
200 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMSto be witness-hiding (see Section 4.6). Hence the resulting identi�cation scheme has con-stant round complexity. We remark that for identi�cation purposes it su�ces to performConstruction 4.7.9 superlogarithmically many times. Furthermore, also less repetitions areof value: when applying Construction 4.7.9 k = O(logn) times, and using the resultingprotocol in Construction 4.7.8, we get a scheme (for identi�cation) in which impersonationcan occur with probability at most 2�k.Identi�cation schemes and proofs of abilityAs hinted above, a proof of knowledge of a string (i.e., the ability to output the string) is aspecial case of a proof of ability to do something. It turns out that identi�cation schemescan be based also on the more general concept of proofs of ability. We avoid de�ning thisconcept, and refrain ourself to two \natural" examples of using a proof of ability as basisfor identi�cation.It is an everyday practice to identify people by their ability to produce their signature.This practice can be carried into the digital setting. Speci�cally, the public record of Aliceconsists of her name and the veri�cation key corresponding to her secret signing key in apredetermined signature scheme. The identi�cation protocol consists of Alice signing arandom message chosen by the veri�er.A second popular means of identi�cation consists of identifying people by their ability toanswer correctly personal questions. A digital analogue to this practice follows. To this endwe use pseudorandom functions (see Section 3.6) and zero-knowledge proofs (of membershipin a language). The public record of Alice consists of her name and a \commitment" toa randomly selected pseudorandom function (e.g., either via a string-commitment to theindex of the function or via a pair consisting of a random domain element and the value ofthe function at this point). The identi�cation protocol consists of Alice returning the valueof the function at a random location chosen by the veri�er, and supplying a zero-knowledgeproof that the value returned indeed matches the function appearing in the public record.We remark that the digital implementation o�ers more security than the everyday practice.In the everyday setting the veri�er is given the list of all possible question and answer pairsand is trusted not to try to impersonate as the user. Here we replaced the possession of thecorrect answers by a zero-knowledge proof that the answer is correct.4.7.5 Strong Proofs of KnowledgeDe�nition 4.7.2 relies in a fundamental way on the notion of expected running-time. We thusprefer the following more stingent de�nition in which the knowledge extractor is required torun in strict polynomial-time (rather than in expected polynomial-time). (We also take theoppertumity to postulate { in the de�nition { that no-instances are accepted with negligibleprobability; this is done by extending the scope of the validity condition also to x's not inLR.)



4.7. * PROOFS OF KNOWLEDGE 201De�nition 4.7.10 (System of strong proofs of knowledge): Let R be a binary relation.We say that an interactive function V is a strong knowledge veri�er for the relation R if thefollowing two conditions hold.� Non-triviality: As in De�nition 4.7.2.� Strong Validity: There exists a negligible function � : IN 7! [0; 1] and a probabilistic(strict) polynomial-time oracle machine K such that for every interactive function Pand every x; y; r 2 f0; 1g�, machine K satis�es the following condition:Let p(x) and Px;y;r be as in De�nition 4.7.2. Then, if p(x) > �(jxj) then,on input x and access to oracle Px;y;r, with probability at least 1=2, machineK outputs a solution s2R(x).The oracle machine K is called a strong knowledge extractor.An interactive pair (P; V ) so that V is a strong knowledge veri�er for a relation R and Pis a machine satisfying the non-triviality condition (with respect to V and R) is called asystem for strong proofs of knowledge for the relation R.Sequentially repeating the (zero-knowledge) proof systems for Graph Isomorphism (i.e.,Construction 4.3.6), su�ciently many times yields a strong proof of knowledge of isomor-phism. The key observation is that each application of the basic proof system (i.e., Con-struction 4.3.6), results in one of two possible situations depending on whether the veri�erasks to see an isomorphism to the �rst or second graph. In case the prover answers correctlyin both cases, we can retreive an isomorphism between the input graphs (by composing theisomorphisms provided in the two cases). In case the prover fails in both cases, the veri�erwill reject regradless of what the prover does from this point on. Speci�cally, the abovediscussion suggests the following construction of a strong knowledge extractor (where werefer to repeating the basic proof systems n times and set �(n) = 2�n).Strong knowledge extractor for graph isomorphism: On input (G1; G2) and accessto the prover-strategy oracle P �, we procced in n iterantions, starting with i = 1. Initially,T (the trascript so far), is empty.1. Obtain the intermediate graph, G0, from the prover strategy (i.e., G0 = P �(T )).2. Extract the prover's answer to both possible veri�er moves. That is, for j = 1; 2, let j  P �(T; j). We say that  j is correct if it is an isomorphism between between Gjand G0.3. If both  j's are correct then �   �12  1 is an isomorphism between G1 and G2. Inthis case we output � and halt.



202 CHAPTER 4. ZERO-KNOWLEDGE PROOF SYSTEMS4. In case  j is correct for a single j and i < n, we let T  T; j, and proceed to the nextiteration (i.e., i i+ 1). Otherwise, halt with no output.It can be easily veri�ed that if the extractor halts with no output in iteration i < n thenthe veri�er (in the real interaction) accepts with probability zero. Similarly, if the extractorhalts with no output in iteration n then the veri�er (in the real interaction) accepts withprobability 2�n. Thus, whenever p(G1; G2) > 2�n, the extractor succeeds in recovering anisomporphism between the two input graphs. A similar argument may be applied to somezero-knowledge proof systems for NP. In particular, consider n sequential repetitions of thefollowing basic proof system for the Hamiltonian Cycle (HC) problem which is NP-complete(and thus get proof systems for any language in NP). We consider directed graphs (andthe existence of directed Hamiltonian cycles).Construction 4.7.11 (Basic proof system for HC):� Common Input: a directed graph G = (V;E) with n def= jV j.� Auxiliary Input to Prover: a directed Hamiltonian Cycle, C � E, in G.� Prover's �rst step (P1): The prover selects a random permutation, �, of the verticesV , and commits to the entries of the adjacency matrix of the resulting permuted graph.That is, it sends an n-by-n matrix of commitments so that the (�(i); �(j))th entry isa commitment to 1 if (i; j) 2 E, and is a commitment to 0 otherwise.� Veri�er's �rst step (V1): The veri�er uniformly selects � 2 f0; 1g and sends it to theprover.� Prover's second step (P1): If � = 0 then the prover sends � to the veri�er along withthe revealing of all commitments. Otherwise, the prover reveals to the veri�er onlythe commitments to entries (�(i); �(j)) with (i; j) 2 C.� Veri�er's second step (V1): If � = 0 then the veri�er checks that the revealed graphis indeed isomorphic, via �, to G. Otherwise, the veri�er just checks that all revealedvalues are 1 and that the corresponding entries form a simple n-cycle. (Of course inboth cases, the veri�er checks that the revealed values do �t the commitments.) Theveri�er accepts if and only if the corresponding condition holds.We mention that the known (zero-knowledge) strong proofs of knowledge are all costy inround-complexity. Still, we haveTheorem 4.7.12 Assuming the existence of (nonuniformly) one-way function, every NPrelation has a zero-knowledge system for strong proofs of knowledge.


