
Draft of a chapteron Signature Schemes(revised, third posted version)Extracts from a working draft forVolume 2 of Foundations of CryptographyOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.February 4, 2003

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Ito Dana

cCopyright 2003 by Oded Goldreich.Permission to make copies of part or all of this work for personal or classroom useis granted without fee provided that copies are not made or distributed for pro�t orcommercial advantage and that new copies bear this notice and the full citation on the�rst page. Abstracting with credit is permitted.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

II
Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

PrefaceThe current manuscript is a preliminary draft of the chapter onsignature schemes (Chapter 6) of the second volume of the workFoundations of Cryptography. This manuscript subsumes a previousversions posted in May 2000 and Feb. 2002.The bigger picture. The current manuscript is part of a working draft ofPart 2 of the three-part work Foundations of Cryptography (see Figure 0.1). Thethree parts of this work are Basic Tools, Basic Applications, and Beyond the Ba-sics. The �rst part (containing Chapters 1{4) has been published by CambridgeUniversity Press (in June 2001). The second part, consists of Chapters 5{7 (re-garding Encryptioni Schemes, Signatures Schemes, and General CryptographicProtocols, respectively). We hope to publish the second part with CambridgeUniversity Press within a couple of years.Part 1: Introduction and Basic ToolsChapter 1: IntroductionChapter 2: Computational Di�culty (One-Way Functions)Chapter 3: Pseudorandom GeneratorsChapter 4: Zero-Knowledge ProofsPart 2: Basic ApplicationsChapter 5: Encryption SchemesChapter 6: Signature SchemesChapter 7: General Cryptographic ProtocolsPart 3: Beyond the Basics� � �Figure 0.1: Organization of this work
III

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

IV The partition of the work into three parts is a logical one. Furthermore, ito�ers the advantage of publishing the �rst part without waiting for the comple-tion of the other parts. Similarly, we hope to complete the second part within acouple of years, and publish it without waiting for the third part.Prerequisites. The most relevant background for this text is provided bybasic knowledge of algorithms (including randomized ones), computability andelementary probability theory. Background on (computational) number theory,which is required for speci�c implementations of certain constructs, is not reallyrequired here.Using this text. The text is intended as part of a work that is aimed to serveboth as a textbook and a reference text. That is, it is aimed at serving both thebeginner and the expert. In order to achieve this aim, the presentation of thebasic material is very detailed so to allow a typical CS-undergraduate to followit. An advanced student (and certainly an expert) will �nd the pace (in theseparts) way too slow. However, an attempt was made to allow the latter readerto easily skip details obvious to him/her. In particular, proofs are typicallypresented in a modular way. We start with a high-level sketch of the main ideas,and only later pass to the technical details. Passage from high-level descriptionsto lower level details is typically marked by phrases such as details follow.In a few places, we provide straightforward but tedious details in in-dented paragraphs as this one. In some other (even fewer) places suchparagraphs provide technical proofs of claims that are of marginal rele-vance to the topic of the book.More advanced material is typically presented at a faster pace and with lessdetails. Thus, we hope that the attempt to satisfy a wide range of readers willnot harm any of them.Teaching. The material presented in the full (three-volume) work is, on onehand, way beyond what one may want to cover in a course, and on the otherhand falls very short of what one may want to know about Cryptography ingeneral. To assist these conicting needs we make a distinction between basicand advanced material, and provide suggestions for further reading (in the lastsection of each chapter). In particular, sections, subsections, and subsubsectionsmarked by an asterisk (*) are intended for advanced reading.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Table of Contents
Preface III6 Signatures and Message Authentication 4856.1 De�nitional Issues : 4856.1.1 Message authentication versus signature schemes : : : : : 4866.1.2 Basic mechanism : 4876.1.3 Attacks and security : 4886.1.4 Comments : 4906.1.4.1 Augmenting the attack with a veri�cation oracle 4916.1.4.2 Inessential generalities : : : : : : : : : : : : : : : 4916.1.4.3 Weaker notions of security and some popular schemes4926.2 Length-restricted signature scheme : : : : : : : : : : : : : : : : : 4926.2.1 De�nition : 4936.2.2 The power of length-restricted signature schemes : : : : : 4936.2.2.1 Signing (augmented) blocks : : : : : : : : : : : : 4946.2.2.2 Signing a hash value : : : : : : : : : : : : : : : : 4986.2.3 * Constructing collision-free hashing functions : : : : : : 5026.2.3.1 A construction based on claw-free permutations 5026.2.3.2 Collision-free hashing via block-chaining : : : : : 5046.2.3.3 Collision-free hashing via tree-hashing : : : : : : 5076.3 Constructions of Message Authentication Schemes : : : : : : : : 5096.3.1 Applying a pseudorandom function to the document : : : 5096.3.1.1 A simple construction and a plausibility result : 5096.3.1.2 * Using the hash-and-sign paradigm : : : : : : : 5116.3.1.3 * A variation on the hash-and-sign paradigm : : 5126.3.2 * More on Hash-and-Hide and state-based MACs : : : : : 5166.3.2.1 The de�nition of state-based MACs : : : : : : : 5176.3.2.2 State-based hash-and-hide MACs : : : : : : : : 5196.4 Constructions of Signature Schemes : : : : : : : : : : : : : : : : 5226.4.1 One-time signature schemes : : : : : : : : : : : : : : : : : 5236.4.1.1 De�nitions : 5236.4.1.2 Constructing length-restricted one-time signatureschemes : 5246.4.1.3 From length-restricted schemes to general ones : 527V

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

16.4.2 From one-time signature schemes to general ones : : : : : 5286.4.2.1 The refreshing paradigm : : : : : : : : : : : : : 5286.4.2.2 Authentication{trees : : : : : : : : : : : : : : : : 5316.4.2.3 The actual construction : : : : : : : : : : : : : : 5416.4.2.4 Conclusions and comments : : : : : : : : : : : : 5446.4.3 * Universal One-Way Hash Functions and using them : : 5466.4.3.1 De�nition : 5466.4.3.2 Constructions : : : : : : : : : : : : : : : : : : : 5476.4.3.3 One-time signature schemes based on UOWHF : 5566.4.3.4 Conclusions and comments : : : : : : : : : : : : 5606.5 * Additional Properties : 5606.5.1 Unique signatures : 5616.5.2 Super-secure signature schemes : : : : : : : : : : : : : : : 5626.5.3 O�-line/on-line signing : 5666.5.4 Incremental signatures : 5676.5.5 Fail-stop signatures : 5686.6 Miscellaneous : 5706.6.1 On Using Signature Schemes : : : : : : : : : : : : : : : : 5706.6.2 On Information Theoretic Security : : : : : : : : : : : : : 5716.6.3 On Popular Schemes : 5716.6.4 Historical Notes : 5726.6.4.1 Signature Schemes : : : : : : : : : : : : : : : : : 5736.6.4.2 Message Authentication Schemes : : : : : : : : : 5746.6.4.3 Additional topics : : : : : : : : : : : : : : : : : : 5746.6.5 Suggestion for Further Reading : : : : : : : : : : : : : : : 5756.6.6 Open Problems : 5756.6.7 Exercises : 576

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

484
Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Chapter 6Digital Signatures andMessage AuthenticationMessage authentication and (digital) signatures were the �rst tasks that joinedencryption to form modern cryptography. Both message authentication and dig-ital signatures are concerned with the \authenticity" of data, and the di�erencebetween them is analogous to the di�erence between private-key and public-keyencryption schemes.In this chapter, we de�ne message authentication and digital signatures, andthe security notions associated to them. We show how to construct message au-thentication schemes using pseudorandom functions, and how to construct signa-ture schemes using one-way permutations. We stress that the latter constructionemploy one-way permutations that do not necessarily have a trapdoor. Towardspresenting the latter constructions, we discuss restricted types of message au-thentication and signature schemes, which are of independent interest, such aslength-restricted schemes (see Section 6.2) and one-time signature schemes (seeSection 6.4.1).Teaching Tip: Indeed, do not skip Section 6.2, since it does play an importantrole in the following sections. As in Chapter 5, we assume that the reader isfamiliar with the material in Chapters 2 and 3 (and speci�cally with Sections 2.2,2.4, and 3.6). This familiarity is important not only because we use some ofthe notions and results presented in these sections, but rather because we usesimilar proof techniques (and do it while assuming that this is not the reader's�rst encounter with these techniques).6.1 De�nitional IssuesLoosely speaking, message authentication and signature schemes are supposedto enable reliable transmission of data between parties. That is, the basic setting485

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

486 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONconsists of a sender and a receiver, where the receiver may be either predeter-mined or determined only after the data was sent. Loosely speaking, the receiverwishes to be guaranteed that the data received was actually sent by the sender,rather than modi�ed (or even concocted) by somebody else (i.e., an adversary).The receiver may be a party that shares an explicit (unreliable) point-to-pointcommunication line with the sender; this is indeed the typical setting in whichmessage authentication is employed. However, in other cases (i.e., when signa-ture schemes are employed), the receiver may be any party that obtains the datain the future and wishes to verify that it was indeed sent by the declared sender.In both cases, the reliability (or authenticity) of the data is established by anauthentication process that consists of two main processes:1. A signing process that is employed by the alleged sender in order to producesignatures to data of its choice.2. A veri�cation process that is employed by the receiver in order to determinethe authenticity of the data using the provided signature.As in case of encryption schemes, the authentication process presupposes also athird (implicit) process called key-generation that allows the sender to generatea signing-key (to be used in the signing process), along with a veri�cation-key(to be used in the veri�cation process). The possession of the signing-key con-stitutes the sender's advantage over the adversary (see analogous discussion inChapter 5). Without this key, it is infeasible to generate valid signatures. Fur-thermore, even after receiving signatures to messages of its choice, an adversary(lacking the signing-key) cannot generate a valid signature to any other message.6.1.1 Message authentication versus signature schemesThe di�erence between message authentication and signature schemes arisesfrom the di�erence in the settings for which they are intended, which amounts toa di�erence in the identity of the receiver and in the level of trust that the senderhas in the receiver. Typically, message authentication schemes are employed incases where the receiver is predetermined (at the time of message transmission)and is fully trusted by the sender, whereas signature schemes allow veri�cationof the authenticity of the data by anybody (which is certainly not trusted bythe sender). In other words, signature schemes allow for universal veri�cation,whereas message authentication schemes may only allow predetermine parties toverify the authenticity of the data. Thus, in signature schemes the veri�cation-key must be known to anybody, and in particular is known to the adversary. Incontrast, in message-authentication schemes, the veri�cation-key is only given toa set of predetermined receivers that are all trusted not to abuse this knowledge;that is, in such schemes it is postulated that the veri�cation-key is not (a-priori)known to the adversary.Summary and terminology: Message authentication and signature schemesdi�er in the question of whether the veri�cation-key is \private" (i.e., a secret un-known to the adversary) or \public" (i.e., known to all and in particular known

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. DEFINITIONAL ISSUES 487type veri�cation-key known veri�cation possibleMessage auth. to the designated for the designatedschemes (trusted) receiver(s) only (trusted) receiver(s) onlySignature to everybody for anybodyschemes (including the adversary) (including the adversary)Figure 6.1: Message authentication versus signature schemes.to the adversary). Thus, in a sense, these are private-key and public-key versionsof a task that lacks a good name (since both authentication and signatures arealready taken by one of the two versions). Still, seeking a uniform terminol-ogy, we shall sometimes refer to message authentication schemes (also known asmessage authentication codes (mac)) as to private-key signature schemes. Anal-ogously, we shall sometimes refer to signature schemes as to public-key signatureschemes.6.1.2 Basic mechanismWe start by de�ning the basic mechanism of message-authentication and signa-ture schemes. Recall that this basic mechanism will support both the private-keyand public-key versions, but the di�erence between the two versions will only bereected in the de�nition of security. Indeed, the de�nition of the basic mech-anism says nothing about the security of the scheme (which is the subject ofthe next section), and thus is the same for both the private-key and public-keyversions. In both cases, the scheme consists of three e�cient algorithms: keygeneration, signing (or authenticating) and veri�cation. The basic requirementis that signatures that are produced by the signing algorithm be accepted asvalid by the veri�cation algorithm, when fed a veri�cation-key corresponding tothe signing-key used by the signing algorithm.De�nition 6.1.1 (signature scheme): A signature scheme is a triple, (G;S; V),of probabilistic polynomial-time algorithms satisfying the following two condi-tions1. On input 1n, algorithm G (called the key generator) outputs a pair of bitstrings.2. For every pair (s; v) in the range of G(1n), and for every � 2 f0; 1g�,algorithms S (signing) and V (veri�cation) satisfyPr[V (v; �; S(s; �))=1] = 1where the probability is taken over the internal coin tosses of algorithms Sand V .

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

488 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONThe integer n serves as the security parameter of the scheme. Each (s; v) inthe range of G(1n) constitutes a pair of corresponding signing/veri�cation keys.The string S(s; �) is a signature to the document � 2 f0; 1g� using the signingkey s.We stress that De�nition 6.1.1 says nothing about security, and so trivial (i.e.,insecure) algorithms may satisfy it (e.g., S(s; �) def= 0 and V (v; �; �) def= 1, forall s; v; � and �). Furthermore, De�nition 6.1.1 does not distinguish private-keysignature schemes from public-key ones. The di�erence between the two typesis introduced in the security de�nitions: In a public-key scheme the \forgingalgorithm" gets the veri�cation key (i.e., v) as an additional input (and thusv 6= s follows), whereas in private-key schemes v is not given to the \forgingalgorithm" (and thus one may assume, without loss of generality, that v = s).Notation: In the rest of this work, we write Ss(�) instead of S(s; �) andVv(�; �) instead of V (v; �; �). Also, we let G1(1n) (resp., G2(1n)) denote the �rst(resp., second) element in the pair G(1n). That is, G(1n) = (G1(1n); G2(1n)).Without loss of generality, we may assume that jG1(1n)j and jG2(1n)j are poly-nomially related to n, and that each of these integers can be e�ciently computedfrom the other.Comments: De�nition 6.1.1 may be relaxed in several ways without signif-icantly harming its usefulness. For example, we may relax Condition (2) andallow a negligible veri�cation error (e.g., Pr[Vv(�; Ss(�)) 6= 1] < 2�n). Alter-natively, one may postulate that Condition (2) holds for all but a negligiblemeasure of the key-pairs generated by G(1n). At least one of these relaxationsis essential for many suggestions of (public-key) signature schemes.Another relaxation consists of restricting the domain of possible documents.However, unlike the situation with respect to encryption schemes, such a restric-tion is non-trivial in the current context, and is discussed at length in Section 6.2.6.1.3 Attacks and securityWe consider very powerful attacks on the signature scheme as well as a veryliberal notion of breaking it. Speci�cally, the attacker is allowed to obtain signa-tures to any document of its choice. One may argue that in many applicationssuch a general attack is not possible (as documents to be signed must havea speci�c format). Yet, our view is that it is impossible to de�ne a general(i.e., application-independent) notion of admissible documents, and thus a gen-eral/robust de�nition of an attack seems to have to be formulated as suggestedhere. (Note that at worst, our approach is overly cautious.) Likewise, the adver-sary is said to be successful if it can produce a valid signature to any documentfor which it has not asked for a signature during its attack. Again, this de�nesthe ability to form signatures to possibly \nonsensical" documents as a breaking

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. DEFINITIONAL ISSUES 489of the scheme. Yet, again, we see no way to have a general (i.e., application-independent) notion of \meaningful" documents (so that only forging signaturesto them will be consider a breaking of the scheme). The above discussion leadsto the following (slightly informal) formulation.� A chosen message attack is a process that can obtain signatures to stringsof its choice, relative to some �xed signing-key that is generated by G. Wedistinguish two cases.The private-key case: Here the attacker is given 1n as input, and the sig-natures are produced relative to s, where (s; v) G(1n).The public-key case: Here the attacker is given v as input, and the signa-tures are produced relative to s, where (s; v) G(1n).� Such an attack is said to succeeds (in existential forgery) if it outputs a validsignature to a string for which it has not requested a signature during theattack. That is, the attack is successful if it outputs a pair (�; �) suchthat � is di�erent from all strings for which a signature has been requiredduring the attack, and Pr[Vv(�; �) = 1] � 12 , where v is as above.1� A signature scheme is secure (or unforgeable) if every feasible chosen mes-sage attack succeeds with at most negligible probability.Formally, a chosen message attack is modeled by a probabilistic oracle machinethat is given oracle access to a \keyed signing process" (i.e., the signing algorithmcombined with a signing-key). Depending on the version (i.e., public-key or not),the attacker may get the corresponding veri�cation-key as input. We stress thatthis is the only di�erence between the two cases (i.e., private-key and public-key),which are spelled out in De�nition 6.1.2. We refer the reader to the clarifyingdiscussion that follows De�nition 6.1.2; in fact, some readers may prefer to readthat discussion �rst.De�nition 6.1.2 (unforgeable signatures): For a probabilistic oracle machine,M , we denote by QOM (x) the set of queries made by M on input x and accessto oracle O. As usual, MO(x) denotes the output of the corresponding compu-tation. We stress that QOM (x) and MO(x) are dependent random variables thatrepresents two aspects of the same probabilistic computation.The private-key case: A private-key signature scheme is secure if for every prob-abilistic polynomial-time oracle machine M , every polynomial p and allsu�ciently large n, it holds thatPr � Vv(�; �)=1 & � 62 QSsM (1n)where (s; v) G(1n) and (�; �) MSs(1n) � < 1p(n)1 The threshold of 1=2 used above is quite arbitrary. The de�nition is essentially robustunder the replacement of 1=2 by either 1=poly(n) or 1� 2�poly(n). Indeed, robustness followsby \ampli�cation" (i.e., error-reduction) of the veri�cation algorithm. For example, given Vas above, one may consider V 0 that applies V to the tested pair for a linear number of timesand accepting if and only if V has accepted in all tries.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

490 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONwhere the probability is taken over the coin tosses of algorithms G, S andV as well as over the coin tosses of machine M .The public-key case: A public-key signature scheme is secure if for every prob-abilistic polynomial-time oracle machine M , every polynomial p and allsu�ciently large n, it holds thatPr � Vv(�; �)=1 & � 62 QSsM (v)where (s; v) G(1n) and (�; �) MSs(v) � < 1p(n)where the probability is taken over the coin tosses of algorithms G, S andV as well as over the coin tosses of machine M .The de�nition refers to the following experiment. First a pair of keys, (s; v), isgenerated by invoking G(1n), and is �xed for the rest of the discussion. Next,an attacker is invoked on input 1n or v, depending if we are in the private-key orpublic-key case. In both cases, the attacker is given oracle access to Ss, wherethe latter may be a probabilistic oracle rather than a standard deterministic one(e.g., if queried twice for the same value then the probabilistic signing oracle mayanswer in di�erent ways). Finally, the attacker outputs a pair of strings (�; �).The attacker is deemed successful if and only if the following two conditionshold:1. The string � is di�erent than all queries (i.e., requests for signatures)made by the attacker; that is, the �rst string in the output pair MSs(x) isdi�erent from any string in QSsM (x), where x = 1n or x = v depending onwhether we are in the private-key or public-key case.We stress that both MSs(x) and QSsM (x) are random variables that arede�ned based on the same random execution of M (on input x and oracleaccess to Ss).2. The pair (�; �) corresponds to a valid document-signature pair relativeto the veri�cation key v. In case V is deterministic (which is typicallythe case) this means that Vv(�; �) = 1. The same applies also in caseV is probabilistic, and when viewing Vv(�; �) = 1 as a random variable.(Alternatively, in the latter case, a condition such as Pr[Vv(�; �) = 1] � 1=2may replace the condition Vv(�; �) = 1.)6.1.4 CommentsClearly, any signature scheme that is secure in the public-key model is also securein the private-key model. The converse is not true: consider, for example,the private-key scheme presented in Construction 6.3.1 (as well as any other\natural" message authentication scheme). Following are a few other commentsregarding the de�nitions.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.1. DEFINITIONAL ISSUES 4916.1.4.1 Augmenting the attack with a veri�cation oracleIndeed, it is natural to augment De�nition 6.1.2 by providing the adversary withunlimited access to the corresponding veri�cation oracle Vv . We stress that (inthis augmented de�nition) the documents that (only) appear in the veri�cationqueries are not added to the set QSsM ; that is, the output (�; �) is considered asuccessful forgery even if the adversary made the veri�cation-query (�; �), butprovided (as before) that the adversary did not make the signing-query � (andthat Vv(�; �) = 1).Indeed, in the public-key case, the veri�cation-oracle adds no power to theadversary, since the adversary (which is given the veri�cation-key) can emulatethe veri�cation-oracle by itself. Furthermore, typically, also in the private-keymodel, the veri�cation-oracle does not add much power. Speci�cally, as discussedin Section 6.5.1 (see also Exercises 1 and 2), any secure private-key signaturescheme can be transformed into one having a deterministic veri�cation algorithmand unique valid signatures (i.e., for every veri�cation-key v and document �,there exists a unique � such that Vs(�; �) = 1). In fact, all private-key signatureschemes presented in Section 6.3 have unique valid signatures. Considering anarbitrary combined attack on such a private-key signature scheme, we emulatethe veri�cation-queries (in the original model) as follows.� For a veri�cation-query (�; �) if � equals a previous signing-query, thenwe can emulate the answer by ourselves. Speci�cally, if the signing-query� was answered with � then we we answer the veri�cation-query positivelyelse we answer it negatively.� Otherwise (i.e., for a veri�cation-query (�; �) such that � does not equalany previous signing-query), we may choose either to output (�; �) asa candidate forgery (gambling on Vv(�; �) = 1) or emulate a negativeanswer by ourselves (gambling on Vv(�; �) = 0). Speci�cally, for everysuch veri�cation-query, we may choose the �rst possibility with probability1=t(n) and the second possibility otherwise, where t(n) is a bound on thenumber of veri�cation-queries performed by the original augmented attack(which we emulate).For further discussion, see Exercise 3.6.1.4.2 Inessential generalitiesThe de�nitions presented above (speci�cally, De�nition 6.1.1) were aimed at gen-erality and exibility. We comment that several levels of freedom can be elimi-nated without loss of generality (but with some loss of convenience). Firstly, asin the case of encryption schemes, one may modify the key-generation algorithmso that on input 1n it outputs a pair of n-bit long keys. Two more fundamentalrestrictions, which actually do not a�ect the existence of secure schemes, follow.Randomization in the signing process: In contrast to the situation withrespect to encryption schemes (see Sections 5.2 and 5.3), randomization is not

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

492 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONessential to the actual signing and verifying processes (but is, as usual, essentialto key generation). That is, without loss of generality (but with possible loss ine�ciency), the signing algorithm may be deterministic, and in all schemes wepresent (in the current chapter) the veri�cation algorithm is indeed deterministic.For details, see Exercise 1.Canonical veri�cation in the private-key version: As hinted above, inthe private-key case, we may just identify the signing and veri�cation keys (i.e.,k def= s = v). Furthermore (following the comment about deterministic signing),without loss of generality, veri�cation may amount to comparing the allegedsignature to one produced by the veri�cation algorithm itself (which may justproduce signatures exactly as the signing algorithm). That is, for a deterministicsigning process Sk, we may let Vk(�; �) def= 1 if and only if � = Sk(�). For details,see Exercise 2.6.1.4.3 Weaker notions of security and some popular schemesWeaker notion of security have been considered in the literature. The variousnotions refer to two parameters: (1) the type of attack, and (2) when is theadversary considered to be a success. Indeed, De�nition 6.1.2 refers to the mostsevere type of attacks (i.e., unrestricted chosen message attacks) and to the mostliberal notion of success (i.e., the ability to produce a valid signature to any newmessage). The interested reader is referred to Section 6.6.3.We note that plain RSA as well as plain versions of Rabin's scheme andthe DSS are not secure under De�nition 6.1.2. However, these schemes sat-isfy weaker notions of security, provided that some (standard) intractabilityassumptions hold. Furthermore, variants of these signature schemes (in whichthe function is not applied directly to the document itself) may be secure (underDe�nition 6.1.2).6.2 Length-restricted signature schemeRestricted types of (public-key and private-key) signature schemes play an im-portant role in our exposition. The �rst restriction we consider is the restrictionof signature schemes to (apply only to) documents of a certain predeterminedlength. We call the resulting schemes length-restricted. The e�ect of the length-restriction is more dramatic here (in the context of signature schemes) than itis in the context of encryption schemes; compare the following to Section 5.3.2.Nevertheless, as we shall show (see Theorem 6.2.2 below), if the length restric-tion is not too low then the full power of signature schemes can be regained;that is, length-restricted signature schemes yield full-edged ones.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 4936.2.1 De�nitionThe essence of the length-restriction is that security is guaranteed only withrespect to documents of the predetermined length. Note that the question ofwhat is the result of invoking the signature algorithm on a document of im-proper length is immaterial. What is important is that an attacker (of a length-restricted scheme) is deemed successful only if it produces a signature to a (dif-ferent) document of proper length. Still, for sake of concreteness (and simplicityof subsequent treatment), we de�ne the basic mechanism only for documents ofproper length.De�nition 6.2.1 (signature scheme for �xed length documents): Let ` : N !N . An `-restricted signature scheme is a triple, (G;S; V), of probabilistic polynomial-time algorithms satisfying the following two conditions1. As in De�nition 6.1.1, on input 1n, algorithm G outputs a pair of bitstrings.2. Analogously to De�nition 6.1.1, for every n and every pair (s; v) in therange of G(1n), and for every � 2 f0; 1g`(n), algorithms S and V satisfyPr[Vv(�; Ss(�))=1] = 1.Such a scheme is called secure (in the private-key or public-key model) if the(corresponding) requirements of De�nition 6.1.2 hold when restricted to attack-ers that only make queries of length `(n) and output a pair (�; �) with j�j = `(n).We stress that the essential modi�cation is presented in the security condition.The latter considers an adversary to be successful only in case it forges a signa-ture to a (di�erent) document � of the proper length (i.e., j�j = `(n)).6.2.2 The power of length-restricted signature schemesWe comment that `-restricted private-key signature schemes for `(n) = O(log n)are trivial (since the signing and veri�cation keys may contain a table look-upassociating a secret with each of the 2`(n) = poly(n) possible documents).2 Incontrast, this triviality does not hold for public-key signature schemes. (Fordetails on both claims, see Exercise 5.) On the other hand, in both (private-keyand public-key) cases, `-restricted signature schemes for any super-logarithmic` (e.g., `(n) = n or even `(n) = log22 n) are as powerful as ordinary signatureschemes:Theorem 6.2.2 Suppose that ` is a super-logarithmically growing function. Then,given an `-restricted signature scheme that is secure in the private-key (resp.,public-key) model, one can construct a full-edged signature scheme that is se-cure in the same model.2 Recall, that such triviality does not hold in the context of encryption schemes; not evenin the private-key case. See Section 5.3.2.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

494 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONResults of the above avor can be established in two di�erent ways, correspond-ing to two methods of converting an `-restricted signature scheme into a full-edged one. Both methods are applicable both to private-key and public-keysignature schemes. The �rst method (presented in Section 6.2.2.1) consists ofparsing the original document into blocks (with adequate \linkage" betweenblocks), and applying the `-restricted scheme to each block. The second method(presented in Section 6.2.2.2) consists of hashing the document into an `(n)-bitlong value (via an adequate hashing scheme), and applying the restricted schemeto the resulting value. Thus, the second method requires an additional assump-tion (i.e., the existence of \collision-free" hashing), and so Theorem 6.2.2 (asstated) is actually proved using the �rst method. The second method is pre-sented because it o�ers other bene�ts; in particular, it yields signatures of �xedlength (i.e., the signature-length only depends on the key-length) and uses a sin-gle invocation of the restricted scheme. The latter feature will play an importantrole in subsequent sections (e.g., in Sections 6.3.1.2 and 6.4.1.3).6.2.2.1 Signing (augmented) blocksIn this subsection we present a simple method for constructing general signa-ture schemes out of length-restricted ones, and doing so we establish Theo-rem 6.2.2. Loosely speaking, the method consists of parsing the original doc-ument into blocks (with adequate \linkage" between blocks), and applying thelength-restricted scheme to each (augmented) block.Let ` and (G;S; V) be as in Theorem 6.2.2. We construct a general signaturescheme, (G0; S0; V 0), with G0 = G, by viewing documents as sequences of strings,each of length `0(n) = `(n)=O(1). That is, we associate � = �1 � � ��t with thesequence (�1; :::; �t), where each �i has length `0(n). (At this point, the readermay think of `0(n) = `(n), but actually we will use `0(n) = `(n)=4 in order tomake room for some auxiliary information.)To motivate the actual construction, we consider �rst the following sim-pler schemes all aimed at producing secure signatures for arbitrary (documentsviewed as) sequences of `0(n)-bit long strings. The simplest scheme consistsof just signing each of the strings in the sequence. That is, the signature tothe sequence (�1; :::; �t), is a sequence of �i's each being a signature (w.r.t thelength-restricted scheme) to the corresponding �i. This will not do, becausean adversary, given the (single) signature (�1; �2) to the sequence (�1; �2) with�1 6= �2, can present (�2; �1) as a valid signature to (�2; �1) 6= (�1; �2). So howabout foiling this forgery by preventing a re-ordering of the \atomic" signatures(i.e., the �i's); that is, how about signing the sequence (�1; :::; �t) by applyingthe restricted scheme to each pair (i; �i), rather than to �i itself? This will notdo either, because an adversary, given a signature to the sequence (�1; �2; �3)can easily present a signature to the sequence (�1; �2). So we need to include ineach `(n)-bit string also the total number of �i's in the sequence. But even thisis not enough, because given signatures to the sequences (�1; �2) and (�01; �02),with �1 6= �01 and �2 6= �02, an adversary can easily generate a signature to(�1; �02). Thus, we have to prevent the forming of new sequences of \basic sig-

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 495natures" by combining elements from di�erent signature sequences. This canbe done by associating (say at random) an identi�er with each sequence and in-corporating this identi�er in each `(n)-bit string to which the basic (restricted)signature scheme is applied. This yields the following signature scheme:Construction 6.2.3 (signing augmented blocks): Let ` and (G;S; V) be asin Theorem 6.2.2. We construct a general signature scheme, (G0; S0; V 0), withG0 = G, by considering documents as sequences of strings. We construct S0 andV 0 as follows, using G0 = G and `0(n) = `(n)=4.Signing with S0: On input a signing-key s (in the range of G1(1n)) and a doc-ument � 2 f0; 1g�, algorithm S0 �rst parses � into �1; :::; �t such that �is uniquely reconstructed from the �i's and each �i is an `0(n)-bit longstring.3 Next, S0 uniformly selects r 2 f0; 1g`0(n). For i = 1; :::; t, algo-rithm S0 computes �i Ss(r; t; i; �i)where i and t are represented as `0(n)-bit long strings. That is, �i is asignature to the statement \�i is the ith block, out of t blocks, in a sequenceassociate with identi�er r". Finally, S0 outputs as signature the sequence(r; t; �1; ::::; �t)Veri�cation with V 0: On input a verifying-key v (in the range of G2(1n)), adocument � 2 f0; 1g�, and a sequence (r; t; �1; ::::; �t), algorithm V 0 �rstparses � into �1; :::; �t0 , using the same parsing rule as used by S0. Algo-rithm V 0 accepts if and only if the following two conditions hold:1. t0 = t, where t0 is obtained in the parsing of � and t is part of thealleged signature.2. For i = 1; :::; t, it holds that Vv((r; t; i; �i); �i), where �i is obtainedin the parsing of � and the rest are as in the corresponding parts ofthe alleged signature.Clearly, the triplet (G0; S0; V 0) satis�es De�nition 6.1.1. We need to show thatis also inherits the security of (G;S; V). That is:Proposition 6.2.4 Suppose that (G;S; V) is an `-restricted signature schemethat is secure in the private-key (resp., public-key) model. Then (G0; S0; V 0), asde�ned in Construction 6.2.3 is a full-edged signature scheme that is secure inthe private-key (resp., public-key) model.Theorem 6.2.2 follows immediately from Proposition 6.2.4.Proof: Intuitively, ignoring the unlikely case that two messages signed by S0swere assigned the same random identi�er, a forged signature with respect to(G0; S0; V 0) must contain some Ss-signature that was not contained in any of the3 For example, we may require that � � 10j = �1 � � ��t and j < `0(n).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

496 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONS0s-signatures (provided in the attack). Thus, forgery with respect to (G0; S0; V 0)yields forgery with respect to (G;S; V). Indeed, the proof is by a reducibilityargument, and holds for both the private-key and the public-key models.Given an adversary A0 attacking the complex scheme (G0; S0; V 0), we con-struct an adversary A that attacks the `-restricted scheme, (G;S; V). In partic-ular, A invokes A0 with input identical to its own input (which is the securityparameter or the veri�cation-key depending on the model), and uses its own ora-cle in order to emulate the oracle S0s for A0. This can be done in a straightforwardmanner; that is, algorithm A will act as S0s does by using the oracle Ss. Specif-ically, A parses each query �0 of A0 into a corresponding sequence (�01; :::; �0t0),uniformly selects an identi�er r0, and obtains Ss-signatures to (r0; t0; j; �0j), forj = 1; :::; t0. When A0 outputs a document-signature pair relative to the com-plex scheme (G0; S0; V 0), algorithm A tries to use this pair in order to form adocument-signature pair relative to the `-restricted scheme, (G;S; V).We stress that from the point of view of adversary A0, the distribution ofkeys and oracle answers that A provides it with is exactly as in a real attackon (G0; S0; V 0). This is a crucial point because we use the fact that events thatoccur in a real attack of A0 on (G0; S0; V 0), occur with the same probability inthe emulation of (G0; S0; V 0) by A.Assume that with (non-negligible) probability "0(n), the (probabilistic polynomial-time) algorithm A0 succeeds in existentially forging relative to the complexscheme (G0; S0; V 0). We consider the following cases regarding the forging event:1. The identi�er supplied in the forged signature is di�erent from the all ran-dom identi�ers supplied (by A) as part of the signatures given to A0. In thiscase, each `-restricted signature supplied as part of the forged (complex)signature, yields existential forgery relative to the `-restricted scheme.Formally, let �(1); :::; �(m) be the sequence of queries made by A0, and let(r(1); t(1); �(1)); :::; (r(m); t(m); �(m)) be the corresponding (complex) signa-tures supplied to A0 by A (using Ss to form the �(i)'s). It follows thateach �(i) consists of a sequence of Ss-signatures to `(n)-bit strings startingwith r(i) 2 f0; 1g`(n)=4, and that the oracle Ss was invoked (by A) only onstrings of this form. Let (�; (r; t; �1; ::::; �t)) be the output of A0, where� is parsed as (�1; :::; �t), and suppose that applying V 0v to the outputof A0 yields 1 (i.e., the output is a valid document-signature pair for thecomplex scheme). The case hypothesis states that r 6= r(i), for all i's. Itfollows that each of the �j 's is an Ss-signature to a string starting withr 2 f0; 1g`(n)=4, and thus di�erent from all queries made to the oracle Ss.Thus, each pair ((r; t; i; �i); �i) is a valid document-signature pair (becauseV 0v(�; (r; t; �1; ::::; �t)) = 1 implies Vv((r; t; i; �i); �i) = 1), with a documentdi�erent than all queries made to Ss. This yields a successful forgery withrespect to the `-restricted scheme.2. The identi�er supplied in the forged signature equals the random identi�ersupplied (by A) as part of exactly one of the signatures given to A0. In this

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 497case, existential forgery relative to the `-restricted scheme is obtained byconsidering the relation between the output of A0 and the single suppliedsignature having the same identi�er.As in the previous case, let �(1); :::; �(m) be the sequence of queries madeby A0, and let (r(1); t(1); �(1)); :::; (r(m); t(m); �(m)) be the corresponding(complex) signatures supplied to A0 by A. Let (�; (r; t; �1; ::::; �t)) be theoutput of A0, where � is parsed as (�1; :::; �t), and suppose that � 6= �(i) forall i's and that V 0v(�; (r; t; �1; ::::; �t)) = 1. The hypothesis of the currentcase is that there exists a unique i so that r = r(i).We consider two subcases regarding the relation between t and t(i):� t 6= t(i). In this subcase, each `-restricted signature supplied as partof the forged (complex) signature, yields existential forgery relativeto the `-restricted scheme. The argument is analogous to the oneemployed in the previous case. Speci�cally, here each of the �j 'sis an Ss-signature to a string starting with (r; t), and thus di�erentfrom all queries made to the oracle Ss (because these queries eitherstart with r(i0) 6= r or start with (r(i); t(i)) 6= (r; t)). Thus, each pair((r; t; j; �j); �j) is a valid document-signature pair with a documentdi�erent than all queries made to Ss.� t = t(i). In this case we use the hypothesis � 6= �(i), which (com-bined with t = t(i)) implies that there exists a j such that �j 6= �(i)j ,where �(i)j is the jth block in the parsing of �(i). In this subcase,�j (supplied as part of the forged complex-signature), yields existen-tial forgery relative to the `-restricted scheme. Speci�cally, we haveVv((r; t; j; �j); �j) = 1, and (r; t; j; �j) is di�erent from each query(r(i0); t(i0); j0; �(i0)j0) made by A to Ss.Justi�cation for (r; t; j; �j) 6= (r(i0); t(i0); j0; �(i0)j0). If i0 6= i then(by the case hypothesis regarding uniqueness of i s.t. r(i) = r)it holds that r(i0) 6= r. Otherwise (i.e., i0 = i), either j0 6= j or�(i0)j0 = �(i)j 6= �j .Thus, ((r; t; j; �j); �j) is a valid document-signature pair with a doc-ument di�erent than all queries made to Ss.3. The identi�er supplied in the forged signature equals the random identi�erssupplied (by A) as part of at least two signatures given to A0. In particular,it follows that two signatures given to A use the same random identi�er.The probability that this event occurs is at most�m2� � 2�`0(n) < m2 � 2�`(n)=4However, m = poly(n) (since A0 runs in polynomial-time), and 2�`(n)=4 isnegligible (since ` is super-logarithmic). So this case occurs with negligibleprobability, and may be ignored.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

498 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONNote that A can easily determine which of the cases occurs and act accordingly.4Thus, assuming that A0 forges relative to the complex scheme with non-negligibleprobability "0(n), it follows that A forges relative to the length-restricted schemewith non-negligible probability "(n) � "0(n)�poly(n) �2�`(n)=4, in contradictionto the proposition's hypothesis.Comment: We call the reader's attention to the essential role of the hypothesisthat ` is super-logarithmic in the proof of Proposition 6.2.4. Indeed, Construc-tion 6.2.3 is insecure in case `(n) = O(log n). The reason being that, by askingfor polynomially-many signatures, the adversary may obtain two S0s-signaturesthat use the same (random) identi�er. Furthermore, with some care, these sig-natures yield existential forgery (see Exercise 6).6.2.2.2 Signing a hash valueIn this subsection we present an alternative method for constructing generalsignature schemes out of length-restricted ones. Loosely speaking, the methodconsists of hashing the document into a short (�xed-length) string (via an ade-quate hashing scheme), and applying the length-restricted signature scheme tothe resulting hash-value. This two-stage process is referred to as the hash andsign paradigm.Let ` and (G;S; V) be as in Theorem 6.2.2. The second method of con-structing a general signature scheme out of (G;S; V) consists of �rst hashingthe document into an `(n)-bit long value, and then applying the `-restrictedscheme to the hashed value. Thus, in addition to an `-restricted scheme, thismethod employs an adequate hashing scheme. In particular, one way of im-plementing this method is based on \collision-free hashing" (de�ned next). Analternative implementation, based on \universal one-way hashing" is deferred toSection 6.4.3.Collision-free hashing functions. Loosely speaking, a collision-free hashingscheme consists of a collection of functions fhs : f0; 1g� ! f0; 1gjsjgs2f0;1g� suchthat given s and x it is easy to compute hs(x), but given a random s it is hardto �nd x 6= x0 such that hs(x) = hs(x0).De�nition 6.2.5 (collision-free hashing functions): Let ` : N ! N . A collec-tion of functions fhs : f0; 1g� ! f0; 1g`(jsj)gs2f0;1g� is called collision-free hashingif there exists a probabilistic polynomial-time algorithm I such that the followingholds4 This observation only saves us a polynomial factor in the forging probability. That is, ifA did not know which part of the forged complex-signature to use for its own forgery, it couldhave just selected one at random (and be correct with probability 1=poly(n) because there areonly poly(n)-many possibilities).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 4991. (admissible indexing { technical):5 For some polynomial p, all su�cientlylarge n's and every s in the range of I(1n) it holds that n � p(jsj). Fur-thermore, n can be computed in polynomial-time from s.2. (e�cient evaluation): There exists a polynomial-time algorithm that givens and x, returns hs(x).3. (hard to form collisions): We say that the pair (x; x0) forms a collisionunder the function h if h(x) = h(x0) but x 6= x0. We require that everyprobabilistic polynomial-time algorithm, given I(1n) as input, outputs acollision under hI(1n) with negligible probability. That is, for every proba-bilistic polynomial-time algorithm A, every polynomial p and all su�cientlylarge n's, Pr �A(I(1n)) is a collision under hI(1n)� < 1p(n)where the probability is taken over the internal coin tosses of algorithms Iand A.The function ` is called the range speci�er of the collection.Note that the range speci�er must be super-logarithmic (or else one may easily�nd a collisions by selecting 2`(n) + 1 di�erent preimages and computing theirimage under the function). In Section 6.2.3, we show how to construct collision-free hashing functions using claw-free collections. But �rst, we show how touse the former in order to convert a length-restricted signature scheme into afull-edged one.Construction 6.2.6 (hash and sign): Let ` and (G;S; V) be as in Theorem 6.2.2,and let fhr : f0; 1g� ! f0; 1g`(jrj)gr2f0;1g� be as in De�nition 6.2.5. We con-struct a general signature scheme, (G0; S0; V 0), as follows:Key-generation with G0: On input 1n, algorithm G0 �rst invokes G to obtain(s; v) G(1n). Next it invokes I, the indexing algorithm of the collision-free hashing collection, to obtain r I(1n). Finally, G0 outputs the pair((r; s); (r; v)), where (r; s) serves as a signing-key and (r; v) serves as averi�cation-key.Signing with S0: On input a signing-key (r; s) (in the range of G01(1n)) and adocument � 2 f0; 1g�, algorithm S0 invokes S once to produce and outputSs(hr(�)).Veri�cation with V 0: On input a verifying-key (r; v) (in the range of G02(1n)), adocument � 2 f0; 1g�, and a alleged signature �, algorithm V 0 invokes V ,and outputs Vv(hr(�); �).5 This condition is made merely in order to avoid annoying technicalities. In particular,this condition allows the collision-forming adversary to run for poly(n)-time (because by thiscondition n = poly(jsj)) as well as allows to determine n from s. Note that jsj = poly(n) holdsby de�nition of I.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

500 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONNote that the resulting applies the original one once (per each invocation of theresulting scheme). We stress that the length of resulting signatures only dependon the length of the signing-key and is independent of the document being signed(i.e., jS0r;s(�)j = jSs(hr(�))j, which in turn is bounded by poly(jsj; `(jrj))).Proposition 6.2.7 Suppose that (G;S; V) is an `-restricted signature schemethat is secure in the private-key (resp., public-key) model. Suppose that fhr :f0; 1g� ! f0; 1g`(jrj)gr2f0;1g� is indeed a collision-free hashing collection. Then(G0; S0; V 0), as de�ned in Construction 6.2.6 is a full-edged signature schemethat is secure in the private-key (resp., public-key) model.Proof: Intuitively, the security of (G0; S0; V 0) follows from the security of(G;S; V) and the collision-freeness property of the collection fhrg. Speci�cally,forgery relative to (G0; S0; V 0) can be obtained by either a forged S-signatureto a hash-value di�erent from all hash-values that appeared in the attack or byforming a collision under the hash function. That is, the actual proof is by areducibility argument. Given an adversary A0 attacking the complex scheme(G0; S0; V 0), we construct an adversary A that attacks the `-restricted scheme,(G;S; V), as well as an algorithm B forming collisions under the hashing col-lection fhrg. Both A and B will have running-time related to that of A0. Weshow if A0 is successful with non-negligible probability than the same holdsfor either A or B. Thus, in either case, we reach a contradiction. We startwith the description of algorithm A, which is designed to attack the `-restrictedscheme (G;S; V). We stress that almost the same description applies both inthe private-key and public-key case.On input x, which equals the security parameter 1n in the private-key caseand a veri�cation-key v otherwise (i.e., in the public-key case), the adversaryA operates as follows. First A uses I (the indexing algorithm of the collision-free hashing collection) to obtain r I(1n), exactly as done in the second stepof G0. Next, A invokes A0 (on input 1n or (r; v) depending on the case), anduses r as well as its own oracle Ss in order to emulate the oracle S0r;s for A0.The emulation is done in a straightforward manner; that is, algorithm A willact as S0r;s does by using the oracle Ss (i.e., to answer query q, algorithm Amakes the query hr(q)). When A0 outputs a document-signature pair relativeto the complex scheme (G0; S0; V 0), algorithm A tries to use this pair in orderto form a document-signature pair relative to the `-restricted scheme, (G;S; V).That is, if A0 outputs the document-signature pair (�; �), then A will outputthe document-signature pair (hr(�); �).As in the proof of Proposition 6.2.4, we stress that the distribution of keysand oracle answers that A provides A0 is exactly as in a real attack of A0 on(G0; S0; V 0). This is a crucial point, because we use the fact that events thatoccur in a real attack of A0 on (G0; S0; V 0) occur with the same probability inthe emulation of (G0; S0; V 0) by A.Assume that with (non-negligible) probability "0(n), the (probabilistic polynomial-time) algorithm A0 succeeds in existentially forging relative to the complexscheme (G0; S0; V 0). We consider the following two cases regarding the forg-ing event, letting (�(i); �(i)) denote the ith query and answer pair made by A0,

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 501and (�; �) denote the forged document-signature pair that A0 outputs (in caseof success):Case 1: hr(�) 6= hr(�(i)) for all i's. (That is, the hash value used in the forgedsignature is di�erent from all hash values used in the queries to Ss.) In thiscase, the pair (hr(�); �) constitutes a success in existential forgery relativeto the `-restricted scheme.Case 2: hr(�) = hr(�(i)) for some i. (That is, the hash value used in the forgedsignature equals the hash value used in the ith query to Ss, although� 6= �(i).) In this case, the pair (�; �(i)) forms a collision under hr (andwe do not obtain success in existential forgery relative to the `-restrictedscheme).Thus, if Case 1 occurs with probability at least "0(n)=2 then A succeeds inits attack on (G;S; V) with probability at least "0(n)=2, which contradicts thesecurity of the `-restricted scheme (G;S; V). On the other hand, if Case 2 occurswith probability at least "0(n)=2 then we derive a contradiction to the collision-freeness of the hashing collection fhr : f0; 1g� ! f0; 1g`(jrj)gr2f0;1g�. Details(regarding the second case) follow.We construct an algorithm, denoted B, that given r I(1n), attempts toform collisions under hr as follows. On input r, algorithm B generates (s; v) G(1n), and emulates the attack of A on this instance of the `-restricted scheme,with the exception that B does not invoke algorithm I to obtain an index of ahash function but rather uses the index r (given to it as input). Recall that A,in turn, emulates an attack of A0 on the signing oracle S0r;s, and that A answersthe query q0 made by A0 by forwarding the query q = hr(q0) to Ss. Thus, Bactually emulates the attack of A0 (on the signing oracle S0r;s), and does so ina straightforward manner; that is, to answer query q0 made by A0, algorithm B�rst obtains q = hr(q0) (using its knowledge of r) and then answers with Ss(q)(using its knowledge of s). Finally, when A0 outputs a forged document-signaturepair, algorithm B checks whether Case 2 occurs (i.e., whether hr(�) = hr(�(i))holds for some i), in which case it obtains (and outputs) a collision under hr.(Note that in the public-key case B invokes A0 on input (r; v), whereas in theprivate-key case B invokes A0 on input 1n. Thus, in the private-key case, Bactually does not use r but rather only uses an oracle access to hr.)We stress that from the point of view of the emulated adversary A, theexecution is distributed exactly as in its attack on (G;S; V). Thus, since thesecond case above occurs with probability at least "0(n)=2 in a real attack, itfollows that B succeeds to form a collision under hI(1n) with probability at least"0(n)=2. This contradicts the collision-freeness of the hashing functions, and theproposition follows.Comment: For the private-key case, the proof of Proposition 6.2.7 actuallyestablished a stronger claim than stated. Speci�cally, the proof holds even fora weaker de�nition of collision-free hashing in which the adversary is not given

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

502 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONa description of the hashing function, but can rather obtain its value at anypreimage of its choice. This observation is further pursued in Section 6.3.1.3.On using the hash-and-sign paradigm in practice. The hash-and-signparadigm, underlying Construction 6.2.6, is often used in practice. Speci�cally,a document is signed using a two-stage process: �rst the document is hashedinto a (relatively) short bit string, and next a basic signature scheme is appliedto the resulting string. One appealing feature of this process is that the lengthof resulting signatures only depend on the length of the signing-key (and isindependent of the document being signed). We stress that this process yields asecure signature scheme only if the hashing scheme is collision-free (as de�nedabove). In Section 6.2.3, we present several constructions of collision-free hashingfunctions. Alternatively, one may indeed postulate that certain o�-the-shelfproducts (such as MD5 or SHA) are collision-free, but such assumptions needto be seriously examined (and indeed may turn out false). We stress that usinga hashing scheme, in the above two-stage process, without seriously evaluatingwhether or not it is collision-free is a very dangerous practice.We comment that a variant on the hash-and-sign paradigm will be presentedin Construction 6.4.30. The two variants are compared in Section 6.4.3.4.6.2.3 * Constructing collision-free hashing functionsIn view of the relevance of collision-free hashing to signature schemes, we nowtake a small detour from the main topic and consider the construction of collision-free hashing. We show how to construct collision-free hashing functions using aclaw-free collection of permutations, and how restricted notions of collision-freehashing may be used to obtain full-edged collision-free hashing.6.2.3.1 A construction based on claw-free permutationsIn this subsection we show how to construct collision-free hashing functions usinga claw-free collection of permutations as de�ned in Section 2.4.5. Recall thatsuch a collection consists of pairs of permutations, (f0s ; f1s), such that both f�s 'sare permutations over a set Ds, augmented with a probabilistic polynomial-timeindex selection algorithm I such that the following conditions hold:1. The domain is easy to sample: there exists a probabilistic polynomial-timealgorithm that given s outputs a string uniformly distributed over Ds.2. The permutations are easy to evaluate: there exists a polynomial-timealgorithm that given s; � and x 2 Ds, outputs f�s (x).3. It is hard to form claws: every probabilistic polynomial-time algorithm,given s I(1n), outputs a pair (x; y) such that f0s (x) = f1s (y) with atmost negligible probability. That is, a pair (x; y) satisfying f0s (x) = f1s (y)is called a claw for index s. (We stress that x = y may hold.) Then, it is

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 503required that for every probabilistic polynomial-time algorithm, A0, everypositive polynomial p(�), and all su�ciently large n'sPr �A0(I(1n)) 2 CI(1n)� < 1p(n)where Cs denote the set of claws for index s.Note that since f0s and f1s are permutations over the same set, many claws doexists (i.e., jCsj = jDsj). However, the third item above postulates that fors generated by I(1n) such claws are hard to �nd. We may assume, withoutloss of generality, that for some ` : N ! N and all s's it holds that Ds �f0; 1g`(jsj). Indeed, ` must be polynomially bounded. For simplicity we assumethat I(1n) 2 f0; 1gn. Recall that such collections of permutation pairs can beconstructed based on the standard DLP or factoring intractability assumptions(see Section 2.4.5).Construction 6.2.8 (collision-free hashing based on claw-free permutationspairs): Given an index selecting algorithm I for a collection of permutationpairs f(f0s ; f1s)gs as above, we construct a collection of hashing functions fh(s;r) :f0; 1g� ! f0; 1gjrjg(s;r)2f0;1g��f0;1g� as follows:Index selection algorithm: On input 1n, we �rst invoke I to obtain s I(1n),and next use the domain sampler to obtain a string r that is uniformlydistributed in Ds. We output the index (s; r) 2 f0; 1gn � f0; 1g`(n), whichcorresponds to the hashing functionh(s;r)(x) def= fy1s fy2s � � � fyts (r)where y1 � � � yt is a pre�x-free encoding of x; that is, for any x 6= x0 thecoding of x is not a pre�x of the coding of x0. For example, code x1x2 � � �xmby x1x1x2x2 � � �xmxm01.Evaluation algorithm: Given an index (s; r) and a string x, we compute h(s;r)(x)in a straightforward manner. That is, �rst we compute the pre�x-freeencoding of x, denoted y1 � � � yt. Next, we use the evaluation algorithm ofthe claw-free collection to compute fy1s fy2s � � � fyts (r), which is the desiredoutput.Actually, as will become evident from the proof of Proposition 6.2.9, we donot need an algorithm that given an index s generates a uniformly distributedelement in Ds; any e�cient algorithm that generates elements in Ds (under anydistribution) will do.Proposition 6.2.9 Suppose that the collection of permutation pairs f(f0s ; f1s)gstogether with the index selecting algorithm I constitutes a claw-free collection.Then, the function ensemble fh(s;r) : f0; 1g� ! f0; 1gjrjg(s;r)2f0;1g��f0;1g� asde�ned in Construction 6.2.8 constitutes a collision-free hashing with a rangespecifying function `0 satisfying `0(n+ `(n)) = `(n).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

504 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONProof: The proof is by a reducibility argument. Given an algorithm A0 that,on input (s; r), forms a collision under h(s;r), we construct an algorithm A thaton input s forms a claw for index s.On input s (supposedly generated by I(1n)), algorithm A selects r uniformlyin Ds, and invokes algorithm A0 on input (s; r). Suppose that A0 outputs a pair(x; x0) so that h(s;r)(x) = h(s;r)(x0) but x 6= x0. Without loss of generality,6assume that the coding of x equals y1 � � � yi�10zi+1 � � � zt, and that the coding ofx0 equals y1 � � � yi�11z0i+1 � � � z0t0 . By the de�nition of h(s;r), it follows thatfy1s � � � fyi�1s f0s fzi+1s � � � fzts (r) = fy1s � � � fyi�1s f1s fz0i+1s � � � fz0t0s (r) (6.1)Since each of the f�s 's is 1-1, Eq. (6.1) implies thatf0s fzi+1s � � � fzts (r) = f1s fz0i+1s � � � fz0t0s (r) (6.2)Computing w def= fzi+1s � � � fzts (r) and w0 def= fz0i+1s � � � fz0t0s (r), algorithm A obtainsa pair (w;w0) such that f0s (w) = f1s (w0). Thus, algorithmA forms claws for indexI(1n) with probability that is bounded below by the probability that A0 formsa collision under hI0(1n), where I 0 is the index selection algorithm as de�ned inConstruction 6.2.8. Using the hypothesis that the collection of pairs (togetherwith I) is claw-free, the proposition follows.6.2.3.2 Collision-free hashing via block-chainingIn this subsection we show how a restricted type of collision-free hashing (CFH)can be used to obtain full-edge collision-free hashing (CFH). Speci�cally, werefer to the following restriction of De�nition 6.2.5.De�nition 6.2.10 (length-restricted collision-free hashing functions): Let `0; ` :N ! N . A collection of functions fhs : f0; 1g`0(jsj) ! f0; 1g`(jsj)gs2f0;1g� iscalled `0-restricted collision-free hashing if there exists a probabilistic polynomial-time algorithm I such that the following holds1. (admissible indexing { technical): As in De�nition 6.2.5.2. (e�cient evaluation): There exists a polynomial-time algorithm that givens and x 2 f0; 1g`0(jsj), returns hs(x).3. (hard to form collisions): As in De�nition 6.2.5, we say that the pair(x; x0) forms a collision under the function h if h(x) = h(x0) but x 6= x0.We require that every probabilistic polynomial-time algorithm, given I(1n)as input, outputs a pair in f0; 1g`0(jsj) � f0; 1g`0(jsj) that forms a collisionunder hI(1n) with negligible probability. That is, for every probabilistic6 Let C(x) (resp., C(x0)) denote the pre�x-free coding of x (resp., x0). Then C(x) is not apre�x of C(x0), and C(x0) is not a pre�x of C(x). It follows that C(x) = uv and C(x0) = uv0,where v and v0 di�er in their leftmost bit. Without loss of generality, we may assume that theleftmost bit of v is is 0, and the leftmost bit of v0 is 1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 505polynomial-time algorithm A, every polynomial p and all su�ciently largen's,Pr hA(I(1n)) 2 f0; 1g2�`0(jI(1n)j) is a collision under hI(1n)i < 1p(n)where the probability is taken over the internal coin tosses of algorithms Iand A.Indeed, we focus on the case `0(n) = poly(n), or else the hardness conditionholds vacuously (since no polynomial-time algorithm can print a pair of stringsof super-polynomial length). On the other hand, we only care about the case`0(n) > `(n) (or else the functions may be 1-1). Finally, recall that ` must besuper-logarithmic.Construction 6.2.11 (from 2`-restricted CFH to full-edged CFH): Let fh0s :f0; 1g2`(jsj) ! f0; 1g`(jsj)gs2f0;1g� be a collection of functions. Consider the col-lection fhs : f0; 1g� ! f0; 1g2`(jsj)gs2f0;1g� , where hs(x) is de�ned by the follow-ing process, which we call block chaining:1. Break x into t def= djxj=`(jsj)e consecutive blocks, while possibly padding thelast block with 0's, such that each block has length `(jsj). Denote these`(jsj)-bit long blocks by x1; :::; xt. That is, x1 � � �xt = x0t�`(jsj)�jxj.For sake of uniformity, in case jxj � `(jsj), we let t = 2 and x1x2 =x02`(jsj)�jxj. On the other hand, we may assume that jxj < 2`(jsj), and sojxj can be represented by an `(jsj)-bit long string.72. Let y1 def= x1. For i = 2; :::; t, compute yi = h0s(yi�1xi).3. Set hs(x) to equal (yt; jxj).An interesting property of Construction 6.2.11 is that it allows to compute thehash-value of an input string while processing the input in an on-line fashion;that is, the implementation of the hashing process may process the input x in ablock-by-block manner, while storing only the current block and a small amountof state information (i.e., the current yi and the number of blocks encounteredso far). This property is important in applications in which one wishes to hasha long stream of input bits.Proposition 6.2.12 Let fh0s : f0; 1g2`(jsj) ! f0; 1g`(jsj)gs2f0;1g� and fhs :f0; 1g� ! f0; 1g2`(jsj)gs2f0;1g� be as in Construction 6.2.11, and suppose thatthe former is a collection of 2`-restricted collision-free hashing functions. Thenthe latter constitutes a (full edged) collection of collision-free hashing functions.7 The adversary trying to form collisions with respect to hs runs in poly(jsj)-time. Using`(jsj) = !(log jsj), it follows that such an adversary cannot output a string of length 2`(jsj).(The same holds, of course, also for legitimate usage of the hashing function.)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

506 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONProof: Forming a collision under hs means �nding x 6= x0 such that hs(x) =hs(x0). By the de�nition of hs, this means that (yt; jxj) = hs(x) = hs(x0) =(y0t0 ; jx0j), where t; t0 and yt; y0t0 are determined by hs(x) and hs(x0). In particular,it follows that jxj = jx0j and so t = t0 (where, except when jxj � `(jsj), it holdsthat t = djxj=`(jsj)e = djx0j=`(jsj)e = t0). Recall that yt = y0t and consider twocases:Case 1: If (yt�1; xt) 6= (y0t�1; x0t) then we obtain a collision under h0s (sinceh0s(yt�1xt) = yt = y0t = h0s(y0t�1x0t)), and derive a contradiction to itscollision-free hypothesis.Case 2: Otherwise (yt�1; xt) = (y0t�1; x0t), and we consider the two correspondingcases with respect to the relation of (yt�2; xt�1) to (y0t�2; x0t�1).Eventually, since x 6= x0, we get to a situation in which yi = y0i and(yi�1; xi) 6= (y0i�1; x0i), which is handled as in the �rst case.We now provide a formal implementation of the above intuitive argument. Sup-pose towards the contradiction that there exist a probabilistic polynomial-timealgorithm A that on input s attempts to forms a collision under hs. Then, weconstruct an algorithm that will, with similar probability, succeeds to form asuitable (i.e., length restricted) collision under h0s. Algorithm A0(s) operates asfollows:1. A0(s) invokes A(s) and obtains (x; x0) A(s).If either hs(x) 6= hs(x0) or x = x0 then A failed, and A0 halts withoutoutput. In the sequel, we assume that hs(x) = hs(x0) and x 6= x0.2. A0(s) computes t; x1; :::; xt and y1; :::; yt (resp., t0; x01; :::; x0t and y01; :::; y0t) asin Construction 6.2.11. Next, A0(s) �nds an i 2 f2; :::; tg such that yi = y0iand (yi�1; xi) 6= (y0i�1; x0i), and outputs the pair (yi�1xi; y0i�1x0i). (We willshow next that such an i indeed exists.)Note that (since hs(x) = hs(x0)) it holds that t = t0 and yt = y0t. Onthe other hand, (x1; :::; xt) 6= (x01; :::; x0t). Let j be the largest integer inf1; :::; tg such that xj 6= x0j . Then, for i = max(j; 2), it holds that yi = y0iand (yi�1; xi) 6= (y0i�1; x0i).On the existence of a suitable i: Suppose, towards the contradiction,that for every i 2 f2; :::; tg it holds that either yi 6= y0i or (yi�1; xi) =(y0i�1; x0i). Using the hypothesis yt = y0t it follows (by descendinginduction on j) that (yj�1; xj) = (y0j�1; x0j) for j = t; ::; 2. Usingy1 = x1 and y01 = x01, it follows that xj = x0j for every j = 1; ::; t,which contradicts the hypothesis (x1; :::; xt) 6= (x01; :::; x0t).Clearly, the output pair (yi�1xi; y0i�1x0i) constitutes a collision under h0s(because h0s(yi�1xi) = yi = y0i = h0s(y0i�1x0i) whereas yi�1xi 6= y0i�1x0i).Thus, whenever A(s) forms a collision under hs, it holds that A0(s) outputs apair of 2`(s)-bit long strings that form a collision under h0s. The propositionfollows.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.2. LENGTH-RESTRICTED SIGNATURE SCHEME 507Variants on Construction 6.2.11. The said construction can be generalizedto use any (non-trivial) length-restricted collision-free hashing. That is, for any`0 > `, let fh0s : f0; 1g`0(jsj) ! f0; 1g`(jsj)gs2f0;1g� be a collection of `0-restrictedcollision-free hashing functions, and consider a parsing of the input string xinto a sequence x1; :::; xt of (`0(jsj) � `(jsj))-bit long blocks. Then we get afull-edged collision-free hashing family fhs : f0; 1g� ! f0; 1g2`(jsj)g by lettinghs(x) = (yt; jxj), where yi = h0s(yi�1xi) for i = 2; :::; t. (Construction 6.2.11 isobtained as a special case, for `0(n) = 2`(n).) In case `0(n) � `(n) = !(logn),we obtain another variant by letting hs(x) = h0s(yt; jxj) (rather than hs(x) =(yt; jxj)), where yt is as above. The latter variant is quite popular.86.2.3.3 Collision-free hashing via tree-hashingUsing 2`-restricted collision-free hashing functions, we now present an alternativeconstruction of (full edged) collision-free hashing functions. The alternativeconstruction will have the extra property of supporting veri�cation of a bit inthe input (with respect to the hash value) within complexity that is independentof the length of the input (see below).Construction 6.2.13 (from 2`-restricted CFH to full-edged CFH { an alter-native construction): Let fh0s : f0; 1g2`(jsj) ! f0; 1g`(jsj)gs2f0;1g� be a collectionof functions. Consider the collection fhs : f0; 1g� ! f0; 1g2`(jsj)gs2f0;1g� , wherehs(x) is de�ned by the following process, called tree hashing:1. Break x into t def= 2dlog2(jxj=`(jsj))e consecutive blocks, while possibly addingdummy 0-blocks and padding the last block with 0's, such that each blockhas length `(jsj). Denote these `(jsj)-bit long blocks by x1; :::; xt. That is,x1 � � �xt = x0t�`(jsj)�jxj.Let d = log2 t, and note that d is a positive integer.Again, for sake of uniformity, in case jxj � `(jsj), we let t = 2 and x1x2 =x02`(jsj)�jxj. On the other hand, again, we assume that jxj < 2`(jsj), andso jxj can be represented by an `(jsj)-bit long string.2. Let i = 1; :::; t, let yd;i def= xi.3. For j = d�1; :::; 1; 0 and i = 1; :::; 2j, compute yj;i = h0s(yj+1;2i�1yj+1;2i).4. Set hs(x) to equal (y0;1; jxj).That is, hashing is performed by placing the `(jsj)-bit long blocks of x at theleaves of a binary tree of depth d, and computing the values of internal nodesby applying h0s to the values associated with the two children (of the node).The �nal hash-value consists of the value associated with the root (i.e., the onlylevel-0 node) and the length of x.8 In establishing the security of this variant, for a collision hs(x) = hs(x0), we have todistinguish the case (yt; jxj) = (y0t0 ; jx0j) (which is handled as above) from the case (yt; jxj) 6=(y0t0 ; jx0j) (which yields an immediate collision under h0s).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

508 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONProposition 6.2.14 Let fh0s : f0; 1g2`(jsj) ! f0; 1g`(jsj)gs2f0;1g� and fhs :f0; 1g� ! f0; 1g2`(jsj)gs2f0;1g� be as in Construction 6.2.13, and suppose thatthe former is a collection of 2`-restricted collision-free hashing functions. Thenthe latter constitutes a (full edged) collection of collision-free hashing functions.Proof Sketch: Forming a collision under hs means �nding x 6= x0 such thaths(x) = hs(x0). By the de�nition of hs, this means that (y0;1; jxj) = hs(x) =hs(x0) = (y00;1; jx0j), where (t; d) and y0;1 (resp., (t0; d0) and y00;1) are determinedby hs(x) (resp., hs(x0)). In particular, it follows that jxj = jx0j and so d = d0(because 2d = t = t0 = 2d0). Recall that y0;1 = y00;1, and let us state this factby saying that for j = 0 and for every i 2 f1; :::; 2jg it holds that yj;i = y0j;i.Starting with j = 0, we consider two cases (for level j + 1 in the tree):Case 1: If for some i 2 f1; :::; 2j+1g it holds that yj+1;i 6= y0j+1;i then we obtaina collision under h0s, and derive a contradiction to its collision-free hypothe-sis. Speci�cally, the collision is obtained because z def= yj+1;2di=2e�1yj+1;2di=2eis di�erent from z0 def= y0j+1;2di=2e�1y0j+1;2di=2e, whereas h0s(z) = yj;di=2e =y0j;di=2e = h0s(z0).Case 2: Otherwise for every i 2 f1; :::; 2j+1g it holds that yj+1;i = y0j+1;i. Inthis case, we consider the next level.Eventually, since x 6= x0, we get to a situation in which for some j 2f1; :::; d�1g and some i 2 f1; :::; 2j+1g it holds that z def= yj+1;2di=2e�1yj+1;2di=2eis di�erent from z0 def= y0j+1;2di=2e�1y0j+1;2di=2e, whereas h0s(z) = yj;di=2e =y0j;di=2e = h0s(z0). This situation is handled as in the �rst case.The actual argument proceeds as in the proof of Proposition 6.2.12.A local veri�cation property. Construction 6.2.13 has the extra property ofsupporting e�cient veri�cation of bits in x with respect to the hash value. Thatis, suppose that for a randomly selected hs, one party holds x and the otherparty holds hs(x). Then, for every i, the �rst party may provide a short (e�-ciently veri�able) certi�cate that xi is indeed the ith block of x. The certi�cateconsists of the sequence of pairs (yd;2di=2e�1; yd;2di=2e); :::; (y1;2di=2de�1; y1;2di=2de),where d and the yj;k's are computed as in Construction 6.2.13 (and (y0;1; jxj) =hs(x)). The certi�cate is veri�ed by checking whether or not yj�1;di=2d�j+1e =h0s(yj;2di=2d�j+1e�1yj;2di=2d�j+1e), for every j 2 f1; :::; dg. Note that if the �rstparty can present two di�erent values for the ith block of x along with cor-responding certi�cates then it can also form collisions under h0s. Construc-tion 6.2.13 and its local-veri�cation property were already used in this work(i.e., in the construction of highly-e�cient argument systems, presented in Sec-tion 4.8.4). Jumping ahead, we note the similarity between the local-veri�cationproperty of Construction 6.2.13 and the authentication-tree of Section 6.4.2.2.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES5096.3 Constructions of Message AuthenticationSchemesIn this section we present several constructions of secure message authenticationschemes (referred to above as secure private-key signature schemes). Below, wesometimes refer to such a scheme by the popular abbreviation MAC (which ac-tually abbreviates the more traditional term of a Message Authentication Code).6.3.1 Applying a pseudorandom function to the documentA scheme for message authentication can be obtained by applying a pseudoran-dom function (speci�ed by the key) to the message (which one wishes to authen-ticate). The simplest implementation of this idea is presented in Section 6.3.1.1,whereas more sophisticated implementations are presented in Sections 6.3.1.2and 6.3.1.3.6.3.1.1 A simple construction and a plausibility resultMessage authentication schemes can be easily constructed using pseudorandomfunctions (as de�ned in Section 3.6). Speci�cally, by Theorem 6.2.2, it suf-�ces to construct an `-restricted message authentication scheme, for any super-logarithmically growing `. Indeed, this is our starting point.Construction 6.3.1 (an `-restricted MAC based on pseudorandom functions):Let ` be a super-logarithmically growing function, and ffs : f0; 1g`(jsj)! f0; 1g`(jsj)gs2f0;1g�be as in De�nition 3.6.4. We construct an `-restricted message authenticationscheme, (G;S; V), as follows:Key-generation with G: On input 1n, we uniformly select s 2 f0; 1gn, and out-put the key-pair (s; s). (Indeed, the veri�cation-key equals the signing-key.)Signing with S: On input a signing-key s 2 f0; 1gn and an `(n)-bit string �, wecompute and output fs(�) as a signature of �.Veri�cation with V : On input a veri�cation-key s 2 f0; 1gn, an `(n)-bit string�, and an alleged signature �, we accept if and only if � = fs(�).Indeed, signing amounts to applying fs to the given document string, and veri-�cation amounts to comparing a given value to the result of applying fs to thedocument. Analogous constructions can be presented by using the generalizednotions of pseudorandom functions de�ned in De�nitions 3.6.9 and 3.6.12 (seefurther comments in the following subsections). In particular, using a pseu-dorandom function ensemble of the form ffs : f0; 1g� ! f0; 1gjsjgs2f0;1g� , weobtain a general message authentication scheme (rather than a length-restrictedone). Below, we only prove the security of the `-restricted message authen-tication scheme of Construction 6.3.1. (The security of the general messageauthentication scheme can be established analogously; see Exercise 7.)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

510 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONProposition 6.3.2 Suppose that ffs : f0; 1g`(jsj) ! f0; 1g`(jsj)gs2f0;1g� is apseudorandom function, and that ` is a super-logarithmically growing function,Then Construction 6.3.1 constitutes a secure `-restricted message authenticationscheme.Proof: The proof follows the general methodology suggested in Section 3.6.3.Speci�cally, we consider the security of an ideal scheme in which the pseudo-random function is replaced by a truly random function (mapping `(n)-bit longstrings to `(n)-bit long strings). Clearly, an adversary that obtains the valuesof this random function at arguments of its choice, cannot predict its value ata new point with probability greater than 2�`(n). Thus, an adversary attack-ing the ideal scheme may succeed in existential forgery with at most negligibleprobability. The same must hold for any e�cient adversary that attacks theactual scheme, because otherwise such an adversary yields a violation of thepseudorandomness of ffs : f0; 1g`(jsj) ! f0; 1g`(jsj)gs2f0;1g� . Details follow.The actual proof is by a reducibility argument. Given a probabilistic polynomial-time A attacking the scheme (G;S; V), we consider what happens whenA attacksan ideal scheme in which a random function is used instead of a pseudorandomone. That is, we refer to two experiments:1. Machine A attacks the actual scheme: On input 1n, machine A is givenoracle access to (the signing process) fs : f0; 1g`(n) ! f0; 1g`(n), where sis uniformly selected in f0; 1gn. After making some queries of its choice,A outputs a pair (�; �), where � is di�erent from all its queries. MachineA is deem successful if and only if � = fs(�).2. Machine A attacks the ideal scheme: On input 1n, machine A is givenoracle access to a function � : f0; 1g`(n) ! f0; 1g`(n), uniformly selectedamong all such possible functions. After making some queries of its choice,A outputs a pair (�; �), where � is di�erent from all its queries. Again, Ais deem successful if and only if � = �(�).Clearly, A's success probability in this experiment is at most 2�`(n), whichis a negligible function (since ` is super-logarithmic).Assuming that A's success probability in the actual attack is non-negligible, wederive a contradiction to the pseudorandomness of the function ensemble ffsg.Speci�cally, we consider a distinguisher D that on input 1n and oracle access toa function f : f0; 1g`(n) ! f0; 1g`(n), behaves as follows: First D emulates theactions of A, while answering A's queries using its oracle f . When A outputs apair (�; �), the distinguisher makes one additional oracle query to f and outputs1 if and only if f(�) = �.Note that when f is selected uniformly among all possible f0; 1g`(n) !f0; 1g`(n) functions, D emulates an attack of A on the ideal scheme, and thusoutputs 1 with negligible probability (as explained above). On the other hand,if f is uniformly selected in ffsgs2f0;1gn then D emulates an attack of A on theactual scheme, and thus (due to the contradiction hypothesis) outputs 1 with

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES511non-negligible probability. We reach a contradiction to the pseudorandomnessof ffsgs2f0;1gn . The proposition follows.A plausibility result: Combining Theorem 6.2.2, Proposition 6.3.2, and Corol-lary 3.6.7, it follows that the existence of one-way functions implies the existenceof message authentication schemes. The converse also holds; see Exercise 8.Thus, we have:Theorem 6.3.3 Secure message authentication schemes exist if and only if one-way functions exist.In contrast the the feasibility result stated in Theorem 6.3.3, we now presentalternative ways of using pseudorandom functions to obtain secure message au-thentication schemes (MACs). These alternatives yield more e�cient schemes,where e�ciency is measures it terms of the length of the signatures and the timeit takes to produce and verify them.6.3.1.2 * Using the hash-and-sign paradigmTheorem 6.3.3 was proved by combining the length-restricted MAC of Construc-tion 6.3.1 with the simple but wasteful idea of providing signatures (authentica-tion tags) for each block of the document (i.e., Construction 6.2.3). In particular,the signature produced this way is longer than the document. Instead, here wesuggest to use the second method of converting length-restricted MACs intofull-edged ones; that is, the hash-and-sign method of Construction 6.2.6. Thiswill yield signatures of a �xed length (i.e., independent of the length of the doc-ument). Combining the hash-and-sign method with a length-restricted MAC ofConstruction 6.3.1 (which is based on pseudorandom functions), we obtain thefollowing construction.Construction 6.3.4 (hash and sign using pseudorandom functions): Let ffs :f0; 1gjsj ! f0; 1gjsjgs2f0;1g� be a pseudorandom function ensemble and fhr :f0; 1g� ! f0; 1gjrjgr2f0;1g� be a collection of collision-free hashing functions.Furthermore, for simplicity we assume that, when invoked on input 1n, the in-dexing algorithm I of the collision-free hashing collection outputs an n-bit longindex. The general message authentication scheme, (G;S; V), is as follows:Key-generation with G: On input 1n, algorithm G selects uniformly s 2 f0; 1gn,and invokes the indexing algorithm I to obtain r I(1n). The key-pairoutput by G is ((r; s); (r; s)).Signing with S: On input a signing-key (r; s) in the range of G1(1n) and a doc-ument � 2 f0; 1g�, algorithm S outputs the signature/tag fs(hr(�)).Veri�cation with V : On input a veri�cation-key (r; s) in the range of G2(1n), adocument � 2 f0; 1g�, and a alleged signature �, algorithm outputs 1 ifand only if fs(hr(�)) = �.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

512 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONCombining Propositions 6.2.7 and 6.3.2, it follows that Construction 6.3.4 con-stitutes a secure message authentication scheme (MAC), provided that the ingre-dients are as postulated. In particular, this means that Construction 6.3.4 yieldsa secure MAC, provided that collision-free hashing functions exist (and are usedin Construction 6.3.4). While this result uses a seemingly stronger assumptionthan the existence of one-way functions (used to establish the Theorem 6.3.3),it yields more e�cient MACs both in terms of signature length (as discussedabove) and authentication time (to be discussed next).Construction 6.3.4 yields faster signing and veri�cation algorithms than theconstruction resulting from combining Constructions 6.2.3 and 6.3.1, providedthat hashing a long string is less time-consuming than applying a pseudorandomfunction to it (or to all its blocks). The latter assumption is consistent with thecurrent state-of-art regarding the implementation of both primitives. Furtherspeed improvements are discussed in Section 6.3.1.3.An alternative presentation: Construction 6.3.4 was analyzed by invokingthe hash-and-sign paradigm (i.e., Proposition 6.2.7), while referring to the �xed-length MAC arising from the pseudorandom function ensemble ffs : f0; 1gjsj !f0; 1gjsjgs2f0;1g� . An alternative analysis may proceed by �rst establishing thatfgs;r = fs � hrgs2f0;1g�;r I(1jsj) is a generalized pseudorandom function (as perDe�nition 3.6.12), and next observing that any such ensemble yields a full-edged MAC (see Exercise 7).6.3.1.3 * A variation on the hash-and-sign paradigmor using non-cryptographic hashing plus hidingConstruction 6.3.4 combines the use of a collision-free hashing function with theapplication of a pseudorandom function. Here we take another step towardsspeeding-up message authentication by showing that the collision-free hashingcan be replaced with ordinary (i.e., non-cryptographic) hashing, provided thata pseudorandom function (rather than a generic MAC) is applied to the result.Consequently, we also reduce the intractability assumptions used in the analy-sis of the construction. Before getting into details, let us explain why we canuse non-cryptographic hashing and why this may lead to reduced intractabilityassumptions and to e�ciency improvements.� Since we are in the private-key setting, the adversary does not get thedescription of the hash function used in the hash-and-sign process. Fur-thermore, applying the pseudorandom function to the hash-value hides itfrom the adversary. Thus, when trying to form collisions under the hashfunction, the adversary is in \total darkness" and may only rely on thecollision probability of the hashing function (as de�ned below). (Recallthat in case the adversary fails to form collision, it must succeed in forg-ing with respect to the length-restricted scheme if it wishes to forge withrespect to the full-edged scheme.)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES513� Using an ordinary hashing instead of a collision-free hash function meansthat the only intractability assumption used is the existence of pseudoran-dom functions (or, equivalently, of one-way functions).The reason that applying an ordinary hashing, rather than a collision-freehash function, may yield an e�ciency improvement is that the former islikely to be more e�cient than the latter. This is to be expected giventhat ordinary hashing needs only satisfy a weak (probabilistic) condition,whereas collision-free hashing refers to a more complicated (intractability)condition.9By ordinary hashing we mean function ensembles as de�ned in Section 3.5.1.1. Forstarters, recall that these are collections of functions mapping `(n)-bit stringsto m(n)-bit strings. These collections are associated with a set of strings, de-noted Sm(n)`(n) , and we may assume that Sm(n)`(n) � f0; 1gn. Speci�cally, we callfSm(n)`(n) gn2N a hashing ensemble if it satis�es the following three conditions:1. Succinctness: n = poly(`(n);m(n)).2. E�cient evaluation: there exists a polynomial-time algorithm that, on in-put a representation of a function, h (in Sm(n)`(n)), and a string x2f0; 1g`(n),returns h(x).3. Pairwise independence: for every x 6= y 2 f0; 1g`(n), if h is uniformlyselected in Sm(n)`(n) then h(x) and h(y) are independent and uniformly dis-tributed in f0; 1gm(n). That is, for every �; � 2 f0; 1gm(n),Prh[h(x) = � ^ h(y) = �] = 2�2m(n)In fact, for the current application, we can replace the third condition by thefollowing weaker condition, parameterized by a function cp : N ! [0; 1] (s.t.cp(n) � 2�m(n)): for every x 6= y 2 f0; 1g`(n),Prh[h(x) = h(y)] � cp(n) (6.3)Indeed, the pairwise independence condition implies that Eq. (6.3) is satis�edwith cp(n) = 2�m(n). Note that Eq. (6.3) asserts that the collision probability ofSm(n)`(n) is at most cp(n), where the collision probability refers to the probabilitythat h(x) = h(y) when h is uniformly selected in Sm(n)`(n) and x 6= y 2 f0; 1g`(n)are arbitrary �xed strings.Hashing ensembles with n � `(n) + m(n) and cp(n) = 2�m(n) can beconstructed (for a variety of functions `;m : N ! N , e.g., `(n) = 2n=3 andm(n) = n=3); see Exercise 19. Using such ensembles, we �rst present a con-struction of length-restricted message authentication schemes.9 This intuition may not hold when comparing a construction of ordinary hashing thatis rigorously analyzed with an ad-hoc suggestion of a collision-free hashing. But it certainlyholds when comparing the former to the constructions of collision-free hashing that are basedon a well-established intractability assumption.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

514 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONConstruction 6.3.5 (Construction 6.3.4, revisited { length-restricted version):Let fhr : f0; 1g`(jrj)! f0; 1gm(jrj)gr2f0;1g� and ffs : f0; 1gm(jsj) ! f0; 1gm(jsj)gs2f0;1g�be e�ciently computable function ensembles. We construct the following `-restricted scheme, (G;S; V):Key-generation with G: On input 1n, algorithm G selects independently anduniformly r; s 2 f0; 1gn. The key-pair output by G is ((r; s); (r; s)).Signing with S: On input a signing-key (r; s) in the range of G1(1n) and a doc-ument � 2 f0; 1g`(n), algorithm S outputs the signature/tag fs(hr(�)).Veri�cation with V : On input a verifying-key (r; s) in the range of G2(1n), adocument � 2 f0; 1g`(n), and a alleged signature �, algorithm outputs 1 ifand only if fs(hr(�)) = �.Proposition 6.3.6 Suppose that ffs : f0; 1gm(jsj) ! f0; 1gm(jsj)gs2f0;1g� isa pseudorandom function, and that the collision probability of the collectionfhr : f0; 1g`(jrj)! f0; 1gm(jrj)gr2f0;1g� is a negligible function of jrj. Then Con-struction 6.3.5 constitutes a secure `-restricted message authentication scheme.In particular, the second hypothesis requires that 2�m(n) be a negligible functionin n. By the above discussion, adequate collections of hashing functions (i.e.,with collision probability 2�m(n)) exists for `(n) = 2n=3 (and m(n) = n=3). Wecomment that, under the above hypothesis, the collection fgs;r : fs � hrgjsj=jrjconstitutes a pseudorandom function ensemble: This is implicitly shown in thefollowing proof, and is related to Exercise 31 in Chapter 3.Proof Sketch: As in the proof of Proposition 6.3.2, we �rst consider the secu-rity of an ideal scheme in which the pseudorandom function is replaced by a trulyrandom function (mapping m(n)-bit long strings to m(n)-bit long strings). Con-sider any (probabilistic polynomial-time) adversary attacking the ideal scheme.Such an adversary may obtain the signatures to polynomially-many `(n)-bit longstrings of its choice. However, except with negligible probability, these stringsare hashed to di�erent m(n)-bit long strings, which in turn are mapped by therandom function to totally independent and uniformly distributed m(n)-bit longstrings. Furthermore, except with negligible probability, the `(n)-bit long string� contained in the adversary's (alleged message-signature) output pair is hashedto an m(n)-bit long string that is di�erent from all the previous hash-values, andso the single valid signature corresponding to � is a uniformly distributed m(n)-bit long string that is independent of all previously seen signatures.On the distribution of signatures in the ideal scheme: Suppose that thehashing collection fhr : f0; 1g`(jrj) ! f0; 1gm(jrj)gr2f0;1gn has collisionprobability cp(n), and � : f0; 1gm(n) ! f0; 1gm(n) is a random function.Then, we claim that an adversary that obtains signatures to t(n) � 1strings of its choice, succeeds in forging a signature to a new string withprobability at most t(n)2 � cp(n) + 2�m(n), regardless of its computationalpowers. The claim is proved by showing that, except with probability atmost t(n)2 � cp(n), the t(n) strings selected by the adversary are mapped

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES515by hr to distinct values. The latter claim is proved by induction on thenumber of selected strings, denoted i, where the base case (i.e., i = 1) holdsvacuously. Let s1; :::; si denote the strings selected so far, and supposethat with probability at least 1� i2 � cp(n) the i hash-values hr(sj)'s aredistinct. The adversary only sees the corresponding �(hr(sj))'s, whichare uniformly and independently distributed (in a way independent of thevalues of the hr(sj)'s). Thus, loosely speaking, the adversary's selection ofthe next string, denoted si+1, is independent of the values of the hr(sj)'s,and so a collision of hr(si+1) with one of the previous hr(sj)'s occurs withprobability at most i � cp(n). The induction step follows (since 1 � i2 �cp(n)� i � cp(n) > 1� (i+ 1)2 � cp(n)).It follows that any adversary attacking the ideal scheme may succeed in exis-tential forgery with at most negligible probability (provided it makes at mostpolynomially-many queries). The same must hold for any e�cient adversary thatattacks the actual scheme, since otherwise such an adversary yields a violationof the pseudorandomness of ffs : f0; 1gm(jsj) ! f0; 1gm(jsj)gs2f0;1g� . The exactimplementation of the above argument follows the details given in the proof ofProposition 6.3.2.Obtaining full-edged MACs. Construction 6.3.5 can be generalized to ob-tain full-edged MACs by using generalized hashing families that map arbitrarystrings (rather than �xed-length ones) to �xed length strings. Speci�cally, for` : N ! N and cp : N ! [0; 1], we call fhr : f0; 1g� ! f0; 1gm(jrj)gn2N a gener-alized hashing ensemble with a (`; cp)-collision property if it satis�es the followingtwo conditions:1. E�cient evaluation: there exists a polynomial-time algorithm that, oninput r (representing the function hr) and a string x 2 f0; 1g�, returnshr(x).2. Collision probability:10 For every n 2 N and x 6= y such that jxj; jyj � `(n),the probability that hr(x) = hr(y) when r is uniformly selected in f0; 1gnis at most cp(n).For our construction of a full-edged MAC, we need a generalized hashing ensem-ble with a (`; cp)-collision property for some super-polynomial `(n) and negligiblecp(n) (e.g., `(n) = 1=cp(n) = 2"n" for some constant " > 0). The existence ofsuch ensembles will be discussed below.Proposition 6.3.7 (Construction 6.3.4, revisited { full-edged version): Sup-pose that ffs : f0; 1gm(jsj) ! f0; 1gm(jsj)gs2f0;1g� is a pseudorandom functionensemble. For some super-polynomial ` : N ! N and negligible cp : N ! [0; 1],suppose that fhr : f0; 1g� ! f0; 1gm(jrj)gr2f0;1g� is a generalized hashing en-semble with a (`; cp)-collision property. Then (G;S; V) as in Construction 6.3.4constitutes a secure MAC. That is, we refer to the following scheme:10 Note that it is essential to restrict the collision condition to strings of bounded length.In contrast, for every �nite family of functions H, there exists two di�erent strings that aremapped to the same image by each function in H. For details, see Exercise 18.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

516 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONKey-generation with G: On input 1n, algorithm G selects independently anduniformly r; s 2 f0; 1gn, and outputs ((r; s); (r; s)).Signing with S: On input a signing-key (r; s) and a document � 2 f0; 1g�, algo-rithm S outputs the signature/tag fs(hr(�)).Veri�cation with V : On input a verifying-key (r; s), a document � 2 f0; 1g�, anda alleged signature �, algorithm outputs 1 if and only if fs(hr(�)) = �.Proof Sketch: The proof is identical to the proof of Proposition 6.3.6, exceptthat here the (polynomial-time) adversary attacking the scheme may query forthe signatures of strings of various lengths. Still, all these queries (as well asthe �nal output) are of polynomial length and thus shorter than `(n). Thus,the (`; cp)-collision property implies that, except with negligible probability, allthese queries (as well as the relevant part of the output) are hashed to di�erentvalues.On constructing adequate hashing ensembles. For some " > 0 andf(n) = 2"n" , generalized hashing ensembles with a (f; 1=f)-collision propertycan be constructed is several ways. One such way is by applying a tree-hashingscheme as in Construction 6.2.13; see Exercise 20. For further details aboutconstructions of generalized hashing ensembles, see Section 6.6.5. Combiningany of these constructions with Proposition 6.3.7, we getTheorem 6.3.8 Assuming the existence of one-way functions, there exist mes-sage authentication schemes with �xed-length signatures; that is, signatures oflength that depends on the length of the signing-key but not on the length of thedocument.An alternative presentation: The proofs of Propositions 6.3.6 and 6.3.7actually establish that fgs;r = fs � hrgs2f0;1g�;r2f0;1gjsj is a generalized pseudo-random function (as per De�nition 3.6.12). For further discussion of this aspectsee Section C.2. Hence, the actual claim of these propositions (i.e., the secu-rity of the constructed MAC) can be derived from the fact that any generalizedpseudorandom function yields a full-edged MAC (see Exercise 7).6.3.2 * More on Hash-and-Hide and state-based MACsThe basic idea underlying Construction 6.3.5 (as well as Proposition 6.3.7) is tocombine a \weak tagging scheme" with an adequate \hiding scheme". Speci�-cally, the \weak tagging scheme" should be secure against forgery provided thatthe adversary does not have access to the scheme's outcome, and the \hidingscheme" implements the latter provision in a setting in which the actual adver-sary does obtain the value of the MAC. In Construction 6.3.5 (and in Propo-sition 6.3.7), the \tagging scheme" was implemented by ordinary hashing and\hiding" was obtained by applying a pseudorandom function to the string that

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES517one wishes to hide. (Although this process is not 1-1, its result looks randomand thus is hard to predict.)One more natural \hiding scheme" (which can also be implemented usingpseudorandom functions) is obtained by using certain private-key encryptionschemes. For example, we may use Construction 5.3.9 (in which the plaintext xis encrypted/hidden by the pair (u; x � fs(u)), where u is uniformly selected),instead of hiding x by the value fs(x) (as above). The resulting MAC is asfollows:Key-generation: On input 1n, we select independently and uniformly r; s 2f0; 1gn, where r speci�es a hashing11 function hr : f0; 1g� ! f0; 1gm(jrj)and s speci�es a pseudorandom function fs : f0; 1gm(jsj) ! f0; 1gm(jsj).We output the key-pair ((r; s); (r; s)).Signing: On input a signing-key (r; s) and a document � 2 f0; 1g�, we uniformlyselect u 2 f0; 1gm(jsj), and output the signature/tag (u; hr(�)� fs(u)).Veri�cation: On input a verifying-key (r; s), a document � 2 f0; 1g�, and aalleged signature (u; v), we outputs 1 if and only if v = hr(�) � fs(u).Alternative implementations of the same underlying idea are more popular, es-pecially in the context of state-based MACs. We start by de�ning state-basedMACs, and then show how to construct them based on the hash-and-hide (orrather tag-and-hide) paradigm.6.3.2.1 The de�nition of state-based MACsAs in the case of steam-ciphers discussed in Section 5.3.1, we extend the mech-anism of message-authentication schemes (MACs) by allowing the signing andveri�cation processes to maintain and update a state. Formally, both the signingand the veri�cation algorithms take an additional input and emit an additionaloutput, corresponding to their state before and after the operation. The lengthof the state is not allowed to grow by too much during each application of thealgorithm (see Item 3 below), or else e�ciency of the entire \repeated signing"process can not be guaranteed. For sake of simplicity, we incorporate the key inthe state of the corresponding algorithm. Thus, the initial state of each of thealgorithms is set to equal its corresponding key. Furthermore, one may think ofthe intermediate states as of updated values of the corresponding key.In the following de�nition, we follow similar conventions to those used inde�ning state-based ciphers (i.e., De�nition 5.3.1). Speci�cally, for simplicity,we assume that the veri�cation algorithm (i.e., V) is deterministic (otherwisethe formulation would be more complex). Intuitively, the main part of theveri�cation condition (i.e., Item 2) is that the (proper) iterative signing-verifyingprocess always accepts. The additional requirement in Item 2 is that the state ofthe veri�cation algorithm is updated correctly as long as it is fed with strings oflength equal to the length of the valid document-signature pairs. The importanceof this condition was discussed in Section 5.3.1 and is further discussed below.11 The hashing function should belong to an AXU family, as de�ned in Section 6.3.2.1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

518 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONDe�nition 6.3.9 (state-based MAC { the mechanism): A state-based message-authentication scheme is a triple, (G;S; V), of probabilistic polynomial-time al-gorithms satisfying the following three conditions1. On input 1n, algorithm G outputs a pair of bit strings.2. For every pair (s(0); v(0)) in the range of G(1n), and every sequence of�(i)'s, the following holds: if (s(i); �(i)) S(s(i�1); �(i)) and (v(i); (i)) V (v(i�1); �(i); �(i)) for i = 1; 2; :::, then (i) = 1 for every i. Further-more, for every i and every (�; �) 2 f0; 1gj�(i)j � f0; 1gj�(i)j, it holds thatV (v(i�1); �; �) = (v(i); �).3. There exists a polynomial p such that for every pair (s(0); v(0)) in the rangeof G(1n), and every sequence of �(i)'s and s(i)'s as above, it holds thatjs(i)j � js(i�1)j+ j�(i)j � p(n). Similarly for the v(i)'s.That is, as in De�nition 6.1.1, the signing-veri�cation process operates prop-erly provided that the corresponding algorithms get the corresponding keys(states). Note that in De�nition 6.3.9 the keys are modi�ed by the signing-veri�cation process, and so correct veri�cation requires holding the correctly-updated veri�cation-key. We stress that the furthermore clause in Item 2 guar-antees that the veri�cation-key is correctly updated as long as the veri�cationprocess is fed with strings of the correct lengths (but not necessarily with thecorrect document-signature pairs). This extra requirement implies that giventhe initial veri�cation-key and the current document-signature pair as well asthe lengths of all previous pairs (which may be actually incorporated in the cur-rent signature), one may correctly decide whether or not the current document-signature pair is valid. As in case of state-based ciphers (cf. Section 5.3.1), thisfact is interesting for two reasons:A theoretical reason: It implies that, without loss of generality (alas with possi-ble loss in e�ciency), the veri�cation algorithm may be stateless. Further-more, without loss of generality (alas with possible loss in e�ciency), thestate of the signing algorithm may consist of the initial signing-key andthe lengths of the messages signed so far. (We assume here and below thatthe length of the signature is determined by the length of the message andthe length of the signing-key.)A practical reason: It allows to recover from the loss of some of the message-signature pairs. That is, assuming that all messages have the same length(which is typically the case in MAC applications), if the receiver knows(or is given) the total number of messages sent so far then it can verifythe authenticity of the current message-signature pair, even if some of theprevious message-signature pairs were lost.We stress that De�nition 6.3.9 refers to the signing of multiple messages(and is meaningless when considering the signing of a single message). However,De�nition 6.3.9 (by itself) does not explain why one should sign the ith message

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES519using the updated signing-key s(i�1), rather than by reusing the initial signing-key s(0) (where all corresponding veri�cations are done by reusing the initialveri�cation-key v(0)). Indeed, the reason for updating these keys is provided bythe following security de�nition that refers to the signing of multiple messages,and holds only in case the signing-keys in use are properly updated (in themultiple-message authentication process).De�nition 6.3.10 (security of state-based MACs):� A chosen message attack on a state-based MAC, (G;S; V), is an interactiveprocess that is initiated with (s(0); v(0)) G(1n), and proceed as follows:In the ith iteration, based on the information gathered so far, the attackerselects a string �(i), and obtains �(i), where (s(i); �(i)) S(s(i�1); �(i)).� Such an attack is said to succeeds if it outputs a valid signature to a stringfor which it has not requested a signature during the attack. That is, theattack is successful if it outputs a pair (�; �) such that � is di�erent fromall signature-queries made during the attack, and V (v(i�1); �; �) = (�; 1)holds for some intermediate state (veri�cation-key) v(i�1) (as above).12� A state-based MAC is secure if every probabilistic polynomial-time chosenmessage attack as above succeeds with at most negligible probability.Note that De�nition 6.3.10 (only) di�ers from De�nition 6.1.2 in the way that thesignatures �(i)'s are produced (i.e., using the updated signing-key s(i�1) ratherthan the initial signing-key s(0)). Furthermore, De�nition 6.3.10 guaranteesnothing regarding a signing process in which the signature to the ith message isobtained by invoking S(s(0); �) (as in De�nition 6.1.2).6.3.2.2 State-based hash-and-hide MACsWe are now ready to present alternative implementations of the hash-and-hideparadigm. Recall that in Section 6.3.1.3, the document was hashed (by using anadequate hashing function) and the resulting hash-value was (authenticated and)hidden by applying a pseudorandom function to it. In the current subsection,hiding will be obtained in a more natural (and typically more e�cient) way;that is, by XORing the hash-value with a new portion of a (pseudorandom) one-time pad. Indeed, the state is used in order to keep track of what part of the(one-time) pad was already used (and should not be used again). Furthermore,to obtain improved e�ciency, we let the state encode information that allows12 In fact, one may strengthen the de�nition by using a weaker notion of success in which itis only required that � 6= �(i) (rather than requiring that � 62 f�(j)gj). That is, the attack issuccessful if, for some i, it outputs a pair (�; �) such that � 6= �(i) and V (v(i�1); �; �) = (�; 1),where the �(j)'s and v(j)'s are as above. The stronger de�nition provides \replay protection"(i.e., even if the adversary obtains a valid signature that authenticates � as the jth messageit cannot produce a valid signature that authenticates � as the ith message, unless � wasactually authenticated as the ith message).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

520 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONfast generation of the next portion of the (pseudorandom) one-time pad. This isobtained using (on-line) pseudorandom generator (see Sections 3.3.3 and 5.3.1).Recall that on-line pseudorandom generators are a special case of variable-output pseudorandom generators (see Section 3.3.3), in which a hidden stateis maintained and updated so to allow generation of the next output bit intime polynomial in the length of the initial seed, regardless of the number ofbits generated so far. Speci�cally, the next (hidden) state and output bit areproduced by applying a (polynomial-time computable) function g : f0; 1gn !f0; 1gn+1 to the current state (i.e., (s0; �) g(s), where s is the current state, s0is the next state and � is the next output bit). Analogously to Construction 5.3.3,the suggested state-based MAC will use an on-line pseudorandom generator inorder to generate the required pseudorandom one-time pad, and the latter will beused to hide (and authenticate) the hash-value (obtained by hashing the originaldocument).Construction 6.3.11 (a state-based MAC): Let g : f0; 1g�!f0; 1g� such thatjg(s)j = jsj+ 1, for every s2f0; 1g�. Let fhr : f0; 1g� ! f0; 1gm(jrj)gr2f0;1g� bea family of functions having an e�cient evaluation algorithm.Key-generation and initial state: Uniformly select s; r 2 f0; 1gn, and output thekey-pair ((s; r); (s; r)). The initial state of each algorithm is set to (s; r; 0; s).(We maintain the initial key (s; r) and a step-counter in order to allowrecovery from loss of message-signature pairs.)Signing message � with state (s; r; t; s0): Let s0 def= s0. For i = 1; :::;m(n), com-pute si�i = g(si�1), where jsij = n and �i 2 f0; 1g. Output the signaturehr(�) � �1 � � ��m(n), and set the new state to (s; r; t+m(n); sm(n)).Veri�cation of the pair (�; �) with respect to the state (s; r; t; s0): Compute �1 � � ��m(n)and sm(n) as in the signing process; that is, for i = 1; :::;m(n), computesi�i = g(si�1), where s0 def= s0. Set the new state to (s; r; t+m(n); sm(n)),and accept if and only if � = hr(�)� �1 � � ��m(n).When noti�ed that some message-signature pairs may have been lost andthat the current message-signature pair has index t0, one �rst recovers thecorrect current state, which as above will be denoted s0. This is done bysetting s�t0 def= s and computing si�t0�i�t0 = g(si�t0�1), for i = 1; :::; t0.Indeed, recovery of s0 is required only if t0 6= t.Note that both the signing and veri�cation algorithms are deterministic, and thatthe state after authentication of t messages has length 3n+ log2(t �m(n)) < 4n,provided that t < 2n=m(n).We now turn to analyze the security of Construction 6.3.11. The hashingproperty of the collection of hr's should be slightly stronger than the one usedin Section 6.3.1.3. Speci�cally, rather than a bound on the collision probability(i.e., the probability that hr(x) = hr(y) for any relevant �xed x; y and a randomr), we need a bound on the probability that hr(x)�hr(y) equals any �xed string

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.3. CONSTRUCTIONS OF MESSAGE AUTHENTICATION SCHEMES521(again, for any relevant �xed x; y and a random r). This property is commonlyreferred to by the name Almost-Xor-Universal (AXU). That is, fhr : f0; 1g� !f0; 1gm(jrj)gr2f0;1g� is called a (`; ")-AXU family if for every n 2 N , every x 6= ysuch that jxj; jyj � `(n), and every z, it holds thatPr[hUn(x)� hUn(y) = z] � "(n) (6.4)References to constructions of such families are provided in Section 6.6.5.Proposition 6.3.12 Suppose that g is a pseudorandom generator, and thatfhrg is a (`; ")-AXU family, for some super-polynomial ` and negligible ". ThenConstruction 6.3.11 constitutes a secure state-based MAC. Furthermore, securityholds even with respect to the stronger notion discussed in Footnote 12.Proof Sketch: By Exercise 21 of Chapter 3, if g is a pseudorandom generatorthen for every polynomial p the ensemble fGpngn2N is pseudorandom, where Gpnis de�ned by the following random process:Uniformly select s0 2 f0; 1gn;For i = 1 to p(n), let si�i g(si�1), where �i 2 f0; 1g (and si 2 f0; 1gn);Output �1�2 � � ��p(n).Recall that, in such a case, we said that g is a next-step function of an on-linepseudorandom generator.As in previous cases, it su�ces to establish the security of an ideal scheme inwhich the sequence (ofm(n)-bit long blocks) produced by iterating the next-stepfunction g is replaced by a truly random sequence (of m(n)-bit long blocks). Inthe ideal scheme, all that the adversary may obtain via a chosen message attackis a sequence of m(n)-bit long blocks, which is uniformly distributed among allsuch possible sequences. Note that each of the signatures obtained during theattack as well as the forged signature refers to a single block in this sequence(e.g., the ith obtained signature refers to the ith block). We consider two typesof forgery attempts:1. In case the adversary tries to forge a signature referring to an unused(during the attack) block, it may succeed with probability at most 2�m(n),because we may think of this block as being chosen after the adversarymakes its forgery attempt. Note that 2�m(n) is negligible, because "(n) �2�m(n) must hold (i.e., 2�m(n) lower-bounds the collision probability).2. The more interesting case is when the adversary tries to forge a signaturereferring to a block, say the ith one, that was used (to answer the ithquery) during the attack. Denote the jth query by �(j), the (random)jth block by b(j), and the forged document by �. Then, at the timeof outputting the forgery attempt (�; �), the adversary only knows thesequence of b(j) � hr(�(j))'s, which yields no information on r. Note thatthe adversary succeeds if and only if b(i) � hr(�) = �, where �(i) def=b(i) � hr(�(i)) is known to it. Thus, the adversary succeeds if and onlyif hr(�(i)) � hr(�) = �(i) � �, where �(i); �(i); �; � are �xed and r is

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

522 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONuniformly distributed. Hence, by the AXU property, the probability thatthe adversary succeeds is at most "(n).The security of the real scheme follows (or else one could have distinguished thesequence produced by iterating the next-step function g from a truly randomsequence).Construction 6.3.11 versus the constructions of Section 6.3.1.3. Recallthat all these schemes are based on the hash-and-hide paradigm. The di�erencebetween the schemes is that in Section 6.3.1.3 a pseudorandom function is appliedto the hash-value (i.e., the signature to � is fs(hr(�))), whereas in Construc-tion 6.3.11 the hash-value is XORed with a pseudorandom value (i.e., we mayview the signature as consisting of (c; hr(�)� fs(c)), where c is a counter valueand fs(c) is the cth block produced by iterating the next-step function g startingwith the initial seed s). We note two advantages of the state-based MAC overthe MACs presented in Section 6.3.1.3: First, applying an on-line pseudorandomgenerator is likely to be more e�cient than applying a pseudorandom function.Second, a counter allows to securely authenticate more messages than can be se-curely authenticated by applying a pseudorandom function to the hashed value.Speci�cally, the use of an a m-bit long counter allows to securely authenticate2m messages, whereas using an m-bit long hash-value su�ers from the \birth-day e�ect" (i.e., collisions are likely to occur when p2m messages are authenti-cated). Indeed, these advantages are relevant only in applications in which usingstate-based MACs is possible, and are most advantageous in applications whereveri�cation is performed in the same order as signing (e.g., in fifo communica-tion). In the latter case, Construction 6.3.11 o�ers another advantage: \replayprotection" (as discussed in Footnote 12).6.4 Constructions of Signature SchemesIn this section we present several constructions of secure public-key signatureschemes. In the sequel, we refer to such schemes as signature schemes, which isindeed the traditional term.Two central paradigms in the construction of signature schemes are the \re-freshing" of the \e�ective" signing-key (see Section 6.4.2.1), and the usage of an\authentication tree" (see Section 6.4.2.2). In addition, the \hashing paradigm"(employed also in the construction of message authentication schemes), plays aeven more crucial role in the following presentation. In addition to the above,we use the notion of a one-time signature scheme (see Section 6.4.1).The current section is organized as follows. In Section 6.4.1 we de�ne andconstruct various types of one-time signature schemes. The \hashing paradigm"plays a crucial role in one of these constructions, which in turn is essential forSection 6.4.2. In Section 6.4.2 we show how to use one-time signature schemes toconstruct general signature schemes. This construction utilizes the \refreshingparadigm" (as employed to one-time signature schemes) and an \authentication

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 523tree". Thus, assuming the existence of collision-free hashing, we obtain (general)signature schemes.In Section 6.4.3, wishing to relax the conditions under which signature schemescan be constructed, we de�ne universal one-way hashing functions, and showhow to use them instead of collision-free hashing (in the above constructionsand in particular within a modi�ed \hashing paradigm"). Indeed, the gain inusing universal one-way hashing (rather than collision-free hashing) is that theformer can be constructed based on any one-way function (whereas this is notknown for collision-free hashing). Thus, we obtain:Theorem 6.4.1 Secure signature schemes exist if and only if one-way functionsexist.The di�cult direction is to show that the existence of one-way functions impliesthe existence of signature schemes. For the opposite direction, see Exercise 8.6.4.1 One-time signature schemesIn this section we de�ne and construct various types of one-time signatureschemes. Speci�cally, we �rst de�ne one-time signature schemes, next de�nea length-restricted version of this notion (analogous to De�nition 6.2.1), thenpresent a simple construction of the latter, and �nally we show how such a con-struction combined with collision-free hashing yields a general one-time signaturescheme.6.4.1.1 De�nitionsLoosely speaking, one-time signature schemes are signature schemes for whichthe security requirement is restricted to attacks in which the adversary asksfor at most one string to be signed. That is, the mechanics of one-time signa-ture schemes is as of ordinary signature schemes (see De�nition 6.1.1), but thesecurity requirement is relaxed as follows.� A chosen one-message attack is a process that can obtain a signature to atmost one string of its choice. That is, the attacker is given v as input, andobtains a signature relative to s, where (s; v) G(1n) for an adequate n.(Note that in this section we focus on public-key signature schemes andthus we present only the de�nition for this case.)� Such an attack is said to succeeds (in existential forgery) if it outputsa valid signature to a string for which it has not requested a signatureduring the attack.(Indeed, the notion of success is exactly as in De�nition 6.1.2.)� A one-time signature scheme is secure (or unforgeable) if every feasiblechosen one-message attack succeeds with at most negligible probability.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

524 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONMoving to the formal de�nition, we again model a chosen message attack as aprobabilistic oracle machine; however, since here we only care about one-messageattacks, we consider only oracle machines that make at most one query. Let Mbe such a machine. As before, we denote by QOM (x) the set of queries made byM on input x and access to oracle O, and let MO(x) denote the output of thecorresponding computation. Note that here jQOM (x)j � 1 (i.e., M may eithermake no queries or a single query).De�nition 6.4.2 (security for one-time signature schemes): A one-time signa-ture scheme is secure if for every probabilistic polynomial-time oracle machineM that makes at most one query, every polynomial p and all su�ciently largen, it holds thatPr � Vv(�; �)=1 & � 62 QSsM (1n)where (s; v) G(1n) and (�; �) MSs(v) � < 1p(n)where the probability is taken over the coin tosses of algorithms G, S and V aswell as over the coin tosses of machine M .We now de�ne a length-restricted version of one-time signature schemes. Thede�nition is indeed analogous to De�nition 6.2.1:De�nition 6.4.3 (length-restricted one-time signature schemes): Let ` : N !N . An `-restricted one-time signature scheme is a triple, (G;S; V), of probabilis-tic polynomial-time algorithms satisfying the the mechanics of De�nition 6.2.1.That is, it satis�es the following two conditions1. As in De�nition 6.1.1, on input 1n, algorithm G outputs a pair of bitstrings.2. Analogously to De�nition 6.1.1, for every n and every pair (s; v) in therange of G(1n), and for every � 2 f0; 1g`(n), algorithms S and D satisfyPr[Vv(�; Ss(�))=1] = 1.Such a scheme is called secure (in the one-time model) if the requirement ofDe�nition 6.4.2 holds when restricted to attackers that only make queries oflength `(n) and output a pair (�; �) with j�j = `(n). That is, we consider onlyattackers that make at most one query, this query has to be of length `(n), andthe output (�; �) must satisfy j�j = `(n).Note that even the existence of secure 1-restricted one-time signature schemesimplies the existence of one-way functions: see Exercise 12.6.4.1.2 Constructing length-restricted one-time signature schemesWe now present a simple construction of length-restricted one-time signatureschemes. The construction works for any length restriction function `, but thekeys will have length greater than `. The latter fact limits the applicability of

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 525such schemes, and will be removed in the next subsection. But �rst, we construct`-restricted one-time signature schemes based on any one-way function f . Wemay assume for simplicity that f is length preserving.Construction 6.4.4 (an `-restricted one-time signature scheme): Let ` : N !N be polynomially-bounded and polynomial-time computable, and f : f0; 1g� !f0; 1g� be polynomial-time computable and length-preserving. We construct an`-restricted one-time signature scheme, (G;S; V), as follows:Key-generation with G: On input 1n, we uniformly select s01; s11; ::::; s0̀(n); s1̀(n) 2f0; 1gn, and compute vji = f(sji), for i = 1; :::; `(n) and j = 0; 1. We lets = ((s01; s11); ::::; (s0̀(n); s1̀(n))), and v = ((v01 ; v11); ::::; (v0̀(n); v1̀(n))), andoutput the key-pair (s; v).(Note that jsj = jvj = 2 � `(n) � n.)Signing with S: On input a signing-key s = ((s01; s11); ::::; (s0̀(n); s1̀(n))) and an`(n)-bit string � = �1 � � ��`(n), we output (s�11 ; ::::; s�`(n)`(n)) as a signature of�.Veri�cation with V : On input a veri�cation-key v = ((v01 ; v11); ::::; (v0̀(n); v1̀(n))),an `(n)-bit string � = �1 � � ��`(n), and an alleged signature � = (�1; :::; �`(n)),we accept if and only if v�ii = f(�i), for i = 1; :::; `(n).Proposition 6.4.5 If f is a one-way function then Construction 6.4.4 consti-tutes a secure `-restricted one-time signature scheme.Note that Construction 6.4.4 does not constitute a (general) `-restricted sig-nature scheme: An attacker that obtains signatures to two strings (e.g., to thestrings 0`(n) and 1`(n)), can present a valid signature to any `(n)-bit long string(and thus totally break the system). However, here we consider only attackersthat may ask for at most one string (of their choice) to be signed. As a corollaryto Proposition 6.4.5, we obtain:Corollary 6.4.6 If there exist one-way functions then, for every polynomially-bounded and polynomial-time computable ` :N!N , there exist secure `-restrictedone-time signature schemes.Proof of Proposition 6.4.5: Intuitively, forging a signature (after seeing atmost one signature to a di�erent message) requires inverting f on some randomimage (corresponding to a bit location on which the two `(n)-bit long messagesdi�er). The actual proof is by a reducibility argument. Given an adversary Aattacking the scheme (G;S; V), while making at most one query, we constructan algorithm A0 for inverting f .As a warm-up, let us �rst deal with the case in which A makes no queriesat all. In this case, on input y (supposedly in the range of f), algorithm A0proceeds as follows. First A0 selects uniformly and independently a position

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

526 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONp in f1; :::; `(n)g, a bit b, and a sequence of (2`(n) many) n-bit long stringss01; s11; ::::; s0̀(n); s1̀(n). (Actually, sbp is not used and needs not be selected.) Forevery i 2 f1; :::; `(n)g n fpg, and every j 2 f0; 1g, algorithm A0 computes vji =f(sji). Algorithm A0 also computes v1�bp = f(s1�bp), and sets vbp = y and v =((v01 ; v11); ::::; (v0̀(n); v1̀(n))). Note that if y = f(x), for a uniformly distributedx 2 f0; 1gn, then for each possible choice of p and b, the sequence v is distributedidentically to the public-key generated by G(1n). Next, A0 invokes A on inputv, hoping that A will forge a signature, denoted � = �1 � � � �`(n), to a message� = �1 � � ��`(n) so that �p = b. If this event occurs, A0 obtains a preimage of yunder f , because the validity of the signature implies that f(�p) = v�pp = vbp = y.Observe that conditioned on the value of v and the internal coin tosses of A, thevalue b is uniformly distributed in f0; 1g. Thus, A0 inverts f with probability"(n)=2, where "(n) denotes the probability that A succeeds in forgery.We turn back to the actual case in which A may make a single query. (With-out loss of generality, we may assume that A always makes a single query; seeExercise 10.) In this case, on input y (supposedly in the range of f), algorithmA0 selects p; b and the sji 's, and forms the vji 's and v exactly as in the warm-upabove. Recall that if y = f(x), for a uniformly distributed x 2 f0; 1gn, then foreach possible choice of p and b, the sequence v is distributed identically to thepublic-key generated by G(1n). Also note that for each vji other than vbp = y,algorithm A0 holds a random preimage (of vji) under f . Next, A0 invokes A oninput v, and tries to answer its query, denoted � = �1 � � ��`(n). We consider twocases regarding this query:1. If �p = b then A0 can not supply the desired signature because it lacks apreimage of sbp = y under f . Thus, in this case A0 aborts. However, thiscase occurs with probability 12 , independently of the actions of A (becausev yields no information on either p or b).(That is, conditioned on the value of v and the internal coin tosses of A,this case occurs with probability 12 .)132. If �p = 1� b then A0 can supply the desired signature because it holds allthe relevant sji 's (i.e., random preimages of the relevant vji 's under f). Inparticular, A0 holds both sji 's, for i 6= p, as well as s1�bp . Thus, A0 answerswith (s�11 ; ::::; s�`(n)`(n)).Note that conditioned on the value of v, the internal coin tosses of A and on thesecond case occuring, p is uniformly distributed in f1; :::; `(n)g. When the secondcase occurs, A obtains a signature to � and this signature is distributed exactlyas in a real attack. We stress that since A asks at most one query, no additionalquery will be asked by A. Also note that, in this case (i.e., �p = 1�b), algorithm13 This follows from an even stronger statement by which conditioned on the value of v, theinternal coin tosses of A and on the value of p, the current case happens with probability 12 .The stronger statement holds because conditioned on all the above, b is uniformly distributedin f0; 1g (and so �p = b happens with probability exactly 12).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 527A outputs a forged message{signature pair, denoted (�0; �0), with probabilityexactly as in a real attack.For simplicity we assume below that A has indeed made a single query �(otherwise one may consider � and the �i's to be some non-boolean dummy val-ues and apply the following reasoning nevertheless).14 Let �0 = �01 � � �� 0̀(n) and�0 = s01 � � � s0̀ (n), where (�0; �0) is the forged message{signature pair output by A.By our hypothesis (that this is a forgery-success event) it follows that �0 6= � andthat f(s0i) = v�0ii for all i's. Since (conditioned on all the above) p is uniformlydistributed in f1; :::; `(n)g, it follows that with probability jfi:�0i 6=�igj`(n) � 1`(n)it holds that �0p 6= �p, and then A0 obtains a preimage of y under f (since s0psatis�es f(s0p) = v�0pp , which in turn equals v1��pp = vbp = y).To summarize, assuming that A succeeds in a single-message attack on(G;S; V) with probability "(n), algorithm A0 inverts f on a random image (i.e.,on f(Un)) with probability"(n) � 12 � jfi : �0i 6= �igj`(n) � "(n)2`(n)Thus, if A is a probabilistic polynomial-time chosen one-message attack thatforges signatures with non-negligible probability then A0 is a probabilistic polynomial-time algorithm that inverts f with non-negligible probability (in violation of thehypothesis that f is a one-way function). The proposition follows.6.4.1.3 From length-restricted schemes to general onesWe now combine a length-restricted one-time signature scheme with collision-free hashing to obtain a general one-time signature scheme. The construction isidentical to Construction 6.2.6, except that here (G;S; V) is an `-restricted one-time signature scheme rather than an `-restricted (general) signature scheme.Analogously to Proposition 6.2.7, we obtain.Proposition 6.4.7 Suppose that (G;S; V) is a secure `-restricted one-time sig-nature scheme, and that fhr : f0; 1g� ! f0; 1g`(jrj)gr2f0;1g� is a collision-freehashing collection. Then (G0; S0; V 0), as de�ned in Construction 6.2.6, is a se-cure one-time signature scheme.Proof: The proof is identical to the proof of Proposition 6.2.7; we merely no-tice that if the adversary A0, attacking (G0; S0; V 0), makes at most one querythen the same holds for the adversary A that we construct (in that proof) toattack (G;S; V). In general, the adversary A constructed in the proof of Propo-sition 6.2.7 makes a single query per each query of the adversary A0.Combining Proposition 6.4.7, Corollary 6.4.6, and the fact that collision-freehashing collections imply one-way functions (see Exercise 13), we obtain:14 Alternatively, recall that, without loss of generality, we may assume that A always makesa single query; see Exercise 10.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

528 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONCorollary 6.4.8 If there exist collision-free hashing collections then there existsecure one-time signature schemes. Furthermore, the length of the resultingsignatures only depends on the length of the signing-key.Comments: We stress that when using Construction 6.2.6, signing each docu-ment under the (general) scheme (G0; S0; V 0) only requires signing a single stringunder the `-restricted scheme (G;S; V). This is in contrast to Construction 6.2.3in which signing a document under the (general) scheme (G0; S0; V 0) requiressigning many strings under the `-restricted scheme (G;S; V), where the numberof such strings depends (linearly) on the length of the original document.Construction 6.2.6 calls for the use of collision-free hashing. The latter can beconstructed using any claw-free permutation collection (see Proposition 6.2.9),however it is not know whether collision-free hashing can be constructed basedon any one-way function. Wishing to construct signature schemes based onany one-way function, we later avoid (in Section 6.4.3) the use of collision-freehashing. Instead, we use \universal one-way hashing functions" (to be de�ned),and present a variant of Construction 6.2.6 that uses these functions rather thancollision-free ones.6.4.2 From one-time signature schemes to general onesIn this section we show how to construct general signature schemes using one-time signature schemes. That is, we shall prove:Theorem 6.4.9 If there exist secure one-time signature schemes then secure(general) signature schemes exist as well.Actually, we can use length-restricted one-time signature schemes, provided thatthe length of the strings being signed is at least twice the length of the veri�cation-key. Unfortunately, Construction 6.4.4 does not satisfy this condition. Neverthe-less, Corollary 6.4.8 does provide one-time signature schemes. Thus, combiningTheorem 6.4.9 and Corollary 6.4.8, we obtain:Corollary 6.4.10 If there exist collision-free hashing collections then there existsecure signature schemes.Note that Corollary 6.4.10 asserts the existence of secure (public-key) signatureschemes, based on an assumption that does not mention trapdoors. We stressthis point because of the contrast to the situation with respect to public-key en-cryption schemes, where a trapdoor property seem necessary for the constructionof secure schemes.6.4.2.1 The refreshing paradigmThe so-called \refreshing paradigm" plays a central role in the proof of Theo-rem 6.4.9. Loosely speaking, the \refreshing paradigm" suggests to reduce thedangers of a chosen message attack on the signature scheme by using \fresh"

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 529instances of the scheme for signing each new document. Of course, these freshinstances should be authenticated by the original instance (corresponding to theveri�cation-key that is publicly known), but such an authentication refers to astring selected by the legitimate signer rather than by the adversary.Example: To demonstrate the refreshing paradigm, consider a basic signaturescheme (G;S; V) used as follows. Suppose that the user U has generated a key-pair, (s; v) G(1n), and has placed the veri�cation-key v on a public-�le. Whena party asks U to sign some document �, the user U generates a new (fresh)key-pair, (s0; v0) G(1n), signs v0 using the original signing-key s, signs � usingthe new (fresh) signing-key s0, and presents (Ss(v0); v0; Ss0(�)) as a signatureto �. An alleged signature, (�1; v0; �2), is veri�ed by checking whether bothVv(v0; �1) = 1 and Vv0(�; �2) = 1 hold. Intuitively, the gain in terms of securityis that a full-edged chosen message attack cannot be launched on (G;S; V). Allthat an attacker may obtain (via a chosen message attack on the new scheme)is signatures, relative to the original signing-key s, to randomly chosen strings(taken from the distributionG2(1n)) as well as additional signatures each relativeto a random and independently chosen signing-key.We refrain from analyzing the features of the signature scheme presented inthe above example. Instead, as a warm-up to the actual construction used inthe next section (in order to establish Theorem 6.4.9), we present and analyze asimilar construction (which is, in some sense, a hybrid of the two constructions).The reader may skip this warm-up, and proceed directly to Section 6.4.2.2.Construction 6.4.11 (a warm-up): Let (G;S; V) be a signature scheme and(G0; S0; V 0) be a one-time signature scheme. Consider a signature scheme, (G00; S00; V 00),with G00 = G, as follows:Signing with S00: On input a signing-key s and a document � 2 f0; 1g�, �rstinvoke G0 to obtain (s0; v0) G0(1n). Next, invoke S to obtain �1 Ss(v0), and S0 to obtain �2 S0s0(�). The �nal output is (�1; v0; �2).Veri�cation with V 00: On input a verifying-key v, a document � 2 f0; 1g�, and aalleged signature � = (�1; v0; �2), we output 1 if and only if both Vv(v0; �1) =1 and V 0v0(�; �2) = 1.Construction 6.4.11 di�ers from the above example only in that a one-timesignature scheme is used to generate the \second signature" (rather than usingthe same ordinary signature scheme). The use of a one-time signature scheme isnatural here, because it is unlikely that the same signing-key s0 will be selectedin two invocations of S00.Proposition 6.4.12 Suppose that (G;S; V) is a secure signature scheme, andthat (G0; S0; V 0) is a secure one-time signature scheme. Then (G00; S00; V 00), asde�ned in Construction 6.4.11 is a secure signature scheme.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

530 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONWe comment that the proposition holds even if (G;S; V) is only secure againstattackers that select queries according to the distribution G02(1n). Furthermore,(G;S; V) need only be `-restricted, for some suitable function ` : N ! N .Proof Sketch: Consider an adversary A00 attacking the scheme (G00; S00; V 00).We may ignore the case in which two queries of A00 are answered by tripletscontaining the same one-time veri�cation-key v0 (because if this event occurswith non-negligible probability then the one-time scheme (G0; S0; V 0) cannot besecure). We consider two cases regarding the relation of the one-time veri�cation-keys included in the signatures provided by S00s and the one-time veri�cation-keyincluded in the signature forged by A00.1. In case, for some i, the one-time veri�cation-key v0 contained in the forgedmessage equals the one-time veri�cation-key v(i) contained in the answerto the ith query, we derive violation to the security of the one-time scheme(G0; S0; V 0).Speci�cally, consider an adversary A0 that on input a veri�cation-key v0for the one-time scheme (G0; S0; V 0), generates (s; v) G(1n) at ran-dom, selects i at random (among polynomially many possibilities), in-vokes A00 on input v, and answers its queries as follows. The ith query ofA00, denoted �(i), is answered by making the only query to S0s0 , obtaining�0 = S0s0(�(i)), and returning (Ss(v0); v0; �0) to A00. (Note that A0 holdss.) Each other query of A00, denoted �(j), is answered by invoking G0to obtain (s(j); v(j)) G0(1n), and returning (Ss(v(j)); v(j); S0s(j) (�(j)) toA00. If A00 answers with a forged signature and v0 is the veri�cation-keycontained in it, then A0 obtains a forged signature relative to the one-timescheme (G0; S0; V 0) (i.e., a signature to a message di�erent from �(i), whichis valid w.r.t the veri�cation-key v0). Furthermore, conditioned on the casehypothesis and a forgery event, the second event (i.e., v0 is the veri�cation-key contained in the forged signature) occurs with probability 1=poly(n).Note that indeed A0 makes at most one query to S0s0 , and that the distri-bution seen by A00 is exactly as in an actual attack on (G00; S00; V 00).2. In case, for all i, the one-time veri�cation-key v0 contained in the forgedmessage is di�erent from the one-time veri�cation-key v(i) contained in theanswer to the ith query, we derive violation to the security of the scheme(G;S; V).Speci�cally, consider an adversary A that on input a veri�cation-key v forthe scheme (G;S; V), invokes A00 on input v, and answers its queries asfollows. To answer the jth query of A00, denoted �(j), algorithm A invokesG0 to obtain (s(j); v(j)) G0(1n), queries Ss for a signature to v(j), andreturns (Ss(v(j)); v(j); S0s(j) (�(j)) to A00. When A00 answers with a forgedsignature and v0 62 fv(j) : j = 1; :::; poly(n)g is the one-time veri�cation-key contained in it, A obtains a forged signature relative to the scheme(G;S; V) (i.e., a signature to a string v0 di�erent from all v(j)'s, which is

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 531valid w.r.t the veri�cation-key v). (Note again that the distribution seenby A00 is exactly as in an actual attack on (G00; S00; V 00).)15Thus in both cases we derive a contradiction to some hypothesis, and the propo-sition follows.6.4.2.2 Authentication{treesThe refreshing paradigm by itself (i.e., as employed in Construction 6.4.11) doesnot seem to su�ce for establishing Theorem 6.4.9. Recall that our aim is toconstruct a general signature scheme based on a one-time signature scheme.The refreshing paradigm suggests to use a fresh instance of a one-time signaturescheme in order to sign the actual document; however, whenever we do so (asin Construction 6.4.11), we must authenticate this fresh instance relative to thesingle veri�cation-key that is public. A straightforward implementation of thisscheme (as presented in Construction 6.4.11) calls for many signatures to besigned relative to the single veri�cation-key that is public, and so a one-time sig-nature scheme cannot be used (for this purpose). Instead, a more sophisticatedmethod of authentication is called for.Let us try to sketch the basic idea underlying the new authentication method.The idea is to use the public veri�cation-key (of a one-time signature scheme) inorder to authenticate several (e.g., two) fresh instances (of the one-time signaturescheme), use each of these instances to authenticate several fresh instances, andso on. We obtain a tree of fresh instances of the one-time signature, where eachinternal node authenticates its children. See Figure 6.2 (below). We can nowuse the leaves of this tree in order to sign actual documents, where each leafis used at most once. We stress that each instance of the one-time signaturescheme is used to sign at most one string (i.e., a sequence of veri�cation-keys ifthe instance resides in an internal node, and an actual document if the instanceresides in a leaf).The above description may leave the reader wondering as to how one actuallysigns (and veri�es signatures) using the suggested signature scheme. We startwith a description that does not �t our de�nition of a signature scheme, becauseit requires the signer to keep a record of its actions during all previous invocationsof the signing process.16 We refer to such a scheme as memory dependent.De�nition 6.4.13 (memory-dependent signature schemes):Mechanics: Item 1 of De�nition 6.1.1 stays as it is, and the initial state (ofthe signing algorithm) is de�ned to equal the output of the key-generator.Item 2 is modi�ed such that the signing algorithm is given a state, denoted, as auxiliary input and returns a modi�ed state, denoted �, as auxiliaryoutput. It is required that for every pair (s; v) in the range of G(1n),15 Furthermore, all queries to Ss are distributed according to G2(1n), justifying the commentmade just before the proof sketch.16 This (memory) requirement will be removed in the next section.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

532 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION

v

+ auth
x1 x1

v

+ auth
x x

s

s

v

+ auth
x0 x0s

x

x0 x1

x0 x1

x

Figure 6.2: A node labeled x authenticates its children, labeled x0 and x1,respectively. The authentication is via a one-time signature of the text vx0vx1using the signing-key sx.and for every �; 2 f0; 1g�, if (�; �) Ss(�;) then Vv(�; �) = 1 andj�j � jj+ j�j � poly(n).(That is, the veri�cation algorithm accepts the signature � and the statedoes not grow by too much.)Security: The notion of a chosen message attack is modi�ed so that the oracleSs now maintains a state that it updates in the natural manner; that is,when in state and faced with query �, the oracle sets (�; �) Ss(�;),returns � and updates its state to �. The notions of success and securityare de�ned as in De�nition 6.1.2, except that they now refer to the modi�ednotion of an attack.The de�nition of memory-dependent signature schemes (i.e., De�nition 6.4.13) isrelated to the de�nition of state-based MACs (i.e., De�nition 6.3.10). However,there are two di�erences between the two de�nitions: First, De�nition 6.4.13refers to (public-key) signature schemes, whereas De�nition 6.3.10 refers toMACs. Second, in De�nition 6.4.13 only the signing algorithm is state-based (ormemory-dependent), whereas in De�nition 6.3.10 also the veri�cation algorithmis state-based. The latter di�erence reects the di�erence in the applicationsenvisioned for both types of schemes. (Typically, MACs are indented for com-munication between a predetermined set of \mutually synchronized" parties,whereas signature schemes are intended for production of signatures that maybe universally veri�er at any time.)We note that memory-dependent signature schemes may su�ce in many

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 533applications of signature schemes. Still, it is preferable to have memoryless (i.e.,ordinary) signature schemes. Below we use any one-time signature schemes toconstruct a memory-dependent signature scheme. The memory requirement willbe removed in the next section, so to obtain a (memoryless) signature scheme(as in De�nition 6.1.1).Construction 6.4.14 (a memory-dependent signature scheme): Let (G;S; V)be a one-time signature scheme. Consider the following memory-dependent sig-nature scheme, (G0; S0; V 0), with G0 = G. On security parameter n, the schemeuses a full binary tree of depth n. Each of the nodes in this tree is labeled by abinary string so that the root is labeled by the empty string, denoted �, and theleft (resp., right) child of a node labeled by x is labeled by x0 (resp., x1). Belowwe refer to the current state of the signing process as to a record.Initiating the scheme: To initiate the scheme, on security parameter n, we in-voke G(1n) and let (s; v) G(1n). We record (s; v) as the key-pair asso-ciated with the root, and output v as the (public) veri�cation-key.In the rest of the description, we denote by (sx; vx) the key-pair associatedwith the node labeled x; thus, (s�; v�) = (s; v).Signing with S0 using the current record: Recall that the current record containsthe signing-key s = s�, which is used to produce auth� (de�ned below).To sign a new document, denoted �, we �rst allocate an unused leaf. Let�1 � � ��n be the label of this leaf. For example, we may keep a counter ofthe number of documents signed, and determine �1 � � ��n according to thecounter value (e.g., if the counter value is c then we use the cth string inlexicographic order).Next, for every i = 1; :::; n and every � 2 f0; 1g, we try to retrieve from ourrecord the key-pair associated with the node labeled �1 � � ��i�1� . In casesuch a pair is not found, we generate it by invoking G(1n) and store it (i.e.,add it to our record) for future use; that is, we let (s�1����i�1� ; v�1����i�1�) G(1n).Next, for every i = 1; :::; n, we try to retrieve from our record a signature tothe string v�1����i�10 v�1����i�11 relative to the signing-key s�1����i�1 . In casesuch a signature is not found, we generate it by invoking Ss�1����i�1 , andstore it for future use; that is, we obtain Ss�1����i�1 (v�1 ����i�10 v�1����i�11).(The ability to retrieve this signature from memory, for repeated use, isthe most important place in which we rely on the memory-dependence ofour signature scheme.)17 We letauth�1����i�1 def= �v�1����i�10 ; v�1����i�11 ; Ss�1����i�1 (v�1����i�10 v�1����i�11)�17 This allows the signing process S0s to use each (one-time) signing-key sx for producing asingle Ssx -signature. In contrast, the use of a counter for determining a new leaf can be easilyavoided, by selecting a leaf at random.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

534 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION(Intuitively, via auth�1����i�1 , the node labeled �1 � � ��i�1 authenticates theveri�cation-keys associated with its children.)Finally, we sign � by invoking Ss�1����n , and output(�1 � � ��n; auth�; auth�1 ; :::; auth�1����n�1 ; Ss�1����n (�))Veri�cation with V 0: On input a veri�cation-key v, a document �, and an al-leged signature � we accept if and only if the following conditions hold:1. � has the form(�1 � � ��n; (v0;0; v0;1; �0); (v1;0; v1;1; �1); :::; (vn�1;0; vn�1;1; �n�1); �n)where the �i's are bits and all other symbols represent strings.(Jumping ahead, we mention that vi;� is supposed to equal v�1����i� ,the veri�cation-key associated by the signing process with the nodelabeled �1 � � ��i� . In particular, vi�1;�i is supposed to equal v�1����i .)2. Vv(v0;0v0;1; �0) = 1.(That is, the public-key (i.e., v) authenticates the two strings v0;0 andv0;1 claimed to correspond to the instances of the one-time signaturescheme associated with the nodes labeled 0 and 1, respectively.)3. For i = 1; :::; n� 1, it holds that Vvi�1;�i (vi;0vi;1; �i) = 1.(That is, the veri�cation-key vi�1;�i , which is already believed to beauthentic and supposedly corresponds to the instance of the one-timesignature scheme associated with the node labeled �1 � � ��i, authen-ticates the two strings vi;0 and vi;1 that are supposed to correspondto the instances of the one-time signature scheme associated with thenodes labeled �1 � � ��i0 and �1 � � ��i1, respectively.)4. Vvn�1;�n (�; �n) = 1.(That is, the veri�cation-key vn�1;�n , which is already believed to beauthentic, authenticates the actual document �.)Regarding the veri�cation algorithm, note that Conditions 2 and 3 establishthat vi;�i+1 is authentic (i.e., equals v�1 ����i�i+1). That is, v = v� authenticatesv�1 , which authenticates v�1�2 , and so on up-to v�1����n . The fact that thevi;�i+1 's are also proven to be authentic (i.e., equal the v�1����i�i+1 's, where � =1 � �) is not really useful (when signing a message using the leaf associatedwith �1 � � ��n). This excess is merely an artifact of the need to use s�1����i onlyonce during the entire operation of the memory-dependent signature scheme: Inthe currently (constructed) S0s-signature we may not care about the authenticityof some v�1����i�i+1 , but we may care about it in some other S0s-signature. Forexample, if we use the leaf labeled 0n to sign the �rst document and the leaflabeled 0n�11 to sign the second, then in the �rst S0s-signature we only careabout the authenticity of v0n , whereas in the second S0s-signature we care aboutthe authenticity of v0n�11.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 535
v

+ auth

v

+ auth

s

s

v

+ auth

s

v

+ auth

s

v

+ auth

s

v

+ auth

s

v

+ auth

s

λ

0 1

00 01

010 011

λ λ

λ

0 0

0

1 1

1

00 00

00

01 01

01

010 010

010

011 011

011Figure 6.3: An authentication path for nodes 010 and 011.Proposition 6.4.15 If (G;S; V) is a secure one-time signature scheme thenConstruction 6.4.14 constitutes a secure memory-dependent signature scheme.Proof: Recall that a S0s� -signature to a document � has the form(�1 � � ��n; auth�; auth�1 ; :::; auth�1����n�1 ; Ss�1����n (�)) (6.5)where the authx's, vx's and sx's satisfyauthx = (vx0 ; vx1 ; Ssx(vx0 vx1)) (6.6)(See Figure 6.2.) In this case we say that this S0s-signature uses the leaf labeled�1 � � ��n. For every i = 1; :::; n, we call the sequence (auth�; auth�1 ; :::; auth�1����i�1)an authentication path for v�1����i ; see Figure 6.3. (Note that the above sequenceis also an authentication path for v�1����i�1�i , where � = 1� �.) Thus, a validS0s-signature to a document � consists of an n-bit string �1 � � ��n, authentica-tion paths for each v�1����i (i = 1; :::; n), and a signature to � with respect to theone-time scheme (G;S; V) using the signing-key s�1����n .

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

536 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONIntuitively, forging an S0s-signature requires either using an authenticationpath supplied by the signer (i.e., supplied by S0s as part of an answer to a query)or producing an authentication path di�erent from all paths supplied by thesigner. In both cases, we reach a contradiction to the security of the one-timesignature scheme (G;S; V). Speci�cally, in the �rst case, the forged S0s-signaturecontains a signature relative to (G;S; V) using the signing-key s�1����n . The lat-ter Ss�1����n -signature is veri�able using the veri�cation-key v�1����n , which is au-thentic by the case hypothesis. This yields forgery with respect to the instance ofthe one-time signature scheme associated with the leaf labeled �1 � � ��n (becausethe document that is S0s-signed by the forger must be di�erent from all S0s-signeddocuments, and thus the forged document is di�erent from all strings to whicha one-time signature associated with a leaf was applied).18 We now turn to thesecond case (i.e., forgery with respect to (G0; S0; V 0) is obtained by producing anauthentication path di�erent from all paths supplied by the signer). In this casethere must exists an i 2 f0; :::; n� 1g and an (i � 1)-bit long string �1 � � ��i�1such that auth�; :::; auth�1����i�1 is the longest pre�x of the authentication pathproduced by the forger that is a pre�x of some authentication path supplied bythe signer. (Note that i = 0 corresponds to an empty pre�x, whereas i < n� 1by the case hypothesis.) In this case auth�1����i (produced by the forge), con-tains a signature relative to (G;S; V) using the signing-key s�1����i . The lattersignature is veri�able using the veri�cation-key v�1 ����i , which is authentic by thede�nition of i (also in case i = 0 because v� is always authentic). Furthermore,by maximality of i, the latter signature is to a string di�erent from the stringto which the S0s-signer has applied Ss�1����i . This yields forgery with respect tothe instance of the one-time signature scheme associated with the node labeled�1 � � ��i.The actual proof is by a reducibility argument. Given an adversaryA0 attack-ing the complex scheme (G0; S0; V 0), we construct an adversary A that attacksthe one-time signature scheme, (G;S; V). In particular, the adversary A willuse its oracle access Ss in order to emulate the memory-dependent signing or-acle for A0. Recall that the adversary A may make at most one query to itsSs-oracle. Below is a detailed description of the adversary A. Since we care onlyabout probabilistic polynomial-time adversaries, we may assume that A0 makesat most t = poly(n) many queries, where n is the security parameter.The construction of adversary A: Suppose that (s; v) is in the range of G(1n).On input v and one-query oracle access to Ss, adversary A proceeds as follows:1. Initial choice: A uniformly selects j 2 f1; :::; (2n+ 1) � tg.(The integer j speci�es an instance of (G;S; V) generated during the attackof A0. This instance will be attacked by A. Note that since 2n+1 instancesof (G;S; V) are referred to in each signature relative to (G0; S0; V 0), the18 Note that what matter is merely that the document S0s-signed by the forger is di�erentfrom the (single) document to which Ss�1����n was applied by the S0s-signer, in case Ss�1����nwas ever applied by the S0s-signer.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 537quantity (2n+1)�t upper bounds the total number of instances of (G;S; V)that appear during the entire attack of A0. This upper bound is not tight.)2. Invoking A0: If j = 1 then A sets v� = v and invokes A0 on input v. Inthis case A does not know s�, which is de�ned to equal s, but can obtaina single signature relative to it by making a (single) query to oracle Ss.Otherwise (i.e., j > 1), machine A invokes G, obtains (s0; v0) G(1n),sets (s�; v�) = (s0; v0) and invokes A0 on input v0. We stress that in thiscase A knows s�.Indeed, in both case, A0 is invoked on input v�. Also, in both cases, theone-time instance associated with the root (i.e., the node labeled �) iscalled the �rst instance.3. Emulating the memory-dependent signing oracle for A0: The emulation isanalogous to the operation of the signing procedure as speci�ed in Con-struction 6.4.14. The only exception refers to the jth instance of (G;S; V)that occurs in the memory-dependent signing process. Here, A uses theveri�cation key v, and if an Ss-signature needs to be produced then Aqueries Ss for it. We stress that at most one signature needs ever beproduced with respect to each instance of (G;S; V) that occurs in thememory-dependent signing process, and therefore Ss is queried at mostonce. Details follow.Machine A maintains a record of all key-pairs and one-time signatures ithas generated and/or obtained from Ss. When A is asked to supply asignature to a new document, denoted �, it proceeds as follows:(a) A allocates a new leaf-label, denoted �1 � � ��n, exactly as done by thesigning process.(b) For every i = 1; :::; n and every � 2 f0; 1g, machine A tries to retrievefrom its record the one-time instance associated with the node labeled�1 � � ��i�1� . If such an instance does not exist in the record (i.e., theone-time instance associated with the node labeled �1 � � ��i�1� didnot appear so far) then A distinguishes two cases:i. If the record so far contains exactly j�1 one-time instances (i.e.,the current instance is the jth one to be encountered) then A setsv�1����i�1� v, and adds it to its record. In this case, A doesnot know s�1����i�1� , which is de�ned to equal s, but can obtain asingle signature relative to it by making a (single) query to oracleSs.From this point on, the one-time instance associated with thenode labeled �1 � � ��i�1� will be called the jth instance.ii. Otherwise (i.e., the current instance is not the jth one to be en-countered), A acts as the signing process: It invokes G(1n), ob-tains (s�1����i�1� ; v�1����i�1�) G(1n), and adds it to the record.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

538 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION(Note that in this case A knows s�1����i�1� , and can generate byitself signatures relative to it.)The one-time instance just generated is given the next serial num-ber. That is, the one-time instance associated with the node la-beled �1 � � ��i�1� will be called the kth instance if the currentrecord (i.e., after the generation of the one-time key-pair asso-ciated with the node labeled �1 � � ��i�1�) contains exactly k in-stances.(c) For every i = 1; :::; n, machine A tries to retrieve from its record a(one-time) signature to the string v�1����i�10 v�1����i�11, relative to thesigning-key s�1����i�1 . If such a signature does not exist in the recordthen A distinguishes two cases:i. If the one-time signature instance associated with the node la-beled �1 � � ��i�1 is the jth such instance then A obtains the one-time signature Ss�1����i�1 (v�1����i�10 v�1����i�11) by querying Ss,and adds this signature to the record.Note that by the previous steps (i.e., Step 3(b)i as well as Step 2),s is identi�ed with s�1����i�1 , and that the instance associatedwith a node labeled �1 � � ��i�1 is only used to produce a singlesignature; that is, to the string v�1����i�10 v�1����i�11. Thus, in thiscase, A queries Ss at most once.We stress that the above makes crucial use of the fact that, forevery � , the veri�cation-key associated with the node labeled�1 � � ��i�1� is identical in all executions of the current step. Thisfact guarantees that A only needs a single signature relative tothe instance associated with a node labeled �1 � � ��i�1, and thusqueries Ss at most once (and retrieves this signature frommemoryif it ever needs it again).ii. Otherwise (i.e., the one-time signature instance associated withthe node labeled �1 � � ��i�1 is not the jth such instance), Aacts as the signing process: It invokes Ss�1����i�1 , obtains theone-time signature Ss�1����i�1 (v�1 ����i�10 v�1����i�11), and adds itto the record. (Note that in this case A knows s�1����i�1 , and cangenerate by itself signatures relative to it.)Thus, in both cases, A obtains auth�1����i�1 , which equals (v�1����i�10 ; v�1����i�11 ; �i�1),where �i�1 = Ss�1����i�1 (v�1����i�10 v�1 ����i�11).(d) Machine A now obtains a one-time signature of � relative to Ss�1����n .(Since a new leaf is allocated for each query made by A0, we needto generate at most one signature relative to the one-time instanceSs�1����n associated with the leaf �1 � � ��n.) This is done analogouslyto the previous step (i.e., Step 3c). Speci�cally:i. If the one-time signature instance associated with the (leaf) nodelabeled �1 � � ��n is the jth instance then A obtains the one-timesignature Ss�1����n (�) by querying Ss.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 539Note that, in this case, s is identi�ed with s�1����n , and that aninstance associated with a leaf is only used to produce a singlesignature. Thus, also in this case (which is disjoint of Case 3(c)i),A queries Ss at most once.ii. Otherwise (i.e., the one-time signature instance associated withthe node labeled �1 � � ��n is not the jth instance), A acts as thesigning process: It invokes Ss�1����n , and obtains the one-timesignature Ss�1����n (�). (Again, in this case A knows s�1����n , andcan generate by itself signatures relative to it.)Thus, in both cases, A obtains �n = Ss�1����n (�).(e) Finally, A answers the query � with(�1 � � ��n; auth�; auth�1 ; :::; auth�1����n�1 ; �n)4. Using the output of A0: When A0 halts with output (�0; �0), machine Achecks whether this is a valid document-signature pair with respect toV 0v� and whether the document �0 did not appear as a query of A0. Ifboth conditions hold then A tries to obtain forgery with respect to Ss.To explain how this is done, we need to take a closer look at the validdocument-signature pair, (�0; �0), output by A0. Speci�cally, suppose that�0 has the form(�01 � � ��0n; (v00;0; v00;1; �00); (v01;0; v01;1; �01); :::; (v0n�1;0; v0n�1;1; �0n�1); �0n)and that the various components satisfy all conditions stated in the veri�ca-tion procedure. (In particular, the sequence (v00;0; v00;1; �00); :::; (v0n�1;0; v0n�1;1; �0n�1)is the authentication path (for v0n�1;�0n) output by A0.) Recall that stringsof the form v0k;� denote the veri�cation-keys included in the output of A0,whereas strings of the form vx denote the veri�cation-keys (as used in theanswers given to A0 by A and) as recorded by A.Let i bemaximal such that the sequence of key-pairs (v00;0; v00;1); :::; (v0i�1;0; v0i�1;1)appears in some authentication path supplied to A0 (by A).19 Note thati 2 f0; :::; ng, where i = 0 means that (v00;0; v00;1) di�ers from (v0; v1),and i = n means that the sequence ((v00;0; v00;1); :::; (v0n�1;0; v0n�1;1)) equalsthe sequence ((v0; v1); :::; (v�01����0n�10; v�01����0n�11)). In general, the sequence((v00;0; v00;1); :::; (v0i�1;0; v0i�1;1)) equals the sequence ((v0; v1); :::; (v�01 ����0i�10; v�01����0i�11)).In particular, for i � 1, it holds that v0i�1;�0i = v�01����0i , whereas for i = 0we shall only refer to v� (which is the veri�cation-key attacked by A0).19 That is, i is such that for some �0; :::; �i�1 (which may but need not equal �00; :::; �0i�1) thesequence (v00;0; v00;1; �0); :::; (v0i�1;0; v0i�1;1; �i�1) is a pre�x of some authentication path (forsome v�01����0i�i+1����n) supplied to A0 by A. We stress that here we only care about whetheror not some v0k;� 's equal the corresponding veri�cation-keys supplied by A, and ignore thequestion of whether (in case of equality) the veri�cation-keys were authenticated using thevery same (one-time) signature. We mention that things will be di�erent in the analogouspart of the proof of Theorem 6.5.2 (which refers to super-security).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

540 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONIn both cases, the output of A0 contains a one-time signature relative tov�01����0i , and this signature is to a string di�erent from the (possibly) onlyone to which a signature was supplied to A0 by A. Analogously to themotivating discussion above, we distinguish the cases i = n and i < n:(a) In case i = n, the output of A0 contains the (one-time) signature �0nthat satis�es Vv�01����0n (�0; �0n) = 1. Furthermore, �0 is di�erent fromthe (possibly) only document to which Ss�01����0n was applied during theemulation of the S0-signer by A, since by our hypothesis the document�0 did not appear as a query of A0. (Recall that, by the construction ofA, instances of the one-time signature scheme associated with leavesare only applied to the queries of A0.)(b) In case i < n, the output of A0 contains the (one-time) signature �0ithat satis�es Vv�01����0i (v0i;0v0i;1; �0i) = 1. Furthermore, v0i;0v0i;1 is di�er-ent from v�01����0i0 v�01 ����0i0, which is the (possibly) only string to whichSs�01����0i was applied during the emulation of the S0-signer by A, wherethe last assertion is due to the maximality of i (and the constructionof A).Thus, in both cases, A obtains from A0 a valid (one-time) signature rela-tive to the (one-time) instance associated with the node labeled �01 � � ��0i.Furthermore, in both cases, this (one-time) signature is to a string thatdid not appear in the record of A. The question is whether the instanceassociated with the node labeled �01 � � ��0i is the jth instance, for which Aset v = v�01����0i . In case the answer is yes, A obtains forgery with respectto the (one-time) veri�cation-key v (which it attacks).In view of the above discussion, A acts as follows. It determines i asin the discussion, and checks whether v = v�01����0i (or, almost equiva-lently, whether the jth instance is the one associated with the node la-beled �01 � � ��0i). In case i = n, machine A outputs the string-signaturepair (�0; �0n), otherwise (i.e., i < n) it outputs the string-signature pair(v0i;0v0i;1; �0i).This completes the (admittingly long) description of adversary A. We repeatagain some obvious observations regarding this construction. Firstly, A makesat most one query to its (one-time) signature oracle Ss. Secondly, assuming thatA0 is probabilistic polynomial-time, so is A. Thus, all that remains is to relatethe success probability of A (when attacking a random instance of (G;S; V)) tothe success probability of A0 (when attacking a random instance of (G0; S0; V 0)).As usual the main observation is that the view of A0, during the emulation (ofthe memory-dependent signing process) by A, is identically distributed to itsview in an actual attack on (G0; S0; V 0). Furthermore, this holds conditionedon any possible �xed value of j (selected in the �rst step of A). It followsthat if A0 succeeds to forge signatures in an actual attack on (G0; S0; V 0) withprobability "0(n) then A succeeds to forge signatures with respect to (G;S; V)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 541with probability at least "0(n)(2n+1)�t , where the (2n + 1) � t factor is due to theprobability that the choice of j is a good one (i.e., so that the jth instance isthe one associated with the node labeled �01 � � ��0i, where �01 � � ��0n and i are asde�ned in Step 4).We conclude that if (G0; S0; V 0) can be broken by a probabilistic polynomial-time chosen message attack with non-negligible probability then (G;S; V) canbe broken by a probabilistic polynomial-time single-message attack with non-negligible probability, in contradiction to the proposition's hypothesis. Theproposition follows.6.4.2.3 The actual constructionIn this section, we remove the memory-dependency of Construction 6.4.14, andobtain an ordinary (rather than memory-dependent) signature scheme. Towardsthis end, we use pseudorandom functions (as de�ned in De�nition 3.6.4). Thebasic idea is that the record maintained in Construction 6.4.14 can be determined(on-the-y) by an application of a pseudorandom function to certain strings. Forexample, instead of generating and storing an instance of a (one-time) signaturescheme for each node that we encounter, we can determine the randomness forthe (corresponding invocation of the) key-generation algorithm as a function ofthe label of that node. Thus, there is no need to store the key-pair generated,because if we ever need it again then re-generating it (in the very same way)will yield exactly the same result. The same idea applies also to the generationof (one-time) signatures. In fact, the construction is simpli�ed, because we neednot check whether or not we are generating an object for the �rst time.For simplicity, let us assume that, on security parameter n, both the key-generation and signing algorithms (of the one-time signature scheme (G;S; V))use exactly n internal coin tosses. (This assumption can be justi�ed by us-ing pseudorandom generators, which exist anyhow under the assumptions usedhere.) For r 2 f0; 1gn, we denote by G(1n; r) the output of G on input 1n andinternal coin-tosses r. Likewise, for r 2 f0; 1gn, we denote by Ss(�; r) the outputof S, on input a signing-key s and a document �, when using internal coin-tossesr. For simplicity, we shall be actually using generalized pseudorandom functionsas in De�nition 3.6.12 (rather than pseudorandom functions as de�ned in De�ni-tion 3.6.4).20 Furthermore, for simplicity, we shall consider applications of suchpseudorandom functions to sequences of characters containing f0; 1g as well asa few additional special characters.Construction 6.4.16 (Removing the memory requirement from Construction 6.4.14):Let (G;S; V) be a one-time signature scheme, and ffr : f0; 1g� ! f0; 1gjrjgr2f0;1g�be a generalized pseudorandom function ensemble as in De�nition 3.6.12. Con-20 We shall make comments regarding the minor changes required in order to use ordinarypseudorandom functions. The �rst comment is that we shall consider an encoding of stringsof length up-to n + 2 by strings of length n + 3 (e.g., for i � n + 2, the string x 2 f0; 1gi isencoded by x10n+2�i).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

542 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONsider the following signature scheme, (G0; S0; V 0), which refers to a full binarytree of depth n as in Construction 6.4.14.Key-generation algorithm G0: On input 1n, algorithm G0 obtains (s; v) G(1n)and selects uniformly r 2 f0; 1gn. Algorithm G0 outputs the pair ((r; s); v),where (r; s) is the signing-key and v is the veri�cation-key.21Signing algorithm S0: On input a signing-key (r; s) and a document �, the algo-rithm proceeds as follows.1. It selects uniformly �1 � � ��n 2 f0; 1gn.(Algorithm S0 will use the leaf labeled �1 � � ��n 2 f0; 1gn to sign thecurrent document. Indeed, with exponentially-vanishing probabilitythe same leaf may be used to sign two di�erent documents, and thiswill lead to forgery (but only with negligible probability).)(Alternatively, to obtain a deterministic signing algorithm, one mayset �1 � � ��n fr(select-leaf; �), where select-leaf is a specialcharacter.)222. Next, for every i = 1; :::; n and every � 2 f0; 1g, the algorithm invokesG and sets(s�1����i�1� ; v�1����i�1�) G(1n; fr(key-gen; �1 � � ��i�1�))where key-gen is a special character.233. For every i = 1; :::; n, the algorithm invokes Ss�1����i�1 and setsauth�1����i�1 def= �v�1����i�10 ; v�1����i�11 ;Ss�1����i�1 (v�1 ����i�10 v�1����i�11; fr(sign; �1 � � ��i�1))�where sign is a special character.244. Finally, the algorithm invokes Ss�1����n and outputs25(�1 � � ��n; auth�; auth�1 ; :::; auth�1����n�1 ; Ss�1����n (�; fr(sign; �1 � � ��n)))21 In case we use ordinary pseudorandom functions, rather than generalized ones, we selectr uniformly in f0; 1gn+3 such that fr : f0; 1gn+3 ! f0; 1gn+3. Actually, we shall be using thefunction fr : f0; 1gn+3 ! f0; 1gn derived from the above by dropping the last 3 bits of thefunction value.22 In case we use ordinary pseudorandom functions, rather than generalized ones, this alter-native can be (directly) implemented only if it is guaranteed that j�j � n. In such a case, weapply the fr to the (n+ 3)-bit encoding of 00�.23 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-ment to fr is the (n+ 3)-bit encoding of 10�1 � � ��i�1� .24 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-ment to fr is the (n+ 3)-bit encoding of 11�1 � � ��i�1.25 In case we use ordinary pseudorandom functions, rather than generalized ones, the argu-ment to fr is the (n+ 3)-bit encoding of 11�1 � � ��n.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 543Veri�cation algorithm V 0: On input a veri�cation-key v, a document �, and analleged signature � algorithm V 0 behaves exactly as in Construction 6.4.14.Speci�cally, assuming that � has the form(�1 � � ��n; (v0;0; v0;1; �0); (v1;0; v1;1; �1); :::; (vn�1;0; vn�1;1; �n�1); �n)algorithm V 0 accepts if and only if the following three conditions hold:� Vv(v0;0v0;1; �0) = 1.� For i = 1; :::; n� 1, it holds that Vvi�1;�i (vi;0vi;1; �i) = 1.� Vvn�1;�n (�; �n) = 1.Proposition 6.4.17 If (G;S; V) is a secure one-time signature scheme andffr : f0; 1g� ! f0; 1gjrjgr2f0;1g� is a generalized pseudorandom function ensem-ble then Construction 6.4.16 constitutes a secure (general) signature scheme.Proof: Following the general methodology suggested in Section 3.6.3, we con-sider an ideal version of Construction 6.4.16 in which a truly random function isused (rather than a pseudorandom one). The ideal version is almost identical toConstruction 6.4.14, with the only di�erence being the way in which �1 � � ��n isselected. Speci�cally, applying a truly random function to determine (one-time)key-pairs and (one-time) signatures is equivalent to generating these keys andsignatures at random (on-the-y) and re-using the stored values whenever nec-essary. Regarding the way in which �1 � � ��n is selected, observe that the proofof Proposition 6.4.15 is oblivious of this way, except for the assumption that thesame leaf is never used to sign two di�erent documents. However, the probabil-ity that the same leaf is used twice by the (memoryless) signing algorithm, whenserving polynomially-many signing requests, is exponentially-vanishing and thuscan be ignored in our analysis. We conclude that the ideal scheme (in which atruly random function is used instead of fr) is secure. It follows that also theactual signature scheme (as in Construction 6.4.16) is secure, or else one cane�ciently distinguish a pseudorandom function from a truly random one (whichis impossible). Details follow.Assume towards the contradiction that there exists a probabilistic polynomial-time adversary A0 that succeeds to forge signatures with respect to (G0; S0; V 0)with non-negligible probability, but succeeds only with negligible probabilitywhen attacking the ideal scheme. We construct a distinguisher D that on input1n and oracle access to f : f0; 1g� ! f0; 1gn behaves as follows. Machine Dgenerates ((r0; s); v) G0(1n), and invokes A0 on input v. Machine D answersthe queries of A0 by running the signing process, using the signing-key (r0; s),with the exception that it replaces the values fr0(x) by f(x). That is, wheneverthe signing process calls for the computation of the value of the function fr0 onsome string x, machine D queries its oracle (i.e., f) on the string x, and usesthe respond f(x) instead of fr0(x). When A0 outputs an alleged signature to anew document, machineM evaluates whether or not the signature is valid (withrespect to Vv) and output 1 if and only if A0 has indeed succeeded (i.e., the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

544 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONsignature is valid). Observe that if D is given oracle access to a truly randomfunction then the emulated A0 attacks the ideal scheme, whereas if D is givenoracle access to a pseudorandom function fr then the emulated A0 attacks thereal scheme. It follows that D distinguishes the two cases, in contradiction tothe pseudorandomness of the ensemble ffrg.6.4.2.4 Conclusions and commentsTheorem 6.4.9 follows by combining Proposition 6.4.17 with the fact that theexistence of secure one-time signature schemes implies the existence of one-way functions (see Exercise 12), which in turn imply the existence of (general-ized) pseudorandom functions. Recall that combining Theorem 6.4.9 and Corol-lary 6.4.8, we obtain Corollary 6.4.10 that states that the existence of collision-free hashing collections implies the existence of secure signature schemes. Fur-thermore, the length of the resulting signatures only depends on the length ofthe signing-key.We comment that Constructions 6.4.14 and 6.4.16 can be generalized asfollows. Rather than using a (depth n) full binary tree, one can use any treethat has a super-polynomial (in n) number of leaves, provided that one canenumerate the leaves (resp., uniformly select a leaf), and generate the path fromthe root to a given leaf. We consider a few possibilities:� For any d : N!N bounded by a polynomial in n (e.g., d � 2 or d(n) = nare indeed \extreme" cases), we may consider a full d(n)-ary tree of depthe(n) so that d(n)e(n) is greater than any polynomial in n. The choice ofparameters in Constructions 6.4.14 and 6.4.16 (i.e., d � 2 and e(n) = n)is probably the simplest one.Natural complexity measures for a signature scheme include the length ofsignatures and the signing and veri�cation times. In a generalized con-struction, the length of the signatures is linear in d(n) � e(n), and the num-ber of applications of the underlying one-time signature scheme (per eachgeneral signature) is linear in e(n), where in internal nodes the one-timesignature scheme is applied to string of length linear in d(n). Assumingthat the complexity of one-time signatures is linear in the document length,all complexity measures are linear in d(n) � e(n), and so d � 2 is the bestgeneric choice. However, the above assumption may not hold when somespeci�c one-time signatures are used. For example, the complexity of pro-ducing a signature to an `-bit long string in a one-time signature schememay be of the form p(n) + p0(n) � `, where p0(n)� p(n). In such (special)cases, one may prefer to use a larger d : N!N (see Section 6.6.5).� For the memory-dependent construction, it may be preferable to use un-balanced trees (i.e., having leaves at various levels). The advantage is thatif one utilizes �rst the leaves closer to the root then one can obtain a savingon the cost of signing the �rst documents.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 545For example, consider using a ternary tree of super-logarithmic depth(i.e., d � 3 and e(n) = !(logn)) in which each internal node of leveli 2 f0; 1; :::; e(n) � 2g has a two children that are internal nodes and asingle child that is a leaf (and the internal nodes of level e(n)�1 have onlyleaves as children). Thus, for i � 1, there are 3i�1 leaves at level i. If weuse all leaves of level i before using any leaf of level i+ 1 then the lengthof the jth signature in this scheme is linear in log3 j (and so is the numberof applications of the underlying one-time signature scheme).When actually applying these constructions, one should observe that in variantsof Construction 6.4.14 the size of the tree determines the number of documentsthat can be signed, whereas in variants of Construction 6.4.16 the tree size haseven a more drastic e�ect on the number of documents that can be signed.26In some cases a hybrid of Constructions 6.4.14 and 6.4.16 may be preferable:We refer to a memory-dependent scheme in which leaves are assigned as inConstruction 6.4.14 (i.e., according to a counter), but the rest of the operationis done as in Construction 6.4.16 (i.e., the one-time instances are re-generatedon-the-y, rather than being recorded and retrieved from memory). In someapplications, the introduction of a document-counter may be tolerated, and thegain is the ability to use a smaller tree (i.e., of size merely greater than thenumber of documents that should be ever signed).More generally, we wish to stress that each of the following ingredients of theabove constructions, is useful in a variety of related and unrelated settings. Werefer speci�cally to the refreshing paradigm, the authentication tree construction,and the notion (and constructions) of one-time signatures. For example:� It is common practice to authenticate messages sent during a \commu-nication session" via a (fresh) session-key that is typically authenticatedby a master-key. One of the reasons for this practice is the preventionof a chosen message attack on the (more valuable) master-key. (Otherreasons include allowing the use of a faster (alas less secure) authentica-tion scheme for the actual communication, and introducing independencebetween sessions.)� Observe the analogy between the tree-hashing (of Construction 6.2.13)and the authentication tree (of Construction 6.4.14). Despite the manydi�erences, in both cases, the value of each internal node authenticatesthe values of its children. Thus, the value of the root may be used toauthenticate a very large number of values (associated with the leaves).Furthermore, the value associated with each leaf can be veri�ed withincomplexity that is linear in the depth of the tree.26 In particular, the number of documents that can be signed should de�nitely be smallerthan the square root of the size of the tree (or else two documents are likely to be assignedthe same leaf). Furthermore, we cannot use a small tree (e.g., of size 1000) even if we knowthat the total number of documents that will ever be signed is small (e.g., 10), because in thiscase the probability that two documents are assigned the same leaf is too big (e.g., 1=20).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

546 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION� Recall the application of one-time signatures to the construction of CCA-secure public-key encryption schemes (see the proof of Theorem 5.4.30).6.4.3 * Universal One-Way Hash Functions and using themSo far, we have established that the existence of collision-free hashing collectionsimplies the existence of secure signature schemes (cf. Corollary 6.4.10). We seekto weaken the assumption under which secure signature schemes can be con-structed, and bear in mind that the existence of one-way functions is certainly anecessary condition (cf., for example, Exercise 12). In view of Theorem 6.4.9, wemay focus on constructing secure one-time signature schemes. Furthermore, re-call that secure length-restricted one-time signature schemes can be constructedbased on any one-way function (cf. Corollary 6.4.6). Thus, the only bottleneckwe face (with respect to the assumption used) is the transformation of length-restricted one-time signature schemes into (general) one-time signature schemes.For the latter transformation we have used a speci�c incarnation of the \hash-ing paradigm" (i.e., Proposition 6.4.7, which refers to Construction 6.2.6). Thisincarnation utilizes collision-free hashing, and our goal is to replace it by a vari-ant (of Construction 6.2.6) that uses a seemingly weaker notion called UniversalOne-Way Hash Functions.6.4.3.1 De�nitionA collection of universal one-way hash functions is de�ned analogously to acollection of collision-free hash functions. The only di�erence is that the hardness(to form collisions) requirement is relaxed. Recall that in case of (a collection of)collision-free hash functions it was required that given the function's descriptionit is hard to form an arbitrary collision under the function. In case of (a collectionof) universal one-way hash functions we only require that given the function'sdescription h and a preimage x0 it is hard to �nd an x 6= x0 so that h(x) = h(x0).We refer to this requirement as to hardness to form designated collisions.Our formulation of the hardness to form designated collisions is actuallyseemingly stronger. Rather than being supplied with a (random) preimage x0,the collision-forming algorithm is allowed to select x0 by itself, but must do sobefore being presented with the function's description. That it, the attack of thecollision-forming algorithm proceeds in three stages: �rst the algorithm selects apreimage x0, next it is given a description of a randomly selected function h, and�nally it is required to output x 6= x0 such that h(x) = h(x0). We stress that thethird stage in the attack is also given the random used for producing the initialpreimage (at the �rst stage). This yields the following de�nition, where the �rststage is captured by a deterministic polynomial-time algorithm A0 (which mapsa sequence of coin tosses, denoted Uq(n), to a preimage of the function) and thethird stage is captured by algorithm A (which is given the very same Uq(n) aswell as the function's description).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 547De�nition 6.4.18 (universal one-way hash functions { UOWHF): Let ` : N !N . A collection of functions fhs : f0; 1g� ! f0; 1g`(jsj)gs2f0;1g� is called uni-versal one-way hashing (UOWHF) if there exists a probabilistic polynomial-timealgorithm I so that the following holds1. (admissible indexing { technical):27 For some polynomial p, all su�cientlylarge n's and every s in the range of I(1n) it holds that n � p(jsj). Fur-thermore, n can be computed in polynomial-time from s.2. (e�cient evaluation): There exists a polynomial-time algorithm that givens and x, returns hs(x).3. (hard to form designated collisions): For every polynomial q, every deter-ministic polynomial-time algorithm A0, every probabilistic polynomial-timealgorithm A, every polynomial p and all su�ciently large n'sPr � hI(1n)(A(I(1n); Uq(n))) = hI(1n)(A0(Uq(n)))and A(I(1n); Uq(n)) 6= A0(Uq(n)) � < 1p(n) (6.7)where the probability is taken over Uq(n) and the internal coin tosses ofalgorithms I and A.The function ` is called the range speci�er of the collection.We stress that the hardness to form designated collisions condition refers to thefollowing three-stage process: �rst, using a uniformly distributed r 2 f0; 1gq(n),the (initial) adversary generates a preimage x0 = A0(r); next, a function h isselected (by invoking I(1n)); and, �nally, the (residual) adversary A is given h(as well as r used at the �rst stage), and tries to �nd a preimage x 6= x0 such thath(x) = h(x0). Indeed, Eq. (6.7) refers to the probability that x def= A(h; r) 6= x0and yet h(x) = h(x0).Note that the range speci�er (i.e., `) must be super-logarithmic (or else, givens and x0 Un, one is too likely to �nd an x 6= x0 such that hs(x) = hs(x0),by uniformly selecting x in f0; 1gn). Also note that any UOWHF collectionyields a collection of one-way functions (see Exercise 16). Finally, note that anycollision-free hashing is universally one-way hashing, but the converse is false (seeExercise 17). Furthermore, it is not known whether collision-free hashing canbe constructed based on any one-way functions (in contrast to Theorem 6.4.29below).6.4.3.2 ConstructionsWe construct UOWHF collections in several steps, starting with a related butrestricted notion, and relaxing the restriction gradually (until we reach the un-restricted notion of UOWHF collections). The abovementioned restriction refersto the length of the arguments to the function. Most importantly, the hardness27 This condition is made merely to avoid annoying technicalities. Note that jsj = poly(n)holds by de�nition of I.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

548 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION(to form designated collisions) requirement will refer only to argument of thislength. That is, we refer to the following technical de�nition.De�nition 6.4.19 ((d; r)-UOWHFs): Let d; r : N ! N . A collection of func-tions fhs : f0; 1gd(jsj) ! f0; 1gr(jsj)gs2f0;1g� is called (d; r)-UOWHF if thereexists a probabilistic polynomial-time algorithm I so that the following holds1. For all su�ciently large n's and every s in the range of I(1n) it holds thatjsj = n.282. There exists a polynomial-time algorithm that given s and x 2 f0; 1gd(jsj),returns hs(x).3. For every polynomial q, every deterministic polynomial-time algorithm A0mapping q(n)-bit long strings to d(jsj)-bit long strings, every probabilisticpolynomial-time algorithm A, every polynomial p and all su�ciently largen's Eq. (6.7) holds.Of course, we care only of (d; r)-UOWHF for functions d; r : N ! N satisfyingd(n) > r(n). (The case d(n) � r(n) is trivial since collisions can be avoidedaltogether; say, by the identity map.) The \minimal" non-trivial case is whend(n) = r(n)+1. Indeed, this is our starting point. Furthermore, the constructionof such a minimal (d; d� 1)-UOWHF (undertaken in the �rst step) is the mostinteresting step to be taken on our entire way towards the construction of full-edged UOWHF.Step I: constructing (d; d�1)-UOWHFs. We show how to construct length-restricted UOWHFs that shrink their input by a single bit. Our constructioncan be carried out using any one-way permutation. In addition, we use a familyof hashing functions, Sn�1n , as de�ned in Section 3.5.1.1. Recall that a functionselected uniformly in Sn�1n maps f0; 1gn to f0; 1gn�1 in a pairwise independentmanner, that the functions in Sn�1n are easy to evaluate, and that for somepolynomial p it holds that log2 jSn�1n j = p(n).Construction 6.4.20 (a (d; d�1)-UOWHF): Let f : f0; 1g� ! f0; 1g� be a 1-1and length preserving function, and let Sn�1n be a family of hashing functionssuch that log2 jSn�1n j = p(n), for some polynomial p. (Speci�cally, suppose thatlog2 jSn�1n j 2 f3n�2; 2ng, as in Exercises 22.2 and 23 of Chapter 3.) Then, forevery s 2 Sn�1n � f0; 1gp(n) and every x 2 f0; 1gn, we de�ne h0s(x) def= hs(f(x)).In case jsj 62 fp(n) : n 2 Ng, we de�ne h0s def= h0s0 where s0 is the longest pre�xof s satisfying js0j 2 fp(n) : n 2 Ng. We refer to an index selection algorithmthat, on input 1m, uniformly selects s 2 f0; 1gm.28 Here we chose to make a more stringent condition, requiring that jsj = n rather thann � poly(jsj). In fact, one can easily enforce this more stringent condition by modifying I intoI0 so that I0(1l(n)) = I(1n) for a suitable function l : N!N satisfying l(n) � poly(n) andn � poly(l(n)).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 549That is, h0s : f0; 1gd(jsj) ! f0; 1gd(jsj)�1, where d(m) is the largest integer nsatisfying p(n) � m. Note that d is monotonically non-decreasing, and that for1-1 p's the corresponding d is onto (i.e., d(p(n)) = n for every n).The analysis presented below uses, in an essential way, an additional prop-erty of the above-mentioned families of hashing functions; speci�cally, we assumethat give two preimage{image pairs it is easy to uniformly generate a hashingfunction (in the family) that is consistent with these two mapping conditions.Furthermore, to facilitate the analysis we use a speci�c family of hashing func-tions, presented in Exercise 23 of Chapter 3: functions in Sn�1n are described bya pair of elements of the �nite �eld GF(2n) so that the pair (a; b) describes thefunction ha;b that maps x 2 GF(2n) to the (n� 1)-bit pre�x of the n-bit repre-sentation of ax + b, where the arithmetics is of the �eld GF(2n). This speci�cfamily satis�es all the additional properties required in the next proposition (seeExercise 21).Proposition 6.4.21 Suppose that f is a one-way permutation, and that log2 jSn�1n j =2n. Furthermore, suppose that Sn�1n satis�es the following two conditions:C1 All but a negligible fraction of the functions in Sn�1n are 2-to-1.C2 There exists a probabilistic polynomial-time algorithm that given y1; y2 2f0; 1gn and z1; z2 2 f0; 1gn�1, outputs a uniformly distributed element offs 2 Sn�1n : hs(yi) = zi 8i 2 f1; 2gg.Then fh0sgs2f0;1g� as in Construction 6.4.20 is a (d; d�1)-UOWHF, for d(m) =bm=2c.Proof Sketch: Intuitively, forming designated collisions under h0s � hs � fyields the ability to invert f , because the collision is due to hs, which may beselected such that hs(y) = hs(f(x0)) for any given y and x0. We stress thattypically there are only two preimages of h0s(x0) under h0s, one being x0 itself(which is given to the collision-�nder) and the other being f�1(y). Thus, abilityto form a designated collision with x0, yields ability to invert f on a randomy, by selecting a random s such that hs(y) = h0s(x0), and forming a designatedcollision under h0s. More precisely, suppose we wish to invert f on a randomimage y. Then we may invoke a collision-�nder, which �rst outputs some x0,supply it with a random s satisfying hs(y) = h0s(x0), and hope that it forms acollision (i.e., �nds a di�erent preimage x satisfying h0s(x) = h0s(x0)). Indeed,typically, the di�erent preimage must be f�1(y), which means that wheneverthe collision-�nder succeeds we also succeed (i.e., invert f on y).The actual proof is by a reducibility argument. Suppose that we are givena probabilistic polynomial-time algorithm A0 that forms designated collisionsunder fh0sg, with respect to preimages produced by a deterministic polynomial-time algorithm A00, which maps p(n)-bit strings to n-bit strings. Then, weconstruct an algorithm A that inverts f . On input y = f(x), where n = jyj = jxj,algorithm A proceeds as follows:(1) Select r0 uniformly in f0; 1gp(n), and compute x0 = A00(r0) and y0 = f(x0).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

550 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION(2) Select s uniformly in fs 2 Sn�1n : hs(y0) = hs(y)g.(Recall that y is the input to A, and y0 is generated by A at Step (1).)(3) Invoke A0 on input (s; r0), and output whatever A0 does.By Condition C2, Step (2) can be implemented in probabilistic polynomial-time.Turning to the analysis of algorithm A, we consider the behavior of A oninput y = f(x) for a uniformly distributed x 2 f0; 1gn (which implies that yis uniformly distributed over f0; 1gn). We �rst observe that for every �xed r0selected in Step (1), if y is uniformly distributed in f0; 1gn then s as determinedin Step (2) is uniformly distributed in Sn�1n . Using Condition C1, it follows thatthe probability that hs is not 2-to-1 is negligible. By the construction of A, theprobability that f(x0) = y is also negligible (but we could have taken advantageof this case too, by augmenting Step (1) such that if y0 = y then A halts withoutput x0). Note that, in case f(x0) 6= y and hs is 2-to-1, if A0 returns x0 suchthat x0 6= x0 and h0s(x0) = h0s(x0) then f(x0) = y.Justifying the last claim: Let v def= hs(y) and suppose that hs is 2-to-1.Then, by Step (2) and f(x0) 6= y, it holds that x = f�1(y) and x0 are thetwo preimages of v = h0s(x) = h0s(x0) under h0s (where h0s = hs �f is 2-to-1because f is 1-to-1 and hs is 2-to-1). Since x0 6= x0 is also a preimage ofv under h0s, it follows that x0 = x.We conclude that if A0 forms designated collisions with probability "0(n) thenA inverts f with probability "0(n) � �(n), where � is a negligible function (ac-counting for the negligible probability that hs is not 2-to-1). The propositionfollows.Step II: constructing (d0; d0=2)-UOWHFs. We now take the second stepon our way, and use any (d; d � 1)-UOWHF in order to construct a (d0; d0=2)-UOWHF. That is, we construct length-restricted UOWHFs that shrink theirinput by a factor of 2. The construction is obtained by composing a sequence ofdi�erent functions taken from di�erent (d; d � 1)-UOWHFs. Thus, each func-tion in the sequence shrinks the input by one bit, and the composition of d0=2functions shrinks the initial d0-bit long input by a factor of 2. For simplicity, weassume that the function d : N!N is onto and monotonically non-decreasing.In such a case we denote by d�1(m) the smallest natural number n satisfyingd(n) = m (and so d�1(d(n)) � n).Construction 6.4.22 (a (d0; d0=2)-UOWHF): Let fhs : f0; 1gd(jsj) ! f0; 1gd(jsj)�1gs2f0;1g�,where d : N!N is onto and non-decreasing. Then, for every s = (s1; :::; sbd(n)=2c),where each si 2 f0; 1gd�1(d(n)+1�i), and every x 2 f0; 1gd(n), we de�neh0s1;:::;sbd(n)=2c(x) def= hsbd(n)=2c(� � �hs2(hs1(x)) � � �)That is, letting x0 def= x, and xi hsi(xi�1) for i = 1; :::; bd(n)=2c, we seth0s(x0) = xbd(n)=2c. (Note that d(jsij) = d(n) + 1 � i and jxij = d(n) + 1 � iindeed hold.)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 551We refer to an index selection algorithm that, on input 1m, determines thelargest integer n such that m � m0 def= Pbd(n)=2ci=1 d�1(d(n) + 1 � i), uniformlyselects s1; :::; sbd(n)=2c so that si 2 f0; 1gd�1(d(n)+1�i), and s0 2 f0; 1gm�m0, andlets h0s0;s1;:::;sbd(n)=2c def= h0s1;:::;sbd(n)=2c .That is, for m = jsj, we have h0s : f0; 1gd(n) ! f0; 1gbd(n)=2c, where n is thelargest integer such that m �Pbd(n)=2ci=1 d�1(d(n) + 1� i). Thus, d0(m) = d(n),where n is as above; that is, we have h0s : f0; 1gd0(jsj) ! f0; 1gbd0(jsj)=2c, withd0(jsj) = d(n). Note that, for d(n) = �(n) (as in Construction 6.4.20), itholds that d0(O(n2)) � d(n) and d0(m) =
(pm) follows. More generally, iffor some polynomial p it holds that p(d(n)) � n � d(n) (for all n's) then forsome polynomial p0 it holds that p0(d0(m)) � m � d0(m) (for all m's), becaused0(d(n)�n) � d(n). We call such a function su�ciently-growing; that is, d : N!Nis su�ciently-growing if there exists a polynomial p so that for every n it holdsthat p(d(n)) � n. (E.g., for every �xed "; "0 > 0, the function d(n) = "0n" issu�ciently-growing.)Proposition 6.4.23 Suppose that fhsgs2f0;1g� is a (d; d � 1)-UOWHF, whered : N!N is onto, non-decreasing and su�ciently-growing. Then, for somesu�ciently-growing function d0 : N!N , Construction 6.4.22 is a (d0; bd0=2c)-UOWHF.Proof Sketch: Intuitively, a designated collision under h0s1;:::;sd=2 yields adesignated collision under one of the hsi 's. That is, let x0 def= x and xi hsi(xi�1) for i = 1; :::; bd(n)=2c. Then if given x and s = (s1; :::; sd=2), onecan �nd an x0 6= x such that h0s(x) = h0s(x0), then there exists an i so thatxi�1 6= x0i�1 and xi = hsi(xi�1) = hsi(x0i�1) = x0i, where the x0j 's are de�nedanalogously to the xj 's. Thus, we obtain a designated collision under hsi . Westress that, since the fact that h0s does not shrink its input too much, the lengthof si is polynomially related to the length of s (and thus forming collisions withrespect to hsi by using the collision-�nder for h0s yields a contradiction).The actual proof uses the hypothesis that it is hard to form designated col-lisions when one is also given the coins used in the generation of the preimage(and not merely the preimage itself). In particular, we construct an algorithmthat forms designated collision under one of the hsi 's, when given not only xi�1but rather also x0 (which yields xi�1 as above). The following details are quitetedious, and merely provide an implementation of the above idea.As stated, the proof is by a reducibility argument. We are given a prob-abilistic polynomial-time algorithm A0 that forms designated collisions underfh0sg, with respect to preimages produced by a deterministic polynomial-timealgorithm A00 that maps p0(n)-bit strings to n-bit strings. We construct al-gorithms A0 and A such that A forms designated collisions under fhsg withrespect to preimages produced by algorithm A0, which maps p(n)-bit strings ton-bit strings, for a suitable polynomial p. (Speci�cally, p : N!N is 1-1 and

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

552 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONp(n) � p0(d�1(2d(n))) + n + n � d�1(2d(n)), where the factor of 2 appearing inthe expression is due to the shrinking factor of h0s.)We start with the description of A0; that is, the algorithm that generatespreimages of fhsg. Intuitively, A0 selects a random j, uses A00 to obtain apreimage x0 of fh0sg, generates random s0; :::; sj�1, and outputs a preimagexj�1 of fhsjg, computed by xi = hsi(xi�1) for i = 1; :::; j � 1. (Algorithm Awill be given xj�1 and a random hsj and will try to form a collision with xj�1under hsj .)Detailed description of A0: Recall that p0 is a polynomial, d(n) � n andd�1(n) = poly(n). Let p(n) def= n + n � q(n) + p0(q(n)), where q(n) def=d�1(2d(n)). On input r 2 f0; 1gp(n), algorithm A0 proceeds as follows:(1) Write r = r1r2r3 so that jr1j = n and jr3j = p0(q(n)).Using r1, determine m in fn + 1; :::; n � q(n)g and j 2 f1; :::; q(n)g such thatboth m and j are almost uniformly distributed in the corresponding sets.(2) Compute the largest integer n0 such that m �Pbd(n0)=2ci=1 d�1(d(n0) + 1� i).(3) If d�1(d(n0) + 1� j) 6= n then output the d(n)-bit long su�x of r3.(Comment: the output in this case is immaterial to our proof.)(4) Otherwise (i.e., n = d�1(d(n0) + 1� j), which is the case we care about), do:(4.1) Let s0s1 � � � sj�1 be a pre�x of r2 such thatjs0j = m�Pbd(n0)=2ci=1 d�1(d(n0) + 1� i),and jsij = d�1(d(n0) + 1� i), for i = 1; :::; j � 1.(4.2) Let x0 A00(r0), where r0 is the p0(d�1(d(n0)))-bit long su�x of r3.(Comment: x0 2 f0; 1gd(n0).)(4.3) For i = 1; :::; j � 1, compute xi hsi (xi�1).Output xj�1 2 f0; 1gd(n). (Note that d(n) = d(n0)� (j � 1).)As stated above, we only care about the case in which Step (4) is applied.This case occurs with noticeable probability, and the description of thefollowing algorithm A refers to it.Algorithm A will be given xj�1 as produced above (along with (or actuallyonly) the coins used in its generation) as well as a random hsj and will try toform a collision with xj�1 under hsj . On input s 2 f0; 1gn (viewed as sj) andthe coins given to A0, algorithm A operates as follows. First, A selects j ands0; s1; :::; sj�1 exactly as A0 does. Next, A tries to obtain a collision under hsby invoking A0(r0; s0), where r0 is the sequence of coins that A0 handed to A00and s0 = (s0; s1; :::; sj�1; s; sj+1; :::; sd(n)=2), where sj+1; :::; sd(n)=2 are uniformlyselected by A. Finally, A outputs hsj�1 (� � � (hs1(A0(r0; s0)) � � �).Detailed description of A: On input s 2 f0; 1gn and r 2 f0; 1gp(n), algo-rithm A proceeds as follows.(1{2) Using r, determine m, j and n0 exactly as done by A0.(3) If d�1(d(n0) + 1� j) 6= n then abort.(4) Otherwise (i.e., n = d�1(d(n0) + 1� j)), do:(4.1) Determine s0; s1; :::; sj�1 and r0 exactly as A0 does (at its Step (4)).(4.2) Uniformly select sj+1; :::; sbd(n0)=2c such that si 2 f0; 1gd�1(d(n0)+1�i),

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 553and set s0 = (s0; s1; :::; sj�1; s; sj+1; :::; sbd(n0)=2c).(4.3) Invoke A0 on input (s0; r0), and obtain x00 A0(s0; r0).(Comment: x00 2 f0; 1gd(n0).)(4.4) For i = 1; :::; j � 1, compute x0i hsi(x0i�1).Output x0j�1 2 f0; 1gd(n).Clearly, if algorithms A0 and A00 run in polynomial-time then so do A and A0(and if p0 is a polynomial then so is p). We now lower bound the probability thatA succeeds to form designated collisions under fhsg, with respect to preimagesproduced by A0. We start from the contradiction hypothesis by which thecorresponding probability for A0 (w.r.t A00) is non-negligible.Let use denote by "0(m) the success probability of A0 on uniformly distributedinput (s0; r0) 2 f0; 1gm � f0; 1gp0(m). Let n0 be the largest integer so that m �Pbd(n0)=2ci=1 d�1(d(n0) + 1� i). Then, there exists a j 2 f1; :::; d(n0)g so that withprobability at least "0(m)=d0(n0) on input (s0; r0), where s0 = s0; s1; :::; sbd(n0)=2cas above, A0 outputs an x0 6= x def= A00(r0) such that hsj�1 (� � � (hs1(x0) � � �) 6=hsj�1 (� � � (hs1(x) � � �) and hsj (� � � (hs1(x0) � � �) = hsj (� � � (hs1(x) � � �). Fixing thism, j and n0, let n = d�1(d(n0) + 1� j), and consider what happens when A isinvoked on uniformly distributed (s; r) 2 f0; 1gn � f0; 1gp(n). With probabilityat least �(n) def= 1=(nq(n))2 over the possible r's, the values of m and j aredetermined to equal the above. Conditioned on this case, A0 is invoked onuniformly distributed input (s0; r0) 2 f0; 1gm � f0; 1gp0(m), and so a collisionat the jth hashing function occurs with probability at least "0(m)=d0(n0). Notethat m = poly(n), �(n) � 1=poly(n) and d0(n0) = poly(n). This implies that Asucceeds with probability at least "(n) def= �(n) � "0(m)d0(n0) = "0(poly(n))poly(n) , with respectto preimages produced by A0. Thus, if "0 is non-negligible then so is ", and theproposition follows.Step III: Constructing (length-unrestricted) quasi-UOWHFs that shrinktheir input by a factor of two. The third step on our way consists of us-ing any (d; d=2)-UOWHF in order to construct \quasi UOWHFs" that are ap-plicable to any input length but shrink each input to half its length (ratherthan to a �xed length that only depends on the function description). The re-sulting construct does not �t De�nition 6.4.19, because the function's outputlength depends on the function's input length, but the function can be appliedto any input length (rather than only to a single length determined by the func-tion's description). Yet, the resulting construct yields a (d0; d0=2)-UOWHF forany polynomially-bounded function d0 (e.g., d0(n) = n2), whereas in Construc-tion 6.4.22 the function d0 is �xed and satis�es d0(n) � n. The constructionitself amounts to parsing the input into blocks and applying the same function(taken from a (d; d=2)-UOWHF) to each block.Construction 6.4.24 (a (d0; d0=2)-UOWHF for any d0): Let fhs : f0; 1gd(jsj)!f0; 1gbd(jsj)=2cgs2f0;1g� , where d : N!N is onto and non-decreasing. Then, for

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

554 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONevery s 2 f0; 1gn and every x 2 f0; 1g�, we de�neh0s(x) def= hs(x1) � � �hs(xt10d(n)�jxtj�1)where x = x1 � � �xt, 0 � jxtj < d(n) and jxij = d(n) for i = 1; :::; t � 1. Theindex selection algorithm of fh0sg is identical to the one of fhsg.Clearly, jh0s(x)j = d(jxj + 1)=d(n)e � bd(n)=2c, which is approximately jxj=2 (pro-vided jxj � d(n)). Furthermore, Construction 6.4.24 satis�es Conditions 1 and 2of De�nition 6.4.18, provided that fhsg satis�es the corresponding conditions ofDe�nition 6.4.19. We thus focus of the hardness to form designated collisions(i.e., Condition 3).Proposition 6.4.25 Suppose that fhsgs2f0;1g� is a (d; d=2)-UOWHF, whered : N!N is onto, non-decreasing and su�ciently-growing. Then Construc-tion 6.4.22 satis�es Condition 3 of De�nition 6.4.18.Proof Sketch: Intuitively, a designated collision under h0s yields a designatedcollision under hs. That is, consider the parsing of each string into blocks oflength d(n), as in the above construction. Then if given x = x1 � � �xt and s, onecan �nd an x0 = x01 � � �x0t0 6= x so that h0s(x) = h0s(x0), then t0 = t and thereexists an i such that xi 6= x0i and hs(xi) = hs(x0i).The actual proof is by a reducibility argument. Given a probabilistic polynomial-time algorithm A0 that forms designated collisions under fh0sg, with respect topreimages produced by a polynomial-time algorithmA00, we construct algorithmsA0 and A such that A forms designated collisions under fhsg with respect topreimages produced by algorithm A0. Speci�cally, algorithm A0 invokes A00,and uses extra randomness (supplied in its input) to uniformly select one of thed(n)-bit long blocks in the standard parsing of the output of A00. That is, therandom-tape used by algorithm A0 has the form (r0; i), and A0 outputs the ithblock in the parsing of the string A00(r0). Algorithm A is obtained analogously.That is, given s 2 f0; 1gn and the coins r = (r0; i) used by A0, algorithm Ainvokes A0 on input s and r0, obtains the output x0, and outputs the ith blockin the standard parsing of x0.Note that whenever we have a collision under h0s (i.e., a pair x 6= x0 suchthat h0s(x) 6= h0s(x0)), we obtain at least one collision under the correspondinghs (i.e., for some i, the ith blocks of x 6= x0 di�er, and yet both are mapped byhs to the same image). Thus, if algorithm A0 succeeds (in forming designatedcollisions w.r.t fh0sg) with probability "0(n) then algorithm A succeeds (in form-ing designated collisions w.r.t fhsg) with probability at least "0(n)=t(n), wheret(n) is a bound on the running-time of A0 (which also upper-bounds the lengthof the output of A0, and so 1=t(n) is a lower bound on the probability that thecolliding strings di�er at a certain uniformly selected block). The propositionfollows.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 555Step IV: Obtaining full-edged UOWHFs. The last step on our wayconsists of using any quasi-UOWHFs as constructed (in Step III) above to obtainfull-edged UOWHFs. That is, we use quasi-UOWHFs that are applicable toany input length but shrink each input to half its length (rather than to a �xedlength that only depends on the function description). The resulted constructis a UOWHF (as de�ned in De�nition 6.4.18). The construction is obtained bycomposing a sequence of di�erent functions (each taken from the same quasi-UOWHF); that is, the following construction is analogous to Construction 6.4.22.Construction 6.4.26 (a UOWHF): Let fhs : f0; 1g� ! f0; 1g�gs2f0;1g�, suchthat jhs(x)j = jxj=2, for every x 2 f0; 1g2i�jsj where i 2 N . Then, for everys1; :::; sn 2 f0; 1gn, every t 2 N and x 2 f0; 1g2t�n, we de�neh0s1;:::;sn(x) def= (t; hst(� � �hs2(hs1(x)) � � �))That is, we let x0 def= x, and xi hsi(xi�1), for i = 1; :::; t. Strings x of lengththat is not of the form 2t � n are padded into such strings in a standard manner.We refer to an index selection algorithm that, on input 1m, determinesn = bpmc, uniformly selects s1; :::; sn 2 f0; 1gn and s0 2 f0; 1gm�n2, andlets h0s0;s1;:::;sn def= h0s1;:::;sn.Observe that h0s0;s1;:::;sn(x) = h0s0;s1;:::;sn(x0) implies that dlog2(jxj=n)e = dlog2(jx0j=n)e.Note that h0s0;s1;:::;sn : f0; 1g� ! f0; 1gn+log2 n, and that m = js0; s1; :::; snj <(n+ 1)2.Proposition 6.4.27 Suppose that fhsgs2f0;1g� satis�es the conditions of De�-nition 6.4.18, except that it maps arbitrary input strings to outputs having halfthe length (rather than a length determined by jsj). Then Construction 6.4.26constitutes a collection of UOWHFs.The proof of Proposition 6.4.27 is omitted because it is almost identical to theproof of Proposition 6.4.23.Conclusion: Combining the above four steps, we obtain a construction of (full-edged) UOWHFs (based on any one-way permutation). That is, combiningProposition 6.4.21, 6.4.23, 6.4.25 and 6.4.27, we obtain:29Theorem 6.4.28 If one-way permutations exist then universal one-way hashfunctions exist.Note that the only barrier towards constructing UOWHF based on arbitraryone-way functions is Proposition 6.4.21, which refers to one-way permutations.29 Actually, there is a minor gap between Constructions 6.4.24 and 6.4.26. In the formerwe constructed functions that hash every x into a value of length d(jxj+ 1)=d(n)e � bd(n)=2c,whereas in the latter we used functions that hash every x 2 f0; 1g2i�n into a value of lengthi � n.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

556 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONThus, if we wish to construct UOWHF based on any one-way function thenwe need to present an alternative construction of a (d; d� 1)-UOWHF (i.e., analternative to Construction 6.4.20, which fails in case f is 2-to-1).30 Such aconstruction is actually known, and so the following result is known to hold (butits proof it too complex to �t in this work):Theorem 6.4.29 Universal one-way hash functions exist if and only if one-wayfunctions exist.We stress that the di�cult direction is the one referred to above (i.e., fromone-way functions to UOWHF collections). For the much easier converse, seeExercise 16.6.4.3.3 One-time signature schemes based on UOWHFUsing universal one-way hash functions, we present an alternative construc-tion of one-time signature schemes based on length-restricted one-time signatureschemes. Speci�cally, we replace Construction 6.2.6 in which collision-free hash-ing functions were used by the following construction in which universal one-wayhash functions are used instead. The di�erence between the two constructionsis that here the (description of the) hashing function is not a part of the signingand veri�cation keys, but is rather selected on-the-y by the signing algorithm(and appears as part of the signature). Furthermore, the description of the hashfunction is being authenticated (by the signer) together with the hash value. Itfollows that the forging adversary, which is unable to break the length-restrictedone-time signature scheme, must form a designated collision (rather than anarbitrary one). However, the latter is infeasible too (by virtue of the UOWHFcollection in use). We comment that the same (new) construction is applica-ble to length-restricted signature schemes (rather than to one-time ones): westress that, in the latter case, a new hashing function is selected at randomeach time the signing algorithm is applied. In fact, we present the more generalconstruction.Construction 6.4.30 (the hash and sign paradigm, revisited): Let `; `0 : N!Nsuch that `(n) = `0(n) + n. Let (G;S; V) be an `-restricted signature scheme asin De�nition 6.2.1, and fhr : f0; 1g� ! f0; 1g`0(jrj)gr2f0;1g� be a collection offunctions with an indexing algorithm I (as in De�nition 6.4.18). We constructa general signature scheme, (G0; S0; V 0), with G0 identical to G, as follows:Signing with S0: On input a signing-key s 2 G01(1n) and a document � 2 f0; 1g�,algorithm S0 proceeds in two steps:1. Algorithm S0 invokes I to obtain �1 I(1n).2. Algorithm S0 invokes S to produce �2 Ss(�1; h�1(�)).30 For example, if f(�; x0) = (0; f 0(x0)), for � 2 f0; 1g, then forming designated collisionsunder Construction 6.4.20 is easy: Given (0; x0), one outputs (1; x0), and indeed a collision isformed (already under f).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 557Algorithm S0 outputs the signature (�1; �2).Veri�cation with V 0: On input a verifying-key v 2 G02(1n), a document � 2f0; 1g�, and a alleged signature (�1; �2), algorithm V 0 invokes V , and out-puts Vv((�1; h�1(�)); �2).Recall that secure `-restricted one-time signature schemes exist for any poly-nomial `, provided that one-way function exist. Thus, the fact that Construc-tion 6.4.30 requires `(n) > n is not a problem. In applying Construction 6.4.30,one should �rst choose a family of UOWHFs fhr : f0; 1g� ! f0; 1g`0(jrj)gr2f0;1g� ,then determine `(n) = `0(n)+n, and use a corresponding secure `-restricted one-time signature scheme.Let us pause to compare Construction 6.2.6 with Construction 6.4.30. Re-call that in Construction 6.2.6 the function description �1 I(1n) is produced(and �xed as part of both keys) by the key-generation algorithm. Thus, thefunction description �1 is trivially authenticated (i.e., by merely being part ofthe veri�cation-key). Consequently, in Construction 6.2.6, the S0-signature (of�) equals Ss(h�1(�)). In contrast, in Construction 6.4.30 a fresh new (functiondescription) �1 is selected per each signature, and thus �1 needs to be authen-ticated. Hence, the S0-signature equals the pair (�1; Ss(�1; h�1(�))). Since wewant to be able to use (length-restricted) one-time signatures, we let the signingalgorithm authenticate both �1 and h�1(�) via a single signature. (Alterna-tively, we could have used two instances of the signature scheme (G;S; V), onefor signing the function description �1, and the other for signing the hash valueh�1(�).)Proposition 6.4.31 Suppose that (G;S; V) is a secure `-restricted signaturescheme and that fhr : f0; 1g� ! f0; 1g`(jrj)�jrjgr2f0;1g� is a collection of UOWHFs.Then (G0; S0; V 0), as de�ned in Construction 6.4.30, is a secure (full-edged) sig-nature scheme. Furthermore, if (G;S; V) is only a secure `-restricted one-timesignature scheme then (G0; S0; V 0) is a secure one-time signature scheme.Proof Sketch: The proof follows the underlying principles of the proof ofProposition 6.2.7. That is, forgery with respect to (G0; S0; V 0) yields eitherforgery with respect to (G;S; V) or a collision under the hash function, where inthe latter case a designated collision is formed (in contradiction to the hypothesisregarding the UOWHF). For the furthermore-part, the observation underlyingthe proof of Proposition 6.4.7 still holds (i.e., the number of queries made bythe forger constructed for (G;S; V) equals the number of queries made by theforger assumed (towards the contradiction) for (G0; S0; V 0)). Details follow.Given an adversary A0 attacking the complex scheme (G0; S0; V 0), we con-struct an adversary A that attacks the `-restricted scheme, (G;S; V). The ad-versary A uses I (the indexing algorithm of the UOWHF collection) and itsoracle Ss in order to emulate the oracle S0s for A0. This is done in a straightfor-ward manner; that is, algorithm A emulates S0s by using the oracle Ss (exactlyas S0s actually does). Speci�cally, to answer a query q, algorithm A generatesa1 I(1n), forwards (a1; ha1(q)) to its own oracle (i.e., Ss), and answers with

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

558 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION(a1; a2), where a2 = Ss(a1; ha1(q)). (We stress that A issues a single Ss-queryper each S0s-query made by A0.) When A0 outputs a document-signature pairrelative to the complex scheme (G0; S0; V 0), algorithm A tries to use this pairin order to form a document-signature pair relative to the `-restricted scheme,(G;S; V). That is, if A0 outputs the document-signature pair (�; �), where� = (�1; �2), then A will output the document-signature pair (�2; �2), where�2 def= (�1; h�1(�)).Assume that with (non-negligible) probability "0(n), the (probabilistic polynomial-time) algorithm A0 succeeds in existentially forging relative to the complexscheme (G0; S0; V 0). Let (�(i); �(i)) denote the ith query and answer pair madeby A0, and (�; �) be the forged document-signature pair that A0 outputs (in caseof success), where �(i) = (�(i)1 ; �(i)2) and � = (�1; �2). We consider the followingtwo cases regarding the forging event:Case 1: (�1; h�1(�)) 6= (�(i)1 ; h�(i)1 (�(i))) for all i's. (That is, the Ss-signed valuein the forged signature (i.e., the value (�1; h�1(�))) is di�erent from allqueries made to Ss.) In this case, the document-signature pair ((�1; h�1(�)); �2)constitutes a success in existential forgery relative to the `-restricted scheme(G;S; V).Case 2: (�1; h�1(�)) = (�(i)1 ; h�(i)1 (�(i))) for some i. (That is, the Ss-signed valueused in the forged signature equals the ith query made to Ss, although� 6= �(i).) Thus, �1 = �(i)1 and h�1(�) = h�(i)1 (�(i)), although � 6= �(i). Inthis case, the pair (�; �(i)) forms a designated collision under h�(i)1 (andwe do not obtain success in existential forgery relative to the `-restrictedscheme). We stress that A0 selects �(i) before it is given the description ofthe function h�(i)1 , and thus its ability to later produce � 6= �(i) such thath�1(�) = h�(i)1 (�(i)) yields a violation of the UOWHF property.Thus, if Case 1 occurs with probability at least "0(n)=2 then A succeeds inits attack on (G;S; V) with probability at least "0(n)=2, which contradicts thesecurity of the `-restricted scheme (G;S; V). On the other hand, if Case 2 occurswith probability at least "0(n)=2 then we derive a contradiction to the di�cultyof forming designated collision with respect to fhrg. Details regarding Case 2follow.We start with a sketch of the construction of an algorithm that attemptsto form designated collisions under a randomly selected hash function. Looselyspeaking, we construct an algorithm B0 that tries to form designated collisionsby emulating the attack of A0 on an random instance of (G0; S0; V 0) that B0selects by itself. Thus, B0 can easily answer any signing-query referred to it byA0, but in one of these queries (the index of which is selected at random by B0)algorithm B0 will use a hash function given to it from the outside (rather thangenerating such a function at random by itself). In case A0 forges a signaturewhile using this speci�c function-value pair (as in Case 2), algorithm B0 obtainsand outputs a designated collision.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.4. CONSTRUCTIONS OF SIGNATURE SCHEMES 559We now turn to the actual construction of algorithm B0 (which attempts toform designated collisions under a randomly selected hash function). Recall thatsuch an algorithm operates in three stages (see discussion in Section 6.4.3.1): �rstthe algorithm selects a preimage x0, next it is given a description of a functionh, and �nally it is required to output x 6= x0 such that h(x) = h(x0). Westress that the third stage in the attack is also given the random coins used forproducing the preimage x0 (at the �rst stage). Indeed, on input 1n, algorithmB0 proceeds in three stages:Stage 1: Algorithm B0 selects uniformly i 2 f1; :::; t(n)g, where t(n) bounds therunning-time of A0(G01(1n)) (and thus the number of queries it makes).Next B0 selects (s; v) G0(1n), and emulate the attack of A0(v) on S0s,while answering the queries of S0s as follows. All queries except the ith oneare emulated in the straightforward manner (i.e., by executing the programof S0s as stated). That is, for j 6= i, the jth query, denoted �(j), is answeredby producing �(j)1 I(1n), computing �(j)2 Ss(�(j)1 ; h�(j)1 (�(j))) (usingthe knowledge of s), and answering with the pair (�(j)1 ; �(j)2). The ith queryof A0, denoted �(i), will be used as the designated preimage. Once �(i) isissued (by A0), algorithm B0 completes its �rst stage (without answeringthis query), and the rest of the emulation of A0 will be conducted by thethird stage of B0.Stage 2: At this point (i.e., after B0 has selected the designated preimage �(i)),B0 obtains a description of a random hashing function hr (thus completingits second operation stage). That is, this stage consists of B0 being givenr I(1n).Stage 3: Next, algorithm B0 answers the ith query (i.e., �(i)) by applying Ss tothe pair (r; hr(�(i))). Subsequent queries are emulated in the straight-forward manner (as in Stage 1). When A0 halts, B0 checks whetherA0 has output a valid document-signature pair (�; �) as in Case 2 (i.e.,h�1(�) = h�1(�(j)) for some j), and whether the collision formed is indeedon the ith query (i.e., hr(�) = hr(�(i))). When this happens, B0 outputs�, and doing so it succeeded in forming a designated collision (with �(i)under hr).Now, if Case 2 occurs with probability at least "0(n)2 (and A0 makes at most t(n)queries) then B0 succeeded in forming a designated collision with probability atleast 1t(n) � "0(n)2 , because the actions of A0 are oblivious of the random value ofi. This contradicts the hypothesis that fhrg is UOWHF.The furthermore part of the proposition follows by observing that if theforging algorithm A0 makes at most one query then the same holds for thealgorithm A constructed above. Thus, if (G0; S0; V 0) can be broken via a single-message attack then either (G;S; V) can be broken via a single-message attackor one can form designated collisions (w.r.t fhrg). In both cases, we reach acontradiction.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

560 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONConclusion: Combining the furthermore-part of Proposition 6.4.31, Corol-lary 6.4.6, and the fact that UOWHF collections imply one-way functions (seeExercise 16), we obtain:Theorem 6.4.32 If there exist universal one-way hash functions then secureone-time signature schemes exist too.6.4.3.4 Conclusions and commentsCombining Theorems 6.4.28, 6.4.32 and 6.4.9, we obtain:Corollary 6.4.33 If one-way permutations exists then there exist secure signa-ture schemes.Like Corollary 6.4.10, Corollary 6.4.33 asserts the existence of secure (public-key) signature schemes, based on an assumption that does not mention trap-doors. Furthermore, the assumption made in Corollary 6.4.33 seems weakerthan the one made in Corollary 6.4.10. We can further weaker the assump-tion by using Theorem 6.4.29 (which was stated without a proof) rather thanTheorem 6.4.28. Speci�cally, combining Theorems 6.4.29, 6.4.32 and 6.4.9, weestablish Theorem 6.4.1. That is, secure signature schemes exist if and onlyif one-way functions exist. Furthermore, as in the case of MACs (see Theo-rem 6.3.8), the resulting signature schemes have signatures of �xed length.Comment: the hash-and-sign paradigm, revisited. We wish to high-light the revised version of the hash-and-sign paradigm that underlies Construc-tion 6.4.30. Similar to the original instantiation of the hash-and-sign paradigm(i.e., Construction 6.2.6), Construction 6.4.30 is useful in practice. We warnthat using the latter construction requires verifying that fhrg is a UOWHF(rather than collision-free). The advantage of Construction 6.4.30 over Con-struction 6.2.6 is that the former relies on a seemingly weaker construct; that is,hardness of forming designated collisions (as in UOWHF) is a seemingly weakercondition than hardness of forming any collision (as in collision-free hashing).On the other hand, Construction 6.2.6 is simpler and more e�cient (e.g., oneneed not generate a new hashing function per each signature).6.5 * Additional PropertiesWe briey discuss several properties of interest that some signature schemesenjoy. We �rst discuss properties that seem unrelated to the original purpose ofsignature schemes, but are useful towards utilizing signature scheme as a buildingblock towards constructing other primitives (e.g., see Section 5.4.4.4). These(related) properties are having unique valid signatures and being super-secure,where the latter term indicates the infeasibility of �nding a di�erent signatureeven to a document for which a signature was obtained during the attack. Wenext turn to properties that o�er some advantages in the originally-intended

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 561applications of signature schemes. Speci�cally, we consider properties that allowto speed-up response-time in some settings (see Sections 6.5.3 and 6.5.4), and aproperty supporting legitimate revoking of forged signatures (see Section 6.5.5).6.5.1 Unique signaturesLoosely speaking, we say that a signature scheme (G;S; V) (either a private-keyor a public-key one) has unique signatures if for every possible veri�cation-key vand every document � there is a unique � such that Vv(�; �) = 1.Note that this property is related, but not equivalent, to the question ofwhether or not the signing algorithm is deterministic (which is considered inExercise 1). Indeed, if the signing algorithm is deterministic then, for every keypair (s; v) and document �, the result of applying Ss to � is unique (and indeedVv(�; Ss(�)) = 1). Still, this does not mean that there is no other � (whichis never produced by applying Ss to �) such that Vv(�; �) = 1. On the otherhand, the unique signature property may hold even in case the signing algorithmis randomized, but (as mentioned above) this randomization can be eliminatedanyhow.Can secure signature schemes have unique signatures? The answeris de�nitely a�rmative, and in fact we have seen several such schemes in theprevious sections. Speci�cally, all private-key signature schemes presented inSection 6.3 have unique signatures. Furthermore, every secure private-key sig-nature scheme can be transformed into one having unique signatures (e.g., bycombining deterministic signing as in Exercise 1 with canonical veri�cation asin Exercise 2). Turning to public-key signature schemes, we observe that if theone-way function f used in Construction 6.4.4 is 1-1, then the resulting securelength-restricted one-time (public-key) signature scheme has unique signatures(because each f -image has a unique preimage). In addition, Construction 6.2.6(i.e., the basic hash-and-sign paradigm) preserves the unique signature property.Let use summarize all these observations.Theorem 6.5.1 (secure schemes with unique signatures):1. Assuming the existence of one-way functions, there exist secure messageauthentication schemes having the unique signature property.2. Assuming the existence of 1-1 one-way functions, there exist secure length-restricted one-time (public-key) signature schemes having the unique sig-nature property.3. Assuming the existence of 1-1 one-way functions and collision-free hash-ing collections, there exist secure one-time (public-key) signature schemeshaving the unique signature property.Still, this leaves open the question of whether or not there exist secure (full-edged) signature schemes having the unique signature property.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

562 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION6.5.2 Super-secure signature schemesIn case the signature scheme does not posses the unique signature property,it makes sense to ask whether given a message-signature pair it is feasible toproduce a di�erent signature to the same message. More generally, we mayask whether it is feasible for a chosen message attack to produce a di�erentsignature to any of the messages to which it has obtained signatures. Suchability may be of concern in some applications (but, indeed, not in the mostnatural applications). Combining the new concern with the standard notion ofsecurity, we derive the following notion, which we call super-security. A signaturescheme is called super-secure if it is infeasible for a chosen message attack toproduce a valid message-signature pair that is di�erent from all query-answerpairs obtained during the attack, regardless of whether or not the message usedin the new pair equals one of the previous queries. (Recall that ordinary securityonly requires the infeasibility of producing a valid message-signature pair suchthat the message part is di�erent from all queries made during the attack.)Do super-secure signature schemes exist? Indeed, every secure signaturescheme that has unique signatures is super-secure, but the question is whethersuper-security may hold for a signature scheme that does not posses the uniquesignature property. We answer this question a�rmatively.Theorem 6.5.2 (super-secure signature schemes): Assuming the existence ofone-way functions, there exist super-secure (public-key) signature schemes.In other words, super-secure signature schemes exist if and only if secure signa-ture schemes exist. We comment that the signature scheme constructed in thefollowing proof does not have the unique signature property.Proof: Starting from (Part 2 of) Theorem 6.5.1, we can use any 1-1 one-wayfunction to obtain super-secure length-restricted one-time signature schemes.However, wishing to use arbitrary one-way functions, we will �rst show that uni-versal one-way hashing functions can be used (instead of 1-1 one-way functions)to obtain super-secure length-restricted one-time signature schemes. Next, wewill show that super-security is preserved by two transformations presented inSection 6.4: speci�cally, the transformation of length-restricted one-time signa-ture schemes into one-time signature schemes (speci�cally, Construction 6.4.30),and the transformation of the latter to (full-edged) signature schemes (i.e.,Construction 6.4.16). Applying these transformations (to the �rst scheme),we obtained the desired super-secure signature scheme. Recall that Construc-tion 6.4.30 also uses universal one-way hashing functions, but the latter can beconstructed using any one-way function (cf. Theorem 6.4.29).3131 We comment that a simpler proof su�ces in case we are willing to use a one-way permu-tation (rather than an arbitrary one-way function). In this case, we can start from (Part 2of) Theorem 6.5.1 (rather than prove Claim 6.5.2.1), and use Theorem 6.4.28 (rather thanTheorem 6.4.29, which has a more complicated proof).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 563Claim 6.5.2.1: If there exist universal one-way hashing functions then, for everypolynomially-bounded ` :N! N , there exist super-secure `-restricted one-timesignature schemes.Proof sketch: We modify Construction 6.4.4 by using universal one-way hashingfunctions (UOWHFs) instead of one-way functions. Speci�cally, for each preim-age placed in the signing-key, we select at random and independently a UOWHF,and place its description both in the signing and veri�cation keys. That is,on input 1n, we uniformly select s01; s11; ::::; s0̀(n); s1̀(n) 2 f0; 1gn and UOWHFsh01; h11; ::::; h0̀(n); h1̀(n), and compute vji = hji (sji), for i = 1; :::; `(n) and j = 0; 1.We let s = ((s01; s11); ::::; (s0̀(n); s1̀(n))), h = ((h01; h11); ::::; (h0̀(n); h1̀(n))), and v =((v01 ; v11); ::::; (v0̀(n); v1̀(n))), and output the key-pair (s; v) = ((h; s); (h; v)) (or,actually, we may set (s; v) = (s; (h; v))). Signing and veri�cation are modi�edaccordingly; that is, signing �1 � � ��` amounts to handing (s�11 ; :::; s�``), whereas(�1; :::; �`) is accepted as a valid signature of �1 � � ��` (w.r.t the veri�cation-keyv) if and only of h�ii (�i) = v�ii for every i. In order to show that the resultingscheme is super-secure under a chosen one-message attack, we adapt the proof ofProposition 6.4.5. Speci�cally, �xing such an attacker A, we consider the eventin which A violated the super-security of the scheme. There are two cases toconsider:1. The valid signature formed by A is to the same document for which Ahas obtained a di�erent signature (via its single query). In this case, forat least one of the UOWHFs contained in the veri�cation-key, we obtaina preimage that is di�erent from the one contained in the signing-key.Adapting the construction presented in the proof of Proposition 6.4.5, weobtain (in this case) ability to form designated collisions (in contradictionto the UOWHF property). We stress that the preimages contained in thesigning-key are selected independently of the description of the UOWHFs(because both are selected independently by the key-generation process).In fact, we obtain a designated collision for a uniformly selected preimage.2. The valid signature formed by A is to a document that is di�erent fromthe one for which A has obtained a signature (via its single query). Inthis case, the proof of Proposition 6.4.5 yields ability to invert a randomlyselected UOWHF (on a randomly selected image), which contradicts theUOWHF property (as shown in Exercise 16).Thus, in both cases we derive a contradiction, and the claim follows. 2Claim 6.5.2.2: Construction 6.4.30, when applied to a super-secure length-restrictedsignature scheme yields a super-secure signature scheme. In case the length-restricted scheme is only super-secure under a chosen one-message attack, thesame holds for the the resulting (length-unrestricted) scheme.Proof sketch: We follow the proof of Proposition 6.4.31, and use the same con-struction of a forger for the length-restricted scheme (based on the forger for the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

564 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONcomplex scheme). Furthermore, we consider the two forgery cases analyzed inthe proof of Proposition 6.4.31:32Case 1: (�1; h�1(�)) 6= (�(i)1 ; h�(i)1 (�(i))) for all i's. In this case, the analysis isexactly as in the original proof. Note that it does not matter whether ornot � 6= �(i), since in both subcases we obtain a valid signature for a newstring with respect to the length-restricted signature scheme. Thus, in thiscase, we derive a violation of the (ordinary) security of the length-restrictedscheme.Case 2: (�1; h�1(�)) = (�(i)1 ; h�(i)1 (�(i))) for some i. The case � 6= �(i) was han-dled in the original proof (by showing that it yields a designated collision(under h�(i)1 which is supposedly a UOWHF)), so here we only handle thecase � = �(i). Now, suppose that super-security of the complex schemewas violated; that is, (�1; �2) 6= (�(i)1 ; �(i)2). Then, by the case hypothesis(which implies �1 = �(i)1), it must be that �2 6= �(i)2 . This means that wederive a violation of the super-security of length-restricted scheme, because�2 is a di�erent valid Ss-signature of (�1; h�1(�)) = (�(i)1 ; h�(i)1 (�(i))).Actually, we have to consider all i's for which (�1; h�1(�)) = (�(i)1 ; h�(i)1 (�(i)))holds, and observe that violation of super-security for the complexscheme means that �2 must be di�erent from each of the correspond-ing �(i)2 's. Alternatively, we may �rst prove that, with overwhelminglyhigh probability, all �(i)1 's must be distinct.Thus, in both cases we reach a contradiction to the super-security of the length-restricted signature scheme, which establishes our claim that the general signa-ture scheme must be super-secure. We stress that, like in Proposition 6.4.31,the above proof establishes that super-security for one-time attacks is preservedtoo (because the constructed forger makes a single query per each query madeby the original forger). 2Claim 6.5.2.3: Construction 6.4.16, when applied to super-secure one-time sig-nature schemes yields super-secure signature schemes.Proof sketch: We follow the proof of Proposition 6.4.17, which actually meansfollowing the proof of Proposition 6.4.15. Speci�cally, we use almost the sameconstruction of a forger for the one-time scheme (G;S; V) (based on the forgerfor the complex scheme (G0; S0; V 0)). The only di�erence is in the last step (i.e.,32 Recall that (�; �) denotes the document-signature pair output by the original forger(i.e., for the complex scheme), whereas (�(i); �(i)) denotes the ith query-answer pair (to thatscheme). The document-signature pair that we output (as a candidate forgery w.r.t length-restricted scheme) is (�2; �2), where �2 def= (�1; h�1(�)) and � = (�1; �2). Recall that a genericvalid document-signature for the complex scheme has the form (�0; �0), where �0 = (�01; �02)satis�es Vv((�01; h�01(�0)); �02) = 1.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 565use of output), where we consider two forgery cases that are related (yet notequal) to the forgery cases analyzed in the proof of Proposition 6.4.15:331. The �rst case is when the forged signature for the complex scheme (G0; S0; V 0)contains an authentication path for the leaf that equals some authentica-tion path provided by the signing-oracle (as part of the answer to someoracle-query of the attacker). In this case, the (one-time) veri�cation-keyassociated with this leaf must be authentic (i.e., equal the one used by thesigning-oracle), and we derive violation of the super-security of the instanceof (G;S; V) associated with it. We consider three subcases (regarding theactual document authenticated via this leaf):(a) The �rst subcase is when no oracle-answer has used the instanceassociated with this leaf for signing an actual document. (This mayhappen if the instance associated with the sibling of this leaf was usedfor signing an actual document.) In this subcase, as in the proof ofProposition 6.4.15, we obtain (ordinary) forgery with respect to theinstance of (G;S; V) associated with the leaf (without making anyquery to that instance of the one-time scheme).(b) Otherwise (i.e., the instance associated with this leaf was used forsigning an actual document), the forged document-signature pair dif-fers from the query-answer pair that used the same leaf. The di�er-ence is either in the actual document or in the part of the complex-signature that corresponds to the one-time signature produced at theleaf (because, by the case hypothesis, the authentication paths areidentical). In both subcases this yields violation of the super-securityof the instance of (G;S; V) associated with that leaf. Speci�cally, inthe �rst subcase we obtain a one-time signature to a di�erent doc-ument (i.e., violation of ordinary security), whereas in the secondsubcase we obtain a di�erent one-time signature to the same docu-ment (i.e., only a violation of super-security). We stress that, in bothsubcases, the violating signature is obtained after making a singlequery to the instance of (G;S; V) associated with that leaf.2. We now turn to the second case (i.e., forgery with respect to (G0; S0; V 0)is obtained by producing an authentication path di�erent from all pathssupplied by the signing-oracle). In this case, we obtain violation of the(one-time) super-security of the scheme (G;S; V) associated with one ofthe internal nodes (speci�cally the �rst node on which the relevant pathsdi�er). The argument is similar (but not identical) to the one given in theproof of Proposition 6.4.15. Speci�cally, we consider the maximal pre�x of33 Recall that forging a signature for the general scheme requires either using an authen-tication path supplied by the (general) signing-oracle or producing an authentication pathdi�erent from all paths supplied by the (general) signing-oracle. These are the cases consid-ered below. In contrast, in the proof of Proposition 6.4.15 we only considered the \text part" ofthese paths, ignoring the question of whether or not the authenticating (one-time) signatures(provided as part of these paths) are equal.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

566 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONthe authentication path provided by the forger that equals a correspondingpre�x of an authentication path provided by the signing-oracle (as part ofits answer). The extension of this path in the complex-signature providedby the forger either uses a di�erent pair of (one-time) veri�cation-keys oruses a di�erent (one-time) signature to the same pair. In the �rst subcasewe obtain a one-time signature to a di�erent document (i.e., violation ofordinary security), whereas in the second subcase we obtain a di�erentone-time signature to the same document (i.e., only a violation of super-security). We stress that, in both subcases, the violating signature isobtained after making a single query to the instance of (G;S; V) associatedwith that internal node.Thus, in both cases we reach a contradiction to the super-security of the one-time signature scheme, which establishes our claim that the general signaturescheme must be super-secure. 2Combining the three claims (and recalling that universal one-way hashing func-tions can be constructed using any one-way function (cf. Theorem 6.4.29)), thetheorem follows.6.5.3 O�-line/on-line signingLoosely speaking, we say that a signature scheme (G;S; V) (either a private-key or a public-key one) has an o�-line/on-line signing process if signatures areproduced in two steps, where the �rst step is independent of the actual messageto be signed. That is, the computation of Ss(�) can be decoupled into two steps,performed by randomized algorithms that are denoted So� and Son respectivelysuch that Ss(�) Sons (�; So�(s)). Thus, one may prepare (or precompute)So�(s) before the document is known (i.e., \o�-line"), and produce the actualsignature (on-line) once the document � is presented (by invoking algorithmSon on input (�; So�(s))). This yields improvement in on-line response-timeto signing requests, provided that Son is signi�cantly faster than S itself. Thisimprovement is worthwhile in many natural settings in which on-line response-time is more important than o�-line processing time.We stress that So� must be randomized (because, otherwise, So�(s) can beincorporated in the signing-key). Indeed, one may view algorithm So� as anaugmentation of the key-generation algorithm that produces random extensionsof the signing-key on-the-y (i.e., after the veri�cation-key was already deter-mined). We stress that algorithm So� is invoked once per each document tobe signed, but this invocation can take place at any time (and even before thedocument to be signed is even determined). (In contrast, it may be insecure tore-use the result obtained from So� for two di�erent signatures.)Can secure signature schemes employ meaningful o�-line/on-line sign-ing algorithms? Of course, any algorithm can be vacuously decoupled into

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 567two steps, but we are only interested in meaningful decouplings in which theo�-line step takes most of the computational load. Interestingly, schemes basedon the refreshing paradigm (cf. Section 6.4.2.1) lend themselves to such a de-coupling. Speci�cally, in Construction 6.4.16, only the last step in the signingprocess depends on the actual document (and needs to be performed on-line).Furthermore, this last step amounts to applying the signing algorithm of a one-time signature scheme, which is typically much faster than all the other steps(which can be performed o�-line).346.5.4 Incremental signaturesLoosely speaking, we say that a signature scheme (G;S; V) (either a private-keyor a public-key one) has an incremental signing process if the signing processcan be sped-up when given a valid signature to a (textually) related document.The actual de�nition refers to a set of text editing operations such as deleteword and insert word (where more powerful operations like cutting a documentinto two parts and pasting two documents may be supported too). Speci�cally,we require that given a signing-key, a document-signature pair (�; �), and asequence of edit operations (i.e., specifying the operation type and its location),one may modify � into a valid signature �0 for the modi�ed document �0 intime proportional to the number of edit operations (rather than proportional toj�0j). Indeed, here time is measured in a direct-access model of computation. Ofcourse, the time saving on the \signing side" should not come at the expense ofa signi�cant increase in veri�cation time. In particular, veri�cation time shouldonly depend on the length of the �nal document (and not on the number of editoperations).35An incremental signing process is bene�cial in settings where one needs tosign many textually related documents (e.g., in simple contracts much of thetext is almost identical and the few edit changes refer to the party's speci�cdetails as well as to speci�c clauses that may be modi�ed from their standardform in order to meet the party's speci�c needs). In some cases the privacyof the edit sequence may be of concern; that is, one may require that the �nalsignature be distributed in a way that only depends on the �nal document (ratherthan depend also on documents that \contributed" signatures to the process ofgenerating the �nal signature).Can secure signature schemes employ a meaningful incremental sign-ing process? Here meaningful refers to the set of supported text-modi�cation34 For example, when using the one-time signature scheme suggested in Proposition 6.4.7,producing one-time signatures amounts to applying a collision-free hashing function and out-putting corresponding parts of the signing-key. This is all that needs to be performed in theon-line step of Construction 6.4.16. In contrast, the o�-line step (of Construction 6.4.16) callsfor n applications of a pseudorandom function, n applications of the key-generation algorithmof the one-time signature scheme, and n applications of the signing algorithm of the one-timesignature scheme.35 This rules out the naive (unsatisfactory) solution of providing a signature of the originaldocument along with a signature of the sequence of edit operations.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

568 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONoperations. The answer is a�rmative, and furthermore these schemes may evenprotect the privacy of the edit sequence. Below, we refer to edit operations thatdelete/insert �x-length bit-strings called blocks from/to a document (as well asto the cut and paste operations mentioned above).Theorem 6.5.3 (secure schemes with incremental signing process):1. Assuming the existence of one-way functions, there exist secure messageauthentication schemes having an incremental signing process that supportsblock deletion and insertion. Furthermore, the scheme uses a �xed-lengthauthentication tag.2. Assuming the existence of one-way functions, there exist secure (private-key and public-key) signature schemes having an incremental signing pro-cess that supports block deletion and insertion as well as cut and paste.Furthermore, in both parts, the resulting schemes protect the privacy of the editsequence.Part 1 is proved by using a variant of an e�cient message authentication schemethat is related to the schemes presented in Section 6.3.1. Part 2 is proved by usingan arbitrary secure (private-key or public-key) signature scheme that produces n-bit long signatures to O(n)-bit long strings, where n is the security parameter.(Indeed, the scheme need only be secure in the O(n)-restricted sense.) Thedocument is stored in the leaves of a 2{3 tree, and the signature essentiallyconsists of the tags of all internal nodes, where each internal node is tagged byapplying the basic signature scheme to the tags of its children. One importantobservation is that a 2{3 tree supports the said operations while incurring only alogarithmic (in its size) cost; that is, by modifying only the links of logarithmicmany nodes in the tree. Thus, only the tags of these nodes and their ancestorsin the tree needs to be modi�ed in order to form the correspondingly modi�edsignature. (Privacy of the edit sequence is obtained by randomizing the standardmodi�cation procedure for 2{3 trees.) By analogy to Construction 6.2.13 (andProposition 6.2.14), the incremental signature scheme is secure.6.5.5 Fail-stop signaturesLoosely speaking, a fail-stop signature scheme is a signature scheme augmentedby a (non-interactive) proof system that allows the legitimate signer to proveto anybody that a particular (document,signature)-pair was not generated byhim/her. Actually, key-generation involves interaction with an administratingentity (which publicizes the resulting veri�cation-keys), rather than just hav-ing the user publicize his/her veri�cation-key. In addition, we allow memory-dependent signing procedures (as in De�nition 6.4.13).36 The system guaranteesthe following four properties, where the �rst two properties are the standardones:36 Allowing memory-dependent signing is essential to the existence of secure fail-stop signa-ture schemes; see Exercise 22.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.5. * ADDITIONAL PROPERTIES 5691. Proper operation: In case the user is honest, the signatures produced byit will pass the veri�cation procedure (with respect to the correspondingveri�cation-key).2. Infeasibility of forgery: In case the user is honest, forgery is infeasible inthe standard sense. That is, every feasible chosen message attack may suc-ceed (to generate a valid signature to a new message) only with negligibleprobability.3. Revocation of forged signatures: In case the user is honest and forgeryis committed, the user can prove that indeed forgery has been commit-ted. That is, for every chosen message attack (even a computationally-unbounded one)37 that produces a valid signature to a new message, ex-cept for with negligible probability, the user can e�ciently convince anyone(which knows the veri�cation-key) that this valid signature was forged (i.e.,produced by somebody else).4. Infeasibility of revoking unforged signatures: It is infeasible for a user tocreate a valid signature and later convince someone that this signature wasforged (i.e., produced by somebody else). Indeed, it is possible (but notfeasible) for a user to cheat here.Furthermore, Property 3 (i.e., revocation of forged signatures) holds also incase the administrating entity participates in the forgery and even if it behavesimproperly at the key-generation stage. (In contrast, the other items hold onlyif the administrating entity behaves properly during the key-generation stage.)To summarize, fail-stop signature schemes allow to prove that forgery has oc-curred, and so o�er an information-theoretic security guarantee to the potentialsigners (yet the guarantee to potential signature-recipients is only a computa-tional one).38 In contrast, when following the standard semantics of signatureschemes, the potential signers have only a computational security guarantee andthe signature recipients have an absolute guarantee: whenever the veri�cationalgorithm accepts a signature, it is by de�nition an unrevocable one.Do secure fail-stop signature schemes exist? Assuming the intractabilityof either the Discrete Logarithm Problem or of integer factorization, the answeris a�rmative. Indeed, in fail-stop signature schemes, each document must havesuper-polynomially many possible valid signatures (with respect to the publiclyknown veri�cation-key), but only a negligible fraction of these will be (properly)produced by the legitimate signer (who knows a corresponding signing-key, whichis not uniquely determined by the veri�cation-key). Furthermore, any strategy(even an infeasible one), is unlikely to generate signatures corresponding to the37 It seems reasonable to restrict even computationally-unbounded adversaries topolynomially-many signing requests.38 The above refers to the natural convention by which a proof of forgery frees the signer ofany obligations implied by the document. In this case, when accepting a valid signature therecipient is only guaranteed that it is infeasible for the signer to revoke the signature.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

570 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONactual signing-key. On the other hand, it is infeasible given one signing-key toproduce valid signatures (i.e., w.r.t the veri�cation-key) that do not correspondto the proper signing with this signing-key.6.6 Miscellaneous6.6.1 On Using Signature SchemesOnce de�ned and constructed, signature schemes may be (and are actually)used as building blocks towards various goals that are di�erent from the originalmotivation. Still, the original motivation (i.e., reliable communication of infor-mation) is of great importance, and in this subsection we discuss several issuesregarding the use of signature schemes towards achieving it. The discussion isanalogous to a similar discussion conducted in Section 5.5.1, but the analogousissues discussed here are even more severe.Using private-key schemes { the key exchange problem. As discussedin Section 6.1, using a private-key signature scheme (i.e., a message authentica-tion scheme) requires the communicating parties to share a secret key. This keycan be generated by one party and secretly communicated to the other partyby an alternative (expensive) secure and reliable channel. Often, a preferablesolution consists of employing a key-exchange (or rather key-generation) proto-col, which is executed over the standard (unreliable) communication channel.We stress that here (unlike in Section 5.5.1) we must consider active adver-saries. Consequently, the focus should be on key-exchange protocols that aresecure against active adversaries and are called unauthenticated key-exchangeprotocols (because the messages received over the channel are not necessarilyauthentic). Such protocols are too complex to be treated in this section, andthe interested reader is referred to [36, 37, 23].Using state-dependent message authentication schemes. In many com-munication settings it is reasonable to assume that the authentication device maymaintain (and modify) a state (e.g., a counter or a clock). Furthermore, in manyapplications, a changing state (e.g., a clock) must be employed anyhow in orderto prevent reply of old messages (i.e., each message is authenticated along withits transmission time). In such cases, state-dependent schemes as discussed inSection 6.3.2 may be preferable. (See further discussion in Section 6.3.2 andanalogous discussion in Section 5.5.1.)Using signature schemes { public-key infrastructure. The standard useof (public-key) signature schemes in real-life applications requires a mechanismfor providing the veri�ers with the signer's authentic veri�cation-key. In smallsystems, one may assume that each user holds a local record of the veri�cation-keys of all other users. However, this is not realistic in large-scale systems, andso the veri�er must obtain the relevant veri�cation-key on-the-y in a \reliable"

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 571way (i.e., typically, certi�ed by some trusted authority). In most theoreticalwork, one assumes that the veri�cation-keys are posted and can be retrievedfrom a public-�le that is maintained by a trusted party (which makes sure thateach user can post only veri�cation-keys bearing its own identity). Alternatively,such trusted party may provide each user with a (signed) certi�cate stating theauthenticity of the user's veri�cation-key. In practice, maintaining such a public-�le (and/or handling such certi�cates) is a major problem, and mechanismsthat implement these abstractions are typically referred to by the generic term\public-key infrastructure" (PKI). For a discussion of the practical problemsregarding PKI deployment see, e.g., [209, Chap. 13].6.6.2 On Information Theoretic SecurityIn contrast to the bulk of our treatment, which focuses on computationally-bounded adversaries, in this section we consider computationally-unbounded ad-versaries. Speci�cally, we consider computationally-unbounded chosen messageattacks, but do bound (as usual, by an unknown polynomial) the total numberof bits in the signing-queries made by such attackers. We call a (private-key orpublic-key) signature scheme perfectly-secure (or information-theoretically secure)if even such computationally-unbounded attackers may succeed (in forgery) onlywith negligible probability.It is easy to see that no (public-key) signature scheme may be perfectly-secure, not even in a length-restricted one-time sense. The reason is that acomputationally-unbounded adversary that is given a veri�cation-key can �nd(without making any queries) a corresponding signing-key, which allows it toforge signatures to any message of its choice.In contrast, restricted types of message authentication schemes (i.e., private-key signature schemes) may be perfectly-secure. Speci�cally, given any poly-nomial bound on the total number of messages to be authenticated, one mayconstruct a corresponding state-based perfectly-secure message authenticationscheme. In fact, a variant of Construction 6.3.11 will do, where a truly randomone-time pad is used instead of the pseudorandom sequence generated using thenext-step function g. Indeed, this one-time pad will be part of the key, whichin turn must be longer than the total number of messages to be authenticated.We comment that the use of a state is essential for allowing several messages tobe authenticated (in a perfectly-secure manner). (Proofs of both statements canbe derived following the ideas underlying Exercise 8.3.)6.6.3 On Popular SchemesThe reader may note that we have avoided the presentation of several popularsignature schemes (i.e., public-key ones). As noted in Section 6.1.4.3, some ofthese schemes (e.g., RSA [247] and DSS [221]) seem to satisfy some weak (i.e.,weaker than De�nition 6.1.2) notions of security. Variants of these schemes canbe proven to be secure in the random oracle model, provided some standard

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

572 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONintractability assumptions hold (cf., e.g., [38]). However, we are not satis�edwith either of these types of results, and articulate our opinion next.On using weaker de�nitions. We distinguish between weak de�nitions thatmake clear reference to the abilities of the adversary (e.g., one-message attacks,length-restricted message attacks) and weak notions that make hidden and un-speci�ed assumptions regarding what may be bene�cial to the adversary (e.g.,\forgery of signatures for meaningful documents"). In our opinion, the fact thatthe hidden assumptions often \feel right" makes them even more dangerous,because it means that they are never seriously considered (and not even formu-lated). For example, it is often claimed that existential forgery (see Section 6.1.3)is \merely of theoretical concern", but these claims are never supported by anyevidence or by a speci�cation of the types of forgery that are of \real practicalconcern". Furthermore, it has been demonstrated that this \merely theoretical"issue yields a real security breach in some important practical applications. Still,weak de�nition of security may make sense, provided that they are clearly statedand that one realizes their limitations (and in particular their \non-generality").The interested reader is referred to [165] for a comprehensive treatment of var-ious security notions. Since the current work focuses on generally-applicablede�nitions, we chose not to discuss such weaker notions of security and not topresent schemes that can be evaluated only with respect to these weaker notions.On the Random Oracle Methodology. The Random Oracle Methodol-ogy [112, 35] consists of two steps: First, one designs an ideal system in which allparties (including the adversary) have oracle access to a truly random function,and proves this ideal system to be secure (in which case one says that the systemis secure in the random oracle model). Next, one replaces the random oracle bya \good cryptographic hashing function", providing all parties (including theadversary) with the succinct description of this function, and hopes that the re-sulting (actual) scheme is secure.39 We warn that this hope has no justi�cation.Furthermore, there exist encryption and signature schemes that are secure inthe Random Oracle Model, but replacing the random function (used in them)by any function ensemble yields a totally insecure scheme (cf., [69]).6.6.4 Historical NotesAs in case of encryption schemes, the rigorous study of the security of private-key signature schemes (i.e., message authentication schemes) has legged behindthe corresponding study of public-key signature schemes. The current section isorganized accordingly.39 Recall that, in contrast, the methodology of Section 3.6.3 (which is applied often in thecurrent chapter) refers to a situation in which the adversary does not have direct oracle accessto the random function, and does not obtain the description of the pseudorandom functionused in the latter implementation.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 5736.6.4.1 Signature SchemesThe notion of a (public-key) signature scheme was introduced by Di�e andHellman [93], who also suggested to implement it using trapdoor permutations.Concrete implementations were suggested by Rivest, Shamir and Adleman [247]and by Rabin [242]. However, de�nitions of security for signature schemes werepresented only a few years afterwards.A �rst rigorous treatment of security notions for signature schemes was sug-gested by Goldwasser, Micali and Yao [167], but their de�nition is weaker thanthe one followed in our text. (Speci�cally, the adversary's queries in the de�ni-tion of [167] are determined non-adaptively and obliviously of the public-key.)Assuming the intractability of factoring, they also presented a signature schemethat is secure under their de�nition. We mention that the security de�nitionof [167] considers existential forgery, and is thus stronger than security notionsconsidered before [167].A comprehensive treatment of security notions for signature schemes, whichculminates in the notion used in our text, was presented by Goldwasser, Micaliand Rivest [165]. Assuming the intractability of factoring, they also presented asignature scheme that is secure (in the sense of De�nition 6.1.2). This was the�rst time that a signature scheme was proven secure under a simple intractabilityassumption such as the intractability of factoring. Their proof has refuted afolklore (attributed to Ron Rivest) by which no such \constructive proof" mayexist (because the mere existence of such a proof was believed to yield a forgingprocedure).40 Whereas the (two) schemes of [167] were inherently memory-dependent, the scheme of [165] has a \memoryless" variant (cf. [123] and [165]).Following Goldwasser, Micali and Rivest [165], research has focused on con-structing secure signature schemes under weaker assumptions. In fact, as notedin [165], their construction of secure signature schemes can be carried out usingany collection of claw-free, trapdoor permutation pairs. The claw-free require-ment was omitted in [33], whereas the seemingly more fundamental trapdoorrequirement was omitted by Naor and Yung [227]. Finally, Rompel showed thatone may use arbitrary one-way functions rather one-way permutations [249], andthus established Theorem 6.4.1. The progress briey summarized above was en-abled by the use of many important ideas and paradigms, some of them were40 The aw in this folklore is rooted in implicit (unjusti�ed) assumptions regarding thenotion of a \constructive proof of security" (based on factoring). In particular, it was implicitlyassumed that the signature scheme uses a veri�cation-key that equals a composite number,and that the proof of security reduces the factoring of such a composite N to forging withrespect to the veri�cation-key N . In such a case, the folklore suggested that the reductionyields an oracle machine for factoring the veri�cation-key, where the oracle is the correspondingsigning-oracle (associated with N), and that the factorization of the veri�cation-key allows toe�ciently produce signatures to any message. However, none of these assumptions is justi�ed.In contrast, the veri�cation-key in the scheme of [165] consists of a pair (N; x), and its securityis proven by reducing the factoring of N to forging with respect to the veri�cation-key (N; r),where r is randomly selected by the reduction. Furthermore, on input N , the (factoring)reduction produces a veri�cation-key (N; r) that typically does not equal the veri�cation-key(N; x) being attacked, and so given access to a corresponding signing-oracle does not allow tofactor N .

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

574 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONintroduced in that body of work and some were \only" revisited and properlyformalized. Speci�cally, we refer to the introduction of the refreshing paradigmin [165], the use of authentication trees (cf., [211, 212] and [165]), the use of thehash-and-sign paradigm (rigorously analyzed in [87]), the introduction of Univer-sal One-Way Hash Functions (and the adaptation of the hash-and-sign paradigmto them) in [227], and the use of one-time signature schemes (cf., [241]).We comment that our presentation of the construction of signature schemesis di�erent from the one given in any of the above cited papers. Speci�cally, themain part of Section 6.4 (i.e., Sections 6.4.1 and 6.4.2) is based on a variant ofthe signature scheme of [227], in which collision-free hashing (cf. [87]) are usedinstead of universal one-way hashing (cf. [227]).6.6.4.2 Message Authentication SchemesMessage authentication schemes were �rst discussed in the information theoreticsetting, where a one-time pad was used. Such schemes were �rst suggestedin [122], and further developed in [269]. The one-time pad can be implementedby a pseudorandom function (or a on-line pseudorandom generator), yieldingonly computational security, as we have done in Section 6.3.2. Speci�cally,Construction 6.3.11 is based on [189, 190]. In contrast, in Section 6.3.1 wehave followed a di�erent paradigm that amounts to applying a pseudorandomfunction to the message (or its hashed-value), rather than using a pseudorandomfunction (or a on-line pseudorandom generator) to implement a one-time pad.This alternative paradigm is due to [139], and is followed in works such as [32, 29,21]. Indeed, following this paradigm, one may focus on constructing generalizedpseudorandom function ensembles (as in De�nition 3.6.12), based on ordinarypseudorandom functions (as in De�nition 3.6.4). See comments on alternativepresentations at the end of Sections 6.3.1.2 and 6.3.1.3 as well as in Section C.2.6.6.4.3 Additional topicsCollision-free hashing was �rst de�ned in [87]. Construction 6.2.8 is also dueto [87], with underlying principles that can be traced to [165]. Construction 6.2.11is due to [88]. Construction 6.2.13 is due to [213].Unique signatures and super-security have been used in several works, butwere not treated explicitly before. The notion of o�-line/on-line signature schemewas introduced (and �rst instantiated) in [103]. The notion of incremental cryp-tographic schemes (and in particular incremental signature schemes) was intro-duced and instantiated in [26, 27]. In particular, the incremental MAC of [27](i.e., Part 1 of Theorem 6.5.3) builds on the message authentication schemeof [29], and the incremental signature scheme that protects the privacy of theedit sequence is due to [217] (building upon [27]). Fail-stop signatures werede�ned and constructed in [236].

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 5756.6.5 Suggestion for Further ReadingAs mentioned above, the work of Goldwasser, Micali and Rivest contains acomprehensive treatment of security notions for signature schemes [165]. Theirtreatment refers to two parameters: (1) the type of attack, and (2) the typeof forgery that follows from it. The most severe type of attack allows the ad-versary to adaptively select the documents to be signed (as in De�nition 6.1.2).The most liberal notion of forgery refers to producing a signature to any doc-ument for which a signature was not obtained during the attack (again, as inDe�nition 6.1.2). Thus, the notion of security presented in De�nition 6.1.2 isthe strongest among the notions discussed in [165]. (Still, in some applications,weaker notions of security may su�ce.) We stress that one may still bene�t fromthe de�nitional part of [165], but the constructive part of [165] should be ignoredbecause it is superseded by later work (on which our presentation is based).P�tzmann's book [237] contains a comprehensive discussion of many aspectsinvolved in the integration of signature schemes in real-life systems. In addition,her book surveys variants and augmentations of the notion of signature schemes,viewing the one treated in the current book as \ordinary". The focus is on fail-stop signature schemes [237, Chap. 7{11], but much attention is given to thepresentation of a general framework [237, Chap. 5] and to review of other \non-ordinary" schemes [237, Sec. 2.7 & 6.1].As hinted in Section 6.6.4.2, our treatment of the construction of messageauthentication schemes is merely the tip of an iceberg. The interested readeris referred to [262, 189, 190, 47] for details on the \one-time pad" approach,and to [32, 29, 21, 22, 28, 7] for alternative approaches. Constructions and dis-cussion of AXU hashing functions (which are stronger than generalized hashingfunctions) can be found in [189, 190].The constructions of universal one-way hash functions presented in Sec-tion 6.4.3 use any one-way permutation, and do so in a generic way. The numberof applications of the one-way permutation in these constructions is linearly re-lated to the di�erence between the number of input and output bits in the hashfunction. In [121], it is shown that as far as generic (black-box) constructionsgo, this is essentially the best performance that one can hope for.In continuation to the discussion in Section 6.4.2.4 (regarding the construc-tion of signature schemes based on authentication trees), we refer to readerto [99, 84], in which speci�c implementations (of a generalization) of Construc-tions 6.4.14 and 6.4.16 are presented. Speci�cally, these works utilize an authen-tication tree of large degree (rather than binary trees as in Section 6.4.2.2).6.6.6 Open ProblemsThe known construction of signature schemes from arbitrary one-way func-tions [249] is merely a feasibility result. It is indeed an important open problemto provide an alternative construction that may be practical and still utilize anarbitrary one-way function. We believe that providing such a construction mayrequire the discovery of important new paradigms.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

576 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION6.6.7 ExercisesExercise 1: Deterministic Signing and Veri�cation algorithms:1. Using a pseudorandom function ensembles, show how to transformany (private-key or public-key) signature scheme into one employinga deterministic signing algorithm.2. Using a pseudorandom function ensembles, show how to transformany message authentication scheme into one employing deterministicsigning and verifying algorithms.3. Verify that all signature schemes presented in the current chapteremploy a deterministic veri�cation algorithm.Guideline (for Part 1): Augment the signing-key with a description ofa pseudorandom function, and apply this function to the string to be signedin order to extract the randomness used by the original signing algorithm.Guideline (for Part 2): Analogous to Part 1. (Highlight your use ofthe private-key hypothesis.) Alternatively, see Exercise 2.Exercise 2: Canonical veri�cation in the private-key version: Show that, with-out loss of generality, the veri�cation algorithm of a private-key signaturescheme may consist of comparing the alleged signature to one producedby the veri�cation algorithm itself (which does so exactly as the signingalgorithm).Why does this claim fail with respect to public-key schemes?Guideline: Use Part 1 of Exercise 1, and conclude that the on a �xedinput the signing algorithm always produces the same output. Use thefact that (by Exercise 8.3) the existence of message authentication schemesimplies the existence of pseudorandom functions.Exercise 3: Augmented attacks in the private-key case: In continuation to thediscussion in Section 6.1.4.1, consider the de�nition of an augmented at-tack (on a private-key signature scheme) in which the adversary is allowedveri�cation-queries.1. Show that in case the signature scheme has unique valid signatures, itis secure against augmented attacks if and only if it is secure againstordinary attacks (as in De�nition 6.1.2).2. Assuming the existence of secure private-key signature schemes (as inDe�nition 6.1.2), present such a secure scheme that is insecure underaugmented attacks.Guideline (Part 1): Analyze the emulation outlined in Section 6.1.4.1.Speci�cally, ignoring the redundant veri�cation-queries (for which the an-swer is determined by previous answers), consider the probability that theemulation has gambled correctly on all the veri�cation-queries up-to (andincluding) the �rst such query that should be answered a�rmatively.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 577Guideline (Part 2): Given any secure MAC, (G;S; V), assume withoutloss of generality that in the key-pairs output by G the veri�cation-keyequals the signing-key. Consider the scheme (G0; S0; V 0) (with G0 = G),where S0s(�) = (Ss(�); 0), V 0v(�; (�; 0)) = Vv(�; �) and V 0v(�; (�; i; �)) = 1if both Vv(�; �) = 1 and the ith bit of s = v is �. Prove that (G0; S0; V)is secure under ordinary attacks, and present an augmented attack thattotally breaks it (i.e., obtains the signing-key).Exercise 4: The signature may reveal the document: Both for private-key andpublic-key signature schemes, show that if such secure schemes exist thenthere exist secure signature schemes in which any valid signature to amessage allows to e�ciently recover the entire message.Exercise 5: On the triviality of some length-restricted signature schemes:1. Show that for logarithmically bounded `, secure `-restricted private-key signature schemes (i.e., message authentication schemes) can betrivially constructed (without relying on any assumption).2. In contrast, show that the existence of a secure `-restricted public-key signature scheme, even for ` � 1, implies the existence of one-wayfunctions.Guideline (Part 1): On input 1n, the key generator uniformly selectss 2 f0; 1g2`(n) �n, and outputs the key pair (s; s). View s = s1 � � � s2`(n) ,where each si is an n-bit long string, and consider any �xed ordering of the2`(n) strings of length `(n). The signature to � 2 f0; 1g`(n) is de�ned as si,where i is the index of � in the latter ordering.Guideline (Part 2): Let (G;S; V) be a 1-restricted public-key signaturescheme. De�ne f(1n ; r) = v if, on input 1n and coins r, algorithm Ggenerates a key-pair of the form (�; v). Assuming that algorithm A invertsf with probability "(n), we construct a forger that attacks (G;S; V) asfollows. On input a veri�cation key v, the forger invokes A on input v.With probability "(n), the forger obtains r so that f(1n ; r) = v. In sucha case, the forger obtains a matching signing-key s (i.e., (s; v) is output byG(1n) on coins r), and so can produce valid signatures to any string of itschoice.Exercise 6: Failure of Construction 6.2.3 in case `(n) = O(log n): Show thatif Construction 6.2.3 is used with logarithmically bounded ` then the re-sulting scheme is insecure.Guideline: Note that by asking for polynomially-many signatures, the ad-versary may obtain two S0s-signatures that use the same (random) identi�er.Speci�cally, consider making the queries ��, for all possible � 2 f0; 1g`(n),and note that if �� and �0�0 are S0s-signed using the same identi�er thenwe can derive a valid S0s-signature to ��0.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

578 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONExercise 7: General pseudorandom functions yield general secure MACs: Us-ing a pseudorandom function ensemble of the form ffs : f0; 1g� ! f0; 1gjsjgs2f0;1g� ,construct a general secure message authentication scheme (rather than alength-restricted one).Guideline: The construction is identical to Construction 6.3.1, exceptthat here we use a general pseudorandom function ensemble rather thanthe one used there. The proof of security is analogous to the proof ofProposition 6.3.2.Exercise 8: Secure MACs imply one-way functions: Prove that the existenceof secure message authentication schemes implies the existence of one-wayfunctions. Speci�cally, let (G;S; V) be as in the hypothesis.1. To simplify the following two items, show that, without loss of gen-erality, G(1n) uses n coins and outputs a signing-key of length n andthat jSs(�)j is determined by jsj+ j�j.2. Assume �rst that S is a deterministic signing algorithm. Prove thatf(r; �1; :::; �m) def= (Ss(�1); :::; Ss(�m); �1; :::; �m) is a one-way func-tion, where s = G1(r) is the signing-key generated with coins r, all�i's are of length n = jrj and m = �(n).3. Extend the proof to handle randomized signing algorithms, thus es-tablishing the main result.Guideline (Parts 2 and 3): Note that with high probability (of thechoice of the �i's) the m signatures determine a set R such that everyr02R determines a signing-key s0 = G1(r0) such that Ss(�) = Ss0 (�) holdsfor most � 2 f0; 1gn . (Note that s0 does not necessarily equal s.) Showthat this implies that ability to invert f yields ability to forge (under achosen message attack). (Hint: use m random signing-queries to produce arandom image of f .) The extension to randomized signing is obtained byaugmenting the preimage of the one-way function with the coins used bythe m invocations of the signing algorithm.Exercise 9: Certain MACs imply pseudorandom functions (based on [226]):Let (G;S; V) be a secure message authentication schemes, and supposethat S is deterministic. Furthermore, suppose that jG1(1n)j = n and thatfor every s; x 2 f0; 1gn it holds that jSs(x)j = `(n) def= jSs(1n)j. Considerthe Boolean function ensemble ffs1;s2 : f0; 1gjs1j ! f0; 1ggs1;s2 , where s1 isselected according to G1(1n) and s2 is uniformly distributed over strings oflength `(n), such that fs1;s2(�) is de�ned to equal the inner-product mod 2of Ss1(�) and s2. Prove that this function ensemble is pseudorandom (asde�ned in De�nition 3.6.9 for the case d(n+ `(n)) = n and r(n) = 1).Guideline: Consider hybrid experiments such that in the ith hybrid the�rst i queries are answered by a truly random Boolean function and therest of the queries are answered by a uniformly distributed fs1;s2 . (Notethat it seems important to use this non-standard order of random versus

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 579pseudorandom answers.) Show that distinguishability of the ith and i+1sthybrids implies that a probabilistic polynomial-time oracle machine canhave a non-negligible advantage in the following game. In the game, themachine is �rst asked to select �, next fs1;s2 is uniformly selected and themachine is given s2 as well as oracle access to Ss1 (but is not allowed thequery �), and is asked to guess fs1;s2(�) (or, equivalently, to distinguishfs1;s2(�) from a truly random bit).41 At this point, one may apply theproof of Theorem 2.5.2, and deduce that the said oracle machine can bemodi�ed to construct Ss1(�) with non-negligible probability (when givenoracle access to Ss1 but not being allowed the query �), in contradiction tothe security of the MAC.Exercise 10: Prove that, without loss of generality, one can always assume thata chosen message attack makes at least one query. (This holds for generalsignature schemes as well as for length-restricted and/or one-time ones.)Guideline: Given an adversary A0 that outputs a message-signature pair(�; �) without making any query, modify it such that it makes an arbitraryquery �0 2 f0; 1gj�j n f�g just before producing that output.Exercise 11: On perfectly-secure one-time message authentication (MAC) schemes:By perfect (or information-theoretic) securitywe mean that even computationally-unbounded chosen message attacks may succeed (in forgery) only withnegligible probability.De�ne perfect (or information-theoretic) security for one-time MACs andlength-restricted one-time MACs. (Be sure to bound the length of docu-ments (e.g., by some super-polynomial function) also in the unrestrictedcase; see Part 3 of the current exercise as well as Exercise 18.)Prove the following, without relying on any (intractability) assumptions(which are anyhow useless in the information-theoretic context):1. For any polynomially-bounded and polynomial-time computable func-tion ` : N ! N , perfectly-secure `-restricted one-time MACs can betrivially constructed.2. Using a suitable AXU family of hashing functions, present a construc-tion of a perfectly-secure one-time MAC. Furthermore, present sucha MAC in which the authentication-tags have �xed length (i.e., de-pending on the length of the key but not on the length of the messagebeing authenticated).3. Show that any perfectly-secure one-time MAC that utilizes �xed lengthauthentication-tags and a deterministic signing algorithm yields a41 Note that the particular order (of random versus pseudorandom answers in the hybrids)allows this oracle machine to generate the rest of the (corresponding) hybrid while playing thisgame properly. That is, the player answers the �rst i queries at random, sets � to equal thei+1st query, uses the tested bit value as the corresponding answer, and uses s2 and the oracleSs1 to answer the subsequent queries. It is also important that the game be de�ned such thats2 is given only after the machine has selected �; see [226].

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

580 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONgeneralized hashing ensembles with negligible collision probability.Speci�cally, for any polynomial p, this ensembles has a (p; 1=p)-collisionproperty.Guideline: For Part 1, combine the ideas underlying Exercise 5 and Con-struction 6.4.4. For Part 2, use the ideas underlying Construction 6.3.11and the proof of Proposition 6.3.12. For Part 3, given a MAC as in theclaim, consider the functions hs(x) def= Ss(x), where s is selected as in thekey-generation algorithm.Exercise 12: Secure one-time signatures imply one-way functions: In contrastto Exercise 11, prove that the existence of secure one-time signature schemesimplies the existence of one-way functions. Furthermore, prove that thisholds even for 1-restricted signature schemes that are secure (only) underattacks that make no signing-queries.Guideline: See guideline for Item 2 in Exercise 5.Exercise 13: Prove that the existence of collision-free hashing collections im-plies the existence of one-way functions.Guideline: Given a collision-free hashing collection, fhr : f0; 1g� !f0; 1g`(jrj)gr2f0;1g� , consider the function f(r; x) = (r; hr(x)), where (say)jxj = `(jrj) + jrj. Prove that f is a one-way function, by assuming towardsthe contradiction that f can be e�ciently inverted with non-negligible prob-ability, and deriving an e�cient algorithm that forms collisions on randomhr's. Given r, form a collision under the function hr, by uniformly se-lecting x 2 f0; 1g`(jrj)+jrj, and feeding the inverting algorithm with input(r; hr(x)). Observe that with non-negligible probability a preimage is ob-tained, and that with exponentially vanishing probability this preimage is(r; x) itself. Thus, with non-negligible probability, we obtain a preimage(r; x0) 6= (r; x) and it holds that hr(x0) = hr(x).Exercise 14: Secure MACs that hide the message: In contrast to Exercise 4,show that if secure message authentication schemes exist then there existsuch schemes in which it is infeasible (for a party not knowing the key)to extract from the signature any partial information about the message(except for the message length). (Indeed, privacy of the message is for-mulated as the de�nition of semantic security of encryption schemes; seeChapter 5.)Guideline: Combine a message authentication scheme with an adequateprivate-key encryption scheme. Refer to issues such as the type of secu-rity required of the encryption scheme, and why the hypothesis yields theexistence of the ingredients used in the construction.Exercise 15: In continuation to Exercise 14, show that if there exist collision-free hashing functions then there exist message authentication schemes inwhich it is infeasible (for a party not knowing the key) to extract from thesignature any partial information about the message including the message

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 581length. How come we can hide the message length in this context, whereaswe cannot do this in the context of encryption schemes?Guideline: Combine a message authentication scheme having �xed lengthsignatures with an adequate private-key encryption scheme. Again, refer toissues as in Exercise 14.Exercise 16: Prove that the existence of collections of UOWHF implies theexistence of one-way functions. Furthermore, show that uniformly chosenfunctions in any collection of UOWHFs are hard to invert (in the sense ofDe�nition 2.4.3).Guideline: Note that the guidelines provided in Exercise 13 can be mod-i�ed to �t the current context. Speci�cally, the collision-forming algorithmis given uniformly distributed r and x, and invokes the inverter on input(r; hr(x)), hoping to obtain a designated collision with x under hs. Notethat the furthermore clause is implicit in the proof.Exercise 17: Assuming the existence of one-way functions, show that there ex-ists a collection of universal one-way hashing functions that is not collision-free. Guideline: Given a collection of universal one-way hashing functions,ffs : f0; 1g� ! f0; 1gjsjg, consider the collection F 0 = ff 0s : f0; 1g� !f0; 1gjsjg de�ned so that f 0s(x) = (0; fs(x)) if the jsj-bit long pre�x of x isdi�erent from s, and f 0s(sx0) = (1; s) otherwise. Clearly, F 0 is not collision-free. Show that F 0 is universal one-way hashing.Exercise 18: Show that for every �nite family of functions H , there existsx 6= y such that h(x) = h(y) for every h 2 H . Furthermore, for H = fh :f0; 1g� ! f0; 1gmg, show that this holds for jxj; jyj � m � jH j.Guideline: Consider the mapping x 7! (h1(x); :::; ht(x)), where H =fhigti=1. Since the number of possible images is at most (2m)t, we get acollision as soon as we consider more than 2mt preimages.Exercise 19: Constructions of Hashing Families with Bounded Collision Prob-ability: In continuation to Exercise 22.2 in Chapter 3, consider the set offunctions Sm̀ associated with `-by-m Toeplitz matrix; that is hT (x) = Tx,where T = (Ti;j) is a Toeplitz matrix (i.e., Ti;j = Ti+1;j+1 for all i; j).Show that this family has collision probability 2�m. (Note that each `-by-m Toeplitz matrix is speci�ed using `+m� 1 bits.)Guideline: Note that we have eliminated the shifting vector b used inExercise 22.2 of Chapter 3, but this does not e�ect the relevant analysis.Exercise 20: Constructions of Generalized Hashing Families with Bounded Col-lision Property: (See de�nition in Section 6.3.1.3.)1. Using a variant of the tree-hashing scheme of Construction 6.2.13,construct a generalized hashing ensemble with a (f; 1=f)-collision

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

582 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATIONproperty, where f(n) = 2"n" for some " > 0. (Hint: use a di�er-ent hashing function at each level of the tree.)2. (By Hugo Krawczyk): Show that the tree-hashing scheme of Con-struction 6.2.13, where the same hashing function is used in all levelsof the tree, fails in the current context. That is, there exists a hashingensemble fhr : f0; 1g2m(jrj) ! f0; 1gm(jrj)gr with negligible collisionprobability such that applying Construction 6.2.13 to it (even withdepth two) yields an ensemble with high collision probability.3. As in Part 2, show that the block-chaining method of Construc-tion 6.2.11 fails in the current context (even for three blocks).Guideline (Part 1): Let fhr : f0; 1g2m(jrj) ! f0; 1gm(jrj)gr, be ahashing ensemble with collision probability cp. Recall that such ensem-bles with m(n) = n=3 and cp(n) = 2�m(n) can be constructed (see Exer-cise 19). Then, consider the function ensemble fhr1;:::;rm(n) : f0; 1g� !f0; 1g2m(n)gn2N, where all ri's are of length n, such that hr1;:::;rm(n)(x) isde�ned as follows1. As in Construction 6.2.13, break x into t def= 2dlog2(jxj=m(n))e consec-utive blocks, denoted x1; :::; xt, and let d = log2 t.2. Let i = 1; :::; t, let yd;i def= xi. For j = d � 1; :::; 1; 0 and i = 1; :::;2j ,let yj;i = hrj (yj+1;2i�1yj+1;2i). The hash value equals (y0;1; jxj).The above functions have description length N def= m(n) � n and mapstrings of length smaller than 2m(n) to strings of length 2m(n). It iseasy to bound the collision probability (for strings of equal length) bythe probability of collision occuring in each of the levels of the tree. Infact, for x1 � � �xt 6= x01 � � �x0t such that xi 6= x0i, it su�ces to bound thesum of the probabilities that yj;di=2d�je = y0j;di=2d�je holds (given thatyj+1;di=2d�(j+1)e 6= y0j+1;di=2d�(j+1)e) for j = d � 1; :::;1; 0. Thus, thisgeneralized hashing ensemble has a (`; �)-collision property, where `(N) =2m(n) � 1 and �(N) = m(n) �cp(n). We stress that the collision probabilityof the tree-hashing scheme grows linearly with the depth of the tree (ratherthan linearly with its size). Recalling that we may use m(n) = n=3 andcp(n) = 2�m(n), we obtain (using N = n2=3), `(N) = 2(N=3)1=2 � 1 >2(N=4)1=2 and �(N) < (N=`(N)) < 2�(N=4)1=2 (as desired).Guideline (Part 2): Given a hashing family as in the hypothesis, mod-ify it into fh0r;s : f0; 1g2m ! f0; 1gmgr;s, where s 2 f0; 1gm, such thath0r;s(02m) = s, h0r;s(sv) = 0m for all v 2 f0; 1gm, and h0r;s(w) = hr(w) foreach other w 2 f0; 1g2m. Note that the new family maintains the collisionprobability of the original one up-to an additive term of O(2�m). On theother hand, for every w 2 f0; 1g2m, it holds that TreeHashr;s(02m w) =h0r;s(h0r;s(02m)h0r;s(w)) = h0r;s(s v) = 0m, where v = h0r;s(w).Guideline (Part 3): For h0r;s as in Part 2 and every v 2 f0; 1gm, itholds that ChainHashr;s(02m v) = h0r;s(h0r;s(02m) v) = h0r;s(sv) = 0m.Exercise 21: On the additional properties required in Proposition 6.4.21: Incontinuation to Exercise 23 of Chapter 3, show that the function ensemblepresented there satis�es the following two properties:

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6.6. MISCELLANEOUS 5831. All but a negligible fraction of the functions in Sn�1n are 2-to-1.2. There exists a probabilistic polynomial-time algorithm that giveny1; y2 2 f0; 1gn and z1; z2 2 f0; 1gn�1, outputs a uniformly dis-tributed element of fs 2 Sn�1n : hs(yi) = zi 8i 2 f1; 2gg.Guideline: Recall that functions in Sn�1n are described by a pair of ele-ments of the �nite �eld GF(2n) so that the pair (a; b) describes the functionha;b that maps x 2 GF(2n) to the (n � 1)-bit pre�x of the n-bit represen-tation of ax + b, where the arithmetics is of the �eld GF(2n). The �rstcondition follows by observing that the function ha;b is 2-to-1 if and only ifa 6= 0. The second condition follows by observing that ha;b(yi) = zi if andonly if ayi + b = vi for some vi that is a single-bit extension of zi. Thus,generating a pair (a; b) such that ha;b(yi) = zi for both i's, amounts toselecting random single-bit extensions vi's, and (assuming y1 6= y2) solvingthe system fayi + b = vigi=1;2 (for the variables a and b).Exercise 22: Fail-stop signatures require a memory-dependent signing process:In continuation to Section 6.5.5, prove that a secure fail-stop signaturescheme must employ a memory-dependent signing process (as in De�ni-tion 6.4.13).Guideline: Suppose towards the contradiction that there exist a securememoryless fail-stop signature scheme. For every signing-key s 2 f0; 1gn,consider the randomized process Ps in which one �rst selects uniformlyx 2 f0; 1gn, produces a (random) signature y Ss(x), and outputs thepair (x; y). Show that, given polynomially-many samples of Ps, one can�nd (in exponential time) a string s0 2 f0; 1gn such that with probabilityat least 0:99 the statistical distance between Ps and Ps0 is at most 0:01.Thus, a computationally unbounded adversary making polynomially-manysigning queries, can �nd a signing-key that typically produces the samesignatures as the true signer. It follows that either these signatures cannotbe revoked or that the user may also revoke its own signatures.Author's Note: First draft written mainly in May 2000. Major re-vision completed and posted in Feb. 2002. Last revision completedand posted in Feb. 2003.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

778 CHAPTER 6. SIGNATURES AND MESSAGE AUTHENTICATION
Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Bibliography[1] L.M. Adleman and M. Huang. Primality Testing and Abelian VarietiesOver Finite Fields. Springer-Verlag Lecture Notes in Computer Science(Vol. 1512), 1992. Preliminary version in 19th ACM Symposium on theTheory of Computing, 1987.[2] W. Aiello and J. H�astad. Perfect Zero-Knowledge Languages can be Rec-ognized in Two Rounds. In 28th IEEE Symposium on Foundations ofComputer Science, pages 439{448, 1987.[3] M. Ajtai. Generating Hard Instances of Lattice Problems. In 28th ACMSymposium on the Theory of Computing, pages 99{108, 1996.[4] M. Ajtai, J. Komlos, E. Szemer�edi. Deterministic Simulation in LogSpace.In 19th ACM Symposium on the Theory of Computing, pages 132{140,1987.[5] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions:Certain Parts are As Hard As the Whole. SIAM Journal on Computing,Vol. 17, April 1988, pages 194{209.[6] N. Alon and J.H. Spencer. The Probabilistic Method, John Wiley & Sons,Inc., 1992.[7] J.H. An and M. Bellare. Constructing VIL-MACs from FIL-MACs: Mes-sage Authentication under Weakened Assumptions. In Crypto99, SpringerLecture Notes in Computer Science (Vol. 1666), pages 252{269.[8] T.M. Apostol. Introduction ot Analytic Number Theory. Springer, 1976.[9] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simula-tions and Advanced Topics. McGraw-Hill, 1998.[10] L. Babai. Trading Group Theory for Randomness. In 17th ACM Sympo-sium on the Theory of Computing, pages 421{420, 1985.[11] E. Bach. Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms. ACM Distinguished Dissertation (1984), MIT Press,Cambridge MA, 1985. 779

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

780 BIBLIOGRAPHY[12] E. Bach and J. Shallit. Algorithmic Number Theory (Volume I: E�cientAlgorithms). MIT Press, 1996.[13] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42ndIEEE Symposium on Foundations of Computer Science, pages 106{115,2001.[14] B. Barak. Constant-Round Coin-Tossing with a Man in the Middle orRealizing the Shared Random String Model. In 43th IEEE Symposium onFoundations of Computer Science, to appear, 2002.[15] B. Barak and O. Goldreich, Universal arguments and their applications. Inthe 17th IEEE Conference on Computational Complexity, pages 194{203,2002.[16] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,and K. Yang. On the (im)possibility of software obfuscation. In Crypto01,Springer-Verlag Lecture Notes in Computer Science (Vol. 2139), pages 1{18.[17] B. Barak and Y. Lindell. Strict Polynomial-time in Simulation and Ex-traction. In 34th ACM Symposium on the Theory of Computing, pages484{493, 2002.[18] D. Beaver. Foundations of Secure Interactive Computing. In Crypto91,Springer-Verlag Lecture Notes in Computer Science (Vol. 576), pages 377{391.[19] D. Beaver. Secure Multi-Party Protocols and Zero-Knowledge Proof Sys-tems Tolerating a Faulty Minority. Journal of Cryptology, Vol. 4, pages75{122, 1991.[20] M. Bellare. A Note on Negligible Functions. Journal of Cryptology, Vol. 15,pages 271{284, 2002.[21] M. Bellare, R. Canetti and H. Krawczyk. Pseudorandom functions Revis-ited: The Cascade Construction and its Concrete Security. In 37th IEEESymposium on Foundations of Computer Science, pages 514{523, 1996.[22] M. Bellare, R. Canetti and H. Krawczyk. Keying Hash Functions forMessage Authentication. In Crypto96, Springer Lecture Notes in ComputerScience (Vol. 1109), pages 1{15.[23] M. Bellare, R. Canetti and H. Krawczyk. Modular Approach to the Designand Analysis of Authentication and Key Exchange Protocols. In 30th ACMSymposium on the Theory of Computing, pages 419{428, 1998.[24] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among no-tions of security for public-key encryption schemes. In Crypto98, SpringerLecture Notes in Computer Science (Vol. 1462), pages 26{45.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 781[25] M. Bellare and O. Goldreich. On De�ning Proofs of Knowledge. InCrypto92, Springer-Verlag Lecture Notes in Computer Science (Vol. 740),pages 390{420.[26] M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptography:the Case of Hashing and Signing. In Crypto94, Springer-Verlag LectureNotes in Computer Science (Vol. 839), pages 216{233, 1994.[27] M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptographyand Application to Virus Protection. In 27th ACM Symposium on theTheory of Computing, pages 45{56, 1995.[28] M. Bellare, O. Goldreich and H. Krawczyk. Stateless Evaluation of Pseu-dorandom Functions: Security beyond the Birthday Barrier. In Crypto99,Springer Lecture Notes in Computer Science (Vol. 1666), pages 270{287.[29] M. Bellare, R. Guerin and P. Rogaway. XOR MACs: New Methodsfor Message Authentication using Finite Pseudorandom Functions. InCrypto95, Springer-Verlag Lecture Notes in Computer Science (Vol. 963),pages 15{28.[30] M. Bellare, S. Halevi, A. Sahai and S. Vadhan. Trapdoor Functions andPublic-Key Cryptosystems. In Crypto98, Springer Lecture Notes in Com-puter Science (Vol. 1462), pages 283{298.[31] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lowerthe Error in Computationally Sound Protocols? In 38th IEEE Symposiumon Foundations of Computer Science, pages 374{383, 1997.[32] M. Bellare, J. Kilian and P. Rogaway. The Security of Cipher Block Chain-ing. In Crypto94, Springer-Verlag Lecture Notes in Computer Science(Vol. 839), pages 341{358.[33] M. Bellare and S. Micali. How to Sign Given Any Trapdoor Function.Journal of the ACM, Vol. 39, pages 214{233, 1992.[34] D. Beaver, S. Micali and P. Rogaway. The Round Complexity of SecureProtocols. In 22nd ACM Symposium on the Theory of Computing, pages503{513, 1990.[35] M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigmfor Designing E�cient Protocols. In 1st Conf. on Computer and Commu-nications Security, ACM, pages 62{73, 1993.[36] M. Bellare and P. Rogaway. Entity Authentication and Key Distribu-tion. In Crypto93, Springer-Verlag Lecture Notes in Computer Science(Vol. 773), pages 232{249, 1994.[37] M. Bellare and P. Rogaway. Provably Secure Session Key Distribution:The Three Party Case. In 27th ACM Symposium on the Theory of Com-puting, pages 57{66, 1995.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

782 BIBLIOGRAPHY[38] M. Bellare and P. Rogaway. The Exact Security of Digital Signatures: Howto Sign with RSA and Rabin. In EuroCrypt96, Springer Lecture Notes inComputer Science (Vol. 1070).[39] M. Bellare and M. Yung. Certifying Permutations: Noninteractive Zero-Knowledge Based on Any Trapdoor Permutation. Journal of Cryptology,Vol. 9, pages 149-166, 1996.[40] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Av-erage Case Complexity. Journal of Computer and System Science, Vol. 44,No. 2, April 1992, pages 193{219.[41] M. Ben-Or, R. Canetti and O. Goldreich. Asynchronous Secure Computa-tion. In 25th ACM Symposium on the Theory of Computing, pages 52{61,1993. See details in [64].[42] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micaliand P. Rogaway. Everything Provable is Probable in Zero-Knowledge. InCrypto88, Springer-Verlag Lecture Notes in Computer Science (Vol. 403),pages 37{56, 1990[43] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover In-teractive Proofs: How to Remove Intractability. In 20th ACM Symposiumon the Theory of Computing, pages 113{131, 1988.[44] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theoremsfor Non-Cryptographic Fault-Tolerant Distributed Computation. In 20thACM Symposium on the Theory of Computing, pages 1{10, 1988.[45] E.R. Berlekamp. Factoring Polynomials over Large Finite Fields. Mathe-matics of Computation, Vol. 24, pages 713{735, 1970.[46] E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg. On the Inher-ent Intractability of Certain Coding Problems. IEEE Trans. on Inform.Theory, 1978.[47] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC:Fast and Secure Message Authentication. In Crypto99, Springer LectureNotes in Computer Science (Vol. 1666), pages 216{233.[48] M. Blum. How to Exchange Secret Keys. ACM Trans. Comput. Sys.,Vol. 1, pages 175{193, 1983.[49] M. Blum. Coin Flipping by Phone. In the 24th IEEE Computer Confer-ence (CompCon), pages 133{137, February 1982. See also SIGACT News,Vol. 15, No. 1, 1983.[50] L. Blum, M. Blum and M. Shub. A Simple Secure Unpredictable Pseudo-Random Number Generator. SIAM Journal on Computing, Vol. 15, 1986,pages 364{383.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 783[51] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge Proof Systems. SIAM Journal on Computing, Vol. 20, No. 6,pages 1084{1118, 1991. (Considered the journal version of [52].)[52] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge andits Applications. In 20th ACM Symposium on the Theory of Computing,pages 103{112, 1988. See [51].[53] M. Blum and S. Goldwasser. An E�cient Probabilistic Public-Key En-cryption Scheme which hides all partial information. In Crypto84, LectureNotes in Computer Science (Vol. 196) Springer-Verlag, pages 289{302.[54] M. Blum and S. Micali. How to Generate Cryptographically Strong Se-quences of Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13,pages 850{864, 1984. Preliminary version in 23rd IEEE Symposium onFoundations of Computer Science, 1982.[55] R. Boppana, J. H�astad, and S. Zachos. Does Co-NP Have Short InteractiveProofs? Information Processing Letters, 25, May 1987, pp. 127-132.[56] J.B. Boyar. Inferring Sequences Produced by Pseudo-Random NumberGenerators. Journal of the ACM, Vol. 36, pages 129{141, 1989.[57] G. Brassard. A Note on the Complexity of Cryptography. IEEE Trans.on Inform. Th., Vol. 25, pages 232{233, 1979.[58] G. Brassard. Quantum Information Processing: The Good, the Badand the Ugly. In Crypto97, Springer Lecture Notes in Computer Science(Vol. 1294), pages 337{341.[59] G. Brassard, D. Chaum and C. Cr�epeau. Minimum Disclosure Proofs ofKnowledge. Journal of Computer and System Science, Vol. 37, No. 2,pages 156{189, 1988. Preliminary version by Brassard and Cr�epeau in27th IEEE Symposium on Foundations of Computer Science, 1986.[60] G. Brassard and C. Cr�epeau. Zero-Knowledge Simulation of Boolean Cir-cuits. In Crypto86, Springer-Verlag Lecture Notes in Computer Science(Vol. 263), pages 223{233, 1987.[61] G. Brassard, C. Cr�epeau and M. Yung. Constant-Round Perfect Zero-Knowledge Computationally Convincing Protocols. Theoretical ComputerScience, Vol. 84, pages 23{52, 1991.[62] E.F. Brickell and A.M. Odlyzko. Cryptanalysis: A Survey of Recent Re-sults. In Proceedings of the IEEE, Vol. 76, pages 578{593, 1988.[63] C. Cachin and U. Maurer. Unconditional security against memory-bounded adversaries. In Crypto97, Springer Lecture Notes in ComputerScience (Vol. 1294), pages 292{306.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

784 BIBLIOGRAPHY[64] R. Canetti. Studies in Secure Multi-Party Computation and Applications.Ph.D. Thesis, Department of Computer Science and Applied Mathematics,Weizmann Institute of Science, Rehovot, Israel, June 1995. Available fromfrom http://theory.lcs.mit.edu/�tcryptol/BOOKS/ran-phd.html.[65] R. Canetti. Security and Composition of Multi-party Cryptographic Pro-tocols. Journal of Cryptology, Vol. 13, No. 1, pages 143{202, 2000.[66] R. Canetti. Universally Composable Security: A New Paradigm for Cryp-tographic Protocols. In 42nd IEEE Symposium on Foundations of Com-puter Science, pages 136{145, 2001. Full version (with di�erent title) isavailable from Cryptology ePrint Archive, Report 2000/067.[67] R. Canetti, I. Damgard, S. Dziembowski, Y. Ishai and T. Malkin. Onadaptive versus non-adaptive security of multiparty protocols. Journal ofCryptology, to appear.[68] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Multi-party Computation. In 28th ACM Symposium on the Theory of Comput-ing, pages 639{648, 1996.[69] R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology,Revisited. In 30th ACM Symposium on the Theory of Computing, pages209{218, 1998.[70] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge. In 32nd ACM Symposium on the Theory of Computing, pages235{244, 2000.[71] R. Canetti, S. Halevi and A. Herzberg. How to Maintain AuthenticatedCommunication in the Presence of Break-Ins. Journal of Cryptology,Vol. 13, No. 1, pages 61{106, 2000.[72] R. Canetti and A. Herzberg. Maintaining Security in the Presence ofTransient Faults. In Crypto94, Springer-Verlag Lecture Notes in ComputerScience (Vol. 839), pages 425{439.[73] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box ConcurrentZero-Knowledge Requires ~
(logn) Rounds. In 33rd ACM Symposium onthe Theory of Computing, pages 570{579, 2001.[74] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Com-posable Two-Party and Multi-Party Secure Computation. In 34th ACMSymposium on the Theory of Computing, pages 494{503, 2002.[75] E.R. Can�eld, P. Erdos, and C. Pomerance. On a problem of Oppenheimconcerning \factorisatio numerorum". J. Number Theory, Vol. 17, pages1{28, 1983.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 785[76] L. Carter and M. Wegman. Universal Hash Functions. Journal of Com-puter and System Science, Vol. 18, 1979, pages 143{154.[77] D. Chaum. Blind Signatures for Untraceable Payments. In Crypto82,Plenum Press, pages 199{203, 1983.[78] D. Chaum, C. Cr�epeau and I. Damg�ard. Multi-party unconditionally Se-cure Protocols. In 20th ACM Symposium on the Theory of Computing,pages 11{19, 1988.[79] B. Chor, S. Goldwasser, S. Micali and B. Awerbuch. Veri�able SecretSharing and Achieving Simultaneity in the Presence of Faults. In 26thIEEE Symposium on Foundations of Computer Science, pages 383{395,1985.[80] B. Chor and E. Kushilevitz. A Zero-One Law for Boolean Privacy. SIAMJ. on Disc. Math., Vol. 4, pages 36{47, 1991.[81] R. Cleve. Limits on the Security of Coin Flips when Half the Processorsare Faulty. In 18th ACM Symposium on the Theory of Computing, pages364{369, 1986.[82] J.D. Cohen and M.J. Fischer. A Robust and Veri�able CryptographicallySecure Election Scheme. In 26th IEEE Symposium on Foundations ofComputer Science, pages 372{382, 1985.[83] A. Cohen and A. Wigderson. Dispensers, Deterministic Ampli�cation,and Weak Random Sources. 30th IEEE Symposium on Foundations ofComputer Science, 1989, pages 14{19.[84] R. Cramer and I. Damg�ard. New Generation of Secure and PracticalRSA-based Signatures. In Crypto96, Springer Lecture Notes in ComputerScience (Vol. 1109), pages 173{185.[85] R. Cramer and V. Shoup. A Practical Public-Key Cryptosystem Prov-ably Secure Against Adaptive Chosen Ciphertext Attacks. In Crypto98,Springer-Verlag Lecture Notes in Computer Science (Vol. 1462), pages 13{25.[86] C. Cr�epeau. E�cient Cryptographic Protocols Based on Noisy Channels.In EuroCrypt97, Springer, Lecture Notes in Computer Science (Vol. 1233),pages 306{317.[87] I. Damg�ard. Collision Free Hash Functions and Public Key SignatureSchemes. In EuroCrypt87, Springer-Verlag, Lecture Notes in ComputerScience (Vol. 304), pages 203{216.[88] I. Damg�ard. A Design Principle for Hash Functions. In Crypto89, Springer-Verlag Lecture Notes in Computer Science (Vol. 435), pages 416{427.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

786 BIBLIOGRAPHY[89] I. Damgard. Concurrent Zero-Knowledge in Easy in Practice. Theoryof Cryptography Li-brary, 99-14, June 1999. http://philby.ucsd.edu/cryptolib. See also\E�cient Concurrent Zero-Knowledge in the Auxiliary String Model" (inEurocrypt'00, 2000).[90] I. Damg�ard, O. Goldreich, T. Okamoto and A. Wigderson. Honest Veri�ervs Dishonest Veri�er in Public Coin Zero-Knowledge Proofs. In Crypto95,Springer-Verlag Lecture Notes in Computer Science (Vol. 963), pages 325{338, 1995.[91] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai.Robust Non-interactive Zero-Knowledge. In Crypto01, Springer LectureNotes in Computer Science (Vol. 2139), pages 566{598.[92] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In Crypto89,Springer-Verlag Lecture Notes in Computer Science (Vol. 435), pages 307{315.[93] W. Di�e, and M.E. Hellman. New Directions in Cryptography. IEEETrans. on Info. Theory, IT-22 (Nov. 1976), pages 644{654.[94] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In 23rdACM Symposium on the Theory of Computing, pages 542{552, 1991. Fullversion available from authors.[95] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure messagetransmission. Journal of the ACM, Vol. 40 (1), pages 17{47, 1993.[96] D. Dolev and A.C. Yao. On the Security of Public-Key Protocols. IEEETrans. on Inform. Theory, Vol. 30, No. 2, pages 198{208, 1983.[97] D. Dolev and H.R. Strong. Authenticated Algorithms for Byzantine Agree-ment. SIAM Journal on Computing, Vol. 12, pages 656{666, 1983.[98] C. Dwork, U. Feige, J. Kilian, M. Naor and S. Safra. Low CommunicationPerfect Zero Knowledge Two Provers Proof Systems. In Crypto92, SpringerVerlag, Lecture Notes in Computer Science (Vol. 740), pages 215{227.[99] C. Dwork, and M. Naor. An E�cient Existentially Unforgeable SignatureScheme and its Application. Journal of Cryptology, Vol. 11 (3), pages187{208, 1998[100] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30thSTOC, pages 409{418, 1998.[101] S. Even and O. Goldreich. On the Security of Multi-party Ping-PongProtocols. In 24th IEEE Symposium on Foundations of Computer Science,pages 34{39, 1983.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 787[102] S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for SigningContracts. CACM, Vol. 28, No. 6, 1985, pages 637{647.[103] S. Even, O. Goldreich and S. Micali. On-line/O�-line Digital signatures.Journal of Cryptology, Vol. 9, 1996, pages 35{67.[104] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Prob-lems with Applications to Public-Key Cryptography. Inform. and Control,Vol. 61, pages 159{173, 1984.[105] S. Even and Y. Yacobi. Cryptography and NP-Completeness. In proceed-ings of 7th ICALP, Springer-Verlag Lecture Notes in Computer Science(Vol. 85), pages 195{207, 1980. See [104].[106] U. Feige. Error reduction by parallel repetition { the state of the art. Tech-nical report CS95-32, Computer Science Department, Weizmann Instituteof Science, Rehovot, isreal, 1995.[107] U. Feige, A. Fiat and A. Shamir. Zero-Knowledge Proofs of Identity.Journal of Cryptology, Vol. 1, 1988, pages 77{94.[108] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Under General Assumptions. SIAM Journal on Com-puting, Vol. 29 (1), pages 1{28, 1999.[109] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in TwoRounds. In Crypto89, Springer-Verlag Lecture Notes in Computer Science(Vol. 435), pages 526{544.[110] U. Feige and A. Shamir. Witness Indistinguishability and Witness HidingProtocols. In 22nd ACM Symposium on the Theory of Computing, pages416{426, 1990.[111] W. Feller. An Introduction to Probability Theory and Its Applications.John Wiley, New York, 1968.[112] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Iden-ti�cation and Signature Problems. In Crypto86, Springer-Verlag LectureNotes in Computer Science (Vol. 263), pages 186{189, 1987.[113] M. Fischer, S. Micali, C. Racko�, and D.K. Wittenberg. An Oblivi-ous Transfer Protocol Equivalent to Factoring. Unpublished manuscript,1986. Preliminary versions were presented in EuroCrypt84, and in the NSFWorkshop on Mathematical Theory of Security, Endicott House (1985).[114] R. Fischlin and C.P. Schnorr. Stronger Security Proofs for RSA and Ra-bin Bits. In EuroCrypt97, Springer Lecture Notes in Computer Science(Vol. 1233), pages 267{279, 1997.[115] L. Fortnow, The Complexity of Perfect Zero-Knowledge. In 19th ACMSymposium on the Theory of Computing, pages 204{209, 1987.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

788 BIBLIOGRAPHY[116] A.M. Frieze, J. H�astad, R. Kannan, J.C. Lagarias, and A. Shamir. Re-constructing Truncated Integer Variables Satisfying Linear Congruences.SIAM Journal on Computing, Vol. 17, pages 262{280, 1988.[117] O. Gaber and Z. Galil. Explicit Constructions of Linear Size Superconcen-trators. Journal of Computer and System Science, Vol. 22, pages 407{420,1981.[118] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide tothe Theory of NP-Completeness. W.H. Freeman and Company, New York,1979.[119] P.S. Gemmell. An Introduction to Threshold Cryptography. In Crypto-Bytes, RSA Lab., Vol. 2, No. 3, 1997.[120] R. Gennaro, M. Rabin and T. Rabin. Simpli�ed VSS and Fast-track Mul-tiparty Computations with Applications to Threshold Cryptography. In17th ACM Symposium on Principles of Distributed Computing, pages 101{112, 1998.[121] R. Gennaro and L. Trevisan. Lower bounds on the e�ciency of genericcryptographic constructions. ECCC, TR00-022, May 2000.[122] E.N. Gilbert, F.J. MacWilliams, and N.J.A. Sloane. Codes which detectdeception. Bell Syst. Tech. J., Vol. 53, pages 405{424, 1974.[123] O. Goldreich. Two Remarks Concerning the GMR Signature Scheme. InCrypto86, Springer-Verlag Lecture Notes in Computer Science (Vol. 263),pages 104{110, 1987.[124] O. Goldreich. Towards a Theory of Software Protection and Simulation byOblivious RAMs. In 19th ACM Symposium on the Theory of Computing,pages 182{194, 1987.[125] O. Goldreich. Foundation of Cryptography { Class Notes. Preprint, Spring1989. Superseded by the current book in conjunction with [126].[126] O. Goldreich. Lecture Notes on Encryption, Signatures andCryptographic Protocol. Extracts from [125]. Available fromhttp://theory.lcs.mit.edu/�oded/ln89.html Superseded by thecombination of [133], [134], and [132].[127] O. Goldreich. A Note on Computational Indistinguishability. InformationProcessing Letters, Vol. 34, pages 277{281, May 1990.[128] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-Knowledge. Journal of Cryptology, Vol. 6, No. 1, pages 21{53, 1993.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 789[129] O. Goldreich. Foundation ofCryptography { Fragments of a Book. February 1995. Available fromhttp://theory.lcs.mit.edu/�oded/frag.html Superseded by the cur-rent book in conjunction with [133].[130] O. Goldreich. Notes on Levin's Theory of Average-Case Complexity.ECCC, TR97-058, Dec. 1997.[131] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudoran-domness. Algorithms and Combinatorics series (Vol. 17), Springer, 1999.[132] O. Goldreich. Secure Multi-Party Computation. Unpublished manuscript,1998. Available from http://theory.lcs.mit.edu/�oded/gmw.html.[133] O. Goldreich. En-cryption Schemes { fragments of a chapter. December 1999. Availablefrom http://www.wisdom.weizmann.ac.il/�oded/foc-book.html[134] O. Goldreich. Signature Schemes { fragments of a chapter. May 2000.Available fromhttp://www.wisdom.weizmann.ac.il/�oded/foc-book.html[135] O. Goldreich. Foundation of Cryptography { Basic Tools. CambridgeUniversity Press, 2001.[136] O. Goldreich. Concurrent Zero-Knowledge With Timing, Revisited. In34th ACM Symposium on the Theory of Computing, pages 332{340, 2002.[137] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-Free Hashing fromLattice Problems. ECCC, TR95-042, 1996.[138] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct RandomFunctions. Journal of the ACM, Vol. 33, No. 4, pages 792{807, 1986.[139] O. Goldreich, S. Goldwasser, and S. Micali. On the Cryptographic Appli-cations of Random Functions. In Crypto84, Springer-Verlag Lecture Notesin Computer Science (Vol. 263), pages 276{288, 1985.[140] O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuck-erman. Security Preserving Ampli�cation of Hardness. In 31st IEEESymposium on Foundations of Computer Science, pages 318{326, 1990.[141] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems for NP. Journal of Cryptology, Vol. 9, No. 2,pages 167{189, 1996. Preliminary versions date to 1988.[142] O. Goldreich and H. Krawczyk. On the Composition of Zero-KnowledgeProof Systems. SIAM Journal on Computing, Vol. 25, No. 1, February1996, pages 169{192.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

790 BIBLIOGRAPHY[143] O. Goldreich and H. Krawczyk. On Sparse Pseudorandom Ensembles.Random Structures and Algorithms, Vol. 3, No. 2, (1992), pages 163{174.[144] O. Goldreich, H. Krawcyzk and M. Luby. On the Existence of Pseudo-random Generators. SIAM Journal on Computing, Vol. 22-6, pages 1163{1175, 1993.[145] O. Goldreich and E. Kushilevitz. A Perfect Zero-Knowledge Proof for aDecision Problem Equivalent to Discrete Logarithm. Journal of Cryptol-ogy, Vol. 6 (2), pages 97{116, 1993.[146] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Func-tion. In 21st ACM Symposium on the Theory of Computing, pages 25{32,1989.[147] O. Goldreich and Y. Lindell. Session-Key Generation using Human Pass-words. In Crypto01, Springer-Verlag Lecture Notes in Computer Science(Vol. 2139), pages 408{432.[148] O. Goldreich, Y. Lustig and M. Naor. On Chosen Ciphertext Security ofMultiple Encryptions. Cryptology ePrint Archive, Report 2002/089, 2002.[149] O. Goldreich and B. Meyer. Computational Indistinguishability { Algo-rithms vs. Circuits. Theoretical Computer Science, Vol. 191, pages 215{218, 1998.[150] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothingbut their Validity or All Languages in NP Have Zero-Knowledge ProofSystems. Journal of the ACM, Vol. 38, No. 1, pages 691{729, 1991. Pre-liminary version in 27th IEEE Symposium on Foundations of ComputerScience, 1986.[151] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game{ A Completeness Theorem for Protocols with Honest Majority. In 19thACM Symposium on the Theory of Computing, pages 218{229, 1987.[152] O. Goldreich, N. Nisan and A. Wigderson. On Yao's XOR-Lemma. ECCC,TR95-050, 1995.[153] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-KnowledgeProof Systems. Journal of Cryptology, Vol. 7, No. 1, pages 1{32, 1994.[154] O. Goldreich and E. Petrank. Quantifying Knowledge Complexity. Com-putational Complexity, Vol. 8, pages 50{98, 1999.[155] O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials withqueries: the highly noisy case. To appear in SIAM Journal on DiscreteMathematics.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 791[156] O. Goldreich, A. Sahai, and S. Vadhan. Honest-Veri�er Statistical Zero-Knowledge equals general Statistical Zero-Knowledge. In 30th ACM Sym-posium on the Theory of Computing, pages 399{408, 1998.[157] O. Goldreich and M. Sudan. Computational Indistinguishability: A Sam-ple Hierarchy. Journal of Computer and System Science, Vol. 59, pages253{269, 1999.[158] O. Goldreich and S. Vadhan. Comparing Entropies in Statistical Zero-Knowledge with Applications to the Structure of SZK. In 14th IEEEConference on Computational Complexity, pages 54{73, 1999.[159] O. Goldreich and R. Vainish. How to Solve any Protocol Problem { AnE�ciency Improvement. In Crypto87, Springer Verlag, Lecture Notes inComputer Science (Vol. 293), pages 73{86.[160] S. Goldwasser and J. Kilian. Primality Testing Using Elliptic Curves.Journal of the ACM, Vol. 46, pages 450{472, 1999. Preliminary version in18th ACM Symposium on the Theory of Computing, 1986.[161] S. Goldwasser and L.A. Levin. Fair Computation of General Functionsin Presence of Immoral Majority. In Crypto90, Springer-Verlag LectureNotes in Computer Science (Vol. 537), pages 77{93.[162] S. Goldwasser and Y. Lindell. Secure Computation Without Agree-ment. In 16th International Symposium on Distributed Computing (DISC),Springer-Verlag (LNCS 2508), pages 17{32, 2002.[163] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Com-puter and System Science, Vol. 28, No. 2, pages 270{299, 1984. Preliminaryversion in 14th ACM Symposium on the Theory of Computing, 1982.[164] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity ofInteractive Proof Systems. SIAM Journal on Computing, Vol. 18, pages186{208, 1989. Preliminary version in 17th ACM Symposium on the Theoryof Computing, 1985.[165] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Se-cure Against Adaptive Chosen-Message Attacks. SIAM Journal on Com-puting, April 1988, pages 281{308.[166] S. Goldwasser, S. Micali and P. Tong. Why and How to Establish a PrivateCode in a Public Network. In 23rd IEEE Symposium on Foundations ofComputer Science, 1982, pages 134{144.[167] S. Goldwasser, S. Micali and A.C. Yao. Strong Signature Schemes. In 15thACM Symposium on the Theory of Computing, pages 431{439, 1983.[168] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interac-tive Proof Systems. Advances in Computing Research: a research annual,Vol. 5 (Randomness and Computation, S. Micali, ed.), pages 73{90, 1989.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

792 BIBLIOGRAPHY[169] S. Haber and S. Micali. Private communication, 1986.[170] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. A PseudorandomGenerator from any One-way Function. SIAM Journal on Computing,Volume 28, Number 4, pages 1364{1396, 1999. Preliminary versions byImpagliazzo et. al. in 21st ACM Symposium on the Theory of Computing(1989) and H�astad in 22nd ACM Symposium on the Theory of Computing(1990).[171] J. H�astad, A. Schrift and A. Shamir. The Discrete Logarithm Modulo aComposite Hides O(n) Bits. Journal of Computer and System Science,Vol. 47, pages 376{404, 1993.[172] M. Hirt and U. Maurer. Complete characterization of adversaries tolerablein secure multi-party computation. Journal of Cryptology, Vol. 13, No. 1,pages 31{60, 2000.[173] R. Impagliazzo and M. Luby. One-Way Functions are Essential for Com-plexity Based Cryptography. In 30th IEEE Symposium on Foundations ofComputer Science, pages 230-235, 1989.[174] R. Impagliazzo and M. Naor. E�cient Cryptographic Schemes Provable asSecure as Subset Sum. Journal of Cryptology, Vol. 9, 1996, pages 199{216.[175] R. Impagliazzo and S. Rudich. Limits on the Provable Consequences ofOne-Way Permutations. In 21st ACM Symposium on the Theory of Com-puting, pages 44{61, 1989.[176] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential cir-cuits: Derandomizing the XOR Lemma. In 29th ACM Symposium on theTheory of Computing, pages 220{229, 1997.[177] R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. In30th IEEE Symposium on Foundations of Computer Science, 1989, pages248{253.[178] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. InCrypto87, Springer-Verlag Lecture Notes in Computer Science (Vol. 293),pages 40{51, 1987.[179] A. Juels, M. Luby and R. Ostrovsky. Security of Blind Digital Signatures.In Crypto97, Springer Lecture Notes in Computer Science (Vol. 1294).[180] J. Justesen. A class of constructive asymptotically good alegbraic codes.IEEE Trans. Inform. Theory, Vol. 18, pages 652{656, 1972.[181] N. Kahale. Eigenvalues and Expansion of Regular Graphs. Journal of theACM, Vol. 42 (5), pages 1091{1106, 1995.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 793[182] J. Kahn, M. Saks, and C. Smyth. A Dual Version of Reimer's Inequalityand a Proof of Rudich's Conjecture. In 15th IEEE Conference on Compu-tational Complexity, 2000.[183] B.S. Kaliski. Elliptic Curves and Cryptography: A Pseudorandom BitGenerator and Other Tools. Ph.D. Thesis, LCS, MIT, 1988.[184] J. Katz and M. Yung. Complete Characterization of Security Notions forProbabilistic Private-Key Encryption. In 32nd ACM Symposium on theTheory of Computing, pages 245{254, 2000.[185] J. Kilian. Basing Cryptography on Oblivious Transfer. In 20th ACMSymposium on the Theory of Computing, pages 20{31, 1988.[186] J. Kilian. A Note on E�cient Zero-Knowledge Proofs and Arguments. In24th ACM Symposium on the Theory of Computing, pages 723{732, 1992.[187] J. Kilian and E. Petrank. An E�cient Non-Interactive Zero-KnowledgeProof System for NP with General Assumptions. Journal of Cryptology,Vol. 11, pages 1{27, 1998.[188] J. Kilian and E. Petrank Concurrent and Resettable Zero-Knowledge inPoly-logarithmic Rounds In 33rd ACM Symposium on the Theory of Com-puting, pages 560{569, 2001.[189] H. Krawczyk. LFSR-based Hashing and Authentication. In Crypto94,Lecture Notes in Computer Science (Vol. 839), Springer-Verlag, pages 129{139.[190] H. Krawczyk. New Hash Functions For Message Authentication. In Euro-Crypt95, Springer-Verlag, Lecture Notes in Computer Science (Vol. 921),pages 301{310.[191] J.C. Lagarias and A.M. Odlyzko. Solving Low-Density Subset Sum Prob-lems. Journal of the ACM, Vol. 32, pages 229{246, 1985.[192] D. Lapidot and A. Shamir. Fully parallelized multi-prover protocols forNEXP-time. Journal of Computer and System Science, Vol. 54 (2), pages215{220, April 1997.[193] A. Lempel. Cryptography in Transition. Computing Surveys, Dec. 1979.[194] A.K. Lenstra, H.W. Lenstra, L. Lov�asz. Factoring polynomials with ratio-nal coe�cients. Mathematische Annalen 261, pages 515{534, 1982.[195] L.A. Levin. Average Case Complete Problems. SIAM Journal on Com-puting, Vol. 15, pages 285{286, 1986.[196] L.A. Levin. One-Way Function and Pseudorandom Generators. Combina-torica, Vol. 7, pages 357{363, 1987.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

794 BIBLIOGRAPHY[197] L.A. Levin. Randomness and Non-determinism. J. Symb. Logic, Vol. 58(3),pages 1102{1103, 1993.[198] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and itsApplications. Springer Verlag, August 1993.[199] Y. Lindell. A Simpler Construction of CCA2-Secure Public-Key Encryp-tion Under General Assumptions. In preparation, 2002.[200] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-PartyComputation. In Crypto01, Springer Lecture Notes in Computer Science(Vol. 2139), pages 171{189, 2001.[201] Y. Lindell, A. Lysyanskaya and T. Rabin. On the Composition of Authen-ticated Byzantine Agreement. In 34th ACM Symposium on the Theory ofComputing, pages 514{523, 2002.[202] J.H. van Lint. Introduction to Coding Theory. Springer-Verlag, GraduateTexts in Mathematics (#88), New York, 1982.[203] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan Graphs. Combinatorica,Vol. 8, pages 261{277, 1988.[204] M. Luby. Pseudorandomness and Cryptographic Applications. PrincetonUniversity Press, 1996.[205] M. Luby and C. Racko�. How to Construct Pseudorandom Permutationsfrom Pseudorandom Functions. SIAM Journal on Computing, Vol. 17,1988, pages 373{386.[206] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic Methods forInteractive Proof Systems. Journal of the ACM, Vol. 39, No. 4, pages859{868, 1992.[207] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, SanMateo, CA, 1996.[208] U. Maurer. Secret Key Agreement by Public Discussion from CommonInformation. IEEE Trans. on Inform. Th. , Vol. 39 (No. 3), pages 733{742, May 1993.[209] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of AppliedCryptography. CRC Press, 1996.[210] R.C. Merkle. Secure Communication over Insecure Channels. CACM,Vol. 21, No. 4, pages 294{299, 1978.[211] R.C. Merkle. Protocols for public key cryptosystems. In Proc. of the 1980Symposium on Security and Privacy.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 795[212] R.C. Merkle. A Digital Signature Based on a Conventional EncryptionFunction. In Crypto87, Springer-Verlag Lecture Notes in Computer Science(Vol. 293), 1987, pages 369-378.[213] R.C. Merkle. A Certi�ed Digital Signature Scheme. In Crypto89, Springer-Verlag Lecture Notes in Computer Science (Vol. 435), pages 218{238.[214] R.C. Merkle and M.E. Hellman. Hiding Information and Signatures inTrapdoor Knapsacks. IEEE Trans. Inform. Theory, Vol. 24, pages 525{530, 1978.[215] S. Micali, C. Racko�, and B. Sloan. The Notion of Security for ProbabilisticCryptosystems. SIAM Journal on Computing, Vol. 17, pages 412{426,1988.[216] S. Micali and P. Rogaway. Secure Computation. In Crypto91, Springer-Verlag Lecture Notes in Computer Science (Vol. 576), pages 392{404.[217] D. Micciancio. Oblivious Data Structures: Applications to Cryptography.In 29th ACM Symposium on the Theory of Computing, pages 456{464,1997.[218] G.L. Miller. Riemann's Hypothesis and Tests for Primality. Journal ofComputer and System Science, Vol. 13, pages 300{317, 1976.[219] R. Motwani and P. Raghavan. Randomized Algorithms, Cambridge Uni-versity Press, 1995.[220] National Bureau of Standards. Federal Information Processing Standards,Publ. 46 (DES 1977).[221] National Institute for Standards and Technology. Digital Signature Standard(dss), Federal Register, Vol. 56, No. 169, August 1991.[222] M. Naor. Bit Commitment using Pseudorandom Generators. Journal ofCryptology, Vol. 4, pages 151{158, 1991.[223] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Zero-KnowledgeArguments for NP can be Based on General Assumptions. Journal ofCryptology, Vol. 11, pages 87{108, 1998.[224] M. Naor and O. Reingold. Synthesizers and their Application to the Paral-lel Construction of Pseudo-Random Functions. In 36th IEEE Symposiumon Foundations of Computer Science, pages 170{181, 1995.[225] M. Naor and O. Reingold. On the Construction of Pseudo-Random Per-mutations: Luby-Racko� Revisited. Journal of Cryptology, Vol. 12 (1),pages 29{66, 1999.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

796 BIBLIOGRAPHY[226] M. Naor and O. Reingold. From Unpredictability to Indistinguishabil-ity: A Simple Construction of Pseudorandom Functions from MACs. InCrypto98, Springer Lecture Notes in Computer Science (Vol. 1464), pages267{282.[227] M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryp-tographic Application. 21st ACM Symposium on the Theory of Computing,1989, pages 33{43.[228] M. Naor and M. Yung. Public-Key Cryptosystems Provably SecureAgainst Chosen Ciphertext Attacks. In 22nd ACM Symposium on theTheory of Computing, pages 427-437, 1990.[229] N. Nisan and D. Zuckerman. Randomness is Linear in Space. Journal ofComputer and System Science, Vol. 52 (1), pages 43{52, 1996.[230] A.M. Odlyzko. The future of integer factorization. CryptoBytes (Thetechnical newsletter of RSA Laboratories), Vol. 1 (No. 2), pages 5-12,1995. Available from http://www.research.att.com/�amo[231] A.M. Odlyzko. Discrete logarithms and smooth polynomials. In FiniteFields: Theory, Applications and Algorithms, G. L. Mullen and P. Shiue,eds., Amer. Math. Soc., Contemporary Math. Vol. 168, pages 269{278,1994. Available from http://www.research.att.com/�amo[232] T. Okamoto. On relationships between statistical zero-knowledge proofs.In 28th ACM Symposium on the Theory of Computing, pages 649{658,1996.[233] R. Ostrovsky, R. Venkatesan and M. Yung, \Secure Commitment AgainstPowerful Adversary: A Security Primitive based on Average Intractability.In Proceedings of the 9th Symposium on Theoretical Aspects of ComputerScience (STACS92), pages 439{448.[234] R. Ostrovsky and A. Wigderson. One-Way Functions are essential for Non-Trivial Zero-Knowledge. In 2nd Israel Symp. on Theory of Computing andSystems, IEEE Comp. Soc. Press, pages 3{17, 1993.[235] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks.In 10th ACM Symposium on Principles of Distributed Computing, pages51{59, 1991.[236] T.P. Pedersen and B. P�tzmann. Fail-Stop Signatures. SIAM Journal onComputing, Vol. 26/2, pages 291{330, 1997. Based on several earlier work(see �rst footnote in the paper).[237] B. P�tzmann. Digital Signature Schemes (General Framework and Fail-Stop Signatures). Springer Lecture Notes in Computer Science (Vol. 1100),1996.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 797[238] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-KnowledgeProofs in Logarithmic Number of Rounds. In 43rd IEEE Symposium onFoundations of Computer Science, 2002.[239] V. Pratt. Every Prime has a Succinct Certi�cate. SIAM Journal onComputing, Vol. 4, pages 214{220, 1975.[240] M.O. Rabin. Probabilistic Algorithm for Testing Primality. Journal ofNumber Theory, Vol. 12, pages 128{138, 1980.[241] M.O. Rabin. Digitalized Signatures. In Foundations of Secure Computa-tion (R.A. DeMillo et. al. eds.), Academic Press, 1977.[242] M.O. Rabin. Digitalized Signatures and Public Key Functions as In-tractable as Factoring. MIT/LCS/TR-212, 1979.[243] M.O. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. MemoTR-81, Aiken Computation Laboratory, Harvard U., 1981.[244] C. Racko� and D.R. Simon. Non-Interactive Zero-Knowledge Proof ofKnowledge and Chosen Ciphertext Attack. In Crypto91, Springer Verlag,Lecture Notes in Computer Science (Vol.), pages 433{444.[245] R. Raz. A Parallel Repetition Theorem. SIAM Journal on Computing,Vol. 27 (3), pages 763{803, 1998.[246] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In EuroCrypt99, Springer LNCS 1592, pages 415{413.[247] R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining DigitalSignatures and Public Key Cryptosystems. CACM, Vol. 21, Feb. 1978,pages 120{126.[248] P. Rogaway. TheRound Complexity of Secure Protocols. MIT Ph.D. Thesis, June 1991.Available from http://www.cs.ucdavis.edu/�rogaway/papers.[249] J. Rompel. One-way Functions are Necessary and Su�cient for SecureSignatures. In 22nd ACM Symposium on the Theory of Computing, 1990,pages 387{394.[250] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and AchievingChosen-Ciphertext Security. In 40th IEEE Symposium on Foundations ofComputer Science, pages 543{553, 1999.[251] A. Sahai. Improved Constructions Achieving Chosen-Ciphertext Security.In preparation, 2001. See [91].[252] A. Sahai and S. Vadhan. A Complete Promise Problem for StatisticalZero-Knowledge. In 38th IEEE Symposium on Foundations of ComputerScience, pages 448{457, 1997.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

798 BIBLIOGRAPHY[253] C.P. Schnorr and H.H. Horner, Attacking the Chor-Rivest Cryptosystemby Improved Lattice Reduction. In EuroCrypt95, Springer-Verlag LectureNotes in Computer Science (Vol. 921), pages 1{12.[254] A. Shamir. How to Share a Secret. CACM, Vol. 22, Nov. 1979, pages612{613.[255] A. Shamir. A Polynomial-Time Algorithm for Breaking the Merkle-Hellman Cryptosystem. In 23rd IEEE Symposium on Foundations of Com-puter Science, pages 145{152, 1982.[256] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages869{877, 1992.[257] A. Shamir, R.L. Rivest, and L. Adleman. Mental Poker. MIT/LCS ReportTM-125, 1979.[258] C.E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech.J., Vol. 28, pages 656{715, 1949.[259] M. Sipser. A Complexity Theoretic Approach to Randomness. In 15thACM Symposium on the Theory of Computing, pages 330{335, 1983.[260] M. Sipser. Introduction to the Theory of Computation. PWS PublishingCompany, 1997.[261] R. Solovay and V. Strassen. A Fast Monte-Carlo Test for Primality. SIAMJournal on Computing, Vol. 6, pages 84{85, 1977. Addendum in SIAMJournal on Computing, Vol. 7, page 118, 1978.[262] D. Stinson Universal hashing and authentication codes. Designs, Codesand Cryptography, Vol. 4, pages 369{380, 1994.[263] M. Sudan. Decoding of Reed-Solomon Codes beyond the error-correctionBound. Jour. of Complexity, Vol. 13 (1), pages 180{193, 1997.[264] M. Tompa and H. Woll, Random Self-Reducibility and Zero-KnowledgeInteractive Proofs of Possession of Information. In 28th IEEE Symposiumon Foundations of Computer Science, pages 472{482, 1987.[265] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD Thesis,Department of Mathematics, MIT, 1999.[266] S. Vadhan. On Constructing Locally Computable Extractors and Cryp-tosystems in the Bounded Storage Model. Cryptology ePrint Archive, Re-port 2002/162, 2002.[267] A. Vardi. Algorithmic Complexity in Coding Theory and the MinimunDistnace Problem. In 29th ACM Symposium on the Theory of Computing,pages 92{108, 1997.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

BIBLIOGRAPHY 799[268] U.V. Vazirani and V.V. Vazirani. E�cient and Secure Pseudo-RandomNumber Generation. 25th IEEE Symposium on Foundations of ComputerScience, pages 458{463, 1984.[269] M. Wegman and L. Carter. New Hash Functions and their Use in Au-thentication and Set Equality. Journal of Computer and System Science,Vol. 22, 1981, pages 265{279.[270] A. D. Wyner. The Wire-Tap Channel. Bell System Technical Journal,Vol. 54 (No. 8), pages 1355{1387, Oct. 1975.[271] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEESymposium on Foundations of Computer Science, pages 80{91, 1982.[272] A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Sympo-sium on Foundations of Computer Science, pages 162{167, 1986.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

