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Abstract

Following Feige, we consider the problem of estimating the average degree of a
graph. Using “neighbor queries” as well as “degree queries”, we show that the average
degree can be approximated arbitrarily well in sublinear time, unless the graph is
extremely sparse (e.g., unless the graph has a sublinear number of edges).

We also provide an alternative proof of a result that is almost as good as Feige’s;
that is, we show that a 2-approximation of the average degree can be obtained in
sublinear time in a model that only allows degree queries.
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1 Introduction

In a recent work [2], Feige investigated the problem of estimating the average degree of a
graph when given direct access to the list of degrees (of individual vertices). He observed
two interesting (“phase transition”) phenomena. Firstly, in contrast to the problem of es-
timating the average value of an arbitrary function d : [N] — {1, ..., N—1}, sublinear-time
approximations can be obtained when the function represents the degree sequence of a sim-
ple graph.! Secondly, whereas a (2 + ¢)-approximation can be obtained in O(\/m)—time,
for every constant € > 0, a better approximation factor cannot be achieved in sublinear time
(i.e., a (2 — o(1))-approximation requires time Q(|V])).

When viewing the problem of estimating the average degree in a graph as a special case of
the problem of estimating the average value of an arbitrary function d : [N] — {1, ..., N—1},
it seems natural to restrict the algorithm to “degree queries”. However, from the point of
view of sublinear-time algorithms for graphs (cf., e.g., [3, 4, 6, 1, 5]), it seems natural to
allow also other queries to the graph (e.g., neighbor queries). Specifically, we augment the
model by allowing a weak form of neighbor queries; that is, we consider a model in which
one may obtain a random neighbor of any vertex of one’s choice. (This model is weaker
than the standard neighbor query model, investigated in [3, 5] and other works, in which the
queries of the form (v,4) are allowed and are answered with the i*" neighbor of v.)

Our main result is a sublinear algorithm (in the augmented model) that obtains an
arbitrarily good approximation of the average degree. Specifically, for every constant € > 0,
we obtain a (1 + €)-approximation in O(,/]V])-time. More precisely, the running time is
O(\/m) -poly(1/e).

Turning back to the bare model (of Feige [2]), we provide an alternative proof of his
result. That is, for every ¢ > 0, we obtain a (2 + ¢)-approximation (in the bare model)
in 6(\/m)—time.2 We believe that our analysis sheds more light on the reason that the
approximation factor cannot be better than two. This alternative analysis, which is inspired
by the work of [5], is also instructive as a warm-up toward our main result.

The above represents a simplified account of the results. We recall that Feige [2] has
provides his algorithm with a lower-bound on the average degree of the input graph. This
auxiliary input allows also to handle graphs that have isolated vertices (rather than assuming
that each vertex has degree at least 1) and yields an improvement whenever the lowerbound
is better (than the obvious value of 1). Specifically, given a lowerbound of ¢ (on the average
degree), the complexity of Feige’s algorithm is related to +/[V[/¢ rather than to /]V].
The same improvement holds also for our algorithms. Furthermore, we observe that our
algorithms (as well as Feige’s) can be adapted to work without this lowerbound. Specifically,
the complexity of the modified algorithm, which obtains no a priori information about the

average degree, is related to \/|V'|/d where d denotes the actual average degree (which is, of
course, not given to the algorithm).

! Here we also assume that there are no isolated vertices in the graph (i.e., each vertex has degree at
least 1).

2 The running-time of Feige’s algorithm is slightly better: His algorithm uses O(\/m /€) samples, whereas
our algorithm uses t(|V|/e) - \/]V]/e>? samples, where t(M) = O(log M - loglog M).



The said adaptation is based on the following observation: Even when given a wrong
lowerbound (on the average degree), none of the said algorithms outputs a (gross) overesti-
mation of the average degree (except with small probability). Thus, we may iteratively run
the algorithm starting with ¢ = |V|/2 and decreasing ¢ by a factor of 2 in each iteration,
until we obtain an output that is larger than the current value of . The point is that the
algorithm’s output is always an approximately correct lower-bound on the average degree,
and so if this value is smaller than ¢ then the latter is a valid lower-bound on the average
degree.

2 The Algorithms

Let G = (V, E) be a simple graph (i.e., having no parallel edges and no self-loops), and let
d(v) denote the degree of vertex v€V in G (i.e., d(v) o {u: {u,v} € FE}|). We denote by
d%< > ey d(v)/|V] the average degree in G, and so d - |V| = 2|E].

Both our algorithms can sample uniformly in V" as well as obtain the value of d(v) for any
v € V of their choice (that is, perform degree-queries). First, in Subsection 2.1, we give a (2+
¢)-approximation procedure for d that uses only degree queries. Next, in Subsection 2.2, we
modify this procedure in order to obtain a (1 + €)-approximation procedure. This procedure
uses “random neighbor” queries in addition to degree queries. Both procedures take as input
a parameter, ¢, which is an a priori known lowerbound on d. The larger ¢, the more efficient
these algorithms are. Finally, in Subsection 2.3, we eliminate the need for this a priori
knowledge.

2.1 The Basic Procedure

The following procedure only uses the ability to obtain the degree of uniformly selected
vertices. That is, it merely requires the ability to sample vertices at random and the ability
to obtain the degree of any desired vertex. The procedure refers to two parameters €, 5 > 0,
where € is the main approximation parameter and 5 may as well equal €/4.

Factor-2 Approximation Algorithm

1. Uniformly and independently select K = poly((log |V|)/€) - \/|V'|/€ vertices from
V, and let S denote the (multi-)set of selected vertices.®

2. Fori=0,1,...,[logqss [V[], let S; = {v €S: dv) e ((1 +8)L, (1 +ﬂ)i] }

. . € def
3. Let [ = {z : |\%|| < % . \/% . fﬁ }, where ¢ = ﬂOg(Hﬁ) VT + 1.
4. Output % . Zi&/‘:f S|+ (1 + ).

@ Setting K = O(e 3% log|V]) - /]V]/£ will do.




In other words, this procedure outputs the average value of (1 +[3)“°g(1+ﬁ) 41 taken over
all v € S that belong to sufficiently large subsets S;. Clearly, we might as well output the
average value d(v), taken over all v € S that belong to sufficiently large subsets S;. Indeed,
it would have been simpler to just output the average value of d(v) over all v € S, but
our analysis refers to the former (whereas the analysis of Feige [2] refers to the latter). We
comment that the above procedure and its analysis follow the ideas underlying the edge-
sampling procedure of Kaufman et. al. [5].

\ﬁ;‘\ ~ I‘%"\ (for all i’s), it holds that

Intuitively, assuming that
K Z 7 ~ |V| l (2 ~

The problem is that we may not obtain good approximations for all B;’s; in particular, we
cannot obtain a good approximation for small B;’s (i.e., B;’s of size smaller than |V|/K).
This is the reason that we discard the corresponding small S;’s. Consequently, our (implicit)
double-counting of edges (which is used as an estimate for d|V|) is biased as follows: Edges
with both endpoints in small B;’s are not counted at all, edges with a single endpoint in
a small B; are counted once, and edges with both endpoints in big B;’s are counted twice
(as they should). Thus, the above estimate of d|V| is never a gross overestimate. The
underestimation is due to edges with at least one endpoint in a small B;. For edges with a
single endpoint in a small B; we lose a factor of two, whereas the number of edges with both
endpoints in small B;’s is upperbounded by the square of the number of vertices residing in

small B;’s, which in turn is at most /(e/2) - £|]V]| < 1/(¢/2) - d|V].

Theorem 1 For every ¢ < 1/2 and < €/4, the above_procedure outputs a value d such
that, with probability at least 2/3, it holds that (0.5 —¢€)-d <d < (1+¢)-d.

For arbitrary § > 0, we get (0.5 —¢)-d <d < (1+ (¢/2) +28) - d.

Proof: Recall that t = [log( 4 [V[] + 1, and define a partition of V" into the following
buckets:

B = {v L d(v) € ((1+5)i—1,(1+5)i]}, for i =0,1,...,¢t—1. 2)
By definition of these buckets, it holds that

i< ﬁzwmumi < (1+p8)-d. (3)

Let p & (1/t)y/(e/4) - £/|V] be a density threshold. By our choice of the sample size K
(which guarantees that (e/2)? - p- K > 10logt), with probability at least 1 — (1/100¢), the
number of samples residing in any specific bucket having density above the threshold p is
approximately proportional to the bucket’s density, whereas few samples resides in buckets
having density below the threshold. More precisely, with probability at least 0.99,

: €\ |Bil |Sil €\ |Bil
Vi st |Bil>p-|V]: (1—5)- Sk §(1+§>- v (4)
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and g 1
Vi st |Bi|<p-|V]: |Kf| <=VI(e/2)- L/ IV] (5)

In particular, in the latter case we have that ¢ € I. Eq. (3), (4) & (5) imply that, with high
constant probability, it holds that

t

= %'%{:wﬂ'(l_‘_ﬁ)i < ﬁ > <1+§)-|Bi|-(1+6)i (6)
< (1+3)-a+p)-d. (7)

Hence (for, say, 3 = ¢/4) we don’t get too much of an overestimate; that is, d < (1 + €) - d.
Turning to the possibility of underestimation, we first note that with high probability

~ 1
= =D ISl (1+8y Z( $) 1Bl 1+ By (8)
K i1 |V|
It remains to lower bound the latter expression. We use the following notations and facts:
e For each i, let E; & {(u,v) : ue B; & {u,v} € E}; that is, E; is the set of ordered pairs

of adjacent vertices such that the first vertex is in B;. Thus, the E;’s are disjoint and
each edge contributes two pairs to the set |J; ;. Also,

|Bil - (1+8)"" < |Ei| < [Bi]-(1+8) (9)

o Let U Y {ve B; : i€} denote the set of vertices that reside in buckets that are
deemed small by the sample S. Thus, with high probability,

Ul < [{veBi IBISO/) -V V)| < V-V (0)

and |U|? < (¢/2) - |V| - £.
e Let E(V1,V5) denote the set of edges with one endpoint in V; and one endpoint in V5.

We consider a partition of E(V,V) into the sets E(V \ U,V \ U), E(V \ U,U) and
E(U,U). Thus:

dlV| = 21E(V\U,V\U)|+2/E(V\UU)|+2/E(U,U)| (11)
< 20E(V\U,V\U)|+2E(V\UU)|+|U] (12)

The key observation is that the number of times that an edge is counted in the sum Zi&/‘J | E4|
equals the number of endpoints of the edge that reside in V \ U = UKH B;. Specifically, an
edge with both endpoints in V' \ U is counted twice, an edge with a single endpoint in V' \ U
is counted once, and an edge with both endpoints in U is not counted at all. Thus,

YOIE| = 2AE(V\U,V\U)| + |E(V\U,U) (13)
il



Combining Eq. (8), Eq. (9) and Eq. (13), it follows that

~ 1 € ;
‘2l (1-5) - 1Bil-(1+5) (14)
1 €
2 2 (1-3) 15 19
_1-(¢2)
= 1 Ee o)+ EVATD)) (16)

Using Eq. (12) and Eq. (10), we get

iz P (1B U D+ B0 UD)) (17)
- (/) (5 VP

& 2 '(d_m> (18)

> LG < (19)

Since ¢ < d, we are done. W

2.2 The Improved Procedure

Here we present an improved approximation in a model that allows, in addition to the “degree
queries” used above, also “neighbor queries” (as in [3, 5] and other works). Namely, for any
given vertex v and for any j < d(v), we can obtain the 5 neighbor of v. Actually, it suffices
to be able to obtain a random neighbor of any desired/queried vertex.

The improved procedure builds on the basic procedure (factor-2 approximation) presented
in Section 2.1. Below we refer to the notations introduced in the proof of Theorem 1. The
idea is to modify the basic procedure by estimating the fraction of edges in E(V \ U,U), and
compensating for the fact that these edges are counted only once in Zi¢[ |E;| by counting
these edges twice. To this end, we take a slightly larger sample; specifically, the sample
size K is chosen to be sufficiently large so that for each ¢ ¢ I it holds that |S;] > L =
poly((log|V])/€). For each i ¢ I and for each v € S; we take a random neighbor of v and
check whether it falls in {J;.; B; (i.e., whether it belongs to U). We let a; be the fraction
of neighbors (among the selected |S;| neighbors) that belong to U. Finally, in Step 4 of
the algorithm, we replace |S;| - (1 + 8)" with (1 + @;)|S;| - (1 + 8)". The modified algorithm
proceeds as follows:



Factor-(1 4+ €) Approximation Algorithm

Steps 1-3: As in the basic procedure, with K = O(L/pe?) (rather than K =
O((log |V')/pe?)), where (as before) p < (1/t)\/(e/4) - ¢/]V].

Additional Step: For every i ¢ I and every v € S;, select at random a neighbor u of v,
and let x(v) = 1if u € ;c; By, and x(v) = 0 otherwise. For every i ¢ I, let
a; = {ves;: x(v)=1}[/5i.

Step 4 (modified): Output + - Doigr(L4+ai) - [Sif - (L + B)°.

Theorem 2 For every e < 1/2 and B < €/4, the modified procedure outputs a value d such
that, with probability at least 2/3, it holds that (1 —¢)-d <d < (1 +¢) - d.

Proof: Let E! = {(u,v) € E; : v € U} and o; = |E!|/|E;|]. That is, for ¢ ¢ I, the set E!
contains pairs of adjacent vertices with a single endpoint in V' \ U, and the corresponding
edge is counted only once in the sum } ., |E;| (similarly for ., |E([). Thus:

dDIE] = [E(V\UU) (20)
i I
Y IENE] = 2/E(V\U,V\U) (21)

il

By our choice of L we have that with high probability, for every i ¢ I such that a; > €/8,

(1—§>-ai§&i§<1+i>-ai (22)

and if a; < €/8 then o; < €/4.

Thus, with high probability, all approximations are quite good, in which case the following
holds:

d = — ZH% |- (14 B) (23)
< ‘1/-%;(H&i)-(H;)-Bi-(1+6)i (24)
< S %I:(H(He/@az) (1+ ) |Ei

+/§ (1+e/4)-(1+5)-|E| ) (25)
< (1+6)"/(1+;3<.E%;(1+ai)-& (26)
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where Eq. (25) uses Eq. (9) and our assumption on the estimates ;. Similarly,

iz 8o a5 @0
igl

Using 5 < ¢/4 and |E}| = «; - | E;|, we have

d = # : Z(l + ;) - | Ej (28)

¢l
_ 1i|v3|€/2 (Z|E \E+Y01E+ Y 0r | ) (29)
i¢l i¢l
igl i1

Using Eq. (20) & (21), it follows that

i - %-(2|E(V\U,V\U)|+2|E(V\U,U)|) (31)
1+ (3¢/2)
= T-(2|E(V,V)|—2|E(U,U)|) (32)
1+(3¢/2) (4 ,
= -<d|V|i|U|) (33)

Recalling that [U]> < (¢/2) - £|V| (and £ < d), we get d = (1 & 2¢) - d. Substituting ¢ by €/2,
the theorem follows. W

2.3 Working without a degree lower-bound

For sake of simplicity, we start by modifying both our algorithms such that, when given a
valid lower-bound ¢, they do not output an overestimation of the average degree (except with
small probability). This is done by simply decreasing the output by a factor of 1+ €. Thus,
the output, d, of the modified first (resp., second) algorithm satisfies Pr[(0.5 — 2¢)d < d <
d] > 2/3 (vesp., Pr[(1—2¢)d < d < d] > 2/3). Furthermore, by O(1) +loglog |V| repetitions,
we may reduce the probability of error to below 1/(61log V).

An interesting feature of our algorithms is that, with high probability, they do not output
an overestimate of d even in case they are invoked with a parameter ¢ that is higher than
the average degree d (i.e., is not a valid lower-bound). To verify this feature, observe that
the only place in the analysis where we rely on the assumption ¢ < d is in bounding the
underestimation error (i.e., when bounding the total number of edges with both endpoints in
U). (We comment that also Feige’s algorithm [2] has this feature, but for different reasons.)

This feature allows us to present versions of these algorithms that do not require an a
priori lower-bound on the average degree. Specifically, let us denote by A; the algorithm
presented in Section 2.i, (where i € {1,2} and when the algorithm is modified as suggested
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above). Then, starting with ¢ = |V|/2, we may proceed in at most 2log, |V/| iterations as
follows. We invoke A; with the current value of ¢, and let d denote the output obtained. If
d > ¢ then we halt and output d, otherwise we proceed to the next iteration while setting
¢ < £/2. In case all iterations were completed and still d < £ in the last iteration (i.e.,
d < 1/2|V]) then the graph must have no edges and we halt outputting d = 0.

Let ¢; = |V|/27 be the parameter used in the j-th invocation of algorithm A; (resp., As),
and let Ej denote the corresponding output. Then, with probability at least 2/3, for every
iteration j that took place, it holds that E{j < d and if d > {; then E{j > (0.5 — 2¢)d (resp.,
Ej > (1 — 2¢)d). In this case, assuming the graph contains any edges at all,® the algorithm
will stop after at most log(|V/|/d) + O(1) iterations, and will output a value that is in the
interval [(0.5 — 2¢)d, d] (resp., the interval [(1 — 2¢)d,d]). Thus, the overall running-time of

the algorithm is poly(e~*log|V]) - 1/|V|/d.

3 Concluding Remarks

We first observe that any constant approximation algorithm must perform Q(v/N) queries
(even when both degree queries and neighbor queries are allowed). To verify this, consider
the following two graphs. One graph is simply a cycle over all vertices, so that the average
degree is 2. The other graphs consists of a cycle of size |V| — ¢ - \/m, for some constant
¢, and a clique of size ¢ - \/]V|. This graph has average degree 2 + ¢ — o(|V|). But for a
sufficiently small constant ¢, if an algorithm performs less than ¢ - \/m queries then it
cannot distinguish between the two graphs. To be more precise, we need to consider two
corresponding distributions on graphs (allowing all possible labelings of the graph vertices),
so that Q(y/]V]) queries are required to distinguish between a random graph from one
distribution and a random graph from the other distribution.

We also note that if parallel edges (or weighted edges) are allowed, then estimating
the average degree of a graph requires (|V'|) queries (even when both degree queries and
neighbor queries are allowed). Consider the following two graphs (families of graphs): one
graph consists of a cycle over all vertices (with a single edge between every pair of consecutive
vertices) and the other consists of a cycle over |V| — 2 vertices, and a pair of vertices with
¢ - |V parallel edges between them. The average degree in the first graph is 2 whereas
the average degree in the second graph is roughly 2 4 c¢. But distinguishing between the
two (families of) graphs requires €(|V|) queries. Thus there is a gap between the query
complexity of estimating the average degree of simple graphs and non-simple graphs.

3In case the graph contains no edges, the algorithm will complete all iterations with no output (because
d = 0 < £; whereas d; = 0 for each j < 2log|V]), and thus output the correct value (i.e., 0) at the last
step. In this case, the overall running-time of the algorithm is poly(e~! log |V]) - |V|. Clearly one can modify
the algorithm so that its complexity is never more that O(|V]) (i.e., the complexity of computing the exact
average degree), by stopping once ¢; goes below poly(e~*log |V|)/|V| for an appropriate polynomial in log |V|
and ¢!,
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