
Incremental Cryptography and Application to Virus ProtectionMihir Bellare� Oded Goldreichy Shafi GoldwasserzAbstractThe goal of incremental cryptography is to design crypto-graphic algorithms with the property that having appliedthe algorithm to a document, it is possible to quickly updatethe result of the algorithm for a modi�ed document, ratherthan having to re-compute it from scratch. In settings wherecryptographic algorithms such as encryption or signaturesare frequently applied to changing documents, dramatic ef-�ciency improvements can be achieved. One such setting isthe use of authentication tags for virus protection.We consider documents that can be modi�ed by power-ful (and realistic) document modi�cation operations such asinsertion and deletion of character-strings (or equivalentlycut and paste of text). We provide e�cient incrementalsignature and message authentication schemes supportingthe above document modi�cation operations. They meet astrong notion of tamper-proof security which is appropriatefor the virus protection setting. We initiate a study of incre-mental encryption, providing de�nitions as well as solutions.Finally, we raise the novel issue of \privacy" of incrementalauthentication schemes.

Abstract to appear in Proceedings of the 27th ACM Symposium on the Theory of Computing, May 1995.

1 IntroductionBasic cryptographic primitives such as encryption and signa-tures (private or public key) have received thorough theoreti-cal treatment. In various works strong de�nitions of securityhave been proposed and achieved under general complexityassumptions. The main problem that remains and whichto a large extent prevents more widespread use of strongcryptography is the ine�ciency of existing schemes.Incrementality is a new measure of e�ciency which isrelevant in a large number of di�erent settings. We provide acomprehensive treatment of incremental cryptography. Webegin by identifying and stressing conceptual issues, provid-ing de�nitions for the security and e�ciency of incrementalprimitives. We follow this up by presenting concrete, secureschemes for various tasks which (in several cases) are e�cient� IBM T.J. Watson Research Center, P.O. Box 704, YorktownHeights, NY 10598, USA. e-mail: mihir@watson.ibm.com.y Department of Applied Mathematics and Computer Sci-ence, Weizmann Institute of Science, Rehovot, Israel. e-mail:oded@wisdom.weizmann.ac.il. Partially supported by grant No. 92-00226 from the US{Israel Binational Science Foundation (BSF),Jerusalem, Israel.z Laboratory of Computer Sci-ence, MIT and Department of Applied Mathematics and ComputerScience. e-mail: shafi@theory.lcs.mit.edu .

enough to be practical, and demonstrate this by attentionto issues like appropriate instantiation of abstract primitivesand exact security analyses.1.1 The SettingA document undergoing a cryptographic transformation of-ten does not exist in isolation: the document D that is beingtransformed (eg. signed or encrypted) is a modi�cation ofprevious versions of the same document which have alreadyundergone the same cryptographic transformation, or is con-structed out of several other already transformed documentsin some simple way. Moreover, the amount of modi�cationthat the document undergoes is often small in comparisonwith the total size of the document.Examples of such settings abound; here are some. Thesending of documents which are slight variations of one an-other to di�erent recipients, such as a standard contract oro�er being sent by a corporation; exchanges between dif-ferent parties of drafts of the same document where eachdraft is only slightly di�erent from the previous one; remoteediting of texts or programs which must be authenticated atevery change; video transmission of images which have notchanged much between frames.A particularly good example is the use of authenticationtags for virus protection. Consider a tamper-proof processorwith limited amount of secure local memory. It accesses�les stored on a (possibly insecure) remote medium (e.g. ahost machine or a WWW server). A virus may attack theremote host, and inspect and alter the contents of the re-mote medium (but it does not have access to the processor'sprotected local memory). To protect his �les against suchviruses, the processor computes for each �le an authentica-tion tag, depending on a key which is kept in the (safe) localmemory. A virus tampering with the �le can't re-computethe tag, and veri�cation of the tag will thus detect tamper-ing. Now note that for this to work, the processor mustre-authenticate his �les when he modi�es them. Clearly,it is desirable to be able to update the authentication tagrather than always having to re-compute it from scratch.This problem is especially complex when the local memoryis not large enough to hold (even temporarily) a single �le orwhen it is too expensive to bring in the entire �le. We notethat �les in this virus setting can grow very large and besubject to frequent updates; eg. consider a database beingperiodically altered.The idea of incremental cryptography, as we outlined in[BGG], is to take advantage of such settings, and �nd ways tocompute the cryptographic transformation on a document Dnot from scratch, but rather, somehow, as a fast function ofthe values of the cryptographic transformation on the docu-ments from which D was constructed. When the \changes"are small, the incremental method may be anticipated toyield considerable advantages in e�ciency.1



1.2 The IssuesOne quickly sees that incremental cryptography is a vastsubject. Let us outline some important issues and our con-tributions in this regard.Primitives. One can consider incrementality for any cryp-tographic primitive. The ones we focus on are signatures(private and public key) and encryption (private and pub-lic key). We focus on incrementality for the transforma-tions themselves, namely the signing or encrypting, but dis-cuss also incrementality of the \conjugate" transformations,namely verifying and decrypting.Text modification operators. We discuss the modi�ca-tion to a document in terms of applications of a �xed set ofunderlying document modi�cation operators. For example:replace a block in the document by another; insert a newblock; delete an old one. We then focus on the design ofincremental algorithms for each such operator.Operators should be powerful enough to re
ect realisticdocument changes: replace, insert and delete taken togetherare a good choice from this point of view. In settings suchas text editing, one often pulls text from one document intoanother. Accordingly we also consider cut and paste opera-tions, the �rst cutting a single document into two, and thesecond pasting two documents into one. We stress that themore powerful the text modi�cation operators are the morechallenging it is to design fast incremental algorithms withrespect to them. See discussion of speed below.Incremental algorithms. Fix an underlying crypto-graphic transformation T (eg. signing under some key).To each elementary text modi�cation operation (eg. insert)there will correspond an incremental algorithm. This algo-rithm takes an existing document or documents; the valuesof T on them; a description of the modi�cation (here a blockd to insert and an index into the document for where to in-sert it); and possibly underlying keys or other inputs. Itmust compute the value of T on the resulting document.We are interested in designing schemes possessing e�cientincremental algorithms.History-free is better. A trivial way of achieving incre-mentality should at once spring to mind. Take signatures asan example, although similar issues arise with encryption.Say I have the signature �old of Dold and modify Dold byinserting a block. I can update the signature by signing thestring consisting of �old and the description of the modi�-cation. This is a history dependent scheme. There may besettings in which this is acceptable, but typically it is notdesirable. It gets prohibitive as one makes lots of changes:veri�cation cost is proportional to the number of changes. Itrequires parties to store state, and signature sizes grow withtime. History free schemes are better. Our de�nitions man-date history freeness and our schemes are all history free.Speed. The basic goal, of course, is that the incrementalalgorithm should run faster than re-computing the transfor-mation from scratch; the faster the better. The requirementof our de�nition is that the incremental algorithm run intime proportional only to the \number of modi�cation" andnot proportional to the document length. For example, if sdenotes the block size then updating the cryptographic formfor one modi�cation should take poly(s)-time regardless of

the number of blocks in the modi�ed document.1 (In addi-tion as discussed above the algorithm should be history free.)This seems an elegant requirement, and schemes achieving itare referred to as ideal. 2 For e�ciency, of course, the poly-nomial in s should be small, and incrementality should notbe at the cost of too much increase in the time to transformfrom scratch.We stress that the e�ciency condition becomes morechallenging as more powerful modi�cation operations are be-ing considered. For example, the cut and paste operatorsallow to omit a large chunk of text from the middle of the�le by three modi�cations, and a fast incremental signingalgorithm should be able to update the signature to �t thisdi�erent-looking �le within poly(s)-time and independentlyof the size of the �le and the length of the omitted chunk oftext.Security. Probably the single most important conceptualissue is security. O�hand, one might say there is no newissue in security, because we are considering existing primi-tives (signatures, encryption) and security has already beensatisfactorily de�ned for them. But incrementality brings innew concerns and gives rise to new de�nitions.Consider the case of digital signatures/authenticationschemes. It is reasonable to assume that the adversary notonly has available to it previous signed versions of documentsbut is also able to issue text modi�cation commands to ex-isting documents and obtain incremental signatures of themodi�ed ones. Such a chosen-message-attack on the incre-mental signing algorithm may lead to breaking a signaturesystem that cannot be broken by restricted attacks whichdon't use the incremental algorithm. Furthermore, in somescenarios such as virus attacks it is in addition prudent to as-sume that the adversary may be able to tamper with the con-tents of existing documents and signatures/authentication-tags. Accordingly we will consider two notions of security;a basic one, and a stronger notion of tamper proof securitywhich is relevant in the virus protection setting.Consider the case of encryption schemes. The us-age of incremental encryption algorithms may leak infor-mation that is kept secret when using a traditional encryp-tion scheme. For example, take an encryption scheme whichbreaks the message into blocks and encrypts each block us-ing a secure probabilistic encryption. An incremental en-cryption, with respect to (single block) replacement, mayoperate by merely encrypting the new contents of the blockand keeping all other (block) encryptions unchanged; butthis enables an adversary to tell which blocks have has beenchanged. The encryption of a message together with the en-cryption of the slightly modi�ed message, leaks knowledge.It seems that we cannot hope for e�cient incremental en-cryption algorithms which hide the amount of di�erence be-tween the two documents. Yet, it is possible to have e�cientincremental encryption which hides everything besides.The privacy of incremental schemes. Here is a novelissue raised in the incremental setting: the \privacy" of dif-ferent versions of a document. Suppose � is a signature of1 There are technical issues about how the input is accessed, butusing a RAM model these things work out.2 Other kinds of complexities may certainly be interesting: forexample, if the from scratch transformation takes O(n2s) time tocompute (where n is the number of blocks in the message) then anincremental algorithm achieving O(ns) would be very nice. For sim-plicity however we stick to our de�nition of ideality.2



document M and �0 is a signature of slightly modi�ed docu-ment M 0. Then, it may be desirable for �0 to yields as littleinformation as possible about the original M . What is toler-able for one application may be di�erent than another. Forexample, it may be acceptable for �0 to yield the fact thatM and M 0 di�er in a single block, as long as the identity ofthe block is kept secret.1.3 The schemesWe present two signature schemes and one encryptionscheme.XOR schemes. We present a particularly fast message au-thentication (ie. private key signature) scheme based on apseudorandom function (PRF) [GGM]. It has incrementalalgorithms for (single block) insert and delete which requireonly four applications of the underlying PRF. It achieves ba-sic security, and it also achieves privacy. It builds on someschemes of [BGR] which were incremental for replacement.Tree schemes. The second signature scheme provides tam-per proof security, and hence is applicable to virus protection.It works in both the private and the public key cases| a reg-ular (ie. not incremental) message authentication (resp. dig-ital signature) scheme is transformed into an incrementalmessage authentication (resp. digital signature) scheme. Thescheme supports not only insert and delete but also cut andpaste. The updates require a logarithmic (in the messagelength) number of applications of the given (non incremen-tal) scheme. It uses 2{3 trees.Encryption. We extend ideas on software protection [Go,Os] to provide the �rst incremental encryption scheme. Thee�ciency here is however not as good as for our signatureschemes.1.4 From theory to practiceInstantiation. The schemes speci�ed above are de�ned interms of \abstract" primitives: the XOR scheme can useany PRF and the tree scheme can use any standard signa-ture scheme. Key to achieving practicality is appropriateinstantiation of these abstract primitives by concrete ones.In particular, suitable \pseudorandom in practice" functionscan be derived from DES, MD5 [Ri] and other such primi-tives as described for example in [BR]. The resulting XORschemes can run within 1.05 times the speed of the mostpopular message authentication scheme in practice, namelythe CBC MAC, with the added advantage of incrementalitythat the CBC MAC does not possess. Similarly, the privatekey version of the tree scheme can be instantiated with theCBC MAC itself as underlying message authentication codeand runs commensurately fast.Instantiation is an important issue which may meritmore discussion. As indicated above, schemes (ours in par-ticular) are typically designed in terms of abstract primitiveslike one-way functions or pseudorandom functions. Whilemany abstract primitives are equivalent in theory, the rightchoice, when one is interested in a �nal practical outcome,is a primitive which combines convenience of use with theproperty of possessing an e�cient instantiation. In particu-lar, �nite pseudorandom functions (ie. PRFs on �xed inputand output lengths) are good starting points because theycan be e�ciently instantiated with block ciphers like DESor via hash functions like MD5 [BR]. This is the reason wediscuss our XOR scheme directly in terms of PRFs, and our

tree scheme directly in terms of MACs, rather than say theyare \based on a one-way function." (The latter is true, butnot useful from the point of view of e�cient instantiation.)The central dividing line in e�cient instantiation is be-tween number theoretic or algebraic functions (factoring,discrete log) and DES or MD5 type constructions. Instan-tiating PRFs (or MACs) via factoring or discrete log basedconstructions will result in schemes orders of magnitude lesse�cient than schemes using block ciphers (DES) or MD5type hash functions. Whenever possible (ie. in a private keysetting) one is better of with the second kind of instantiation.(One might suggest that number theory based schemes aremore secure. But in truth the two are incomparable, andsome researchers familiar with both types of objects evenfavor the block ciphers in this regard.)Exact security. The user of a scheme needs to know morethan just that \no polynomial time adversary can breakthe scheme except with negligible advantage." He needs toknow, for given security or other parameters, what kind ofsuccess is achieved by an adversary with particular resourcessuch as time and queries. (This a�ects e�ciency, because if,for a particular security level, the security parameter mustbe high, then the e�ciency is less.) We take these concernsinto account by providing exact security reductions: our the-orems quantify the success of an adversary in breaking theunderlying assumption as a function of her success in break-ing the constructed scheme.1.5 Previous work and comparison with oursThe study of incremental cryptography was initiated by thecurrent authors in [BGG]. The primitives considered therewere collision free hashing and digital (public key) signa-tures. The text modi�cation operation considered was re-placement (of one message block by another). Incrementalschemes based on the hardness of discrete log were provided.The signature scheme met the notion of basic security. Tam-per proof security was pinpointed and de�ned, and to pro-vide solutions for it was left as an open problem.We have here expanded the scope in primitives to in-clude encryption and also the private-key versions of allprimitives, which are more important in practice. We areconsidering more realistic and powerful text modi�cationoperations like insert, delete, cut and paste. We considermulti-document settings, not only single document ones, andextend the de�nitions to this case. In addition, we introducenew concerns such as history-freeness and privacy. We pro-vide the �rst solutions for message authentication achievingtamper-proof security, and hence for virus protection. Ourschemes can be instantiated with DES and MD5 type prim-itives and thus are considerably more e�cient than those of[BGG] which use the discrete log.For the problem of virus protection when the virus can-not see any authentication tags of �les, the work of Karpand Rabin [KR] on �ngerprints can be used.3 Their �nger-print scheme is incremental with respect to single charac-ter replacement, but does not provide fast update for singlecharacter insert/delete.3This was observed by Rabin (Ben-Or, private communication).3



2 De�nitionsIn order to de�ne incremental cryptographic algorithms anddiscuss their complexity and security, we introduce a settingwhich we call a multi-document system. The latter is de�nedwith respect to a cryptographic scheme and a set of text-modi�cation operations.Cryptographic schemes and the documents theyprocess. The documents to which cryptographic transfor-mations will apply are sequences of blocks; formally, theyare strings over an alphabet � = f0; 1g` where ` is a pa-rameter called the block size. We let D[i] denote the ithsymbol of the document D. Our complexity estimates arein terms of elementary operations over this alphabet �, andtranslating them to bit operations requires multiplication bya poly(`) factor. Documents may also be called texts, mes-sages or �les and we will switch irrationally back and forthin nomenclature.Incrementality is a very general notion in that it appliesto a wide variety of primitives (encryption, signatures, mes-sage authentication and �ngerprinting to name a few). Toavoid providing a plurality of similar de�nitions, we formu-late below a general notion of a cryptographic scheme whichcaptures all the primitives we know. Later we will de�neincrementality for any cryptographic scheme. Below s is thesecurity parameter.De�nition 2.1 A cryptographic scheme is speci�ed by atriple S = (Gen;T;C) of probabilistic, polynomial time algo-rithms.Algorithm Gen is called the key generator. It takes asinput two parameters: 1s and j�j. It outputs a pair(K 0;K 00) of keys called the transformation key and theconjugate key, respectively.Both the transformation T and its conjugate C act on��, using the corresponding key as additional input. Wewrite TK0(D) (resp., CK00(D)) to indicate the output ofalgorithm T (resp., C) on input D and key K 0 (resp.,key K 00). We call TK0(D) a cryptographic form of D.For every D 2 �� and every pair of keys, (K 0;K 00),possibly produced by Gen(1s; j�j), it is the case thatCK00(TK0(D)) = D.We'll assume for simplicity that s and j�j are recoverablefrom each of the keys K 0;K 00 output by the generator on in-put (1s; j�j). The above de�nition does not address security,which is more primitive-speci�c.Two kinds of generators are of particular interest. Agenerator Gen is called symmetric if K 0 = K 00. This cor-responds to a private key setting | the legitimate partiesshare a key K 0 = K 00. In discussing security this key will bedenied to the adversary. A generator Gen is asymmetric ifK 0 6= K 00. This corresponds to the public key setting | oneof the two keys (i.e., either K 0 or K 00) can be made publickeeping the other secret. In discussing security, the publickey, but not the secret one, will be made available to theadversary.Encryption is a canonical example, with the transfor-mation used to encrypt and the conjugate to decrypt. Forsignatures or other forms of authentication, the transforma-tion is used to signing or authenticate while the conjugate isused to verify, under the (non-standard) convention that thesignature contains the document and successful veri�cationretrieves the document rather than yield the bit 1.

Text modification operations. We consider several textmodi�cation operations. Firstly, there are the single-symbolupdate operations which take as input a single text andmodify it according to some parameter. For example, thereplacement operation, given a text T = T [1] � � �T [`] and pa-rameter (i; �) so that i � ` and � 2 �, returns the textunchanged expect for the ith symbol which is set to �. Sim-ilarly, insertion with parameters (i; �) inserts � in betweenthe ith and i + 1st position of the text, making it one sym-bol longer. The deletion operator, with parameter i, omitsthe ith symbol of the text, making it one symbol shorter.More powerful update operations operate on substrings of agiven text. Typical operations are delete-subtext (i.e., delet-ing a sequence of consecutive symbols from the text) andmove-subtext (which moves a sequence of symbols from onelocation in the text to another). Some operations can oper-ate on many texts at once or yield a multi-text result. Forexample, insertion of a subtext from one text into another.All these operations, as well as many other naturaloperations, can be expressed by a constant number of cutand paste operations.4 The latter operations take and/orproduce several texts (rather than taking and producinga single text). Applying cut with argument i to a textT = T [1] � � �T [`] results in two texts, T 0 def= T [1] � � � T [i] andT 00 def= T [i+1] � � �T [`]. Similarly, applying paste to two texts,T 0 = T 0[1] � � �T 0[`0] and T 00 = T 00[1] � � �T 00[`00], results in thetext T = T [1] � � �T [`0 + `00], where T [j] def= T 0[j] for j � `0and T [j] def= T 00[j � `0] for j > `0.The multi-document setting. In a simple setting forincremental cryptography one maintains a single documenttogether with its cryptographic (transformed) form whilethe document undergoes text modi�cations. For applica-tions in which the only text modi�cations are single sym-bol ones (e.g., symbol insert/delete), this setting seems ad-equate. In this paper we consider more powerful text mod-i�cations which may deal with more than one document ata time, for example inserting a part of one document intoanother document. For this purpose, we present the follow-ing multi-document setting in which several documents aremaintained, along with their cryptographic (transformed)forms. A motivating application is a text editor, where thedocuments are �les, several of them being simultaneouslymanipulated by operations like cut and paste.In order to de�ne security it will be necessary to specifydocuments by names| thinking of the editing setting, theseare the �le names.De�nition 2.2 Let S = (Gen;T;C) be a cryptographicscheme as in De�nition 2.1, and letM be a set of text mod-i�cation operations (e.g., M = fcut; pasteg). A documentsystem which maintains cryptographic forms (wrt S) underM is an interactive machine operating as follows.The system is initialized with a transformation key K 0,obtained by running Gen(1s; j�j), where s and j�j areparameters.In response to a create document command, with pa-4For example, the move-subtext operation is easily expressed interms of (upto six) cut and paste operations. To move l symbolsfrom start-location i + 1 to start-location j + 1 > i + l in the textT = T [1] � � �T [`], we cut the text at locations i, i+ l and j, producingthe subtexts T 0 = T [1] � � �T [i], T 00 = T [i + 1] � � �T [i + l], T 000 =T [i+l+1] � � �T [j] and T 0000 = T [j+1] � � �T [`]. Next, we paste togetherT 0, T 000 , T 00 and T 000.4



rameters � 2 f0; 1g� and D 2 ��, the system creates anew document5 with name �, sets its contents to D, andits (corresponding) cryptographic form to TK0(D). Westress that this is done by applying algorithm T to thedocument D, using the key K 0. In addition6 , the systemassociates a counter, initialized to 1, with the document�.In response to a document pasting command, with para-meters (document names) �; �; 
 2 f0; 1g�, the systemacts as follows{ increments the counter of document 
;{ replaces the contents of document 
 with the textwhich results by pasting of the texts currently indocuments � and �,{ updates the cryptographic form of 
 to �t the newcontents of document 
.The updating of the cryptographic form of document 
is done by applying an incremental algorithm, denotedIncT, associated with the transformation T and the textmodi�cation paste. When invoked by the system, IncTis given as input the current contents of the documents� and �, the contents of their cryptographic forms, andthe transformation key K 0. Thus, algorithm IncT takesas input a pair of documents and a corresponding pair ofcryptographic forms, as well as the transformation key(and possibly the document name and its counter value).The output of IncT satis�esCK00(IncTK0((D0;D00); (�0; �00))) = D0D00for every D0;D00; �0; �00 so that CK00(�0) = D0 andCK00(�00) = D00.Other document modi�cation commands are processed simi-larly.The above de�nition has made a simpli�cation in oneregard. Thinking of an editing setting, there ought to be anexplicit write operation with the semantics that the crypto-graphic form of a document is created (and becomes avail-able to the adversary) only once such a command is issued.In an authentication setting, for example, this would in-crease the power of the adversary since unwritten documentsare not considered to have been authenticated by the userand so the adversary is considered successful also in case itcan authenticate these (intermediate) unwritten document.We stress, however, that our schemes maintain their secu-rity also in the more stringent setting (i.e., with explicitwrite/authenticate operation), but due to space limitations,we stick with the simpler model presented in De�nition 2.2.The above de�nition does not address security which is moreprimitive-speci�c; such de�nitions are outlined in the twofollowing sections.The complexity of incremental algorithms. We areinterested in the complexity of implementing document sys-tems such as the above. We ignore the cost of implementingthe text modi�cation operations as well as the cost of copyinga constant number of cryptographic forms: these are system5 In case a document with name � existed before, it is deletedbefore performing this command. We may assume, without loss ofgenerality, that this never happens.6 This counter is not needed in settings in which only basic security(as de�ned below) is required. It seems that the counter, or some othertamper-proof register associated with each document is required inorder to achieve ideal tamper-proof incremental systems.

operations of predetermined cost. Our concern is the cost ofupdating the cryptographic forms that is incurred in runningthe incremental algorithms.First, as discussed in the Introduction, we want schemesto be history-free. We ask that the length of the crypto-graphic form maintained for each document is a function ofthe current length of the document and (s; j�j), but is inde-pendent of the number of modi�cations the document hasundergone.Second, as ask that the running time of IncT is a �xedpolynomial in the security parameter s, denoted p(s), inde-pendent of the length of the document. We use a RAM,rather than TM, model of computation so that sublineartime algorithms make sense: in this model any algorithmA(x;y; � � �) has direct access to each of its inputs x; y; � � �and can address an input bit with a logarithmic size address.Furthermore, for simplicity, we assume that all documentspresented to the system have length bounded by 2s, wheres is the security parameter.Third, it is required that the complexity of e�ectingthe conjugate transformation on the cryptographic form ofa document D kept by the system, should be the same asthe complexity of e�ecting the conjugate transformation onTK0(D) (ie., the cryptographic form obtained by directlyapplying T to D).Finally, we call a multi-document system maintainingcryptographic forms ideal if the incremental algorithms sat-isfy all of the above.Incrementality for the conjugate. Our treatmentcaptures the operation of incremental algorithms for thecryptographic transformation T (e.g., encryption or sign-ing/authentication). A similar treatment can be providedfor incremental algorithms for the conjugate transforma-tion C (e.g., decryption or veri�cation), except that there isno (natural) analogue to �rst and third concerns discussedabove (i.e., history-freeness and maintaining the complex-ity of the conjugate operation). Speci�cally, an incrementalalgorithm for the conjugate operation is given the crypto-graphic form of a document D, together with a previousdocument D0, its cryptographic form C 0, and a descriptionof the modi�cation M , by which D has been obtained fromD0, and returns D.3 Incremental authenticationHere we propose incremental schemes for various forms of au-thentication: signatures, message authentication and �nger-printing. We will present two incomparable schemes whichare both \ideal" in e�ciency according to our discussions ofSection 2. The �rst is an incremental scheme for messageauthentication which is very simple and (when properly in-stantiated) fast in practice, but is secure only in the basicsense. It supports inserts and deletes, but not cut. The sec-ond scheme is presented again for message authenticationbut is extendible to digital signatures as well. Although notas fast as the �rst scheme, it is very e�cient, and achievestamper proof security. It supports not only insert and deletebut also cut and paste. It can be used for the virus protec-tion application. We begin with the de�nitions of securityunderlying these schemes.5



3.1 De�nitions of securityThe introduction of incremental authentication raises newsecurity issues. We distinguish two settings, or requirements,in security: basic security and the stronger notion of tamperproof security. De�nitions of basic and tamper proof secu-rity, in the single-document setting, were provided in ourprevious work [BGG]. Here we extend both de�nitions tothe multi-document setting.Basic security. Basic security addresses a setting in whicha user applying the incremental algorithm is assured ofthe authenticity of the document and authentication tag towhich the algorithm is applied| this is the natural case inwhich, for example, old documents and their authenticationtags are stored securely on the user's machine, and the de�-nition of [GMR] extends in the natural way. Speci�cally, theadversary may obtain signatures to documents of its choiceby issuing corresponding create-document commands. Inaddition, it is natural and certainly safer to assume that theadversary can also issue document-modi�cation commandsand so obtain the e�ect of the incremental signing algorithmon previously formed signatures.A basic attack on a document system which maintainscryptographic forms (wrt S under M) consists of using thesystem as suggested in De�nition 2.2. In course of such anattack, the adversary can create arbitrary documents of itschoice and obtain the corresponding signatures (producedby the ordinary signing algorithm). In addition, the ad-versary can issue document modi�cation commands withdocument-names and parameters of its choice and obtainthe corresponding signatures (produced by the incrementalsigning algorithm). These signatures are associated withthe documents which result from the corresponding modi�-cation commands. To be deemed successful, the adversarymust produce a signature to a document di�erent from allthe above (i.e., the documents appearing during the attack).A de�nition can be easily produced following the standardparadigms.We remark that incremental signing queries may sup-ply the adversary with information it cannot obtain by anordinary attack (i.e., using only ordinary signing queries).This may be the case even if the adversary only uses theincremental queries as a shortcut to making ordinary sign-ing queries (since the two signing algorithms may producedi�erent distributions). However, the e�ect of incrementalsigning queries is more dramatic in case the adversary maytamper with documents as in the stronger de�nition pre-sented below.Tamper-proof security. In some settings it is also naturalto allow the adversary to tamper with the documents andsignatures stored in the system and so obtain the e�ect of theincremental signing algorithm on arbitrarily chosen pairs ofstrings, which are not necessarily valid (document,signature)pairs. Thus, the second security notion, called tamper-proofsecurity, arises.A tampering attack is similar to the basic attack de-scribed above, except that the adversary may alter the con-text of documents and cryptographic forms stored by thesystem. Alternatively, we may describe the adversary asissuing, in addition to the above document-creation anddocument-modi�cation commands, also \tampering" com-mands of the form alter(�;D;C), for � 2 f0; 1g� andD;C 2 �� of its choice. The e�ect of such a tampering

command is that the system changes the contents of the doc-ument named � into D and the contents of its cryptographicform into C.A tampering attack is natural in some settings (e.g.,�ngerprinting for virus protection). We stress that the in-cremental signing algorithm does not necessarily check thatthe old signature is valid before modifying it according tothe required update. (Typically, the incremental signing al-gorithm may not have enough time to verify the validity ofthe old signature.)Tampering not only provides the adversary with morepower, it also raises a de�nitional problem. Suppose that theadversary obtains a signature by e�ecting the incrementalsigning algorithm on an invalid (document,signature) pair.The question is to which document do we associate the \sig-nature" produced this way (which may not be a valid signa-ture to any document). Before proceeding, we remark thatthis question is important since forgery is de�ned as abilityto produce signatures to documents not encountered so far(and thus it is crucial to properly de�ne which documentshave appeared so far). Our convention, by which documentsare accessed by their name, plays a major rule in resolvingthis question.As discussed above, once signatures are produced fortampered documents (via the incremental signing algorithm)it is not clear to which document-contents to associate them.Our convention, justi�ed below, is to associate these sig-natures to the contents which would have resided in thesedocuments (document-names) if they were not tamperedwith. Namely, although the adversary may tamper withthe documents and alter their contents, the signatures thatit obtained are associated with the untempered documents(thus ignoring the tampering). Thus, we associate with atampering-attack two sequences of documents. One is theactual sequence of strings appearing as contents of the vari-ous documents, in various times. The second sequence is thesequence of virtual documents de�ned as follows. The virtualdocument at the moment of issuing a document-creationcommand is the document speci�ed in the command (forwhich a signature is obtained via the ordinary signing al-gorithm). The virtual document at the moment of issuinga document-modi�cation command is the document result-ing by applying the command to the virtual documents thenames of which are speci�ed in the command. We stressthat virtual documents are not a�ected by tampering com-mands (although the actual documents are e�ected). To bedeemed successful, the adversary must produce a signatureto a document di�erent from any virtual document de�nedby the attack.Our justi�cation for de�ning forgery with respect to thevirtual documents is that the decision to sign a requesteddocument is made by the application level which is likely torelate to these (virtual) documents rather than to the actualdocuments (handled by the cryptographic system level). Ourchoice is particularly justi�ed in the context of �ngerprintingfor virus-protection { see below. We conclude this subsec-tion by remarking that in this context (i.e., �ngerprinting forvirus-protection) the adversary is deemed successful if it canproduce a document di�erent from the current virtual doc-ument so that the �ngerprint for the two documents are thesame. Note that in this context, it is not required that theproduced document did not appear as a virtual document inthe past.6



3.2 The XOR schemesBackground. Some existing message authenticationschemes o�er a natural incremental algorithm for the re-placement operation such that basic security is ensured. 7Supporting insertion and deletion is harder, even just for ba-sic security, and no existing scheme of which we are awareachieves it. We introduce simple schemes supporting inser-tion and deletion. They extend the XOR schemes of [BGR]which were incremental for replacement. The chaining tech-nique we introduce is quite general.The scheme. The key, denoted a, held by the parties isa pair (a1; a2) of random strings which specify pseudoran-dom functions f1 = fa1 and f2 = fa2, chosen from a �xedunderlying collection of PRFs [GGM]. We let rand denotethe algorithm which given a string � picks a random k bitstring r, called a randomizer, and returns � : r. To authenti-cate message D[1] : : :D[`] begin by pre�xing it with a specialstart symbol D[0] and post�xing it with a special end sym-bol D[`+1]. The authentication-tag of D = D[0] : : :D[`+1]is computed in three steps:(1) Randomize: For each i = 0; : : : ; ` + 1 let R[i] =rand(D[i]). We call R = R[0] : : : R[`+1] the randomizedversion of D.(2) Chain and hash: Let h = �ì=0f1(R[i]; R[i+1]), and callthis value the hash of D.(3) Tag: Let T = f2(h) be the tag of D. This is output.Note that formally the authentication-tag consists of all therandomizers together with the �nal tag. Informally, how-ever, the randomizers are thought of as part of an extendedmessage, and only the �nal tag is thought of as \the tag."It is worth noting that the �nal step is necessary; if weoutput h as the tag of D, the scheme can be broken, byxor-ing together some legitimately obtained tags.8How to increment. Now we specify how increments areperformed. Suppose we want to compute the tag for thedocument D0 = insert(D; i; �) where 0 � i � `. LetR0 = rand(�). The randomized version of D0 is taken tobe R[0] : : : R[i] : R0 : R[i+1] : : : R[`+1]. The hash is updatedbyh0 = h�f1(R[i]; R[i+ 1])�f1(R[i]; R0)�f1(R0; R[i + 1]) :The new tag is T 0 = f2(h0). If we want to compute the tagfor the document D0 = delete(D; i) where 1 � i � `, thenwe let R0 = rand(D[i� 1]). The randomized version of D0 istaken to be R[0] : : : R[i� 2] : R0 : R[i+1] : : : R[`+1], and thehash is updated to h0 =h�f1(R[i� 1];R[i])�f1(R[i]; R[i+ 1])�f1(R0; R[i + 1])�d ;where d = f1(R[i� 2]; R[i� 1])�f1(R[i� 2];R0) if i � 2 and0 if i = 1. Again the tag is just T 0 = f2(h0).Notice that incrementing requires four/six computa-tions of a PRF together with some XORs and other simpleoperations. It is this considerably faster than re-computingthe tag from scratch.7For example, hashing under linear universal-2 hash functions[CW] yields an incremental �ngerprinting scheme. A message au-thentication scheme can be derived by appropriately encrypting the�ngerprint.8For example, xor-ing together the hash value of D and the hashvalues obtained (as below) by two di�erent modi�cations to D, e.g.,delete(D; i) and delete(D; j) for suitably chosen i; j, yields a hash valuefor the document delete(delete(D; i); j).

Security. The adversary is allowed document create op-erations and insert or delete operations. A corollary ofTheorem 3.1 below is that if f1; f2 are chosen uniformly froma family of pseudorandom functions, then the document sys-tem presented above is secure in the basic sense.For applications it is important to have more informa-tion on how the strength of the underlying PRFs translatesinto the strength of the scheme. Thus, the theorem itselfspeci�es our ability to break the underlying PRFs as a func-tion of the adversary's success probability. The proof is omit-ted from this abstract.Theorem 3.1 Let f1; f2 have outputs of n bits and be cho-sen from a PRF family. Suppose the randomizing algorithmrandomizes its input by appending a k bit random string. Sup-pose that the document system can be broken with proba-bility p in an attack which runs in time t, makes mc doc-ument create requests, and mi incremental requests (insertor delete). Let m = mc + mi and let L be the maxi-mum length of any document involved. Then, the underly-ing pseudorandom function family can be broken with prob-ability p2 � O(m2 � 2�n) � O((mcL + mi)2 � 2�k), in timeO(t + (Lmc + mi)(k + s + n)), and making O(mcL + mi)oracle queries.We remark that the above document system is not tamper-proof secure. For example, the adversary can �rst ask tocreate and tag a document abcde. Next it tampers with thisdocument converting its contents to cde and ask to modifyit by deleting the second symbol. It obtains a valid tag forabce although this document did not appear in the attack.A tamper-proof secure scheme for message authentication ispresented in the next subsection.Instantiation and efficiency. As discussed in the In-troduction, the PRFs are instantiated via DES or MD5, in-dividually or in combination. One would typically choosea fairly large block size so that the extra memory requiredto store the randomizers is small in comparison to the docu-ment size: say 5% of the original. Now several instantiationsare possible. To discuss them let b denote the size of a blockin the randomized document.One example is to use only DES, assumed to be a PRF.For a 56 bit DES key a let the PRF fa, taking b-bit inputs, bede�ned by cipher block chaining| this is still a PRF [BKR].Now note that the number of DES computations to computethe tag in our scheme is essentially just 5% more than thatfor doing DES CBC of the entire message. Thus we run atessentially the same speed as the most widely used existingmessage authentication scheme with the added advantage ofincrementality.As an aside we note that the XOR schemes of [BGR]require at least 25% more DES operations than the CBC.The fact that we have only a 5% overhead is due to thechaining and exhibits another advantage of this idea.Another good instantiation is via composition. Againlet a be a DES key. Let the PRF fa be de�ned byfa(x) = DESa(DESa(MD51(x))�MD52(x)), where MD51(resp. MD52) is the �rst (resp. second) half of the outputof MD5| this is shown by [BR] to be a PRF assuming MD5is a collision-free hash function and DES is a PRF. In soft-ware this may be faster than the above.Note that the scheme has additional e�ciency proper-ties. For example, MAC computation can be parallelizedbecause the f1 computations can be made in parallel.7



Finally note keeping storage to within 5% of documentsize is just an example| it could go lower.3.3 The search tree schemesIn this subsection we present a document system maintain-ing message-authentication tags, via fast incremental algo-rithms for tagging and verifying, with respect to powerfultext-modi�cation operations such as cut and paste. Ourconstruction utilizes any ordinary message-authenticationscheme. Assuming that the basic scheme is secure in the or-dinary sense (i.e., withstands a chosen-message-attack), weshow that the incremental system is tamper-proof secure.Let MA be an ordinary message authentication algo-rithm and MAa the tagging function induce by MA with theauthentication-key a (e.g., MAa = fa, where fa is takenfrom a family of pseudorandom functions { see [GGM]).Let VMA be the corresponding veri�cation algorithm (e.g.,VMAa(m; t) may merely consist of computing MAa(m) andchecking whether it equals t). We stress that these primi-tives are not incremental ones; yet, we will build incrementalschemes out of them.The main idea in our construction of an incremental tag-ging algorithm is to \keep the adversary under control" byvirtue of partial veri�cation. Speci�cally, before modifyinga part of the tag, the incremental tagging algorithm checksthat this part is \locally" valid. A standard construction,namely tree authentication �a la Merkle [Me1, Me2], can beused to provide the �rst implementation of this idea. How-ever, this only works for replacement. To handle the morecomplex operations discussed above we use 2-3 trees [AHU].The binary tree scheme. To help the reader understandwhat follows the binary tree scheme is now presented. Theconstruction may be standard, but the proof that it achievestamper resistance is not trivial; however we'll omit it becausewe present and prove correct a more general scheme below.Assume for convenience that ` = 2h is a power of two. The(incrementable) tag of a document D = D[1] : : :D[`] is abalanced binary tree of MA-tags. More formally, let Vh de-note the set of all strings of length at most h associated inthe obvious manner with the vertices of the balanced binarytree of height h. The tree of tags can be seen as a functionTag: Vh ! f0; 1g� which assigns a tag to each node. Thisfunction is computed bottom-up as follows:For each i, let Tag(w) = MAa(D[i]), where w is the ithleaf.For each non-leaf node w, let Tag(w) = MAa(Tag(w0);Tag(w1)).Note that Tag(�) is the tag of the root of the tree. In orderto prevent replacement of one document by another (or byan old version of the same document), we rede�ne the tag ofthe root to be Tag(�) def= MAa(Tag(0);Tag(1); �;cnt), where� is the name of the document and cnt is the current countervalue (associated with this document).The incremental tagging algorithm works as follows.Suppose Tag(�) is the function describing the tag of D, andthat the jth symbol of D is to be replaced by the symbol� 2 �. We �rst check that the path from the claimed cur-rent value to the root of the tree is valid. Then we performthe update. Details follow.Let u0; : : : ; uh be the path from the root u0 = � to thejth leaf, denoted uh. Then

check that VMAa accepts Tag(�) as a valid authentica-tion tag of (Tag(0);Tag(1); �; cnt), where � is the nameof the document and cnt is the current counter value(associated with this document).for i = 1; :::; h� 1: check that VMAa accepts Tag(ui) asa valid authentication tag of (Tag(ui0);Tag(ui1)).check that VMAa accepts Tag(uh) as a valid authentica-tion tag of D[j].If these checks succeed then update Tag as follows:set Tag(uh) MAa(�)for i = h � 1; : : : ; 1: set Tag(ui)  MAa(Tag(ui0);Tag(ui1)).set Tag(�) MAa(Tag(0);Tag(1); �;cnt+ 1).We stress that the values of Tag on all other nodes (i.e.,those not on the path u0; : : : ; uh) remain unchanged.The search tree scheme. Recall that a 2-3 tree has allleaves at the same level/height (as in case of balanced bi-nary trees) and each internal node has either 2 or 3 chil-dren (rather than 2 as in binary trees). We stress that a2-3 tree, alike a binary tree, is an ordered tree and thus itsleaves are in order. Thus, storing a single symbol in eachleaf of the tree de�nes a string over �. It is well-known thatsuch trees support insert and delete (of a single symbol/leaf)in logarithmically many operations9 , where basic operationsconsist of any single change in the topology of the tree (i.e.,adding or omitting a vertex or an edge). It is also easyto verify that a paste operation (merging two trees so thatthe leaves of the resulting tree represent the concatenationof the leaves of the two trees) can also be implemented inlogarithmically many operations. A simple implementationof the cut operation results in at most log-square operations(which correspond to the truncation of logarithmically manysubtrees). A more careful implementation enables to repairthe \damages" created by a cut operation using only loga-rithmically many operations. Finally, we note that in orderto allow fast search (i.e., locating the ith leaf, given i) itis useful to append a counter to each vertex specifying thenumber of leaves in the subtree rooted at it. Clearly, thesecounters can be updated within the stated complexity. Thetwo types of counters in the following description should notbe confused: one counter, used above, representing the num-ber of modi�cations to the document (hereafter referred toas version counter), while the other counter (termed size be-low), represents the number of symbols in a subtext rootedat a vertex of the tag-tree.Now, the (incrementable) tag of a document D =D[1] : : :D[`] is a 2-3 tree of MA-tags, hereafter referred toas a tag-tree. Each node w is associated a label which con-sists of a tag (authenticating the children) and a counterrepresenting the number of leaves in the subtree rooted atw. The tag of w is formed by authenticating (using MAa)the labels the children of w, in the natural generalizationof the above. Namely, the label of an internal vertex w isa pair (MAa(L1; L2; L3); size), where Li is the label of the9 To insert a leaf, add it as a child to the suitable level h�1 vertex.In case the resulting children-degree of this vertex is 4, split it intotwo vertices so that both are children of its parent. The parent may besplit so too, and so on until one gets to the root. If the root needs tobe split then the height of the tree is incremented. To delete a leaf, weapply an analogous procedure. Namely, if the resulting parent and itssiblings have total children-degree at least 4 then we rearrange thesechildren so that each of the resulting parent nodes has children-degreeeither 2 or 3. In case the total children-degree is at most 3, we mergethe parent and its sibling to one vertex and turn to its parent.8



ith child of w (in case w has only two children, L3 = �) andsize is the number of leaves in the subtree rooted at w. Thetag of the root is formed as the other tags, except that theinformation to which MAa is applied contains also the doc-ument name and the version-counter. Veri�cation is doneanalogously to the way it was conducted in the binary-treescheme (i.e., for each vertex we check that VMAa acceptsits tag as valid authentication of the labels of its children)except that we also check that the subtree-counters of thechildren sum-up to the subtree-counter of their parent.The incremental tagging algorithm proceeds as follows.Suppose that a document, so tagged, is to be cut at locationj. We �rst locate the jth leaf (using the subtree counterscontained in the nodes). This takes O(log `) time. Then,we perform a partial validity check analogously to the wayit was conducted in the binary-tree scheme except that wealso check that the subtree-counters of the children sum-upto the subtree-counter of their parent. Again, we check onlythe validity of the tags for vertices on the path from theleaf to the root. (Note that these vertices are the parentsand ancestors of all vertices which are to undergo topologicalchanges.) When checking the tagging of the root, we use thecorresponding document-name and current version-counter.If this check succeeds then we go ahead and implement thesetopological changes, creating new tags for the correspondingvertices. The tagging of the root is treated taking into ac-count its slightly di�erent structure (i.e., MA is applied hereto information containing also the document name and theincremented version-counter). Incremental tagging for thepaste operation is performed analogously. In both cases, in-cremental veri�cation is similar.A sketch of the proof of the following theorem is inAppendix A. We assuming for simplicity that s = log2 j�j.Theorem 3.2 Suppose that the document system can bebroken with probability p(s) in an attack which runs in timet(s), making document-create operations for documents oftotal length L(s) and at most m(s) document-modi�cationoperations, each producing a document of length at most`(s). Then, the underlying message authentication system canbe broken with probability p(s)=q(s) via a chosen-message-attack which runs in time O(t(s)) and makes at most q(s) def=O(L(s) +m(s) � log `(s)) queries.The adaptation to signature schemes is immediate by substi-tuting each reference to an (ordinary) authentication schemeby referring to an (ordinary) signature scheme.Application to Virus Protection. The setting for virusprotection by authentication was discussed in the Introduc-tion. Our tamper-proof incremental message authenticationscheme yields a virus-protection system in the sense dis-cussed there. This is done as follows. Each �le is stored onthe insecure media together with its tag-tree. By a suitablechoice of parameters the storage overhead can be negligiblewith respect to the �le itself. For example, we can parti-tion the �le into blocks of length s2, where s is the length ofthe tags (and the key) in the basic message-authenticationscheme MA. For an L-bit-long �le, we get a tag-tree that hasLs2 leaves and can be encoded as a binary string of lengthO(L=s). For each �le, the user only needs to keep O(s)bits (in local secure memory); these bits are used to storethe key of the authentication-scheme, the �le-name and itscurrent version-counter. Whenever the �le is modi�ed thetag-tree (residing in the insecure media) and the version-

counter (kept in the secure local memory) are modi�ed asdescribed in the incremental scheme (above). Whenever theuser wishes to verify the integrity of its �le, it veri�es thevalidity of the tag-tree in the obvious manner.The underlying message authentication scheme can betaken to be any of the standard ones. For example, the CBCMAC, or just one of the PRFs discussed above. (Any PRFis a MAC [GGM]). Our scheme has the additional propertythat it is secure even in face of an adversary who can see theauthentication tags and even tamper with them. In contrast,the �ngerprinting method of Karp-Rabin [KR] is secure onlyif the adversary cannot see the �ngerprint.4 Incremental encryption4.1 The security of incremental encryptionAs discussed in the Introduction, the usage of incrementalencryption algorithms may leak information that is kept se-cret when using a traditional encryption scheme. Below, weoutline a de�nition for the special case of incremental en-cryption with respect to single symbol replacement.Loosely speaking, we say that an incremental encryp-tion, with respect to single symbol replacement, is secureif given a sequence of encryptions E1; :::;Et, produced byencrypting D1 as E1 and deriving each subsequence Ei byincrementing the previous Ei�1, it is infeasible to derive anyinformation about the original document D1 as well as itsmodi�cations D2; :::;Dt (except the fact that Di is obtainedby replacing a single symbol in Di�1). Equivalently, considerany two sequences, A = (A1; :::;At) and B = (B1; :::;Bt), sothat A1; B1 2 �` and Ai (resp., Bi) is obtained by replacinga single symbol in Ai�1 (resp., Bi�1). Then, it is infeasibleto distinguish the sequence of encryptions produced by thedocument system when handling a create-command for A1and the corresponding replacement-commands of A from thesequence of encryptions produced by the document systemwhen handling a create-command forB1 and the correspond-ing replacement-commands of B.4.2 Schemes for incremental encryptionIf we allow incremental schemes which are e�cient in theamortized sense then there exist trivial solutions. Namely,the encryption of the document can be augmented by anencryption of the description of the modi�cation, until thenumber of modi�cations equals the length of the document,at which point one can re-encrypt the document. This mightbe acceptable in some settings, but a non-amortized solutionis worth seeking.Another approach to incremental encryption is to usethe idea of \software protection" as de�ned in [Go]. (Thesetting consists of a processor, having only a limited amountof local memory, to store and access information on an in-secure remote memory. The simulation should be obliviousin the sense that the actual access pattern does not leak in-formation about the original/simulated access pattern. Thetranslation from oblivious simulation of RAM to an incre-mental encryption scheme is quite obvious: the role of theprocessor is played by the user, whereas the remote mem-ory is associated with the encryption.) A software protectionscheme with polylogarithmic overhead exists [Os], but is alsoamortized, and using this results in an incremental encryp-tion scheme whose e�ciency is in the end not better thanthat of the trivial solution above.9



However the ideas of the software protection schemes of[Go, Os] can be adapted to derive an incremental encryptionscheme for (single symbol) insert/delete that is e�cient inthe strict sense (i.e., number of simulation steps per originaloperation) rather than in the amortized sense (as presentedthere). The adaptation is achieved by \pipelining." A briefdescription follows.The scheme maintains secure encryptions of documentswhich undergo a sequence of (single symbol) replacements.(The scheme is presented in terms of private-key encryption,but can be easily converted into a public-key setting.)In our solution we use an arbitrary (private-key)semantically-secure (probabilistic) encryption scheme E (thekey is implicit in the notation). We assume that E can beused to encrypt symbols in � as well as pairs (i; �), where� 2 � and i is an integer not greater than the length of doc-uments in our system. Using E, we �rst present an obviousalgorithm that maintains encrypted versions of documentswhich undergo symbol-replacement. The encrypted versionsconsist of two sequences of encryption values, denoted E1and E2. The �rst sequence, E1, is a block-by-block encryp-tion of some reference document D = D[1] � � �D[`]; whereasthe second sequence, E2, encodes the sequence of modi�-cations, denoted M = M [1] � � �M [t], by which the currentdocument has been obtained from D. The obvious algo-rithm increments the encryption of a modi�ed document byappending the encryption of the modi�cation to E2. Every `steps the algorithm recovers the modi�ed document and re-encrypts it using a block-by-block encryption, thus forminga new encryption sequence E1 (and setting E2 to be empty).The amortized complexity of this algorithm amounts to twoblock encryptions per each modi�cation.An important observation is that one may `pipeline' theexpensive actions of the above algorithm. Suppose �rst thatwe are allowed to keep intermediate results in some securelocation (invisible by the adversary). Then, once the lengthof E2 reaches `, we can start preparing the new encryption ofthe document, denoted D0, which results from D by apply-ing the (�rst `) modi�cations in M . We perform all requiredcomputation along with the next ` modi�cations, while al-lowing M to grow upto a total length of 2`. At this point,we have the encryption, denoted E0, of the document D0(yet, indeed, now the current document is di�erent). Re-placing E1 by E0 and omitting the �rst ` modi�cations inM , we obtain the encrypted form of the current document.We stress that, within our (realistic) model of computation,these operations (switching �les and runcating a �le) can beperformed in constant time. To summarize, the algorithmworks in epochs, each consisting of ` modi�cations. In eachepoch, the algorithm updates the encryption to match themodi�cations performed in the previous epoch.In the above description, we have assumed that the usercan store its intermediate results (which require O(`) space)in a location invisible by the adversary. This assumption isunrealistic in some settings and is inconsistent with our def-initions as presented in Subsection 4.1. We thus turn to im-plement the above ideas without making this assumption10 .To this end, we encrypt documents using three sequences ofencryption values, denoted E1, E2 and E3. The �rst twosequence, E1 and E2, are as above and su�ce for decryptingthe document. The additional sequence E3 is an encryp-10 Here is where we use the ideas of [Go, Os].

tion of a \work area", denoted W =W [1] � � �W [2`], used toimplement the above procedure.Following is a description of what is being done in oneepoch. (In our description, we do not mention explicitly theencryption operations, thus whenever we say that we set asymbol of W it is to be understood that the correspond-ing encryption is computed and stored.) First, we set W tohold the relevant information; i.e., W [i] (i;D[i]) for i � `and W [i]  M [i � `] for ` + 1 � i� 2`. (Here we assumethat the modi�cation records have the form (i; �), where iis a location and � a symbol to be placed in that location.)Next, we sort the pairs in W by their left element, hereafterreferred to as their sorting-keys, so that if two sorting-keysare equal then the corresponding pairs are kept in order.It is crucial that the sorting is performed by an e�cientand oblivious sorting network such as Batcher's sorting net-work [Ba]. We stress that whenever two pairs are comparedand switched/unswitched they are re-encrypted by E (andso the adversary cannot tell if they were switched or not).This guarantees that the entire sorting procedure does notleak any information to the adversary. Once the sorting iscompleted, W is scanned while setting all occurences withthe same sorting-key, save the last one (which is the `newest'one), to a large dummy value (i.e., (`+ 1; �)). Now, we sortthe pairs inW (by the sort-key) again, and obtain a sequencein which the �rst ` entries hold the updated document D0.Finally, we set E1 to hold the encryption of D0 and drop the�rst ` elements of E2.Using the AKS sorting network [AKS], our implementa-tion of one epoch requires O(` log `) steps (whereas if we useBatcher's network we get a total of O(`) + `(log2 `) steps).These steps can be partitioned evenly among the ` modi�-cation actions yielding the desired complexity.As stated above, each of the schemes presented in[Go, Os] can be adopted to yield an incremental encryp-tion scheme for (single symbol) insert/delete that is e�cientin the strict sense. This is done analogously to the above,provided hat the document length stays within some prede-termined bounds (e.g., between `=2 and 2`). Namely, theencryption of a document consists of three sequences of en-crypted values, E1, E2 and E3, where E1 and E2 are as aboveand E3 is an encryption of the workspace of some oblivioussimulator. As above, the algorithm works in epochs consist-ing of ` modi�cations each. In each epoch, the incremen-tal algorithm performs the ` modi�cations of the previousepoch. This is done by simulating a RAM which maintainsa data structure enabling fast performance of insert/delete(e.g., a 2-3 tree).5 The privacy issuePrivacy is an interesting new issue in incremental cryptog-raphy to which we provide a brief introduction here.Security, as de�ned for signature and encryptionschemes, is concerned with what an illegitimate/outsiderparty which does not know the private key can do or learn.For example, in signature schemes it was required that thisoutsider (called the adversary) cannot forge signatures. Wenow consider the information regarding previous versions ofthe document which can be inferred by the legitimate partywhen inspecting the current document together with the cur-rent cryptographic form. That is, suppose, for example, thatwe are given a document D together with its (updated) cryp-tographic form and we are told that D was obtained from10



some other document, called D0, by a deleting a single sym-bol. Perfect privacy would mean that we cannot tell thelocation of the deleted symbol. Partial privacy may meanthat we cannot tell the identity of the deleted character (butwe may have some information regarding its location).Perfect privacy is a natural concern in the context ofsignatures. Suppose that one uses an incremental signaturescheme to produce signatures to related commitments givento various parties. It is desirable that none of these partiescan learn from the signature given to it something concerningcommitments given to other parties. Partial privacy maybe useful too. Suppose Alice has a standard commitmentform in which she only �lls-up some very few spaces beforesigning (many such forms do exist in the business world).Clearly, Alice should not care if Bob, to him she gave suchan incremental commitment, learns that she have signed thecommitment (given to him) by incrementing a signature to adi�erent instance of this commitment, as long as Bob cannot�nd out any details concerning this previous commitment.A de�nition of perfect privacy can be easily producedfollowing the standard paradigms. Speci�cally, given a doc-ument D and a signature to it, it should be infeasible todistinguish whether the signature was by the document sys-tem in response to a create command or in response to atext modi�cation command. De�nitions of partial privacymay vary for ones in which the amount of modi�cation isthe only information being leaked to ones in which only thesecrecy of replaced/deleted symbols is preserved.Our �rst message authentication scheme (i.e., the XOR-scheme of Section 3.1) satis�es perfect privacy; whereas thesecond scheme (i.e., the tree scheme ) satis�es only partialprivacy.AcknowledgementsWe are grateful to Nir Shavit for pointing out several impor-tant applications of incremental cryptography.References[AHU] A. Aho, J. Ullman, and J. Hopcroft. The de-sign and analysis of computer algorithms. Addison-Wesley, 1974.[AKS] M. Ajtai, J. Koml�os and E. Szemer�edi. AnO(n log n) sorting network. STOC 83.[Ba] K. Batcher. Sorting networks and their applica-tions. AFIPS Spring Joint Computer Conference 32,1968.[BGG] M. Bellare, O. Goldreich and S. Goldwasser.Incremental cryptography: The case of hashing andsigning. Crypto 94.[BGR] M. Bellare, R. Gu�erin and P. Rogaway. XORMACs: Newmethods for message authentication us-ing block ciphers. Manuscript, March 1994.[BKR] M. Bellare, J. Kilian and P. Rogaway. Thesecurity of cipher block chaining. Crypto 94.[BR] M. Bellare and P. Rogaway. Entity authentica-tion and key distribution. Crypto 93.[CW] L. Carter and M. Wegman. Universal Classes ofHash Functions. J. Computer and System Sciences18, 143{154, 1979.

[Go] O. Goldreich. Towards a Theory of SoftwareProtection and Simulation by Oblivious RAMs.STOC 87.[GGM] O. Goldreich, S. Goldwasser and S. Micali.How to construct random functions. Journal of theACM, Vol. 33, No. 4, 210{217, 1986.[GM] S. Goldwasser and S. Micali. Probabilistic en-cryption. J. of Computer and System Sciences 28,270{299, April 1984.[GMR] S. Goldwasser, S. Micali and R. Rivest. Adigital signature scheme secure against adaptivechosen-message attacks. SIAM Journal of Comput-ing, 17(2):281{308, April 1988.[KR] R. Karp and M. Rabin. E�cient randomized pat-tern matching algorithms. IBM J. of Research andDevelopment Vol. 31, No. 2, March 1987.[Me1] R. Merkle. A certi�ed digital signature scheme.Crypto 89.[Me2] R. Merkle. Protocols for public key cryptosystems.Proceedings of the 1980 Symposium on Security andPrivacy.[Os] R. Ostrovsky. E�cient Computations on Oblivi-ous RAMs. STOC 90.[Ri] R. Rivest. The MD5 message-digest algorithm.IETF Network Working Group, RFC 1321,April 1992.A Sketch of proof of Theorem 3.2A key observation regarding the incremental tagging algo-rithm follows.Proposition A.1 Suppose that Tag is a valid tag-tree forthe text T , stored as version cnt of document (name) �.Then the tag-trees produced by the system in response to acut-operation, with parameters �;�; 
, are valid tag-trees forthe resulting texts (when stored as new versions of documents(names) � and 
). Similarly, for pasting.We stress that the term \validity" used in the above proposi-tion and below includes the requirement that the document-name and version-counter authenticated by the root matchthe actual document-name and the corresponding currentversion-counter.We show that attacks on our tree tagging system cannotbe too successful since they would yield successful attacks onthe basic message authentication scheme MA.Consider an arbitrary adversary that attacks the tag-ging system using commands of all three types (i.e., `create',`modify' and `tamper'). Note that both tagging algorithmsemployed (for `create' and `modify') use an oracle to MAa(and VMAa), for a randomly generated authentication-keya. We assume for simplicity that the adversary always haltsoutputting a properly tagged document (i.e., a pair (D;�)where � is an MAa-valid authentication tree for D). Westress that this (document,tag)-pair is not necessarily onewhich has not \appeared before" (i.e., D may have appearedas a previous virtual message). Actually, our task is to showthat it is most likely that the document D has appearedpreviously as a virtual document (see Section 3.1 for termi-nology).We now consider two events de�ned over the probabilityspace of all possible executions of the above attack. The �rst11



event is that the adversary has produced (either as part ofa tampering command or as part of its output) a tree-tagcontaining anMAa-tag for a string for which anMAa-tag didnot appear as part of some tag-tree created by the system(in response to some `create' or `modify' command). Thesecond event is that the same MAa-tag appears as the tag oftwo di�erent strings in either two di�erent tag-trees or in thesame tag-tree, produced by the system (in response to some`create' or `modify' command). Both events may occur onlywith negligible probability, since each of them constitutesa breach of the security of the basic message authenticationschemeMA. If none of the events occur, we call the executiongood.From this point on, we assume that the execution isgood and show that (in this case) the tag-tree output by theadversary is for a document, denoted D, which has appearedbefore as a virtual document. Since the tag-tree output bythe adversary is valid, it follows that all theMA-tags appear-ing in it are valid. By the assumption that the execution isgood, it follows that all these tags, and in particular the tagof the root, have appeared in some previous tag-tree (pro-duced by the system). Consider the earliest time t in whichthere exists a document name � with a cryptographic formhaving a vertex v with the same MAa-tag as the root of D(i.e., the document output by the adversary). Since rootshave a special form, the node v must be the root of thetag-tree. Let Vt be the virtual document associated withdocument-name � at that time t. Note that Vt was de�nedin time t by either a create or a modi�cation command.If Vt was de�ned by a document-creation command thenthe tag-tree of document � at time t must be valid (as itwas produced in response to a create command). By theassumption that the execution is good, it follows that this(valid) tag-tree is identical to the (valid) tag-tree of D (sinceotherwise two di�erent valid tag-trees, with an identical root,have appeared in the execution implying that the executioncontains two di�erent strings with the same MAa-tag). Itfollows that Vt = D.We are left with the case where Vt was de�ned by adocument-modi�cation command. For each virtual docu-ment, we de�ne a virtual tag-tree (associated with it). Thede�nition mimics the one of a virtual document (i.e., it ig-nores the possible tampering of the tag-trees associated todocument-names). Namely,The virtual tag-tree associated with a creation command(and with the virtual document de�ned by this com-mand) is the actual tag-tree produced by the system.Thus, in this case, the virtual tag-tree is a valid tag-treeof the corresponding virtual document.The virtual tag-tree associated with a modi�cation com-mand (and with the virtual document de�ned by thiscommand) consists of a tree of MA-tags in which thenew tags (produced at this stage by the system) are theactual ones but the tags of the other vertices are as in thevirtual tag-tree of the corresponding virtual documents.An important observation, proven by induction on the re-cursive de�nition of a virtual tag-tree, is that every virtualtag-tree consists of MAa-tags which were produced by thesystem. Combining the same type of induction with Propo-sition A.1, we prove the followingLemma A.2 At any time, the virtual tag-tree associated witheach document is a valid tag-tree for the corresponding virtual

document.We stress that the assertion of the lemma does not necessar-ily hold with respect to the actual tag-trees that may evencontain illegal MAa-tags.Proof: First, we observe that the lemma holds for a vir-tual tag-tree de�ned by a create operation. Now, considera virtual tag-tree de�ned by pasting documents (names) �and �. By de�nition, this virtual tag-tree consists of theMAa-tags of the corresponding virtual tag-trees and the ac-tual tags produced for the vertices along the path from thetopological change to the root. We claim that if a path fromsome vertex in the actual tag-tree of � (resp., �) to its rootis valid then the labels of the children of the vertices on thispath equal the corresponding labels in the virtual tree of �(resp., �). Once this claim is proven we are done (since thenwe are guaranteed that the newly formed MAa-tags are tagsfor the correct values).The claim is proven by induction from the root of this path,using the hypothesis that the execution is good, the fact thatthe virtual tag-tree of � consists of MAa-tags produced bythe system, and the hypothesis that the virtual tag-tree of �is a valid tag-tree (for the corresponding virtual document).Firstly, if the tag of the root of the actual tag-tree for doc-ument � having current version-counter cnt is valid then itmust have been produced by the system for document � atthe time its counter was incremented to the value cnt. Thus,the root of the actual tag-tree equals the root of the virtualtag-tree of �. It follows that the labels of the children of rootof the actual tag-tree are as in the corresponding virtual tag-tree. In particular, the subtree counters of the correspondingchildren in the two tag-trees are equal and thus the locationsof the corresponding subtexts are the same. Similarly, if thetag of a vertex, v, of the actual tag-tree is both valid andequals the corresponding tag in the virtual tag-tree then thelabels of v's children are as in the corresponding virtual tag-tree. The claim follows and so does the lemma.We now claim that the virtual tag-tree of Vt equals thetag-tree produced by the adversay (for D). First, we observethat the actual tag-tree of Vt at time t contains as its rootanMAa-tag of a string containing the document name � anda counter-version denoted cnt. However, by validity of thevirtual tag-tree of Vt it follows that also the virtual tag-treecontains as its root an authentication of the document name� and the counter-version cnt. Combining this with the de-�nition of the incremental algorithm and the fact that eachMA-tag in the virtual tag-tree has appeared in an actual tag-tree, we infer that the roots of both the actual and virtualtag-trees of Vt are identical. Thus, the virtual tag-tree ofVt and the output tag-tree of D have identical roots (recallthat by de�nition the root of the actual tag-tree of Vt equalsthe root of the tag-tree of D). By the assumption that theexecution is good and the fact that the virtual tag-tree con-sists ofMAa-tags produced by the system, we conclude againthat these two (valid) tag-trees (ie., the virtual tag-tree of Vtand the tag-tree of D) must be identical, and again Vt = Dfollows. This concludes the proof that in every good exe-cution the authenticated document output by the adversary(ie., D) is a virtual document which has appeared before.12


