algorithm A obtains
a pair (w,w') so that fo(w) = fl(w'). Thus, algorithm A forms claws for index
I(1™) with probability that is bounded below by the probability that A’ forms
a collision under A/ (;n), where I’ is the index selection algorithm as defined in
Construction 6.2.8. Using the hypothesis that the collection of pairs (together

with I) is claw-free, the proposition follows. [l

6.2.3.2 Collision-free hashing via block-chaining

In this subsection we show how a restricted type of collision-free hashing (CFH)
can be used to obtain full-fledge collision-free hashing (CFH). Specifically, we
refer to the following restriction of Definition 6.2.5.

7 Let C(z) (resp., C(z')) denote the prefix-free coding of x (resp., «'). Then C(z) is not a
prefix of C(z'), and C(a') is not a prefix of C(z). It follows that C(z) = uv and C(z') = uv’,
where v and v’ differ in their leftmost bit. Without loss of generality, we may assume that the
leftmost bit of v is is 0, and the leftmost bit of v’ is 1.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

498 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Definition 6.2.10 (length-restricted collision-free hashing functions): Let ¢/, ¢ :
N — N. A collection of functions {hs = {0,1}'UsD — {0,1}4UsD} rg 1y is
called '-restricted collision-free hashing if there exists a probabilistic polynomial-
time algorithm I such that the following holds

1. (admissible indexing — technical): As in Definition 6.2.5.

2. (efficient evaluation): There exists a polynomial-time algorithm that given
s and x € {0,1}¢UsD returns hy(z).

3. (hard to form collisions): As in Definition 6.2.5, we say that the pair
(z,z") forms a collision under the function h if h(z) = h(z') but = # z'.
We require that every probabilistic polynomial-time algorithm, given I(1™)
as input, outputs a pair in {0, 1}“'5‘) x {0, 1}“'5‘) that forms a collision
under hyiny with negligible probability. That is, for every probabilistic
polynomial-time algorithm A, every polynomial p and all sufficiently large
n’s,

1
p(n)
where the probability is taken over the internal coin tosses of algorithms I
and A.

Pr |A(I(1™)) € {0,1}>“(10™)D is a collision under hyyn)| <

Indeed, we focus on the case ¢'(n) = poly(n), or else the hardness condition
holds vacuously (since no polynomial-time algorithm can print a pair of strings
of super-polynomial length). On the other hand, we only care about the case
¢'(n) > €(n) (or else the functions may be 1-1). Finally, recall that ¢ must be
super-logarithmic.

Construction 6.2.11 (from 2¢-restricted CFH to full-fledged CFH): Let {h! :
{0,124 — {0,130} 111+ be a collection of functions. Comsider the col-
lection {hy : {0,1}* — {0, 132400} (c1o.13-, where hy(x) is defined by the follow-
ing process, which we call block chaining:

lef

1. Break into t [lz]/€(|s])] consecutive blocks, while possibly padding the
last block with 0’s, such that each block has length €(|s|). Denote these
¢(|s])-bit long blocks by x1,...,x;. That is, xy - - -, = 208Dzl

For sake of uniformity, in case |x| < £(]s]), we let t = 2 and x12x2 =
20%4UsD=121 " On the other hand, we may assume that |z| < 240D and so
|z| can be represented by an ((|s|)-bit long string.®

2. Let y; def x1. Fori=2,..,t, compute y; = h'.(y;i_1x;).
3. Set hs(x) to equal (yq, |x|)-

8 The adversary trying to form collisions with respect to hs runs in poly(|s|)-time. Using
£(|s]) = w(log|s|), it follows that such an adversary cannot output a string of length 2¢(1sD),
(The same holds, of course, also for legitimate usage of the hashing function.)

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 499

An interesting property of Construction 6.2.11 is that it allows to compute the
hash-value of an input string while processing the input in an on-line fashion;
that is, the implementation of the hashing process may process the input z in a
block-by-block manner, while storing only the current block and a small amount
of state information (i.e., the current y; and the number of blocks encountered
so far). This property is important in applications in which one wishes to hash
a long stream of input bits.

Proposition 6.2.12 Let {h’ : {0,1}%('5‘) — {0,1}Z(‘S|)}se{071}* and {hs :
{0,1}* — {0,1}”(‘5')}3&{071}* be as in Construction 6.2.11, and suppose that
the former is a collection of 2{-restricted collision-free hashing functions. Then
the latter constitute a (full fledged) collection of collision-free hashing functions.

Proof: Forming a collision under hy means finding x # z’ such that hs(z) =
hs(z"). By the definition of hs, this means that (yq,|z|) = hs(z) = hs(z') =
(v, |x'|), where t, ' and y;, y;, are determined by h,(x) and h,(z'). In particular,
it follows that |z| = |z| and so t = ¢ (where, except when |z| < £(]s|), it holds
that t = [|z|/€(|s])] = [|='|/€(]s])] = t'). Recall that y, = y; and consider two
cases:

Case 1: If (y4—1,2¢) # (y;_q, ;) then we obtain a collision under A’ (since
M (yr—12e) = y¢ = y; = hi(y;_,z})), and derive a contradiction to its
collision-free hypothesis.

Case 2: Otherwise (y:—1,2¢) = (y;_,,2}), and we consider the two corresponding
cases with respect to the relation of (y;—2,z:—1) to (y;_o, 2}).

Eventually, since z # ', we get to a situation in which y; = y! and
!

(Yi—1,x;) # (yi_,,xt), which is handled as in the first case.
We now provide a formal implementation of the above intuitive argument. Sup-
pose towards the contradiction that there exist a probabilistic polynomial-time
algorithm A that on input s attempts to forms a collision under h;. Then, we
construct an algorithm that will, with similar probability, succeeds to form a
suitable (i.e., length restricted) collision under k.. Algorithm A’(s) operates as
follows:

1. Invokes A(s) and obtains (z,z') «— A(s).

If hs(z) # hs(z') then A failed, and A’ halts without output. In the sequel,
we assume that hg(z) = hs(z').

2. A'(s) computes t,x1,...,x¢ and yi,...,y: (resp., t',z], ...,z and yi,...,y;)
as in Construction 6.2.11. Note that (since hs(z) = hs(z')) it holds that
t =t and y, = y;. Next, A'(s) determines ¢ € {2,...,¢} such that y; = y!
and (yi—1, ;) # (¥;—1,2;), and outputs the pair (y;—12,y;_,2})
As argued above and elaborated below, such an ¢ must exist, and the out-
put forms a collision under h! (because hl(y;—12;) = y; = y. = hl(yi_,z})
and y;—1%; # y;_1%;)-

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

500 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Pending on the existence of a suitable ¢, whenever A(s) forms a collision under
hs, it holds that A’(s) outputs a pair of 2¢(s)-bit long strings that form a collision
under A, and so the proposition follows. Thus, it is left to prove the existence
of a suitable i (i.e., an ¢ such that y; = y! and (y;—1, ;) # (yi_;,z})).

On the existence of a suitable 7: Starting with j = ¢t and decrementing
J at each step, we prove that either the current j is suitable (i.e., y; =
y; and (yj-1,2;) # (yj_1,})) or both y;-1 = y;_; and @1+ xj1 #
@y ---xf_y. This claim certainly holds for j = t, because y, = y; and
Ty Ty = z0ttUsD—l=l # 2 otUsD—l=l — xh) (which implies that either
(ye—1,2¢) # (yi—1,@:) or both ye1 = yi_y and @1 -+ @1 # @) - @p_q).
More generally, suppose that y; = y]’- and z1---x; £) w;-, then either
j is suitable (., (95-1,;) # (5} _1,7})) or (yj—1,25) = (g} 1)), which
implies that both y; 1 = y}_l and zy---xj_1 £y w}_l. It follows that
some i must be suitable (or else for j = 1 we have z1 - - zj_1 # z] - - -w;,l,
which is impossible).

The proposition follows. Il

6.2.3.3 Collision-free hashing via tree-hashing

Using 2{-restricted collision-free hashing functions, we now present an alternative
construction of (full fledged) collision-free hashing functions. The alternative
construction will have the extra property of supporting verification of a bit in
the input (with respect to the hash value) within complexity that is independent
of the length of the input (see below).

Construction 6.2.13 (from 2/-restricted CFH to full-fledged CFH — an alter-
native construction): Let {h’ : {0,1}!(s) — {0, 1}4(‘S|)}56{0,1}* be a collection
of functions. Consider the collection {hy : {0,1}* — {0,1}20sD} (cro 13+, where
hs(x) is defined by the following process, called tree hashing:

1. Break z into t % 2Moga(I=1/¢UsD copsecutive blocks, while possibly adding
dummy 0-blocks and padding the last block with 0’s, such that each block
has length €(|s]). Denote these £(|s|)-bit long blocks by x1,...,x¢. That is,
xy - xy = p0ttUsD—ll

Let d =log, t, and note that d is a positive integer.

Again, for sake of uniformity, in case |z| < €(|s|), we let t = 2 and x5 =
20?!UsD=1=l " On the other hand, again, we assume that |z| < 240D and
so |x| can be represented by an €(|s|)-bit long string.

2. Leti=1,..,t, let ya def xi.
3. FO?"j = d—]., ceey].,0 and i =]., ...,2j, compute Yji = hls(yj+172i_1yj+172i).

4. Set hy(x) to equal (yo1,|z|).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 501

That is, hashing is performed by placing the £(]s|)-bit long blocks of z at the
leaves of a binary tree of depth d, and computing the values of internal nodes
by applying h’ to the values associated with the two children (of the node).
The final hash-value consists of the value associated with the root (i.e., the only
level-0 node) and the length of .

Proposition 6.2.14 Let {h! : {0,1}22“5‘) — {0,1}2(‘50}56{071}* and {hs :
{0,1}* — {0,1}22(‘5“}56{071}* be as in Construction 6.2.13, and suppose that
the former is a collection of 2{-restricted collision-free hashing functions. Then
the latter constitute a (full fledged) collection of collision-free hashing functions.

Proof Sketch: Forming a collision under hs; means finding = # z' such that
) = hs(z'). By the definition of hs, this means that (yo1,|z]) = hs(z) =
) = (Yo,1,17|), where (¢,d,t',d"), yo,1 and y; ; are determined by h(z) and
). In particular, it follows that |z| = |2'| and so d = d' (since 2¢ =t =¢t' =
2d’). Recall that yo1 = yg 1, and let us state this fact by saying that for j = 0
and for every ¢ € {1,...,27} it holds that y;; = ;. Starting with j = 0, we
consider two cases (for level j + 1 in the tree):

hs(z
hs(z'
hs(z'

S

Case 1: If for some i € {1,...,27%1} it holds that y;1, # Yj+1,; then we obtain
a collision under A%, and derive a contradiction to its collision-free hypothe-

sis. Specifically, the collision is obtained because z def Yjt1,2[i/2]1-1Y5+1,2[i/2]
. . def

is different from 2’ = y;‘+1,2[i/2171y;+172ﬁ/2]’ whereas h(z) = yj rij2] =
Yifisz = M=)

Case 2: Otherwise for every i € {1,...,2771} it holds that yj1,; = Yjy14- In
this case, we consider the next level.

Eventually, since z # z', we get to a situation in which for some j €
{1,...,d—1} and some i € {1,...,27 71} it holds that z def Yj+1,2[i/2]1—1Y5+1,2[i/2]
. def

is different from 2/ = y;+172[i/21_1y}+172w21, whereas h(z) = yj rij2] =

Y; 1121 = M(2'). This situation is handled as in the first case.

The actual argument proceeds as in the proof of Proposition 6.2.12. [l

A local verification property. Construction 6.2.13 has the extra property of
supporting efficient verification of bits in with respect to the hash value. That
is, suppose that for a randomly selected hs, one party holds x and the other
party holds h,(z). Then, for every i, the first party may provide a short (effi-
ciently verifiable) certificate that z; is indeed the i*" block of x. The certificate
consists of the sequence of pairs (yYa,2i/21-1,Ya,2[i/21)s -+ (Y1,2i/241 =15 Y1,2Ti/24])
where d and the y; ;s are computed as in Construction 6.2.13 (and (yo,1, |z]) =
hs(x)). The certificate is verified by checking whether or not y; y ;/24-i+17 =
P (Yj,21i/24-i+11 1Y} 21i/24-i+17), for every j € {1,...,d}. Note that if the first

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

502 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

party can present two different values for the i*® block of z along with cor-
responding certificates then it can also form collisions under h.. Construc-
tion 6.2.13 and its local-verification property were already used in this work
(i-e., in the construction of highly-efficient argument systems, presented in Sec-
tion 4.8.4). Finally, we note the similarity between the local-verification property
of Construction 6.2.13 and the authentication-tree of Section 6.4.2.2.

6.3 Constructions of Message Authentication
Schemes

In this section we present several constructions of secure message authentication
schemes (referred to above as secure private-key signature schemes). Below, we
sometimes refer to such a scheme by the popular abbreviation MAC (which ac-
tually abbreviates the more traditional term of a Message Authentication Code).

6.3.1 Applying a pseudorandom function to the document

A scheme for message authentication can be obtained by applying a pseudoran-
dom function (specified by the key) to the message (which one wishes to authen-
ticate). The simplest implementation of this idea is presented in Section 6.3.1.1,
whereas more sophisticated implementations are presented in Sections 6.3.1.2
and 6.3.1.3.

6.3.1.1 A simple construction and a plausibility result

Message authentication schemes can be easily constructed using pseudorandom
functions (as defined in Section 3.6). Specifically, by Theorem 6.2.2, it suf-
fices to construct an f-restricted message authentication scheme, for any super-
logarithmically growing £. Indeed, this is our starting point.

Construction 6.3.1 (an {-restricted MAC based on pseudorandom functions):

Let { be a super-logarithmically growing function, and { f : {0, 1}*sD — {0, 1}Z(|5D}s€{071}*
be as in Definition 3.6.4. We construct an {-restricted message authentication

scheme, (G,S,V), as follows:

key-generation with G: On input 1™, we uniformly select s € {0,1}", and output
the key-pair (s,s). (Indeed, the verification-key equals the signing-key.)

signing with S: On input o signing-key s € {0,1}™ and an €(n)-bit string «, we
compute and output fs(a) as a signature of .

verification with V: On input a verification-key s € {0,1}™, an {(n)-bit string
a, and an alleged signature 3, we accept if and only if B = fs(a).

Indeed, signing amounts to applying fs to the given document string, and veri-
fication amounts to comparing a given value to the result of applying fs to the
document. Analogous constructions can be presented by using the generalized

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES503

notions of pseudorandom functions defined in Definitions 3.6.9 and 3.6.12 (see
further comments in the following subsections). In particular, using a pseu-
dorandom function ensemble of the form {f, : {0,1}* — {0, 1}*I},c 013+, we
obtain a general message authentication scheme (rather than a length-restricted
one). Below, we only prove the security of the (-restricted message authen-
tication scheme of Construction 6.3.1. (The security of the general message
authentication scheme can be established analogously; see Exercise 7.)

Proposition 6.3.2 Suppose that {f, : {0,1}15D) — {0,1}40sD} ey 140 is a
pseudorandom function, and that € is a super-logarithmically growing function,
Then Construction 6.3.1 constitutes a secure (-restricted message authentication
scheme.

Proof: The proof follows the general methodology suggested in Section 3.6.3.
Specifically, we consider the security of an ideal scheme in which the pseudo-
random function is replaced by a truly random function (mapping £(n)-bit long
strings to £(n)-bit long strings). Clearly, an adversary that obtains the values
of this random function at arguments of its choice, cannot predict its value at
a new point with probability greater than 2™ Thus, an adversary attacking
the ideal scheme may succeed in existential forgery with at most negligible prob-
ability. The same must hold for any efficient adversary that attacks the actual
scheme, since otherwise such an adversary yields a violation of the pseudoran-
domness of {f, : {0,1}¢(sD — {0, 1}“'5‘)}56{071}*. Details follow.

The actual proof is by a reducibility argument. Given a probabilistic polynomial-
time A attacking the scheme (G,S,V’), we consider what happens when A is
attacking an ideal scheme in which a random function is used instead of a pseu-
dorandom one. That is, we refer to two experiments:

1. Machine A attacks the actual scheme: On input 1™, machine A is given
oracle access to (the signing process) f, : {0,1}*™) — {0,1}(") where s
is uniformly selected in {0,1}". After making some queries of its choice, A
outputs a pair (a,), where « is different from all its queries. A is deem
successful if and only if 8 = fs(«).

2. Machine A attacks the ideal scheme: On input 1™, machine A is given
oracle access to a function F : {0,1}4™ — {0,1}*(™) uniformly selected
among all such possible functions. After making some queries of its choice,
A outputs a pair («, 3), where « is different from all its queries. Again, A
is deem successful if and only if § = F(«).

Clearly, A’s success probability in this experiment is at most 2~¢(")| which
is a negligible function (since £ is super-logarithmic).

Assuming that A’s success probability in the actual attack is non-negligible, we
derive a contradiction to the pseudorandomness of the function ensemble {f,}.
Specifically, we consider a distinguisher D that on input 1™ and oracle access to
a function f : {0,1}(") — {0,1}%") behaves as follows: First D emulates the
actions of A, while answering A’s queries using its oracle f. When A outputs a

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

504 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

pair (a, 3), the distinguisher makes one additional oracle query to f and outputs
1 if and only if f(a) = 5.

Note that when f is selected uniformly among all possible {0,1}(™) —
{0,1}*™) functions, D emulates an attack of A on the ideal scheme, and thus
outputs 1 with negligible probability (as explained above). On the other hand,
if f is uniformly selected in {fs},cf0,1}» then D emulates an attack of A on the
actual scheme, and thus (due to the contradiction hypothesis) outputs 1 with
non-negligible probability. We reach a contradiction to the pseudorandomness
of {fs}seqo,13»- The proposition follows. Il

A plausibility result: Combining Theorem 6.2.2, Proposition 6.3.2, and Corol-
lary 3.6.7, it follows that the existence of one-way functions implies the existence
of message authentication schemes. The converse also holds; see Exercise 8.
Thus, we have:

Theorem 6.3.3 Secure message authentication schemes exist if and only if one-
way functions exist.

In contrast the the feasibility result stated in Theorem 6.3.3, we now present
alternative ways of using pseudorandom functions to obtain secure message au-
thentication schemes (MACs). These alternatives yield more efficient schemes,
where efficiency is measures it terms of the length of the signatures and the time
it takes to produce and verify them.

6.3.1.2 * Using the hash-and-sign paradigm

Theorem 6.3.3 was proved by combining the length-restricted MAC of Construc-
tion 6.3.1 with the simple but wasteful idea of providing signatures (authentica-
tion tags) for each block of the document (i.e., Construction 6.2.3). In particular,
the signature produced this way is longer than the document. Instead, here we
suggest to use the second method of converting length-restricted MACs into full-
fledged ones; that is, the hash-and-sign method of Construction 6.2.6. This will
yield signatures of a fixed length (i.e., independent of the length of the docu-
ment). Combining the hash-and-sign method with a length-restricted MAC of
Construction 6.3.1 (which is based on pseudorandom functions), we obtain the
following construction.

Construction 6.3.4 (hash and sign using pseudorandom functions): Let {f; :
{0,1}sl — {0,1}'5‘}56{071}* be a pseudorandom function ensemble and {h, :
{0,1}* — {O,l}'r‘}re{o,l}* be a collection of collision-free hashing functions.
Furthermore, for simplicity we assume that, when invoked on input 1™, the in-
dexing algorithm I of the collision-free hashing collection outputs an n-bit long
index. The general message authentication scheme, (G,S,V), is as follows:

key-generation with G: On input 1™, algorithm G selects uniformly s € {0,1}",
and invokes the indexing algorithm I to obtain r — I(1™). The key-pair
output by G is ((r,s),(r,s)).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES505

signing with S: On input a signing-key (r, s) in the range of G1(1™) and a doc-
ument a € {0,1}*, algorithm S outputs the signature/tag fs(hr(a)).

verification with V: On input a verification-key (r, s) in the range of G=(1™), a
document « € {0,1}*, and a alleged signature (3, algorithm outputs 1 if
and only if fs(h.(a)) = B.

Combining Propositions 6.2.7 and 6.3.2, it follows that Construction 6.3.4 con-
stitutes a secure message authentication scheme (MAC), provided that the ingre-
dients are as postulated. In particular, this means that Construction 6.3.4 yields
a secure MAC, provided that collision-free hashing functions exist (and are used
in Construction 6.3.4). While this result uses a seemingly stronger assumption
than the existence of one-way functions (used to establish the Theorem 6.3.3),
it yields more efficient MACs both in terms of signature length (as discussed
above) and authentication time (to be discussed next).

Construction 6.3.4 yields faster signing and verification algorithms than the
construction resulting from combining Constructions 6.2.3 and 6.3.1, provided
that hashing a long string is less time-consuming than applying a pseudorandom
function to it (or to all its blocks). The latter assumption is consistent with the
current state-of-art regarding the implementation of both primitives. Further
speed improvements are discussed in Section 6.3.1.3.

An alternative presentation: Construction 6.3.4 was analyzed by invoking
the hash-and-sign paradigm (i.e., Proposition 6.2.7), while referring to the fixed-
length MAC arising from the pseudorandom function ensemble {f, : {0,1}/* —
{0, 1}‘s|}5€{071}*. An alternative analysis may proceed by first establishing that
{gs,r = fs 0 hr}oeqo1} rr1(11+1) 18 @ generalized pseudorandom function (as in
Definition 3.6.12), and next observing that any such ensemble yields a full-
fledged MAC (see Exercise 7).

6.3.1.3 * A variation on the hash-and-sign paradigm
or using non-cryptographic hashing plus hiding

Construction 6.3.4 combines the use of a collision-free hashing function with the
application of a pseudorandom function. Here we take another step towards
speeding-up message authentication by showing that the collision-free hashing
can be replaced with ordinary (i.e., non-cryptographic) hashing, provided that
a pseudorandom function is applied to the result. Before getting into details, let
us explain why we can use non-cryptographic hashing and why this may lead to
efficiency improvements.

e Since we are in the private-key setting, the adversary does not get the
description of the hash function used in the hash-and-sign process. Fur-
thermore, applying the pseudorandom function to the hash-value hides it
from the adversary. Thus, when trying to form collisions under the hash
function, the adversary is in “total darkness” and may only rely on the
collision probability of the hashing function (as defined below). (Recall

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

506 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

that in case the adversary fails to form collision, it must succeed in forg-
ing with respect to the length-restricted scheme if it wishes to forge with
respect to the full-fledged scheme.)

e The reason that applying an ordinary hashing, rather than a collision-
free hash function, may yield an efficiency improvement is that the for-
mer may be more efficient than the latter. This is to be expected given
that ordinary hashing needs only satisfy a weak (probabilistic) condition,
whereas collision-free hashing refers to a more complicated (intractability)
condition.”

By ordinary hashing we mean function ensembles as defined in Section 3.5.1.1.
For starters, recall that these are collections of functions mapping ¢(n)-bit strings
to m(n)-bit strings. These collections are associated with a set of strings, de-

noted S?ZT(L’;), and we may assume that S;(’T(L’;) = {0,1}". Specifically, we call

{SZLT(LT)L)}HGN a hashing ensemble if it satisfies the following three conditions:
1. Succinctness: n = poly(£(n) + m(n)).

2. Efficient evaluation: there exists a polynomial-time algorithm that, on in-
put a representation of a function, h (in SZLT(L;L)), and a string z € {0, 1},
returns h(z).

3. Pairwise independence: for every x # y € {0,1}*(") if h is uniformly
selected in S%(:;) then h(z) and h(y) are independent and uniformly dis-
tributed in {0,1}™(™). That is, for every a, 3 € {0,1}™(™),

Pru[h(z) =a A h(y) =p] = 9—2m(n)

In fact, for the current application, we can replace the third condition by the
following weaker condition, parameterized by a function cp : N — [0,1] (s.t.
cp(n) > 27™™): for every x # y € {0,1}4"),

Prah(z) = h(y)] < cp(n) (6.3)

Indeed, the pairwise independence condition implies that Eq. (6.3) is satisfied
with cp(n) = 27™("). Note that Eq. (6.3) asserts that the collision probability of

SZLT(L;L) is at most cp(n), where the collision probability refers to the probability

that h(z) = h(y) when h is uniformly selected in S;(’T(L’;) and z # y € {0,1}¢™
are arbitrary fixed strings.

Hashing ensembles with n < £(n) + m(n) and cp(n) = 2=™™) can be
constructed (for a variety of functions ¢,m : N — N e.g., £(n) = 2n/3 and
m(n) = n/3); see Exercise 18. Using such ensembles, we first present a con-

struction of length-restricted message authentication schemes.

9 This intuition may not hold when comparing a construction of ordinary hashing that
is rigorously analyzed with an ad-hoc suggestion of a collision-free hashing. But it certainly
holds when comparing the former to the constructions of collision-free hashing that are based
on a well-established intractability assumption.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES507

Construction 6.3.5 (Construction 6.3.4, revisited — length-restricted version):

Let {h, - {0,1}07D — {0, 13D} g1y and {£, : {0,1)705D — {0,130} g 1y
be efficiently computable function ensembles. We construct the following (-
restricted scheme, (G,S,V):

key-generation with G: On input 1™, algorithm G selects independently and uni-
formly r,s € {0,1}™. The key-pair output by G is ((r,s), (r,s)).

signing with S: On input a signing-key (r, s) in the range of G1(1™) and a doc-
ument o € {0,1}V) algorithm S outputs the signature/tag fs(hr()).

verification with V: On input a verifying-key (r,s) in the range of Go(1™), a
document a € {0, 1}“"), and a alleged signature 3, algorithm outputs 1 if
and only if fs(h.-(a)) = B.

Proposition 6.3.6 Suppose that {f, : {0,1}™Ush — {0, 1}mUsD} g 1y. is
a pseudorandom function, and that the collision probability of the collection
{h, : {0,1}40"D — Jo, l}m(‘r|)}re{071}* is a negligible function of |r|. Then Con-
struction 6.3.5 constitutes a secure {-restricted message authentication scheme.

In particular, the second hypothesis implies that 2~"(") is a negligible function
in n. By the above discussion, adequate collections of hashing functions exists for
£(n) =2n/3 (and m(n) = n/3). We comment that, under the above hypothesis,
the collection {gs,, : fSOhT}|5‘:|T‘ constitutes a pseudorandom function ensemble:
This is implicitly shown in the following proof, and is related to Exercise 31 in
Chapter 3.

Proof Sketch: As in the proof of Proposition 6.3.2, we first consider the secu-
rity of an ideal scheme in which the pseudorandom function is replaced by a truly
random function (mapping m(n)-bit long strings to m(n)-bit long strings). Con-
sider any (probabilistic polynomial-time) adversary attacking the ideal scheme.
Such an adversary may obtain the signatures to polynomially-many £(n)-bit long
strings of its choice. However, except with negligible probability, these strings
are hashed to different m(n)-bit long strings, which in turn are mapped by the
random function to totally independent and uniformly distributed m(n)-bit long
strings. Furthermore, except with negligible probability, the £(n)-bit long string
a contained in the adversary’s (alleged message-signature) output pair is hashed
to an m(n)-bit long string that is different from all the previous hash-values, and
so the single valid signature corresponding to « is a uniformly distributed m(n)-
bit long string that is independent of all previously seen signatures.

On the distribution of signatures in the ideal scheme: Suppose that the
hashing collection {h, : {0,1}*("D — {0, l}m(lrl)}re{o,l}n has collision
probability cp(n), and F' : {0,1}™() — {0,1}™™ is a random function.
Then, we claim that an adversary that obtains signatures to t(n) — 1
strings of its choice, succeeds in forging a signature to a new string with
probability at most t(n)*- cp(n) + 27" regardless of its computational
powers. The claim is proved by showing that, except with probability at
most t(n)? - cp(n), the t(n) strings selected by the adversary are mapped

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

508 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

by h, to distinct strings. The latter claim is proved by induction on the
number of selected strings, denoted i, where the base case (i.e., i = 1)
holds vacuously. Let si, ..., s; denote the strings selected so far, and recall
that with probability at least 1 — i - cp(n) the i hash-values h,(s;)’s are
distinct. The adversary only sees the corresponding F'(h.(s;))’s, which
are uniformly and independently distributed (in a way independent of the
values of the h,(s;)’s). Thus, loosely speaking, the adversary’s selection of
the next string, denoted s;t1, is independent of the values of the h.(s;)’s,
and so a collision of h,.(s;+1) with one of the previous h,(s;)’s occurs with
probability at most 4 - cp(n). The induction step follows (since 1 — i? -

cp(n) —i-cp(n) <1 —(i+1)%-cp(n)).

It follows that any adversary attacking the ideal scheme may succeed in exis-
tential forgery with at most negligible probability (provided it makes at most
polynomially-many queries). The same must hold for any efficient adversary that
attacks the actual scheme, since otherwise such an adversary yields a violation
of the pseudorandomness of {f, : {0,1}™(*D — {0,1}m(sD} ;). The exact
implementation of the above argument follows the details given in the proof of
Proposition 6.3.2. W

Obtaining full-fledged M ACs. Construction 6.3.5 can be generalized to ob-
tain full-fledged MACs by using generalized hashing families that map arbitrary
strings (rather than fixed-length ones) to fixed length strings. Specifically, for
¢:N— Nand cp: N —[0,1], we call {h, : {0,1}* — {0,1}™("D}, oy a gener-
alized hashing ensemble with a (¢, cp)-collision property if it satisfies the following
two conditions:

1. Efficient evaluation: there exists a polynomial-time algorithm that, on
input r (representing the function h,) and a string z € {0,1}*, returns
h(x).

2. Collision probability:*° For every n € N and x # y such that |z|, |y| < £(n),
the probability that h,.(z) = h,(y) when r is uniformly selected in {0, 1}™
is at most cp(n).

For our construction of a full-fledged MAC, we need a generalized hashing en-
semble with a (¢, cp)-collision property for some super-polynomial ¢(n) and neg-
ligible cp(n) (e.g., £(n) = 1/cp(n) = 2=° for some constant ¢ > 0). The
existence of such ensembles will be discussed below.

Proposition 6.3.7 (Construction 6.3.4, revisited — full-fledged version): Sup-
pose that {f, : {0,1}™(sD) — {0,1}m(|5‘)}5e{071}* is a pseudorandom function
ensemble. For some super-polynomial £ : N — N and negligible cp : N — [0,1],
suppose that {h, : {0,1}* — {0, l}m(‘r|)}re{071}* is a generalized hashing ensem-
ble with a (£, cp)-collision property. Then the following (G,S,V) constitute a
secure MAC:

10 Note that it is essential to restrict the collision condition to strings of bounded length.

In contrast, for every finite family of functions H, there exists two different strings that are
mapped to the same image by each function in H. For details, see Exercise 17.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES509

key-generation with G: On input 1™, algorithm G selects independently and uni-
formly r,s € {0,1}", and outputs ((r,s),(r,s)).

signing with S: On input a signing-key (r,s) and a document o € {0,1}*, algo-
rithm S outputs the signature/tag fs(h,(a)).

verification with V: On input a verifying-key (r,s), a document o € {0,1}(),
and a alleged signature 3, algorithm outputs 1 if and only if fs(h.(a)) = B.

Proof Sketch: The proof is identical to the proof of Proposition 6.3.6, except
that here the (polynomial-time) adversary attacking the scheme may query for
the signatures of strings of various lengths. Still, all these queries (as well as
the final output) are of polynomial length and thus shorter than ¢(n). Thus,
the (¢, cp)-collision property implies that, except with negligible probability, all
these queries (as well as the relevant part of the output) are hashed to different
values. W

On constructing adequate hashing ensembles. For some ¢ > 0 and
f(n) = 2°™ | generalized hashing ensembles with a (f,1/f)-collision property
can be constructed is several ways. One way is by applying a tree-hashing
scheme as in Construction 6.2.13; see Exercise 19. For further details about
constructions of generalized hashing ensembles, see Section 6.6.5.

An alternative presentation: The proofs of Propositions 6.3.6 and 6.3.7
actually establish that {gs» = fs o hr}sco1}err(u+l) is @ generalized pseu-
dorandom function (as in Definition 3.6.12). Hence, the actual claim of these
propositions (i.e., the security of the constructed MAC) can be derived from the
fact that any generalized pseudorandom function yields a full-fledged MAC (see
Exercise 7).

6.3.2 * More on Hash-and-Hide and state-based M ACs

The basic idea underlying Construction 6.3.5 (as well as Proposition 6.3.7) is to
combine a “weak tagging scheme” with an adequate “hiding scheme”. Specifi-
cally, the “weak tagging scheme” should be secure against forgery provided that
the adversary does not have access to the scheme’s outcome, and the “hiding
scheme” implements the latter provision in a setting in which the actual adver-
sary does obtain the value of the MAC. In Construction 6.3.5 (and in Propo-
sition 6.3.7), hiding was obtained by applying a pseudorandom function to the
string that one wishes to hide. (Although this process is not 1-1, its result looks
random and thus is hard to predict.)

One more natural “hiding scheme” (which can also be implemented using
pseudorandom functions) is obtained by using certain private-key encryption
schemes. For example, we may use Construction 5.3.9 (in which the plaintext
x is encrypted/hidden by the pair (y,z @ fs(y)), where y is uniformly selected),
instead of hiding x by the value f;(x) (as above). Alternative implementations

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

510 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

of this underlying idea are more popular, especially in the context of state-based
MACs. We start by defining state-based MACs, and then show how to construct
them based on the hash-and-hide (or rather tag-and-hide) paradigm.

6.3.2.1 The definition of state-based M ACs

As in the case of steam-ciphers discussed in Section 5.3.1, we extend the mech-
anism of message-authentication schemes (MACs) by allowing the signing and
verification processes to maintain and update a state. Formally, both the signing
and the verification algorithms take an additional input and emit an additional
output, corresponding to their state before and after the operation. The length
of the state is not allowed to grow by too much during each application of the
algorithm (see Item 3 below), or else efficiency of the entire “repeated signing”
process can not be guaranteed. For sake of simplicity, we incorporate the key in
the state of the corresponding algorithm. Thus, the initial state of each of the
algorithms is set to equal its corresponding key. Furthermore, one may think of
the intermediate states as of updated values of the corresponding key.

In the following definition, we follow similar conventions to those used in
defining state-based ciphers (i.e., Definition 5.3.1). Specifically, for simplicity,
we assume that the verification algorithm (i.e., V') is deterministic (otherwise
the formulation would be more complex). Intuitively, the main part of the
verification condition (i.e., Item 2) is that the (proper) iterative signing-verifying
process always accepts. The additional requirement in Item 2 is that the state of
the verification algorithm is updated correctly as long as it is fed with strings of
length equal to the length of the valid document-signature pairs. The importance
of this condition was discussed in Section 5.3.1 and is further discussed below.

Definition 6.3.8 (state-based MAC — the mechanism): A state-based message-
authentication scheme is a triple, (G,S,V), of probabilistic polynomial-time al-
gorithms satisfying the following three conditions

1. On input 1™, algorithm G outputs a pair of bit strings.

2. For every pair (s, v(0) in the range of G(1"), and every sequence of
oD s, the following holds: if (s, V) « S(st= 1 o) and (v(), D) —
V=Y, o) 30 for i = 1,2,..., then ¥) = 1 for every i. Further-
more, for every i and every («,3) € {0,1}‘0‘(1)‘ x {0, 1}|'8m|, it holds that
V(D a,p) = (0D,).

3. There exists a polynomial p such that for every pair (3(0),1)(0)) in the range
of G(1™), and every sequence of a’s and s9’s as above, it holds that
|s] < |8 D] + || - p(n). Similarly for the v s,

That is, as in Definition 6.1.1, the signing-verification process operates prop-
erly provided that the corresponding algorithms get the corresponding keys
(states). Note that in Definition 6.3.8 the keys are modified by the signing-
verification process, and so correct verification requires holding the correctly-

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES511

updated verification-key. We stress that the furthermore clause in Item 2 guar-
antees that the verification-key is correctly updated as long as the verification
process is fed with strings of the correct lengths (but not necessarily with the
correct document-signature pairs). This extra requirement implies that given
the initial verification-key and the current document-signature pair as well as
the lengths of all previous pairs (which may be actually incorporated in the cur-
rent signature), one may correctly decide whether or not the current document-
signature pair is valid. As in case of state-based ciphers (cf. Section 5.3.1), this
fact is interesting for two reasons:

A theoretical Teason: It implies that, without loss of generality (alas with possi-
ble loss in efficiency), the verification algorithm may be stateless. Further-
more, without loss of generality (alas with possible loss in efficiency), the
state of the signing algorithm may consist of the initial signing-key and
the lengths of the messages signed so far. (We assume here and below that
the length of the signature is determined by the length of the message and
the length of the signing-key.)

A practical reason: It allows to recover from the loss of some of the message-
signature pairs. That is, assuming that all messages have the same length
(which is typically the case in MAC applications), if the receiver knows
(or is given) the total number of messages sent so far then it can verify
the authenticity of the current message-signature pair, even if some of the
previous message-signature pairs were lost.

We stress that Definition 6.3.8 refers to the signing of multiple messages
(and is meaningless when considering the signing of a single message). However,
Definition 6.3.8 (by itself) does not explain why one should sign the ith message
using the updated signing-key s~ rather than by reusing the initial signing-
key s(0) (where all corresponding verifications are done by reusing the initial
verification-key v(o)). Indeed, the reason for updating these keys is provided by
the following security definition that refers to the signing of multiple messages,
and holds only in case the signing-keys in use are properly updated (in the
multiple-message authentication process).

Definition 6.3.9 (security of state-based MACs):

e A chosen message attack on a state-based MAC, (G, S,V), is an interactive
process that is initiated with (s°),v(°)) «— G(1™), and proceed as follows:
In the i iteration, based on the information gathered so far, the attacker
selects a string V), and obtains B, where (s(), 3()) — §(s(=1) al?),

e Such an attack is said to succeeds if it outputs a valid signature to a string
for which it has NOT requested a signature during the attack. That is, the
attack is successful if it outputs a pair (a, B) such that « is different from

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

512 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

all signature-queries made during the attack, and V(p(i’l),a,,@) = (,1)
holds for some intermediate state (verification-key) v(*~1) (as above).!!

o A state-based MAC is secure if every probabilistic polynomial-time chosen
message attack as above succeeds with at most negligible probability.

Note that Definition 6.3.9 (only) differs from Definition 6.1.2 in the way that
the signatures $(’s are produced (i.e., using the updated signing-key s(i=1)
rather than the initial signing-key s(°)). Furthermore, Definition 6.3.9 guarantees
nothing regarding a signing process in which the signature to the :th message is
obtained by invoking S(s(%),-) (as in Definition 6.1.2).

6.3.2.2 State-based hash-and-hide MACs

We are now ready to present alternative implementations of the hash-and-hide
paradigm. Recall that in Section 6.3.1.3, the document was hashed (by using an
adequate hashing function) and the resulting hash-value was (authenticated and)
hidden by applying a pseudorandom function to it. In the current subsection,
hiding will be obtained in a more natural (and typically more efficient) way;
that is, by XORing the hash-value with a new portion of a (pseudorandom) one-
time pad. Indeed, the state is used in order to keep track of what part of the
(one-time) pad was already used (and should not be used again). Furthermore,
to obtain improved efficiency, we let the state encode information that allows
fast generation of the next portion of the (pseudorandom) one-time pad. This is
obtained using (on-line) pseudorandom generator (see Sections 3.3.3 and 5.3.1).

Recall that on-line pseudorandom generators are a special case of variable-
output pseudorandom generators (see Section 3.3.3), in which a hidden state
is maintained and updated so to allow generation of the next output bit in
time polynomial in the length of the initial seed, regardless of the number of
bits generated so far. Specifically, the next (hidden) state and output bit are
produced by applying a (polynomial-time computable) function g : {0,1}" —
{0,1}"*1! to the current state (i.e., (s',0) < g(s), where s is the current state, s’
is the next state and o is the next output bit). Analogously to Construction 5.3.3,
the suggested state-based MAC will use an on-line pseudorandom generator in
order to generate the required pseudorandom one-time pad, and the latter will be
used to hide (and authenticate) the hash-value (obtained by hashing the original
document).

Construction 6.3.10 (a state-based MAC): Let g:{0,1}*—{0,1}* such that

11 In fact, one may strengthen the definition by using a weaker notion of success in which it
is only required that a # a(?) (rather than requiring that a € {a()};). That is, the attack is
successful if, for some ¢, it outputs a pair (a, 8) such that o # a® and V(v(i’l),a, B8)=(,1),
where the @)’s and v(@)’s are as above. The stronger definition provides “replay protection”
(i.e., even if the adversary obtains a valid signature that authenticates o as the jth message
it cannot produce a valid signature that authenticates « as the ith message, unless a was
actually authenticated as the ith message).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES513

lg(s)| = |s| + 1, for every s€{0,1}*. Let {h, : {0,1}* — {0, l}m”")}re{m}* be
a family of functions having an efficient evaluation algorithm.

key-generation and initial state: Uniformly select s,r € {0,1}", and output the
key-pair ((s,r), (s,7)). The initial state of each algorithm is set to (s, 7,0, s).

(We maintain the initial key (s,r) and a step-counter in order to allow
recovery from loss of message-signature pairs.)

signing message = with state (s,r,¢,s"): Let so e o Fori= 1,..,m(n), com-
pute s;0; = g(s;—_1), where |s;| =n and o; € {0,1}. Output the signature
hp(2) © 01+ Op(n), and set the new state to (s,7,t + m(n), Sm(n))-

verification of the pair (z,y) with respect to the state (s,7,t,s"): Compute oy - -0 (n)
and Sm(n) 08 in the signing process; that is, for i = 1,...,m(n), compute

s:0; = g(si—1), where sg def o1 Set the new state to (s,r,t +m(n), Smmn)),
and accept if and only if y = h,(z) © 01 - Tpo(n)-

When notified that some message-signature pairs may have been lost and
that the current message-signature pair has index t', one first recovers the
correct current state, which as above will be denoted sy. This is done by

. def . .
setting s—_y = s and computing si—y 00—y = g(Si—e—1), fori=1,...t".

Note that both the signing and verification algorithms are deterministic, and that
the state after authentication of ¢ messages has length 3n + log, (¢t - m(n)) < 4n
(for t < 2™/m(n)).

We now turn to analyze the security of Construction 6.3.10. The hashing
property of the collection of h,’s should be slightly stronger than the one used
in Section 6.3.1.3. Specifically, rather than a bound on the collision probability
(i.e., the probability that h,.(z) = h,(y) for any relevant fixed z,y and a random
r), we need a bound on the probability that h,(z) ® h,(y) equals any fixed string
(again, for any relevant fixed x,y and a random 7). This property is commonly
referred to by the name Almost-Xor-Universal (AXU). That is, {h, : {0,1}* —
{0, l}m”")}re{m}* is called a (¢,)-AXU family if for every n € N, every = # y
such that |z|,|y| < £(n), and every z, it holds that

Prihu, (z) ® hu, (y) = 2] < e(n) (6.4)
References to constructions of such families are provided in Section 6.6.5.

Proposition 6.3.11 Suppose that g is a pseudorandom generator, and that
{h.} is a (£,e)-AXU family, for some super-polynomial £ and negligible €. Then
Construction 6.3.10 constitutes a secure state-based MAC. Furthermore, security
holds even with respect to the stronger notion discussed in Footnote 11.

Proof Sketch: By Exercise 21 of Chapter 3, if g is a pseudorandom generator
then for every polynomial p the ensemble {G? }, . is pseudorandom, where G?,
is defined by the following random process:

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

514 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Uniformly select sp € {0,1}™;

For i =1 to p(n), let s;0; « g(s;—1), where o; € {0,1} (and s; € {0, 1}");

Output o109 - - Op(n)-

Recall that, in such a case, we said that g is a next-step function of an on-line
pseudorandom generator.

As in previous cases, it suffices to establish the security of an ideal scheme in
which the sequence (of m(n)-bit long blocks) produced by iterating the next-step
function g is replaced by a truly random sequence (of m(n)-bit long blocks). In
the ideal scheme, all that the adversary may obtain via a chosen message attack
is a sequence of m(n)-bit long blocks, which is uniformly distributed among all
such possible sequences. Note that each of the signatures obtained during the
attack as well as the forged signature refers to a single block in this sequence
(e.g., the ith obtained signature refers to the ith block). We consider two types
of forgery attempts:

1. In case the adversary tries to forge a signature referring to an unused
(during the attack) block, it may succeed with probability at most 2—m(n)
because we may think of this block as being chosen after the adversary
makes its forgery attempt. Note that 27" is negligible, because e(n) >
2=(") must hold (since 2~™("™) lower-bounds the collision probability).

2. The more interesting case is when the adversary tries to forge a signature
referring to a block, say the ith one, that was used (to answer the ith
query) during the attack. Denote the jth query by a(?), the (random)
jth block by bY), and the forged document by . Then, at the time
of outputting the forgery attempt («,3), the adversary only knows the

sequence of b)) @ hr(a(j))’s, which yields no information on r. Note that

the adversary succeeds if and only if b(*) @ h,(a) = 3, where () def

b @ hr(a(i)) is known to it. Thus, the adversary succeeds if and only
if h,(a?) @ h.(a) = B & B, where o'V,) a,B are fixed and 7 is
uniformly distributed. Hence, by the AXU property, the probability that
the adversary succeeds is at most &(n).

The security of the real scheme follows (or else one could have distinguished the
sequence produced by iterating the next-step function g from a truly random
sequence). W

Construction 6.3.10 versus the constructions of Section 6.3.1.3. Re-
call that all these schemes are based on the hash-and-hide paradigm. The dif-
ference between the schemes is that in Section 6.3.1.3 a pseudorandom function
is applied to the hash-value (i.e., the signature to z is fs(h,(x))), whereas in
Construction 6.3.10 the hash-value is XORed with a pseudorandom value (i.e.,
we may view the signature as consisting of (¢, h,(z) @ fs(c)), where ¢ is a counter
value and fs(c) is the cth block produced by iterating the next-step function g
starting with the initial seed s). We note two advantages of the state-based
MAC over the MACs presented in Section 6.3.1.3: First, applying an on-line

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 515

pseudorandom generator is likely to be more efficient than applying a pseudoran-
dom function. Second, a counter allows to securely authenticate more messages
than can be securely authenticated by applying a pseudorandom function to the
hashed value. Specifically, the use of an a m-bit long counter allows to securely
authenticate 2™ messages, whereas using an m-bit long hash-value suffers from
the “birthday effect” (i.e., collisions are likely to occur when V2™ messages are
authenticated). Indeed, these advantages are relevant only in applications in
which using state-based MACs is possible, and are most advantageous in ap-
plications where verification is performed in the same order as signing (e.g., in
FIFO communication).

6.4 Constructions of Signature Schemes

In this section we present several constructions of secure public-key signature
schemes. Here we refer to such schemes as signature schemes, which is indeed
the traditional term.

Two central paradigms in the construction of signature schemes are the “re-
freshing” of the “effective” signing-key, and the usage of an “authentication
tree”. In addition, the “hashing paradigm” (employed also in the construction
of message authentication schemes), plays a even more crucial role in the fol-
lowing presentation. In addition to the above, we use the notion of one-time
signature scheme defined in Section 6.4.1.

The current section is organized as follows. In Section 6.4.1 we define and
construct various types of one-time signature schemes. The “hashing paradigm”
plays a crucial role in one of these constructions, which in turn is essential for
Section 6.4.2. In Section 6.4.2 we show how to use one-time signature schemes to
construct general signature schemes. This construction utilizes the “refreshing
paradigm” (as employed to one-time signature schemes) and an “authentication
tree”. In Section 6.4.3, we define Universal One-Way Hashing and show how to
use it (in the previous constructions) instead of collision-free hashing. The gain
in using Universal One-Way Hashing (rather than collision-free hashing) is that
the former can be constructed based on any one-way function (whereas this is
not known for collision-free hashing). Thus, we obtain:

Theorem 6.4.1 Secure signature schemes exist if and only if one-way functions
eTist.

The difficult direction is to show that the existence of one-way functions implies
the existence of signature schemes. For the other direction, see Exercise 8.

6.4.1 One-time signature schemes

In this section we define and construct various types of one-time signature
schemes. Specifically, we first define one-time signature schemes, next define
a length-restricted version of this notion (analogous to Definition 6.2.1), then

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

516 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

present a simple construction of the latter, and finally we show how such a con-
struction combined with collision-free hashing yields a general one-time signature
scheme.

6.4.1.1 Definitions

Loosely speaking, one-time signature schemes are signature schemes for which
the security requirement is restricted to attacks in which the adversary asks for
at most one string to be signed. That is, the mechanics of one-time signature
schemes are as of ordinary signature schemes (see Definition 6.1.1), but the
security requirement is relaxed as follows.

e A chosen one-message attack is a process that can obtain a signature to at
most one string of its choice. That is, the attacker is given v as input, and
obtains a signature relative to s, where (s,v) <« G(1™) for an adequate n.

(Note that in this section we focus on public-key signature schemes and
thus we present only the definition for this case.)

e Such an attack is said to succeeds (in existential forgery) if it outputs
a valid signature to a string for which it has NOT requested a signature
during the attack.

(Indeed, the notion of success is exactly as in Definition 6.1.2.)

e A one-time signature scheme is secure (or unforgeable) if every probabilistic
polynomial-time chosen one-message attack succeeds with at most negli-
gible probability.

Moving to the formal definition, we again model a chosen message attack as a
probabilistic oracle machine; however, since here we only care about one-message
attacks, we consider only oracle machines that make at most one query. Let M
be such a machine. As before, we denote by Q% (x) the set of queries made by
M on input = and access to oracle O, and let M (x) denote the first string in
the output of M on input and access to oracle O. Note that here |Q{,(z)| < 1
(i.e., M may either make no queries or a single query).

Definition 6.4.2 (security for one-time signature schemes): A one-time signa-
ture scheme is secure if for every probabilistic polynomial-time oracle machine
M that makes at most one query, every polynomial p and all sufficiently large
n, it holds that

[Vi, (1) (MP610™) (G2 (1)) =1]
and <

Pr -
L@y g @i @any |7

where the probability is taken over the coin tosses of algorithms G, S and V as
well as over the coin tosses of machine M.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 517

We now define a length-restricted version of one-time signature schemes. The
definition is indeed analogous to Definition 6.2.1:

Definition 6.4.3 (length-restricted one-time signature schemes): Let £ : N —
N. An (-restricted one-time signature scheme is a triple, (G, S,V), of probabilis-
tic polynomial-time algorithms satisfying the the mechanics of Definition 6.2.1.
That is, it satisfies the following two conditions

1. As in Definition 6.1.1, on input 1™, algorithm G outputs a pair of bit
strings.

2. Analogously to Definition 6.1.1, for every n and every pair (s,v) in the
range of G(1™), and for every a € {0,1}™) algorithms S and D satisfy
PriV(v,a, S(s,a))=1] = 1.

Such a scheme is called secure (in the one-time model) if the requirement of
Definition 6.4.2 holds when restricted to attackers that only make queries of
length €(n) and output a pair (a, B) with |«| = €(n). That is, we consider only
attackers that make at most one query, this query has to be of length £(n), and
the output (o, B) must satisfy |a| = £(n).

Note that even the existence of secure 1-restricted one-time signature schemes
implies the existence of one-way functions: see Exercise 11.

6.4.1.2 Constructing length-restricted one-time signature schemes

We now present a simple construction of length-restricted one-time signature
schemes. The construction works for any length restriction function ¢, but the
keys will have length greater than ¢. The latter fact limits the applicability of
such schemes, and will be removed in the next subsection. But first, we construct
l-restricted one-time signature schemes based on any one-way function f. We
may assume for simplicity that f is length preserving.

Construction 6.4.4 (an /(-restricted one-time signature scheme): Let ¢ : N —
N be polynomially-bounded and polynomial-time computable, and f : {0,1}* —
{0,1}* be polynomial-time computable and length-preserving. We construct an
L-restricted one-time signature scheme, (G,S,V), as follows:

key-generation with G: On input 1, we uniformly select s?,si, ..., sg(n), s%(n) €
{0,1}", and compute 'Uf = f(sZ), fori =1,..,¢n) and j = 0,1. We
let s = ((51,51), s (89> St(n)))» @A v = (01, 01),oer, (V)5 Vi) G

output the key-pair (s,v).
(Note that |s| = |v] =2 €(n) - n.)

signing with S: On input a signing-key s = ((s9,s1),...., (sg(n),s%(n))) and an

U(n)-bit string a = a1 -+ 0y(n), we output (s7*, ..., SZ(%’) as a signature of

Q.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

518 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

verification with V' On input a verification-key v = ((v},01), ..., (Vj(), Vi)
an €(n)-bit string a = o1 - - - 04(n), and an alleged signature 8 = (B1, ..., Be(n))s
we accept if and only if v]' = f(B:), fori=1,..,{(n).

Proposition 6.4.5 If f is a one-way function then Construction 6.4.4 consti-

tutes a secure [-restricted one-time signature scheme.

Note that Construction 6.4.4 does NOT constitute a (general) ¢-restricted sig-
nature scheme: An attacker that obtains signatures to two strings (e.g., to the
strings 0™ and 1¢(")), can present a valid signature to any £(n)-bit long string
(and thus totally break the system). However, here we consider only attackers
that may ask for at most one string (of their choice) to be signed. As a corollary
to Proposition 6.4.5, we obtain:

Corollary 6.4.6 If there exist one-way functions then, for every polynomially-
bounded and polynomial-time computable £:N— N, there exist secure £-restricted
one-time signature schemes.

Proof of Proposition 6.4.5: Intuitively, forging a signature (after seeing at
most one signature to a different message) requires inverting f on some random
image (corresponding to a bit location on which the two £(n)-bit long messages
differ). The actual proof is by a reducibility argument. Given an adversary A
attacking the scheme (G, S,V'), while making at most one query, we construct
an algorithm A’ for inverting f.

As a warm-up, let us first deal with the case in which A makes no queries
at all. In this case, on input y (supposedly in the range of f), algorithm A’
proceeds as follows. First A’ selects uniformly and independently a position
pin {1,..,¢(n)}, a bit b, and a sequence of (2¢(n) many) n-bit long strings
59,51,,sg(n),s%(n). (Actually, s is not used and needs not be selected.) For

every i € {1,...,¢(n)}\ {p}, and every j € {0,1}, algorithm A’ computes v} =
f(sf) Algorithm A" also computes vzl,’b = f(sllfb), and sets 'Uf, =y and v =
((v7,01), -5 (V51 Viy))- Note that if y = f(), for a uniformly distributed
x € {0,1}", then for each possible choice of p and b, the sequence v is distributed
identically to the public-key generated by G(1™). Next, A" invokes A on input
v, hoping that A will forge a signature, denoted 3 = 71 -+~ 7y(,), to a message
@ = 01+ 0y(n) s0 that g, = b. If this event occurs, A’ obtains a preimage of y
under f, since the validity of the signature implies that f(7,) = v;" = v} = y.
Observe that conditioned on the value of v and the internal coin tosses of A, the
value b is uniformly distributed in {0,1}. Thus, A’ inverts f with probability
e(n)/2, where e(n) denotes the probability that A succeeds in forgery.

We turn back to the actual case in which A may make a single query. (With-
out loss of generality, we may assume that A always makes a single query; see
Exercise 9.) In this case, on input y (supposedly in the range of f), algorithm
A’ selects p,b and the s!’s, and forms the v)’s and v exactly as in the warm-up

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 519

above.!? Recall that if y = f(z), for a uniformly distributed = € {0,1}", then
for each possible choice of p and b, the sequence v is distributed identically to
the public-key generated by G(1™). Also note that for each v} other than vz =y,
algorithm A’ holds a random preimage (of vf) under f. Next, A’ invokes A on
input v, and tries to answer its query, denoted o = o1 -+ - 0¢(,). We consider two
cases regarding this query:

1. If o, = b then A’ can not supply the desired signature since it lacks a
preimage of sg = y under f. Thus, in this case A’ aborts. However, this
case occurs with probability %, independently of the actions of A (since v
yields no information on either p or b).

(That is, conditioned on the value of v and the internal coin tosses of A,
this case occurs with probability 3.)'3

2. If o, =1 —b then A’ can supply the desired signature since it holds all
the relevant sg’s (i.e., random preimages of the relevant 'Uf’s under f). In
particular, A’ holds both sg’s, for i # p, as well as 3119”’. Thus, A’ answers
with (s7?, ..., SZ(ZT(L";)).

Note that conditioned on the value of v, the internal coin tosses of A and on the
second case occuring, p is uniformly distributed in {1, ...,€(n)}. When the second
case occurs, A obtains a signature to o and this signature is distributed exactly
as in a real attack. We stress that since A asks at most one query, no additional
query will be asked by A. Also note that, in this case (i.e., 0, = 1—b), algorithm
A outputs a forged message—signature pair, denoted (', '), with probability
exactly as in a real attack.

For simplicity we assume below that A has indeed made a single query «
(otherwise one may consider a and the o;’s to be some non-boolean dummy val-
ues and apply the following reasoning nevertheless).!* Let o' = o} --- Uz(n) and
B =si-- sz(n), where (a/, ') is the forged message—signature pair output by A.
By our hypothe§is (that this is a forgery-success event) it follows that o’ # a and
that f(s!) = v;* for all i’s. Since (conditioned on all the above) p is uniformly

distributed in {1,...,4(n)}, it follows that with probability % > ﬁ

it holds that o, # 0, and then A’ obtains a preimage of y under f (since s,

. o, Sy 1—0,
satisfies f(s],) = vp”, which in turn equals v, °" = v} = y).

12 That is, first A’ selects p uniformly in {1,...,£(n)}, b uniformly in {0,1}, and
s9,sh ., sg(n), s%(n) each independently and uniformly in {0,1}"™. For every i € {1,...,4(n)}\
{p}, and every j € {0,1}, algorithm A’ computes v] = f(s]). Algorithm A’ also computes
vzl,_b = f(szl,_b), and sets vzl’, =yand v = ((v9,0]),,(vg(n),vl}(n))).

13 This follows from an even stronger statement by which conditioned on the value of v, the
internal coin tosses of A and on the value of p, the current case happens with probability %
The stronger statement holds since conditioned on all the above, b is uniformly distributed in
{0,1} (and so op = b happens with probability exactly %)

14 Alternatively, recall that, without loss of generality, we may assume that A always makes
a single query; see Exercise 9.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

520 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

To summarize, assuming that A succeeds in a single-message attack on
(G, S, V) with probability £(n), algorithm A’ inverts f on a random image (i.e.,
on f(U,)) with probability

1 |{i:o; #0i} e(n)
W5 T 2 2w

Thus, if A is a probabilistic polynomial-time chosen one-message attack that
forges signatures with non-negligible probability then A’ is a probabilistic polynomial-
time algorithm that inverts f with non-negligible probability (in violation of the
hypothesis that f is a one-way function). The proposition follows. [l

6.4.1.3 From length-restricted schemes to general ones

We now combine a length-restricted one-time signature scheme with collision-
free hashing to obtain a general one-time signature scheme. The construction is
identical to Construction 6.2.6, except that here (G, S,V) is an f-restricted one-
time signature scheme rather than an f-restricted (general) signature scheme.
Analogously to Proposition 6.2.7, we obtain.

Proposition 6.4.7 Suppose that (G,S,V) is a secure £-restricted one-time sig-
nature scheme, and that {h, : {0,1}* — {0,1}2(‘T|)}T€{071}* is a collision-free
hashing collection. Then (G',S', V"), as defined in Construction 6.2.6 is a se-
cure one-time signature scheme.

Proof: The proof is identical to the proof of Proposition 6.2.7; we merely no-
tice that if the adversary A’, attacking (G',S’, V'), makes at most one query
then the same holds for the adversary A that we construct (in that proof) to
attack (G, S, V). In general, the adversary A constructed in the proof of Propo-
sition 6.2.7 makes a single query per each query of the adversary A’. [

Combining Proposition 6.4.7, Corollary 6.4.6, and the fact that collision-free
hashing collections imply one-way functions (see Exercise 12), we obtain:

Corollary 6.4.8 If there exist collision-free hashing collections then there exist
secure one-time signature schemes.

Comments: We stress that when using Construction 6.2.6, signing each docu-
ment under the (general) scheme (G, S', V') only requires signing a single string
under the f-restricted scheme (G, S, V). This is in contrast to Construction 6.2.3
in which signing a document under the (general) scheme (G',S',V’) requires
signing many strings under the ¢-restricted scheme (G, S, V'), where the number
of such strings depends (linearly) on the length of the original document.
Construction 6.2.6 calls for the use of collision-free hashing. The latter can be
constructed using any claw-free permutation collection (see Proposition 6.2.9),
however it is not know whether collision-free hashing can be constructed based
on any one-way function. Wishing to construct signature schemes based on

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 521

any one-way function, we later avoid (in Section 6.4.3) the use of collision-free
hashing. Instead, we use “universal one-way hashing functions” (to be defined),
and present a variant of Construction 6.2.6 that uses these functions rather than
collision-free ones.

6.4.2 From one-time signature schemes to general ones

In this section we show how to construct general signature schemes using one-
time signature schemes. That is, we shall prove:

Theorem 6.4.9 If there exist secure one-time signature schemes then secure
(general) signature schemes exist as well.

Actually, we can use length-restricted one-time signature schemes, provided that
the length of the strings being signed is at least twice the length of the verification-
key. Unfortunately, Construction 6.4.4 does not satisfy this condition. Neverthe-
less, Corollary 6.4.8 does provide one-time signature schemes. Thus, combining
Theorem 6.4.9 and Corollary 6.4.8, we obtain:

Corollary 6.4.10 If there exist collision-free hashing collections then there exist
secure signature schemes.

Note that Corollary 6.4.10 asserts the existence of secure (public-key) signature
schemes, based on an assumption that does not mention trapdoors. We stress
this point because of the contrast to the situation with respect to public-key en-
cryption schemes, where a trapdoor property seem necessary for the construction
of secure schemes.

6.4.2.1 The refreshing paradigm

The so-called “refreshing paradigm” plays a central role in the proof of Theo-
rem 6.4.9. Loosely speaking, the “refreshing paradigm” suggests to reduce the
dangers of a chosen message attack on the signature scheme by using “fresh”
instances of the scheme for signing each new document. Of course, these fresh
instances should be authenticated by the original instance (corresponding to the
verification-key that is publically known), but such an authentication refers to
a string selected by the legitimate signer rather than by the adversary.

Example: To demonstrate the refreshing paradigm, consider a basic signature
scheme (G, S, V') used as follows. Suppose that the user U has generated a key-
pair, (s,v) « G(1™), and has placed the verification-key v on a public-file. When
a party asks U to sign some document «, the user U generates a new (fresh)
key-pair, (s',v") < G(1™), signs v’ using the original signing-key s, signs « using
the new (fresh) signing-key s, and presents (Ss(v'),v’, Sy (a)) as a signature
to @. An alleged signature, (f;,v',32), is verified by checking whether both
Vo(v', 1) = 1 and Vi («, B2) = 1. Intuitively, the gain in terms of security is
that a full-fledged chosen message attack cannot be launched on (G, S, V). All

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

522 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

that an attacker may obtain (via a chosen message attack on the new scheme)
is signatures, relative to the original signing-key s, to randomly chosen strings
(taken from the distribution G2(1™)) as well as additional signatures each relative
to a random and independently chosen signing-key.

We refrain from analyzing the features of the signature scheme presented in
the above example. Instead, as a warm-up to the actual construction used in
the next section (in order to establish Theorem 6.4.9), we present and analyze a
similar construction (which is, in some sense, a hybrid of the two constructions).
The reader may skip this warm-up, and proceed directly to Section 6.4.2.2.

Construction 6.4.11 (a warm-up): Let (G,S,V) be a signature scheme and
(G',S", V') be a one-time signature scheme. Consider a signature scheme, (G",S", V'),
with G" = G, as follows:

signing with S”: On input a signing-key s and a document a € {0,1}*, first
invoke G' to obtain (s',v') «— G'(1™). Nexzt, invoke S to obtain B; «—
Ss(v"), and S to obtain Bz — SL (a). The final output is (1,7, B2).

verification with V": On input a verifying-key v, a document o € {0,1}*, and a
alleged signature 8 = (B1,v', B2), we output 1 if and only if both V, (v, B1) =
1 and V! (o, B2) = 1.

Construction 6.4.11 differs from the above example only in that a one-time
signature scheme is used to generate the “second signature” (rather than using
the same ordinary signature scheme). The use of a one-time signature scheme
is natural here, since it is unlikely that the same signing-key s’ will be selected
in two invocations of S".

Proposition 6.4.12 Suppose that (G,S,V) is a secure signature scheme, and
that (G',S',V') is a secure one-time signature scheme. Then (G",S", V"), as
defined in Construction 6.4.11 is a secure signature scheme.

We comment that the proposition holds even if (G, S, V') is only secure against
attackers that select queries according to the distribution G4(1™). Furthermore,
(G, S,V) need only be (-restricted, for some suitable function £: N — .

Proof Sketch: Consider an adversary A" attacking the scheme (G",S",V").
We may ignore the case in which two queries of A" are answered by triplets
containing the same one-time verification-key v’ (since if this event occurs with
non-negligible probability then the one-time scheme (G',S’, V') cannot be se-
cure). We consider two cases regarding the relation of the one-time verification-
keys included in the signatures provided by S?' and the one-time verification-key
included in the signature forged by A".

1. In case, for some i, the one-time verification-key v’ contained in the forged
message equals the one-time verification-key v(*) contained in the answer
to the i*" query, we derive violation to the security of the one-time scheme
(G, s, vh.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 523

Specifically, consider an adversary A’ that on input a verification-key v’
for the one-time scheme (G',S’,V'), generates (s,v) «— G(1™) at ran-
dom, selects 7 at random (among polynomially many possibilities), in-
vokes A" on input v, and answers its queries as follows. The i*" query of
A" denoted ¥, is answered by making the only query to S’,, obtaining
B = S (a), and returning (S,(v'),v’, ') to A”. (Note that A’ holds
s.) Each other query of A”, denoted al?), is answered by invoking G’
to obtain (s(9),00)) « G'(1"), and returning (S,(v\?)),0(), S’ ; (a?)) to
A". It A" answers with a forged signature and v’ is the verification-key
contained in it, then A’ obtains a forged signature relative to the one-time
scheme (G, S", V') (i.e., a signature to a message different from o(?), which
is valid w.r.t the verification-key v'). Furthermore, conditioned on the case
hypothesis and a forgery event, the second event (i.e., v’ is the verification-
key contained in the forged signature) occurs with 1/poly(n) probability.
Note that indeed A’ makes at most one query to S’,, and that the distri-
bution seen by A" is exactly as in an actual attack on (G",S",V").

2. In case, for all i, the one-time verification-key v’ contained in the forged
message is different from the one-time verification-key v(*) contained in the
answer to the i*® query, we derive violation to the security of the scheme
(G, S, V).

Specifically, consider an adversary A that on input a verification-key v for
the scheme (G,S,V), invokes A" on input v, and answers its queries as
follows. To answer the j*® query of A", denoted a!?), algorithm A invokes
G' to obtain (s),v)) «— G'(1"), queries S, for a signature to v¥), and
returns (S,(v)),v(9)] S;m(a(j)) to A”. When A" answers with a forged
signature and v’ € {v() : j = 1,...,poly(n)} is the one-time verification-
key contained in it, A obtains a forged signature relative to the scheme
(G, S,V) (ie., a signature to a string v' different from all v()’s, which is
valid w.r.t the verification-key v). (Note again that the distribution seen
by A" is exactly as in an actual attack on (G",S” V"))t

Thus in both cases we derive a contradiction to some hypothesis, and the propo-
sition follows. O

6.4.2.2 Authentication—trees

The refreshing paradigm by itself (i.e., as employed in Construction 6.4.11) does
not seem to be enough for establishing Theorem 6.4.9. Recall that our aim is
to construct a general signature scheme based on a one-time signature scheme.
The refreshing paradigm suggests to use a fresh instance of a one-time signature
scheme in order to sign the actual document; however, whenever we do so (as
in Construction 6.4.11), we must authenticate this fresh instance relative to the
single verification-key that is public. A straightforward implementation of this

15 Furthermore, all queries to S are distributed according to G2(1™), justifying the comment
made just before the proof sketch.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

524 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

scheme (as presented in Construction 6.4.11) calls for many signatures to be
signed relative to the single verification-key that is public, and so a one-time sig-
nature scheme cannot be used (for this purpose). Instead, a more sophisticated
method of authentication is required.

Let us try to sketch the basic idea underlying the new authentication method.
The idea is to use the public verification-key (of a one-time signature scheme) in
order to authenticate several (e.g., two) fresh instances (of the one-time signature
scheme), use each of these instances to authenticate several fresh instances, and
so on. We obtain a tree of fresh instances of the one-time signature, where each
internal node authenticates its children. See Figure 6.2 (below). We can now
use the leaves of this tree in order to sign actual documents, where each leave
is used at most once. We stress that each instance of the one-time signature
scheme is used to sign at most one string (i.e., a sequence of verification-keys if
the instance resides in an internal node, and an actual document if the instance
resides in a leaf).

77

Figure 6.2: A node labeled z authenticates its children, labeled z0 and z1,
respectively. The authentication is via a one-time signature of the text v, ov.1
using signing-key s, .

The above description may leave the reader wondering as to how one actually
signs (and verifies signatures) using the suggested signature scheme. We start
with a description that does not fit our definition of a signature scheme, because
it requires the signer to keep a record of its actions during all previous invocations
of the signing process.'® We refer to such a scheme as memory dependent.

Definition 6.4.13 (memory-dependent signature schemes):

16 This (memory) requirement will be removed in the next section.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 525

mechanics: Item 1 of Definition 6.1.1 stays as it is, and the initial state (of
the signing algorithm) is defined to equal the output of the key-generator.
Item 2 is modified so that the signing algorithm is given a state, denoted
v, as auziliary input and returns o modified state, denoted 6, as auxiliary
output. It is required that for every pair (s,v) in the range of G(1™),
and for every a,vy € {0,1}*, if Ss(a,y) = (B,0) then Vy(a,B) = 1 and
61 < |71 + |l - poly(n).

(That is, the verification algorithm accepts the signature # and the state
does not grow by too much.)

security: The notion of a chosen message attack is modified so that the oracle
Ss now maintains a state that it updates in the natural manner; that is,
when in state v and faced with query «, the oracle sets (8,6) «— Ss(a,7),
returns 3 and updates its state to 6. The notions of success and security
are defined as in Definition 6.1.2, except that they now refer to the modified
notion of an attack.

The definition of memory-dependent signature schemes (i.e., Definition 6.4.13) is
related to the definition of state-based MACs (i.e., Definition 6.3.9). However,
there are two differences between the two definitions: First, Definition 6.4.13
refers to (public-key) signature schemes, whereas Definition 6.3.9 refers to MACs.
Second, in Definition 6.4.13 only the signing algorithm is state-based (or memory-
dependent), whereas in Definition 6.3.9 also the verification algorithm is state-
based. The latter difference reflects the difference in the applications envisioned
for both types of schemes. (Typically, MACs are indented for communication
between a predetermined set of “mutually synchronized” parties, whereas signa-
ture schemes are intended for production of signatures that may be universally
verifier at any time.)

We note that memory-dependent signature schemes may suffice in many
applications of signature schemes. Still, it is preferable to have memoryless (i.e.,
ordinary) signature schemes. Below we use any one-time signature schemes to
construct a memory-dependent signature scheme. The memory requirement will
be removed in the next section, so to obtain a (memoryless) signature scheme
(as in Definition 6.1.1).

Construction 6.4.14 (a memory-dependent signature scheme): Let (G,S,V)
be a one-time signature scheme. Consider the following memory-dependent sig-
nature scheme, (G',S', V'), with G' = G. On security parameter n, the scheme
uses a full binary tree of depth n. FEach of the nodes in this tree is labeled by a
binary string so that the root is labeled by the empty string, denoted A, and the
left (vesp., right) child of a node labeled by x is labeled by x0 (resp., x1). Below
we refer to the current state of the signing process as to a record.

initiating the scheme: To initiate the scheme, on security parameter n, we in-
voke G(1™) and let (s,v) — G(1™). We record (s,v) as the key-pair asso-
ciated with the root, and output v as the (public) verification-key.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

526 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

In the rest of the description, we denote by (s,,v;) the key-pair associated
with the node labeled x; thus, (sx,vx) = (s,v).

signing with S’ using the current record: Recall that the current record contains
the signing-key s = sx, which is used to produce authy (defined below).

To sign a new document, denoted o, we first allocate an unused leaf. Let
o1 -0y be the label of this leaf. For example, we may keep a counter of
the number of documents signed, and determine oy -- -0, according to the
counter value (e.g., if the counter value is ¢ then we use the ¢ string in
lezicographic order).

Nezt, for everyi =1,...,n and every T € {0,1}, we try to retrieve from our
record the key-pair associated with the node labeled o1 ---0;, 17. In case
such a pair is not found, we generate it by invoking G(1™) and store it (i.e.,
add it to our record) for future use; that is, we let (Soy..os_17sVoyeos_q7) —
G(1™).

For every i = 1,...,n, we try to retrieve from our record a signature to
the String Vo, ...0;_10 Voy--0:_11 Telative to the signing-key Sqy...o,_, . In case
such a signature is not found, we generate it by invoking Ss, ., ., and
store it for future use; that is, we obtain Ss, ., (Voy..c; 10Voy-m0; 11)-
(The ability to retrieve this signature from memory for repeated use is the
most important place in which we rely on the memory-dependence of our

signature scheme.)'”
We let
def
a‘uthal"'ai—l = (1}01"'01'710 y Vo011 Ssol---o,;_l (1}01"'05710le"'”Fﬂ))

(Intuitively, via authg,...,,_, the node labeled oy - - - 0,1 authenticates the
verification-keys associated with its children.)

Finally, we sign o by invoking S and output

Sogpop?
(01 op,authy,authy,, ..., authy, ..o, 1, Ss, ., (@)

verification with V': On input a verification-key v, a document «, and an alleged
signature 3 we accept if and only if the following conditions hold:

1. 3 has the form

(0-1 O, (Uo,o,Uo,l,ﬂo)a (’(}170,’0171,ﬂ1), . (’Un_170,vn—1,1,ﬂn—l)7ﬂn)

where the o;’s are bits and all other symbols represent strings.

(Jumping ahead, we mention that v; - is supposed to equal vy, ..o, _,,
the verification-key associated by the signing process with the node
labeled o1 ---0;_17. In particular, v; », is supposed to equal v,, ..., .)

17 This allows the signing process S to use each (one-time) signing-key s, for producing a
single S, -signature. In contrast, the use of a counter for determining a new leaf can be easily
avoided, by selecting a leaf at random.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 527

2. Vy(vo,0v0,1,50) = 1.
(That is, the public-key (i.e., v) authenticates the two strings vy o and
vp,1 claimed to correspond to the instances of the one-time signature
scheme associated with the nodes labeled 0 and 1, respectively.)

8. Fori=1,..,n—1, it holds that V,, , . (viovi1,Bi) = 1.
(That is, the verification-key v;_; »,, which is already believed to be
authentic and supposedly corresponds to the instance of the one-time
signature scheme associated with the node labeled oy - - 0;, authen-
ticates the two strings v; o and v;; that are supposed to correspond
to the instances of the one-time signature scheme associated with the
nodes labeled oy - -- 0,0 and oy - - - 0;1, respectively.)

4 Voor o, (@, 8n) = 1.
(That is, the verification-key v,,—1 »,, which is already believed to be
authentic, authenticates the actual document a.)

Regarding the verification algorithm, note that Conditions 2 and 3 establish that
Vi,o;,, 1S authentic (i.e., equals v,,...0;,0,,,). That is, v = vy authenticates v, ,
which authenticates vy, ,,, and so on up-to v,,...s, . The fact that the v;; 4, ,,’s
are proven to be authentic (i.e., equal the v,,...0; 1-0,,,’s) is not really useful
(when signing a message using the leaf associated with oy - --0,,). This excess is
merely an artifact of the need to use s,,...,, only once during the entire operation
of the memory-dependent signature scheme: In the currently (constructed) S:-
signature we may not care about the authenticity of some v,,...5;,1-¢,,,, but
we may care about it in some other S!-signature. For example, if we use the
leaf labeled 0™ to sign the first document and the leaf labeled 0”711 to sign the
second, then in the first S!-signature we only care about the authenticity of vgn,
whereas in the second S!-signature we care about the authenticity of vgn-1;.

Proposition 6.4.15 If (G,S,V) is a secure one-time signature scheme then
Construction 6.4.14 constitutes a secure memory-dependent signature scheme.

Proof: Recall that a S{ -signature to a document « has the form
(01 op,authy,authy,,...,authy, ..o, 1, Ss, ., (@) (6.5)
where the auth,’s, v,’s and s,.’s satisfy
auth, = (veo , Vet 5 S, (V20 V1)) (6.6)

(See Figure 6.2.) In this case we say that this S.-signature uses the leaf labeled
o1+ -0y Foreveryi = 1,...,n, we call the sequence (authy, auth,,,...,authy, ...,)
an authentication path for v,,....;. (Note that the above sequence is also an au-
thentication path for v,,...,,_,7,, where @ = 1 —0.) Thus, a valid S!-signature to
a document « consists of an n-bit string oy - - - 0,,, authentication paths for each
Vgyo; (0 =1,...,m), and a signature to o with respect to the one-time scheme

(G, S,V) using the signing-key s4,...0,, -

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

528 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Intuitively, forging an S!-signature requires either using an authentication
path supplied by the signer (i.e., supplied by S, as part of an answer to a query)
or producing an authentication path different from all paths supplied by the
signer. In both cases, we reach a contradiction to the security of the one-time
signature scheme (G, S, V). Specifically, in the first case, the forged S’-signature
contains a signature relative to (G, S, V') using the signing-key s,,...,, . The lat-
ter S’SUI,_,G" -signature is verifiable using the verification-key v, ..., , which is au-
thentic by the case hypothesis. This yields forgery with respect to the instance
of the one-time signature scheme associated with the leaf labeled oy - - - o, (since
the document S’-signed by the forger must be different from all S!-signed doc-
uments, and thus the forged document is different from all strings to which a
one-time signature was applied).!® We now turn to the second case (i.e., forgery
with respect to (G', S’, V') is obtained by producing an authentication path dif-
ferent from all paths supplied by the signer). In this case there must exists an
i € {1,...,n} and an i-bit long string oy - - 0; so that authy,...,auth,,...,,_, is
the shortest prefix of the authentication path produced by the forger that is NOT
a prefix of any authentication path supplied by the signer. (Note that ¢ > 0 must
hold, since empty sequences are equal, whereas i < n by the case hypothesis.)
In this case authy,...,,_, (produced by the forge), contains a signature relative
to (G, S,V) using the signing-key s,,....,_,. The latter signature is verifiable
using the verification-key v,,....,_,, which is authentic by the minimality of <.
Furthermore, by definition of 7, the latter signature is to a string different from
the string to which the S!-signer has applied Ssey.0,_, - This yields forgery with
respect to the instance of the one-time signature scheme associated with the
node labeled o1 ---0;_1.

The actual proof is by a reducibility argument. Given an adversary A’ attack-
ing the complex scheme (G',S’, V'), we construct an adversary A that attacks
the one-time signature scheme, (G, S, V). In particular, the adversary A will use
its oracle access S, in order to emulate the memory-dependent signing oracle for
A'. Recall that the adversary A can make at most one query to its S-oracle.
Below is a detailed description of the adversary A. Since we care only about
probabilistic polynomial-time adversaries, we may assume that A’ makes at most
t = poly(n) many queries, where n is the security parameter.

The construction of adversary A: Suppose that (s,v) is in the range of
G(1™). On input v and one-query oracle access to Ss, adversary A proceeds as
follows:

1. Initial choice: A uniformly selects j € {1,...,(2n + 1) - t}.

(The integer j specifies an instance of (G, S, V') generated during the attack
of A'. This instance will be attacked by A. Note that since 2n+1 instances
of (G,S,V) are referred to in each signature relative to (G',S’,V"'), the

18 Note that what matter is merely that the document S’-signed by the forger is different
from the (single) document to which Ssal---a was applied by the Sé—signer7 in case Ssal---u,,,,

n

was ever applied by the S!-signer.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 529

quantity (2n+1)-¢ upper bounds the total number of instances of (G, S, V)
that appear during the entire attack of A’. This upper bound is not tight.)

2. Invoking A’: If j = 1 then A sets vy = v and invokes A’ on input v. In
this case A does not know sy, which is defined to equal s, but can obtain
a single signature relative to it by making a (single) query to oracle S.

Otherwise (i.e., j > 1), machine A invokes G, obtains (s',v') «— G(1™),
sets (sx,vx) = (s',2") and invokes A’ on input v'. We stress that in this
case A knows s,.

In fact, in both case, A’ is invoked on input vy. Also, in both cases, the
one-time instance associated with the root (i.e., the node labeled A) is
called the first instance.

3. Emulating the memory-dependent signing oracle for A': The emulation is
analogous to the operation of the signing procedure as specified in Con-
struction 6.4.14. The only exception refers to the j*® instance of (G, S, V)
that occurs in the memory-dependent signing process. Here, A uses the
verification key v, and if an S,-signature needs to be produced then A
queries S5 for it. We stress that at most one signature needs ever be
produced with respect to each instance of (G,S,V) that occurs in the
memory-dependent signing process, and therefore S is queried at most
once. Details follow.

A maintains a record of all key-pairs and one-time signatures it has gen-
erated and/or obtained from S;. When A is asked to supply a signature
to a new document, denoted «, it proceeds as follows:

(a) A allocates a new leaf-label, denoted o - - - 0, exactly as done by the
signing process.

(b) Forevery i =1,...,n and every 7 € {0, 1}, machine A tries to retrieve
from its record the one-time instance associated with the node labeled
01 ---0;—17. If such an instance does not exist in the record (i.e., the
one-time instance associated with the node labeled oy ---0;_17 did
not appear so far) then A distinguishes two cases:

i. If the record so far contains exactly j — 1 one-time instances (i.e.,
the current instance is the j*" one to be encountered) then A sets
Vgyoi_qr < U, and adds it to its record. In this case, A does
not know s,,...s; _,r, which is defined to equal s, but can obtain a
single signature relative to it by making a (single) query to oracle
Ss.

From this point on, the one-time instance associated with the
node labeled oy - - o;_1 7 will be called the j*" instance.

ii. Otherwise (i.e., the current instance is NOT the j*% one to be en-
countered), A acts as the signing process: It invokes G(1™), ob-
tains (Soq.os_17sVoyoi_yr) — G(1™), and adds it to the record.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

530 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

(Note that in this case A knows s4,...0;_,r, and can generate by
itself signatures relative to it.)

The one-time instance just generated is given the next serial num-
ber. That is, the one-time instance associated with the node la-
beled o; - -0;_17 will be called the k! instance if the current
record (i.e., after the generation of the one-time key-pair asso-
ciated with the node labeled o7 - --0;_17) contains exactly k in-
stances.

(c¢) For every i = 1,...,n, machine A tries to retrieve from its record a
(one-time) signature to the string vy, ..., _,0Voy..0;_,1, relative to the
signing-key $4,...0; ,. If such a signature does not exist in the record
then A distinguishes two cases:

i. If the one-time signature instance associated with the node la-
beled o - - - ;1 is the j*" such instance then A obtains the one-
time signature Ss.yl...ai,l(vo1---a.._10 Vgyos_11) Dy querying S,
and adds this signature to the record.

Note that by the previous steps (i.e., Step 3(b)i as well as Step 2),
s is identified with s,,...,, ,, and that the instance associated
with a node labeled oy ---0;_1 is only used to produce a single
signature; that is, to the string vy,...0;_,0 Voy---0;_,1. LThus, in this
case, A queries S at most once.

We stress that the above makes crucial use of the fact that, for
every 7, the verification-key associated with the node labeled
01+ 0;—17 is identical in all executions of the current step, re-
gardless of whether it is generated in Step 3(b)ii or fixed to equal
v (in Step 3(b)i). This fact guarantees that A only needs a single
signature relative to the instance associated with a node labeled
o1 ---0;_1, and thus queries S at most once (and retrieves this
signature from memory if it ever needs it again).

ii. Otherwise (i.e., the one-time signature instance associated with
the node labeled o, - - - 05_; is NOT the j*® such instance), A acts
as the signing process: It invokes Ss,,l___”i1 , obtains the one-time

signature Ss, . (Voy-0i210 Voy0s_11)Voy 01 7), and adds it

to the record. (Note that in this case A knows s4,....;_,, and can
generate by itself signatures relative to it.)

Thus, A obtains authg,...s; -

(d) Machine A now obtains a one-time signature of « relative to S
(Recall that since A’ never makes the same query twice,!? we need
to generate at most one signature relative to the one-time instance
Ss,, ..., -) This is done analogously to the previous step (i.e., Step 3c).
Specifically:

Soq-om "

19 This assertion can be justified, without loss of generality. Otherwise, we may modify A’
so that retrieves from its own memory the answer to a query that it wishes to ask for the
second time.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 531

i. If the one-time signature instance associated with the leaf labeled

o1 -0, is the 7** instance (associated with any node) then A
obtains the one-time signature S,, ., («) by querying S;.
Note that, in this case, s is identified with s;,...,, , and that an
instance associated with a leaf is only used to produce a single
signature. Thus, also in this case (which is disjoint of Case 3(c)i),
A queries S; at most once.

ii. Otherwise (i.e., the one-time signature instance associated with
the node labeled o - - -0, is NOT the jth instance), A acts as the
signing process: It invokes Ssq---on.’ obtains the one-time signa-
ture Ss, . (a), and adds it to the record. (Again, in this case
A knows s4,...0, , and can generate by itself signatures relative to
it.)

Thus, A obtains 3, = S, .. ().
(e) Finally, A answers the query a with

(o1 -+ op,authy,auth,,,...,authy,..... _,,5Bn)

4. Using the output of A'": When A’ halts with output (o/, '), machine A
checks whether this is a valid document-signature pair with respect to
V,, and whether the document o' did not appear as a query of A'. If
both conditions hold then A tries to obtain forgery with respect to S;.
To explain how this is done, we need to take a closer look at the valid
document-signature pair, (a', '), output by A’. Specifically, suppose that
B’ has the form

(o) -0y, (”(’),O:U(’),pﬁ(’)): (US,O;Ui,laﬁi); s (v;—l,Oav;—l,laﬁL—l)aﬁL)

and that the various components satisfy all conditions stated in the verifica-

tion procedure. (In particular, the sequence (vg o,vg 1,0)), - (V,—1,05 V5—1.1, Brm1)
is the authentication path (for v;,_, ,,) output by A".) Let ¢ be mazimal
so that for some By, ..., #i—1 (which may but need not equal 3, ..., 5,_,)
the sequence (v o,g 1,00), -+ (Vi _1,0:V;_11,Bi-1) is a prefix of some au-
thentication path (for some v,r..515,,,...0,) supplied to A" by A. Note that
i € {0,...,n}, where i = 0 means that (vgo,vp ;) differs from (vo,v;), and
i = n means that the sequence ((vfo,51), - (v, 10,7, _11)) equals the

sequence ((vo,v1), - (Vo) .ot 05 Volo! 1))

Recall that the v;ws are strings included in the output of A’, and that

the v,s are verification-keys as recorded by A. In general, the sequence
((v0,0,v0,1)5 > (Vi—1,0,vi—1,1)) equals the sequence ((vo,v1), -.., (Vo) 0,0, Va0 1))-
In particular, for ¢ > 1, it holds that U;_La', = Uglonol s whereas for ¢ = 0

we shall only refer to vy (which is the veriﬁcation-key attacked by A’).
In both cases, the output of A’ contains a one-time signature relative to
Vg7, and this signature is to a string different from the (possibly) only
one to which a signature was supplied to A’ by A. Analogously to the
motivating discussion above, we distinguish the cases « = n and i < n:

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

532 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

(a) In case ¢ = n, the output of A’ contains the (one-time) signature (3!,
that satisfies V, , , (o', ;) = 1. Furthermore, o' is different from
1 n

the (possibly) only document to which S, , was applied during the
1 n

emulation of the S’-signer by A, since by our hypothesis the document
o/ did not appear as a query of A’. (Recall that, by the construction of
A, instances of the one-time signature scheme associated with leaves
are only applied to the queries of A'.)

(b) In case i < n, the output of A’ contains the (one-time) signature 3,
that satisfies V,,_, (v} ovi,,8i) = 1. Furthermore, v} jv; , is differ-
1ot \Vi0 Y5 0%,
ent from v,:...510 Vof ...o10, Which is the (possibly) only string to which
S, .., was applied during the emulation of the S’-signer by A, where
1 i

the last assertion is due to the maximality of ¢ (and the construction
of A).

Thus, in both cases, A obtains from A’ a valid (one-time) signature rela-

tive to the (one-time) instance associated with the node labeled o7 - - - o!.

Furthermore, in both cases, this (one-time) signature is to a string that
did not appear in the record of A. The question is whether the instance
associated with the node labeled o} - -- o is the j*® instance, for which A
set v = vy1...0. In case the answer is yes, A obtains forgery with respect

to the (one—tiﬂle) verification-key v (which it attacks).

In view of the above discussion, A acts as follows. It determines ¢ as in the
discussion, and checks whether v = Vol (almost equivalently, whether
the ;" instance is the one associated with the node labeled o} - --o!). In
case i = n, machine A outputs the string-signature pair (o, 3/,), otherwise
(ie., i <n) it outputs the string-signature pair (v; 4v; ;, 3}).

This completes the (admittingly long) description of adversary A. We repeat
again some obvious observations regarding this construction. Firstly, A makes
at most one query to its (one-time) signature oracle Ss. Secondly, assuming that
A’ is probabilistic polynomial-time, so is A. Thus, all that remains is to relate
the success probability of A (when attacking a random instance of (G, S,V)) to
the success probability of A’ (when attacking a random instance of (G, S’,V")).
As usual the main observation is that the view of A’, during the emulation (of
the memory-dependent signing process) by A, is identically distributed to its
view in an actual attack on (G',S’,V'). Furthermore, this holds conditioned
on any possible fixed value of j (selected in the first step of A). It follows
that if A’ succeeds to forge signatures in an actual attack on (G’,S', V') with
probability ¢’(n) then A succeeds to forge signatures with respect to (G,S,V)
with probability at least %, where the (2n 4+ 1) - ¢ factor is due to the

probability that the choice of j is a good one (i.e., so that the j*! instance is
the one associated with the node labeled o} - - - o}, where o} --- ¢!, and i are as
defined in Step 4).

We conclude that if (G',S’, V') can be broken by a probabilistic polynomial-
time chosen message attack with non-negligible probability then (G,S,V) can

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 533

be broken by a probabilistic polynomial-time single-message attack with non-
negligible probability, in contradiction to the proposition’s hypothesis. The
proposition follows.

6.4.2.3 The actual construction

In this section, we remove the memory-dependency of Construction 6.4.14, and
obtain an ordinary (rather than memory-dependent) signature scheme. Towards
this end, we use pseudorandom functions (as defined in Definition 3.6.4). The
basic idea is that the record maintained in Construction 6.4.14 can be determined
(on-the-fly) by an application of a pseudorandom function to certain strings. For
example, instead of generating and storing an instance of a (one-time) signature
scheme for each node that we encounter, we can determine the randomness for
the key-generation algorithm as a function of the label of that node. Thus,
there is no need to store the key-pair generated, since if we ever need it again
then re-generating it (in the very same way) will yield exactly the same result.
The same idea applies also to the generation of (one-time) signatures. In fact,
the construction is simplified, since we need not check whether or not we are
generating an object for the first time.

For simplicity, let us assume that, on security parameter n, both the key-
generation and signing algorithms (of the one-time signature scheme (G, S, V))
use exactly n internal coin tosses. (This assumption can be justified by us-
ing pseudorandom generators, which exist anyhow under the assumptions used
here.) For r € {0,1}", we denote by G(1™,r) the output of G on input 1™ and
internal coin-tosses r. Likewise, for r € {0, 1}", we denote by S;(«,) the output
of S, on input a signing-key s and a document «, when using internal coin-tosses
r. For simplicity, we shall be actually using generalized pseudorandom functions
as in Definition 3.6.12 (rather than pseudorandom functions as defined in Defini-
tion 3.6.4).2 Furthermore, for simplicity, we shall consider applications of such
pseudorandom functions to sequences of characters containing {0, 1} as well as
a few additional special characters.

Construction 6.4.16 (Removing the memory requirement from Construction 6.4.14):
Let (G, S, V) be a one-time signature scheme, and { f. : {0,1}* — {0, 1}"‘}T€{071}*

be a generalized pseudorandom function ensemble as in Definition 3.6.12. Con-

sider the following signature scheme, (G',S', V'), which refers to a full binary

tree of depth n as in Construction 6.4.14.

key-generation algorithm G': On input 1", algorithm G' obtains (s,v) — G(1™)
and selects uniformly r € {0,1}". Algorithm G’ outputs the pair ((r, s),v),
where (1, 8) is the signing-key and v is the verification-key.?*

20 We shall make comments regarding the minor changes required in order to use ordinary
pseudorandom functions. The first comment is that we shall consider an encoding of strings
of length up-to n + 2 by strings of length n + 3 (e.g., for i < n + 2, the string = € {0,1}* is
encoded by z10"+27%),

21 In case we use ordinary pseudorandom functions, rather than generalized ones, we select

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

534 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

signing algorithm S’: On input a signing-key (r,s) and a document «, the algo-
rithm proceeds as follows.

1. It selects uniformly oy -~ -0, € {0,1}™.

(Algorithm S’ will use the leaf labeled oy - - -0, € {0,1}™ to sign the
current document. Indeed, with exponentially-vanishing probability
the same leaf may be used to sign two different documents, and this
will lead to forgery (but only with negligible probability).)

(Alternatively, to obtain a deterministic signing algorithm, one may
set o1 - -0, — fr(select-leaf, «), where select-leaf is a special
character.)??

2. Neat, for everyi =1,...,n and every T € {0,1}, the algorithm invokes
G and sets

(50'1"'0'i—17'7 U01"'0i—1‘r) — G(]-n: fr(key_gena [Ui—lT))

where key-gen is a special character.??

3. For every i =1,....n, the algorithm invokes S and sets

Sopoig

def
authol---oi_l = ('U0'1---0'L'_10 sy UVoqovioiql s

Ssal...ai_1 ('Utrl---ai,lo Voy-0i_11> fT(SigIl, (25 R 0'2',1)))

where sign is a special character.?*

4. Finally, the algorithm invokes Ssal___an and outputs®®
(01---0n,authy,auth,,, ...;auths, ..o, _,, s, .. (a, fr(sign,o1---04)))

verification algorithm V': On input a verification-key v, a document a, and an
alleged signature B algorithm V' behaves exactly as in Construction 6.4.14.
Specifically, assuming that 3 has the form

(0-1 O, (U070,’Uo71,ﬂ0), (’(}170,’0171,ﬂ1), . (’Un_170,vn—1,1,ﬂn—l)7ﬂn)

algorithm V' accepts if and only if the following three conditions hold:

r uniformly in {0,1}"*3 so that f, : {0,1}"13 — {0,1}"13. Actually, we shall be using the
function f, : {0,1}"+3 — {0,1}™ derived from the above by dropping the last 3 bits of the
function value.

22 In case we use ordinary pseudorandom functions, rather than generalized ones, this alter-
native can be (directly) implemented only if it is guaranteed that |a| < n. In such a case, we
apply the f, to the (n 4 3)-bit encoding of 00c.

23 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-
ment to f, is the (n + 3)-bit encoding of 1007 - o;_17.

24 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-
ment to f, is the (n + 3)-bit encoding of 1107 + - 0j_1.

25 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-
ment to f, is the (n + 3)-bit encoding of 1107 « - oy

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 535

o V,(vo,0v0,1,50) = 1.
e Fori=1,..,n—1, it holds that V,,_, . (vi,0vi1,Bi) = 1.

hd V'Un.—l,a" (o, Bn) = 1.

Proposition 6.4.17 If (G,S,V) is a secure one-time signature scheme and
{fr :{0,1}* = {0,1}"1},.cq0.1y+ is @ generalized pseudorandom function ensem-
ble then Construction 6.4.16 constitutes a secure (general) signature scheme.

Proof: Following the general methodology suggested in Section 3.6.3, we con-
sider an ideal version of Construction 6.4.16 in which a truly random function
is used (rather than a pseudorandom one). The ideal version is almost identical
to Construction 6.4.14, with the only difference being the way in which oy - - -0,
is selected. Specifically, applying a random function to determine (one-time)
key-pairs and (one-time) signatures is equivalent to generating these keys and
signatures at random (on-the-fly) and re-using the stored values whenever nec-
essary. Regarding the way in which oy - - -0, is selected, observe that the proof
of Proposition 6.4.15 is oblivious of this way, except for the assumption that the
same leaf is never used to sign two different documents. However, the probabil-
ity that the same leaf is used twice by the (memoryless) signing algorithm, when
serving polynomially-many signing requests, is exponentially-vanishing and thus
can be ignored in our analysis. We conclude that the ideal scheme (in which a
truly random function is used instead of f,) is secure. It follows that also the
actual signature scheme (as in Construction 6.4.16) is secure, or else one can
efficiently distinguish a pseudorandom function from a truly random one (which
is impossible). Details follow.

Assume towards the contradiction that there exists a probabilistic polynomial-
time adversary A’ that succeeds to forge signatures with respect to (G',S', V')
with non-negligible probability, but succeeds only with negligible probability
when attacking the ideal scheme. We construct a distinguisher D that on input
1™ and oracle access to f : {0,1}* — {0,1}™ behaves as follows. Machine D
generates ((r',s),v) « G'(1™), and invokes A’ on input v. Machine D answers
the queries of A' by running the signing process, using the signing-key (1, s),
with the exception that it replaces the values f,.(z) by f(x). That is, whenever
the signing process calls for the computation of the value of the function f,» on
some string z, machine D queries its oracle (i.e., f) on the string x, and uses
the respond f(z) instead of f, (xz). When A’ outputs an alleged signature to a
new document, machine M evaluates whether or not the signature is valid (with
respect to V,) and output 1 if and only if A’ has indeed succeeded (i.e., the
signature is valid). Observe that if D is given oracle access to a truly random
function then the emulated A" attacks the ideal scheme, whereas if D is given
oracle access to a pseudorandom function f,. then the emulated A’ attacks the
real scheme. It follows that D distinguishes the two cases, in contradiction to
the pseudorandomness of the ensemble {f.}.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

536 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

6.4.2.4 Conclusions and comments

Theorem 6.4.9 follows by combining Proposition 6.4.17 with the fact that the
existence of secure one-time signature schemes implies the existence of one-
way functions (see Exercise 11), which in turn imply the existence of (general-
ized) pseudorandom functions. Recall that combining Theorem 6.4.9 and Corol-
lary 6.4.8, we obtain Corollary 6.4.10 that states that the existence of collision-
free hashing collections implies the existence of secure signature schemes.

We comment that Constructions 6.4.14 and 6.4.16 can be generalized as
follows. Rather than using a depth n full binary tree, one can use any tree that
has a super-polynomial (in n) number of leaves, provided that one can enumerate
the leaves (resp., uniformly select a leaf), and generate the path from the root
to a given leaf. We consider a few possibilities:

e For any d : N— N bounded by a polynomial in n (e.g., d =2 or d(n) =n
are indeed “extreme” cases), we may consider a full d(n)-ary tree of depth
e(n) so that d(n)(™ is greater than any polynomial in n. The choice of
parameters in Constructions 6.4.14 and 6.4.16 (i.e., d = 2 and e(n) = n) is
probably the simplest one as well as the most efficient one (from a generic
perspective).

Natural complexity measures for a signature scheme include the length of
signatures and the signing and verification times. In a generalized con-
struction, the length of the signatures is linear in d(n) - e(n), and the num-
ber of applications of the underlying one-time signature scheme (per each
general signature) is linear in e(n), where in internal nodes the one-time
signature scheme is applied to string of length linear in d(n). Assuming
that the complexity of one-time signatures is linear in the document length,
all complexity measures are linear in d(n) - e(n), and so d = 2 is the best
generic choice. However, the above assumption may be wrong when some
specific one-time signatures are used. For example, the complexity of pro-
ducing a signature to an £-bit long string in a one-time signature scheme
may be of the form p(n) + p'(n) - £, where p’'(n) < p(n). In such (special)
cases, one may prefer to use larger d : N— N (see Section 6.6.5).

e For the memory-dependent construction, it may be preferable to use un-
balanced trees (i.e., having leaves at various levels). The advantage is that
if one utilizes first the leaves closer to the root then one can obtain a saving
on the cost of signing the first documents.

For example, consider using a ternary tree of super-logarithmic depth
(i.e., d = 3 and e(n) = w(logn)) in which each internal node of level
i € {0,1,...,e(n) — 2} has a two children that are internal nodes and a
single child that is a leaf (and the internal nodes of level e(n) — 1 have only
leaves as children). Thus, for 7 > 1, there are 3'~! leaves at level 4. If we
use all leaves of level i before using any leave of level ¢ + 1 then the length
of the j'! signature in this scheme is linear in log, j (and so is the number
of applications of the underlying one-time signature scheme).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 537

In actual applications, one should observe that in variants of Construction 6.4.14
the size of the tree determines the total number of documents that can be signed,
whereas in variants of Construction 6.4.16 the tree size has even a more dras-
tic effect on the number of documents that can be signed.?® In some cases
a hybrid of Constructions 6.4.14 and 6.4.16 may be preferable: We refer to a
memory-dependent scheme in which leaves are assigned as in Construction 6.4.14
(i.e., according to a counter), but the rest of the operation is done as in Con-
struction 6.4.16 (i.e., the one-time instances are re-generated on-the-fly, rather
than being generated and recorded). In some applications, the introduction of a
document-counter may be tolerated, and the gain is the ability to use a smaller
tree (i.e., of size merely greater than the total number of documents that should
be ever signed).

More generally, we wish to stress that each of the following ingredients of the
above constructions, is useful in a variety of related and unrelated settings. We
refer specifically to the refreshing paradigm, the authentication tree construction,
and the notion (and constructions) of one-time signatures. For example:

e It is common practice to authenticate messages sent during a “commu-
nication session” via a session-key that is typically authenticated by a
master-key. One of the reasons for this practice is the prevention of a
chosen message attack on the (more valuable) master-key. (Other reasons
include allowing the use of a faster alas less secure authentication scheme
for the actual communication, introducing independence between sessions,
etc.)

e Observe the analogy between the tree-hashing (of Construction 6.2.13)
and the authentication tree (of Construction 6.4.14). Despite the many
differences, in both cases, the value of internal nodes essentially determines
the values that may be claimed for their children.

e Recall the application of one-time signatures in the construction of CCA-
secure public-key encryption schemes (cf. proof of Theorem 5.4.30).

6.4.3 * Universal One-Way Hash Functions and using them

So far, we have established that the existence of collision-free hashing collections
implies the existence of secure signature schemes (cf. Corollary 6.4.10). We seek
to weaken the assumption under which secure signature schemes can be con-
structed, and bear in mind that the existence of one-way functions is certainly a
necessary condition (cf., for example, Exercise 11). In view of Theorem 6.4.9, we
may focus on constructing secure one-time signature schemes. Furthermore, re-
call that secure length-restricted one-time signature schemes can be constructed

26 In particular, the number of documents that can be signed should definitely be smaller
than the square root of the size of the tree (or else two documents are likely to be assigned the
same leaf). Furthermore, we cannot use a small tree (e.g., of size 1000) even if we know that
the total number of documents that will ever be signed is small (e.g., 10), since otherwise the
probability that two documents are assigned the same leaf is too big (e.g., 1/20).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

538 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

based on any one-way function (cf. Corollary 6.4.6). Thus, the only bottleneck
we face (with respect to the assumption used) is Proposition 6.4.7, which refers
to Construction 6.2.6 and utilizes collision-free hashing. Our aim in this section,
is to replace this component in the construction. We use a variant of Construc-
tion 6.2.6 in which, instead of using collision-free hashing, we use a seemingly
weaker notion called Universal One-Way Hash Functions.

6.4.3.1 Definition

A collection of universal one-way hash functions is defined analogously to a
collection of collision-free hash functions. The only difference is that the hard-
ness (to form collisions) requirement is relaxed. Recall that for a collection of
collision-free hash functions it was required that given the function’s description
it is hard to form an arbitrary collision under the function. For a collection
of universal one-way hash functions we only require that given the function’s
description h and a preimage z it is hard to find an z' # z so that h(z') = h(z).
We refer to this requirement as to hardness to form designated collisions.

Our formulation of the hardness to form designated collisions is actually
seemingly stronger. Rather than being supplied with a (random) preimage z,
the collision-forming algorithm is allowed to select = by itself, but must do so
before being presented with the function’s description. That it, the attack of the
collision-forming algorithm proceeds in three stages: first the algorithm selects a
preimage x, next it is given a description of a randomly selected function h, and
finally it is required to output =’ # x such that h(z') = h(z). We stress that the
third stage in the attack is also given the random choices made while producing
the preimage in the first stage. This yields the following definition, where the
first stage is captured by a deterministic polynomial-time algorithm Ag (which
maps a sequence of coin tosses, denoted Uy, to a preimage of the function)
and the third stage is captured by algorithm A (which is given the very same
Uqy(ny as well as the function’s description).

Definition 6.4.18 (universal one-way hash functions - UOWHF): Let £ : N —
N. A collection of functions {hs : {0,1}* — {0,1}‘3”3‘)}36{071}* is called uni-
versal one-way hashing (UOWHF) if there ezists a probabilistic polynomial-time
algorithm I so that the following holds

1. (admissible indexing — technical):2" For some polynomial p, all sufficiently
large n’s and every s in the range of I(1™) it holds that n < p(|s|). Fur-
thermore, n can be computed in polynomial-time from s.

2. (efficient evaluation): There exists a polynomial-time algorithm that given
s and x, returns hs(z).

3. (hard to form designated collisions): For every polynomial q, every deter-
ministic polynomial-time algorithm Ay, every probabilistic polynomial-time

27 This condition is made merely to avoid annoying technicalities. Note that |s| = poly(n)
holds by definition of I.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 539

algorithm A, every polynomial p and all sufficiently large n’s

r hl(l")(A(I(]-n)a Uq(n))) = hI(l")(AO(Uq(n))) L
Prl T AT) £ W) | Sy 7

where the probability is taken over U,y and the internal coin tosses of
algorithms I and A.

The function ¢ is called the range specifier of the collection.

We stress that the hardness to form designated collisions condition refers to the
following three-stage process: first, using a uniformly distributed r € {0, 1}“"),
the (initial) adversary generates a preimage z = Ao(r); next, a function h is
selected; and, finally, the (residual) adversary A is given h (as well as r used in the
first stage), and tries to find a preimage 2’ # x such that h(z') = h(x). Indeed,
Eq. (6.7) refers to the probability that z' Lef A(h,7) # = and yet h(z') = h(x).

Note that the range specifier must be super-logarithmic (or else, given s and
x « U,, one is too likely to find an z' # x so that hs(z) = hs(z'), by uniformly
selecting ' in {0, 1}™). Also note that any UOWHEF collection yields a collection
of one-way functions (see Exercise 15). Finally, note that any collision-free
hashing is universally one-way hashing, but the converse is false (see Exercise 16).
Furthermore, it is not known whether collision-free hashing can be constructed
based on any one-way functions (in contrast to Theorem 6.4.29 below).

6.4.3.2 Constructions

We construct UOWHF collections in several steps, starting with a related but
restricted notion, and relaxing the restriction gradually (until we reach the un-
restricted notion of UOWHEF collections). The abovementioned restriction refers
to the length of the arguments to the function. Most importantly, the hardness
(to form designated collisions) requirement will refer only to argument of this
length. That is, we refer to the following technical definition.

Definition 6.4.19 ((d,7)-UOWHFs): Let d,r : N — N. A collection of func-
tions {hs : {0,130 — {0,137 UsD} ey is called (d,7)-UOWHF if there
exists a probabilistic polynomial-time algorithm I so that the following holds

1. For all sufficiently large n’s and every s in the range of I(1™) it holds that
|s| =n.28

2. There ezists a polynomial-time algorithm that given s and x € {0, l}d“s‘),
returns hs(x).

28 Here we chose to make a more stringent condition, requiring that |s| = n rather than
n < poly(|s]). In fact, one can easily enforce this more stringent condition by modifying I into
I' so that I'(1/(™)) = [(1™) for a suitable function [: N- N satisfying l(n) < poly(n) and
n < poly(I(n)).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

540 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

3. For every polynomial q, every deterministic polynomial-time algorithm Ay
mapping q(n)-bit long strings to d(|s|)-bit long strings, every probabilistic
polynomial-time algorithm A, every polynomial p and all sufficiently large
n’s Eq. (6.7) holds.

Off course, we care only of (d,r)-UOWHF for functions d,r : N — N satisfying
d(n) > r(n). (The case d(n) < r(n) is trivial since collisions can be avoided
altogether; say by the identity map.) The “minimal” non-trivial case is when
d(n) = r(n)+1. Indeed, this is our starting point. Furthermore, the construction
of such a minimal (d,d — 1)-UOWHF (undertaken in the first step) is the most
interesting step to be taken on our entire way towards the construction of full-
fledged UOWHE.

Step I: constructing (d,d—1)-UOWHFs. We show how to construct length-
restricted UOWHFs that shrink their input by a single bit. Our construction
can be carried out using any one-way permutation. In addition, we use a family
of hashing functions, S7~1, as defined in Section 3.5.1.1. Recall that a function
selected uniformly in S?~! maps {0,1}" to {0,1}""! in a pairwise independent
manner, that the functions in S"~! are easy to evaluate, and that for some
polynomial p it holds that log, |S"~!| = p(n).

Construction 6.4.20 (a (d,d—1)-UOWHEF): Let f : {0,1}* — {0,1}* be a 1-1
and length preserving function, and let S~ be a family of hashing functions
such that log, |S"~t| = p(n), for some polynomial p. (Specifically, suppose that
log, S| € {3n—2,2n}, as in Ezercises 22.2 and 23 of Chapter 3.) Then, for
every s € S*~1 = {0,1}*("™) and every x € {0,1}", we define h'.(z) et hs(f(x)).
In case |s| € {p(n) : n € N}, we define b/, = h!, where s' is the longest prefix
of s satisfying |s'| € {p(n) : n € N}. We refer to an indez selection algorithm
that, on input 1™, uniformly selects s € {0,1}™.

That is, A’ : {0,1}4UsD — {0,1}20sD=1 where d(m) is the largest integer n
satisfying p(n) < m. Note that d is monotonically non-decreasing, and that for
1-1 p’s the corresponding d is onto (i.e., d(p(n)) = n for every n).

The analysis presented below uses, in an essential way, an additional prop-
erty of the above-mentioned families of hashing functions; specifically, we assume
that give two preimage—image pairs it is easy to uniformly generate a hashing
function (in the family) that is consistent with these two mapping conditions.
Furthermore, to facilitate the analysis we use a specific family of hashing func-
tions, presented in Exercise 23 of Chapter 3: functions in S"~! are described by
a pair of elements of the finite field GF(2") so that the pair (a,b) describes the
function hgp that maps © € GF(2") to the (n — 1)-bit prefix of the n-bit repre-
sentation of az + b, where the arithmetics is of the field GF(2™). This specific
family satisfies all the additional properties required in the next proposition (see
Exercise 20).

Proposition 6.4.21 Suppose that f is a one-way permutation, and thatlog, |St~1| =
2n. Furthermore, suppose that S"~! satisfies the following two conditions

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 541

C1 All but a negligible fraction of the functions in S~ are 2-to-1.

C2 There exists a probabilistic polynomial-time algorithm that given yi,ys €
{0,1}" and 21,22 € {0,1}"7L, outputs a uniformly distributed element of
{s€ 8" L he(y) =2 Vi€ {1,2}}.

Then {h}}seqo,13+ as in Construction 6.4.20 is a (d,d—1)-UOWHF', for d(m) =
lm/2].

Proof Sketch: Intuitively, forming designated collisions under k!, = h o f yields
ability to invert f, because the collision is due to hg, which may be selected such
that hs(y) = hs(f(z")) for any given y and z'. We stress that typically there are
only two preimages of A/ (z') under hl, one being z’ itself (which is given to the
collision-finder) and the other being f~!(y) such that h(y) = h’(z'). Thus, if
we wish to invert f on a random image y, then we may invoke a collision-finder,
which first outputs some z', supply it with a random s satistying h,(y) = h'.(z'),
and hope that it forms a collision (i.e., finds a different preimage = satisfying
h'(x) = h'(2")). Indeed, the different preimage must be f~!(y), which means
that whenever the collision-finder succeed we also succeed (i.e., invert f on y).

The actual proof is by a reducibility argument. Suppose that we are given
a probabilistic polynomial-time algorithm A’ that forms designated collisions
under {h.}, with respect to preimages produced by a deterministic polynomial-
time algorithm A{, which maps p(n)-bit strings to n-bit strings. Then, we
construct an algorithm A that inverts f. On input y = f(z), where n = |y| = |z|,
algorithm A proceeds as follows:

(1) Select r' uniformly in {0,1}*™) and compute =’ = Aj(r') and y' = f(z').
(2) Select s uniformly in {s € S"~! : hy(y') = hs(y)}.

(Recall that y is the input to A, and y’ is generated by A in Step (1).)
(3) Invoke A’ on input (s,7'), and output whatever A’ does.

By Condition C2, Step (2) can be implemented in probabilistic polynomial-time.

Turning to the analysis of algorithm A, we consider the behavior of A on
input y = f(z) for a uniformly distributed z € {0,1}" (which implies that y
is uniformly distributed over {0,1}"™). We first observe that for every fixed r'
selected in Step (1), if y is uniformly distributed in {0, 1}™ then s as determined
in Step (2) is uniformly distributed in S?~!. Using Condition C1, it follows that
the probability that h is not 2-to-1 is negligible. By the construction of A, the
probability that f(z') =y is also negligible (but we could have taken advantage
of this case too, by augmenting Step (1) so that if ¥’ = y then A halts with
output z'). We now claim that, in case f(z') # y and hy is 2-to-1, if A’ returns
z" such that 2" # z' and hi(z") = hl(z") then f(z") =y.

Proving the Claim: By the definitions of A, and A (i.e., its Step (2)), we
have hi(z) = hs(f(z)) = hs(y) = hs(y') = hs(f(z")) = hi(z"), which
equals h.(z") by one of the claim’s hypotheses. Thus, z', 2" and z are all
preimages of h(z) = hs(y) under h, but they are not necessarily distinct.
By other two hypotheses z' # z" and h}, = hs; o f is 2-to-1 (since h; is
2-to-1 and f is 1-to-1). Thus, z € {z',2"'}. Using the last of the claim’s

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

542 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

hypotheses (i.e., y = f(z) # f(z')) and the hypothesis that f is 1-1, it
follows that x # ', which in turn implies that z = z'" and y = f(z").

We conclude that if A’ forms designated collisions with probability &'(n)
then A inverts f with probability e'(n) — u(n), where p is a negligible function
(accounting for the negligible probability that hs is not 2-to-1). The proposition
follows. O

Step II: constructing (d',d'/2)-UOWHFs. We now take the second step
on our way, and use any (d,d — 1)-UOWHEF in order to construct a (d',d'/2)-
UOWHEF. That is, we construct length-restricted UOWHF's that shrink their
input by a factor of 2. The construction is obtained by composing a sequence
of (different) (d,d — 1)-UOWHFs. For simplicity, we assume that the function
d : N— N is onto and monotonically non-decreasing. In such a case we denote
by d=*(m) the smallest natural number n satisfying d(n) = m.

Construction 6.4.22 (a (d',d'/2)-UOWHF): Let {h, : {0,1}%s) — {0, 1}d(|5‘)_1}s€{071}*,
where d : N—N is onto and non-decreasing. Then, for every s, vy S1d(n) /2] s
where each s; € {0,1}4 (@ +H1=0 and every z € {0,114, we define

def
h‘lsl,...,SLd("‘)/QJ (1") = hs_d(n)/ZJ (‘ B h52 (h51 ('T)) o ‘)

That is, we let xg Lef z, and x; «— hy,(z;—1), fori =1,...,|d(n)/2]. (Note that
d(|s;|) =d(n) + 1 —i and |z;| = d(n) + 1 — i indeed hold.)

We refer to an index selection algorithm that, on input 1™, determines the
largest integer n such that m > m' < Ziti(ln)/ﬂ d7Y(d(n) + 1 — i), uniformly
selects s1, ..., |d(n)/2) S0 that s; € {0, 13477 @m+1-0 gnd 5 € {0,1}™ ™' and

def

lets P snmstacuyses — ot tau o

That is, m = [3| and A% : {0,1}4) — {0,1}14V)/2]] where n is largest so that
m > Z}i(ln)/zj d=Y(d(n) +1—1). Thus, d’'(m) = d(n), where n is as above; that
is, we have AL : {0,1}4(F) — {0,1}L"(FD/2] with d'(|5]) = d(n). Note that,
for d(n) = Q(n) (as in Construction 6.4.20), it holds that d’(O(n?)) > d(n) and
d'(m) = Q(y/m) follows. More generally, if for some polynomial p it holds that
p(d(n)) > n (for all n’s) then for some polynomial p' it holds that p'(d'(m)) > m
(for all m’s), since d'(p(n) - d(n)) > d(n). We call such a function sufficiently-
growing; that is, d : N— N is sufficiently-growing if there exists a polynomial p
so that for every n it holds that p(d(n)) > n. (E.g., for every fixed ¢,¢’ > 0, the
function d(n) = &'n°® is sufficiently-growing.)

Proposition 6.4.23 Suppose that {hs}cfo0,1}+ s a (d,d — 1)-UOWHF, where
d : N—=N is onto, non-decreasing and sufficiently-growing. Then, for some
sufficiently-growing function d' : N—N, Construction 6.4.22 is a (d',|d'/2])-
UOWHEF.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 543

Proof Sketch: Intuitively, a designated collision under h/, yields a desig-

seesSd/2
nated collision under one of the hy,’s. That is, let zg def z, and x; «— hg, (T;-1),
for i = 1,...,[d(n)/2]. Then if given x and 3 = (s1,...,54/2), one can find an
x' # x so that hi(z) = hi(z'), then there exists an ¢ so that z;—; # «;_; and
hs; (xi—1) = hs, (x,_,), where the z!’s are defined analogously to the z;’s. Thus,
we obtain a designated collision under hs,.

The actual proof uses the hypothesis that it is hard to form designated col-
lisions when one is also given the coins used in the generation of the preimage
(and not merely the preimage itself). Specifically, we construct an algorithm
that forms designated collision under one of the hy,’s, when given not only z;_;
but rather also z¢ (which yields x;—; as above). The following details are quite
tedious, and merely provide an implementation of the above idea.

As stated, the proof is by a reducibility argument. We are given a prob-
abilistic polynomial-time algorithm A’ that forms designated collisions under
{RhL}, with respect to preimages produced by a deterministic polynomial-time
algorithm A that maps p'(n)-bit strings to n-bit strings. We construct al-
gorithms Ay and A such that A forms designated collisions under {h,} with
respect to preimages produced by algorithm Ay, which maps p(n)-bit strings
to n-bit strings, for a suitable polynomial p. Specifically, p : N— N is 1-1 and
p(n) > p'(d1(2d(n))) +n +n-d-(2d(n)).

We start with the description of Ag; that is, the algorithm that generates
preimages of {hs}. Intuitively, Ay selects a random j, uses Af to obtain a
preimage xo of {hL}, generates random sy, ..., s;_1, and outputs a preimage x;_;
of {hs,}, computed by z; = hs,(z;—1) for i = 1,...,j — 1. (Algorithm A will be
given z;_1 and a random h,,_, and will try to form a collision with z;_; under
hs;_,.) Specifically, on input r € {0, 1}7(| algorithm Ay proceeds as follows,

where g(n) = d~1(2d(n)).

Write r = 17973 so that |r1| = n and |r3]| = p'(g(n)).
(1) Using r1, determine m in {n +1,...,n-¢g(n)} and 5 € {1,...,q(n)} so that
both m and j are almost uniformly distributed in the corresponding sets.
(2) Compute the largest integer n' so that m < Z}i(lnr)/zj d=t(d(n') + 1 —1).
(3) Ifd='(d(n') +1—j) # n then output the d(n)-bit long suffix of r3.
(Comment: the output in this case is immaterial to our proof.)
(4) Otherwise (i.e., n = d !(d(n') + 1 — j), which is the case we care about), do:
(4.1) Let sgs1---s;—1 be a prefix of ry so that
Jsof = m — 42 a=td(') +1 -),
and |s;| =d=*(d(n') +1—1i),fori=1,...,5 — 1.
(4.2) Let @ < Af(r"), where r' is the p'(d=1(d(n')))-bit long suffix of r3.
(4.3)Fori=1,...,j — 1, compute z; < hs,(z;_1).
Output z;_;.

As stated above, we only care about the case in which Step (4) is applied. This
case occurs with noticeable probability, and the description of the following
algorithm A refers to it. Algorithm A will be given z;_; as produced above

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

544 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

(along with (or actually only) the coins used in its generation) as well as a
random h,;_, and will try to form a collision with z;_; under hs;_,. On input
5€4{0,1}™ and r € {0,1}?(") algorithm A proceeds as follows.

(1-2) Using r, determine m, j and n' exactly as done by Ajp.
(3) Ifd *(d(n')+1—j)#n then abort.
(4) Otherwise (i.e., n = d (d(n') + 1 — 7)), do:
(4.1) Determine sg, $1, ..., 5j_1 and 7’ exactly as Ag does in Step (4).
(4.2) Uniformly select s;41, ..., $|q(n)/2) SO that s; € {0, 1347 (dn)+1-4)
and set s = 80,81, ...,8j 1,8, 8541, S[d(n’)/2]
(4.3) Invoke A’ on input (s',7'), and output whatever A’ does.

Clearly, if algorithms A’ and Aj run in polynomial-time then so do A and Ay. We
now lower bound the probability that A succeeds to form designated collisions
under {h,}, with respect to preimages produced by Ay. We start from the
contradiction hypothesis by which the corresponding probability for A’ (w.r.t
Aj) is non-negligible.

Let use denote by £'(m) the success probability of A" on uniformly distributed
input (s',7') € {0,1}™ x {0,1}*'(™)_ Let n' be the largest integer so that m <
Z}i(ln’)m d=1(d(n') + 1 —14). Then, there exists a j € {1,...,d(n')} so that with
probability at least ¢'(m)/d'(n') on input (s',7'), where s" = s¢, 51, ..., S| a(n)/2]

as above, A’ outputs an z’ # =z Lef Agy(r') so that hg, (-~ (hs, (2')---) #

he; ,(---(hs,(z')---) and hg; (- - (hs, (z") - --) = hs;(--- (hs, (2') - - -). Fixing this
m, j and n', let n = d=1(d(n') + 1 — j), consider what happens when A is
invoked on uniformly distributed (s,7) € {0,1}" x {0,1}*("). With probabil-
ity at least 1/m? over the possible 7’s, the values of m and j are determined
to equal the above. Conditioned on this case, A’ is invoked on uniformly dis-
tributed input (s',7') € {0,1}™x{0,1}* (™) and so a collision at the j*" hashing
function occurs with probability at least ¢'(m)/d'(n'). Note that m = poly(n)
and d'(n') = poly(n). This implies that A succeeds with probability at least

def &'(m &' (poly(n
2(n) = rty = SR

if £’ is non-negligible then so is €, and the proposition follows. O

, with respect to preimages produced by Agy. Thus,

Step III: Constructing (length-unrestricted) quasi-UOWHFs that shrink
their input by a factor of two. The third step on our way consists of using
any (d,d/2)-UOWHEF in order to construct “quasi UOWHFs” that are applicable
to any input length but shrink each input to half its length (rather than to a fixed
length that only depends on the function description). The resulting construct
does not fit Definition 6.4.19, since the function’s output length depends on the
function’s input length, but the function can be applied to any input length
(rather than only to a single length determined by the function’s description).
Yet, the resulting construct yields a (d',d'/2)-UOWHF for any polynomially-
bounded function d' (e.g., d'(n) = n?), whereas in Construction 6.4.22 the func-
tion d’ is fixed and satisfies d'(n) < n. The construction itself amounts to
parsing the input into blocks and applying the same (d, d/2)-UOWHF to each
block.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 545

Construction 6.4.24 (a (d',d'/2)-UOWHF for any d'): Let {h, : {0,1}2(s) —
{0, 1}LsD/2Y (v 1y, where d : N—N is onto and non-decreasing. Then, for
every s € {0,1}" and every x € {0,1}*, we define

h’s(l‘) déf hs(xl) L hs(xt]_od(n)—\;cdfl)

where © = 1 - x4, 0 < |z¢] < d(n) and |z;| = d(n) fori =1,..,t — 1. The
index selection algorithm of {h’} is identical to the one of {hs}.

Clearly, Construction 6.4.24 satisfies Conditions 1 and 2 of Definition 6.4.18,
provided that {hs} satisfies the corresponding conditions of Definition 6.4.19.
We thus focus of the hardness to form designated collisions property.

Proposition 6.4.25 Suppose that {hs}.cio1}+ is a (d,d/2)-UOWHF, where
d : N—=N is onto, non-decreasing and sufficiently-growing. Then Construc-
tion 6.4.22 satisfies Condition 3 of Definition 6.4.18.

Proof Sketch: Intuitively, a designated collision under h yields a designated
collision under h,. That is, consider the parsing of each string into blocks of
length d(n), as in the above construction. Then if given © = ;1 -- -z, and s, one
can find an ' = 2 ---z}, # = so that bl (z) = hl(z'), then t' = t and there
exists an 7 such that x; #) and hs(z;) = hs(x}).

The actual proofis by a reducibility argument. Given a probabilistic polynomial-
time algorithm A’ that forms designated collisions under {h’}, with respect to
preimages produced by a deterministic polynomial-time algorithm Af, we con-
struct algorithms Ay and A such that A forms designated collisions under {h,}
with respect to preimages produced by algorithm Aj. Specifically, algorithm
Ayp invokes Ajf), and uses extra randomness (supplied in its input) to uniformly
select one of the d(n)-bit long blocks in the standard parsing of the output of
Aj. That is, the random-tape used by algorithm Ay has the form (r',7), and
Ag outputs the i*® block in the parsing of the string AH(r’). Algorithm A is
obtained analogously. That is, given s € {0,1}"™ and coins 7 = (r',%) used by
Ay, algorithm A invokes A’ on input s and 7', obtains the output z', and outputs
the i*? block in the standard parsing of '.

Note that whenever we have a collision under A, (i.e., a pair z # z' such
that h!(z) # hl(z')), we obtain at least one collision under the corresponding
hs (i.e., for some i, the ith blocks of = # z' differ, and yet both are mapped by
hs to the same image). Thus, if algorithm A’ succeeds (in forming designated
collisions w.r.t {h’}) with probability £'(n) then algorithm A succeeds (in form-
ing designated collisions w.r.t {hs}) with probability at least ¢’(n)/t(n), where
t(n) is a bound on the running-time of A’ (which also upper-bounds the length
of the output of A', and so 1/t(n) is a lower bound on the probability that the
colliding strings differ in a certain uniformly selected block). The proposition
follows. O

Step I'V: Full-fledged UOWHFs. The last step on our way consists of using
any quasi-UOWHFSs as constructed (in Step III) above to obtain full-fledged

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

546 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

UOWHFs. That is, we use quasi-UOWHFs that are applicable to any input
length but shrink each input to half its length (rather than to a fixed length that
only depends on the function description). The resulted construct is a UOWHF
(as defined in Definition 6.4.18). The construction is obtained by composing
a sequence of (different) quasi-UOWHFs; that is, the following construction is
analogous to Construction 6.4.22.

Construction 6.4.26 (a UOWHF): Let {h, : {0,1}* — {0,1}"}seq0,13+, S0
that |hs(x)| < |z|/2, for all x’s. Then, for every si,...,8, € {0,1}", every t € N
and © € {0,1}2"", we define

Py oyon (€)= P, (- sy (s (2)) -+ +)

That is, we let xg def z, and z; «— hg(x;—1), for i = 1,...,t. Strings = of
length that is not of the form 2t -n are padded into such strings in a standard
manner. We refer to an index selection algorithm that, on input 1™, determines
n = |/m], uniformly selects si, ..., 5, € {0,1}" and s¢ € {0,1}’“7”2, and lets

def
hISmSl,---,Sn = hlsl,---,su'
Note that A%, :{0,1}* — {0,1}", and that |so, 51, ..., sn| = m < (n+1)*.

Proposition 6.4.27 Suppose that {hs}scq0,1}+ satisfies the conditions of Defi-
nition 6.4.18, except that it maps arbitrary input strings to outputs having half
the length (rather than a length determined by |s|). Then Construction 6.4.26
constitutes a collection of UOWHFs.

The proof of Proposition 6.4.27 is omitted because it is almost identical to the
proof of Proposition 6.4.23.

Conclusion: Combining the above four steps, we obtain a construction of (full-
fledged) UOWHEFs (based on any one-way permutation). That is, combining
Proposition 6.4.21, 6.4.23, 6.4.25 and 6.4.27, we obtain:

Theorem 6.4.28 If one-way permutations ezist then universal one-way hash
functions exist.

Note that the only barrier towards constructing UOWHEF based on arbitrary
one-way functions is Proposition 6.4.21, which refers to one-way permutations.
Thus, if we wish to construct UOWHF based on any one-way function then
we need to present an alternative construction of (d,d — 1)-UOWHF (i.e., an
alternative to Construction 6.4.20, which fails in case f is 2-to-1).2? Such a
construction is actually known, and so the following result is known to hold (but
is not proven here):

29 For example, if f(o,z') = (0, f'(z")), for o € {0,1}, then forming designated collisions
under Construction 6.4.20 is easy: Given (0,z'), one outputs (1,z'), and indeed a collision is
formed already under f.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 547

Theorem 6.4.29 Universal one-way hash functions exist if and only if one-way
functions exist.

We stress that the difficult direction is the one referred to above (i.e., from
one-way functions to UOWHEF collections). For the much easier converse, see
Exercise 15.

6.4.3.3 One-time signature schemes based on UOWHF

Using universal one-way hash functions, we present an alternative construc-
tion of one-time signature schemes based on length-restricted one-time signature
schemes. Specifically, we replace Construction 6.2.6 in which collision-free hash-
ings were used by the following construction in which universal one-way hash
functions are used instead. The difference between the two constructions is that
here the (description of the) hashing function is not a part of the signing and
verification keys, but is rather selected on the fly by the signing algorithm (and
appears as part of the signature). Furthermore, the description of the hash
function is being authenticated (by the signer) together with the hash value. It
follows that the forging adversary, which is unable to break the length-restricted
one-time signature scheme, must form a designated collision (rather than an
arbitrary one). However, the latter is infeasible too (by virtue of the UOWHF
collection in use). We comment that the same (new) construction is applicable
to length-restricted signature schemes (rather than to one-time ones): we stress
that, in this case, a new hashing function is selected at random each time the
signing algorithm is applied. In fact, we present the more general construction.

Construction 6.4.30 (the hash and sign paradigm, revisited): Let ¢,£' : N—N
such that €(n) = €'(n) + n. Let (G,S,V) be an L-restricted signature scheme as
in Definition 6.2.1, and {h, : {0,1}* — {0,1}[(‘T|)}T€{071}* be a collection of
functions with an indezxing algorithm I (as in Definition 6.4.18). We construct
a general signature scheme, (G',S", V'), with G' identical to G, as follows:

signing with S’: On input a signing-key s € G (1™) and a document o € {0, 1}*,
algorithm S' proceeds in two steps:
1. Algorithm S invokes I to obtain By «— I(1™).
2. Algorithm S' invokes S to produce By — Ss(f1,hg, ().

Algorithm S" outputs the signature (51, B2).

verification with V': On input a verifying-key v € GL(1™), a document o €
{0,1}*, and a alleged signature (B1, B2), algorithm V' invokes V , and out-
puts Vv((/glahﬁl(a))aﬁZ)'

Recall that secure f-restricted one-time signature schemes exist for any poly-
nomial ¢, provided that one-way function exist. Thus, the fact that Construc-
tion 6.4.30 requires £(n) > n is not a problem. In applying Construction 6.4.30,
one should first choose a family of UOWHFs {h,. : {0,1}* — {0, 1}41(‘T|)}T€{071}*,

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

548 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

then determine £(n) = £'(n)+mn, and use a corresponding secure ¢-restricted one-
time signature scheme.

Let us pause to compare Construction 6.2.6 with Construction 6.4.30. Re-
call that in Construction 6.2.6 the function description 8y « I(1™) is produced
(and fixed as part of both keys) by the key-generation algorithm. Thus, the
function description f; is trivially authenticated (i.e., by merely being part of
the verification-key). Consequently, in Construction 6.2.6, the S'-signature (of
a) equals Ss(hg, (). In contrast, in Construction 6.4.30 a fresh new (function
description) ; is selected per each signature, and thus 8; needs to be authen-
ticated. Hence, the S’-signature equals the pair (81, Ss(81, hg, (@))). Since we
want to be able to use (length-restricted) one-time signatures, we let the signing
algorithm authenticate both £, and hg, (@) via a single signature. (Alterna-
tively, we could have used two instances of the signature scheme (G, S, V'), one
for signing the function description 3;, and the other for signing the hash value

hg, (@).)

Proposition 6.4.31 Suppose that (G,S,V) is a secure (-restricted signature
scheme and that {h, : {0,1}* — {0, I}ZW')*'"}TE{OJ}* is a collection of UOWHFss.
Then (G',S", V"), as defined in Construction 6.4.30, is a secure (full-fledged) sig-
nature scheme. Furthermore, if (G,S,V) is only a secure £-restricted one-time
signature scheme then (G',S', V') is a secure one-time signature scheme.

Proof Sketch: The proof follows the underlying principles of the proof of
Proposition 6.2.7. That is, forgery with respect to (G',S’,V') yields either
forgery with respect to (G, S, V) or a collision under the hash function, where in
the latter case a designated collision is formed (in contradiction to the hypothesis
regarding the UOWHEF). For the furthermore-part, the observation underlying
the proof of Proposition 6.4.7 still holds (i.e., the number of queries made by
the forger constructed for (G,S,V) equals the number of queries made by the
forger assumed (towards the contradiction) for (G',S’,V")). Details follow.
Given an adversary A’ attacking the complex scheme (G',S’, V'), we con-
struct an adversary A that attacks the -restricted scheme, (G, S, V). The ad-
versary A uses I (the indexing algorithm of the UOWHF collection) and its
oracle Sy in order to emulate the oracle S for A’. This is done in a straightfor-
ward manner; that is, algorithm A emulates S’ by using the oracle S, (exactly
as S! actually does). Specifically, to answer query ¢, algorithm A generates
a; «— I(1"), forwards (a1, ha, (¢)) to its own oracle (i.e., S), and answers with
(a1,a2), where az = S(a1, ha, (¢)). (We stress that A issues a single Ss-query per
each S!-query made by A’.) When A’ outputs a document-signature pair relative
to the complex scheme (G',S’, V'), algorithm A tries to use it in order to form
a document-signature pair relative to the f-restricted scheme, (G,S,V). That
is, if A" outputs the document-signature pair («, 3), where 8 = (81, 82), then A

will output the document-signature pair (as, 82), where as def (B1, ha, (@)).

Assume that with (non-negligible) probability ¢'(n), the (probabilistic polynomial-
time) algorithm A’ succeeds in existentially forging relative to the complex
scheme (G',S",V'). Let (a(?, 3")) denote the i*" query and answer pair made

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 549

by A', and («,) be the forged document-signature pair that A" outputs (in case

of success), where 3(9) = (ﬁ%i),ﬁéi)) and 8 = (01, B2). We consider the following
two cases regarding the forging event:

Case 1: (B1, hp, (a)) # (,BY), hﬁ(,.)(a(i))) for all i’s. (That is, the S,-signed value
1

in the forged signature (i.e., (01, hg, (o)) is different from all queries made
to Ss.) In this case, the document-signature pair ((81, hg, (), B2) consti-
tutes a success in existential forgery relative to the f-restricted scheme
(G,S,V).

Case 2: (B1,hp, (a)) = (,BY), hf’i” () for some i. (That is, the S,-signed value
used in the forged signature equals the i*® query made to S,, although
a # o)) Thus, B = 8" and hg, (o) = h g0 (@), although a # a(®. In
this case, the pair (a,a(?)) forms a designated collision under h g0 (and

1
we do not obtain success in existential forgery relative to the f-restricted
scheme). We stress that A’ selects a(*) before it is given the description of
the function hﬁu), and thus its ability to later produce a # (¥ such that
1

hg, (@) = h g (') yields a violation of the UOWHEF property.
1

Thus, if Case 1 occurs with probability at least ¢'(n)/2 then A succeeds in
its attack on (G, S,V’) with probability at least ¢'(n)/2, which contradicts the
security of the f-restricted scheme (G, S, V). On the other hand, if Case 2 occurs
with probability at least '(n)/2 then we derive a contradiction to the difficulty
of forming designated collision with respect to {h,}. Details regarding Case 2
follow.

We start with a sketch of the construction of an algorithm that attempts
to form designated collisions under a randomly selected hash function. Loosely
speaking, we construct an algorithm B’ that tries to form designated collisions
by emulating the attack of A" on an random instance of (G',S’, V') that B’
selects by itself. Thus, B' can easily answer any signing-query referred to it
by A’, but in one of these queries (the index of which B selects at random)
algorithm B’ will use a hash function given to it by the outside (rather than
generating such a function at random by itself). In case A’ forges a signature
while using this specific function-value pair (as in Case 2), algorithm B’ obtains
and outputs a designated collision.

We now turn to the actual construction of algorithm B’ (which attempts
to form designated collisions under a randomly selected hash function). Recall
that such an algorithm operates in three stages (see discussion preceding Defini-
tion 6.7): first the algorithm selects a preimage x, next it is given a description of
a function h, and finally it is required to output &’ # x such that h(z") = h(x).
We stress that the third stage in the attack is also given the random choices
made while producing the preimage = in the first stage. Indeed, on input 17,
algorithm B’ proceeds in three stages:

Stage 1: Algorithm B’ selects uniformly ¢ € {1,...,¢(n)}, where ¢(n) bounds the
running-time of A’(G{(1™)) (and thus the number of queries it makes).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

550 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Next B’ selects (s,v) «— G'(1"), and emulate the attack of A’(v) on SI,
while answering the queries of S’ as follows. All queries except the i*" one
are emulated in the straightforward manner (i.e., by executing the program
of §' as stated). That is, for j # i, the j*" query, denoted a9, is answered

by producing ﬂ%j) «— I(1™), computing ﬂéj) — Ss(ﬂgj),hﬂm(a(j))) (using
1

the knowledge of s), and answering with the pair (ﬂ?), ﬂéj)). The it" query
of A', denoted a(?, will be used as the designated preimage. Once ¥ is
issued (by A’), algorithm B’ completes its first stage (without answering
this query), and the rest of the emulation of A" will be conducted by the
third stage of B'.

Stage 2: At this point (i.e., after B’ has selected the designated preimage a(i)),
B’ obtains a description of a random hashing function h, (thus completing
its second operation stage). That is, this stage consists of B’ being given
r— I(1™).

Stage 3: Next, algorithm B’ answers the i*® query (i.e., o(?) by applying S,
to the pair (r, h,((?)). Subsequent queries are emulated in the straight-
forward manner (as explained above). When A’ halts, B’ checks whether
A’ has output a valid document-signature pair («,) as in Case 2 (i.e.,
h,(a) = h,.(a9)) for some j), and whether the collision formed is indeed
on the i" query (i.e., h,.(a) = h,(!?)). When this happens, B’ outputs
«, and doing so it succeeded in forming a designated collision (with a(?)
under h,.).

Now, if Case 2 occurs with probability at least @ (and A’ makes at most ¢(n)

queries) then B’ succeeded in forming a designated collision with probability at

least ﬁ : #, which contradicts the hypothesis that {h,} is UOWHEF.

The furthermore part of the proposition follows by observing that if the
forging algorithm A’ makes at most one query then the same holds for the
algorithm A constructed above. Thus, if (G',S’, V') can be broken via a single-
message attack that either (G,S,V) can be broken via a single-message attack
or one can form designated collisions (w.r.t {h,}). In both cases, we reach a
contradiction. [

Conclusion: Combining the furthermore-part of Proposition 6.4.31, Corol-
lary 6.4.6, and the fact that UOWHEF collections imply one-way functions (see
Exercise 15), we obtain:

Theorem 6.4.32 If there exist universal one-way hash functions then secure
one-time signature schemes exist too.

6.4.3.4 Conclusions and comments

Combining Theorems 6.4.28, 6.4.32 and 6.4.9, we obtain:

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 551

Corollary 6.4.33 If one-way permutations exists then there exist secure signa-
ture schemes.

Like Corollary 6.4.10, Corollary 6.4.33 asserts the existence of secure (public-
key) signature schemes, based on an assumption that does not mention trap-
doors. Furthermore, the assumption made in Corollary 6.4.33 seems weaker
than the one made in Corollary 6.4.10. We can further weaker the assump-
tion by using Theorem 6.4.29 (which was stated without a proof) rather than
Theorem 6.4.28. Specifically, combining Theorems 6.4.29, 6.4.32 and 6.4.9, we
establish Theorem 6.4.1. That is, secure signature schemes ewist if and only if
one-way functions exist.

Comment: the hash-and-sign paradigm, revisited. We wish to high-
light the revised version of the hash-and-sign paradigm as underlying Construc-
tion 6.4.30. Similar to the original instantiation of the hash-and-sign paradigm
(i.e., Construction 6.2.6), Construction 6.4.30 is useful in practice. We warn
that using the latter construction requires verifying that (G, S,V) is a secure
L-restricted signature scheme and that {h,} is a UOWHF (rather than collision-
free). The advantage of Construction 6.4.30 over Construction 6.2.6 is that the
former relies on a seemingly weaker construct; that is, hardness of forming desig-
nated collisions (as in UOWHF) is a seemingly weaker condition than hardness
of forming any collision (as in collision-free hashing). On the other hand, Con-
struction 6.2.6 is simpler and more efficient (e.g., one need not generate a new
hashing function per each signature).

6.5 * Additional Properties

We briefly discuss several properties of interest that some signature schemes
enjoy. We first discuss properties that seem unrelated to the original purpose
of signature schemes, but are useful towards utilizing signature scheme as a
building block towards constructing other primitives (e.g., see Section 5.4.4.4).
These (related) properties are having unique valid signatures and being super-
secure, where the latter term indicates the infeasibility of finding a different
signature even to a document for which a signature was obtained by the attack.
We next turn to properties that offer some advantages in the originally-intended
applications of signature schemes. Specifically, we consider properties that allow
saving real time in some settings (see Sections 6.5.3 and 6.5.4), and a property
supporting legitimate revoking of forged signatures (see Section 6.5.5).

6.5.1 Unique signatures

Loosely speaking, we say that a signature scheme (G, S, V') (either a private-key
or a public-key one) has unique signatures if for every possible verification-key v
and every document « there is a unique 3 such that V,(«, 8) = 1.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

552 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Note that this property is related, but not equivalent, to the question of
whether or not the signing algorithm is deterministic (which is considered in
Exercise 1). Indeed, if the signing algorithm is deterministic then, for every key
pair (s,v) and document «, the result of applying S, to « is unique (and indeed
Vil(a, Ss(a)) = 1). Still, this does not mean that there is no other 4 (which is
never produced by applying S to «) such that V,(«, 8) = 1. On the other hand,
the unique signature property may hold even in case the signing algorithm is
randomized, but indeed in this case the randomization can be eliminated from
the latter (e.g., by replacing it with a fixed sequence in case the signing algorithm
always succeeds, or incorporating the coins in the signing-key (and possibly using
a pseudorandom function) otherwise).

Can secure signature schemes have unique signatures? The answer
is definitely affirmative, and in fact we have seen several such schemes in the
previous sections. Specifically, all private-key signature schemes presented in
Section 6.3 have unique signatures. Furthermore, every secure private-key sig-
nature scheme can be transformed into one having unique signatures (e.g., by
combining deterministic signing as in Exercise 1 with canonical verification as
in Exercise 2). Turning to public-key signature schemes, we observe that if the
one-way function f used in Construction 6.4.4 is 1-1, then the resulting secure
length-restricted one-time (public-key) signature scheme has unique signatures
(because each f-image has a unique preimage). In addition, Construction 6.2.6
(i.e., the basic hash-and-sign) preserves the unique signature property. Let use
summarize all these observations.

Theorem 6.5.1 (secure schemes with unique signatures):

1. Assuming the existence of one-way functions, there exist secure message
authentication schemes having the unique signature property.

2. Assuming the existence of 1-1 one-way functions, there exist secure length-
restricted one-time (public-key) signature schemes having the unique sig-
nature property.

3. Assuming the existence of 1-1 one-way functions and collision-free hash-
ing collections, there exist secure one-time (public-key) signature schemes
having the unique signature property.

Still, this leaves open the question of whether or not there exist secure (full-
fledged) signature schemes having the unique signature property.

6.5.2 Super-secure signature schemes

In case the signature scheme does not posses the unique signature property,
it makes sense to ask whether given a message-signature pair it is feasible to
produce a different signature to the same message. More generally, we may
ask whether it is feasible for a chosen message attack to produce a different
signature to any of the messages to which it has obtained signatures. Such

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 953

ability may be of concern in some applications (but, indeed, not in the most
natural applications). Combining the new concern with the standard notion of
security, we derive the following notion, which we call super-security. A signature
scheme is called super-secure if it is infeasible for a chosen message attack to
produce a valid message-signature pair that is different from all query-answer
pairs obtained during the attack, regardless of whether or not the message used
in the new pair equals one of the previous queries. (Recall that ordinary security
only requires the infeasibility of producing a valid message-signature pair such
that the message part is different from all queries made in the attack.)

Do super-secure signature schemes exist? Indeed, every secure signature
scheme that has unique signatures is super-secure, but the question is whether
super-security may hold for a signature scheme that does not posses the unique
signature property. We answer this question affirmatively.

Theorem 6.5.2 (super-secure signature schemes): Assuming the existence of
one-way functions, there exist super-secure (public-key) signature schemes.

In other words, super-secure signature schemes exist if and only if secure signa-
ture schemes exist. We comment that the signature scheme constructed in the
following proof does not have the unique signature property.

Proof: Starting from (Part 2 of) Theorem 6.5.1, we can use any 1-1 one-way
function to obtain super-secure length-restricted one-time signature schemes.
However, wishing to use arbitrary one-way functions, we will first show that uni-
versal one-way hashing functions can be used (instead of 1-1 one-way functions)
to obtain super-secure length-restricted one-time signature schemes. Next, we
will show that super-security is preserved by two transformations presented in
Section 6.4: specifically, the transformation of length-restricted one-time signa-
ture schemes into one-time signature schemes (specifically, Construction 6.4.30),
and the transformation of the latter to (full-fledged) signature schemes (i.e.,
Construction 6.4.16). Applying these transformations (to the first scheme),
we obtained the desired super-secure signature scheme. Recall that Construc-
tion 6.4.30 also uses universal one-way hashing functions, but the latter can be
constructed using any one-way function (cf. Theorem 6.4.29).3°

Claim 6.5.2.1: If there exist universal one-way hashing functions then, for every
polynomially-bounded ¢: N— N, there exist super-secure (-restricted one-time
signature schemes.

Proof sketch: We modify Counstruction 6.4.4 by using universal one-way hashing
functions (UOWHFSs) instead of one-way functions. Specifically, for each preim-
age placed in the signing-key, we select at random and independently a UOWHF,
and place its description both in the signing and verification keys. That is,

30 We comment that a simpler proof suffices in case we are willing to use a one-way permu-
tation (rather than an arbitrary one-way function). In this case, we can start from (Part 2
of) Theorem 6.5.1 (rather than prove Claim 6.5.2.1), and use Theorem 6.4.28 (rather than
Theorem 6.4.29, which has a more complicated proof).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

554 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

on input 17, we uniformly select s, s}, ""782(71,)78%(71,) € {0,1}" and UOWHFs
hY, hi,,hg(n),h%(n), and compute v = hl(s?), for i = 1,...,£(n) and j = 0, 1.
We let 5 = ((s3,51), s (8o St(n))> o = ((BY, R1),eoe (R B y), and T =
(v, v1), ..y (v?(n),vl}(n))), and output the key-pair (s,v) = ((h,3), (h,v)) (or,
actually, we may set (s,v) = (5, (h,7))). Signing and verification are modified
accordingly; that is, signing oy - - - 0, amounts to handing (s7*,...,s;*), whereas
(81, ..., Be) is accepted as a valid signature of o1 - - - ¢ (w.r.t the verification-key
v) if and only of h]*(8;) = v]* for every i. In order to show that the resulting
scheme is super-secure under a chosen one-message attack, we adapt the proof of
Proposition 6.4.5. Specifically, fixing such an attacker A, we consider the event
in which A violated the super-security of the scheme. There are two cases to
consider:

1. The valid signature formed by A is to the same document for which A
has obtained a different signature (via its single query). In this case, for
at least one of the UOWHF's contained in the verification-key, we obtain
a preimage that is different from the one contained in the signing-key.
Adapting the construction presented in the proof of Proposition 6.4.5, we
obtain (in this case) ability to form designated collisions (in contradiction
to the UOWHF property). We stress that the preimages contained in the
signing-key are selected independently of the description of the UOWHFs
(because both are selected independently by the key-generation process).
In fact, we obtain a designated collision for a uniformly selected preimage.

2. The valid signature formed by A is to a document that is different from
the one for which A has obtained a signature (via its single query). In
this case, the proof of Proposition 6.4.5 yields ability to invert a randomly
selected UOWHF (on a randomly selected image), which contradicts the
UOWHEF property (as shown in Exercise 15).

Thus, in both cases we derive a contradiction, and the claim follows. O

Claim 6.5.2.2: Construction 6.4.30, when applied to a super-secure length-restricted
signature scheme yields a super-secure signature scheme. In case the length-
restricted scheme is only super-secure under a chosen one-message attack, the
same holds for the the resulting (length-unrestricted) scheme.

Proof sketch: We follow the proof of Proposition 6.4.31, and use the same con-
struction of a forger for the length-restricted scheme (based on the forger for the
complex scheme). Furthermore, we consider the two forgery cases analyzed in
the proof of Proposition 6.4.31:3!

31 Recall that (a, /) denotes the document-signature pair output by the original forger
(i.e., for the complex scheme), whereas (a(l),ﬂ(‘)) denotes the i*? query-answer pair (to that
scheme). The document-signature pair that we output (as a candidate forgery w.r.t length-

restricted scheme) is (a2, 82), where as def (B1,hp, (a)) and B = (B1, B2). Recall that a generic
valid document-signature for the complex scheme has the form (o', "), where 8’ = (3!, 5})

satisfies V, ((6], hﬁi ('), By) = 1.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 555

Case 1: (B1, hg, (a)) # (ﬁii),hﬁm(a(i))) for all ¢’s. In this case, the analysis is
1

exactly as in the original proof. Note that it does not matter whether or
not a # a(?, since in both subcases we obtain a valid signature for a new
string with respect to the length-restricted signature scheme. Thus, in this
case, we derive a violation of the (ordinary) security of the length-restricted
scheme.

Case 2: (B, hg, (@) = (B, hﬁ(..)(a(i))) for some 7. The case a # () was han-

dled in the original proof (by showing that it yields a designated collision
(under hg(,., which is supposedly a UOWHF)), so here we only handle the
1

case a = a(?. Now, suppose that super-security of the complex scheme
was violated; that is, (81, 32) # (gi),ﬂgi)). Then, by the case hypothesis
(which implies 8; = ﬂ;i)), it must be that s # ﬂéi). This means that we
derive a violation of the super-security of length-restricted scheme, because
B2 is a different valid Ss-signature of (81, hg, (o)) = (,By), hgi,.,(a(i))).

Actually, we have to consider all ¢’s for which (51, kg, (o)) = (,Bf), hﬁ(i) (D))
1
holds, and observe that violation of super-security for the complex

scheme means that 82 must be different from each of the correspond-
ing ,6’51) ’s. Alternatively, we may first prove that, with overwhelmingly

high probability, all 8{"’s must be distinct.

Thus, in both cases we reach a contradiction to the super-security of the length-
restricted signature scheme, which establishes our claim that the general signa-
ture scheme must be super-secure. We stress that, like in Proposition 6.4.31,
the above proof establishes that super-security for one-time attacks is preserved
too (because the constructed forger makes a single query per each query made
by the original forger). O

Claim 6.5.2.3: Construction 6.4.16, when applied to super-secure one-time sig-
nature schemes yields super-secure signature schemes.

Proof sketch: We follow the proof of Proposition 6.4.17, which actually means
following the proof of Proposition 6.4.15. Specifically, we use the same construc-
tion of a forger for the one-time scheme (based on the forger for the complex
scheme). Furthermore, we consider the two forgery cases analyzed in the proof
of Proposition 6.4.15:3?

1. The first case is when the forged signature for the complex (general sig-
nature) scheme (G',S’, V') contains a signature relative to an instance of
the one-time scheme (G, S,V) associated with a leaf that has been au-
thenticated in an answer given to some signing-query. If no oracle answer
has used the instance associated with this leaf then (as in the proof of

32 Recall that forging a signature for the general scheme requires either using an authen-
tication path supplied by the (general) signing-oracle or producing an authentication path
different from all paths supplied by the (general) signing-signer.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

556 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Proposition 6.4.15) we obtain (ordinary) forgery with respect to the in-
stance of (G, S, V') associated with the leaf (without making any query to
that instance of the one-time scheme). Otherwise, by the case hypothesis,
the forged document-signature pair differs from the query-answer pair that
used the same leaf. The difference is either in the document part or in the
part of the complex-signature that corresponds to the one-time signature
produced at the leaf. In both subcases this yields violation of the super-
security of the instance of (G,S,V) associated with that leaf. Specifically,
in the first subcase we obtain a one-time signature to a different docu-
ment (i.e., violation of ordinary security), whereas in the second subcase
we obtain a different one-time signature to the same document (i.e., only
a violation of super-security). We stress that, in both subcases, the vio-
lating signature is obtained after making a single query to the instance of
(G, S, V) associated with that leaf.

2. We now turn to the second case (i.e., forgery with respect to (G, S', V")
is obtained by producing an authentication path different from all paths
supplied by the signer). In this case, we obtain violation of the ordinary
(one-time) security of the scheme (G, S, V'), exactly as in the original proof
of Proposition 6.4.15. We stress that in this case (regardless of which
document is authenticated by the leaf), an internal node authenticates
data that is different from the data authenticated by the signing-oracle,
and thus we obtain forgery via a one-message attack on the instance of
(G, S, V) associated with this internal node.

Thus, in both cases we reach a contradiction to the super-security of the one-
time signature scheme, which establishes our claim that the general signature
scheme must be super-secure. O

Combining the three claims (and recalling that universal one-way hashing func-
tions can be constructed using any one-way function (cf. Theorem 6.4.29)), the
theorem follows. [l

6.5.3 Off-line/on-line signing

Loosely speaking, we say that a signature scheme (G, S,V) (either a private-
key or a public-key one) has an off-line/on-line signing process if signatures are
produced in two steps, where the first step is independent of the actual mes-
sage to be signed. That is, the computation of Ss(«) can be decoupled into
two steps, performed by randomized algorithms that are denoted goff 4nd gon
respectively such that S(a) — S°%(a, S°f(s)). Thus, one may prepare (or
precompute) SOH(S) before the document is known (i.e., off-line), and produce
the actual signature (on-line) once the document « is presented is produced
(by invoking algorithm S°% on input a, SOH(S)). This yields improvement in
on-line response-time to signature requests, provided that SOV is significantly

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 357

faster that S itself. This improvement is worthwhile in many natural settings in
which on-line response-time is more important than off-line processing time.
We stress that S must be randomized (as otherwise SOH(S) can be incorpo-

rated in the signing-key). Indeed, one may view algorithm SOt a5 an extension
of the key-generation algorithm that produces random extensions of the signing-
key on the fly (i.e., after the verification-key was already determined). We stress
that algorithm 5Ot 55 invoked once per each document to be signed, but this
invocation can take place at any time and even before the document to be signed

is even determined. (In contrast, it may be insecure to re-use the result obtained
from S for two different signatures.)

Can secure signature schemes employ meaningful off-line/on-line sign-
ing algorithms? Of course, any algorithm can be vacuously decoupled into
two steps, but we are only interested in meaningful decouplings in which the
off-line step takes most of the computational load. Interestingly, schemes based
on the refreshing paradigm (cf. Section 6.4.2.1) lend themselves to such a de-
coupling. Specifically, in Construction 6.4.16, only the last step in the signing
process depends on the actual document (and needs to be performed on-line).
Furthermore, this last step amounts to applying the signing algorithm of a one-
time signature scheme, which is typically much faster than all the other steps
(which can be performed off-line).?3

6.5.4 Incremental signatures

Loosely speaking, we say that a signature scheme (G, S, V') (either a private-key
or a public-key one) has an incremental signing process if the signing process can
be sped-up when given a valid signature to a (textually) related document. The
actual definition refers to a set of text editing operations such as delete word
and insert word (where more powerful operations like cutting a document into
two parts and pasting two documents may be supported two). Specifically, one
may require that given a document-signature pair, («,), a sequence of edit
operations (i.e., specifying the operation type and its location), and the signing-
key one may modify g into a valid signature for the modified document in time
proportional to the number of edit operations (and not to |a|). Indeed, here
time is measured in a direct-access model of computation. Of course, the time
saving on the signing side should not come at the expense of a significant increase
in verification time. In particular, verification time should only depend on the
length of the final document (and not on the number of edit operations).

An incremental signing process is beneficial in settings where one needs to
sign many textually related documents (e.g., in simple contracts much of the text

33 When plugging-in the one-time signature scheme suggested in Proposition 6.4.7, produc-
ing one-time signatures amounts to applying a collision-free hashing function and outputting
corresponding parts of the signing-key. This is all that needs to be performed in the on-line
step. In contrast, the off-line steps calls for n applications of a pseudorandom function, n ap-
plications of the key-generation algorithm of the one-time signature scheme, and n applications
of the signing algorithm of the one-time signature scheme.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

558 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

is almost identical and edit changes refer to the party’s specific details as well as
to specific clauses that are modified from their standard form in order to meet
the party’s specific needs). In some cases the privacy of the edit sequence may
be of concern; that is, one may require that the final signature be distributed
in a way that only depends on the final document (rather than depend also on
documents that “contributed” signatures to the process of generating the final
signature).

Can secure signature schemes employ a meaningful incremental sign-
ing process? Here meaningful refers to the set of supported text-modification
operations. The answer is affirmative, and furthermore these schemes may even
protect the privacy of the edit sequence. Below, we refer to edit operations that
delete/insert fix-length bit-strings called blocks from/to a document (as well as
to the cut and paste operations mentioned above).

Theorem 6.5.3 (secure schemes with incremental signing process):

1. Assuming the existence of one-way functions, there exist secure message
authentication schemes having an incremental signing process that supports
block deletion and insertion. Furthermore, the scheme uses a fized-length
authentication tag.

2. Assuming the existence of one-way functions, there exist secure (private-
key and public-key) signature schemes having an incremental signing pro-
cess that supports block deletion and insertion as well as cut and paste.

Furthermore, in both parts, the resulting schemes protect the privacy of the edit
sequence.

Part 1 is proved by using a variant on an efficient message authentication scheme
that is related to the schemes presented in Section 6.3.1. Part 2 is proved by using
an arbitrary secure (private-key or public-key) signature scheme that produces n-
bit long signatures to O(n)-bit long strings, where n is the security parameter.
(Indeed, the scheme need only be secure in the O(n)-restricted sense.) The
document is stored in the leaves of a 2-3 tree,>* and the signature essentially
consists of the tags of all internal nodes, where each internal node is tagged by
applying the basic signature scheme to the tags of its children. One important
observation is that a 2-3 tree supports the said operations while incurring only

3% A 2-3 tree is a balanced tree in which each internal node has either 2 or 3 children. Such
trees support insert and delete (of a single symbol/leaf) in logarithmically many operations.
To insert a leaf (in a depth d tree), add it as a child to the suitable level d — 1 vertex, denoted
v. In case the resulting children-degree of v is 4, split v (evenly) into two vertices such that
both the resulting vertices are children of v’s parent. The parent may be split so too, and
so on until one gets to the root. If the root needs to be split then the height of the tree is
incremented. To delete a leaf, we apply an analogous procedure. Namely, if the resulting
parent and its siblings have total children-degree at least 4 then we rearrange these children
so that each of the resulting parent nodes has children-degree either 2 or 3. In case the total
children-degree is at most 3, we merge the parent and its sibling to one vertex and turn to its
parent. Cutting and pasting of (sub)trees can be performed analogously.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 959

a logarithmic (in its size) cost; that is, modifying only the links of logarithmic
many nodes in the tree. Thus, only the tags of these nodes and their ancestors
in the tree needs to be modified in order to form the correspondingly modified
signature. (Privacy of the edit sequence is obtained by randomizing the standard
modification procedure for 2-3 trees.) By analogy to Construction 6.2.13 (and
Proposition 6.2.14), the incremental signature scheme is secure.

6.5.5 Fail-stop signatures

Loosely speaking, a fail-stop signature scheme is a signature scheme augmented
by a (non-interactive) proof system that allows the legitimate signer to prove
to anybody that a particular (document,signature)-pair was not generated by
him/her. Actually, key-generation involves interaction with an administrating
entity (which publicizes the resulting verification-keys), rather than just hav-
ing the user publicize his/her verification-key. In addition, we allow memory-
dependent signing procedures (as in Definition 6.4.13).35 The system guarantees
the following four properties, where the first two properties are the standard
ones:

1. Proper operation: In case the user is honest, the signatures produced by
it will pass the verification procedure (with respect to the corresponding
verification-key).

2. Infeasibility of forgery: In case the user is honest, forgery is infeasible in
the standard sense. That is, every feasible chosen message attack may suc-
ceed (to generate a valid signature to a new message) only with negligible
probability.

3. Revocation of forged signatures: In case the user is honest, it can prove that
forgery has been committed (in case it was indeed committed). That is, for
every chosen message attack (even a computationally-unbounded one)3%
that produces a valid signature to a new message, except for with negligible
probability, the user can convince anyone (which knows the verification-
key) that this valid signature was forged (i.e., produced by somebody
else). The probability is taken over the actions of the (computationally-
unbounded) adversary committing forgery.

4. Infeasibility of revoking unforged signatures: It is infeasible for a user to
create a valid signature and later convince anybody that this signature
was forged (i.e., produced by somebody else). Indeed, it is possible (but
not feasible) for a user to cheat here.

Furthermore, Property 3 (i.e., revocation of forged signatures) holds also in
case the administrating entity participates in the forgery and even if it behaves

35 Allowing memory-dependent signing is essential to the existence of secure fail-stop signa-
ture schemes; see Exercise 21.
36 It seems reasonable to restrict such adversaries to polynomially-many signing requests.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

560 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

improperly at the key-generation stage. (In contrast, the other items hold only
if the administrating entity behaves properly during the key-generation stage.)

To summarize, fail-stop signature schemes allow to prove that forgery has oc-
curred, and so offer an information-theoretic security guarantee to the potential
signers (yet the guarantee to potential signature-recipients is only a computa-
tional one).3” In contrast, when following the standard semantics of signature
schemes, the potential signers have only a computational security guarantee and
the signature recipients have an absolute guarantee: whenever the verification
algorithm accepts a signature, it is by definition an unrevocable one.

Do secure fail-stop signature schemes exist? Assuming the intractability
of either the Discrete Logarithm Problem or of integer factorization, the answer
is affirmative. Indeed, in fail-stop signature schemes, each document must have
super-polynomially many possible valid signatures (with respect to the publically
known verification-key), but only a negligible fraction of these will be (properly)
produced by the legitimate signer (who knows a corresponding signing-key, which
is not uniquely determined by the verification-key). Furthermore, any strategy
(even an infeasible one), is unlikely to generate signatures corresponding to the
signing-key. On the other hand, it is infeasible given one signing-key to produce
valid signatures (i.e., w.r.t the verification-key) that do not correspond to the
proper signing with this signing-key.

6.6 Miscellaneous

6.6.1 On Using Signature Schemes

Once defined and constructed, signature schemes may be (and are actually)
used as building blocks towards various goals that are different from the original
motivation. Still, the original motivation (i.e., reliable communication of infor-
mation) is of great importance, and in this subsection we discuss several issues
regarding the use of signature schemes towards achieving it. The discussion is
analogous to a similar discussion conducted in Section 5.5.1, but the analogous
issues discussed here are even more severe.

Using private-key schemes — the key exchange problem. Asg discussed
in Section 6.1, using a private-key signature scheme (i.e., a message authentica-
tion scheme) requires the communicating parties to share a secret key. This key
can be generated by one party and secretly communicated to the other party
by an alternative (expensive) secure and reliable channel. Often, a preferable
solution consists of employing a key-exchange (or rather key-generation) proto-
col, which is executed over the standard (unreliable) communication channel.

37 The above refers to the natural convention by which a proof of forgery frees the signer of
any obligations implied by the document. In this case, when accepting a valid signature the
recipient is only guaranteed that it is infeasible for the signer to revoke the signature.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 561

We stress that here (unlike in Section 5.5.1) we must consider active adver-
saries. Consequently, the focus should be on key-exchange protocols that are
secure against active adversaries and are called unauthenticated key-exchange
protocols (because the messages received over the channel are not necessarily
authentic). Such protocols are too complex to be treated in this section, and
the interested reader is referred to [30, 31, 18].

Using state-dependent message authentication schemes. In many com-
munication settings it is reasonable to assume that the authentication device may
maintain (and modify) a state (e.g., a counter or a clock). Furthermore, in many
applications, a changing state (e.g., a clock) must be employed anyhow in order
to prevent reply of old messages (i.e., each message will be authenticated along
with its transmission time). In such cases, state-dependent schemes as discussed
in Section 6.3.2 may be preferable. (See further discussion in Section 6.3.2 and
analogous discussion in Section 5.5.1.)

Using signature schemes — public-key infrastructure. The standard use
of (public-key) signature schemes in real-life applications requires a mechanism
for providing the verifiers with the signer’s authentic verification-key. In small
systems, one may assume that each user holds a local record of the verification-
keys of all other users. However, this is not realistic in large-scale systems, and so
the verifier must obtain the relevant verification-key on-the-fly in a “reliable” way
(i.e., typically, certified by some trusted authority). In most theoretical work,
one assumes that the verification-keys are posted and can be retrieved from a
public-file that is maintained by a trusted party (which makes sure that each
user can post only verification-keys bearing its own identity). In abstract terms,
such trusted party may provide each user with a (signed) certificate stating the
authenticity of the user’s verification-key. In practice, maintaining such a public-
file (and handling such certificates) is a major problem, and mechanisms that
implement this abstraction are typically referred to by the generic term “public-
key infrastructure (PKI)”. For a discussion of the practical problems regarding
PKI deployment see, e.g., [180, Chap. 13].

6.6.2 On Information Theoretic Security

In contrast to the bulk of our treatment, which focuses on computationally-
bounded adversaries, in this section we consider computationally-unbounded ad-
versaries. Specifically, we consider computationally-unbounded chosen message
attacks, but do bound (as usual, by an unknown polynomial) the total number
of bits in the signing-queries made by such attackers. We call a (private-key or
public-key) signature scheme perfectly-secure (or information-theoretically secure)
if even such computationally-unbounded attackers may succeed (in forgery) only
with negligible probability.

It is easy to see that no (public-key) signature scheme may be perfectly-
secure, not even in a length-restricted one-time sense. The reason is that a

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

562 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

computationally-unbounded adversary that is given a verification-key can find
(without making any queries) a corresponding signing-key, which allows it to
forge signatures to any message of its choice.

In contrast, restricted types of message authentication schemes (i.e., private-
key signature schemes) may be perfectly-secure. Specifically, given any poly-
nomial bound on the total number of messages to be authenticated, one may
construct a corresponding state-based perfectly-secure message authentication
scheme. In fact, a variant of Construction 6.3.10 will do, where a truly random
one-time pad is used instead of the pseudorandom sequence generated using the
next-step function g. Indeed, this one-time pad will be part of the key, which
in turn must be longer than the total number of messages to be authenticated.
We comment that the use of a state is essential for allowing several messages to
be authenticated (in a perfectly-secure manner). (Proofs of both statements can
be derived following the ideas underlying Exercise 8.2.)

6.6.3 On Popular Schemes

The reader may note that we have avoided the presentation of several popular
signature schemes (i.e., public-key ones). As noted in Section 6.1.4.3, some of
these schemes (e.g., RSA [216] and DSS [192]) seem to satisfy some weak (i.e.,
weaker than Definition 6.1.2) notions of security. Variants of these schemes
are proven to be secure in the random oracle model, provided some standard
intractability assumptions hold (cf, e.g., [32]). However, we are not satisfied
with either of these types of results, and articulate our opinion next.

On using weaker definitions. We distinguish between weak definitions that
make clear reference to the abilities of the adversary (e.g., one-message attacks,
length-restricted message attacks) and weak notions that make hidden and un-
specified assumptions regarding what may be beneficial to the adversary (e.g.,
“forgery of signatures for meaningful documents”). In our opinion, the fact that
the hidden assumptions often “feel right” makes them even more dangerous,
because it means that they are never seriously considered (and not even formu-
lated). For example, it is often said that ezistential forgery (see Section 6.1.3)
is “merely of theoretical concern”, but these claims are never supported by any
evidence or by a specification of the types of forgery that are of “real practical
concern”. Furthermore, a few years later, one learns that this “merely theoret-
ical” issue yields a real security breach in some important applications. Still,
weak definition of security may make sense, provided that they are clearly stated
and that one realizes their limitations (i.e., “non-generality”). Since this book
focuses on generally-applicable definitions, we chose not to discuss such weaker
notions of security and not to present schemes that can be evaluated only with
respect to these weak notion.

On the Random Oracle Methodology. The Random Oracle Methodol-
ogy [95, 29] consists of two steps: First, one designs an ideal system in which all

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 5963

parties (including the adversary) have oracle access to a truly random function,
and proves this ideal system to be secure (i.e., one typically says that the system
is secure in the random oracle model). Next, one replaces the random oracle by
a “good cryptographic hashing function”, providing all parties (including the
adversary) with the succinct description of this function, and hopes that the re-
sulting (actual) scheme is secure.?® We warn that this hope has no justification.
Furthermore, there exist encryption and signature schemes that are secure in
the Random Oracle Model, but replacing the random function (used in them)
by any function ensemble yields a totally insecure scheme (cf., [59]).

6.6.4 Historical Notes

As in case of encryption schemes, the rigorous study of the security of private-
key signature schemes (i.e., message authentication schemes) has legged behind
the corresponding study of public-key signature schemes. The current section is
organized accordingly.

6.6.4.1 Signature Schemes

The notion of a (public-key) signature scheme was introduced by Diffie and
Hellman [78], who also suggested to implement it using trapdoor permutations.
Concrete implementations were suggested by Rivest, Shamir and Adleman [216]
and by Rabin [211]. However, definitions of security for signature schemes were
presented only a few years afterwards.

A first rigorous treatment of security notions for signature schemes was sug-
gested by Goldwasser, Micali and Yao [145], but their definition is weaker than
the one followed in our text. (Specifically, the adversary’s queries in the defini-
tion of [145] are determined non-adaptively and obliviously of the public-key.)
Assuming the intractability of factoring, they also presented a signature scheme
that is secure under their definition. We stress that the security definition of [145]
is significantly stronger than all security notions considered before [145].

A comprehensive treatment of security notions for signature schemes, which
culminates in the notion used in our text, was presented by Goldwasser, Micali
and Rivest [143]. Assuming the intractability of factoring, they also presented a
signature scheme that is secure (in the sense of Definition 6.1.2). This was the
first time that a signature scheme was proven secure under a simple intractability
assumption such as the intractability of factoring. Their proof has refuted a folk-
lore (attributed to Ron Rivest) by which no such “constructive proof” may exist
(as its mere existence was believed to yield a forging procedure). Whereas the
(two) schemes of [145] were inherently memory-dependent, the scheme of [143]
has a “memoryless” variant (cf. [105] and [143]).

38 Recall that, in contrast, the methodology of Section 3.6.3 (which is applied often in the
current chapter) refers to a situation in which the adversary does not have direct oracle access
to the random function, and does not obtain the description of the pseudorandom function
used in the latter implementation.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

564 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Following Goldwasser, Micali and Rivest [143], research has focused on con-
structing secure signature schemes under weaker assumptions. In fact, as noted
in [143], their construction of secure signature schemes can be carried out using
any collection of claw-free, trapdoor permutation pairs. The claw-free require-
ment was omitted in [28], whereas the seemingly more fundamental trapdoor
requirement was omitted by Naor and Yung [198]. Finally, Rompel showed that
one may use arbitrary one-way functions rather one-way permutations [217], and
thus established Theorem 6.4.1. The progress briefly summarized above was en-
abled by the use of many important ideas and paradigms, some of them were
introduced in that body of work and some were “only” revisited and properly
formalized. Specifically, we refer to the introduction of the refreshing paradigm
in [143], the use of authentication trees (cf., [182, 183] and [143]), the use of the
hash-and-sign paradigm (rigorously analyzed in [72]), the introduction of Univer-
sal One-Way Hash Functions (and the adaptation of the hash-and-sign paradigm
to them) in [198], and the use of one-time signature schemes (cf., [210]).

We comment that our presentation of the construction of signature schemes
is different from the one given in any of the above cited papers. Specifically, the
main part of Section 6.4 (i.e., Sections 6.4.1 and 6.4.2) is based on a variant of
the signature scheme of [198], in which collision-free hashing (cf. [72]) are used
instead of universal one-way hashing (cf. [198]).

6.6.4.2 Message Authentication Schemes

Message authentication schemes were first discussed in the information theo-
retic setting, where a one-time pad was used. Such schemes were first suggested
in [104], and further developed in [236]. The one-time pad can be implemented
by a pseudorandom function (or a on-line pseudorandom generator), yielding
only computational security, as we have done in Section 6.3.2. Specifically, Con-
struction 6.3.10 is based on [163, 164]. In Section 6.3.1 we have followed a
different paradigm that amounts to applying a pseudorandom function to the
message (or its hashed-value), rather than using a pseudorandom function (or
a on-line pseudorandom generator) to implement a one-time pad. This alter-
native paradigm is due to [119], and is followed in works such as [27, 24, 16].
Indeed, following this paradigm (and similarly to [27, 24, 16]), we have actually
focused (in Section 6.3.1) on counstructing generalized pseudorandom function
ensembles (as in Definition 3.6.12), based on ordinary pseudorandom functions
(as in Definition 3.6.4).

Collision-free hashing

Collision-free hashing was first defined in [72]. Construction 6.2.8 is also due
to [72], with underlying principles that can be traced to [143]. Construction 6.2.11
is due to [73]. Construction 6.2.13 is due to [184].

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 565

On the additional properties

Unique signatures and super-security have been used in several works, but never
extensively treated before. The notion of offline/online signature scheme was in-
troduced (and first instantiated) in [86]. The notion of incremental cryptographic
schemes (and in particular incremental signature schemes) was introduced and
instantiated in [21, 22]. In particular, the incremental MAC of [22] (i.e., Part 1 of
Theorem 6.5.3) builds on the message authentication scheme of [24], and the in-
cremental signature scheme that protects the privacy of the edit sequence is due
to [188] (building upon [22]). Fail-stop signatures were defined and constructed
in [206].

6.6.5 Suggestion for Further Reading

As mentioned above, the work of Goldwasser, Micali and Rivest contains a
comprehensive treatment of security notions for signature schemes [143]. Their
treatment refers to two parameters: (1) the type of attack, and (2) the type
of forgery that follows from it. The most severe type of attack allows the ad-
versary to adaptively select the documents to be signed (as in Definition 6.1.2).
The most liberal notion of forgery refers to producing a signature to any doc-
ument for which a signature was not obtained during the attack (again, as in
Definition 6.1.2). Thus, the notion of security presented in Definition 6.1.2 is
the strongest among the notions discussed in [143]. (Still, in some applications,
weaker notions of security may suffice.) We stress that one may still benefit
from the definitional part of [143], but the constructive part of [143] should be
ignored since it is superseded by later work (on which our presentation is based).

Pfitzmann’s book [207] contains a comprehensive discussion of many aspects
involved in the integration of signature schemes in real-life systems. In addition,
her book surveys variants and augmentations of the notion of signature schemes,
viewing the one treated in the current book as “ordinary”. The focus is on fail-
stop signature schemes [207, Chap. 7-11], but much attention is given to the
presentation of a general framework [207, Chap. 5] and to review of other “non-
ordinary” schemes [207, Sec. 2.7 & 6.1].

As hinted in Section 6.6.4.2, our treatment of the construction of message
authentication schemes is merely the tip of an iceberg. The interested reader is
referred to [230, 163, 164, 40] for details on the “one-time pad” approach, and
to [27, 24, 16, 17, 23, 7] for alternative approaches. Constructions and discussion
of AXU hashing functions can be found in [163, 164].

The constructions of universal one-way hash functions presented in Sec-
tion 6.4.3 use any one-way permutation, and do so in a generic way. The number
of applications of the one-way permutation in these constructions is linearly re-
lated to the difference between the number of input and output bits in the hash
function. In [103], it is shown that as far as generic (black-box) constructions
go, this is essentially the best performance that one can hope for.

In continuation to the discussion in Section 6.4.2.4, we refer to reader to [82,
69], in which specific implementations (of a generalization) of Constructions 6.4.14

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

566 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

and 6.4.16 are presented. Specifically, these works utilize an authentication tree
of large degree (rather than binary trees as in Section 6.4.2.2).

6.6.6 Open Problems

The known construction of signature schemes from arbitrary one-way func-
tions [217] is merely a feasibility result. It is indeed an important open problem
to provide an alternative construction that may be practical and still utilize an
arbitrary one-way function. We believe that providing such a construction may
require the discovery of important new paradigms.

6.6.7 Exercises

Exercise 1: Deterministic Signing and Verification algorithms:

1. Using a pseudorandom function ensembles, show how to transform
any (private-key or public-key) signature scheme into one employing
a deterministic signing algorithm.

2. Using a pseudorandom function ensembles, show how to transform
any message authentication scheme into one employing deterministic
signing and verifying algorithms.

3. Verify that all signature schemes presented in the current chapter
employ a deterministic verification algorithm.

Guideline (for Part 1): Augment the signing-key with a description of
a pseudorandom function, and apply this function to the string to be signed

in order to extract the randomness used by the original signing algorithm.

Guideline (for Part 2): Analogous to Part 1. (Highlight your use of
the private-key hypothesis.) Alternatively, see Exercise 2.

Exercise 2: Canonical verification in the private-key version: Show that, with-
out loss of generality, the verification algorithm of a private-key signature
scheme may consist of comparing the alleged signature to one produced
by the verification algorithm itself (which does so exactly as the signing
algorithm).

Why does this claim fail with respect to public-key schemes?

Guideline: Use Part 1 of Exercise 1, and conclude that the on a fixed
input the signing algorithm always produces the same output. Use the
fact that (by Exercise 8.2) the existence of message authentication schemes

implies the existence of pseudorandom functions.

Exercise 3: Augmented attacks in the private-key case: In continuation to the
discussion in Section 6.1.4.1, consider the definition of an augmented at-
tack (on a private-key signature scheme) in which the adversary is allowed
verification-queries.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 567

1. Show that in case the signature scheme has (a deterministic verifi-
cation algorithm and) unique valid signatures, it is secure against
augmented attacks if and only if it is secure against ordinary attacks
(as in Definition 6.1.2).

2. Assuming the existence of secure private-key signature schemes (as in
Definition 6.1.2), present such a secure scheme that is insecure under
augmented attacks.

Guideline (Part 1): Analyze the emulation outlined in Section 6.1.4.1.
Specifically, ignoring the redundant verification-queries (for which the an-
swer is determined by previous answers), consider the probability that the
emulation has gambled correctly on all the verification-queries up-to (and
including) the first such query that should be answered affirmatively.

Guideline (Part 2): Given any secure MAC (G, S, V), assume without
loss of generality that in the key-pairs output by G the verification-key
equals the signing-key. Consider the scheme (G',S’,V) (with G' = G),
where Sl (a) = (Ss(a),0), V/(x,(8,0)) = Vo(a, B) and V) (a,(B,i,0)) =1
if both V,(a,8) = 1 and the *" bit of s = v is 0. Prove that (G',S',V)
is secure under ordinary attacks, and present an augmented attack that
totally breaks it (i.e., obtains the signing-key).

Exercise 4: The signature may reveal the document: Both for private-key and
public-key signature schemes, show that if such secure schemes exist then
there exist secure signature schemes in which any valid signature to a
message allows to efficiently recover the entire message.

Exercise 5: On the triviality of some length-restricted signature schemes:

1. Show that for logarithmically bounded ¢, secure ¢-restricted private-
key signature schemes (i.e., message authentication schemes) can be
trivially constructed (without relying on any assumption).

2. In contrast, show that the existence of a secure (-restricted public-
key signature scheme, even for £ = 1, implies the existence of one-way
functions.

Guideline (Part 1): On input 1™, the key generator uniformly selects
s € {0, 1}22(7”'"7 and outputs the key pair (s,s). View s = s1---55¢(n),
where each s; is an n-bit long string, and consider any fixed ordering of the
2¢(7) strings of length £(n). The signature to a € {0,1}¢(") is defined as s;,
where 7 is the index of « in the latter ordering.

Guideline (Part 2): Let (G, S, V) be a 1-restricted public-key signature
scheme. Define f(1™,r) = v if on input 1™ and coins r, algorithm G gen-
erates the key-pair of the form (-,v). Assuming that algorithm A inverts
f with probability €(n), we construct a forger that attacks (G, S, V) as fol-
lows. On input a verification key v, the forger invokes A on input v. With
probability €(n), the forger obtains r so that f(1™,7) = v. In such a case,
the forger obtains a matching signing-key s (i.e., (s, v) is output by G(1™)
on coins r), and so can produce valid signatures to any string of its choice.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

568 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

Exercise 6: Fuailure of Construction 6.2.3 in case £(n) = O(logn): Show that
if Construction 6.2.3 is used with logarithmically bounded ¢ then the re-
sulting scheme is insecure.

Guideline: Note that by asking for polynomially-many signatures, the ad-
versary may obtain two S’-signatures that use the same (random) identifier.
Specifically, consider making the queries aa, for all possible a € {0, 1}2(")7
’Oé’

and note that if aa and « are S’-signed using the same identifier then

we can derive a valid S!-signature to aa/.

Exercise 7: Using a pseudorandom function ensemble of the form {f, : {0,1}* —
{0, 1}‘5|}S€{071}* , construct a general secure message authentication scheme
(rather than a length-restricted one).

Guideline: The construction is identical to Construction 6.3.1, except
that here we use a general pseudorandom function ensemble rather than
the one used there. The proof of security is analogous to the proof of

Proposition 6.3.2.

Exercise 8: Prove that the existence of secure message authentication schemes
implies the existence of one-way functions. Specifically, let (G,S,V) be as
in the hypothesis.

1. To simplify the following two items, show that, without loss of gen-
erality, G(1™) uses n coins and outputs a signing-key of length n and
that |Ss ()| is determined by |s| 4+ |a].

2. Assume first that S is a deterministic signing algorithm. Prove that

def .
flryar,..,am) = (Ss(a1),...,Ss(am), a1, ...,am,) is a one-way func-

tion, where s = G1(r) is the signing-key generated with coins r, all
a;’s are of length n = |r| and m = ©(n).
Extend the proof to handle randomized signing algorithms.

3. Using the relation between pseudorandom functions (as in Defini-
tion 3.6.12) and one-way functions, the following provides an alter-
native proof for the special case of deterministic signing.3?

(Based on [197]): Consider the Boolean function ensemble {fs}s.r,
where s is selected according to G1(1™) and r is uniformly distributed
over strings of length |S,(1™)|, defined such that f,,(«) equals the
inner-product mod 2 of r and Ss(«). Prove that this ensemble is
pseudorandom (as defined in Definition 3.6.12 for the case r(n) = 1).

Guideline (Part 2): Note that the m signatures determine an ', which
in turn determines a signing-key s’ = G1(r') such that Ss(a) = Sy ()
for most a € {0,1}™. (Note that s’ does not necessarily equal s.) Show
that this implies that ability to invert f yields ability to forger (under a

chosen message attack). (Hint: use m random signing-queries to produce a

39 Note that the functions in the ensemble have a sufficiently large domain. Thus, this
pseudorandom function ensemble gives rise to a pseudorandom generator (analogously to Ex-
ercise 28 of Chapter 3), which in turn implies the existence of one-way functions.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 569

random image of f.) The extension to randomized signing is obtained by
augmenting the argument of the one-way function with the coins used by

the m invocations of the signing algorithm.

Guideline (Part 3): Consider hybrid experiments such that in the ith
hybrid the first ¢ queries are answered by a truly random Boolean func-
tion and the rest are answered by a uniformly distributed fs .. (Note that
it seems important to use this non-standard order of random versus pseu-
dorandom answers.) Show that distinguishability of the ith and 7 4 1lst
hybrids implies that a probabilistic polynomial-time machine can have a
non-negligible advantage in the following game in which the machine is
asked to select «, next f, , is uniformly selected and the machine is given r
as well as oracle access to Ss (but is not allowed the query «) and is asked
to guess fsr(a). (Note that the particular order used allows to produce
the rest of the hybrid when given this oracle access. On the other hand,
it is important to hand r only after the machine has selected «; see [197].)
At this point, one may apply the proof of Theorem 2.5.2, and deduce that
the said machine can construct S;(a) with non-negligible probability, in
contradiction to the security of the MAC.

Exercise 9: Prove that, without loss of generality, one can always assume that
a chosen message attack makes at least one query. (This holds for general
signature schemes as well as for length-restricted and/or one-time ones.)

Guideline: Given an adversary A’ that outputs a message-signature pair
(a, B) without making any query, modify it so that it makes an arbitrary
query o' € {0,1}/*!\ {a} just before producing that output.

Exercise 10: On perfectly-secure one-time message authentication (MAC) schemes:
By perfect (or information-theoretic) security we mean that even computationally-
unbounded chosen message attacks may succeed (in forgery) only with
negligible probability.

Define perfect (or information-theoretic) security for one-time MACs and
length-restricted one-time MACs. (Be sure to bound the length of docu-
ments (e.g., by some super-polynomial function) also in the unrestricted
case.)

Prove the following, without relying on any (intractability) assumptions
(which are anyhow useless in the information-theoretic context):

1. For any polynomially-bounded and polynomial-time computable func-
tion £ : N — N, perfectly-secure ¢-restricted one-time MACs can be
trivially constructed.

2. Using a suitable AXU family of hashing functions, present a construc-
tion of a perfectly-secure one-time MAC. Furthermore, present such
a MAC in which the authentication-tags have fixed length (i.e., de-
pending on the length of the key but not on the length of the message
being authenticated).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

570 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

3. Show that any perfectly-secure one-time MAC that utilizes fixed length
authentication-tags and a deterministic signing algorithm yields a
generalized hashing ensembles with negligible collision probability.
Specifically, for any polynomial p, this ensembles has a (p, 1/p)-collision
property.

Guideline: For Part 1, combine the ideas underlying Exercise 5 and Con-
struction 6.4.4. For Part 2, use the ideas underlying Construction 6.3.10
and the proof of Proposition 6.3.11. For Part 3, given a MAC (G, S,V) as

in the claim, consider the functions hs(z) def Ss(x), where s — G1(1™).

Exercise 11: In contrast to Exercise 10, prove that the existence of secure
one-time signature schemes implies the existence of one-way functions.
Furthermore, prove that this holds even for 1-restricted signature schemes
that are secure (only) under attacks that make no signing-queries.

Guideline: See guideline for Item 2 in Exercise 5.

Exercise 12: Prove that the existence of collision-free hashing collections im-
plies the existence of one-way functions.

Guideline: Given a collision-free hashing collection, {h, : {0,1}* —
{0, 1}2(‘”)},,6{071}*, consider the function f(r,x) = (r, hr(x)), where (say)
|z| = £(|r|) + |r|- Prove that f is a one-way function, by assuming towards
the contradiction that f can be efficiently inverted with non-negligible prob-
ability, and deriving an efficient algorithm that forms collisions on random
h,’s. Given r, form a collision under the function h,, by uniformly se-
lecting x € {0, 1}“"‘)'*""7 and feeding the inverting algorithm with input
(r, hr(z)). Observe that with non-negligible probability a preimage is ob-
tained, and that with exponentially vanishing probability this preimage is
(r,z) itself. Thus, with non-negligible probability, we obtain a preimage
(r,2") # (r,x) and it holds that h,(z') = h,(z).

Exercise 13: In contrast to Exercise 4, show that if secure message authenti-
cation schemes exist then there exist such schemes in which it is infeasible
(for a party not knowing the key) to extract from the signature any partial
information about the message (except for the message length). (Indeed,
privacy of the message is formulated as the definition of semantic security
of encryption schemes; see Chapter 5.)

Guideline: Combine a message authentication scheme with an adequate
private-key encryption scheme. Refer to issues such as the type of secu-
rity required of the encryption scheme, and why the hypothesis yields the

existence of the ingredients used in the construction.

Exercise 14: In continuation to Exercise 13, show that if there exist collision-
free hashing functions then there exist message authentication schemes in
which it is infeasible (for a party not knowing the key) to extract from
the signature any partial information about the message (including the

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRY PTOGRAPHY .

6.6. MISCELLANEOUS 571

message length). How come we can hide the message length in this context,
whereas we cannot do this in the context of encryption schemes?

Guideline: Combine a message authentication scheme having fixed length
signatures with an adequate private-key encryption scheme. Again, refer to

issues as in Exercise 13.

Exercise 15: Prove that the existence of collections of UOWHF implies the
existence of one-way functions. Furthermore, show that uniformly chosen
functions in any collection of UOWHF's are hard to invert (in the sense of
Definition 2.4.3).

Guideline: Note that the guidelines provided in Exercise 12 can be mod-
ified to fit the current context. Specifically, the collision-forming algorithm
is given uniformly distributed r and x, and invokes the inverter on input
(r, hr(x)). Note that the furthermore clause is implicit in the proof.

Exercise 16: Assuming the existence of one-way functions, show that there ex-
ists a collection of universal one-way hashing functions that is not collision-
free.

Guideline: Given a collection of universal one-way hashing functions,
{fs : {0,1}* — {0,1}!*1}, consider the collection F' = {f! : {0,1}* —
{0,1}!51} defined so that f!(z) = (0, fs(x)) if the |s|-bit long prefix of « is
different from s, and f.(sz') = (1, s) otherwise. Clearly, F' is not collision-
free. Show that F’ remains universal one-way hashing,.

Exercise 17: Show that for every finite family of functions H, there exists
x # y such that h(z) = h(y) for every h € H. Furthermore, for H = {h :
{0,1}* — {0,1}™}, show that this holds for |z|,|y| < m - |H]|.

Guideline: Consider the mapping = +— (hi(2),...,ht(x)), where H =
{hi}t_,. Since the number of possible images is at most (2™)", we get a
collision as soon as we consider more than 2™! preimages.

Exercise 18: Constructions of Hashing Families with Bounded Collision Prob-
ability: In continuation to Exercise 22.2 in Chapter 3, consider the set of
functions Sj* associated with ¢-by-m Toeplitz matrix; that is hp(z) = T,
where T' = (T} ;) is a Toeplitz matrix (i.e., T;; = Tiy1,;41 for all 4,j).
Show that this family has collision probability 2=™. (Note that each ¢-by-
m Toeplitz matrix is specified using ¢ + m — 1 bits.)

Guideline: Note that we have eliminated the shifting vector b used in
Exercise 22.2 of Chapter 3, but this does not effect the relevant analysis.

Exercise 19: Constructions of Generalized Hashing Families with Bounded Col-
lision Property: (See definition in Section 6.3.1.3.)

1. Using a tree-hashing scheme as in Construction 6.2.13, construct a
generalized hashing ensemble with a (f, 1/ f)-collision property, where
f(n) =25 for some £ > 0.

See copyright notice.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

572 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

2. (By Hugo Krawczyk): Show that the block-chaining method (as in
Construction 6.2.11) fails in the current context. That is, there exists
a hashing ensemble {h,. : {0,1}>"(") — {0,1}™("D} with negligible
collision probability such that applying Construction 6.2.11 to it (even
with three blocks) yields an ensemble with high collision probability.

Guideline (Part 1): Let {h, : {0,1}?>"(7) — {0,1}™U"D} be a hash-
ing ensemble with collision probability cp. Recall that such ensembles
with m(n) = n/3 and cp(n) = 2=m(n) can be constructed (see Exer-
cise 18). Then, consider the function ensemble {hn,___,rm(") 1 {0,1}* —
{0, 1}2m(n)}n€N7 where all r;’s are of length n, such that h"l,---ﬂm(n) (z) is
defined as follows

1. As in Construction 6.2.13, break « into ¢t def 2logz (Jz[/m(n))] consec-
utive blocks, denoted w1, ...,x¢, and let d = log, t.

2 Leti=1,.,tlet ys; = @;. For j=d—1,.,1,0and i =1,...,2,
let yj; = hr; (Yj+1,2i—1Yj+1,2:)- The hash value equals (yo,1, |z]).

. . def
The above functions have description length N = m(n) - n and map

strings of length smaller than 2™(") to strings of length 2m(n). It is
easy to bound the collision probability (for strings of equal length) by
the probability of collision occuring in each of the levels of the tree. In
fact, for @y --- @y # x| ---x} such that x; # «f, it suffices to bound the
= y;‘,ri/2dﬂ"| holds (given that
Yj 41, [i/2d— G+ # y;+1,”/24_u+1)]) for j = d—1,...,1,0. Thus, this
generalized hashing ensemble has a (¥, €)-collision property, where ¢(N) =
2m(") _1 and ¢(N) = m(n)-cp(n). Recalling that we may use m(n) =n/3
and cp(n) = 2™ we obtain (using N =n?/3), {(N) = 2N/ _q
2(N/9M? and e(N) < (N/UN)) < 9= (N/1)!/?2 (as desired).

sum of the probabilities that Yj [i/2d-41

Guideline (Part 2): Given a hashing family as in the hypothesis, modify
it into {h}. , : {0,1}?™ — {0,1}™}, such that h] ,(0?™) = s, hl (so™) =
0™ for both o € {0,1}, and h;, (z) = h,(z) for all other 2’s. Note that the
new family maintains the collision probability of the original one up-to an
additive term of O(27™). On the other hand, for both o € {0,1}, it holds
that A, (k] (02™)0™) = A, (s0™) = 0™.

Exercise 20: Additional properties required in Proposition 6.4.21:; In continu-
ation to Exercise 23 of Chapter 3, show that the said function ensemble
satisfies the following two properties:

1. All but a negligible fraction of the functions in S"~! are 2-to-1.

2. There exists a probabilistic polynomial-time algorithm that given
y1,y2 € {0,1}™ and 2,20 € {0,1}" !, outputs a uniformly dis-
tributed element of {s € SP™1 : hy(y;) = z; Vi € {1,2}}.

Guideline: Recall that functions in SP~! are described by a pair of ele-
ments of the finite field GF(2™) so that the pair (a, b) describes the function
hqp that maps ¢ € GF(2™) to the (n — 1)-bit prefix of the n-bit represen-
tation of ax + b, where the arithmetics is of the field GF(2™). The first
condition follows by observing that the function h, p is 2-to-1 if and only if

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 573

a # 0. The second condition follows by observing that hq 5(y:) = z; if and
only if ay; + b = v; for some v; that is a single-bit extension of z;. Thus,
generating a pair (a,b) such that h, ,(y;) = z; for both i’s, amounts to
selecting random single-bit extensions v;’s, and (assuming y1 # y2) solving
the system {ay; + b = v;};=1,2 (for the variables a and b).

Exercise 21: Fuil-stop signatures require a memory-dependent signing process:
In continuation to Section 6.5.5, prove that a secure fail-stop signature
scheme must employ a memory-dependent signing process (as in Defini-
tion 6.4.13).

Guideline: Suppose towards the contradiction that there exist a secure
memoryless fail-stop signature scheme. For every signing-key s € {0, 1}",
consider the randomized process Ps in which one first selects uniformly
z € {0,1}", produces a (random) signature y < Ss(z), and outputs the
pair (z,y). Show that, given polynomially-many samples of Ps, one can
find (in exponential time) a string s’ € {0,1}" such that with probability
at least 0.99 the statistical distance between Ps and P, is at most 0.01.
Thus, a computationally unbounded adversary making polynomially-many
signing queries, can find a signing-key that typically produces the same
signatures as the true signer. It follows that either these signatures cannot

be revoked or that the user may also revoke its own signatures.

Author's Note: First draft written mainly in May 2000. Major revi-
sion completed in Feb. 2002.

