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1 IntroductionOne-way functions are functions that are easy to compute but hard to invert, where the hardnesscondition refers to the average-case complexity of the inverting task. The existence of one-wayfunctions is the cornerstone of modern cryptography: almost all cryptographic primitives implythe existence of one-way functions, and most of them can be constructed based either on theexistence of one-way functions or on related (but seemingly stronger) versions of this assumption.As noted above, the hardness condition of one-way functions is an average-case complexitycondition. Clearly, this average-case hardness condition implies a worst-case hardness condition;that is, the existence of one-way functions implies that NP is not contained in BPP . A puzzlingquestion of fundamental nature is whether or not the necessary worst-case condition is a su�cientone; that is, can one base the existence of one-way functions on the assumption that NP is notcontained in BPP .More than two decades ago, Brassard [Br] observed that the inverting task associated with aone-way permutation cannot beNP-hard, unlessNP = coNP. The question was further addressedin the works of Feigenbaum and Fortnow [FeFo] and Bogdanov and Trevisan [BoTr], which focusedon the study of worst-case to average-case reductions among decision problems.1.1 Our Main ResultsIn this paper we re-visit the aforementioned question, but do so explicitly. We study possiblereductions from a worst-case decision problem to the task of average-case inverting a polynomial-time computable function (i.e., reductions that are supposed to establish that the latter functionis one-way based on a worst-case assumption regarding the decision problem). Speci�cally, weconsider (randomized) reductions of NP to the task of average-case inverting a polynomial-timecomputable function f , and capitalize on the additional \computational structure" of the searchproblem associated with inverting f . This allows us to strengthen previously known negativeresults, and obtain the following two main results:1. If given y one can e�ciently compute jf�1(y)j then the existence of a (randomized) reductionof NP to the task of inverting f implies that coNP � AM.The result extends to functions for which the preimage size is e�ciently veri�able via anAM protocol. For example, this includes regular functions (cf., e.g., [GKL]) with e�cientlyrecognizable range.Recall that AM is the class of sets having two-round interactive proof systems, and that itis widely believed that coNP is not contained in AM. Thus, it follows that such reductionscannot exist (unless coNP � AM).We stress that this result holds for any reduction, including adaptive ones. We note thatthe previously known negative results regarding worst-case to average-case reductions wereessentially con�ned to non-adaptive reductions (cf. [FeFo, BoTr], where [FeFo] also handlesrestricted levels of adaptivity). Furthermore, the result holds also for reductions to worst-caseinverting f , thus establishing a separation between this restricted type of one-way functionsand the general ones (see Remark 7).2. For any (polynomial-time computable) function f , the existence of a (randomized) non-adaptive reduction of NP to the task of average-case inverting f implies that coNP � AM.This result improves over the previous negative results of [FeFo, BoTr] that placed coNP innon-uniform AM (instead of in uniform AM).2



These negative results can be interpreted in several ways: see discussion in Section 6.1.2 Relation to Feigenbaum-Fortnow andBogdanov-TrevisanOur work is inspired by two previous works. The �rst work, by Feigenbaum and Fortnow [FeFo],posed the question of whether or not NP-complete problems can be random self-reducible. That is,can (worst case) instances of NP-complete problems be reduced to one or more random instances,where the latter instances are drawn according to a predetermined distribution. The main resultof [FeFo] is that if such (non-adaptive) reductions exist, then coNP is in a non-uniform versionof AM, denoted AMpoly. Non-uniformity was used in their work to encode statistics about thetarget distribution of the reduction.Bogdanov and Trevisan [BoTr] start by viewing the result of [FeFo] as a result about the impos-sibility of worst-case to average-case reductions for NP-complete problems. They note that evenif one cares about the average-case complexity of a problem with respect to a speci�c distribution(e.g., the uniform one) then it needs not be the case that a worst-case to average-case reductionmust make queries according to this distribution. Furthermore, the distribution of queries maydepend on the input to the reduction, and so statistics regarding it cannot be given as advice.Nevertheless, combining the ideas of [FeFo] with additional ideas (some borrowed from the studyof locally-decodable codes [KaTr]), Bogdanov and Trevisan showed that any non-adaptive reduc-tion of (worst-case) NP to the average-case complexity of NP (with respect to any sampleabledistribution) implies that coNP � AMpoly.Although a main motivation of [BoTr] is the question of basing one-way functions on worst-case NP-hardness, its focus (like that of [FeFo]) is on the more general study of decision problems.Using known reductions between search and decision problems in the context of distributional prob-lems [BCGL, ImLe], Bogdanov and Trevisan [BoTr] also derive implications on the (im)possibilityof basing one-way functions on NP-hardness. In particular, they conclude that if there exists anNP-complete set for which deciding any instance is non-adaptively reducible to inverting a one-wayfunction (or, more generally, to a search problem with respect to a sampleable distribution), thencoNP � AMpoly.We emphasize that the techniques of [BoTr] refer explicitly only to decision problems, and donot relate to the underlying search problems (e.g., inverting a supposedly one-way function). Indoing so, they potentially lose twice: they lose the extra structure of search problems and theylose the additional structure of the task of inverting polynomial-time computable functions. Toillustrate the latter aspect, we re-formulate the problem of inverting a polynomial-time computablefunction as follows (or rather spell out what it means in terms of search problems). The problemof (average-case) inverting f on the distribution f(Un), where Un denotes the uniform distributionover f0; 1gn, has the following features:1. We care about the average-case complexity of the problem; that is, the probability that ane�cient algorithm given a random (e�ciently sampled) instance y (i.e., y  f(Un)) �ndsx 2 f�1(y).2. The problem is in NP; that is, the solution is relatively short and given an instance of theproblem (i.e., y) and a (candidate) solution (i.e., x), it is easy to verify that the solution iscorrect (i.e., y = f(x)).3. There exists an e�cient algorithm that generates random instance-solution pairs (i.e., pairs(y; x) such that y = f(x), for uniformly distributed x 2 f0; 1gn).3



Indeed, the �rst two items are common to all average-case NP-search problems (with respect tosampleable distributions), but the third item is speci�c to the context of one-way functions (cf. [Go,Sec. 2.1]). In contrast, a generic sampleable distribution of instances is not necessarily coupled witha corresponding sampleable distribution of random instance-solution pairs. Indeed, capitalizing onthe third item is the source of our success to obtain stronger (negative) results regarding thepossibility of basing one-way functions on NP-hardness.The results of [BoTr, FeFo] are limited in two ways. First, they only consider non-adaptivereductions, whereas the celebrated worst-case to average-case reductions of lattice problems (cf. [Aj,MiRe]) are adaptive. Furthermore, these positive results seem to illustrate the power of adaptiveversus non-adaptive reductions.1 Second, [BoTr, FeFo] reach conclusions involving a non-uniformcomplexity class (i.e., AMpoly). Non-uniformity seems an artifact of their techniques, and onemay hope to conclude that coNP � AM rather than coNP � AMpoly. (One consequence of theuniform conclusion is that it implies that the polynomial-time hierarchy collapses to the secondlevel, whereas the non-uniform conclusion only implies a collapse to the third level.) As statedbefore, working directly with one-way functions allows us to remove the �rst shortcoming in somecases and remove the second shortcoming in all cases.1.3 The Bene�ts of Direct Study of One-Way FunctionsThe results presented in this paper indicate the gains of studying the question of basing one-wayfunctions on NP-hardness directly, rather than as a special case of a more general study. The gainsbeing, getting rid of the non-uniformity altogether, and obtaining a meaningful negative result forthe case of general (adaptive) reductions. Speci�cally, working directly with one-way functionsallows us to consider natural special cases of potential one-way functions and to establish strongernegative results for them (i.e., results regarding general rather than non-adaptive reductions).In particular, we consider polynomial-time computable functions f for which, given an image y,one can verify the number of preimages of y under f via a constant-round protocol. We call suchfunctions size-veri�able, and show that the complexity of inverting them resembles the complexityof inverting polynomial-time computable permutations (and is separated from the complexity ofinverting general polynomial-time computable functions, see Remark 7).Indeed, the simplest case of size-veri�able functions is that of a permutation (i.e., a length-preserving 1-1 function). Another interesting special case is that of regular functions that havean e�ciently recognizable range, where f is regular if each image of f has a number of preimagesthat is determined by the length of the image. We prove that any reduction (which may be fullyadaptive) of NP to inverting such a function f implies coNP � AM. Indeed, this is a special caseof our result that holds for any size-veri�able function f .We remark that, in the context of cryptographic constructions, it has been long known thatdealing with regular one-way functions is easier than dealing with general one-way functions (see,e.g., [GKL, GIL+, DiIm, HHK+]). For example, constructions of pseudorandom generators were�rst shown based on one-way permutation [BlMi, Ya], followed by a construction that used regularone-way functions [GKL], and culminated in the complex construction of [HILL] that uses any one-way function. Our work shows that regularity of a function (or, more generally, size-veri�ability) isimportant also for classifying the complexity of inverting f , and not only the ease of using it withincryptographic constructions.1We comment that the power of adaptive versus non-adaptive reductions has been studied in various works (e.g.,[FFLS, HNOS, BaLa]). It is known that if NP 6� BPE, then there exists a set in NP n BPP that is adaptivelyrandom self-reducible but not non-adaptively random self-reducible.4



We believe that the study of the possibility of basing one-way functions on worst-case NP-hardness is the most important motivation for the study of worst-case to average-case reductionsfor NP . In such a case, one should consider the possible gain from studying the former questiondirectly, rather than as a special case of a more general study. We believe that the results presentedin this paper indicate such gains. We hope that this framework may lead to resolving the generalquestion of the possibility of basing the existence of general one-way functions on worst-case NP-hardness via general reductions.1.4 TechniquesOur results are proved by using the hypothetical existence of corresponding reductions in order toconstruct constant-round interactive proof systems for coNP (and using [Ba85, GoSi] to concludethat coNP � AM). Towards this end we develop constant-round protocols for verifying the size ofvarious \NP-sets" (or rather to sets of NP-witnesses for given instances in some predeterminedNP-sets).2 Recall that lower-bound protocols for this setting are well-known (cf., e.g., Goldwasser andSipser [GoSi] and [GVW]), but the known upper-bound protocol of Fortnow [Fo] (see also [AiHa,BoTr]) works only when the veri�er knows a \secret" element in the set. The latter conditionseverely limits the applicability of this upper-bound protocol, and this is the source of all technicaldi�culties encountered in this work.To overcome the aforementioned di�culties, we develop two new constant-round protocols forupper bounding the sizes ofNP sets. These protocols su�ce for our applications, and may be usefulalso elsewhere. The two protocols are inspired by the works of Feigenbaum and Fortnow [FeFo]and Bogdanov and Trevisan [BoTr], respectively, and extend the scope of the original ideas.The �rst protocol, called con�dence by comparison, signi�cantly extends the main idea of Feigen-baum and Fortnow [FeFo]. The common setting consists of a veri�er that queries a prover suchthat the following two conditions hold:1. The prover may cheat (without being detected) only in \one direction": For example, inthe decision problem setting of [FeFo], the prover may claim that some yes-instances (of anNP-set) are no-instances (but not the other way around since it must support such claimsby NP-witnesses). In our setting (of verifying set sizes) the prover may claim that sets aresmaller than their actual size, but cannot signi�cantly overestimate the size of sets (due tothe use of a lower-bound protocol).2. The veri�er can obtain (reliable) statistics regarding the distribution of answers to randominstances. In [FeFo] the relevant statistics is the frequency of yes-instances in the distribu-tion of instances of a certain size, which in turn is provided as non-uniform advice. In oursetting the statistics is the expected logarithm of the size of a random set (drawn from somedistribution), and this statistics can be generated by randomly selecting sets such that theupper-bound protocol of [Fo] (and not merely the lower-bound protocols of [GoSi, GVW])can be applied.Combining the limited (\one directional") cheating of Type 1 with the statistics of Type 2 yieldsapproximately correct answers for the questions that the veri�er cares about. In [FeFo] this meansthat almost all queried instances are characterized correctly, while in our setting it means that foralmost all sets sizes we obtain good approximations.2That is, for a witness relation R that corresponds to some NP-set S = fx : 9y (x; y)2Rg, we consider the setsR(x) = fy : (x; y)2Rg for various x 2 S. 5



The second protocol abstracts a central idea of Bogdanov and Trevisan [BoTr], and is basedon \hiding" (from the prover) queries of interest among queries drawn from a related distribution.This protocol can be used whenever an \NP-set" is drawn from a distribution D and the veri�ercan also sample sets from another distribution eD that has the following two properties: (a) Thereexists an constant-round protocol for proving upper bounds on sets drawn from eD, and (b) thedistribution eD dominates D in the sense that PrS�D[S] � � � PrS� eD[S], where � is polynomial inthe relevant e�ciency parameter. We stress that the protocol postulated in (a) need not be theupper-bound protocol of [Fo]; it may also be a con�dence by comparison protocol as outlined inthe previous paragraph.1.5 OrganizationIn Section 2, we provide an overview of our proofs as well as a formal statement of our main results.Detailed proofs can be found in the the following sections (i.e., preliminaries are in Section 3, thetreatment of adaptive reductions is in Section 4, and the treatment of general functions is in Section5). In Section 6 we discuss possible interpretations of our negative results.2 Overview of Results and ProofsHaving observed the potential bene�t of working explicitly with the problem of inverting a polynomial-time computable function f , materializing this bene�t represents the bulk of the technical challengeand the technical novelty of the current work.Let us �rst clarify what we mean by saying that a decision problem L is (e�ciently and ran-domly) reducible to the problem of inverting a (polynomial-time computable) function f . We takethe straightforward interpretation (while using several arbitrary choices, like in setting the thresholddetermining the de�nition of an inverting oracle):De�nition 1 (inverting oracles and reductions). A function O : f0; 1g� ! f0; 1g� is called an(average-case) f -inverting oracle if, for every n, it holds that Pr[O(f(x)) 2 f�1(f(x))] � 1=2, wherethe probability is taken uniformly over x 2 f0; 1gn.For a probabilistic oracle machine R, we denote by RO(w) a random variable representing theoutput of R on input w and access to oracle O, where the probability space is taken uniformly overthe probabilistic choices of machine R (i.e., its randomness).A probabilistic polynomial-time oracle machine R is called a reduction of L to (average-case)inverting f if, for every w 2 f0; 1g� and any f -inverting oracle O, it holds that Pr[RO(w) =�L(w)] � 2=3, where �L(w) = 1 if w 2 L and �L(w) = 0 otherwise.A reduction as in De�nition 1 may only establish that f is a i.o. and weak3 one-way function(i.e., that f cannot be inverted with probability exceeding 1=2 on every input length), whichmakes our impossibility results even stronger. Throughout this work, the function f will always3In contrast, the standard de�nition of one-way function requires that any e�cient inverting algorithm succeedswith negligible probability (i.e., probability that is smaller than 1=poly(n) on all but �nitely many n's). Here werelax the security requirement in two ways (by requiring more of a successful inverting algorithm): �rst, we requirethat the inverting algorithm be successful on any input length (hence hardness only occurs i.o.), and second that thesuccess probability exceeds 1=2 rather than an arbitrary small 1=poly(n) (hence the term \weak").6



be polynomial-time computable, and for simplicity we will also assume that it is length preserving(i.e., jf(x)j = jxj for all x).Let us take a closer look at the reduction R. On input w, it may ask polynomially many queriesto the inverting oracle. In adaptive reductions, later queries may depend on the oracle answersto earlier queries. In non-adaptive reductions all queries are computed in advance (based solelyon the input w and the randomness of the reduction, denoted r). For simplicity, we will assumethroughout this section that all queries are of length jwj.Suppose, that there exists a reduction R from deciding membership in L to inverting the functionf . We aim to use this reduction to give an constant-round protocol for L, and conclude that if Lis NP-complete (or just NP-hard) then coNP � AM. (We mention that a similar constant-roundprotocol can be given for L itself, but we have no need for the latter protocol.)As in [FeFo, BoTr], the main backbone of our constant-round protocol for L is an emulation ofthe reduction R on input w (i.e., the common input of the protocol), which in turn yields an outputindicating whether or not w 2 L. Of course, the veri�er cannot emulate the reduction on its own,because the reduction requires access to an f -inverting oracle. Instead, the prover will play the roleof the inverting oracle, thus enabling the emulation of the reduction. Needless to say, the veri�erwill check that all answers are actually f -preimages of the corresponding queries (and for starterswe will assume that all queries are in the image of f). Since we aim at a constant-round protocol,we send all queries to the prover in one round, which in the case of an adaptive reduction requiressending the randomness r of the reduction to the prover. Note that also in the non-adaptive case,we may as well just send r to the prover, because the prover may anyhow be able to determine rfrom the queries.The fact that r is given (explicitly or implicitly) to the prover is the source of all di�culties thatfollow. It means that the prover need not answer the queries obliviously of other queries (or of r),but may answer the queries depending on r. In such a case, the prover's answers (when consideringall possible r) are not consistent with any single oracle. Indeed, all these di�culties arise only incase f is not 1-1 (and indeed in case f is 1-1 the correct answer is fully determined by the query).We stress that the entire point of this study is the case in which f is not 1-1. In the special casethat f is 1-1 (and length preserving), inverting f cannot be NP-hard for rather obvious reasons(as has been well-known for a couple of decades; cf. [Br]).4To illustrate what may happen in the general case, consider a 2-to-1 function f . Note that anarbitrary reduction of L to inverting f may fail in the rare case that the choice of the f -preimagesreturned by the oracle (i.e., whether the query y is answered by the �rst or second element inf�1(y)) matches the reduction's internal coin tosses.5 This event may occur rarely in the actualreduction (no matter which f -inverting oracle it uses), but a cheating prover may always answer4Intuitively, inverting such an f (which is a search problem in which each instance has a unique solution) corre-sponds to a decision problem in NP \ coNP (i.e., given (y; i) determine the i-th bit of f�1(y)). Thus, the fact thatinverting f cannot be NP-hard (unless NP = coNP) is analogous to the fact that sets in NP \ coNP cannot beNP-hard (again, unless NP = coNP). In contrast, in case f is not 1-1, the corresponding decision problems areeither not known to be in NP \ coNP or are promise problems (cf. [ESY]) in the \promise problem class" analogueof NP \ coNP. Recall that promise problems in the latter class may be NP-hard even if NP 6= coNP (see [ESY]).5For example, given an arbitrary reduction of L to inverting f , consider a modi�ed reduction that tosses nadditional coins �1; :::; �n, issues n additional queries, and halts without output if and only if for i = 1; :::; n the i-thadditional query is answered with the (�i + 1)-st corresponding preimage (in lexicographic order). This reductionworks with probability that is very close to the original one, but a cheating prover can always cause its emulation tohalt without output. 7



in a way that matches the reduction's coins (hence violating the soundness requirement of theprotocol).A di�erent way of looking at things is that the reduction guarantees that, for any adequate(f -inverting) oracle O, with probability 2=3 over the choices of r, machine R decides correctlywhen given oracle access to O. However, it is possible that for every r there exists an oracle Orsuch that R, when using coins r, decides incorrectly when given oracle access to Or. If this is thecase (which we cannot rule out) then the prover may cheat by answering like the bad oracle Or.In the rest of this section, we provide an outline of how we deal with this di�culty in each ofthe two cases (i.e., size-veri�able functions and non-adaptive reductions).2.1 Size-Veri�able Functions (Adaptive Reductions)Recall that our aim is to present an constant-round protocol for L, when we are given a general(adaptive) reduction R of the (worst-case) decision problem of L to inverting f . We denote byq the number of queries made by R, by R(w; r; a1; :::; ai�1) the i-th query made by R on inputw and randomness r after receiving the oracle answers a1; :::; ai�1, and by R(w; r; a1; :::; aq) thecorresponding �nal decision. Recall that for simplicity, we assume that all queries are of lengthn def= jwj. In the bulk of this subsection we assume that, given y, one can e�ciently determinejf�1(y)j.As a warm-up we �rst assume that jf�1(y)j � poly(jyj), for every y. In this case, on commoninput w, the parties proceed as follows.1. The veri�er selects uniformly coins r for the reduction, and sends r to the prover.2. Using r, the prover emulates the reduction as follows. When encountering a query y, theprover uses the lexicographically �rst element of f�1(y) as the oracle answer (and uses ? iff�1(y) = �). Thus, it obtains the corresponding list of queries y1; :::; yq, which it sends to theveri�er along with the corresponding sets f�1(y1); :::; f�1(yq).3. Upon receiving y1; :::; yq and A1; :::; Aq , the veri�er checks, for every i, that jAij = jf�1(yi)jand that f(x) = yi for every x 2 Ai. Letting ai denote the lexicographically �rst element ofAi, the veri�er checks that R(w; r; a1; :::; ai�1) = yi for every i. The veri�er accepts w (as amember of L) if and only if all checks are satis�ed and R(w; r; a1; :::; aq) = 0.Note that the checks performed by the veri�er \force" the prover to emulate a uniquely determined(perfect) inverting oracle (i.e., one that answers each query y with the lexicographically �rst elementof f�1(y)). Thus, the correctness of the reduction implies the completeness and soundness of theabove constant-round protocol.In general, however, the size of f�1(y), for y in the range of f may not be bounded by apolynomial in n (where n = jyj = jwj). In this case, we cannot a�ord to have f�1(y) as part of amessage in the protocol (because it is too long). The natural solution is to have the veri�er senda random hash function h : f0; 1gn ! f0; 1g`, where ` = b(log2 jf�1(y)j=poly(n))c, and let theprover answer with h�1(0`) \ f�1(y) (rather than with f�1(y)). The problem is that in this casethe veri�er cannot check the \completeness" of the list of preimages (because it cannot computejh�1(0`)\f�1(y)j), which allows the prover to omit a few members of h�1(0`)\f�1(y) at its choice.Recall that this freedom of choice (of the prover) may obliterate the soundness of the protocol.8



The solution is that, although we have no way of determining the size of h�1(0`) \ f�1(y), wedo know that its expected size is exactly jf�1(y)j=2`, where the expectation is taken over the choiceof h (assuming that a random h maps each point in f0; 1gn uniformly on f0; 1g`). Furthermore,the prover cannot add elements to h�1(0`) \ f�1(y) (because the veri�er can verify membershipin this set), it can only omit elements. But if the prover omits even a single element, it ends-upsending a set that is expected to be noticeably smaller than jf�1(y)j=2` (because the expected sizeof h�1(0`) \ f�1(y) is a polynomial in n). Thus, if we repeat the process many times, the provercannot a�ord to cheat in most of these repetitions, because in that case the statistics will deviatefrom the expectation by too much.Before turning to the speci�c implementation of this idea, we mention that the above reasoningcorresponds to the con�dence by comparison paradigm outlined in Section 1.4. Speci�cally, theprover may cheat (without being detected) only in one direction; that is, the prover may send aproper subset of a set of preimages under f and h (rather than the set itself), but it cannot sendelements not in this set because membership in the set is e�ciently veri�able by the veri�er.In the following protocol we use families of hash functions of very high quality (e.g., poly(n)-wise independent ones). Speci�cally, in addition to requiring that a random h : f0; 1gn ! f0; 1g`maps each point uniformly, we require that, for a suitable polynomial p and for any S � f0; 1gn ofsize at least p(n) � 2`, with overwhelmingly high probability over the choice of h it is the case thatjh�1(0`) \ Sj < 2jSj=2`. In particular, the probability that this event does not occur is so smallthat, when conditioning on this event, the expected size of jh�1(0`)\Sj is (1�2�n) � jSj=2`. (Thus,under this conditioning and for S as above, the variance of 2`jh�1(0`) \ Sj=jSj is smaller than 2.)1. The veri�er selects uniformly m = n � q2p(n)2 = poly(n) sequences of coins, r(1); :::; r(m) forthe reduction, and sends them to the prover. In addition, for each k = 1; :::;m, i = 1; :::; qand ` = 1; :::; n, it selects and sends a random hash function hk;i;` : f0; 1gn ! f0; 1g`.To streamline the following description, for j � 0, we arti�cially de�ne hk;i;j such thath�1k;i;j(0j) def= f0; 1gn. In such a case, S \ h�1k;i;j(0j) = S, and so an instruction to do somethingwith the former set merely means using the latter set.2. For every k = 1; :::;m, the prover uses r(k) to emulate the reduction as follows. When encoun-tering the i-th query, y(k)i , it determines `(k)i = b(log2 jf�1(y(k)i )j=p(n))c, and uses the lexico-graphically �rst element of f�1(y(k)i ) \ h�1k;i;`(k)i (0`(k)i ) as the oracle answer (and uses ? if thelatter set is empty).6 Thus, it obtains the corresponding list of queries y(k)1 ; :::; y(k)q , which itsends to the veri�er along with the corresponding sets f�1(y(k)1 )\h�1k;1;`(k)1 (0`(k)1 ); :::; f�1(y(k)q )\h�1k;q;`(k)q (0`(k)q ).We assume that none of the latter sets has size greater than 4p(n). Note that the bad eventoccurs with negligible probability, and in such a case the prover halts and the veri�er rejects.(Otherwise, all mq sets are sent in one message.)6Note that if jf�1(y(k)i )j = 0 then the oracle answer is de�ned as ?. The formally inclined reader may assumethat in this case log2 0 is de�ned arbitrarily. 9



3. Upon receiving y(1)1 ; :::; y(1)q ; :::; y(m)1 ; :::; y(m)q and A(1)1 ; :::; A(1)q ; :::; A(m)1 ; :::; A(m)q , the veri�erconducts the following checks:(a) For every k = 1; :::;m and i = 1; :::; q, the veri�er checks that for every x 2 A(k)i itholds that f(x) = y(k)i and hk;i;`(k)i (x) = 0`(k)i , where `(k)i = b(log2 jf�1(y(k)i )j=p(n))c ise�ciently computable due to the \size-computation" hypothesis. Letting a(k)i be thelexicographically �rst element of A(k)i , it checks that R(w; r(k); a(k)1 ; :::; a(k)i�1) = y(k)i .(b) For every i = 1; :::; q, it checks that1m � mXk=1 2`(k)i � jA(k)i jjf�1(y(k)i )j > 1� 1100q � p(n) (1)where 0=0 is de�ned as 1.The veri�er accepts w if and only if all the foregoing checks are satis�ed and it holds thatR(w; r(k); a(k)1 ; :::; a(k)q ) = 0 for a uniformly selected k 2 f1; :::;mg.We �rst note that the additional checks added to this protocol have a negligible e�ect on thecompleteness condition: the probability that either jf�1(y(k)i ) \ h�1k;i;`(k)i (0`(k)i )j > 4p(n) for somei; k or that Eq. (1) is violated for some i is exponentially vanishing.7 Turning to the soundnesscondition, we note that the checks performed by the veri�er force the prover to use A(k)i � T (k)i def=f�1(y(k)i )\h�1k;i;`(k)i (0`(k)i ). Also, with overwhelmingly high probability, for every i = 1; :::; q, it holdsthat 1m � mXk=1 2`(k)i � jf�1(y(k)i ) \ h�1k;i;`(k)i (0`(k)i )jjf�1(y(k)i )j < 1 + 1100q � p(n) (2)Combining Eq. (1) and Eq. (2), and recalling that A(k)i � T (k)i (and jf�1(y(k)i )j < 2p(n) � 2`(k)i ), itfollows that (1=m) �Pmk=1(jT (k)i n A(k)i j=2p(n)) < 2=(100q � p(n)) for every i. Thus, for each i, theprobability over a random k that A(k)i 6= T (k)i is at most 1=25q. It follows that for a random k, theprobability that A(k)i = T (k)i for all i's is at least 1 � (1=25). In this case, the correctness of thereduction implies the soundness of the foregoing constant-round protocol.The foregoing description presumes that the veri�er can determine the size of the set of f -preimages of any string. The analysis can be easily extended to the case that the veri�er can onlycheck the correctness of the size claimed and proved by the prover. That is, we refer to the followingde�nition.7Recall that here we refer to the case that A(k)i = f�1(y(k)i ) \ h�1k;i;`(k)i (0`(k)i ). Thus, regarding Eq. (1), we notethat the l.h.s is the average of m independent random variables, each having constant variance. Applying Cherno�bound, the probability that Eq. (1) is violated is upper-bounded by exp(�
(m=(100q � p(n))2)) = exp(�
(n)).10



De�nition 2 (Size Veri�able). We say that a function f : f0; 1g� ! f0; 1g� is size veri�able if thereis a constant-round proof system for the set f(y; jf�1(y)j) : y 2 f0; 1g�g.A natural example of a function that is size veri�able (for which the relevant set is not knownto be in BPP) is the integer multiplication function. That is, we consider the function that mapspairs of integers (which are not necessarily prime or of the same length) to their product. In thiscase the set f(y; jf�1(y)j) : y 2 f0; 1g�g is in NP (i.e., the NP-witness is the prime factorization)but is widely believed not to be in BPP (e.g., it is believed to be infeasible to distinguish productof two (n=2)-bit random primes from the product of three (n=3)-bit long random primes).Theorem 3 (Adaptive Reductions). Unless coNP � AM, there exists no reduction (even notan adaptive one) from deciding an NP-hard language to inverting a size-veri�able polynomial-timecomputable function.In other words, it is unlikely that the existence of size-veri�able one-way functions can be basedon NP-hardness. We note that the result can be extended to functions that are \approximatelysize-veri�able" (covering the \approximable preimage-size" function of [HHK+] as a special case).A formal description of these results appears in Section 4.Remark 4. The proof of Theorem 3 does not utilize the fact that the oracle accessed by the reduc-tion is allowed to err on some of the queries. Thus, the proof holds also for the case of reductionsto the task of inverting f in the worst-case (i.e., inverting f on every image). It follows that, unlesscoNP � AM, there exist no reductions from NP to inverting in the worst-case a size-veri�ablepolynomial-time computable function.2.2 Non-Adaptive Reductions (General Functions)We now turn to outline the proof of our second main result. Here we place no restrictions on thefunction f , but do restrict the reductions.Theorem 5 (General Functions). Unless coNP � AM, there exists no non-adaptive reductionfrom deciding an NP-complete language to inverting a polynomial-time computable function.Considering the constant-round protocol used in the adaptive case, we note that in the currentcase the veri�er cannot necessarily compute (or even directly verify claims about) the size of sets off -preimages of the reduction's queries. Indeed, known lower-bound protocols (cf. [GoSi]) could beapplied to these sets, but known upper-bound protocols (cf. [Fo]) cannot be applied because theyrequire that the veri�er has a random secret member of these sets. Fortunately, using the techniquesdescribed in Section 1.4 allows to overcome this di�culty (for the case of non-adaptive reductions),and to obtain constant-round protocols (rather than merely non-uniform constant-round protocols)for coNP (thus, implying coNP � AM).Here R is a non-adaptive reduction of some set L 2 NP to the average-case inverting of anarbitrary (polynomial-time computable) function f , and our goal again is to show that L 2 AM.We may assume, without loss of generality, that the queries of R(w; �) are identically distributed (buttypically not independently distributed), and represent this distribution by the random variable11



Rw; that is, Pr[Rw= y] = jfr 2 f0; 1gn0 : R(w; r)= ygj=2n0 , where n0 denotes the number of coinsused by R(w; �).Actually, our constructions do not rely on the non-adaptivity of the reduction R, but rather onthe fact that its queries are distributed accordiong to a single distribution (i.e., Rw) that dependson w. We note that the treatment can be extended to the case that, for every i, the i-th query of Ris distributed in a manner that depends only on w and i (but not on the answers to prior queries).We �rst consider the (natural) case that R's queries are distributed identically to Fn def= f(Un),where Un denotes the uniform distribution over f0; 1gn. Augmenting the protocol (for the generalcase) presented in Section 2.1, we require the prover to provide jf�1(y(k)i )j along with each queryy(k)i made in the emulation of R(w; r(k)).8 In order to verify that the claimed set sizes are approx-imately correct, we require the prover to provide lower-bound proofs (cf., [GoSi]) and employ thecon�dence by comparison paradigm. Speci�cally, to prevent the prover from understating theseset sizes, we compare the value of (1=qm) �Pqi=1Pmk=1 log2 jf�1(y(k)i )j to the expected value oflog2 jf�1(f(Un))j, where here and below we de�ne log2 0 as �1 (in order to account for the case ofqueries that have no preimages). Analogously to [FeFo], one may suggest that the latter value (i.e.,E[log2 jf�1(Fn)j]) be given as a non-uniform advice, but we can do better: We require the proverto supply E[log2 jf�1(f(Un))j] and prove its approximate correctness using the following protocol.The veri�er uniformly selects x1; :::; xm 2 f0; 1gn, computes yi = f(xi) for every i, sendsy1; :::; ym to the prover and asks for jf�1(y1)j; :::; jf�1(ym)j along with lower and up-per bound constant-round interactive proofs. (As usual, the lower-bound AM-protocolof [GoSi] (or [GVW]) can be applied because membership in the corresponding sets canbe easily veri�ed.) The point is that the upper-bound protocol of [Fo] can be appliedhere, because the veri�er has secret random elements of the corresponding sets.Recall that the lower-bound protocol (of [GoSi] or [GVW]) guarantees that the prover cannotoverstate any set size by more than an " = 1=poly(n) factor (without risking detection with over-whelmingly high probability). Thus, we will assume throughout the rest of this section that theprover never overstates set sizes (by more than such a factor). The analysis of understated setsizes is somewhat more delicate, �rstly because (as noted) the execution of upper-bound protocolsrequires the veri�er to have a secret random element in the set, and secondly because an under-statement by a factor of " is only detected with probability " (or so). Still this means that theprover cannot signi�cantly understate many sets sizes and go undetected. Speci�cally, if the proverunderstates the size of f�1(yi) by more than an " factor for at least n=" of the yi's then it getsdetected with overwhelmingly high probability. Using a suitable setting of parameters, this estab-lishes the value of E[log2 jf�1(f(Un))j] up to a su�ciently small additive term, which su�ces forour purposes. Speci�cally, as in Section 2.1, such a good approximation of E[log2 jf�1(f(Un))j]8Actually, a small modi�cation is required for handling the following subtle problem that refers to the possiblecontrol of the prover on the hashing function being used in its answer. Recall that the hashing function in use (forquery y) is determined by ` = b(log2 jf�1(y)j=p(n))c, but in the setting of Section 2.1 the veri�er knows jf�1(y)j andthus the prover has no control on the value of `. In the current context, the prover may be able to cheat a little aboutthe value of jf�1(y)j, without being caught, and this may (sometimes) cause a change of one unit in the value of `(and thus allow for a choice among two hash functions). We resolve this problem by having the veri�er \randomize"the value of jf�1(y)j such that, with high probability, cheating a little about this value is unlikely to a�ect the valueof `. Speci�cally, as a very �rst step, the veri�er selects uniformly � 2 [0; 1] (and sends it to the prover), and theprover is asked to set ` = b(�+log2 sy=p(n))c (rather than ` = b(log2 sy=p(n))c), where sy is prover's claim regardingthe size of jf�1(y)j. 12



forces the prover not to understate the value of jf�1(y(k)i )j by more than (say) a 1=10p(n) factorfor more than (say) m=10 of the possible pairs (i; k). (Note that, unlike in Section 2.1, here wepreferred to consider the sum over all (i; k)'s rather than q sums, each corresponding to a di�erenti.)9We now allow Rw to depend on w, but restrict our attention to the natural case in which thereduction does not ask a query y with probability that exceeds Pr[Fn = y] by too much. Speci�cally,suppose that Pr[Rw = y] � poly(jyj) �Pr[Fn = y], for every y. In this case, we modify the foregoingprotocol as follows.Here it makes no sense to compare the claimed value of (1=qm)�Pqi=1Pmk=1 log2 jf�1(y(k)i )jagainst E[log2 jf�1(Fn)j]. Instead we should compare the former (claimed) averageto E[log2 jf�1(Rw)j]. Thus, the veri�er needs to obtain a good approximation tothe latter value. This is done by generating many yi's as before (i.e., yi = f(xi)for uniformly selected xi 2 f0; 1gn) along with fewer but still many yi's sampledfrom Rw, and sending all these yi's (in random order) to the prover. Speci�cally, fort � maxy2f0;1g�fPr[Rw = y]=Pr[Fn = y]g, we generate t times more yi's from Fn, andso each yi received by the prover is at least as likely to come from Fn than from Rw.The prover will be asked to provide all jf�1(yi)j's along with lower-bound proofs, andafterwards (i.e., only after committing to these jf�1(yi)j's) the veri�er will ask for upper-bound proofs for those yi's generated via Fn (for which the veri�er knows a secret anduniformly distributed xi 2 f�1(yi)).Recall that the prover cannot signi�cantly overstate the size of any jf�1(yi)j (i.e., overstate it bymore than an " = 1=poly(n) factor). If the prover signi�cantly understates the sizes of too manyof the jf�1(yi)j's, then it is likely to similarly overstate also the sizes of many jf�1(yi)j's thatcorrespond to yi's that were generated by sampling Fn. But in this case, with overwhelmingly highprobability, the prover will fail in at least one of the corresponding upper-bound proofs.We now allow Rw to depend arbitrarily on w, without any restrictions whatsoever. For athreshold parameter t to be determined later, we say that a query y is t-heavy if Pr[Rw = y] >t � Pr[Fn = y]. (In the special case, we assumed that there are no poly(n)-heavy queries.) Observethat the probability that an element sampled according to Fn is t-heavy is at most 1=t, andthus modifying an inverting oracle such that it answers t-heavy queries by ? e�ects the invertingprobability of the oracle by at most 1=t. Thus, for t � 2, if we answer t-heavy queries by ? (andanswer other f -images with a preimage), then we emulate a legitimate inverting oracle (whichinverts f with probability at least 1=2) and the reduction R is still supposed to work well.10Referring to y as t-light if it is not t-heavy, we note that t-light queries can be handled as inthe foregoing special case (provided t � poly(n)), whereas t-heavy queries are accounted for by theprevious discussion. The problem is to determine whether a query is t-heavy or t-light, and certainlywe have no chance of doing so if many (reduction) queries are very close to the threshold (e.g., if9We stress that in both cases both choices can be made. We note that, when analyzing the completeness condition,one may prefer to analyze the deviation of the individual sums (for each i).10This is the �rst (and only) place where we use the average-case nature of the reduction R.13



Pr[Rw = y] = (t � n�!(1)) � Pr[Fn = y] for all y's). Thus, as in [BoTr], we select the threshold atrandom (say, uniformly in the interval [2; 3]). Next, we augment the foregoing protocol as follows.� We ask the prover to provide for each query y(k)i , also the value of Pr[Rw = y(k)i ], or equiva-lently the size of fr : R(w; r) = y(k)i g. In addition, we ask for lower-bound proofs of these setsizes.� Using lower and upper bound protocols (analogously to the simple case)11, we get an estimateof E[log2 jfr : R(w; r) = Rwgj]. We let the veri�er check that this value is su�ciently closeto the claimed value of (1=qm) �Pqi=1Pmk=1 log2 jfr : R(w; r) = y(k)i gj, thus preventing anunderstating of the size of almost all the sets fr : R(w; r) = y(k)i g.Hence, combining these two items, the veri�er gets a good estimate of the size of fr : R(w; r) =y(k)i g for all but few (i; k)'s. That is, the veri�er can con�rm that for almost all the (i; k)'sthe claimed (by prover) size of fr : R(w; r) = y(k)i g is approximately correct.� Using the claimed (by the prover) values of Pr[Rw = y(k)i ] and Pr[Fn = y(k)i ], the veri�ermakes tentative decisions regarding which of the y(k)i 's is t-light.Note that for most (i; k), the prover's claim about Pr[Rw = y(k)i ] is approximately correct,whereas the claim about Pr[Fn = y(k)i ] can only be understated (by virtue of the lower-boundprotocol employed for the set f�1(y(k)i )).Using a protocol as in the special case, the veri�er obtains an estimate of E[log2 jf�1(R0w)j],where R0w denotes Rw conditioned on being t-light, and checks that this value is su�cientlyclose to the claimed average of log2 jf�1(y(k)i )j, taken only over t-light y(k)i 's. In addition, theveri�er checks that the fraction of t-light y(k)i 's (among all y(k)i 's) approximates the probabilitythat Rw is t-light.We note that estimating E[log2 jf�1(R0w)j] is done by generating yi's as in the special case,but with t 2 [2; 3] as determined above, and while asking for the value of both Pr[Rw = yi]and Pr[Fn = yi] for all yi's, and afterwards requiring upper-bound proofs for one of thesevalues depending on whether yi was sampled from Rw or Fn. These values will serve as basisfor determining whether each yi is t-heavy or t-light, and will also yield an estimate of theprobability that Rw is t-light.Recall that the veri�er accepts w if and only if all the foregoing checks (including the ones statedin the adaptive case) are satis�ed.Ignoring the small probability that we selected a bad threshold t as well as the small proba-bility that we come across a query that is close to the threshold, we analyze the foregoing pro-tocol as follows. We start by analyzing the queries yi's used in the sub-protocol for estimatingE[log2 jf�1(R0w)j]. We �rst note that, by virtue of the lower and upper bound proofs, for almostall queries yi's generated by Rw, the sizes of fr : R(w; r) = yig must be approximately correct.Next, employing a reasoning as in the special case, it follows that for almost all t-light queries yi'swe obtain correct estimates of the size of their f -image (i.e., we verify that almost all the sizes11In the simple case we got an estimate of E[log2 jf�1(Fn)j], while relying on our ability to generate samples of Fnalong with a uniformly distributed member of f�1(Fn). Here we rely on our ability to generate samples of Rw alongwith a uniformly distributed member of fr : R(w; r) = Rwg.14



claimed by the prover for the jf�1(yi)j's are approximately correct). It follows that we correctlycharacterize almost all the t-light yi's generated by Rw as such. As for (almost all) t-heavy queriesyi's generated by Rw, we may wrongly consider them t-light only if the prover has signi�cantlyoverstated the size of their preimage, because we have a good estimate of fr : R(w; r) = y(k)i g for(almost all) these yi's. Recalling that an overstatement of jf�1(y(k)i )j is detected with overwhelm-ingly high probability (by the lower-bound protocol), it follows that almost all t-heavy queries yi'sgenerated by Rw are correctly characterized as such. Thus, the characterization of almost all yi's(generated by Rw) as t-light or t-heavy is correct, and so is the estimate of the probability that Rwis t-light. Recalling that for almost all the t-light yi's generated by Rw we have a correct estimateof jf�1(yi)j, we conclude that the estimate of E[log2 jf�1(R0w)j] is approximately correct.Next we employ parts of the foregoing reasoning to the y(k)i 's. Recalling that, for almost allqueries y(k)i , we obtained correct estimates of the size of fr : R(w; r) = y(k)i g (and that jf�1(y(k)i )jcannot be overstated), we conclude that we correctly characterize almost all t-heavy queries assuch. The comparison to the estimated probability that Rw is t-light guarantees that the provercannot claim too many t-light y(k)i 's as t-heavy, which implies that we have correctly characterizedalmost all y(k)i 's as t-light or t-heavy. Recalling that jf�1(y(k)i )j can only be understated (due to thelower-bound proofs) and using the estimate of E[log2 jf�1(R0w)j] as an approximate lower-bound, itfollows that the claims made regarding almost all the jf�1(y(k)i )j's are approximately correct. Thus,as in the special case, the correctness of the reduction implies the completeness and soundness ofthe foregoing constant-round protocol. A formal description of this result appears in Section 5.12Remark 6. In contrast to Remark 4, dealing with general one-way functions (even in the non-adaptive case) requires referring to the average-case nature of the reduction; that is, we must usethe hypothesis that the reduction yields the correct answer even in case that the inverting oraclefails on some inputs (as long as the measure of such inputs is adequately small). This average-casehypothesis is required since there exist reductions from NP to inverting in the worst-case some(general) polynomial-time computable function (see [Go, Chap. 2, Exer. 3]).3 PreliminariesOmitted. Currently this section is in draft form.4 Size-Veri�able Functions (Adaptive Reductions)Omitted. Currently this section is in draft form.5 Non-Adaptive Reductions (General Functions)Omitted. Currently this section is in draft form.12We remark that the description in Section 5 di�ers from the above description on some technicalities.15



6 Discussion: interpretations of our negative resultsNegative results of the type obtained in this work (as well as in [FeFo, BoTr]) can be interpretedin several ways: The straightforward view is that such results narrow down the means by whichone can base one-way functions on NP-hardness. Namely, under the assumption that coNP is notcontained in AM, our results show that (1) non-adaptive randomized reductions are not suitable forbasing one-way functions on NP-hardness, and (2) that one-way functions based on NP-hardnesscan not be size veri�able (e.g., cannot be regular with an e�ciently recognizable range).Another interpretation is that these negative results are an indication that (worst-case) com-plexity assumptions regarding NP as a whole (i.e., NP 6� BPP) are not su�cient to base one-wayfunctions on. But this does not rule out the possibility of basing one-way functions on the worst-case hardness of a subclass of NP (e.g., the conjecture that NP \ coNP 6� BPP). This is thecase because our results (as previous ones) actually show that certain reductions of the (worst-case)decision problem of a set S to (average-case) inverting of f imply that S 2 AM \ coAM. Butno contradiction is obtained if S belongs to NP \ coNP anyhow. Indeed, the decision problemsrelated to lattices that are currently known to have worst-case to average-case reductions belongto NP \ coNP (cf. [Aj, MiRe] versus [AhRe]).Yet another interpretation is that these negative results suggest that we should turn to a morerelaxed notion of a reduction, which is uncommon in complexity theory and yet is applicable in thecurrent context. We refer to \non black-box" reductions in which the reduction gets the code (ofthe program) of a potential probabilistic polynomial-time inverting algorithm (rather than black-box access to an arbitrary inverting oracle). The added power of such (security) reductions wasdemonstrated a few years ago by Barak [Ba01, Ba02].Remark 7. Recall that Remark 4 asserts that, unless coNP � AM, there exist no reductionsfrom NP to inverting in the worst-case a size-veri�able polynomial-time computable function. Incontrast, it is known that reductions do exist from NP to inverting in the worst-case some (general)polynomial-time computable function (see [Go, Chap. 2, Exer. 3]). This yields a (structural com-plexity) separation between size-veri�able polynomial-time computable functions on one hand andgeneral polynomial-time computable functions on the other hand, (assuming as usual coNP 6� AM).AcknowledgmentsThe research of Adi Akavia was supported in part by NSF grant CCF0514167. The researchof Oded Goldreich was partially supported by the Israel Science Foundation (grant No. 460/05).The research of Sha� Goldwasser was supported in part by NSF CNS-0430450, NSF CCF0514167,Sun Microsystems, and the Minerva Foundation. Dana Moshkovitz is grateful to Muli Safra forsupporting her visit to MIT, where this research has been initiated.
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