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Abstract

We consider the problem of approximating the average distance between pairs of points
in a high-dimensional Euclidean space, and more generally in any metric space. Our aim is
providing linear-time approximation algorithms, which in particular beat the obvious quadratic-
time algorithm that computes the exact value. We consider two algorithmic approaches:

1. Referring only to Euclidean Spaces, we randomly reduce the high-dimensional problem to
a one-dimensional problem. The resulting algorithm runs in almost-linear time and lends
itself to a “direct” derandomization.

2. An alternative approach consists of selecting a random sample of pairs of points and out-
putting the average distance between these pairs. It turns out that, for any metric space, it
suffices to use a sample of size that is linear in the number of points. A “direct” derandom-
ization of this algorithm is meaningless, but we study possible “indirect” derandomization
that are inspired by it.
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Introduction

As observed by Feige [2], natural objects give rise to functions for which approximating the average
value of a function is easier than approximating the average value of a general function with a
corresponding domain and range. For example, the average degree of a connected n-vertex graph
can be approximated upto some constant factor (i.e., 2) based on /n samples, whereas the average
value of a general function from [n] to [n — 1] cannot be approximated to within any constant factor
based on o(n) samples. Indeed, the discrepancy is due to the restrictions imposed on functions that
represent quantities that correspond to the type of object considered (i.e., degrees of a graph).

Goldreich and Ron initiated a general study of approximating average parameters of graphs [3].
In particular, they considered the problems of approximating the average degree of a vertex in a
graph as well as approximating the average distance between pairs of vertices. They considered
both queries to the quantity of interest (e.g., the degree of a vertex) and natural queries to the
corresponding object (e.g., neighborhood queries in a graph). (Barhum [1, Chap. 2] extended their
average-degree approximation algorithm to k-uniform hypergraphs.)

In the present paper, we consider the problem of approximating the average distance between
points in a (high-dimensional) Euclidean space, and more generally for points in any metric space.
Although this study may be viewed as an imitation of [3], the specific context (i.e., geometry rather
than graph theory) is different and indeed different techniques are employed.

Our aim is beating the obvious quadratic-time algorithm, which may be used to compute the
exact value of the aforementioned average. But, unlike in the graph theoretic setting (cf. [3]), we
cannot hope for sublinear-time approximation algorithms (because a single “exceptional” point may
dominate the value of the average of all pairwise distances). Thus, we seek (almost) linear-time
approximation algorithms. We consider two algorithmic approaches.

1. Manipulating the object itself. This algorithmic approach (presented in Section 1) applies
only to the case of Euclidean Spaces. The algorithm operates by randomly reducing the
high-dimensional problem to a one-dimensional problem. The resulting algorithm runs in
almost-linear time and lends itself to a “direct” derandomization (which incurs an overhead
that is exponential in the original dimension).

2. Sampling and averaging. The straightforward approach (presented in Section 2) consists of
selecting a random sample of pairs of points and outputting the average distance between
these pairs. This algorithm works for any metric space, and it turns out that it suffices to
use a sample of size that is linear (rather than quadratic) in the number of points. This algo-
rithm does not offer a meaningful “direct” derandomization (because such a derandomization
requires scanning all pairs of points), but it raises the question of whether a fixed set of pairs
can be used as a basis for approximation. We study this question in Sections 2.2 and 2.3,
demonstrating a gap between the case of general metric and the case of Euclidean metric.

We believe that Sections 2.2 and 2.3 may be of independent interest. In particular, they yield a
simple proof to the fact that the graph metric of most constant-degree graphs cannot be embedded
in a Euclidean space without incurring logarithmic distortion.

1 Euclidean Spaces and the Random Projection Algorithm

In this section, we present an almost linear time algorithm for approximating the sum of the dis-
tances between points in a high-dimensional Euclidean space; that is, given Pj,..., P, € R%, the



algorithm outputs an approximation of 32; jcr [[£5 — Fj||. The algorithm is based on randomly
reducing the high-dimensional case to the one-dimensional case, where the problem is easily solv-
able. Specifically, the d-dimensional algorithm repeatedly selects a uniformly distributed direction,
projects all points to the corresponding line, and computes the sum of the corresponding distances
(on this line). Each such experiment yields an ezpected value that is a p(d) fraction of the sum
that we seek, where p(d) denotes the expected length of the projection of a uniformly distributed
unit vector on a fixed direction. Furthermore, O(e~2) repetitions suffice for obtaining a 1 =+ € factor
approximation (with error probability at most 1/3). The process can be derandomized at a cost of
slowing down the algorithm by a factor of poly(1/¢).

1.1 The one-dimensional case

Our starting point is the fact that an almost linear-time algorithm that computes the exact value (of
the sum of all pairwise distances) is known in the one-dimensional case. This algorithm proceeds
by first sorting the input points pi,...,p, € R such that p; < py < -+ < py, then computing
2= Ip1 — pj| (in a straightforward manner), and finally for ¢ = 1,...,n — 1 computing in constant-
time the value 3°7_; [pi+1 — pj| based on 377, |p; — p;|. Specifically, we use the fact that

n [ n
S b —pil = D (i1 —pi) + Y (pj — pis1)
j=1 7=1 Jj=ti+1

= (i—(n—10) i1 —pi) + Y i—pi) + > 5 —pi)
j=1 :

n
= (2i—n)-(pir—pi) + Y lpi —pjl.
j=1

1.2 A simple deterministic approximation for the d-dimensional case

Combining the aforementioned algorithm with the basic inequalities regarding norms (i.e., the
relation of Norm2 to Norml), we immediately obtain a (deterministic) v/d-factor approximation
algorithm for the d-dimensional case. Specifically, consider the points P, ..., P, € R%, where P; =
(pi,1, s i), and let ||P; — Pj|| denote the Euclidean (i.e., Norm2) distance between P; and FP;.
Then it holds that

1 d -
7a Yo e —pirl < Y0 IR =B < Y0 D Ipigk — vyl (1)

i,j€[n] k=1 i,j€[n] i,j€[n] k=1

Thus, 3, e |75 — Pj|| can be approximated by > icp >4 |pix —pjxl, which is merely the sum
of d one-dimensional problems (i.e., Y¢_, >ijem] Pik — Djikl)-

1.3 The main algorithm

However, we seek a better approximation than the v/d-approximation just described. Indeed, the
main contribution of this section is an almost linear-time (randomized) approximation scheme for
the value of 3=; ;e [ — Pj[|l. The key conceptual observation is that the rough bounds provided
by Eq. (1) reflect (extremely different) worst-case situations, whereas “on the average” there is
a tight relation between the Norm2 and the Norml values. Recall that while the Norm2 value



is invariant of the system of coordinates, Norml is defined based on such a system and is very
dependent on it. What we are saying is that rather than computing the Norm1 value according
to an arbitrary system of coordinates (which leaves some slackness w.r.t the Norm2 value that we
seek), we should compute the Norm1 value according to a random system of coordinates (i.e., a
system that is selected uniformly at random).

To see what will happen when we use a random system of coordinates (i.e., orthonormal basis
of R?), we need some notation. Let (u,v) denote the inner-product of the (d-dimensional) vectors
uw and v. Then, the Norm1l value of the vector v according to the system of coordinates (i.e.,
orthonormal basis) by, ...,bq equals S2¢_, |(v,by)|. The key technical observation is that, for an
orthonormal basis by, ..., bg that is chosen uniformly at random, it holds that

d
Ebi,. b lZI(?J;ka] = d-Epy, [[{0,b0)]] = d-[|o]| - E, [|(@,01)]], (2)
k=1

where T = v/||v|| is a unit vector in the direction of v. Furthermore, for any unit vector u € R,
the value Ey, [|(u,b1)|] is independent of the specific vector u, while b; is merely a uniformly

distributed unit vector (in R?). Thus, letting ~ denote a uniformly distributed unit vector, we

define p(d) “E, [|{u,7)|] and observe that

Eyp, ([0, 00)I] = [loll - p(d). (3)

Moreover, a closed form expression for p(d), which is linearly related to 1/v/d, is well-known (see
Section 1.5).

Turning back to Eq. (3), we have ||v|| = E, [|(v,7)|] /p(d), where 7 is a random unit vector. It
follows that

1
P-Pl| = —E,
T Ir-nl = o
Noting that [(P; — Pj,r)| = |(F;,r) — (Pj,r)|, this completes the randomized reduction of the d-
dimensional case to the one-directional case; that is, the reduction selects a random unit vector
r, and computes 3=, icr, [(Fi,7) — (P}, 7)|. Note that we have obtained an unbiased estimator' for
> ijem) 1% — Pjl|. Furthermore, as shown in Section 1.5, this estimator is strongly concentrated
around its expected value; in particular, the square root of the variance of this estimator is linearly
related to its expectation. We thus obtain:

> WP = Pjr)]

i,j€[n]

(4)

Theorem 1 There exists a randomized algorithm that, given an approzimation parameter € > 0
and points Py, ..., P, € R, runs for O(e=2-|Py, ..., Py|)-time and with probability at least 2/3 outputs
a value in the interval [(1 —€)- A, (1 +¢€) - A], where A =37, e |15 — Pj||/n?.

Let us spell-out the algorithm asserted in Theorem 1 and complete its analysis. This algorithm
consists of repeating the following procedure O(e~2) times:

1. Uniformly select a unit vector » € R%.
2. For i = 1,...,n, compute the projection p; = (P;, ).

3. Compute W > i jem] |p;i —pjl, by invoking the procedure described in Section 1.1 and using
the value p(d) computed as in Section 1.5.

! A random variable X (e.g., the output of a randomized algorithm) is called an unbiased estimator of a value v if

E[X] =v.



The algorithm outputs the average of the values obtained in the various iterations. Step 2 can be
implemented using n - d real (addition and multiplication) operations, whereas the complexity of
Step 3 is dominated by sorting n real values.

The issues addressed next include the exact implementation of a single iteration (i.e., approx-
imating real-value computations), which leads to an efficient derandomization, and providing an
analysis of a single iteration (thus proving that O(e 2) iterations suffice). Let us start with the
latter.

1.4 Probabilistic analysis of a single iteration

Let us denote by X the random value computed by a single iteration, and let Z = (p(d) - n?) - X.
Recall that Z = 37, i (55, 7) — (Pj,7)|, which equals 37, icr,) [(£5 — Pj, )|, where r is a uniformly
distributed unit vector. Note that

E[Z] = E.| Y |(Pi—PFjr)
i,j€[n]

= p(d)- > P - P,
i,j€[n]

where the second equality relies on Eq. (4). This establishes the claim that each iteration provides
an unbiased estimator of 32; icny 15 — Pj||/n?*. As usual, the usefulness of a single iteration is
determined by the variance of the estimator. A simple upper-bound on the variance of Z may be
obtained as follows

ViZ] = VT{Z I(R—Pjaﬂl}
]

i,jE[n

2
< Er (Z |<P1_P_77T>|)
i,j€[n]
2
< ( > IA —PjH)
i,5€[n]

where the second inequality uses the fact that |(P; — Pj,7)| < ||P;— P} holds (for any unit vector r).
This implies that V[Z] < p(d) 2-E[Z]? = O(d-E[Z]?). In Section 1.5, we will show that it actually
holds that V[Z] = O(E[Z]?).

Applying Chebyshev’s Inequality, it follows that the average value of ¢ iterations (of the proce-

dure) yields an (1 £ €)-factor approximation with probability at least 1 — % We stress that

this holds even if the iterations are performed using random choices that are pairwise independent
(rather than totally independent) among the various iterations. Thus, for V[Z] = O(E[Z]?), setting
t = O(e ?) will do.

1.5 On p(d) and the related variance o*(d)

Recall that p(d) g, [[{u,7)|], where u is an arbitrary unit vector (in R?) and r is a uni-

formly distributed unit vector (in R?). Analogously, we define the corresponding variance o(d) o

V. [|(u,7)]]. Note that both p(d) and o*(d) are actually independent of the specific vector u.



Theorem 2 (folklore): p(d) = m, where Ay =m/2, Ay =1, and Ay, = % - Ag_o.

In particular, p(2) = 2/7 ~ 0.63661977 and p(3) = 1/2. In general, p(d) = ©(1/vd). A proof of
Theorem 2 can be found in [1, Sec. 3.6]. Using similar techniques (see [1, Sec. 3.7]), one may obtain

Theorem 3 (probably also folklore): o%(d) = O(1/d). Furthermore, for any two unit vectors
uy,uy € R and for a uniformly distributed unit vector r € R, it holds that E, [|{(uy,r)] - |{(uz,r)|] =

0(1/d).

In fact, the furthermore clause follows from o?(d) = O(1/d) (and p(d)? = O(1/d)) by using the
Cauchy-Schwartz Inequality.?

Improved bound for the variance of Z. Recalling that Z =),
Theorem 3, we have

ijemn] (% — Pj,r)| and using

V[Z] < E[Z2] = E, Z |<Pil_ljj17r>|'|<ljiz_szv’r>|

1,1,82,J2€[n]

= O(/d)- Y Py =Pyl 1P, — Pyl

i1,71,42,J2€[n]

= o(1/d)- (ZHP Pu)

JE[n]

Recalling that E[Z] = p(d) - 3, ;e 175 — B, it follows that V[Z] = O(1/d) - (E[Z]/p(d))?. Using
p(d) = Q(1/+/d), we conclude that V[Z] O(E[Z]?).

1.6 Implementation details (i.e., the required precision)

By inspecting the various operations of our algorithm, one may verify that it suffices to conduct
all calculations with O(log(1/€)) bits of precision (see [1] for details). In particular, this holds with
respect to the selection of r € R%, which is the only randomization that occurs in a single iteration.
It follows that each iteration can be implemented using O(d -log(1/¢€)) coin tosses (i.e., O(log(1/¢))
bits of precision per each coordinate of r).

Using pairwise independent random choices in the different iterations, the entire algorithm
can be implemented within randomness-complexity m = O(d - log(1/¢)). It follows that a full-
derandomization can be obtained at the cost of slowing down the algorithm by a factor of 2™ =

poly(1/e)?.

1.7 Reflection

In retrospect, the foregoing algorithm is an incarnation of the “embedding paradigm” (i.e., the
fact that the Euclidean metric can be embedded with little distortion in the ¢;-metric). The point,
however, is that we do not require a good (i.e., small distortion) embedding of all pairwise distances,
but rather a good (i.e., small distortion) embedding of the average pairwise distances. Note that
insisting on a good embeddlng of all (3) pairwise distances would require a logarithmic number of

*That is, B [[(ur,7)] - [(uz, )] < /B [[ur, 7] B, [(uz, )] = By [[{ur, 1)’] = 0 (d) + p(d)*.



dimensions (rather than a constant number of dimensions, as implicit in our scheme for constant
e > 0). Either way, computing the average {1-metric distances in a d’'-dimensional space reduces to
d' computations of average distances in a one-dimensional space.

2 General Metric and the Sampling Algorithm

The straightforward algorithm for approximating the average pairwise distances consists of selecting
a random sample of m pairs of points and outputting the average distance between these pairs.
This algorithm works for any metric space. The question is how large should its sample be; that
is, how should m relate to the number of points, denoted n. Indeed, m should be proportional to
V[Z]/E[Z]?, where Z represents the result of a single “distance measurement” (i.e., the distance
between a uniformly selected pair of points). Specifically, to obtain an (1 % €)-approximation of
the average of all pairwise distances, it suffices to take m = O(V[Z]/(e - E[Z])?). Thus, we first
upper-bound the ratio V[Z]/E[Z]?, showing that it is at most linear in the number of points (see
Section 2.1). We later consider the question of derandomization (see Section 2.2).

2.1 The Approximation provided by a Random Sample

We consider an arbitrary metric (5i,j)i,je[n] over n points, where §; ; denote the distance between
the ¢th and jth point. Actually, we shall only use the fact that the metric is symmetric (i.e., for
every i,j € [n] it holds that 6; ; = ;) and satisfies the triangle inequality (i.e., for every ¢, j, k € [n]
it holds that 6; 1, < 6; ;+6;). Recall that Z is a random variable representing the distance between
a uniformly selected pair of points; that is, Z = 6; ;, where (i, j) € [n] X [n] is uniformly distributed.

Proposition 4 For Z as above, it holds that V[Z] = O(n - E[Z]?).
Proof: By an averaging argument, it follows that there exists a point ¢ (which may be viewed as
a “center”) such that

i,j€n ]

Using such a (center) point ¢, we upper—bound E[Z?] as follows:

2 2
1,JE[n
1
S _2 Z (62'70 + 60,]')2
n* 4
i,5€[n]
1 2 2
< 3 (251.7c + 2567]-)
i,7€[n]
4n 2
- a2 Z Oc,j
J€[n]

where the first inequality is due to the triangle inequality and the last equality uses the symmetry
property. Thus, we have

EzY < 4. (%)2

J€[n]
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2
Oc,j
J€ln]

2
0i j
i,5€[n]

where the last inequality is due to Eq. (5). Thus, we obtain E[Z?] < 4n-E[Z]?, and the proposition
follows (because V[Z] < E[Z?]). N

IN

Tightness of the bound. To see that Proposition 4 is tight, consider the metric (6; ;); je[n) such
that ¢; ; =1 if either it = v # j or j = v # ¢ and ¢; j = 0 otherwise. (Note that this metric can be
embedded on the line with v at the origin (i.e. location 0) and all other points co-located at 1.) In
this case B[Z] = 2(n—1)/n? < 2/n while E[Z?] = E[Z], which means that glih = gl —1> 5 1.

2.2 On the Limits of Derandomization

A “direct” derandomization of the sampling-based algorithmn requires trying all pairs of points,
which foils our aim of obtaining a sub-quadratic time algorithm. Still, one may ask whether a
better derandomization exists. We stress that such a derandomization should work well for all
possible metric spaces. The question is how well can a fized sample of pairs (over [n|) approximate
the average distance between all the pairs (of points) in any metric space (over n points). The
corresponding notion is formulated as follows.

Definition 5 (universal approximator): A multi-set of pairs S C [n] x [n] is called a universal
(L, U)-approximator if for every metric (6;;); je[n) it holds that

L(n)-niQ- Z 6i,j < |S|71- Z 6i,j < U(n)-niQ- Z 6i,j- (6)

S (1.5)€S i,j€n]
In such a case, we also say that S is a universal U/L-approximator.

Needless to say, [n] x [n] itself is a universal 1-approximator, but we seek universal approximators
of almost linear size. We shall show an explicit construction (of almost linear size) that provides a
logarithmic-factor approximation, and prove that this is the best possible.

We note that universal approximators can be represented as n-vertex directed graphs (possibly
with parallel and anti-parallel edges). In some cases, we shall present universal approximators as
undirected graphs, while actually meaning the corresponding directed graph obtained by replacing
each undirected edge with a pair of anti-parallel directed edges.

2.2.1 A construction

For an integer parameter k, we shall consider the generalized k-dimensional hypercube having n
vertices, which are viewed as k-ary sequences over [nl/ k] such that two vertices are connected by
an edges if and only if (as k-long sequences) they differ in one position. That is, the vertices
(01,...,0%) € [n'*]* and (ry,..., ) are connected if and only if [{i € [k] : 07 # 7} = 1. In
addition, we add k self-loops to each vertex, where each such edge corresponds to some i € [k].
Thus, the degree of each vertex in this n-vertex graph equals k-n'/*. We shall show that this graph
constitutes a universal O(k)-approximator.



Theorem 6 The generalized k-dimensional n-vertex hypercube is a universal (1/k, 2)-approximator.

In particular, the binary hypercube (i.e., k = logy 1) on n vertices constitutes a universal O(logn)-
approximator.

Proof: For every two vertices u,v € [n]|, we consider a canonical path of length k between u
and v. This path, denoted P,,, corresponds to the sequence of vertices w® . w®) such that
WD = (0], ooy Oy Th—it 1, -y Tk )s Where u = (01, ..., 0%) and v = (71, ..., 7). (Here is where we use
the self-loops.) Below, we shall view these paths as sequences of edges (i.e., P, , is viewed as the
k-long sequence (w®), wM), ..., (w*= wk*))). An important property of these canonical paths is
that each edge appears on the same number of paths.

Letting E denoted the directed pairs of vertices that are connected by an edge, and using the
triangle inequality and the said property of canonical paths, we note that

n=?. Z bupw < n=?- Z Z 6w,w’
u,vEn| u,v€n] (w,w')EPy
= 07 Y H(ww) € [n] x [n] : (w,0) € Py} - Sy ur
(w,w"eE
2
D D
(w,w")eE | |

which equals k - |E| ! - X (ww')ek Owwr- On the other hand, letting I'(u) = {v : (u,v) € E}, and
using the triangle inequality and the regularity of the graph, we note that

B[ 71 ) buw B[ > 0> (Suw + bwo)

(u,v)EE (u,v)EE wen]

= |E|_1’I’L_1 : Z Z (6u,w + 6w,v)

u,we[n] vel(u)

= |E|_1n_1- ( Z L' (u)] “Ouw + Z |F_1(U)| '5u,w)

u,wE[n| v,wE[n]

IN

1 |E|
= |E|"'n 1_2.7. Z Suw

u,w€(n]

which equals 2-n 2 Yuwen) Ouw-

2.2.2 A lower-bound

We now show that the construction provided in Theorem 6 is optimal. Indeed, our focus is on the
case k < logy n (and actually, even k = o(logn)).

. . . (k+1)/k
Theorem 7 A universal k-approzimator for n points must have *—5— edges.

Proof: Let G = ([n|,E) be (a directed graph representing) a universal k-approximator. We
first note that no vertex can have (out)degree exceeding 2k - (|E|/n) (even when not counting
self-loops). The reason being that if vertex v has a larger degree, denoted d,, then we reach
contradiction by considering the metric (¢; j); jepn) such that 6; j = 1Lif either i =v # jor j = v #



and ¢; ; = 0 otherwise. (Note that this metric can be embedded on the line with v at the origin
(i.e. location 0) and all other points co-located at 1.) In this case n =2 - 2 ijen) i, < 2/m, whereas
|B| L. > (ij)eE bij = |E| ! - d, (which is greater than 2k/n).

We now consider the metric induced by the graph G itself; that is, ¢; ; equals the distance
between vertices i and j in the graph G. Clearly, |E| ™! - > (ijyep 0ij = 1, but (as we shall see)
the average distance between pairs of vertices is much larger. Specifically, letting d < 2k - (|E|/n)
denote the maximum degree of a vertex in G, we have

n % Z bup > min{n ' Z buw}
u,vE[n] u€ln] vE[n]
t .
> ot Z d -1

where ¢ is the smallest integer such that >!_;d’ > n, which implies ¢ > logy((1 — d~') - n) =~
1“’{;371. Thus, n~ 2 - 2 u,ve[n] Ou,o 18 lower-bounded by %t >0 —dY)-t>(1—-2d71)- ﬁ—z which
must be at most at most k (because otherwise G cannot be a universal k-approximator). Using
(1—2d71)- 182 < kit follows that d’ < ¢2/(1-2d7") > pl/k which (using d' < 2d) implies 2d > n'/%.

Finally, using d < 2k - (|E|/n), we get |E| > % > n(kikl)/k. [ |

2.3 On the Limits of Derandomization, Revisited

Note that while the first part of the proof of Theorem 7 (i.e., bounding the maximum degree in
terms of the average-degree) uses an Euclidean metric, the main part of the proof refers to a graph
metric (which may not have a Euclidean embedding). Thus, Theorem 7 does not rule out the
existence of sparse graphs that provide good approximations for points in a Euclidean space.

Definition 8 (universal approximator, restricted): A multi-set of pairs S C [n] X [n] is called a
(L, U)-approximator for the class M if Eq. (6) holds for any n-point metric of the class M.

Needless to say, any universal (L, U)-approximator is (L, U )-approximator for the Euclidean metric,
but the converse does not necessarily hold. Indeed, we shall see that approximators for the Euclidean
metric can have much fewer edges than univeral approximators (for any metric).

Theorem 9 For every constant € > 0, there exists a (1+¢€)-approzimator for the Euclidean metric
that has O(n/e®) edges.

Theorem 9 follows by reducing the general case of (high-dimensional) Euclidean metric to the
line-metric (i.e., one-dimensional Euclidean metric) and presenting an approximator for the latter
metric.

Proposition 10 Suppose that S C [n] x [n] is an f-approzimator for the line-metric. Then S
constitutes an f-approximator for the Euclidean metric.

Proof: Considering a d-dimentional Euclidean space with points P, ..., P, € R?%, we let r denote
a uniformly distributed unit vector in R%. By Eq. (3), for every vector v € R? it holds that



E.[|(v,7}|] = p(d)-||v||. Thus, foreveryi,j € [n] it holds that | P;—P;|| = p(d) ™ -E,[[{ P, r)—(P;,7)]]
and so

YoM =Pll = pd)E | D (Bur) = (P

(i,9)€S L(2,5)€S

Y P =Fll = pd)™E, | > [(Pur) = (Pyr)|

i,7€[n] L3,5€[n]

The proposition follows by applying the hypothesis to (each value of r in) the r.h.s of each of the
foregoing equalities. [l

Strong expanders. Good approximators for the line-metric are provided by the following notion
of graph expansion. We say that the (undirected) graph G = ([n], E) is a (1 — ¢)-strong expander if
for every S C [n] it holds that

[E(S, [n] \ 9)
||

5] - (n —|S])

=0 "gn (7)

where E(V71,V3) ot {{u,v} € E:ueVi AveVy}.

Proposition 11 Suppose that the graph G = ([n], E) is a (1 — €)-strong expander. Then it yields
a (1 + €)-approzimator for the line-metric.

The sufficient condition regarding G is also necessary (e.g., for any cut (S, [n] \ S), consider the
points pi, ...,p, € R such that p; =0 if ¢ € S and p; = 1 otherwise).

Proof: For any sequence of points py,...,p, € R, consider the “sorting permutation” 7 : [n] — [n]
such that for every i € [n — 1] it holds that Pr(i) < Pr(i+1)- By counting the contribution of each

“line segment” [pr (), Pr(iv1)] 10 35 jerny Pi — pjl, we get

n—1
D pi—pil =2 (n—i) - Pa(it1) — Pri)) (8)
im1

i,5€[n]

Similarly, for S; = {n(1),...,7(7)}, we have

n—1
Z lpi —pj| = Z 2|E(Si, [n] \ Si)l * (Pr(is1) — Pri)) 9)
i,j{id}eE i=1

Using the proposition’s hypothesis, we have for every i € [n — 1],

2-|B(Si, [n]\ S)] 2-i-(n i)
2B =(Eg =y

and the proposition follows by combining Eq. (8)—(10). [l

Proposition 12 For every € > 0 and integer n, there exist (1 —€)-strong expanders with n vertices
and O(e 2 -n) edges. Furthermore, most O(e ?)-reqular graphs are (1 — €)-strong expanders.
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Proof: The crux of the argument is estimating the probability that a random graph with n
vertices and m edges violates Eq. (7) with respect to some fixed set S C [n|. Assuming, without
loss of generality, that |S| < n/2, we can upper-bound this probability by exp(—(e?-d|S|)), where
d = m/n. Using a union bound, the main claim follows. Thus, we focus on the proof of the
furthermore clause.

Our aim is proving that, for d = O(¢2), with high (constant) probability, a random d-regular
graph constitutes a (1 — €)-strong expander. This is done by upper-bounding, for every S C [n]
(|S] € m/2), the probability that Eq. (7) is violated. We consider two cases, with respect to the
size of S.

If |S] > €?n then we use the estimate given above. Specifically, we consider E(S,[n] \ S) as
an experiment of throwing d|S| balls (without replacement) into n bins and counting the number
of balls that fall in the last n — |S| bins. The deviation of the count obtained in this experiment
(from its expectation) is upper-bounded by referring to the analogous experiment in which balls are
thrown with replacement. Thus we derive a probability bound of exp(—Q(e2d|S|), which suffices
for a union bound over all sets S of size at least €’n. Specifically, we obtain the upper-bound

n/2 n/2
S (Z) - exp (—Q(EQdk)) ~ Y exp (klog(n/k)—ﬂ(ezd@)
k=e3n k=e2n
n/2
< Y exp <k (ASD) —log(1/e)))
k=e2n

and so we are done using d = Q(e 2log(1/e)).

We now turn to the case |S| < €2n. In this case (and more generally for |S| < en), we only need
to upper-bound the probability that more than (e + (|S|/n)) - d|S| edges of S remain in S. Letting
k = |S|, we upper-bound the probability that more than € - d|S| edges remain in S by

(:ZZ) (k/n)*%* =~ exp((elog(1/e)) - dk — edk - log(n/k))

IN

exp (—? . 10g(n/k)>

where the inequality is due to k < €2n. Applying a union bound in this case gives

dk dk
(Z) - exp (—67 : log(n/k)> R exp <k log(n/k) — 67 : log(n/k)>
so we are done using d = Q(¢1). W

Conclusion. The foregoing three propositions imply that most O(e2)-regular graphs are (1—¢)-
approzimators for the Euclidean metric. It is easy to see that the argument extends to the /;-
metric. We note that combining the foregoing fact with the proof of Theorem 7 it follows that
most constant-degree graphs cannot be embedded in a Euclidean space (resp., {1-metric) without
incurring logarithmic distortion. Details follow.

Recall that a metric (e.g., a graph metric) on n points, denoted (6; j); je[n is said to be embedded
in a Euclidean space with distortion p if the distance between points ¢ and j in the embedding is
at least 0; ; and at most p - 6; ;. Thus, if a graph satisfying Proposition 12 can be embedded in a
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Euclidean space with distortion p, then this graph constitutes a (1+¢€)- p-approximator of the graph
metric induced by itself. But then the proof of Theorem 7 implies that for k = (1 +¢) - p it holds
that O(e=2) > n'/¥/4k. Actually, since the graph in question is regular, we may skip the first part
of the said proof and use d = 2|E|/n (rather than d = 2k|FE|/n), thus obtaining O(e~2) > n!/k/2.
Using any fixed € > 0, it follows that & = Q(logn).

Open problem. A natural challenge is providing an explicit construction of a graph meeting
the parameters of Proposition 12. For our applications, we wish this graph to be constructible in
almost-linear time.
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