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1 Introdu
tionIn a re
ent work [2℄, Feige investigated the problem of estimating the average degree of agraph when given dire
t a

ess to the list of degrees (of individual verti
es). He observedtwo interesting (\phase transition") phenomena. Firstly, in 
ontrast to the problem of es-timating the average value of an arbitrary fun
tion d : [N ℄ ! f1; :::; N�1g, sublinear-timeapproximations 
an be obtained when the fun
tion represents the degree sequen
e of a sim-ple graph.1 Se
ondly, whereas a (2 + �)-approximation 
an be obtained in O(pjV j)-time,for every 
onstant � > 0, a better approximation fa
tor 
annot be a
hieved in sublinear time(i.e., a (2� o(1))-approximation requires time 
(jV j)).When viewing the problem of estimating the average degree in a graph as a spe
ial 
ase ofthe problem of estimating the average value of an arbitrary fun
tion d : [N ℄! f1; :::; N�1g,it seems natural to restri
t the algorithm to \degree queries". However, from the point ofview of sublinear-time algorithms for graphs (
f., e.g., [3, 4, 6, 1, 5℄), it seems natural toallow also other queries to the graph (e.g., neighbor queries). Spe
i�
ally, we augment themodel by allowing a weak form of neighbor queries; that is, we 
onsider a model in whi
hone may obtain a random neighbor of any vertex of one's 
hoi
e. (This model is weakerthan the standard neighbor query model, investigated in [3, 5℄ and other works, in whi
h thequeries of the form (v; i) are allowed and are answered with the ith neighbor of v.)Our main result is a sublinear algorithm (in the augmented model) that obtains anarbitrarily good approximation of the average degree. Spe
i�
ally, for every 
onstant � > 0,we obtain a (1 + �)-approximation in eO(pjV j)-time. More pre
isely, the running time iseO(pjV j) � poly(1=�).Turning ba
k to the bare model (of Feige [2℄), we provide an alternative proof of hisresult. That is, for every � > 0, we obtain a (2 + �)-approximation (in the bare model)in eO(pjV j)-time.2 We believe that our analysis sheds more light on the reason that theapproximation fa
tor 
annot be better than two. This alternative analysis, whi
h is inspiredby the work of [5℄, is also instru
tive as a warm-up toward our main result.The above represents a simpli�ed a

ount of the results. We re
all that Feige [2℄ hasprovides his algorithm with a lower-bound on the average degree of the input graph. Thisauxiliary input allows also to handle graphs that have isolated verti
es (rather than assumingthat ea
h vertex has degree at least 1) and yields an improvement whenever the lowerboundis better (than the obvious value of 1). Spe
i�
ally, given a lowerbound of ` (on the averagedegree), the 
omplexity of Feige's algorithm is related to pjV j=` rather than to pjV j.The same improvement holds also for our algorithms. Furthermore, we observe that ouralgorithms (as well as Feige's) 
an be adapted to work without this lowerbound. Spe
i�
ally,the 
omplexity of the modi�ed algorithm, whi
h obtains no a priori information about theaverage degree, is related toqjV j=d where d denotes the a
tual average degree (whi
h is, of
ourse, not given to the algorithm).1 Here we also assume that there are no isolated verti
es in the graph (i.e., ea
h vertex has degree atleast 1).2 The running-time of Feige's algorithm is slightly better: His algorithm uses O(pjV j=�) samples, whereasour algorithm uses t(jV j=�) �pjV j=�3:5 samples, where t(M) = O(logM � log logM).1



The said adaptation is based on the following observation: Even when given a wronglowerbound (on the average degree), none of the said algorithms outputs a (gross) overesti-mation of the average degree (ex
ept with small probability). Thus, we may iteratively runthe algorithm starting with ` = jV j=2 and de
reasing ` by a fa
tor of 2 in ea
h iteration,until we obtain an output that is larger than the 
urrent value of `. The point is that thealgorithm's output is always an approximately 
orre
t lower-bound on the average degree,and so if this value is smaller than ` then the latter is a valid lower-bound on the averagedegree.2 The AlgorithmsLet G = (V;E) be a simple graph (i.e., having no parallel edges and no self-loops), and letd(v) denote the degree of vertex v2V in G (i.e., d(v) def= jfu : fu; vg2Egj). We denote byd def= Pv2V d(v)=jV j the average degree in G, and so d � jV j = 2jEj.Both our algorithms 
an sample uniformly in V as well as obtain the value of d(v) for anyv 2 V of their 
hoi
e (that is, perform degree-queries). First, in Subse
tion 2.1, we give a (2+�)-approximation pro
edure for d that uses only degree queries. Next, in Subse
tion 2.2, wemodify this pro
edure in order to obtain a (1+ �)-approximation pro
edure. This pro
edureuses \random neighbor" queries in addition to degree queries. Both pro
edures take as inputa parameter, `, whi
h is an a priori known lowerbound on d. The larger `, the more eÆ
ientthese algorithms are. Finally, in Subse
tion 2.3, we eliminate the need for this a prioriknowledge.2.1 The Basi
 Pro
edureThe following pro
edure only uses the ability to obtain the degree of uniformly sele
tedverti
es. That is, it merely requires the ability to sample verti
es at random and the abilityto obtain the degree of any desired vertex. The pro
edure refers to two parameters �; � > 0,where � is the main approximation parameter and � may as well equal �=4.Fa
tor-2 Approximation Algorithm1. Uniformly and independently sele
t K = poly((log jV j)=�) �pjV j=` verti
es fromV , and let S denote the (multi-)set of sele
ted verti
es.a2. For i = 0; 1; : : : ; dlog(1+�) jV je, let Si = nv 2 S : d(v) 2 �(1 + �)i�1; (1 + �)iio.3. Let I = ni : jSijjSj < 1t �q3�8 � `jV j o, where t def= dlog(1+�) jV je+ 1.4. Output 1K �Pi=2I jSij � (1 + �)i.a Setting K = eO(��3:5 log jV j) �pjV j=` will do. 2



In other words, this pro
edure outputs the average value of (1+�)dlog(1+�) d(v)e, taken overall v 2 S that belong to suÆ
iently large subsets Si. Clearly, we might as well output theaverage value d(v), taken over all v 2 S that belong to suÆ
iently large subsets Si. Indeed,it would have been simpler to just output the average value of d(v) over all v 2 S, butour analysis refers to the former (whereas the analysis of Feige [2℄ refers to the latter). We
omment that the above pro
edure and its analysis follow the ideas underlying the edge-sampling pro
edure of Kaufman et. al. [5℄.Intuitively, assuming that jSijjSj � jBijjV j (for all i's), it holds that1K �Xi jSij � (1 + �)i � 1jV j �Xi jBij � (1 + �)i � d (1)The problem is that we may not obtain good approximations for all Bi's; in parti
ular, we
annot obtain a good approximation for small Bi's (i.e., Bi's of size smaller than jV j=K).This is the reason that we dis
ard the 
orresponding small Si's. Consequently, our (impli
it)double-
ounting of edges (whi
h is used as an estimate for djV j) is biased as follows: Edgeswith both endpoints in small Bi's are not 
ounted at all, edges with a single endpoint ina small Bi are 
ounted on
e, and edges with both endpoints in big Bi's are 
ounted twi
e(as they should). Thus, the above estimate of djV j is never a gross overestimate. Theunderestimation is due to edges with at least one endpoint in a small Bi. For edges with asingle endpoint in a small Bi we lose a fa
tor of two, whereas the number of edges with bothendpoints in small Bi's is upperbounded by the square of the number of verti
es residing insmall Bi's, whi
h in turn is at most p(�=2) � `jV j �q(�=2) � djV j.Theorem 1 For every � < 1=2 and � � �=4, the above pro
edure outputs a value ed su
hthat, with probability at least 2=3, it holds that (0:5� �) � d < ed < (1 + �) � d.For arbitrary � > 0, we get (0:5� �) � d < ed < (1 + (�=2) + 2�) � d.Proof: Re
all that t = dlog(1+�) jV je + 1, and de�ne a partition of V into the followingbu
kets: Bi = nv : d(v) 2 �(1 + �)i�1; (1 + �)iio; for i = 0; 1; : : : ; t� 1 : (2)By de�nition of these bu
kets, it holds thatd � 1jV j tXi=1 jBij � (1 + �)i � (1 + �) � d : (3)Let � def= (1=t)p(�=4) � `=jV j be a density threshold. By our 
hoi
e of the sample size K(whi
h guarantees that (�=2)2 � � �K � 10 log t), with probability at least 1� (1=100t), thenumber of samples residing in any spe
i�
 bu
ket having density above the threshold � isapproximately proportional to the bu
ket's density, whereas few samples resides in bu
ketshaving density below the threshold. More pre
isely, with probability at least 0:99,8i s.t. jBij � � � jV j : �1� �2� � jBijjV j � jSijK � �1 + �2� � jBijjV j (4)3



and 8i s.t. jBij < � � jV j : jSijK < 1tp(�=2) � `=jV j (5)In parti
ular, in the latter 
ase we have that i 2 I. Eq. (3), (4)& (5) imply that, with high
onstant probability, it holds thated = 1K �Xi=2I jSij � (1 + �)i � 1jV j tXi=1 �1 + �2� � jBij � (1 + �)i (6)� �1 + �2� � (1 + �) � d : (7)Hen
e (for, say, � = �=4) we don't get too mu
h of an overestimate; that is, ed � (1 + �) � d.Turning to the possibility of underestimation, we �rst note that with high probabilityed = 1K �Xi=2I jSij � (1 + �)i � 1jV jXi=2I �1� �2� � jBij � (1 + �)i (8)It remains to lower bound the latter expression. We use the following notations and fa
ts:� For ea
h i, let Ei def= f(u; v) : u2Bi & fu; vg2Eg; that is, Ei is the set of ordered pairsof adja
ent verti
es su
h that the �rst vertex is in Bi. Thus, the Ei's are disjoint andea
h edge 
ontributes two pairs to the set SiEi. Also,jBij � (1 + �)i�1 < jEij � jBij � (1 + �)i (9)� Let U def= fv 2 Bi : i 2 Ig denote the set of verti
es that reside in bu
kets that aredeemed small by the sample S. Thus, with high probability,jU j � ���nv2Bi : jBij�(1=t) �p(�=2) � jV j � `o��� � p(�=2) � jV j � ` (10)and jU j2 � (�=2) � jV j � `.� Let E(V1; V2) denote the set of edges with one endpoint in V1 and one endpoint in V2.We 
onsider a partition of E(V; V ) into the sets E(V n U; V n U), E(V n U; U) andE(U; U). Thus:djV j = 2jE(V n U; V n U)j+ 2jE(V n U; U)j+ 2jE(U; U)j (11)� 2jE(V n U; V n U)j+ 2jE(V n U; U)j+ jU j2 (12)The key observation is that the number of times that an edge is 
ounted in the sumPi=2I jEijequals the number of endpoints of the edge that reside in V n U = Si=2I Bi. Spe
i�
ally, anedge with both endpoints in V nU is 
ounted twi
e, an edge with a single endpoint in V nUis 
ounted on
e, and an edge with both endpoints in U is not 
ounted at all. Thus,Xi=2I jEij = 2jE(V n U; V n U)j+ jE(V n U; U)j (13)4



Combining Eq. (8), Eq. (9) and Eq. (13), it follows thated � 1jV jXi=2I �1� �2� � jBij � (1 + �)i (14)� 1jV jXi=2I �1� �2� � jEij (15)= 1� (�=2)jV j � �2jE(V n U; V n U)j+ jE(V n U; U)j� : (16)Using Eq. (12) and Eq. (10), we geted � 1� (�=2)jV j � �jE(V n U; V n U)j+ jE(V n U; U)j� (17)� 1� (�=2)2 � �d� jU j2jV j � (18)� 1� (�=2)2 � d� �4 � ` (19)Sin
e ` � d, we are done.2.2 The Improved Pro
edureHere we present an improved approximation in a model that allows, in addition to the \degreequeries" used above, also \neighbor queries" (as in [3, 5℄ and other works). Namely, for anygiven vertex v and for any j � d(v), we 
an obtain the jth neighbor of v. A
tually, it suÆ
esto be able to obtain a random neighbor of any desired/queried vertex.The improved pro
edure builds on the basi
 pro
edure (fa
tor-2 approximation) presentedin Se
tion 2.1. Below we refer to the notations introdu
ed in the proof of Theorem 1. Theidea is to modify the basi
 pro
edure by estimating the fra
tion of edges in E(V nU; U), and
ompensating for the fa
t that these edges are 
ounted only on
e in Pi=2I jEij by 
ountingthese edges twi
e. To this end, we take a slightly larger sample; spe
i�
ally, the samplesize K is 
hosen to be suÆ
iently large so that for ea
h i =2 I it holds that jSij � L =poly((log jV j)=�). For ea
h i =2 I and for ea
h v 2 Si we take a random neighbor of v and
he
k whether it falls in Sj2I Bj (i.e., whether it belongs to U). We let e�i be the fra
tionof neighbors (among the sele
ted jSij neighbors) that belong to U . Finally, in Step 4 ofthe algorithm, we repla
e jSij � (1 + �)i with (1 + e�i)jSij � (1 + �)i. The modi�ed algorithmpro
eeds as follows:
5



Fa
tor-(1 + �) Approximation AlgorithmSteps 1{3: As in the basi
 pro
edure, with K = eO(L=��2) (rather than K =eO((log jV j)=��2)), where (as before) � def= (1=t)p(�=4) � `=jV j.Additional Step: For every i =2 I and every v 2 Si, sele
t at random a neighbor u of v,and let �(v) = 1 if u 2 Sj2I Bj, and �(v) = 0 otherwise. For every i =2 I, lete�i = jfv2Si : �(v)=1gj=jSij.Step 4 (modi�ed): Output 1K �Pi=2I(1 + e�i) � jSij � (1 + �)i.Theorem 2 For every � < 1=2 and � � �=4, the modi�ed pro
edure outputs a value ed su
hthat, with probability at least 2=3, it holds that (1� �) � d < ed < (1 + �) � d.Proof: Let E 0i = f(u; v) 2 Ei : v 2 Ug and �i = jE 0ij=jEij. That is, for i =2 I, the set E 0i
ontains pairs of adja
ent verti
es with a single endpoint in V n U , and the 
orrespondingedge is 
ounted only on
e in the sum Pi=2I jEij (similarly for Pi=2I jE 0ij). Thus:Xi=2I jE 0ij = jE(V n U; U)j (20)Xi=2I jEi n E 0ij = 2jE(V n U; V n U)j (21)By our 
hoi
e of L we have that with high probability, for every i =2 I su
h that �i � �=8,�1� �4� � �i � e�i � �1 + �4� � �i (22)and if �i < �=8 then e�i < �=4.Thus, with high probability, all approximations are quite good, in whi
h 
ase the followingholds: ed = 1K �Xi=2I (1 + e�i) � jSij � (1 + �)i (23)� 1jV j �Xi=2I (1 + e�i) � �1 + �2� � jBij � (1 + �)i (24)� 1 + �=2jV j � � Xi=2I�i��=8(1 + (1 + �=4)�i) � (1 + �) � jEij+ Xi=2I�i<�=8(1 + �=4) � (1 + �) � jEij � (25)� (1 + �) � (1 + �)jV j �Xi=2I (1 + �i) � jEij (26)6



where Eq. (25) uses Eq. (9) and our assumption on the estimates e�i. Similarly,ed � (1� �)jV j �Xi=2I (1 + �i) � jEij (27)Using � � �=4 and jE 0ij = �i � jEij, we haveed = 1� (3�=2)jV j �Xi=2I (1 + �i) � jEij (28)= 1� (3�=2)jV j � �Xi=2I jEi n E 0ij+Xi=2I jE 0ij+Xi=2I �i � jEij� (29)= 1� (3�=2)jV j � �Xi=2I jEi n E 0ij+ 2Xi=2I jE 0ij� (30)Using Eq. (20)& (21), it follows thated = 1� (3�=2)jV j � �2jE(V n U; V n U)j+ 2jE(V n U; U)j� (31)= 1� (3�=2)jV j � �2jE(V; V )j � 2jE(U; U)j� (32)= 1� (3�=2)jV j � �djV j � jU j2� (33)Re
alling that jU j2 � (�=2) � `jV j (and ` � d), we get ed = (1� 2�) � d. Substituting � by �=2,the theorem follows.2.3 Working without a degree lower-boundFor sake of simpli
ity, we start by modifying both our algorithms su
h that, when given avalid lower-bound `, they do not output an overestimation of the average degree (ex
ept withsmall probability). This is done by simply de
reasing the output by a fa
tor of 1 + �. Thus,the output, ed, of the modi�ed �rst (resp., se
ond) algorithm satis�es Pr[(0:5 � 2�)d < ed <d℄ � 2=3 (resp., Pr[(1�2�)d < ed < d℄ � 2=3). Furthermore, by O(1)+log log jV j repetitions,we may redu
e the probability of error to below 1=(6 log jV j).An interesting feature of our algorithms is that, with high probability, they do not outputan overestimate of d even in 
ase they are invoked with a parameter ` that is higher thanthe average degree d (i.e., is not a valid lower-bound). To verify this feature, observe thatthe only pla
e in the analysis where we rely on the assumption ` � d is in bounding theunderestimation error (i.e., when bounding the total number of edges with both endpoints inU). (We 
omment that also Feige's algorithm [2℄ has this feature, but for di�erent reasons.)This feature allows us to present versions of these algorithms that do not require an apriori lower-bound on the average degree. Spe
i�
ally, let us denote by Ai the algorithmpresented in Se
tion 2.i, (where i 2 f1; 2g and when the algorithm is modi�ed as suggested7



above). Then, starting with ` = jV j=2, we may pro
eed in at most 2 log2 jV j iterations asfollows. We invoke Ai with the 
urrent value of `, and let ed denote the output obtained. Ifed � ` then we halt and output ed, otherwise we pro
eed to the next iteration while setting`  `=2. In 
ase all iterations were 
ompleted and still ed < ` in the last iteration (i.e.,ed < 1=2jV j) then the graph must have no edges and we halt outputting ed = 0.Let `j = jV j=2j be the parameter used in the j-th invo
ation of algorithm A1 (resp., A2),and let edj denote the 
orresponding output. Then, with probability at least 2=3, for everyiteration j that took pla
e, it holds that edj � d and if d � `j then edj � (0:5� 2�)d (resp.,edj � (1� 2�)d). In this 
ase, assuming the graph 
ontains any edges at all,3 the algorithmwill stop after at most log(jV j=d) + O(1) iterations, and will output a value that is in theinterval [(0:5� 2�)d; d℄ (resp., the interval [(1� 2�)d; d℄). Thus, the overall running-time ofthe algorithm is poly(��1 log jV j) �qjV j=d.3 Con
luding RemarksWe �rst observe that any 
onstant approximation algorithm must perform 
(pN) queries(even when both degree queries and neighbor queries are allowed). To verify this, 
onsiderthe following two graphs. One graph is simply a 
y
le over all verti
es, so that the averagedegree is 2. The other graphs 
onsists of a 
y
le of size jV j � 
 �pjV j, for some 
onstant
, and a 
lique of size 
 �pjV j. This graph has average degree 2 + 
 � o(jV j). But for asuÆ
iently small 
onstant 
0, if an algorithm performs less than 
0 �pjV j queries then it
annot distinguish between the two graphs. To be more pre
ise, we need to 
onsider two
orresponding distributions on graphs (allowing all possible labelings of the graph verti
es),so that 
(pjV j) queries are required to distinguish between a random graph from onedistribution and a random graph from the other distribution.We also note that if parallel edges (or weighted edges) are allowed, then estimatingthe average degree of a graph requires 
(jV j) queries (even when both degree queries andneighbor queries are allowed). Consider the following two graphs (families of graphs): onegraph 
onsists of a 
y
le over all verti
es (with a single edge between every pair of 
onse
utiveverti
es) and the other 
onsists of a 
y
le over jV j � 2 verti
es, and a pair of verti
es with
 � jV j parallel edges between them. The average degree in the �rst graph is 2 whereasthe average degree in the se
ond graph is roughly 2 + 
. But distinguishing between thetwo (families of) graphs requires 
(jV j) queries. Thus there is a gap between the query
omplexity of estimating the average degree of simple graphs and non-simple graphs.3In 
ase the graph 
ontains no edges, the algorithm will 
omplete all iterations with no output (be
aused = 0 < `j whereas edj = 0 for ea
h j � 2 log jV j), and thus output the 
orre
t value (i.e., 0) at the laststep. In this 
ase, the overall running-time of the algorithm is poly(��1 log jV j) � jV j. Clearly one 
an modifythe algorithm so that its 
omplexity is never more that O(jV j) (i.e., the 
omplexity of 
omputing the exa
taverage degree), by stopping on
e `j goes below poly(��1 log jV j)=jV j for an appropriate polynomial in log jV jand ��1.
8
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