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1 IntroductionSmall probability spaces of limited independence are useful in various applications. Speci�cally,as observed by Luby [4] and others, if the analysis of a randomized algorithm only relies on thehypothesis that some objects are distributed in a k-wise independent manner then one can replacethe algorithm's random-tape by a string selected from a k-wise independent distribution. Recallingthat k-wise independent distributions over f0; 1gn can be generated using only O(k log n) bits (see,e.g., [1]), this yields a signi�cant saving in the randomness complexity as well as to derandomizationin time nO(k). (This number of random bits is essentially optimal; see [3], [1].)Further saving is possible whenever the analysis of the randomized algorithm can be carried outalso in case its random-tape is only \almost k-wise independent" (i.e., every k bits are distributedalmost uniformly). The reason being that the latter distributions can be generated using fewerrandom bits (i.e., O(k+log(n=�)) bits su�ce, where � is the variation distance of these k-projectionsto the uniform distribution): See the work of Naor and Naor [5] (as well as subsequent simpli�cationsin [2]).Note that, in both cases, replacing the algorithm's random-tape by strings taken from a distri-bution of a smaller support requires verifying that the original analysis still holds for the replaceddistribution. It would have been nicer, if instead of re-analyzing the algorithm for the case ofalmost k-wise independent distributions, we could just re-analyze it for the case of k-wise indepen-dent distributions and apply a generic result. Such a result may say that if the algorithm behaveswell under any k-wise independent distribution then it would behave essentially as well also underany almost k-wise independent distribution, provided that the parameter � governing this measureof closeness is small enough. Of course, the issue is how small should � be.A generic approach towards the above question is to ask what is the statistical distance �between any almost k-wise independent distribution and some k-wise independent distribution.Speci�cally, how does this distance � depend on n and k (and on the parameter �). Note that wewill have to set � su�ciently small so that � will be small (e.g., � = 0:1 may do).Our original hope was that � = poly(2k; n) � � (or � = poly(2k; n) � �1=O(1)). If this were thecase, we could have set � = poly(2�k; n�1; �), and use an almost k-wise independent sample spaceof size poly(n=�) = poly(2k; n; ��1) (instead of size n�(k) as for perfect k-wise independence).Unfortunately, the answer is that � = n�(k) � �, and so this generic approach does not lead toanything better than just using an adequate k-wise independent sample space. In fact we showthat every distribution with support less than n�(k) has large statistical distance to any k-wiseindependent distribution.2 Formal SettingWe consider distributions and random variables over f0; 1gn, where n (as well as k and �) is aparameter. A distribution DX over f0; 1gn assigns each z 2 f0; 1gn a value DX(z) 2 [0; 1] suchthat PzDX(z) = 1. A random variable X over f0; 1gn is associated with a distribution DXand randomly selects a z 2 f0; 1gn, where Pr[X = z] = DX(z). Throughout the paper we useinterchangeably the notation of a random variable and a distribution. The statistical distance,denoted �(X;Y ), between two random variables X and Y over f0; 1gn is de�ned as�(X;Y ) def= 12 � Xz2f0;1gn jPr[X=z]� Pr[Y =z]j= maxS�f0;1gnfPr[X2S]� Pr[Y 2S]g1



If �(X;Y ) � � the we say that X is �-close to Y . (Note that 2�(X;Y ) is equivalent to kDX�DY k1,where k~vk1 =P jvij.)A distributionX = X1 � � �Xn is called an (�; k)-approximation if for every k (distinct) coordinatesi1; :::; ik 2 f1; :::; ng it holds that Xi1 � � �Xik is �-close to the uniform distribution over f0; 1gk . An(0; k)-approximation is sometimes referred to as a k-wise independent distribution (i.e., for every k(distinct) coordinates i1; :::; ik 2 f1; :::; ng it holds that Xi1 � � �Xik is uniform over f0; 1gk).A related notion is that of having bounded bias on (non-empty) sets of size at most k. Recallthat the bias of a distribution X = X1 � � �Xn on a set I is de�ned asbiasI(X) def= E[(�1)Pi2I Xi ]= Pr[�i2IXi = 0]� Pr[�i2IXi = 1] = 2Pr[�i2IXi = 0]� 1Clearly, for any (�; k)-approximation X, the bias of the distribution X on every non-empty subsetof size at most k is bounded above by �. On the other hand, if X has bias at most � on every non-empty subset of size at most k then X is an (2k=2 � �; k)-approximation (see [7] and the Appendixin [2]).Since we are willing to give up on exp(k) factors, we state our results in terms of distributionsof bounded bias.Theorem 2.1 (Upper Bound): Let X = (X1::::Xn) be a distribution over f0; 1gn such that thebias of X on any non-empty subset of size upto k is at most �. Then X is �(n; k; �)-close to somek-wise independent distribution, where �(n; k; �) def= Pki=1 �ni� � � � nk � �.The proof appears in Section 3.1. It follows that any (�; k)-approximation is �(n; k; �)-close to some(0; k)-approximation. We show that the above result is nearly tight in the following sense.Theorem 2.2 (Lower Bound): For every n, every even k and every � such that � > 2kk=2=n(k=4)�1there exists a distribution X over f0; 1gn such that1. The bias of X on any non-empty subset is at most �.2. The distance of X from any k-wise independent distribution is at least 12 .The proof appears in Section 3.2. In particular, setting � = n�k=5=2 (which, for su�ciently largen � k � 1, satis�es � > 2kk=2=n(k=4)�1), we obtain that �(n; k; �) � 1=2, where �(n; k; �) is as inTheorem 2.1. Thus, if �(n; k; �) = f(n; k) � � (as is natural and is indeed the case in Theorem 2.1)then it must hold that f(n; k) � 12� = n�k=5A similar analysis holds also in case �(n; k; �) = f(n; k) ��1=O(1). We remark that although Theorem2.2 is shown for an even k, a bound for an odd k can be trivially derived by replacing k by k � 1.3 Proofs3.1 Proof of Theorem 2.1Going over all non-empty sets, I, of size upto k, we make the bias over these sets zero, by augmentingthe distribution as follows. Say that the bias over I is exactly � > 0 (w.l.o.g., the bias is positive);that is, Pr[�i2IXi = 0] = (1 + �)=2. Then (for p � � to be determined below), we de�ne a newdistribution Y = Y1:::Yn as follows. 2



1. With probability 1� p, we let Y = X.2. With probability p, we let Y be uniform over the set f�1 � � � �n 2 f0; 1gn : �i2I�i = 1g.Then Pr[�i2IYi = 0] = (1�p) � ((1+ �)=2)+p �0. Setting p = �=(1+ �), we get Pr[�i2IYi = 0] = 1=2as desired. Observe that �(X;Y ) � p < � and that we might have only decreased the biases onall other subsets. To see the latter, consider a non-empty J 6= I, and notice that in Case (2) Y isunbiased over J . Then����Pr[�i2JYi = 1]� 12 ���� = �����(1� p) � Pr[�i2JXi = 1] + p � 12�� 12 ����= (1� p) � ����Pr[�i2JXi = 1]� 12 ����The theorem follows.3.2 Proof of Theorem 2.2On one hand, we know (cf., [2], following [5]) that there exists �-bias distributions of support size(n=�)2. On the other hand, we will show (in Lemma 3.1) that every k-wise independent distribution,not only has large support (as proven, somewhat implicitly, in [6] and explicitly in [3] and [1]), butalso has a large min-entropy bound. It follows that every k-wise independent distribution must befar from any distribution that has a small support, and thus be far from any such �-bias distribution.Recall that a distribution Z has min-entropy m if Pr[Z = �] � 2�m holds for every �. (Note thatmin-entropy is equivalent to dlog2 kDZk1e, where k~vk1 = maxi jvij.)Lemma 3.1 For every n and every even k, any k-wise independent distribution over f0; 1gn hasmin-entropy at least � log2(kkn�k=2).Let us �rst see how to prove Theorem 2.2, using Lemma 3.1. First we observe, that a distribution Ythat has min-entropy m must be at distance at least 1=2 from any distribution X that has support2m=2. This follows because�(Y;X) � Pr[Y 2 (f0; 1gn n support(X))]= 1� X�2support(X)Pr[Y = �]� 1� jsupport(X)j � 2�m � 12Now, letting X be an �-bias distribution (i.e., having bias at most � on every non-empty subset)of support (n=�)2 and using Lemma 3.1 (while observing that � > 2kk=2=n(k=4)�1 implies (n=�)2 <2m=2 for m = log2(nk=2=kk)), Theorem 2.2 follows. In fact we can derive the following corollary.Corollary 3.2 For every n, every even k, and for every k-wise independent distribution Y , ifdistribution X has support smaller than nk=2=2kk then �(X;Y ) � 12 .Proof of Lemma 3.1: Let Y be a k-wise independent distribution, and � be a string maximizingPr[Y = �]. Assume (w.l.o.g., by shifting/XORing Y by �) that � is the all-zero string. We considerthe k-th moment of Y ; i.e., E[(Pi(Yi � 0:5))k ]. 3



Upper bound: Following standard manipulation, we let Zi = Yi � 0:5, (note that E[Zi] = 0) andwrite E24 Xi Zi!k35 = Xi1;:::;ik2[n]E[Zi1 � � �Zik ] : (1)Observe that all (r.h.s) terms in which some index appears only once are zero (i.e., if for somej and all h 6= j it holds that ij 6= ih then E[Qh Zih ] = E[Zij ] � E[Qh6=j Zih ] = 0). All theremaining terms are such that each index appears at least twice. The number of these termsis bounded above by � nk=2� � (k=2)k < (k=2)k �nk=2, and each contributes at most 1 to the sum.Thus, Eq. (1) is strictly smaller than (k=2)k � nk=2.Lower bound: We write the formal expression for expectation (of the l.h.s of Eq. (1)).E24 Xi Zi!k35 = E24  Xi Yi!� (n=2)!k35= X�1����n2f0;1gn Pr[(8i) Yi = �i] �   Xi �i!� (n=2)!k� Pr[(8i) Yi = 0] � (�n=2)kwhere we use the fact that all terms are non-negative (because k is even).Combining the two bounds on Eq. (1), we infer than (n=2)k � Pr[Y = 0n] < (k=2)knk=2, and we getPr[Y = 0n] < ((k=2)knk=2)=(n=2)k = kkn�k=2. The lemma follows.References[1] N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithm for the MaximalIndependent Set Problem. J. of Algorithms, Vol. 7, pages 567{583, 1986.[2] N. Alon, O. Goldreich, J. H�astad, R. Peralta. Simple Constructions of Almost k-wiseIndependent Random Variables. Journal of Random structures and Algorithms, Vol. 3,No. 3, (1992), pages 289{304.[3] B. Chor, J. Friedmann, O. Goldreich, J. H�astad, S. Rudich and R. Smolensky. The bitextraction problem and t-resilient functions. In 26th FOCS, pages 396{407, 1985.[4] M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAMJ. on Computing, Vol. 15, No. 4, pages 1036{1053, November 1986. Preliminary versionin 17th STOC, 1985.[5] J. Naor and M. Naor. Small-bias Probability Spaces: E�cient Constructions and Appli-cations. SIAM J. on Computing, Vol 22, 1993, pages 838{856. Preliminary version in22nd STOC, 1990.[6] C. R. Rao. Factorial experiments derivable from combinatorial arrangements of arrays. J.Royal Stat. Soc. 9: 128{139, 1947.[7] U.V. Vazirani. Randomness, Adversaries and Computation. Ph.D. Thesis, EECS, UCBerkeley, 1986. 4


