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IntroductionAs observed by Feige [2], natural objects give rise to functions for which approximating the averagevalue of a function is easier than approximating the average value of a general function with acorresponding domain and range. For example, the average degree of a connected n-vertex graphcan be approximated upto some constant factor (i.e., 2) based on pn samples, whereas the averagevalue of a general function from [n] to [n�1] cannot be approximated to within any constant factorbased on o(n) samples. Indeed, the discrepancy is due to the restrictions imposed on functions thatrepresent quantities that correspond to the type of object considered (i.e., degrees of a graph).Goldreich and Ron initiated a general study of approximating average parameters of graphs [3].In particular, they considered the problems of approximating the average degree of a vertex in agraph as well as approximating the average distance between pairs of vertices. They consideredboth queries to the quantity of interest (e.g., the degree of a vertex) and natural queries to thecorresponding object (e.g., neighborhood queries in a graph). (Barhum [1, Chap. 2] extended theiraverage-degree approximation algorithm to k-uniform hypergraphs.)In the present paper, we consider the problem of approximating the average distance betweenpoints in a (high-dimensional) Euclidean space, and more generally for points in any metric space.Although this study may be viewed as an imitation of [3], the speci�c context (i.e., geometry ratherthan graph theory) is di�erent and indeed di�erent techniques are employed.Our aim is beating the obvious quadratic-time algorithm, which may be used to compute theexact value of the aforementioned average. But, unlike in the graph theoretic setting (cf. [3]), wecannot hope for sublinear-time approximation algorithms (because a single \exceptional" point maydominate the value of the average of all pairwise distances). Thus, we seek (almost) linear-timeapproximation algorithms. We consider two algorithmic approaches.1. Manipulating the object itself. This algorithmic approach (presented in Section 1) appliesonly to the case of Euclidean Spaces. The algorithm operates by randomly reducing thehigh-dimensional problem to a one-dimensional problem. The resulting algorithm runs inalmost-linear time and lends itself to a \direct" derandomization (which incurs an overheadthat is exponential in the original dimension).2. Sampling and averaging. The straightforward approach (presented in Section 2) consists ofselecting a random sample of pairs of points and outputting the average distance betweenthese pairs. This algorithm works for any metric space, and it turns out that it su�ces touse a sample of size that is linear (rather than quadratic) in the number of points. This algo-rithm does not o�er a meaningful \direct" derandomization (because such a derandomizationrequires scanning all pairs of points), but it raises the question of whether a �xed set of pairscan be used as a basis for approximation. We study this question in Sections 2.2 and 2.3,demonstrating a gap between the case of general metric and the case of Euclidean metric.In particular, in the latter case, we obtain a deterministic approximation algorithm running(essentially) in linear-time.Thus, it seems that the second algorithmic approach is superior to the �rst approach. Furthermore,we believe that Sections 2.2 and 2.3 may be of independent interest. In particular, they yield asimple proof to the fact that the graph metric of most constant-degree graphs cannot be embeddedin a Euclidean space without incurring logarithmic distortion.
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1 Euclidean Spaces and the Random Projection AlgorithmIn this section, we present an almost linear time algorithm for approximating the sum of the dis-tances between points in a high-dimensional Euclidean space; that is, given P1; :::; Pn 2 Rd, thealgorithm outputs an approximation of Pi;j2[n] kPi � Pjk. The algorithm is based on randomlyreducing the high-dimensional case to the one-dimensional case, where the problem is easily solv-able. Speci�cally, the d-dimensional algorithm repeatedly selects a uniformly distributed direction,projects all points to the corresponding line, and computes the sum of the corresponding distances(on this line). Each such experiment yields an expected value that is a �(d) fraction of the sumthat we seek, where �(d) denotes the expected length of the projection of a uniformly distributedunit vector on a �xed direction. Furthermore, O(��2) repetitions su�ce for obtaining a 1� � factorapproximation (with error probability at most 1/3). The process can be derandomized at a cost ofslowing down the algorithm by a factor of poly(1=�)d.1.1 The one-dimensional caseOur starting point is the fact that an almost linear-time algorithm that computes the exact value (ofthe sum of all pairwise distances) is known in the one-dimensional case. This algorithm proceedsby �rst sorting the input points p1; :::; pn 2 R such that p1 � p2 � � � � � pn, then computingPnj=1 jp1� pjj (in a straightforward manner), and �nally for i = 1; :::; n� 1 computing in constant-time the value Pnj=1 jpi+1 � pj j based on Pnj=1 jpi � pj j. Speci�cally, we use the fact thatnXj=1 jpi+1 � pjj = iXj=1(pi+1 � pj) + nXj=i+1(pj � pi+1)= (i� (n� i)) � (pi+1 � pi) + iXj=1(pi � pj) + nXj=i+1(pj � pi)= (2i � n) � (pi+1 � pi) + nXj=1 jpi � pjj :1.2 A simple deterministic approximation for the d-dimensional caseCombining the aforementioned algorithm with the basic inequalities regarding norms (i.e., therelation of Norm2 to Norm1), we immediately obtain a (deterministic) pd-factor approximationalgorithm for the d-dimensional case. Speci�cally, consider the points P1; :::; Pn 2 Rd, where Pi =(pi;1; :::; pi;d), and let kPi � Pjk denote the Euclidean (i.e., Norm2) distance between Pi and Pj .Then it holds that1pd � Xi;j2[n] dXk=1 jpi;k � pj;kj � Xi;j2[n] kPi � Pjk � Xi;j2[n] dXk=1 jpi;k � pj;kj : (1)Thus,Pi;j2[n] kPi�Pjk can be approximated byPi;j2[n]Pdk=1 jpi;k�pj;kj, which is merely the sumof d one-dimensional problems (i.e., Pdk=1Pi;j2[n] jpi;k � pj;kj).1.3 The main algorithmHowever, we seek a better approximation than the pd-approximation just described. Indeed, themain contribution of this section is an almost linear-time (randomized) approximation scheme for2



the value of Pi;j2[n] kPi � Pjk. The key conceptual observation is that the rough bounds providedby Eq. (1) re
ect (extremely di�erent) worst-case situations, whereas \on the average" there isa tight relation between the Norm2 and the Norm1 values. Recall that while the Norm2 valueis invariant of the system of coordinates, Norm1 is de�ned based on such a system and is verydependent on it. What we are saying is that rather than computing the Norm1 value accordingto an arbitrary system of coordinates (which leaves some slackness w.r.t the Norm2 value that weseek), we should compute the Norm1 value according to a random system of coordinates (i.e., asystem that is selected uniformly at random).To see what will happen when we use a random system of coordinates (i.e., orthonormal basisof Rd), we need some notation. Let hu; vi denote the inner-product of the (d-dimensional) vectorsu and v. Then, the Norm1 value of the vector v according to the system of coordinates (i.e.,orthonormal basis) b1; :::; bd equals Pdk=1 jhv; bkij. The key technical observation is that, for anorthonormal basis b1; :::; bd that is chosen uniformly at random, it holds thatEb1;:::;bd " dXk=1 jhv; bkij# = d �Eb1 [jhv; b1ij] = d � kvk � Eb1 [jhv; b1ij] ; (2)where v = v=kvk is a unit vector in the direction of v. Furthermore, for any unit vector u 2 Rd,the value Eb1 [jhu; b1ij] is independent of the speci�c vector u, while b1 is merely a uniformlydistributed unit vector (in Rd). Thus, letting r denote a uniformly distributed unit vector, wede�ne �(d) def= Er [jhu; rij] and observe thatEb1 [jhv; b1ij] = kvk � �(d) : (3)Moreover, a closed form expression for �(d), which is linearly related to 1=pd, is well-known (seeSection 1.5).Turning back to Eq. (3), we have kvk = Er [jhv; rij] =�(d), where r is a random unit vector. Itfollows that Xi;j2[n]kPi � Pjk = 1�(d) �Er 24 Xi;j2[n] jhPi � Pj ; rij35: (4)Noting that jhPi � Pj ; rij = jhPi; ri � hPj ; rij, this completes the randomized reduction of the d-dimensional case to the one-directional case; that is, the reduction selects a random unit vectorr, and computes Pi;j2[n] jhPi; ri � hPj ; rij. Note that we have obtained an unbiased estimator1 forPi;j2[n] kPi � Pjk. Furthermore, as shown in Section 1.5, this estimator is strongly concentratedaround its expected value; in particular, the square root of the variance of this estimator is linearlyrelated to its expectation. We thus obtain:Theorem 1 There exists a randomized algorithm that, given an approximation parameter � > 0and points P1; :::; Pn 2 Rd, runs for ~O(��2 �jP1; :::; Pnj)-time and with probability at least 2=3 outputsa value in the interval [(1� �) � A; (1 + �) �A], where A =Pi;j2[n] kPi � Pjk=n2.Let us spell-out the algorithm asserted in Theorem 1 and complete its analysis. This algorithmconsists of repeating the following procedure O(��2) times:1. Uniformly select a unit vector r 2 Rd.1A random variable X (e.g., the output of a randomized algorithm) is called an unbiased estimator of a value v ifE[X] = v. 3



2. For i = 1; :::; n, compute the projection pi = hPi; ri.3. Compute 1�(d)�n2 Pi;j2[n] jpi�pjj, by invoking the procedure described in Section 1.1 and usingthe value �(d) computed as in Section 1.5.The algorithm outputs the average of the values obtained in the various iterations. Step 2 can beimplemented using n � d real (addition and multiplication) operations, whereas the complexity ofStep 3 is dominated by sorting n real values.The issues addressed next include the exact implementation of a single iteration (i.e., approx-imating real-value computations), which leads to an e�cient derandomization, and providing ananalysis of a single iteration (thus proving that O(��2) iterations su�ce). Let us start with thelatter.1.4 Probabilistic analysis of a single iterationLet us denote by X the random value computed by a single iteration, and let Z = (�(d) � n2) �X.Recall that Z =Pi;j2[n] jhPi; ri�hPj ; rij, which equalsPi;j2[n] jhPi � Pj ; rij, where r is a uniformlydistributed unit vector. Note thatE[Z] = Er 24 Xi;j2[n] jhPi � Pj ; rij35= �(d) � Xi;j2[n]kPi � Pjk ;where the second equality relies on Eq. (4). This establishes the claim that each iteration providesan unbiased estimator of Pi;j2[n] kPi � Pjk=n2. As usual, the usefulness of a single iteration isdetermined by the variance of the estimator. A simple upper-bound on the variance of Z may beobtained as follows V[Z] = Vr 24 Xi;j2[n] jhPi � Pj ; rij35� Er 2640@ Xi;j2[n] jhPi � Pj ; rij1A2375� 0@ Xi;j2[n]kPi � Pjk1A2where the second inequality uses the fact that jhPi � Pj ; rij � kPi�Pjk holds (for any unit vector r).This implies that V[Z] � �(d)�2 �E[Z]2 = O(d �E[Z]2). In Section 1.5, we will show that it actuallyholds that V[Z] = O(E[Z]2).Applying Chebyshev's Inequality, it follows that the average value of t iterations (of the proce-dure) yields an (1� �)-factor approximation with probability at least 1� V[Z](��E[Z])2�t . We stress thatthis holds even if the iterations are performed using random choices that are pairwise independent(rather than totally independent) among the various iterations. Thus, forV[Z] = O(E[Z]2), settingt = O(��2) will do. 4



1.5 On �(d) and the related variance �2(d)Recall that �(d) def= Er [jhu; rij], where u is an arbitrary unit vector (in Rd) and r is a uni-formly distributed unit vector (in Rd). Analogously, we de�ne the corresponding variance �2(d) def=Vr [jhu; rij]. Note that both �(d) and �2(d) are actually independent of the speci�c vector u.Theorem 2 (folklore): �(d) = 1(d�1)�Ad�2 , where A0 = �=2, A1 = 1, and Ak = k�1k �Ak�2.In particular, �(2) = 2=� � 0:63661977 and �(3) = 1=2. In general, �(d) = �(1=pd). A proof ofTheorem 2 can be found in [1, Sec. 3.6]. Using similar techniques (see [1, Sec. 3.7]), one may obtainTheorem 3 (probably also folklore): �2(d) = O(1=d). Furthermore, for any two unit vectorsu1; u2 2 Rd and for a uniformly distributed unit vector r 2 Rd, it holds that Er [jhu1; rij � jhu2; rij] =O(1=d).In fact, the furthermore clause follows from �2(d) = O(1=d) (and �(d)2 = O(1=d)) by using theCauchy-Schwartz Inequality.2Improved bound for the variance of Z. Recalling that Z = Pi;j2[n] jhPi � Pj ; rij and usingTheorem 3, we haveV[Z] � E[Z2] = Er 24 Xi1;j1;i2;j22[n] jhPi1 � Pj1 ; rij � jhPi2 � Pj2 ; rij35= O(1=d) � Xi1;j1;i2;j22[n] kPi1 � Pj1k � kPi2 � Pj2k= O(1=d) �0@ Xi;j2[n]kPi � Pjk1A2:Recalling that E[Z] = �(d) �Pi;j2[n] kPi�Pjk, it follows that V[Z] = O(1=d) � (E[Z]=�(d))2. Using�(d) = 
(1=pd), we conclude that V[Z] = O(E[Z]2).1.6 Implementation details (i.e., the required precision)By inspecting the various operations of our algorithm, one may verify that it su�ces to conductall calculations with O(log(1=�)) bits of precision (see [1] for details). In particular, this holds withrespect to the selection of r 2 Rd, which is the only randomization that occurs in a single iteration.It follows that each iteration can be implemented using O(d � log(1=�)) coin tosses (i.e., O(log(1=�))bits of precision per each coordinate of r).Using pairwise independent random choices in the di�erent iterations, the entire algorithmcan be implemented within randomness-complexity m = O(d � log(1=�)). It follows that a full-derandomization can be obtained at the cost of slowing down the algorithm by a factor of 2m =poly(1=�)d.2That is, Er[jhu1; rij � jhu2; rij] �pEr[jhu1; rij2] � Er[jhu2; rij2] = Er[jhu1; rij2] = �2(d) + �(d)2.5



1.7 Re
ectionIn retrospect, the foregoing algorithm is an incarnation of the \embedding paradigm" (i.e., thefact that the Euclidean metric can be embedded with little distortion in the `1-metric). The point,however, is that we do not require a good (i.e., small distortion) embedding of all pairwise distances,but rather a good (i.e., small distortion) embedding of the average pairwise distances. Note thatinsisting on a good embedding of all �n2� pairwise distances would require a logarithmic number ofdimensions (rather than a constant number of dimensions, as implicit in our scheme for constant� > 0). Either way, computing the average `1-metric distances in a d0-dimensional space reduces tod0 computations of average distances in a one-dimensional space.2 General Metric and the Sampling AlgorithmThe straightforward algorithm for approximating the average pairwise distances consists of selectinga random sample of m pairs of points and outputting the average distance between these pairs.This algorithm works for any metric space. The question is how large should its sample be; thatis, how should m relate to the number of points, denoted n. Indeed, m should be proportional toV[Z]=E[Z]2, where Z represents the result of a single \distance measurement" (i.e., the distancebetween a uniformly selected pair of points). Speci�cally, to obtain an (1 � �)-approximation ofthe average of all pairwise distances, it su�ces to take m = O(V[Z]=(� � E[Z])2). Thus, we �rstupper-bound the ratio V[Z]=E[Z]2, showing that it is at most linear in the number of points (seeSection 2.1). We later consider the question of derandomization (see Section 2.2).2.1 The approximation provided by a random sampleWe consider an arbitrary metric (�i;j)i;j2[n] over n points, where �i;j denote the distance betweenthe ith and jth point. Actually, we shall only use the fact that the metric is symmetric (i.e., forevery i; j 2 [n] it holds that �i;j = �j;i) and satis�es the triangle inequality (i.e., for every i; j; k 2 [n]it holds that �i;k � �i;j+�j;k). Recall that Z is a random variable representing the distance betweena uniformly selected pair of points; that is, Z = �i;j , where (i; j) 2 [n]� [n] is uniformly distributed.Proposition 4 For Z as above, it holds that V[Z] = O(n �E[Z]2).Proof: By an averaging argument, it follows that there exists a point c (which may be viewed asa \center") such that 1n � Xj2[n] �c;j � 1n2 � Xi;j2[n] �i;j : (5)Using such a (center) point c, we upper-bound E[Z2] as follows:E[Z2] = 1n2 � Xi;j2[n] �2i;j� 1n2 � Xi;j2[n] (�i;c + �c;j)2� 1n2 � Xi;j2[n]�2�2i;c + 2�2c;j�6



= 4nn2 � Xj2[n] �2c;jwhere the �rst inequality is due to the triangle inequality and the last equality uses the symmetryproperty. Thus, we have E[Z2] � 4n � Xj2[n]��c;jn �2� 4n �0@Xj2[n] �c;jn 1A2� 4n �0@ Xi;j2[n] �i;jn2 1A2where the last inequality is due to Eq. (5). Thus, we obtain E[Z2] � 4n �E[Z]2, and the propositionfollows (because V[Z] � E[Z2]).Tightness of the bound. To see that Proposition 4 is tight, consider the metric (�i;j)i;j2[n] suchthat �i;j = 1 if either i = v 6= j or j = v 6= i and �i;j = 0 otherwise. (Note that this metric can beembedded on the line with v at the origin (i.e. location 0) and all other points co-located at 1.) Inthis case E[Z] = 2(n�1)=n2 < 2=n while E[Z2] = E[Z], which means that V[Z]E[Z]2 = 1E[Z]�1 > n2�1.2.2 On the limits of derandomizationA \direct" derandomization of the sampling-based algorithm requires trying all pairs of points,which foils our aim of obtaining a sub-quadratic time algorithm. Still, one may ask whether abetter derandomization exists. We stress that such a derandomization should work well for allpossible metric spaces. The question is how well can a �xed sample of pairs (over [n]) approximatethe average distance between all the pairs (of points) in any metric space (over n points). Thecorresponding notion is formulated as follows.De�nition 5 (universal approximator): A multi-set of pairs S � [n] � [n] is called a universal(L;U)-approximator if for every metric (�i;j)i;j2[n] it holds thatL(n) � n�2 � Xi;j2[n] �i;j � jSj�1 � X(i;j)2S �i;j � U(n) � n�2 � Xi;j2[n] �i;j: (6)In such a case, we also say that S is a universal U=L-approximator.Needless to say, [n]� [n] itself is a universal 1-approximator, but we seek universal approximatorsof almost linear size. We shall show an explicit construction (of almost linear size) that provides alogarithmic-factor approximation, and prove that this is the best possible.We note that universal approximators can be represented as n-vertex directed graphs (possiblywith parallel and anti-parallel edges). In some cases, we shall present universal approximators asundirected graphs, while actually meaning the corresponding directed graph obtained by replacingeach undirected edge with a pair of anti-parallel directed edges.7



2.2.1 A constructionFor an integer parameter k, we shall consider the generalized k-dimensional hypercube having nvertices, which are viewed as k-ary sequences over [n1=k] such that two vertices are connected byan edges if and only if (as k-long sequences) they di�er in one position. That is, the verticesh�1; :::; �ki 2 [n1=k]k and h�1; :::; �ki are connected if and only if jfi 2 [k] : �i 6= �igj = 1. Inaddition, we add k self-loops to each vertex, where each such edge corresponds to some i 2 [k].Thus, the degree of each vertex in this n-vertex graph equals k �n1=k. We shall show that this graphconstitutes a universal O(k)-approximator.Theorem 6 The generalized k-dimensional n-vertex hypercube is a universal (1=k; 2)-approximator.In particular, the binary hypercube (i.e., k = log2 n) on n vertices constitutes a universal O(log n)-approximator.Proof: For every two vertices u; v 2 [n], we consider a canonical path of length k between uand v. This path, denoted Pu;v, corresponds to the sequence of vertices w(0); :::; w(k) such thatw(i) = h�1; :::; �k�i; �k�i+1; :::; �ki, where u = h�1; :::; �ki and v = h�1; :::; �ki. (Here is where we usethe self-loops.) Below, we shall view these paths as sequences of edges (i.e., Pu;v is viewed as thek-long sequence (w(0); w(1)); :::; (w(k�1) ; w(k))). An important property of these canonical paths isthat each edge appears on the same number of paths.Letting E denoted the directed pairs of vertices that are connected by an edge, and using thetriangle inequality and the said property of canonical paths, we note thatn�2 � Xu;v2[n] �u;v � n�2 � Xu;v2[n] X(w;w0)2Pu;v �w;w0= n�2 � X(w;w0)2E jf(u; v) 2 [n]� [n] : (w;w0) 2 Pu;vgj � �w;w0= n�2 � X(w;w0)2E k � n2jEj � �w;w0which equals k � jEj�1 �P(w;w0)2E �w;w0. On the other hand, letting �(u) = fv : (u; v) 2Eg, andusing the triangle inequality and the regularity of the graph, we note thatjEj�1 � X(u;v)2E �u;v � jEj�1 � X(u;v)2E n�1 � Xw2[n](�u;w + �w;v)= jEj�1n�1 � Xu;w2[n] Xv2�(u)(�u;w + �w;v)= jEj�1n�1 �0@ Xu;w2[n] j�(u)j � �u;w + Xv;w2[n] j��1(v)j � �u;w1A= jEj�1n�1 � 2 � jEjn � Xu;w2[n] �u;wwhich equals 2 � n�2 �Pu;w2[n] �u;w. 8



2.2.2 A lower-boundWe now show that the construction provided in Theorem 6 is optimal. Indeed, our focus is on thecase k < log2 n (and actually, even k = o(log n)).Theorem 7 A universal k-approximator for n points must have n(k+1)=k4k edges.Proof: Let G = ([n]; E) be (a directed graph representing) a universal k-approximator. We�rst note that no vertex can have (out)degree exceeding 2k � (jEj=n) (even when not countingself-loops). The reason being that if vertex v has a larger degree, denoted dv, then we reachcontradiction by considering the metric (�i;j)i;j2[n] such that �i;j = 1 if either i = v 6= j or j = v 6= iand �i;j = 0 otherwise. (Note that this metric can be embedded on the line with v at the origin(i.e. location 0) and all other points co-located at 1.) In this case n�2 �Pi;j2[n] �i;j < 2=n, whereasjEj�1 �P(i;j)2E �i;j = jEj�1 � dv (which is greater than 2k=n).We now consider the metric induced by the graph G itself; that is, �i;j equals the distancebetween vertices i and j in the graph G. Clearly, jEj�1 �P(i;j)2E �i;j = 1, but (as we shall see)the average distance between pairs of vertices is much larger. Speci�cally, letting d � 2k � (jEj=n)denote the maximum degree of a vertex in G, we haven�2 � Xu;v2[n] �u;v � minu2[n]fn�1 � Xv2[n] �u;vg� n�1 � tXi=0 di � iwhere t is the smallest integer such that Pti=0 di � n, which implies t > logd((1 � d�1) � n) �lnn�d�1ln d . Thus, n�2 �Pu;v2[n] �u;v is lower-bounded by dtn � t � (1� d�1) � t > (1� 2d�1) � lnnln d whichmust be at most at most k (because otherwise G cannot be a universal k-approximator). Using(1�2d�1) � lnnln d � k it follows that d0 def= d1=(1�2d�1) � n1=k, which (using d0 < 2d) implies 2d > n1=k.Finally, using d � 2k � (jEj=n), we get jEj � dn2k > n(k+1)=k4k .2.3 On the limits of derandomization, revisitedNote that while the �rst part of the proof of Theorem 7 (i.e., bounding the maximum degree interms of the average-degree) uses an Euclidean metric, the main part of the proof refers to a graphmetric (which may not have a Euclidean embedding). Thus, Theorem 7 does not rule out theexistence of sparse graphs that provide good approximations for points in a Euclidean space.De�nition 8 (universal approximator, restricted): A multi-set of pairs S � [n] � [n] is called a(L;U)-approximator for the class M if Eq. (6) holds for any n-point metric of the class M.Needless to say, any universal (L;U)-approximator is (L;U)-approximator for the Euclidean metric,but the converse does not necessarily hold. Indeed, we shall see that approximators for the Euclideanmetric can have much fewer edges than univeral approximators (for any metric).Theorem 9 For every constant � > 0, there exists a e�ciently constructible (1 + �)-approximatorfor the Euclidean metric that has O(n=�2) edges. Furthermore, such approximators can be con-structed in linear-time. 9



Theorem 9 follows by reducing the general case of (high-dimensional) Euclidean metric to theline-metric (i.e., one-dimensional Euclidean metric) and presenting an approximator for the lattermetric.Proposition 10 Suppose that S � [n] � [n] is an f -approximator for the line-metric. Then Sconstitutes an f -approximator for the Euclidean metric.Proof: Considering a d-dimentional Euclidean space with points P1; :::; Pn 2 Rd, we let r denotea uniformly distributed unit vector in Rd. By Eq. (3), for every vector v 2 Rd it holds thatEr[jhv; rij] = �(d)�kvk. Thus, for every i; j 2 [n] it holds that kPi�Pjk = �(d)�1�Er[jhPi; ri�hPi; rij]and so X(i;j)2S kPi � Pjk = �(d)�1 � Er 24 X(i;j)2S jhPi; ri � hPi; rij35Xi;j2[n] kPi � Pjk = �(d)�1 � Er 24 Xi;j2[n] jhPi; ri � hPi; rij35The proposition follows by applying the hypothesis to (each value of r in) the r.h.s of each of theforegoing equalities.Strong expanders. Good approximators for the line-metric are provided by the following notionof graph expansion. We say that the (undirected) graph G = ([n]; E) is a (1� �)-strong expander iffor every S � [n] it holds thatjE(S; [n] n S)jjEj = (1� �) � jSj � (n� jSj)n2=2 (7)where E(V1; V2) def= ffu; vg 2 E : u2V1 ^ v2V2g. As we shall see (in Proposition 12), su�cientlygood expanders (i.e., having relative eigenvalue bound �=2) are strong expanders (i.e., (1��)-strongexpander). We �rst establish the connection between strong expanders and good approximatorsfor the line-metric.Proposition 11 Suppose that the graph G = ([n]; E) is a (1 � �)-strong expander. Then it yieldsa (1 + �)-approximator for the line-metric.The su�cient condition regarding G is also necessary (e.g., for any cut (S; [n] n S), consider thepoints p1; :::; pn 2 R such that pi = 0 if i 2 S and pi = 1 otherwise).Proof: For any sequence of points p1; :::; pn 2 R, consider the \sorting permutation" � : [n]! [n]such that for every i 2 [n � 1] it holds that p�(i) � p�(i+1). By counting the contribution of each\line segment" [p�(i); p�(i+1)] to Pi;j2[n] jpi � pj j, we getXi;j2[n] jpi � pjj = n�1Xi=1 2i � (n� i) � (p�(i+1) � p�(i)) (8)Similarly, for Si = f�(1); :::; �(i)g, we haveXi;j:fi;jg2E jpi � pjj = n�1Xi=1 2jE(Si; [n] n Si)j � (p�(i+1) � p�(i)) (9)10



Using the proposition's hypothesis, we have for every i 2 [n� 1],2 � jE(Si; [n] n Si)j2 � jEj = (1� �) � 2 � i � (n� i)n2 (10)and the proposition follows by combining Eq. (8){(10).Proposition 12 Suppose that the graph G = ([n]; E) is a d-regular graph with a second eigenvaluebound � < d. Then G is a (1� (2�=d))-strong expander.Thus any family of constructible O(��2)-regular Ramanujan graphs (e.g., [4]) yields a constructiblefamily of (1 � �)-strong expanders. Furthermore, such graphs can be constructed in almost lineartime (i.e., each edge can be determined by a constant number of arithmetic operations in a �eld ofsize smaller than n).Proof: The claim follows from the Expander Mixing Lemma, which refers to any two sets A;B �[n], and asserts that ���� jE(A;B)jd � n � �(A) � �(B)���� � �d �q�(A) � �(B) (11)where �(S) = jSj=n for every set S � [n]. Applying the lemma to the special case of A = B, we inferthat jE(A;A)j resides in the interval [�(A) � d � jAj � � � jAj]. Assuming, without loss of generality,that jAj � n=2, we conclude that jE(A; [n] nA)j=(d � n) resides in [�(A) � (1� �(A))� (�=d) � �(A)],which is a sub-interval of [(1� (2�=d)) � �(A) � (1� �(A))] (because 1� �(A) � 1=2).Conclusion. The foregoing three propositions imply the existence of (e�ciently constructible)O(��2)-regular graphs are (1� �)-approximators for the Euclidean metric. It is easy to see that theargument extends to the `1-metric. We note that combining the foregoing fact with the proof ofTheorem 7 it follows that most constant-degree graphs cannot be embedded in a Euclidean space(resp., `1-metric) without incurring logarithmic distortion. Details follow.Recall that a metric (e.g., a graph metric) on n points, denoted (�i;j)i;j2[n] is said to be embeddedin a Euclidean space with distortion � if the distance between points i and j in the embedding isat least �i;j and at most � � �i;j . Thus, if a graph satisfying Proposition 12 can be embedded in aEuclidean space with distortion �, then this graph constitutes a (1+�) ��-approximator of the graphmetric induced by itself. But then the proof of Theorem 7 implies that for k = (1 + �) � � it holdsthat O(��2) � n1=k=4k. Actually, since the graph in question is regular, we may skip the �rst partof the said proof and use d = 2jEj=n (rather than d = 2kjEj=n), thus obtaining O(��2) � n1=k=2.Using any �xed � > 0, it follows that k = 
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