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h 23, 2004Abstra
tWe 
ontinue the study of the trade-o� between the length of PCPs and their query 
omplexity,establishing the following main results (whi
h refer to proofs of satis�ability of 
ir
uits of size n):1. We present PCPs of length exp( ~O(log log n)2) � n that 
an be veri�ed by making o(log log n)Boolean queries.2. For every " > 0, we present PCPs of length exp(log" n) � n that 
an be veri�ed by making a
onstant number of Boolean queries.In both 
ases, false assertions are reje
ted with 
onstant probability (whi
h may be set to be arbitrarily
lose to 1). The multipli
ative overhead on the length of the proof, introdu
ed by transforming a proofinto a probabilisti
ally 
he
kable one, is just quasi-polylogarithmi
 in the �rst 
ase (of query 
omplexityo(log log n)), and 2(log n)" , for any " > 0, in the se
ond 
ase (of 
onstant query 
omplexity). In 
ontrast,previous results required at least 2plog n overhead in the length, even to get query 
omplexity 2plog n.Our te
hniques in
lude the introdu
tion of a new variant of PCPs that we 
all \Robust PCPs ofproximity". These new PCPs fa
ilitate proof 
omposition, whi
h is a 
entral ingredient in 
onstru
tion ofPCP systems. (A related notion and its 
omposition properties were dis
overed independently by Dinurand Reingold.) Our main te
hni
al 
ontribution is a 
onstru
tion of a \length-eÆ
ient" Robust PCPof proximity. While the new 
onstru
tion uses many of the standard te
hniques in PCPs, it does di�erfrom previous 
onstru
tions in fundamental ways, and in parti
ular does not use the \parallelization"step of Arora et al. The alternative approa
h may be of independent interest.We also obtain analogous quantitative results for lo
ally testable 
odes. In addition, we introdu
ea relaxed notion of lo
ally de
odable 
odes, and present su
h 
odes mapping k information bits to
odewords of length k1+", for any " > 0.
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1 Introdu
tionProbabilisti
ally Che
kable Proofs [22, 5, 4℄ (a.k.a. Holographi
 Proofs [6℄) are NP witnesses thatallow eÆ
ient probabilisti
 veri�
ation based on probing few bits of the NP witness. The 
elebratedPCP Theorem [5, 4℄ asserts that probing a 
onstant number of bits suÆ
es, and it turned out thatthree bits suÆ
e for reje
ting false assertions with probability almost 1=2 (
f. [32, 30℄).Optimizing the query 
omplexity of PCPs has attra
ted a lot of attention, motivated in part bythe signi�
an
e of query 
omplexity for non-approximability results (see, for example, [10, 9, 32,30, 48℄). However, these works only guarantee that the new NP witness (i.e., the PCP) is of lengththat is upper-bounded by a polynomial in the length of the original NP witness.1 Optimizing thelength of the new NP witness was the fo
us of [6, 44, 31, 28, 12℄, and in this work we 
ontinue thelatter resear
h dire
tion.In our view, the signi�
an
e of PCPs extends far beyond their appli
ability to deriving non-approximability results. The mere fa
t that NP-witnesses 
an be transformed into a format thatsupports super-fast probabilisti
 veri�
ation is remarkable. From this perspe
tive, the question ofhow mu
h redundan
y is introdu
ed by su
h a transformation is a fundamental one. Furthermore,PCPs have been used not only to derive non-approximability results but also for obtaining positiveresults (e.g., CS-proofs [37, 41℄ and their appli
ations [7, 16℄), and the length of the PCP a�e
tsthe 
omplexity of those appli
ations.In any 
ase, the length of PCPs does also have relevan
e to non-approximability results; spe
if-i
ally, it a�e
ts their tightness with respe
t to the running time. For example, suppose (exa
t) SAThas 
omplexity 2
(n). The original PCP theorem [5, 4℄ only implies that approximating MaxSATrequires time 2n� , for some (small) � > 0. The work of Polish
huk and Spielman [44℄ makes �arbitrarily 
lose to 1, whereas the results of [28, 12℄ further improve the lower-bound to 2n1�o(1) .Our results redu
e the o(1) term.21.1 PCPs with better length vs query trade-o�How short 
an a PCP be? The answer may depend on the number of bits we are willing to readin order to reje
t false assertions (say) with probability at least 1=2. It is impli
it in the work ofPolish
huk and Spielman [44℄ that, for proofs of satis�ability of 
ir
uits of size n, if we are willingto read n0:01 bits then the length of the new NP witness may be ~O(n). That is, stret
hing the NPwitness by only a poly-logarithmi
 amount, allows to dramati
ally redu
e the number of bits read(from n to n0:01). More pre
isely:3Theorem 1.1 (impli
it in [44℄) Satis�ability of 
ir
uits of size n 
an be probabilisti
ally veri�edby probing an NP witness of length poly(log n) � n in no(1) bit lo
ations. In fa
t, for any valueof a parameter m � logn, there is a PCP having randomness 
omplexity (1 � m�1) � log2 n +O(log logn) +O(m logm) and query 
omplexity poly(log n) � n1=m.Re
all that the proof length of a PCP is at most 2r � q, where r is the randomness 
omplexityand q is the query 
omplexity of the PCP. Thus, the �rst part of the above theorem follows bysetting m = log log n= log log log n in the se
ond part.1We stress that in all the above works as well as in the 
urrent work, the new NP witness 
an be 
omputed inpolynomial-time from the original NP witness.2A 
aveat: it is 
urrently not known whether these improved lower-bounds 
an be a
hieved simultaneously withoptimal approximation ratios, but the hope is that this 
an eventually be done.3All logarithms in this work are to based 2, but in some pla
es we 
hoose to emphasize this fa
t by using thenotation log2 rather than log. 2



Our results show that the query 
omplexity 
an be redu
ed dramati
ally if we are willing toin
rease the length of the proof slightly. First, with a quasi-polylogarithmi
 stret
h, the query
omplexity 
an be made double-logarithmi
:Theorem 1.2 Satis�ability of 
ir
uits of size n 
an be probabilisti
ally veri�ed by probing an NPwitness of length exp( ~O(log logn)2)�n in o(log logn) bit-lo
ations. In fa
t, it has a PCP having ran-domness 
omplexity log2 n+(log log n)2�poly(log log logn) and query 
omplexity O(log logn= log log logn).Prior to our work, redu
ing the query 
omplexity below exp(plogn) required stret
hing the NPwitness by at least a exp(plogn) fa
tor. With approximately su
h a stret
h fa
tor, previous worksa
tually a
hieved 
onstant query 
omplexity (
f. [28, 12℄). Thus, Theorem 1.2 represents a vastimprovement in the query 
omplexity of PCPs that use very short proofs (i.e., in the range betweenexp( ~O(log log n)2) �n and exp(plogn) �n). On the other hand, 
onsidering NP witnesses that allowprobabilisti
 veri�
ation by a 
onstant number of queries, we redu
e the best known stret
h fa
torfrom exp(log0:5+" n) (established in [28, 12℄) to exp(log" n), for any " > 0. That is:Theorem 1.3 For every 
onstant " > 0, satis�ability of 
ir
uits of size n 
an be probabilisti
allyveri�ed by probing an NP witness of length exp(log" n) �n in a 
onstant number of bit-lo
ations. Infa
t, it has a PCP having randomness 
omplexity log2 n+ log" n and query 
omplexity O(1=").It may indeed be the 
ase that the trade-o� (between length blow-up fa
tors and query 
omplexity)o�ered by Theorems 1.1{1.3 merely re
e
ts our (in
omplete) state of knowledge. In parti
ular, wewonder whether 
ir
uit satis�ability 
an be probabilisti
ally veri�ed by a PCP having proof-lengthn � poly(log n) and 
onstant query 
omplexity.1.2 New notions and main te
hniquesA natural approa
h to redu
ing the query 
omplexity in Theorem 1.1 is via the \proof 
omposition"paradigm of [5℄. However, that PCP, as 
onstru
ted in [44℄, does not seem amenable to 
omposition(when the parameter m is non-
onstant). Thus, we begin by giving a new PCP 
onstru
tion whoseparameters mat
h those in Theorem 1.1, but is suitable for 
omposition. As we will see, we 
annota�ord the standard proof 
omposition te
hniques, and thus also introdu
e a new, more eÆ
ient
omposition paradigm.The initial PCP. Our new proof of Theorem 1.1 modi�es the 
onstru
tions of Polish
huk andSpielman [44℄ and Harsha and Sudan [31℄. The latter 
onstru
tion was already improved in [28, 12℄to redu
e the length of PCPs to n�2 ~O(plogn). Our results go further by re-examining the \low-degreetest" (query-eÆ
ient tests that verify if a given fun
tion is 
lose to being a low-degree polynomial)and �rst observing that the small-bias sample sets of [12℄ give an even more signi�
ant savingson the randomness 
omplexity of low-degree tests than noti
ed in their work. However, exploitingthis advantage takes a signi�
ant e�ort in modifying known PCP modules, and rede�ning theingredients in \proof 
omposition".For starters, PCP 
onstru
tions tend to use many (i.e., a super-
onstant number of) fun
tionsand need to test if ea
h is a low-degree polynomial. In prior results, this was performed eÆ
ientlyby 
ombining the many di�erent fun
tions on, say m variables, into a single new one on m + 1variables, where the extra variable provides an index into the many di�erent old fun
tions. Testingif the new fun
tion is of low-degree, impli
itly tests all the old fun
tions. Su
h tri
ks, whi
h involveintrodu
ing a few extra variables, turn out to be too expensive in our 
ontext. Furthermore, forsimilar reasons, we 
an not use other \parallelization" te
hniques [23, 38, 4, 27, 45℄, whi
h were3



instrumental to the proof 
omposition te
hnique of [5℄. In turn, this for
es us to introdu
e anew variant of the proof 
omposition method, whi
h is mu
h more 
exible than the one of [5℄.Going ba
k to the PCP derived in Theorem 1.1, we adapt it for our new 
omposition method byintrodu
ing a \bundling" te
hnique that o�ers a randomness eÆ
ient alternative to parallelization.Our new \proof 
omposition" method refers to two new notions: the notion of a PCP of proxim-ity and the notion of a robust PCP. Our method is related to the method dis
overed independentlyby Dinur and Reingold [19℄. (There are signi�
ant di�eren
es between the two methods; as ex-plained in Se
tion 1.3.)PCPs of Proximity. Re
all that a standard PCP is given an expli
it input (whi
h is supposedlyin some NP language) as well as a

ess to an ora
le that is supposed to en
ode a \probabilisti
allyveri�able" NP witness. The PCP veri�er uses ora
le queries (whi
h are 
ounted) in order toprobabilisti
ally verify whether the input, whi
h is expli
itly given to it, is in the language. In
ontrast, a PCP of proximity is given a

ess to two ora
les, one representing an input (supposedly inthe language) and the other being a redundant en
oding of an NP-witness (as in a PCP). Indeed,the veri�er may query both the input ora
le and the proof ora
le, but its queries to the input ora
leare also 
ounted in its query 
omplexity. As usual we fo
us on veri�ers having very low query
omplexity, 
ertainly smaller than the length of the input. Needless to say, su
h a 
onstrainedveri�er 
annot hope to distinguish inputs in the language from inputs out of the language, but itis not required to do so. A veri�er for a PCP of proximity is only required to a

ept inputs thatare in the language and reje
t inputs that are far from the language (i.e., far in Hamming distan
efrom any input in the language). (PCPs of proximity are related to holographi
 proofs [6℄ and to\PCP spot-
he
kers" [20℄; see further dis
ussion in Se
tion 1.3.)Robust PCPs. To dis
uss robust PCPs, let us re
all the soundness guarantee of standard (non-adaptive) PCPs. The 
orresponding veri�er 
an be thought of as determining, based on its 
ointosses, a sequen
e of ora
le positions and a predi
ate su
h that evaluating this predi
ate on theindi
ated ora
le bits always a

epts if the input is in the language and reje
ts with high probabilityotherwise. That is, in the latter 
ase, we require that the assignment of ora
le bits to the predi
atedoes satisfy the predi
ate. In a robust PCP we strengthen the latter requirement. We require thatthe said assignment (of ora
le bits) not only fails to satisfy the predi
ate but rather is far from anyassignment that does satisfy the predi
ate.Proof Composition. The key observation is that \proof 
omposition" works very smoothly whenwe 
ompose an outer \robust PCP" with an inner \PCP of proximity". We need neither worryabout how many queries the outer \robust PCP" makes nor 
are about what 
oding the inner \PCPof proximity" uses in its proof ora
le (mu
h less apply the same en
oding to the outer answers). Allthat we should make sure is that the lengths of the obje
ts mat
h and that the distan
e parameterin the robustness 
ondition (of the outer veri�er) is at least as big as the distan
e parameter in theproximity 
ondition (of the inner veri�er).Indeed, Theorems 1.2 and 1.3 are proved by �rst extending Theorem 1.1 to provide a robust PCPof proximity of similar 
omplexities, and then applying the new \proof 
omposition" method. Westress that our 
ontribution is in providing a proof of Theorem 1.1 that lends itself to a modi�
ationthat satis�es the robustness property, and in establishing the latter property. In parti
ular, theaforementioned \bundling" is applied in order to establish the robustness property. Some 
are isalso due when deriving Theorem 1.2 using a non-
onstant number of \proof 
ompositions". Inparti
ular, Theorem 1.2 (resp., Theorem 1.3) is derived in a way that guarantees that the query
omplexity is linear rather than exponential in the number of \proof 
ompositions", where thelatter is o(log log n) (resp., 1="). 4



We stress that the 
exibility in 
omposing robust PCPs of proximity plays an important rolein our ability to derive quantitatively stronger results regarding PCPs. We believe that robustPCPs of proximity may play a similar role in other quantitative studies of PCPs. We note thatthe standard PCP Theorem of [5, 4℄ 
an be easily derived using a mu
h weaker and simpler variantof our basi
 robust PCP of proximity, and the said 
onstru
tion seems easier than the basi
 PCPsused in the proof 
omposition of [5, 4℄.In addition to their role in our \proof 
omposition" method, PCPs of proximity provide alsoa good starting point for deriving improved lo
ally testable 
odes (see dis
ussion in Se
tion 1.4).The relation of PCPs of proximity to \property testing" is further dis
ussed in Se
tion 1.5.1.3 Related workAs mentioned above, the notion of a PCP of proximity is related to notions that have appearedin the literature. Firstly, the notion of a PCP of proximity generalizes the notion of holographi
proofs set forward by Babai, Fortnow, Levin, and Szegedy [6℄. In both 
ases, the veri�er is givenora
le a

ess to the input, and we 
ount its probes to the input in its query 
omplexity. The keyissue is that holographi
 proofs refer to inputs that are presented in an error-
orre
ting format (e.g.,one aims to verify that a graph that is represented by an error-
orre
ting en
oding of its adja
en
ymatrix (or in
iden
e list) is 3-
olorable). In 
ontrast, a PCP of proximity refers to inputs thatare presented in any format but makes assertions only about their proximity to a

eptable inputs(e.g., one is interested in whether a graph, represented by its adja
en
y matrix (or in
iden
e list),is 3-
olorable or is far from being 3-
olorable).PCP of proximity are impli
it in the low-degree testers that utilize auxiliary ora
les (e.g., anora
le that provides the polynomial representing the value of the fun
tion restri
ted to a queriedline); 
f. [5, 4℄.PCPs of proximity are a spe
ial 
ase of the \PCP spot-
he
kers" de�ned by Erg�un, Kumarand Rubinfeld [20℄. On the other hand, PCPs of proximity extend \property testing" [47, 25℄ byproviding the tester with ora
le a

ess to a proof (on top of the ordinary input-ora
le to whi
h ithas a

ess). Thus, the relation of PCPs of proximity to property testing is analogous to the relationof NP to BPP (or RP). Put di�erently, while property testing provides a notion of approximationfor de
ision pro
edures, PCP of proximity provides a notion of approximation for (probabilisti
)veri�
ation pro
edures. In both 
ases, approximation means that inputs in the language shouldbe a

epted (when a

ompanied with suitable proofs) while inputs that are far from the languageshould be reje
ted (no matter what false proof is provided).As stated above, our \proof 
omposition" method is related to the method dis
overed indepen-dently by Dinur and Reingold [19℄. Both methods use the same notion of PCPs of proximity, butwhile our method refers to the new notion of robustness (i.e., to the robustness of the outer veri�er)the method of Dinur and Reingold refers to the number of (non-Boolean) queries (made by theouter veri�er). Indeed, the method of Dinur and Reingold uses a (new) parallelization pro
edure(whi
h redu
es the number of queries by a 
onstant fa
tor), whereas we avoid parallelization al-together (but rather use a related \bundling" of queries into a non-
onstant number of \bundles"su
h that robustness is satis�ed at the bundle-level).4 We stress that we 
annot a�ord the 
ost4The main part of the bundling te
hnique takes pla
e at the level of analysis, without modifying the proof systemat all. Spe
i�
ally, we show that the answers read by the veri�er 
an be partitioned into a non-
onstant number of(a-priori �xed) \bundles" so that on any no instan
e, with high probability a 
onstant fra
tion of the bundles readshould be modi�ed to make the veri�er a

ept. We stress that the fa
t that 
ertain sets of queries (namely those inea
h bundle) are always made together is a feature that our parti
ular proof system happens to have (or rather it wassomewhat massaged to have). On
e \robust soundness" is established at the \bundle level," we may just modify the5



of any known parallelization pro
edure, be
ause at the very least these pro
edures in
rease thelength of the proof by a fa
tor related to the answer length, whi
h is far too large in the 
ontextof Theorem 1.1 (whi
h in turn serves as the starting point for all the other results in this work).We 
omment that the parallelization pro
edure of [19℄ is 
ombinatorial (albeit inappli
able in our
ontext), whereas our \bundling" relies on the algebrai
 stru
ture of our proof system.1.4 Appli
ations to 
oding problemsThe 
exibility of PCPs of proximity makes them relatively easy to use towards obtaining resultsregarding lo
ally testable and de
odable 
odes. In parti
ular, using a suitable PCP of proximity, weobtain an improvement in the rate of lo
ally testable 
odes (improving over the results of [28, 12℄).Loosely speaking, a 
odeword test (for a 
ode C) is a randomized ora
le ma
hine that is givenora
le a

ess to a string. The tester may query the ora
le at a 
onstant number of bit-lo
ations andis required to (always) a

ept every 
odeword and reje
t with (relatively) high probability everystring that is \far" from the 
ode. The lo
ally testable 
odes of [28, 12℄ used 
odewords of lengthexp(log0:5+" k) � k in order to en
ode k bits of information, for any 
onstant " > 0. Here we redu
ethe length of the 
odewords to exp(log" k) � k. That is:Theorem 1.4 (loosely stated, see Se
tion 4.1 for details): For every 
onstant " > 0, there ex-ists lo
ally testable 
odes that use 
odewords of length exp(log" k) � k in order to en
ode k bits ofinformation.We also introdu
e a relaxed notion of lo
ally de
odable 
odes, and show how to 
onstru
t su
h 
odesusing any PCP of proximity (and ours in parti
ular). Loosely speaking, a 
ode is said to be lo
allyde
odable if whenever relatively few lo
ation are 
orrupted, the de
oder is able to re
over ea
hinformation-bit, with high probability, based on a 
onstant number of queries to the (
orrupted)
odeword. This notion was formally de�ned by Katz and Trevisan [34℄ and the best known lo
allyde
odable 
ode has 
odeword of length that is sub-exponential in the number of information bits.We relax the de�nition of lo
ally de
odable 
odes by requiring that, whenever few lo
ation are
orrupted, the de
oder should be able to re
over most of the individual information-bits (based onfew queries) and for the rest of the lo
ations, the de
oder may output a fail symbol (but not thewrong value). That is, the de
oder must still avoid errors (with high probability), but is allowedto say \don't know" on a few bit-lo
ations. We show that this relaxed notion of lo
al de
odability
an be supported by 
odes that have 
odewords of length that is almost-linear in the number ofinformation bits. That is:Theorem 1.5 (loosely stated, see Se
tion 4.2 for details): For every " > 0, there exists relaxedlo
ally de
odable 
odes that use 
odewords of length k1+" in order to en
ode k bits of information.1.5 Relation to Property TestingFollowing Erg�un et al. [20℄, we view PCPs of proximity as an extension of property testing [47, 25℄.Loosely speaking, a property tester is given ora
le a

ess to an input and is required to distinguishthe 
ase in whi
h the input has the property from the 
ase in whi
h it is far (say in Hammingdistan
e) from any input having the property. Typi
ally, the interest is in testers that query theirproof system so that the bundles be
ome queries and the answers are pla
ed in (any) good error-
orre
ting format,whi
h implies robustness at the bit level. 6



input on few bit-lo
ations (or at the very least on a sub-linear number of su
h lo
ations). In a PCPof proximity su
h a tester (now 
alled a veri�er) is also given ora
le a

ess to an alleged proof.We 
omment that PCPs of proximity are provably stronger than property testers; that is, thereare (natural) separations between property testers and PCPs of proximity (whi
h may be viewedas the \approximation" versions of BPP and NP). For further dis
ussions, refer to Se
tion 2.21.6 OrganizationTheorems 1.2 and 1.3, whi
h are the work's main results, are proved by 
onstru
ting and usinga Robust PCP of Proximity that a
hieves a very good trade-o� between randomness and query
omplexity. Thus, this Robust PCP of Proximity is the main building blo
k that underlies our work.Unfortunately, the 
onstru
tion of a very eÆ
ient Robust PCP of Proximity is quite involved, andis thus deferred to the se
ond part of this work (whi
h starts with an overview). In the �rst partof this work we show how the aforementioned Robust PCP of Proximity 
an be used to derive allthe results mentioned in the Introdu
tion (and, in parti
ular, Theorems 1.2 and 1.3). Thus, theoverall stru
ture of this work is as follows:Part I: Using the main building blo
k. We start by providing a de�nitional treatment of PCPsof proximity and robust PCPs. The basi
 de�nitions as well as some observations and use-ful transformations are presented in Se
tion 2. Most importantly, we analyze the natural
omposition of an outer robust PCP with an inner PCP of proximity.In Se
tion 3, we state the properties of our main building blo
k (i.e., a highly eÆ
ient RobustPCP of proximity), and show how to derive Theorems 1.2 and 1.3, by 
omposing this RobustPCP of proximity with itself multiple times. Spe
i�
ally, o(log log n) 
ompositions are usedto derive Theorem 1.2 and 1=" 
ompositions are used to derive Theorem 1.3. The 
odingappli
ations stated in Theorems 1.4 and 1.5 are presented in Se
tion 4.Part II: Constru
ting the main building blo
k. We start this part by providing an overviewof the 
onstru
tion. This overview (i.e., Se
tion 5) 
an be read before reading Part I, providedthat the reader is 
omfortable with the notion of a Robust PCP of proximity.The 
onstru
tion itself is presented in Se
tions 6{8. We start by presenting a (highly eÆ
ient)ordinary PCP (establishing Theorem 1.1), whi
h lends itself to the subsequent modi�
ations.In Se
tion 7, we augment this PCP with a test of proximity, deriving an analogous PCP ofproximity. In Se
tion 8 we present a robust version of the PCP of proximity derived in theprevious se
tions.Part III: Appendi
es. The 
onstru
tion presented in Se
tion 3 also uses a PCP of proximity ofpolynomial randomness 
omplexity and 
onstant query 
omplexity. Su
h a PCP of proximity
an be derived by a simple augmentation of the Hadamard-based PCP of [4℄, whi
h we presentin Appendix A.In Appendix B, we re
all results regarding random-eÆ
ient low-degree tests and a relatedsampling lemma, whi
h are used in Part II.
7



Part IAll but the main 
onstru
t2 PCPs and variants: de�nitions, observations and transforma-tionsNotation: Ex
ept when otherwise noted, all 
ir
uits in this paper have fan-in 2 and fan-out 2,and we allow arbitrary unary and binary Boolean operations as internal gates. The size of a 
ir
uitis the number of gates. We will refer to the following languages asso
iated with 
ir
uits: the P-
omplete language Cir
uit Value, de�ned as CktVal = f(C;w) : C(w) = 1g ;the NP-
ompleteCir
uit Satisfiability, de�ned as CktSAT = fC : 9wC(w) = 1g; and the also NP-
ompleteNondeterministi
 Cir
uit Value, de�ned as NCktVal = fC : (C;w) : 9zC(w; z) = 1g. (Inthe latter, we assume that the partition of the variables of C into w-variables and z-variables isexpli
it in the en
oding of C.)We will extensively refer to the relative distan
e between strings/sequen
es over some alphabet�: For u; v 2 �`, we denote by �(u; v) the fra
tion of lo
ations on whi
h u and v di�er (i.e.,�(u; v) , jfi : ui 6= vigj=`, where u = u1 � � � u` 2 �` and v = v1 � � � v` 2 �`). We say that u is Æ-
lose to v (resp., Æ-far from v) if �(u; v) � Æ (resp., �(u; v) > Æ). The relative distan
e of a string toa set of strings is de�ned in the natural manner; that is, �(u; S) , minv2Sf�(u; v)g. O

asionally,we will refer to the absolute Hamming distan
e, whi
h we will denote by �(u; v) , jfi : ui 6= vigj.Organization of this se
tion: After re
alling the standard de�nition of PCP (in Se
tion 2.1),we present the de�nitions of PCPs of Proximity and Robust PCPs (in Se
tions 2.2 and 2.3, respe
-tively). We then turn to dis
uss (in Se
tion 2.4) the 
omposition of a Robust PCP with a PCP ofProximity. Various observations and transformations regarding the new notions are presented inSe
tion 2.5.2.1 Standard PCPsWe begin by re
alling the formalism of a PCP veri�er. Throughout this work, we restri
t ourattention to nonadaptive veri�ers, both for simpli
ity and be
ause one of our variants (namelyrobust PCPs) only makes sense for nonadaptive veri�ers.De�nition 2.1 (PCP veri�ers)� A veri�er is a probabilisti
 polynomial-time algorithm V that, on an input x of length n,tosses r = r(n) random 
oins R and generates a sequen
e of q = q(n) queries I = (i1; : : : ; iq)and a 
ir
uit D : f0; 1gq ! f0; 1g of size at most d(n).We think of V as representing a probabilisti
 ora
le ma
hine that queries its ora
le � for thepositions in I, re
eives the q answer bits �jI , (�i1 ; : : : ; �iq ), and a

epts i� D(�jI) = 1.� We write (I;D) R V (x) to denote the queries and 
ir
uit generated by V on input x andrandom 
oin tosses, and (I;D) = V (x;R) if we wish to spe
ify the 
oin tosses R.� We 
all r the randomness 
omplexity, q the query 
omplexity, and d the de
ision 
omplexity ofV . 8



For simpli
ity in these de�nitions, we treat the parameters r, q, and d above (and other param-eters below) as fun
tions of only the input length n. However, at times we may also allow themto depend on other parameters, whi
h should be understood as being given to the veri�er togetherwith the input. We now present the standard notion of PCPs, restri
ted to perfe
t 
ompletenessfor simpli
ity.De�nition 2.2 (standard PCPs) For a fun
tion s : Z+! [0; 1℄, a veri�er V is a probabilisti
ally
he
kable proof system for a language L with soundness error s if the following two 
onditions holdfor every string x:Completeness: If x 2 L then there exists � su
h that V (x) a

epts ora
le � with probability 1.Formally, 9� Pr(I;D) R V (x)[D(�jI) = 1℄ = 1:Soundness: If x 62 L then for every ora
le �, the veri�er V (x) a

epts � with probability stri
tlyless than s. Formally, 8� Pr(I;D) R V (x)[D(�jI) = 1℄ < s(jxj):If s is not spe
i�ed, then it is assumed to be a 
onstant in (0; 1).Our main goal in this work is to 
onstru
t short PCPs that use very few queries. Re
alling thatthe length of a (nonadaptive) PCP is upper-bounded by 2r(n) � q(n), we fo
us on optimizing the(trade-o� between) randomness and query 
omplexities.We will fo
us on 
onstru
ting PCPs for the NP-
omplete problem Cir
uit Satisfiability,de�ned as CktSAT = fC : 9w C(w) = 1g. Re
all that every language in NTIME(t(n)) redu
esto CktSAT in time O(t(n) log t(n)) (
f. [33, 43, 17℄), and so a nearly linear-sized PCP for CktSATimplies PCPs for NTIME(t(n)) of size nearly linear in t(n) for every polynomial t(n).2.2 PCPs of ProximityWe now present a relaxation of PCPs that only verify that the input is 
lose to an element of thelanguage. The advantage of this relaxation is that it allows the possibility that the veri�er mayread only a small number of bits from the input. A
tually, for greater generality, we will divide theinput into two parts (x; y), giving the veri�er x expli
itly and y as an ora
le, and we only 
ountthe veri�er's queries to the latter. Thus we 
onsider languages 
onsisting of pairs of strings, whi
hwe refer to as a pair language. One pair language to keep in mind is the Cir
uit Value problem:CktVal = f(C;w) : C(w) = 1g. For a pair language L, we de�ne L(x) = fy : (x; y) 2 Lg. Forexample, CktVal(C) is the set of satisfying assignments to C. It will be useful below to treat thetwo ora
les to whi
h the veri�er has a

ess as a single ora
le, thus for ora
les �0 and �1, we de�nethe 
on
atenated ora
le � = �0 Æ �1 as �b;i = �bi .De�nition 2.3 (PCPs of proximity (PCPPs)) For fun
tions s; Æ : Z+! [0; 1℄, a veri�er V isa probabilisti
ally 
he
kable proof of proximity (PCPP) system for a pair language L with proximityparameter Æ and soundness error s if the following two 
onditions hold for every pair of strings (x; y):Completeness: If (x; y) 2 L, then there exists � su
h that V (x) a

epts ora
le y Æ � with proba-bility 1. Formally, 9� Pr(I;D) R V (x)[D((y Æ �)jI) = 1℄ = 1:9



Soundness: If y is Æ(jxj)-far from L(x), then for every �, the veri�er V (x) a

epts ora
le y Æ �with probability stri
tly less than s(jxj). Formally,8� Pr(I;D) R V (x)[D((y Æ �)jI) = 1℄ < s(jxj):If s and Æ are not spe
i�ed, then both are assumed to be 
onstants in (0; 1).Note that the parameters (soundness, randomness, et
.) of a PCPP are measured as a fun
tion ofthe length of x, the expli
it portion of the input.In 
omparing PCPPs and PCPs, one should note two di�eren
es that have 
on
i
ting e�e
ts.On one hand, the soundness 
riterion of PCPPs is a relaxation of the soundness of PCPs. Whereas,a PCP is required to reje
t (with high probability) every input that is not in the language, a PCPPis only required to reje
t input pairs (x; y) in whi
h the se
ond element (i.e., y) is far from beingsuitable for the �rst element (i.e., y is far from L(x)). That is, in a PCPP, nothing is required inthe 
ase that y is 
lose to L(x) and yet y 62 L(x). On the other hand, the query 
omplexity ofa PCPP is measured more stringently, as it a

ounts also for the queries to the input-part y (ontop of the standard queries to the proof �). This should be 
ontrasted with a standard PCP thathas free a

ess to all its input, and is only 
harged for a

ess to an auxiliary proof. To summarize,PCPPs are required to do less (i.e., their performan
e requirements are more relaxed), but they are
harged for more things (i.e., their 
omplexity is evaluated more stringently). Although it may notbe a priori 
lear, the stringent 
omplexity requirement prevails. That is, PCPPs tend to be morediÆ
ult to 
onstru
t than PCPs of the same parameters. For example, while Cir
uit Value hasa trivial PCP (sin
e it is in P), a PCPP for it implies a PCP for Cir
uit Satisfiability:Proposition 2.4 If Cir
uit Value has a PCPP, then Cir
uit Satisfiability has a PCP withidenti
al parameters (randomness, query 
omplexity, de
ision 
omplexity, and soundness).An analogous statement holds for any pair language L and the 
orresponding proje
tion on �rstelement L1 , fx : 9y s.t. (x; y) 2 Lg; that is, if L has a PCPP then L1 has a PCP with identi
alparameters.Proof: A PCP � that C is satis�able 
an be taken to be wÆ�0, where w is a satisfying assignmentto C and �0 is a PCPP that (C;w) 2 CktVal. This proof � 
an be veri�ed using the PCPP veri�er.The key observation is that if C 62 Cir
uit Satisfiability then there exists no w that is 1-
loseto Cir
uit Value(C), be
ause the latter set is empty.Note that we only obtain a standard PCP for Cir
uit Satisfiability, rather than a PCPof proximity. Indeed, Cir
uit Satisfiability is not a pair language, so it does not even �tsynta
ti
ally into the de�nition of a PCPP. However, we 
an give a PCPP for the 
losely related(and also NP-
omplete) pair language Nondeterministi
 Cir
uit Value. Re
all that is thelanguage NCktVal = f(C;w) : 9zC(w; z) = 1g (where the variables of C are expli
itly partitionedinto w-variables and z-variables).Proposition 2.5 If Cir
uit Value has a PCPP with proximity parameter Æ(n), soundness s(n),randomness r(n), query 
omplexity q(n), and de
ision 
omplexity d(n), then Nondeterministi
Cir
uit Value has a PCPP with proximity parameter 2Æ(4n), soundness s(4n), randomness r(4n),query 
omplexity q(4n), and de
ision 
omplexity d(4n).10



Proof: Given a 
ir
uit C(�; �) of size n whose variables are partitioned into one group of size kand another of size `, we transform it into a new 
ir
uit C 0(�; �) of size n0 = 4n in whi
h the �rstgroup has size k0 � ` and the se
ond group has size `. Spe
i�
ally, we set t = d`=ke and k0 = t � k,and de�ne C 0(x0; y) to be a 
ir
uit that 
he
ks whether x0 = xt for some x su
h that C(x; y) = 1. It
an be veri�ed that this 
an be done in size n+ 3tk � 4n (over the full binary basis). In addition,if w is Æ-far from being extendable to a satisfying assignment of C, then wt is Æ-far from beingextendable to a satisfying assignment of C 0.Now, the NCktVal-veri�er, on expli
it input C and input ora
le w 2 f0; 1gk , will 
onstru
t C 0as above and expe
t a proof ora
le of the form z Æ�, where z 2 f0; 1gm and � is a PCPP that wt Æzsatis�es C 0 as 
onstru
ted above. That is, the NCktVal-veri�er will simulate the CktVal-veri�eron expli
it input C 0, input ora
le wt Æ z (whi
h 
an easily be simulated given ora
le a

ess to wand z), and proof ora
le �. Completeness 
an be veri�ed by inspe
tion. For soundness, supposethat w is 2Æ-far from being extendable to a satisfying assignment of C. Then wt is 2Æ-far frombeing extendable to a satisfying assignment of C 0, whi
h implies that, for any z, wt Æ z is Æ-farfrom satisfying C 0. Thus, by the soundness of the CktVal-veri�er, the a

eptan
e probability isat most s(n0) = s(4n), for any proof ora
le �.Relation to property testing: A
tually, the requirements from a PCPP for a pair language Lrefer only to its performan
e on the (\gap") promise problem � = (�Y ;�N ), where �Y = L and�N = f(x; y) : y is Æ-far from L(x)g. That is, this PCPP is only required to (always) a

ept inputsin �Y and reje
t (with high probability) inputs in �N (whereas nothing is required with respe
t toinputs not in �Y [�N ). Su
h a gap problem 
orresponds to the notion of approximation in propertytesting [47, 25℄.5 Indeed, property testers are equivalent to PCPP veri�ers that have no a

ess toan auxiliary proof �. Thus the relation between property testing and PCPPs is analogous to therelation between BPP and NP (or MA). For example, the problem of testing Bipartiteness 
anbe 
ast by the pair language L = f(n;G) : the n-vertex graph G is bipartiteg, where the �rst (i.e.,expli
it) input is only used to spe
ify the length of the se
ond (i.e., non-expli
it) input G, to whi
hthe tester has ora
le a

ess (measured in its query 
omplexity). We 
omment that the formulationof pair languages allows to 
apture more general property testing problems where more informationabout the property (to be tested) itself is spe
i�ed as part of the input (e.g., by a 
ir
uit, as inCktVal).In both property testers and PCPs of proximity, the interest is in testers/veri�ers that querytheir input (and proof ora
le) in only a small (preferably 
onstant, and 
ertainly sublinear) numberof bit-lo
ations. It turns out that PCPPs are provably stronger than property testers; that is, thereare (natural) separations between property testers and PCPs of proximity. (Some of the followingexamples were pointed out in [20℄.) In the adja
en
y matrix model (
f. [25℄), Bipartiteness has aPCP of proximity in whi
h the veri�er makes only O(1=Æ) queries and reje
ts any graph that isÆ-far from being bipartite with probability at least 2=3. (The proof-ora
le 
onsists of an assignmentof verti
es to the two parts, and the veri�er queries the assignment of the end-points of O(1=Æ)random edges. This 
onstru
tion also generalizes to k-
olorability, and in fa
t any generalizedgraph partition property (
f. [25℄) with an eÆ
ient one-sided tester.) In 
ontrast, Bogdanov andTrevisan [15℄ showed that any tester for Bipartiteness that reje
ts graphs that are Æ-far from beingbipartite must make 
(Æ�3=2) queries. More drasti
 separations are known in in the in
iden
e-lists(bounded-degree) model (of [26℄): testing Bipartiteness (resp., 3-
olorability) of n-vertex graphshas query 
omplexity 
(pn) [26℄ (resp., 
(n) [14℄), but again a PCP of proximity will only use5This notion of approximation (of de
ision problems) should not be 
onfused with the approximation of (sear
h)optimization problems, whi
h is also 
losely related to PCPs [22, 4℄.11



O(1=Æ) queries.Another example 
omes from the domain of 
odes. For any good 
ode (or \even" any 
odeof linear distan
e), there exists a PCP of proximity for the property of being a 
odeword thatmakes a 
onstant number of queries.6 This stands in 
ontrast to the linear lower-bound on thequery-
omplexity of 
odeword testing for some (good) linear 
odes, proved by Ben-Sasson et al. [11℄.Needless to say, there may be interesting 
ases in whi
h PCPs of proximity do not out-performproperty testers.Queries vs. proximity: Intuitively, the query 
omplexity of a PCPP should depend on theproximity parameter Æ. Proposition 2.8 (in Se
tion 2.5) 
on�rms this intuition.The relation of PCPP to other works: As dis
ussed in the introdu
tion (see Se
tion 1.3),notions related to (and equivalent to) PCPPs have appeared in the literature before [6, 20℄. Inparti
ular, holographi
 proofs are a spe
ial 
ase of PCPPs (whi
h refer to pair languages L =f(n; C(x)) : x 2 L0 \ f0; 1gng, where C is an error-
orre
ting 
ode and L0 2 NP), whereas PCPPsare a spe
ial 
ase of \PCP spot-
he
kers" (when viewing de
ision problems as a spe
ial 
ase of sear
hproblems). In addition, PCPPs play an important role also in the work of Dinur and Reingold [19℄;again, see Se
tion 1.3. Re
all that both our use and their use of PCPPs is for fa
ilitating \proof
omposition" (of PCP-type 
onstru
ts). Finally, existing PCP 
onstru
tions (su
h as [4℄) 
an bemodi�ed to yield PCPPs.2.3 Robust SoundnessIn this se
tion, we present a strengthening of the standard PCP soundness 
ondition. Instead ofasking that the bits that the veri�er reads from the ora
le are merely reje
ted with high probability,we ask that the bits that the veri�er reads are far from being a

epted with high probability. Themain motivation for this notion is that, in 
onjun
tion with PCPPs, it allows for a very simple
omposition without the usual 
osts of \parallelization".De�nition 2.6 (robust soundness) For fun
tions s; � : Z+ ! [0; 1℄, a PCP veri�er V for alanguage L has robust-soundness error s with robustness parameter � if the following holds for everyx =2 L: For every ora
le �, the bits read by the veri�er V are �-
lose to being a

epted with probabilitystri
tly less than s. Formally,8� Pr(I;D) R V (x)[9a s.t. D(a) = 1 and �(a; �jI) � �℄ < s(jxj):If s and � are not spe
i�ed, then they are assumed to be 
onstants in (0; 1). PCPPs with robust-soundness are de�ned analogously, with the �jI being repla
ed by (y Æ �)jI .Note that for PCPs with query 
omplexity q, robust-soundness with any robustness parameter� < 1=q is equivalent to standard PCP soundness. However, there 
an be robust PCPs with largequery 
omplexity (e.g. q = n
(1)) yet 
onstant robustness, and indeed su
h robust PCPs will bethe main building blo
k for our 
onstru
tion.Various observations regarding robust PCPs are presented in Se
tion 2.5. We brie
y mentionhere the relation of robustness to parallelization; spe
i�
ally, when applied to a robust PCP, thesimple query-redu
tion te
hnique of Fortnow et al. [23℄ performs less poorly than usual (i.e., the6Indeed, this is a spe
ial 
ase of our extension of the result of Babai et al. [6℄, dis
ussed in Se
tion 1.3. On theother hand, this result is simpler than the lo
ally testable 
ode mentioned in Se
tion 1.4, be
ause here the PCP ofproximity is not part of the 
odeword. 12



resulting soundness is determined by the robustness parameter rather than by the number ofqueries).2.4 CompositionAs promised, a robust \outer" PCP 
omposes very easily with an \inner" PCPPs. Loosely speaking,we 
an 
ompose su
h s
hemes provided that the de
ision 
omplexity of the outer veri�er mat
hesthe input length of the inner veri�er, and soundness holds provided that the robustness parameter ofthe outer veri�er upper-bounds the proximity parameter of the inner veri�er. Note that 
ompositiondoes not refer to the query 
omplexity of the outer veri�er, whi
h is always upper-bounded by itsde
ision 
omplexity.Theorem 2.7 (Composition Theorem) Suppose that for fun
tions rout; rin; dout; din; qin : N !N, and "out; "in; �out; Æin : N! [0; 1℄, the following hold:� Language L has a robust PCP veri�er Vout with randomness 
omplexity rout, de
ision 
om-plexity dout, robust-soundness error 1� "out, and robustness parameter �out.� Cir
uit Value has a PCPP veri�er Vin with randomness 
omplexity rin, query 
omplexityqin, de
ision 
omplexity din, proximity parameter Æin, and soundness error 1� "in.� Æin(dout(n)) � �out(n), for every n.Then, L has a (standard) PCP, denoted V
omp, with� randomness 
omplexity rout(n) + rin(dout(n)),� query 
omplexity qin(dout(n)),� de
ision 
omplexity din(dout(n)), and� soundness error 1� "out(n) � "in(dout(n)).Furthermore, the 
omputation of V
omp (i.e. evaluating (I;D)  V
omp(x;R)) 
an be performedby some universal algorithm with bla
k-box a

ess to Vout and Vin. On inputs of length n, thisalgorithm runs in time n
 for some universal 
onstant 
, with one 
all to Vout on an input of lengthn and one 
all to Vin on an input of length dout(n). In addition:� If (instead of being a PCP) the veri�er Vout is a PCPP with proximity parameter Æout(n) thenV
omp is a PCPP with proximity parameter Æout(n).� If Vin has robust-soundness with robustness parameter �in(n), then V
omp has robust-soundnesswith robustness parameter �in(dout(n)).Proof: We will use the inner PCPP to verify that the ora
le positions sele
ted by the (robust)outer-veri�er are 
lose to being a

epted by the outer-veri�er's de
ision 
ir
uit. Thus, the newproof will 
onsist of a proof for the outer veri�er as well as proofs for the inner veri�er, where ea
hof the latter 
orresponds to a possible setting of the outer veri�er's 
oin tosses (and is intended toprove that the bits that should have been read by the outer-veri�er satisfy its de
ision 
ir
uit). Wewill index the positions of the new (
ombined) ora
le by pairs su
h that (out; i) denotes the i'thposition in the part of the ora
le that represents the outer-veri�er's proof ora
le, and (R; j) denotesthe j'th position in the R'th auxiliary blo
k (whi
h represents the R-th possible proof ora
le (for13



the inner veri�er's), whi
h in turn is asso
iated with the outer-veri�er's 
oins R 2 f0; 1grout ). Fornotational 
onvenien
e, we drop the input length n from the notation below; all parameters of Voutare with respe
t to length n and all parameters of Vin with respe
t to length dout(n). With these
onventions, here is the des
ription of the 
omposed veri�er, V
omp(x):1. Choose R R f0; 1grout .2. Run Vout(x;R) to obtain Iout = (i1; : : : ; iqout) and Dout.3. Run Vin(Dout) (on random 
oin tosses) to obtain Iin = ((b1; j1); : : : ; (bqin ; jqin)) and Din.(Re
all that Vin, as a PCPP veri�er, expe
ts two ora
les, an input ora
le and a proof ora
le,and thus makes queries of the form (b; j), where b 2 f0; 1g indi
ates whi
h ora
le it wishes toquery.)4. For ea
h ` = 1; : : : ; qin, determine the queries of the 
omposed veri�er:(a) If b` = 0, set k` = (out; ij`); that is, Vin's queries to its input ora
le are dire
ted to the
orresponding lo
ations in Vout's proof ora
le. Re
all that the j-th bit in Vin's inputora
le is the j-th bit in the input to Dout, whi
h in turn is the ij-th bit in the proofora
le of Vout.(b) If b` = 1, set k` = (R; j`); that is, Vin's queries to its R'th possible proof ora
le aredire
ted to the 
orresponding lo
ations in the auxiliary proof. Re
all that the j-th bit inthe proof ora
le that Vin is using to verify the 
laim referring to the outer-veri�er 
oinsR is the j-th bit in the R-th blo
k of the auxiliary proof.5. Output I
omp = (k1; : : : ; kqin) and Din.The 
laims about V
omp's randomness, query, de
ision, and 
omputational 
omplexities 
an beveri�ed by inspe
tion. Thus we pro
eed to 
he
k 
ompleteness and soundness.Suppose that x 2 L. Then, by 
ompleteness of the outer veri�er, there exists a proof �out makingVout a

ept with probability 1. In other words, for every R 2 f0; 1grout , if we set (Iout;Dout) =Vout(x;R), we have Dout(�outjIout) = 1. By 
ompleteness of the inner veri�er, there exists a proof�R su
h that Vin(Dout) a

epts the ora
le �outjIout Æ �R with probability 1. If we set �(t; �) = �t(�)for all t 2 foutg [ f0; 1grout , then V
omp a

epts � with probability 1.Suppose that x =2 L, and let � be any ora
le. De�ne ora
les �t(�) = �(t; �). By the robust-soundness (of Vout), with probability greater than "out over the 
hoi
es of R 2 f0; 1grout , if we set(Iout;Dout) = Vout(x;R), then �outjIout is �out-far from satisfying Dout. Fixing su
h an R, by thePCPP-soundness of Vin (and Æin � �out), it holds that Vin(Dout) reje
ts the ora
le �outjIout Æ�R (or,a
tually, any proof ora
le augmenting the input ora
le �outjIout) with probability greater than "in.Therefore, V
omp(x) reje
ts ora
le � with probability at least "out � "in.The additional items follow by similar arguments. If Vout is a PCPP veri�er, then the input isof the form (x; y), where y is given via ora
le a

ess. In this 
ase, throughout the proof above weshould repla
e referen
es to the ora
le �out with the ora
le y Æ �out, and for soundness we should
onsider the 
ase that y is Æout-far from L(x). If Vin has robust-soundness, then at the end of thesoundness analysis, we note that not only is �outjIout Æ�R reje
ted with probability greater than "inbut rather it is �in-far from being a

epted by Vin (and hen
e also by V
omp).The above theorem 
an serve as a substitute for the original Composition Theorem in thederivation of the original PCP Theorem [4℄. Spe
i�
ally, one simply needs to modify the (pre-
omposition) veri�ers of [4℄ to both test proximity and have robust soundness. As we shall see14



in the next se
tion, robust soundness 
an be obtained automati
ally from \parallelized PCPs" (asalready 
onstru
ted in [4℄). And the PCPs [4℄ 
an easily be made PCPs of proximity by augmentingthem with appropriate \proximity tests". Thus, all the te
hni
al work in Part II is not for
ed bythe new notion of robust PCPPs, but rather is aimed at 
onstru
ting ones whi
h have nearly linearlength.2.5 Various observations and transformationsMost of this subse
tion refers to robust PCPs, but we start with an observation regarding PCPs ofproximity.Queries vs. proximity: Intuitively, the query 
omplexity of a PCPP should depend on theproximity parameter Æ. The following proposition 
on�rms this intuition.Proposition 2.8 (queries vs. proximity) Suppose pair-language L has a PCPP with proximityparameter Æ, soundness error 1 � ", and query 
omplexity q. Suppose further that there exists(x; y) 2 L su
h that jxj = n and jyj = m, su
h that if we let z 2 f0; 1gm be a random string ofrelative Hamming distan
e Æ0 , Æ0(x) from y, we havePrz [z is Æ-far from L(x)℄ � 
 , 
(x):Then q > " � 
Æ0In parti
ular, if L = CktVal, then q � "=(Æ +O(1=n)).The �rst part of Proposition 2.8 does not spe
ify the relation of Æ0 to Æ (although, surely, Æ0 > Æmust hold for any 
 > 0, be
ause �(z; L(x)) � �(z; y) = Æ0). The se
ond part relies on the fa
tthat, for CktVal, one may set Æ0 as low as Æ +O(1=n).Proof: By 
ompleteness, there exists an ora
le � su
h that the PCPP veri�er V (x) a

epts ora
ley Æ � with probability 1. Consider z = y��, where � 2 f0; 1gm is a uniformly distributed stringwith relative Hamming weight Æ0. If we invoke V (x) with ora
le to z Æ�, then the probability (overthe 
hoi
e of �) that any of the positions read by V has been 
hanged is at most q � Æ0. Thus, V (x)reje
ts ora
le (y � �) Æ � with probability at most q � Æ0.On the other hand, by assumption z is Æ-far from L(x) with probability at least 
, in whi
h
ase V (x) should reje
t ora
le z Æ� with probability greater than ", by the PCPP soundness. ThusV (x) should reje
t with probability greater than 
 � " (over the 
hoi
e of z and the 
oin tosses ofV ), and we 
on
lude that q � Æ0 > 
 � ", as desired.For the appli
ation to CktVal, let C : f0; 1gm ! f0; 1g be a 
ir
uit of size n that a

epts onlythe all-zeroes string 0m, for m = 
(n). Then we have (C; 0m) 2 CktVal, but for every Æ0 > Æ andevery string z of relative Hamming weight Æ0, we see that (C; z) is Æ-far from satisfying C. Setting
 = 1 and Æ0 su
h that Æ0m is the least integer greater than Æm 
ompletes the proof.Expe
ted robustness: O

asionally, we will be interested in a variant of robust-soundness,whi
h refers to distan
e on average rather than with high probability.
15



De�nition 2.9 (expe
ted robustness) For a fun
tion � : Z+ ! [0; 1℄, a PCP has expe
tedrobustness � if for every x =2 L, we have8�;E(I;D) R V (x)[�(�jI ;D�1(1))℄ > �(jxj):Expe
ted robustness for PCPPs is de�ned analogously.We now present several generi
 transformations regarding robustness and soundness. Althoughwe only state them for PCPs, all of these results also hold for PCPPs, with no 
hange in theproximity parameter. The following proposition relates robust-soundness to expe
ted robustness.Proposition 2.10 (robust-soundness vs. expe
ted robustness) If a PCP has robust-soundnesserror 1 � " with robustness �, then it has expe
ted robustness " � �. On the other hand, if a PCPhas expe
ted robustness �, then for every " � �, it has robust-soundness error 1� " with robustnessparameter �� ".Expe
ted robustness 
an easily be ampli�ed to standard robustness with low robust-soundnesserror, using any averaging (a.k.a. oblivious) sampler (
f., [24℄). Combined with Proposition 2.10, weget a (soundness) error redu
tion for robust PCPs. For example, using the expander-neighborhoodsampler of [29℄, we have:Lemma 2.11 (error redu
tion via expander neighborhoods) If a language L has a PCPwith expe
ted robustness �, randomness 
omplexity r, query 
omplexity q, and de
ision 
omplex-ity d, then for every two fun
tions s; 
 : Z+! [0; 1℄, then L has PCP having� robust-soundness error s with robustness parameter �� 
,� randomness 
omplexity r +O(log(1=s) + log(1=
)),� query 
omplexity O(1=(s
2)) � q, and� de
ision 
omplexity O(1=(s
2)) � dAn alternative error-redu
tion pro
edure that will also be used is given by pairwise independentsamples:Lemma 2.12 (error redu
tion via pairwise independen
e) If a language L has a PCP withexpe
ted robustness �, randomness 
omplexity r, query 
omplexity q, and de
ision 
omplexity d su
hthat � � 2r � 2, then L has PCP having� robust-soundness error 1=2 with robustness parameter �=2,� randomness 
omplexity 2r,� query 
omplexity 2q=�, and� de
ision 
omplexity 2d=�
16



Non-Boolean PCPs: The next few transformations involve non-Boolean PCPs. That is, PCPswhere the ora
le returns symbols over some larger alphabet � = f0; 1ga rather than bits; we refer toa = a(n) as the answer length of the PCP. (Often non-Boolean PCPs are dis
ussed in the languageof multi-prover intera
tive proofs, but it is simpler for us to work with the PCP formulation.)Robust-soundness of a non-Boolean PCP is de�ned in the natural way, using Hamming distan
eover the alphabet �. (In the 
ase of a robust non-Boolean PCPP, we still treat the input ora
le asbinary.)The �rst transformation provides a way of 
onverting non-Boolean PCPs to Boolean PCPs ina way that preserves robust-soundness.Lemma 2.13 (alphabet redu
tion) If a language L has a non-Boolean PCP with answer lengtha, query 
omplexity q, randomness 
omplexity r, de
ision 
omplexity d, and robust-soundness errors with robustness parameter �, then L has a Boolean PCP with query 
omplexity O(a�q), randomness
omplexity r, de
ision 
omplexity d+O(a�q), and robust-soundness error s with robustness parameter
(�). If, instead of robust-soundness, the non-Boolean PCP has expe
ted robustness �, then theBoolean PCP has expe
ted robustness 
(�).The proof uses a good error-
orre
ting 
ode (i.e., 
onstant relative distan
e and rate). Furthermore,to obtain de
ision 
omplexity d+O(a�q) we should use a 
ode having linear-size 
ir
uits for en
oding(
f. [51℄). Using more 
lassi
al 
odes would only give de
ision 
omplexity d + ~O(a � q), whi
h isa
tually suÆ
ient for our purposes.Proof: This transformation is analogous to 
onverting non-Boolean error-
orre
ting 
odes toBoolean ones via \
ode 
on
atenation". Let V be the given non-Boolean PCP veri�er, with answerlength a. Let ECC : f0; 1ga ! f0; 1gb for b = O(a) a binary error-
orre
ting 
ode of 
onstantrelative minimum distan
e, whi
h 
an be 
omputed by an expli
it 
ir
uit of size O(a). We willaugment the original ora
le � having a-bit entries with an additional ora
le � having b-bit entries,where �i is supposed to be ECC(�i). (We note that in
luding the original ora
le simpli�es theargument as well as frees us from assuming a noiseless de
oding algorithm.)Our new veri�er V 0(x), on ora
le a

ess to �Æ� , will simulate V (x), and for ea
h query i made byV , will query the a bits in �i and the b bits in �i, for a total of q �(a+b) binary queries. That is, if Vqueries positions I = (i1; : : : ; iq), V 0 will query positions I 0 = ((0; i1); : : : ; (0; iq); (1; i1); : : : ; (1; iq)).If V outputs a de
ision 
ir
uit D : (f0; 1ga)q ! f0; 1g, V 0 will output the 
ir
uit D0 : (f0; 1ga)q �(f0; 1gb)q ! f0; 1g de�ned byD0(x1; : : : ; xq; y1; : : : ; yq) = D(x1; : : : ; xq) ^ C(x1; : : : ; xq; y1; : : : ; yq);where C(x1; : : : ; xq; y1; : : : ; yq) = q̂i=1(yi = ECC(xi)):Sin
e ECC 
an be evaluated by a 
ir
uit of size O(a), we see that jD0j = jDj+O(a � q), as desired.For 
ompleteness of V 0, we note that any a

epting ora
le � for V 
an be augmented to ana

epting ora
le for V 0 by setting �i = ECC(�i) for all i. For soundness of V 0, suppose x =2 Land let (�; �) be any pair of ora
les. De�ne a \de
oded" ora
le �̂ by setting �̂i to be the stringx 2 f0; 1ga whi
h minimizes the distan
e between ECC(x) and �i. We will relate the robustness ofV on ora
le �̂ to the robustness of V 0 on ora
les � and � . Spe
i�
ally, let � > 0 be a 
onstant su
hthat the (absolute) minimum distan
e of ECC is greater than 2� � (a+ b). Then we will show that17



for every sequen
e R of 
oin tosses and for every � > 0, if the bits read by V 0(x;R) from � Æ � are��-
lose to being a

epted, then the bits read by V from �̂ are �-
lose to being a

epted. Thus,both robustness parameters (standard and expe
ted) de
rease by at most a fa
tor of �.Consider any sequen
e R of 
oin tosses, let (I;D) = V (x;R), and write I = (i1; : : : ; iq). Supposethat (�i1 ; : : : ; �iq ; �i1 ; : : : ; �iq ) is ��-
lose to some (�0i1 ; : : : ; �0iq ; � 0i1 ; : : : ; � 0iq ) that satis�es D0 = D^C.Then, for at least a 1�� fra
tion of j 2 [q℄, the pair (�ij ; �ij ) is �-
lose to (�0ij ; � 0ij ) = (�0ij ;ECC(�0ij )).For su
h j, the 
hoi
e of � implies that ECC(�0ij ) is the 
losest 
odeword to �ij and hen
e �̂ij = �0ij .Sin
e the �0's satisfy D, we 
on
lude that �̂'s are �-
lose to satisfying D, as desired.The usual \parallelization" paradigm of PCPs [38, 4℄ 
onverts a Boolean PCP with manyqueries into a non-Boolean PCP with a 
onstant number of queries, where this is typi
ally the �rststep in PCP 
omposition. As mentioned in the introdu
tion, we 
annot a�ord parallelization, androbust-soundness will be our substitute. Nevertheless, there is a 
lose (but not 
lose enough for us)
onne
tion between parallelized PCPs and PCPs with robust-soundness:Proposition 2.14 (parallelization vs. robustness)1. If a language L has a non-Boolean PCP with answer length a, query 
omplexity q, randomness
omplexity r, de
ision 
omplexity d, and soundness error s, then L has a (Boolean) PCP withquery 
omplexity O(a � q), randomness 
omplexity r, de
ision 
omplexity d + O(a � q), androbust-soundness error s with robustness parameter � = 
(1=q).2. If a language L has a (Boolean) PCP with query 
omplexity q, randomness 
omplexity r,de
ision 
omplexity d, and expe
ted robustness �, then L has a 2-query non-Boolean PCPwith answer length q, randomness 
omplexity r + log q, de
ision 
omplexity d + O(1), andsoundness error 1� �.Thus, for 
onstant soundness and 
onstant robustness parameter, q-query robust (Boolean)PCPs are essentially equivalent to 
onstant-query non-Boolean PCPs with answer length �(q).However, note that in passing from robust-soundness to a 2-query non-Boolean PCP, the random-ness 
omplexity in
reases by log q. It is pre
isely this 
ost that we 
annot a�ord, and hen
e wework with robust-soundness in the rest of the paper.Proof: For Part 1, note that any non-Boolean PCP with query 
omplexity q and soundness errors has robust-soundness error s for any robustness parameter � < 1=q. Thus, the 
laim follows fromLemma 2.13.Turning to Part 2, let V be a robust PCP veri�er for L with the stated parameters. We use theusual query-redu
tion te
hnique for PCPs [23℄, and observe that when applied to a robust PCP,the dete
tion probability (i.e., one minus the soundness error) does not deteriorate by a fa
tor ofq as usual. Instead, the dete
tion probability of the resulting 2-query (non-Boolean) PCP equalsthe expe
ted robustness of V .7 Spe
i�
ally, the 2-query non-Boolean PCP veri�er V 0 is de�ned asfollows:7It may be more instru
tive (alas more 
umbersome) to dis
uss what is happening in terms of ordinary robustness.Suppose that V has robust-soundness error s = 1�d with respe
t to robustness �. The standard analysis ignores therobustness and asserts that the 2-query (non-Boolean) PCP has soundness error s0 = 1 � d0, where d0 = d=q. This
rude analysis impli
itly assumes the trivial bound (i.e., 1=q) of the robustness parameter. A more re�ned analysistakes advantage of the a
tual bound of the robustness parameter, and asserts that the 2-query (non-Boolean) PCPhas soundness error s0 = 1� � � d. 18



� V 0 expe
ts two ora
les, one Boolean ora
le � 
orresponding to the ora
le for V , and a se
ondora
le � with answer length q, indexed by random strings of V .� On input x, the veri�er V 0 sele
ts a random string R for V and j R [q℄, and 
omputes(I;D) = V (x;R), where I = (i1; : : : ; iq). It sets I 0 = (R; ij) (whi
h means that the queriesfor the values �R and �ij ) and D0(a; b) = [(D(a) = 1) ^ (aj = b)℄; that is, it a

epts if andonly if [D(�R) = 1℄ ^ [(�R)j = �ij ℄.It 
an be veri�ed that the probability that V 0 reje
ts a false assertion is pre
isely the expe
tedrobustness of V . In parti
ular, suppose that V 0(x) a

epts the ora
le pair (�; �) with probabilityp. We may assume, without loss of generality, that D(�R) = 1 for any R, where (�;D) = V (x;R).Then, it follows that the expe
ted (relative) distan
e of �jI from �R, where (I;D) = V (x;R) for arandom R, equals 1� p (be
ause 1� p = PrR;j[(�R)j 6= �ij ℄, whi
h in turn equals ER[�(�R; �jI)℄).This means that on the average, � is (1 � p)-
lose to assignments that satisfy the 
orrespondingde
ision 
ir
uits. Thus, if x 62 L then 1� p > �, and p < 1� � follows.Robustness vs. proximity: Finally, for PCPPs, we prove that the robustness parameter isupper-bounded by the proximity parameter.Proposition 2.15 (robustness vs. proximity) Suppose a pair-language L has a PCPP withproximity parameter Æ and expe
ted robustness �. Suppose further that there exists (x; y) 2 L su
hthat jxj = n and jyj = m, su
h that if we let z 2 f0; 1gm be a random string at relative Hammingdistan
e Æ0 , Æ0(x) from y, we havePrz [z is Æ-far to L(x)℄ � 
 , 
(x):Then � � Æ0=
:In parti
ular, if L = CktVal, then � � Æ +O(1=n).Proof: The proof is similar to that of Proposition 2.8. By 
ompleteness, there exists an ora
le� su
h that the PCPP veri�er V (x) a

epts ora
le y Æ � with probability 1. If we run V (x) withora
le z Æ � instead, then bits read by V have expe
ted distan
e at most Æ0 from being a

epted,where the expe
tation is over the 
hoi
es of z (even when �xing the 
oins of V ).On the other hand, z is Æ-far from L(x) with probability at least 
, and for any su
h �xed zthe bits read by V from z Æ � should have expe
ted distan
e greater than � from being a

epted(over the 
oin tosses of V ). Thus, the expe
ted distan
e of z Æ � from being a

epted is greaterthan 
 � �, where here the expe
tation is over the 
hoi
e of z and the 
oin tosses of V . We 
on
ludethat Æ0 > 
 � �, as desired.Re
all that in the proof of Proposition 2.8, we have demonstrated the existen
e of a pair (C;w)su
h that any string z at distan
e Æ0 = Æ + O(1=n) from w it holds that w is Æ-far from satisfyingC. Setting 
 = 1, the se
ond part follows.3 Very short PCPs with very few queriesIn this se
tion we prove the main results of this work; that is, we establish Theorem 1.2 and 1.3.Our starting point is the following Robust PCP of proximity, whi
h is 
onstru
ted in the se
ondpart of this work (
f. Case I of Theorem 8.1). 19



Theorem 3.1 (Main Constru
t) There exists a universal 
onstant 
 su
h for all n;m 2 Z+,0 < Æ; 
 < 1=2 satisfying n1=m � m
m=(
Æ)3 and Æ � 
=
, Cir
uit Value has a robust PCP ofproximity (for 
ir
uits of size n) with the following parameters� randomness �1� 1m� log n+O(m logm) +O(log log n) +O(log(1=Æ)),� de
ision 
omplexity n1=m � poly(logn; 1=Æ), whi
h also upper-bounds the query 
omplexity.8� perfe
t 
ompleteness, and� for proximity parameter Æ, the veri�er has robust-soundness error 
 with robustness parameter(1� 
)Æ.We 
omment that the 
ondition Æ < 
=
 merely means that we present robust PCPs of proximityonly for the more diÆ
ult 
ases (when Æ is small), and our robustness parameter does not improvefor larger values of Æ. We 
all the reader's attention to the typi
ally small value of the query andrandomness 
omplexities, whi
h yield a proof length that is upper-bounded by poly(mm log n) � n(for Æ and 
 as small as 1=poly(mm; log n)), as well as to the small values of the soundness errorand the the small deterioration of robustness wrt proximity.We also need the following robust PCP of proximity whi
h has parameters similar to the PCP
onstru
ted by Arora et al. [4℄. In 
omparison to the main 
onstru
t above, this PCPP is not veryeÆ
ient in randomness. However, as we plan to use this robust PCPP only towards the �nal stagesof 
omposition, we 
an a�ord to pay this 
ost in randomness. This robust PCP of proximity isobtained by applying the error-redu
tion lemma using pairwise independen
e (Lemma 2.12) to avariant of the robust PCP of proximity 
onstru
ted in Theorem 3.1 (
f. Case II of Theorem 8.1).An alternate 
onstru
tion of this robust PCPP 
an be obtained by adding a suitable proximity testto the PCP 
onstru
ted by Arora et al. [4℄.Theorem 3.2 (ALMSS-type Robust PCP of proximity) For all n 2 Z+ and Æ 2 (0; 1),Cir
uit Value has a robust PCP of proximity (for 
ir
uits of size n) with the following parameters� randomness O(logn+ log(1=Æ)),� de
ision 
omplexity poly(log n)=Æ, whi
h also upper-bounds the query 
omplexity.� perfe
t 
ompleteness, and� for proximity parameter Æ, the veri�er has robust-soundness error 1=2 with robustness param-eter 
(Æ).Using Theorems 3.1 and 3.2, we derive the general trade-o� (
aptured by the following Theo-rem 3.3) between the length of PCPs and their query 
omplexity.Theorem 3.3 (Randomness vs. query 
omplexity trade-o� for PCPs of proximity) Forevery parameter n; t 2 N su
h that 2 � t � 2 log log nlog log log n there exists a PCP of proximity for Cir-
uit Value (for 
ir
uits of size n) with randomness 
omplexity log2 n+O(t+(log n) 1t ) log logn+O((log n) 2t ) + t2 � poly log log logn, query 
omplexity O(1), perfe
t 
ompleteness, and soundness er-ror 1�
(1=t) with respe
t to proximity parameter 1=t. Alternatively, we 
an have query 
omplexityO(t) and soundness error 1=2 maintaining all other parameters the same.8In fa
t, we will upper-bound the query 
omplexity by q = n1=m � poly(log n; 1=Æ) and show that the veri�er'sde
ision 
an be implemented by a 
ir
uit of size ~O(q), whi
h 
an also be bounded by n1=m � poly(log n; 1=Æ) with aslightly larger unspe
i�ed polynomial. 20



Theorem 3.3 a
tually asserts a PCP of proximity (for Cir
uit Value), but a PCP for Cir
uitSatisfiability and a PCPP for Nondeterministi
 Cir
uit Value (of the same 
omplexity)follow; see Propositions 2.4 and 2.5.Theorem 3.3 is proved by using the robust PCP of proximity des
ribed in Theorem 3.1. Spe
if-i
ally, this robust PCP of proximity is 
omposed with itself several times (using the CompositionTheorem from Se
tion 2). Ea
h su
h 
omposition drasti
ally redu
es the query 
omplexity of theresulting PCP, while only in
reasing very moderately its randomness 
omplexity. The deteriorationof the soundness error and the robustness is also very moderate. After 
omposing the robust PCPof proximity with itself O(t(n)) times, we 
ompose the resulting robust PCP with the ALMSS-typerobust PCP of proximity thri
e to redu
e the query 
omplexity to poly log log log n. Finally we
ompose this resultant robust PCP of proximity with a PCPP of proximity parameter roughly
(1=t) that has query 
omplexity O(1) and exponential length. The latter PCP of proximity 
anbe obtained by a suitable modi�
ation of the Hadamard-based PCP of [4℄, as shown in Appendix A.Proof: We 
onstru
t the PCP of proximity of Theorem 3.3 by 
omposing the robust PCP ofproximity des
ribed in Theorem 3.1 with itself several times. Ea
h su
h 
omposition redu
es thequery 
omplexity from n to approximately n1=m. Ideally, we would like to do the following: Setm = (log n) 1t and 
ompose the robust PCPP of Theorem 3.1 with parameterm with itself t�1 times.This would result in a robust PCPP of query 
omplexity roughly n1=mt = n1=log n = O(1) giving usthe desired result. However, we 
annot 
ontinue this repeated 
omposition for all the t� 1 steps asthe requirements of Theorem 3.1 (namely, n1=m �m
m=(Æ
)3) are violated in the penultimate twosteps of the repeated 
omposition. So we instead do the following: In the �rst stage, we 
omposethe (new and) highly eÆ
ient veri�er from Theorem 3.1 with itself t�3 times. This yields a veri�erwith query 
omplexity roughly 2m2 = exp(log2=t n) < n, while the soundness error is boundedaway from 1 and robustness 
(1=t). In the se
ond stage, we 
ompose the resultant robust PCPP a
onstant number of times with the ALMSS-type robust PCPP des
ribed in Theorem 3.2 to redu
ethe query 
omplexity to poly log log log n (and keeping the other parameters essentially the same).The ALMSS-type PCPP is (relatively) poor in terms of randomness, however the input size tothe ALMSS-type PCPP is too small to a�e
t the randomness of the resultant PCPP. Finally, we
ompose with the Hadamard-based veri�er of Theorem A.1 to bring the query 
omplexity down toO(1). In all stages, we invoke the Composition Theorem (Theorem 2.7).Throughout the proof, n denotes the size of the 
ir
uit that is given as expli
it input to thePCPP veri�er that we 
onstru
t. We shall a
tually 
onstru
t a sequen
e of su
h veri�ers. Ea
hveri�er in the sequen
e will be obtained by 
omposing the prior veri�er (used as the outer veri�erin the 
omposition) with an adequate inner veri�er. In the �rst stage, the inner veri�er will bethe veri�er obtained from Theorem 3.1, whereas in the se
ond and third stages it will be theone obtained from Theorem 3.2 and Theorem A.1, respe
tively. Either way, the inner veri�erwill operate on 
ir
uits of mu
h smaller size (than n) and will use a proximity parameter that isupper-bounded by the robustness parameter of the 
orresponding outer veri�er.Stage I: Let m = (log n) 1t � 2 and 
 = 1t . For this 
hoi
e of m and 
, let V0 be the veri�erobtained from Theorem 3.1. We re
all that the parameters of this veri�er: For 
ir
uits of size ` andany proximity parameter Æ0 2 (
=3
; 
=
)S, its randomness 
omplexity is r0(`) , (1� 1m) � log2 `+O(log log `)+O(m logm)+O(log t), its de
ision (and query) 
omplexity is d0(`) , ` 1m �poly(log `; t),its soundness error is s0 , 
 and its robustness is �0 � (1� 
)Æ0.We 
ompose V0 with itself t�3 times for the same �xed 
hoi
e ofm and 
 to obtain a sequen
e of21



veri�ers of in
reasingly smaller query 
omplexity.9 While doing so, we will use the largest possibleproximity parameter for the inner veri�er (V0) in ea
h stage; that is, in the ith 
omposition, we setthe proximity parameter of the inner veri�er to equal the robustness of the outer veri�er, where thelatter is the result of i�1 
ompositions of V0 with itself. We get a sequen
e of veri�ers V1; : : : ; Vt�2su
h that V1 = V0 and the veri�er Vi is obtained by 
omposing (the outer veri�er) Vi�1 with (theinner veri�er) V0, where the proximity parameter of the latter is set to equal the robustness ofthe former. Unlike V0, whi
h is invoked on di�erent 
ir
uit sizes and (slightly) di�erent values ofthe proximity parameter, all the Vi's (i 2 [t � 2℄) refer to 
ir
uit size n and proximity parameterÆ , 
=
 < 1=t.Let ri; di; Æi; si and �i denote the randomness 
omplexity, de
ision (and query) 
omplexity,proximity parameter, soundness error, and the robustness parameter of the veri�er Vi. (Re
allthat Vi will be 
omposed with the inner-veri�er V0, where in this 
omposition the input size andproximity parameter of the latter will be set to di and �i respe
tively, and so we will need to verifythat d1=mi � m
m=(
�i)3 and �i < 
=
 for i < t� 2).10 We �rst 
laim that the de
ision 
omplexity,proximity, soundness-error, robustness, and proof size parameters satisfy the following 
onditions:1. De
ision 
omplexity: di(n) � a(n;m)2 � n1=mi , where a(`;m) , d0(`)=`1=m = poly(log `; t).On the other hand, di(n) � n1=mi .2. Proximity: Æi = Æ.3. Soundness error: si � 1� (1� 
)i. (In parti
ular, si < i
.)4. Robustness: �i � (1� 
)i � Æ. On the other hand, �i � �0 < 
=
.5. Proof length: 2ri(n)di(n) � b(n;m)i � n, where b(`;m) , 2r0(`) � d0(`)=` = poly(mm; log `; t).We prove this 
laim by indu
tion on i. For starters, note that the base 
ase (i.e., i = 1) follows fromthe properties of V0: In parti
ular, d1(n) � poly(log n; t)�n1=m and 2r1(n)d1(n) � poly(mm; log n; t)�n. Turning to the indu
tion step, assuming that these 
laims holds for Vi, we prove that they holdalso for Vi+1. For (1), note thatdi+1(n) = d0(di(n)) [By the Composition Theorem℄= a(di(n);m) � di(n)1=m [By the properties of V0℄� a(n;m) � di(n)1=m [By monotoni
ity of a(�; �) and di(n) � n℄� a(n;m) � �a(n;m)2 � n1=mi�1=m [By indu
tion℄� a(n;m)2 � n1=mi+1 [Using m � 2℄and di+1(n) � di(n)1=m � n1=mi+1 also holds. Clearly Æi = Æ and the bound on si is straightforwardfrom the Composition Theorem. Re
alling that the proximity parameter for V0 in this 
ompositionis set to �i, the robustness of the 
omposed veri�er Vi+1 is �i+1 = (1�
)�i = (1�
)i+1Æ as desired.Furthermore, �i = (1 � 
)iÆ � (1 � 1t )tÆ � e�1Æ = 
=O(1). We now move to the last 
ondition9We assume, for simpli
ity, that t � 3. Note that it suÆ
es to establish the 
laimed result for t that is greaterthan any universal 
onstant.10We also need to verify that n1=m � m
m=(
Æ0)3 and Æ0 < 
=
 for the initial veri�er V1 = V0 but this is true forour 
hoi
e of parameters. Furthermore, as �i 
an only deteriorate with ea
h 
omposition, we have that �i � �0 � 
=
.Thus, the only 
ondition that needs to be veri�ed is d1=mi � m
m=(
�i)3 for i < t� 2.22



(essentially bounding the randomness). Noti
e �rst that ri+1(n) = ri(n) + r0(di(n)) and thus2ri+1(n) � di+1(n) = 2ri(n) � 2r0(di(n)) � d0(di(n)) [By the Composition Theorem℄� 2ri(n) � di(n) � b(di(n);m) [By the properties of V0℄� n � b(n;m)i � b(n;m) [By indu
tion and monotoni
ity of b(�; �)℄� n � b(n;m)i+1Thus, Part (5) is veri�ed. Re
all that we have to verify that d1=mi � m
m=(
�i)3 for i < t � 2 aspromised before. We have d1=mi � (n1=mi)1=m = n1=mi+1 � n1=mt�2 (sin
e i < t � 2). Sin
e m =(log n) 1t , we have n1=mt = 2. Hen
e, d1=mi � (n1=mt)m2 = 2m2 . On the other hand, m
m=(
�i)3 �m
m=(e�1
Æ)3 = m
m � poly(t). Thus it suÆ
es to verify that 2m2=m
m � poly(t), for 2 � t �2 log log n= log log log n, whi
h is straightforward.11Lastly, we 
onsider the running-time of Vi, denoted Ti. A 
areful use of the CompositionTheorem (Theorem 2.7) indi
ates that Ti(n) = poly(n) + Ti�1(n), for every i = 2; : : : ; t� 2, whereT1(n) = poly(n) (sin
e V1 = V0). Alternatively, unraveling the indu
tive 
omposition, we note thatVi 
onsists of invoking V0 for i times, where in the �rst invo
ation V0 is invoked on Vi's input andin later invo
ations V0 is invoked on an input obtained from the previous invo
ation. Furthermore,the output of Vi is obtained by a 
ombining the inputs obtained in these i � t� 2 < n invo
ations.We now 
on
lude the �rst stage by showing that the �nal veri�er V
 = Vt�2 has the desiredproperties. By Part (5) above (and the fa
t that dt�2 � 1), we have r
(n) = rt�2(n) � logn +(t � 2) � log b(n;m) � logn + t log b(n;m). By the de�nition of b(n;m), we have log b(n;m) =O(log logn)+O(m logm)+O(log t) = O(log logn+m logm), whereasm logm = (log n) 1t � 1t log logn.Thus r
(n) � log2 n+O(t�log log n)+t�O(m logm) = log2 n+O(t+(logn) 1t )�log log n. The de
ision
omplexity of V
 is d
(n) = dt�2(n) � a(n;m)2 �n1=mt�2 = a(n;m)2 �2m2 , be
ause n1=mt = 2. Usinga(n;m) = poly(log n; t), it follows that d
(n) � 2m2 � poly(log n). The proximity of V
 equals Æ,its soundness error is s
 = st�2 = 1 � (1 � 
)t�2 = 1 � (1 � (1=t))t�2 < 1=2, and its robustness is�
 = �t�2 � (1� 
)t�2Æ = Æ=e = 
(1=t).Stage II: We now 
ompose the veri�er V
 with the ALMSS-type veri�er Va des
ribed in Theorem 3.2thri
e to obtain the veri�ers V 0, V 00, and V 000 respe
tively (i.e., V 0 equals V
 
omposed with Va,V 00 equals V 0 
omposed with Va, and V 000 equals V 00 
omposed with Va). We 
ompose as beforesetting the proximity parameter of the inner verifer equal to the robustness parameter of the outerveri�er. Re
all from Theorem 3.2 that the ALMSS-type verifer Va has the following parameters:randomness ra(`; Æ) = O(log ` + log(1=Æ)), de
ision 
omplexity da(`; Æ) = poly log `=Æ, soundnesserror sa(`; Æ) = 1=2 and robustness �a(`; Æ) = 
(Æ) for input size ` and proximity parameter Æ.Thus ea
h 
omposition with the inner veri�er Va adds O(log q+ log(1=�)) to the randomness whileredu
ing the query 
omplexity to (poly log q)=� where q and � are the de
ision 
omplexity androbustness parameter respe
tively of the outer veri�er. Furthermore, the robustness parameterdeteriorates by at most a 
onstant fa
tor while the soundness error remains a 
onstant (providedthat the soundness error of the outer veri�er is a 
onstant). Hen
e, the parameters of the veri�ersV 0, V 00 and V 000 are as follows:Parameters of V 0 (re
all that d
 = 2m2 � poly(log n) and Æ = 
(1=t)):r0 = r
 +O(m2 + log logn+ log t) d0 = poly(m; log log n) � t11Note that as t varies from 2 to 2 log log n= log log log n, the value of m varies from plog n to plog log n. Fort 2 [2; 2 log log n= log log log n℄, the maximum value of poly(t) is poly(log log n= log log log n) = poly(log log n). Onthe other hand, for m 2 [plog log n;plog n℄, the minimum value of 2m2=m
m > 2m2=2 is 2plog log n2=2 = plog n >poly(log log n). 23



s0 = 1�
(1) �0 = 
(1=t)Parameters of V 00:r00 = r0 +O(logm+ log log logn+ log t) d00 = poly(logm; log log logn; log t) � ts00 = 1� 
(1) �00 = 
(1=t)Parameters of V 000:r000 = r00 +O(log logm+ log log log log n+ log t) d000 = poly(log logm; log log log logn; log t) � ts000 = 1� 
(1) �000 = 
(1=t)while the proximity parameter for all three veri�ers is that of V
 (i.e., Æ). We have thatr000 = log2 n+O(t+ (log n)1=t) � log log n+O(m2);q000 < d000 = poly(log log log logn; log logm; log t) � t;whereas Æ000 = Æ = 1=(
t), s000 = 1 � 
(1) and �000 = 
(1=t). Substituting m = (log n) 1t , we getr000 = log2 n+O(t+ (log n)1=t) � log logn+O((log n) 2t ) and q000 = t � poly(log log logn).Stage III: Finally, we 
ompose V 000 with the Hadamard-based inner veri�er Vh of Theorem A.1 toobtain our �nal veri�er Vf . The query 
omplexity of Vh and hen
e that of Vf is 
onstant. Therandomness 
omplexity of Vf is rf (n) , r000(n)+rh(q000(n)) = r000(n)+t2 �poly(log log log n), be
auserh(`) = O(`2). Thus, rf (n) = log2 n+O(t+(log n) 1t ) � log log n+O((log n) 2t )+t2 �poly(log log log n).On proximity parameter Æh, the soundness error of Vh is sh = 1�
(Æh). Setting Æh = �000 = 
(1=t),we 
on
lude that the soundness error of Vf on proximity parameter Æ is 1� 
(1=t).To obtain soundness error 1/2, we repeat perform O(t) repetitions of Vh, yielding a query
omplexity of O(t). This 
an be done without in
reasing the randomness 
omplexity by using\re
y
led randomness" (spe
i�
ally, the neighbors of a uniformly sele
ted vertex in a Ramanujanexpander graph; see [24, Apdx. C.4℄).Corollaries: Re
all that Theorem 3.3 asserts a PCP of proximity with randomness 
omplexitylog2 n + At(n), where At(n) , O(t + (log n) 1t ) log logn + O((log n) 2t ) + t2 � poly log log logn andquery 
omplexity O(t) (for soundness error 1=2). For t 2 [2; :::; 0:99 log log nlog log log n ℄, we have (log n) 1t >(log log n)1=0:99 and so At(n) = O((log n) 2t ). On the other hand, for t � 1:01 log log nlog log log n , we have(log n) 1t � (log logn)1=1:01 and so At(n) = t2 � poly log log log n.� Two extreme 
hoi
es of t(n) are when t(n) = 2" , for some " > 0 (whi
h maintains a 
on-stant query 
omplexity), and t(n) = 2 log log nlog log log n (whi
h minimizes the randomness 
omplex-ity of the veri�er). Setting t(n) = 2" yields Theorem 1.3 (i.e., 
onstant query 
omplex-ity O(1=") and randomness log2 n + O(log" n)), whereas setting t(n) = 2 log log nlog log log n yieldsTheorem 1.2 (i.e., query 
omplexity O((log log n)= log log logn) and randomness log2 n +(log log n)2 � poly(log log log n)).Thus, both Theorems 1.2 and 1.3 follow from Theorem 3.3.� By Proposition 2.5, we 
on
lude that for every 2 � t(n) � 2 log log nlog log log n , there exists a PCP ofproximity forNondeterministi
 Cir
uit Value of the same 
omplexities (i.e., randomness
omplexity log2 n + At(n), query 
omplexity O(t(n)), perfe
t 
ompleteness, and soundnesserror 1=2 with respe
t to proximity Æ = 
(1=t(n))).Comment: We note that the tight bound on the robustness (as a fun
tion of the proximityparameter) in our main 
onstru
t (Theorem 3.1) plays an important role in the proof of Theorem 3.3.24



The reason is that when we 
ompose two robust PCPs of proximity, the proximity parameter ofthe se
ond must be upper-bounded by the robustness parameter of the �rst. Thus, when we
ompose many robust PCPs of proximity, the robustness parameter deteriorates exponentially inthe number of 
omposed systems where the base of the exponent is determined by the tightnessof the robustness (of the se
ond veri�er). That is, let � , �=Æ, where Æ and � are the proximityand robustness parameters of the system. Then 
omposing this system t times with itself, meansthat at the lowest PCP-instan
e we need to set the proximity parameter to be � t�1 times theinitial proximity. This requires the lowest PCP-instan
e to make at least 1=� t�1 queries (or be
omposed with a PCP of proximity that 
an handle proximity parameter � t, whi
h again lower-bounds the number of queries). For a 
onstant � < 1, we get exp(t) query 
omplexity, whereas for� = 1�
 = (1� (1=t)) we get query 
omplexity that is linear in 1=((1�
)t �
) = O(t). Finally, weargue that in the 
ontext of su
h an appli
ation, setting 
 = 1=t is a
tually the \natural" 
hoi
e.Su
h a 
hoi
e, assigns ea
h proof-ora
le en
ountered in the 
omposition almost equal weight (of1=t); that is, su
h a proof ora
le is assigned weight 1=t when it appears as the 
urrent proof-ora
leand maintains its weight when it appears as part of the input-ora
le in subsequent 
ompositions.4 Appli
ations to 
oding problemsIn this se
tion we show that, 
ombined with any good 
ode, any PCP of proximity yields a Lo
allyTestable Code (LTC). Using our PCPs of proximity, we obtain an improvement in the rate of LTCs(improving over the results of [28, 12℄). We also introdu
e a relaxed notion of Lo
ally De
odableCodes, and show how to 
onstru
t su
h 
odes using any PCP of proximity (and ours in parti
ular).Preliminaries: We 
onsider 
odes mapping sequen
es of k (input) bits into sequen
es of n � k(output) bits. Su
h a generi
 
ode is denoted by C : f0; 1gk ! f0; 1gn, and the elements offC(x) : x2f0; 1gkg � f0; 1gn are 
alled 
odewords (of C). Throughout this se
tion, the integers kand n are to be thought of as parameters, and we are typi
ally interested in the relation of n to k(i.e., how n grows as a fun
tion of k). Thus, we a
tually dis
uss in�nite families of 
odes (whi
hare asso
iated with in�nite sets of possible k's), and whenever we say that some quantity of the
ode is a 
onstant we mean that this quantity is 
onstant for the entire family (of 
odes).The distan
e of a 
ode C : f0; 1gk ! f0; 1gn is the minimum (Hamming) distan
e betweenits 
odewords; that is, minx6=yf�(C(x);C(y))g, where �(u; v) denotes the number of bit-lo
ationson whi
h u and v di�er. Throughout this work, we fo
us on 
odes of \linear distan
e"; that is,
odes C : f0; 1gk ! f0; 1gn of distan
e 
(n). The distan
e of w 2 f0; 1gn from a 
ode C :f0; 1gk ! f0; 1gn, denoted �C(w), is the minimum distan
e between w and the 
odewords; that is,�C(w) , minxf�(w;C(x))g. Re
all that, for Æ 2 [0; 1℄, the n-bit long strings u and v are said tobe Æ-far (resp., Æ-
lose) if �(u; v) � Æ � n (resp., �(u; v) � Æ � n).4.1 Lo
ally Testable CodesLoosely speaking, by a 
odeword test (for the 
ode C : f0; 1gk ! f0; 1gn) we mean a randomized(non-adaptive) ora
le ma
hine, 
alled a tester, that is given ora
le a

ess to w 2 f0; 1gn (viewedas a fun
tion w : f1; :::; ng ! f0; 1g). The tester may query the ora
le at a 
onstant number ofbit-lo
ations and is required to (always) a

ept every 
odeword and reje
t with (relatively) highprobability every ora
le that is \far" from the 
ode. Indeed, sin
e our fo
us is on positive results, weuse a stri
t formulation in whi
h the tester is required to a

ept ea
h 
odeword with probability 1.(This 
orresponds to \perfe
t 
ompleteness" in the PCP setting.) Spe
i�
ally, following [28℄, werequire the 
odeword test to reje
t any ora
le w 2 f0; 1gn with probability 
(�C(w)=n)� o(1). In25



parti
ular, for every Æ > 0, there exists an " > 0 su
h that strings that are Æ-far from the 
odeare reje
ted with probability at least ". Note that this de�nition requires nothing with respe
t tonon-
odewords that are relatively 
lose to the 
ode (i.e., are at relative distan
e at most o(1) fromC).Using an adequate PCP of proximity, we 
an transform any 
ode to a related 
ode that has a
odeword tester. This is done by appending ea
h 
odeword with a PCP of proximity proving the
odeword is indeed the en
oding of a message. One te
hni
al problem that arises is that the PCPof proximity 
onstitutes most of the length of the new en
oding and we 
annot assume mu
h aboutthe Hamming distan
e between di�erent proofs of the same statement, thus the distan
e of the new
ode may deteriorate. But this is easily �xed by repeating the 
odeword many times, so that thePCP of proximity 
onstitutes only a small fra
tion of the total length.12 Spe
i�
ally, given a 
odeC0 : f0; 1gk ! f0; 1gm of minimal relative distan
e Æ0, we 
onsider the 
ode C(x) , (C0(x)t; �(x)),where t = d(k) � j�(x)j=jC0(x)j su
h that (say) d(k) = log k, and �(x) is a PCP of proximity witha proximity parameter Æp
pp � Æ0=10 and 
onstant soundness error " > 0 (we make no attemptto optimize 
onstants). We �rst note that the repli
ated versions of C0(x) dominate the lengthof C(x). As for �(x), it is a PCP of proximity that refers to an input of the form z 2 f0; 1gmand asserts that there exists an x = x1 � � � xk (indeed the one that is a parameter to �) su
h thatz = C0(x).Observe that the 
ode C maps k-bit long strings to 
odewords of length n , (d(k)+1) �`, where` = s0(m)1+o(1) denotes the length of the PCP of proximity and s0(m) denotes the size of the 
ir
uitfor en
oding relative to C0. In addition, C approximately preserves the relative distan
e of C0,be
ause a 
odeword of C is dominated by repetitions of C0. Using a good 
ode (with s0(m) = ~O(m)),we may set m = O(k), and obtain n = k1+o(1). Spe
i�
ally, using ` = s0(m) � exp(log" s0(m)), weobtain n < k � exp(log2" k). The 
odeword test emulates the PCP-veri�er in the natural way.Spe
i�
ally, given ora
le a

ess to w = (w1; :::; wt; �) 2 f0; 1gt�m+`, the 
odeword tester sele
tsuniformly i 2 [t℄, and emulates the PCP-veri�er providing it ora
le a

ess to the input-ora
le wiand to the proof-ora
le �. In addition, the tester 
he
ks that the repetitions are valid (by inspe
tinga randomly sele
ted position in two randomly sele
ted m-bit long blo
ks). Let us denote this testerby T .Proposition 4.1 The ora
le ma
hine T is a 
odeword tester for C.Theorem 1.4 follows.Proof: Completeness follows immediately from the 
ompleteness of the PCP of proximity, sowe fo
us on the soundness 
ondition. We 
onsider an arbitrary w = (w1; :::; wt; �) 2 f0; 1gt�m+`.Assuming that w is Æ-far from C, it follows that w0 = (w1; :::; wt) is (Æ � o(1))-far from the 
odeC0 , fC0(x)t : x 2 f0; 1gkg (be
ause the repetition of C0 
onstitutes an 1�o(1) fra
tion of the lengthof w). We 
onsider two 
ases. The �rst 
ase is thatPti=1�C0(wi) � Æ0 �tm, where Æ0 = (Æ�o(1))=4.In this 
ase, at least Æ0=2 fra
tion of wi are Æ0=2-far from C0, so the PCP-veri�er will reje
t ea
hof them with probability at least 1 � " (re
all " is the soundness error of the PCP of proximity).Thus, w will be reje
ted with probability � " �Æ0=2. The se
ond 
ase is thatPti=1�C0(wi) � Æ0 � tm.Consider 
odewords 
i's that are 
losest to the wi's (i.e., Pti=1�(wi; 
i) � Æ0 � tm). Then it holdsthat 
0 = (
1; :::; 
t) is 3Æ0-far from C0, be
ause �C0(
0) � �C0(w0)��(w0; 
0). Let 
0 be a 
odeword12Throughout this se
tion we will use repetitions to adjust the \weights" of various parts of our 
odes. An alternativemethod would be to work with weighted Hamming distan
e (i.e. where di�erent 
oordinates of a 
odeword re
eivedi�erent weights), and indeed these two methods (weighting and repeating) are essentially equivalent. For the sakeof expli
itness we work only with repetitions. 26



of C0 su
h that 
0 is 
losest to 
t0. Then 3Æ0 � tm � Pti=1�(
i; 
0) � Er2[t℄[Pti=1�(
i; 
r)℄, where ris uniformly distributed in [t℄. In this 
ase, the \repli
ation test" that 
he
ks if two random blo
kswr; ws are equivalent, will reje
t with probabilityEr;s2[t℄ ��(wr; ws)=m� � 1m � Er;s2[t℄ ��(
r; 
s)��(
r; wr)��(
s; ws)�= 1tm � Er2[t℄ " tXi=1 �(
r; 
i)#� 2 � tXi=1 �(
i; wi)!� 3Æ0 � 2 � Æ0We 
on
lude that, in both 
ases, the tester reje
ts with probability at least 
(Æ � o(1)).4.2 Relaxed Lo
ally De
odable 
odesWe �rst re
all the de�nition of Lo
ally de
odable Codes (LDCs), as formally de�ned by Katzand Trevisan [34℄. A 
ode C : f0; 1gk ! f0; 1gn is lo
ally de
odable if for some 
onstant Æ > 0(whi
h is independent of k) there exists an eÆ
ient ora
le ma
hine M that, on input any indexi 2 [k℄ and a

ess to any ora
le w 2 f0; 1gn su
h that �(w;C(x)) � Æn, re
overs the i-th bit of xwith probability at least 2=3 while making a 
onstant number of queries to w. That is, wheneverrelatively few lo
ation are 
orrupted, the de
oder should be able to re
over ea
h information-bit,with high probability, based on a 
onstant number of queries to the (
orrupted) 
odeword.Katz and Trevisan showed that if M makes q queries then n = 
(k1+1=(q�1)) must hold [34℄.13This lower-bound is quite far from the best known upper-bound, due to Beimal et al. [8℄, that assertsn � exp(kO((log log q)=(q log q))). It has been 
onje
tured that, for a 
onstant number of queries, nshould be exponential in k; that is, for every 
onstant q there exists a 
onstant " > 0 su
h thatn > exp(k") must hold. In view of this state of a�airs, it is natural to relax the de�nition of Lo
allyde
odable Codes, with the hope of obtaining more eÆ
ient 
onstru
tions (e.g., n = poly(k)).We relax the de�nition of Lo
ally de
odable Codes by requiring that, whenever few lo
ation are
orrupted, the de
oder should be able to re
over most (or almost all) of the individual information-bits (based on few queries) and for the rest (of the lo
ations) the de
oder may output a fail symbol(but not the wrong value). That is, the de
oder must still avoid errors (with high probability),but is allowed to say \don't know" on a few bit-lo
ations. The following de�nition is a
tuallyweaker; yet, the (aforementioned) stronger formulation is obtained when 
onsidering � � 1 (andusing standard ampli�
ation to redu
e the error from 1=3 to any desired 
onstant).De�nition 4.2 (Relaxed LDC) A 
ode C : f0; 1gk ! f0; 1gn is relaxed lo
ally de
odable if forsome 
onstants Æ; � > 0 there exists an eÆ
ient probabilisti
 ora
le ma
hine M that makes a
onstant number of queries and satis�es the following two 
onditions with respe
t to any w 2 f0; 1gnsu
h that �(w;C(x)) � Æn:1. On input any index i 2 [k℄ and given a

ess to the ora
le w, with probability at least 2=3,ma
hine M outputs either the i-th bit of x or a spe
ial failure symbol, denoted ?.2. For at least a � fra
tion of the indi
es i 2 [k℄, on input i and ora
le a

ess to w 2 f0; 1gn,with probability at least 2=3, ma
hine M outputs the i-th bit of x.13Their lower-bound refers to non-adaptive de
oders, and yields a lower-bound of n = 
(k1+1=(2q�1)) for adaptivede
oders. A lower-bound of n = 
(k1+1=O(q)) for adaptive de
oders was presented in [18℄, and lower-bound ofn = 
(k1+1=(q=2�1)) for non-adaptive de
oders was presented in [36℄. (We note that below we use a non-adaptive(relaxed) de
oder.) 27



Furthermore, if w = C(x) is a 
odeword then the de
oder 
orre
tly re
overs every bit of x withprobability at least 2=3.One may strengthen the de�nition by requiring that � be greater than 1=2 or any other favorite
onstant smaller than 1 (but probably refrain from setting � > 1� Æ or so). In fa
t, we a
hieve thelatter stronger form.Note that it is very easy to 
ome up with 
onstru
tions that satisfy ea
h one of the two main
onditions of De�nition 4.2. For example, Condition 1 
an be satis�ed by (any 
ode and) a trivialde
oder that always returns ?. On the other hand, the identity en
oding (
ombined with a trivialde
oder) satis�es Condition 2. Our aim, however, is to have a 
onstru
tion that satis�es both
onditions (as well as the furthermore 
lause) and beats the performan
e of the known lo
allyde
odable 
odes.The above de�nition only 
onsiders strings w that are Æ-
lose to the 
ode. However, using our
onstru
tion from the previous se
tion, any relaxed LDC 
an be augmented so that strings that areÆ-far from the 
ode are reje
ted with high probability (i.e. for every index i, the de
oder outputs? with high probability), and this 
an be done with only a nearly linear (n � exp(log" n)) in
reasein size.Motivation to our 
onstru
tion: We seek a 
ode of linear distan
e that has some weak \lo
alde
odability" properties. One idea is to separate the 
odeword into two parts, the �rst providingthe distan
e property (eg using any 
ode of linear distan
e) and the se
ond allowing for \lo
alde
odability" (eg using the identity map). It is obvious that a third part that guarantees the
onsisten
y of the �rst part should be added, and it is natural to try to use a PCP of proximity inthe latter part. The natural de
oder will 
he
k 
onsisten
y (via the PCPP), and in 
ase it dete
tsno error will de
ode a

ording to the se
ond part. Indeed, the se
ond part may not be \robustto 
orruption" but the �rst part is \robust to 
orruption" and 
onsisten
y means that both partsen
ode the same information. Considering this vague idea, we en
ounter two problems. First, aPCP of proximity is unlikely to dete
t a small 
hange in the se
ond part. Thus, if we use theidentity map in the se
ond part then the de
oder may output the wrong value of some (althoughfew) bits. Put in other words, the \proximity relaxation" in PCPPs makes sense for the �rst partof the 
odewords but not for the se
ond. Our solution is to provide proofs of the 
onsisten
y forea
h bit in the se
ond part with the entire �rst part. The se
ond problem is that the PCPPs aremu
h longer than the �rst two parts, whereas the 
orruption rate is measured in terms of the entire
odeword. This is easy to �x by repeating the �rst two parts suÆ
iently many times. However, itis important not to \overdo" this repetition, be
ause if the third part is too short, then 
orruptingit may prevent meaningful de
oding even at low 
orruption rates (measured in terms of the entire
odeword).The a
tual 
onstru
tion. Let C0 : f0; 1gk ! f0; 1gm be a good 
ode of relative distan
e Æ0,then we en
ode x 2 f0; 1gk by C(x) , (xt;C0(x)t0 ; �1(x); :::; �k(x)), where t = j�1(x); :::; �k(x)j=jxj(resp., t0 = j�1(x); :::; �k(x)j=jC0(x)j), and �i(x) is a PCP of proximity to be further dis
ussed. We�rst note that the repli
ated versions of x (resp., C0(x)) takes a third of the total length of C(x).As for �i(x), it is a PCP of proximity that refers to an input of the form (z1; z2) 2 f0; 1gm+mand asserts that there exists an x = x1 � � � xk (indeed the one that is a parameter to �i) su
h thatz1 = xmi and z2 = C0(x).14We use our PCP of proximity from Theorem 3.3 (with t(n) set to be asuÆ
iently large 
onstant to be determined later). Let Æp
pp > 0 be the proximity parameter of the14Indeed z1 is merely the bit xi repeated jC0(x)j times in order to give equal weight to ea
h part in measuringproximity. 28



PCP of proximity and let q denote the number of queries it makes in order to support a soundnesserror of 1=6. We note that, in our PCP of proximity, the queries to the proof ora
le (resp., inputora
le) are uniformly distributed. It follows from this uniformity and perfe
t 
ompleteness ofthe PCP of proximity, that if we 
ip at most a Æ0 fra
tion of the bit-lo
ations of the input-ora
leand the proof-ora
le then the veri�er will a

ept with probability at least 1� q � Æ0, (Following thealternative argument, we obtain the weaker lower-bound of 1� (2=Æp
pp) � qÆ0.)Observe that the 
ode C maps k-bit long strings to 
odewords of length n , 3 � k � `, where` = s0(m)1+o(1) denotes the length of the PCP of proximity and s0(m) denotes the size of the 
ir
uitfor en
oding relative to C0. Using a good 
ode | of 
onstant relative distan
e Æ0, m = O(k), ands0(m) = ~O(m)) | we obtain n = k2+o(1). The relative distan
e of C is at least Æ0=3.We now turn to the des
ription of the de
oder D. On input i 2 [k℄ and ora
le a

ess tow = (w1; w2; w3) 2 f0; 1gn, the de
oder invokes the PCPP-veri�er providing it with a

ess to aninput-ora
le (z1; z2) and a proof ora
le � that are de�ned and emulated as follows: The de
odersele
ts uniformly r 2 [t℄ and r0 2 [t0℄, and de�nes ea
h bit of z1 to equal the ((r � 1)k + i)-th bitof w1, the string z2 is de�ned to equal the r0-th (m-bit long) blo
k of w2, and � is de�ned to equalthe i-th blo
k (`-bit long) of w3. That is, when the veri�er asks to a

ess the j-th bit of z1 (resp.,z2) [resp., �℄, the de
oder answers with the ((r � 1)k + i)-th bit of w1 (resp., ((r0 � 1)m + j)-thbit of w2) [resp., the ((i � 1)` + j)-th bit of w3℄. If the veri�er reje
ts then the de
oder outputs aspe
ial (failure) symbol. Otherwise, it outputs the ((r � 1)k + i)-th bit of w1.Proposition 4.3 There exist universal 
onstants " > 0 and 
 su
h that the 
ode C is relaxed lo
allyde
odable for any Æ � " and with � = 1� 
Æ.Proof: We prove that the de
oder D satis�es the two main 
onditions of De�nition 4.2 (for� = 1 � O(Æ)). Fixing any x 2 f0; 1gk , we 
onsider an arbitrary ora
le w = (w1; w2; w3) thatis Æ-
lose to C(x), where w1 (resp., w2) denotes the alleged repli
ation of x (resp., C0(x)) andw3 = (w3;1; :::; w3;k) denotes the part of the PCPs of proximity. Note that w1 (resp., w2) is 3Æ-
loseto xt (resp., to C0(x)t0). To analyze the performan
e of Dw(i), we de�ne random variables Z1and Z2 that 
orrespond to the input-ora
les to whi
h the PCP-veri�er is given a

ess. Spe
i�
ally,Z1 = �m, where � is set to equal the ((r� 1)k+ i)-th bit of w1, when r is uniformly distributed in[t℄. Likewise, Z2 is determined to be the r0-th blo
k of w2, where r0 is uniformly distributed in [t0℄.Finally, we set the proof-ora
le, �, to equal the i-th blo
k of w3.We start with Condition 1. We bound the probability that the de
oder outputs :xi by 
onsid-ering three 
ases:Case 1: � = xi. Then Condition 1 is satis�ed regardless of whether the de
oder outputs � or ?(whi
h are the only two possibilities).Case 2: Z2 is 18Æ-far from C0(x). This 
ase o

urs with probability at most 1=6, sin
e the ex-pe
ted distan
e of Z2 from C0(x) is at most 3Æ.Case 3: Z2 is 18Æ-
lose to C0(x) and � 6= xi. Then, (Z1; Z2) is minf1=2; Æ0�18Æg-far from anystring of the form (ymi ;C0(y)). (Either all of Z1 must be 
hanged, or Z2 must be 
hanged toa 
odeword other than C0(x).) Choosing Æp
pp < minf1=2; Æ0 � 18Æg, we 
on
lude that thePCPP veri�er a

epts (and the de
oder outputs :xi) with probability at most 1=6.Thus, in total, the de
oder outputs :xi with probability at most 1=6 + 1=6 = 1=3.We now turn to Condition 2. Re
all that w1 = w1;1 � � �w1;tk (resp., w3) is 3Æ-
lose to xt (resp., to�1(x); :::; �k(x)). It follows that for all but at most an �=2 fra
tion of the i's, w1;iw1;k+i � � �w1;(t�1)k+i29



is 6Æ=�-
lose to xti (resp., the i-th blo
k of w3 is 6Æ=�-
lose to �i(x)). Thus, for at least a 1 � �fra
tion of the i's, Z1 equals xmi with probability at least 1 � 6Æ=� and the i-th blo
k of w3 is6Æ=�-
lose to �i(x). Let us �x su
h a good i. Re
all that the expe
ted (fra
tional) distan
e ofZ2 from C0(x) is at most 3Æ and that the de
oder D outputs � (where Z1 = �m) if and only ifthe PCP-veri�er a

epts. We need to lower-bound the probability that the PCP-veri�er a

eptsthe ora
le-input (Z1; Z2) when a

essing the proof ora
le � (i.e., the i-th blo
k of w3). Re
allthat the PCP-veri�er makes at most q queries, where ea
h query is uniformly distributed in oneof the ora
les, and that the PCP-veri�er would have a

epted (xmi ;C0(x)) with probability 1 whena

essing the proof �i(x). It follows that this veri�er reje
ts (Z1; Z2) when a

essing the (
orrupted)proof � with probability at mostPr[Z1 6= xmi ℄ + q � E ��(Z2;C0(x))m �+ q � �(�; �i(x))` < 6Æ� � q � 3Æ + q � 6Æ� < 7qÆ�Now, 7qÆ=� < 1=3, provided that � > 21qÆ. That is, we may use � = 22qÆ. Thus, Condition 2holds for � = 1� � = 1� 22qÆ.Improving the rate: The reason that our 
ode has quadrati
 length 
odewords (i.e., n = 
(k2))is that we augmented a standard 
ode with proofs regarding the relation of the standard 
odewordto the value of ea
h information bit. Thus, we had k proofs ea
h relating to a statement of length
(k). Consider the following improvement. Partition the message into pk blo
ks, ea
h of lengthpk. En
ode the original message and ea
h one of the smaller blo
ks, via good error 
orre
ting
odes. Let w be the en
oding of the entire message, and wi; i = 1; : : :pk be the en
odings of theblo
ks. Now, for every i = 1; : : : ;pk append a PCP of proximity for the 
laim \wi is the en
odingof the ith blo
k of a message en
oded by w". In addition, for ea
h message bit xj residing in blo
ki, append a PCP of proximity of the statement \xj is the jth bit of the pk-bit long string en
odedin wi". The total en
oding length has de
reased, be
ause we have pk proofs of statements of lengthO(k) and k proofs of statements of length O(pk), leading to a total length that is almost linear ink3=2.In general, for any 
onstant `, we 
onsider ` su

essively �ner partitions of the message intoblo
ks, where the (i+1)-st partition is obtained by breaking ea
h blo
k of the previous partition intok1=` equally sized pie
es. Thus, the i-th partition uses ki=` blo
ks, ea
h of length k1�i=`. En
oding isdone by providing, for ea
h i = 0; 1; :::; `, en
odings of all of the blo
ks in the i-th partition in a gooderror-
orre
ting 
ode. (Thus, for i = 0 we provide the en
oding of the entire messages, whereas fori = ` we provide an \en
oding" of individual bits.) Ea
h of these `+ 1 levels of en
odings will beassigned equal weight (via repetitions) in the new 
odeword. In addition, the new 
odeword will
ontain PCPs of proximity that assert the 
onsisten
y of \dire
tly related" blo
ks (i.e., blo
ks of
onse
utive levels that 
ontain one another). That is, for every i = 1; :::; ` and j 2 [ki=`℄, we pla
ea proof that the en
oding of the j-th blo
k in the i-th level is 
onsistent with the en
oding of thedj=k1=`e-th blo
k in the (i�1)-st level. The i-th su
h sequen
e of proofs 
ontains ki=` proofs, whereea
h su
h proof refers to statements of length O(k1�i=` + k1�(i�1)=`) = O(k1�(i�1)=`), whi
h yieldsa total length of proofs that is upper-bounded by ki=` � (k1�(i�1)=`)1+o(1) = k1+1=`+o(1). Ea
h ofthese sequen
es will be assigned equal weight in the new 
odeword, and the total weight of all theen
odings will equal the total weight of all proofs. The new de
oder will just 
he
k the 
onsisten
yof the ` relevant proofs and a
t a

ordingly. (Thus, the de
oder uses O(`) queries.) We stress that,as before, the proofs in use are PCPs of proximity. In the 
urrent 
ontext these proofs refer totwo input-ora
les of vastly di�erent length, and so the bit-positions of the shorter input-ora
le are30



given higher \weight" (by repetition) su
h that both input-ora
les are assigned the same weight.15The proof of Proposition 4.3 
an be extended with " and 
 now depending on ` (i.e., " = 
(1=`)and 
 = O(`)). That is:Proposition 4.4 There exist universal 
onstants "0 > 0 and 
0 su
h that, for every `, the afore-mentioned 
ode is relaxed lo
ally de
odable (by O(`) queries) for any Æ � "0=` and with � = 1� 
0`Æ.Theorem 1.5 follows.Proof Sket
h: Following the outline of the proof of Proposition 4.3, we 
onsider an ora
le(w0; w1; :::; w`; �1; :::; �`) that is Æ 
lose to an en
oding of x 2 f0; 1gk , where ea
h wi is supposedto 
onsist of en
odings of the ki=` (non-overlapping) k1�i=`-bit long blo
ks of x, and �i 
onsistsof the 
orresponding proofs of 
onsisten
y. A key observation is that ea
h of these sequen
es issuÆ
iently 
lose to what it is suppose to be (be
ause (2` + 1) � Æ < 3"0 is a suÆ
iently small 
on-stant). Condition 1 is thus established as in the proof of Proposition 4.3, while noting that if theen
oding of some bit does not �t the en
oding of the entire x then a mismat
h must o

ur betweenthe en
oding of some blo
k (in some wi) and its immediate super-blo
k (in wi�1). To establishCondition 2, we �rst upper-bound the number of i 2 [k℄ for whi
h one of the relevant blo
ks orproofs has been \drasti
ally 
orrupted" (i.e., 
orrupted too mu
h). Corrupting a Æ fra
tion of the
odeword, only allows to \drasti
ally 
orrupt" a Æ fra
tion of the blo
ks and proofs at ea
h level,whi
h amounts to disrupting the de
oding of O(`Æ) of the bit positions.Open Problem: We wonder whether one 
an obtain relaxed-LDC that 
an be de
oded usingq queries while having length n = o(kq=(q�1)). The existen
e of su
h relaxed-LDC will imply thatour relaxation (i.e., relaxed-LDC) is a
tually stri
t, be
ause su
h 
odes will beat the lower-bound
urrently known for LDC (
f. [34℄). Alternatively, it may be possible to improve the lower-boundfor (q-query) LDC to n > k1+(
=q), for any 
onstant 
 and every suÆ
iently large 
onstant q (where,as usual, k is a parameter whereas q is a �xed 
onstant). (In fa
t, some 
onje
ture that n must besuperpolynomial in k, for any 
onstant q.)4.3 Linearity of the 
odesWe note that the 
odes presented above (establishing both Theorems 1.4 and 1.5) are a
tuallyGF(2)-linear 
odes, whenever the base 
ode C0 is also GF(2)-linear. Proving this assertion redu
esto proving that the PCPs of proximity used (in the aforementioned 
onstru
tions) have proof-ora
lesin whi
h ea
h bit is a linear fun
tions of the bits to whi
h the proof refers. The main part of thelatter task is undertaken in Se
tion 8.4, where we show the the main 
onstru
t (i.e., the PCPs ofproximity stated in Theorems 3.1 and 3.2) when applied to a linear 
ir
uit yields a an GF(2)-lineartransformation of assignments (satisfying the 
ir
uit) to proof-ora
les (a

epted by the veri�er). Inaddition, we need to show that also the 
onstru
tion underlying the proof of Theorem 3.3 satisfythis property. This is done next, and 
onsequently we get:Proposition 4.5 If C is a linear 
ir
uit (see De�nition 8.13), then there is a linear transformationT mapping satisfying assignments w of C to proof ora
les T (w) su
h that the PCPP veri�er ofTheorem 3.3 will, on input C, a

ept ora
le (w; T (w)) with probability 1.15In a sense, this was also done in the simpler 
ode analyzed in Proposition 4.3.
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Proof Sket
h: In Se
tion 8.4, we establish a 
orresponding result for the main 
onstru
t (i.e.,Proposition 8.14 refers to the linearity of the 
onstru
tion used in the proof of Theorem 8.1, whi
hin turn underlies Theorems 3.1 and 3.2). Here we show that linearity is preserved in 
ompositionas well as by the most inner (or bottom) veri�er.In ea
h 
omposition step, we append the proof-ora
le with new (inner) PCPs of proximity perea
h test of the (outer) veri�er. Sin
e all these tests are linear, we 
an apply Proposition 8.14and infer that the new appended information is a linear transformation of the input-ora
le and theouter proof-ora
le (where, by indu
tion, the latter is a linear transformation of the input).At the bottom level of 
omposition we apply a Hadamard based PCP (Se
tion A). The en
odingde�ned there is not GF (2)-linear (rather it is quadrati
), but this was ne
essary for dealing withnon-linear gates. It 
an be veri�ed that for a linear 
ir
uit, one 
an perform all ne
essary tests ofSe
tion A with the Hadamard en
oding of the input. Thus, we 
on
lude this �nal phase of theen
oding is also linear, and this 
ompletes the proof of Proposition 4.5.Part IIThe main 
onstru
t: A short, robust PCP ofproximity5 Overview of our main 
onstru
tThroughout this se
tion, n denotes the length of the expli
it input given to the PCPP veri�er,whi
h in 
ase of Cir
uit Value is de�ned as the size of the 
ir
uit (given as expli
it input). Asstated in the introdu
tion, our main results rely on the following highly eÆ
ient robust PCP ofproximity.Theorem 3.1 (Main Constru
t - restated): There exists a universal 
onstant 
 su
h for alln;m 2 Z+, 0 < Æ; 
 < 1=2 satisfying n1=m � m
m=(
Æ)3 and Æ � 
=
, Cir
uit Value has a robustPCP of proximity (for 
ir
uits of size n) with the following parameters� randomness �1� 1m� log n+O(m logm) +O(log log n) +O(log(1=Æ)),� de
ision 
omplexity n1=m � poly(logn; 1=Æ), whi
h also upper-bounds the query 
omplexity.16� perfe
t 
ompleteness, and� for proximity parameter Æ, the veri�er has robust-soundness error 
 with robustness parameter(1� 
)Æ.We 
omment that the 
ondition Æ < 
=
 merely means that we present robust PCPs of proximityonly for the more diÆ
ult 
ases (when Æ is small). A (simpli�ed) variant of Theorem 3.1 also yieldsthe ALMSS-type Robust PCP of proximity (of Theorem 3.2). Following is an overview of the proofof Theorem 3.1; the a
tual proof is given in the subsequent three se
tions.Theorem 3.1 is proved by modifying a 
onstru
tion that establishes Theorem 1.1. We follow[31℄ and modify their 
onstru
tion. (An alternative approa
h would be to start from [44℄, but that16In fa
t, we will upper-bound the query 
omplexity by q = n1=m � poly(log n; 1=Æ) and show that the veri�er'sde
ision 
an be implemented by a 
ir
uit of size ~O(q), whi
h 
an also be bounded by n1=m � poly(log n; 1=Æ) with aslightly larger unspe
i�ed polynomial. 32




onstru
tion does not seem amenable to a
hieving robust soundness.) The 
onstru
tion of [31℄may be abstra
ted as follows: To verify the satis�ability of a 
ir
uit of size n, a veri�er expe
tsora
les Fi : Fm ! F , i 2 f1: : : : ; t = poly logng, where F is a �eld and m is a parameter su
hthat Fm � mm � n. The veri�er then needs to test that (1) ea
h of the Fi's is 
lose to a m-variatepolynomial of low degree and (2) the polynomials satisfy some 
onsisten
y properties whi
h verifythat Fi is lo
ally 
onsistent with Fi�1.17 (These 
onsisten
y 
he
ks in
lude tests whi
h depend onthe input 
ir
uit and verify that Fi's a
tually en
ode a satisfying assignment to the 
ir
uit.)We work within this framework | namely our veri�er will also try to a

ess ora
les for Fi's andtest low-degreeness and 
onsisten
y. Our key modi�
ation to this 
onstru
tion is a randomness-redu
tion in the low-degree test obtained by using the small 
olle
tion of (small-biased) lines of [12℄,while using only the \
anoni
al" representations of these lines (and avoiding any 
ompli
ation thatwas introdu
ed towards \proof 
omposition"). In parti
ular, unlike in [31, 28, 12℄, we 
annot a�ordto pa
k the polynomials F1; : : : ;Ft into a single polynomial (by using an auxiliary variable thatblows-up the proof length by a fa
tor of the size of the �eld in use). Instead, we just maintain allthese t polynomials separately and test them separately to obtain Theorem 1.1. (In the traditionalframework of parallelized PCPs, this would give an una�ordable in
rease in the number of (non-Boolean) queries. However, we will later ameliorate this loss by a \bundling te
hnique" that willyield robust-soundness.)The resulting PCP is 
onverted into a PCP of proximity by 
omparing the input-ora
le (i.e.supposed satisfying assignment to the 
ir
uit) to the proof-ora
le (whi
h is supposed to in
ludean en
oding of the said assignment). That is, we read a random lo
ation of the input and the
orresponding lo
ation of the proof ora
le, and test for equality. A
tually, these lo
ations of theproof-ora
le must be a

essed via a self-
orre
tion me
hanism (rather than merely probing at thedesired points of 
omparison), sin
e they 
onstitute only a small part of the proof ora
le (and thus
orruptions there may not be dete
ted). (This te
hnique was already suggested in [6℄.)The most 
omplex and subtle part of the proof of Theorem 3.1 is establishing the robust-soundness property. We sket
h how we do this below, �rst dealing with the low-degree test andthe 
onsisten
y tests separately, and then showing how to re
on
ile the two \di�erent" �xes.Low-degree tests of F1; : : : ;Ft: Sele
ting a random line ` : F ! Fm (from the aforementionedsample spa
e), we 
an 
he
k that (for ea
h i) the restri
tion of Fi to the line ` (i.e., the fun
tionfi(j) , Fi(`(j))) is a low-degree (univariate) polynomial. Ea
h of these tests is individually robust;that is, if Fi is far from being a low-degree polynomial then with high probability the restri
tion ofFi to a random line ` (in the sample spa
e) is far from being a low-degree polynomial. The problemis that the 
onjun
tion of the t tests is not suÆ
iently robust; that is, if one of the Fi's is Æ-far frombeing a low-degree polynomial then it is only guaranteed that the sequen
e of t restri
tions (i.e.,the sequen
e of the fi's) is (Æ=t)-far from being a sequen
e of t low-degree (univariate) polynomials.Thus robustness de
reases by a fa
tor of t, whi
h we 
annot a�ord for non
onstant t.hOur solution is to observe that we 
an \bundle" the t fun
tions together into a fun
tion F :Fm ! F t su
h that if one of the Fi's is far from being a low-degree polynomial then the restri
tionof F to a random line will be far from being a bundling of t low-degree univariate polynomials.Spe
i�
ally, for every x 2 Fm, de�ne F(x) , (F1(x); :::;Ft(x)). To test that F is a bundling of low-degree polynomials, sele
t a random line ` (as above), and 
he
k that f `(j) = F(`(j)) is a bundlingof low-degree univariate polynomials. Thus, we establish robustness at the bundle level; that is, ifone of the Fi's is far from being low degree then, with high probability, one must modify f ` on a17Stri
tly speaking, the 
onsisten
y 
he
ks are a little more 
ompli
ated, with the fun
tions really being indexedby two subs
ripts and 
onsisten
y tests being between Fi;j and Fi;j�1, as well as between Fi;0 and Fi+1;0. However,these di�eren
es don't alter our task signi�
antly | we ignore them in this se
tion to simplify our notation.33




onstant fra
tion of values in order to make the test a

ept. The point is that this robustness refersto Hamming distan
e over the alphabet F t, rather than alphabet F as before. We 
an a�ord thisin
rease in alphabet size, as we later en
ode the values of F using an error-
orre
ting 
ode in orderto derive robustness at the bit level.We wish to highlight a key point that makes the above approa
h work: when we look at thevalues of F restri
ted to a random line, we get the values of the individual Fi's restri
ted to somerandom line, whi
h is exa
tly what a low-degree test of ea
h Fi needs. This fa
t is not verysurprising, given that we are subje
ting all Fi's to the same test. But what happens when weneed to make two di�erent types of tests? This question is not a
ademi
 and does 
ome up in the
onsisten
y tests.Consisten
y tests: To bundle the t 
onsisten
y tests between Fi and Fi+1 we need to lookinto the stru
ture of these tests. We note that for every i, a random test essentially refers to thevalues of Fi and Fi+1 on (random) i-th axis-parallel lines. That is, for every i, and a randomx0 = (x1; :::; xi�1) 2 F i�1 and x00 = (xi+1; :::; xm) 2 Fm�i, we need to 
he
k some relation betweenFi(x0; �; x00) and Fi+1(x0; �; x00).18 Clearly, querying F as above on the ith axis-parallel line, we 
anobtain the relevant values from F(x0; �; x00), but this works only for one spe
i�
 value of i, and othervalues of i will require us to make other queries. The end result would be that we'll gain nothingfrom the bundling (i.e., from F) over using the individual Fi's, whi
h yields a fa
tor of t loss in therobustness.19 Fortunately, a di�erent bundling works in this 
ase.Consider F0 su
h that F0(x) , (F1(x);GF (2)(S(x)); :::;Ft(St�1(x))), for every x 2 Fm, where S denotes a (right) 
y
li
-shift (i.e.,S(x1; :::; xm) = (xm; x1 : : : xm�1) and Si(x1; :::; xm) = (xm�(i�1); : : : ; xm; x1; x2; : : : xm�i)). Now,if we ask for the value of F0 on the �rst and last axis-parallel lines (i.e., on (�; x2; :::; xm) and(x2; :::; xm; �) = S�1(�; x2; :::; xm)), then we get all we need for all the m tests. Spe
i�
ally, forevery i, the i-th 
omponent in the bundled fun
tion F0(�; x2; :::; xm) is Fi(Si�1(�; x2; :::; xm)) =Fi(xm�i+2; :::; xm; �; x2; :::; xm�i+1), whereas the (i + 1)-st 
omponent in F0(S�1(�; x2; :::; xm)) isFi+1(Si(S�1(�; x2 : : : ; xm))) = Fi+1(xm�i+2; :::; xm; �; x2; :::; xm�i+1). Thus, we need only to querytwo bundles (rather than t), and robustness only drops by a 
onstant fa
tor.Re
on
iling the two bundlings: But what happens with the low-degree tests that we need todo (whi
h were \served" ni
ely by the original bundling F)? Note that we 
annot use both F andF0, be
ause this will requires testing 
onsisten
y between them, whi
h will introdu
e new problemsas well as a 
ost in randomness that we 
annot a�ord. Fortunately, the new bundling (i.e., F0),designed to serve the axis-parallel line 
omparisons, 
an also serve the low-degree tests. Indeed, thevarious Fi's will not be inspe
ted on the same lines, but this does not matter, be
ause the propertyof being a low-degree polynomial is preserved when \shifted" (under S).Tightening the gap between robustness and proximity: The above des
ription suÆ
es forderiving a weaker version of Theorem 3.1 in whi
h the robustness is only (say) Æ=3 rather than(1 � 
)Æ for a parameter 
 that may be set as low as 1=poly(log n). Su
h a weaker result yields aweaker version of Theorem 3.3 in whi
h the query 
omplexity is exponentially larger (e.g., for proof-length exp(o(log logn)2) � n, we would have obtained query 
omplexity exp(o(log log n)) = logo(1) nrather than o(log log n)); see 
omment at the end of Se
tion 3. To obtain the stronger bound onthe robustness parameter, we take a 
loser look at the 
onjun
tion of the standard PCP test and18Again, this is an oversimpli�
ation, but suÆ
es to 
onvey the main idea of our solution.19It turns out that for 
onstant m (e.g., m = 2) this does not pose a problem. However, a 
onstant m would suÆ
eonly for proving a slightly weaker version of Theorem 1.2 (where o(log log n) is repla
ed by log log n). but not forproving Theorem 1.3, whi
h requires setting m = log" n, for 
onstant " > 0.34



the proximity test. The PCP test 
an be shown to have 
onstant robustness 
 > 0, whereas theproximity test 
an be shown to have robustness Æ0 , (1 � 
))Æ. When 
ombining the two tests,we obtain robustness equal to min(�
; (1 � �)Æ0), where � is the relative length of queries used inthe PCP test (as a fra
tion of the total number of queries). A natural 
hoi
e, whi
h yields theweaker result, is to weight the queries (or repli
ate the smaller part) so that � = 1=2. (This yieldsrobustness of approximately min(
; Æ0)=2.) In order to obtain the stronger bound, we assign weightssu
h that � = 
, and obtain robustness min(

; (1� 
)Æ0) > min(
(
); (1� 2
)Æ), whi
h simpli�esto (1�2
)Æ for Æ < 
=O(1). (The above des
ription avoids the fa
t that the PCP test has 
onstantsoundness error, but the soundness error 
an be de
reased to 
 by using sequential repetitionswhile paying a minor 
ost in randomness and while approximately preserving the robustness. We
omment that the proximity test, as is, has soundness error 
.)6 A randomness-eÆ
ient PCPIn this se
tion, we present a vanilla version (Theorem 6.1) of Theorem 3.1. More spe
i�
ally, we
onstru
t a regular PCP forCir
uit Satisfiability(i.e., a robust PCP of proximity without eitherthe robustness or proximity properties). This 
onstru
tion favors over earlier PCP 
onstru
tions inthe fa
t that it is very eÆ
ient in randomness. As mentioned earlier, this theorem suÆ
es to proveTheorem 1.1.Theorem 6.1 There exists a universal 
onstant 0 < " < 1 su
h that the following holds. Supposem 2 Z+ satis�es m � log n=loglogn Then there exists a PCP for Cir
uit Satisfiability (for
ir
uits of size n) with the following parameters� randomness �1� 1m� log n+O(m logm) +O(log log n),� query 
omplexity q = O(m2n1=m log2 n) and de
ision 
omplexity ~O(q),� perfe
t 
ompleteness,� and soundness error 1� ".The 
onstru
tion of the PCP for Cir
uit Satisfiability pro
eeds in three steps. First, wetransform the input 
ir
uit ' to a well-stru
tured 
ir
uit '0 along the lines of Polish
huk andSpielman [44, 52℄ (Se
tion 6.1). '0 is only slightly larger than ', but has an algebrai
 stru
turethat will be 
ru
ial to our veri�
ation pro
ess. Any legal assignment to the gates of ' (i.e. onethat preserves the fun
tionality of the gates of ') 
an be transformed to a legal assignment to '0.The important property of '0 is the following: If we en
ode an assignment to the gates of '0 usinga spe
i�
 sequen
e of Reed-Muller 
odewords (i.e. low degree polynomials), then the legality ofthe assignment 
an be lo
ally veri�ed (by reading a small random portion of the en
oding). Theen
oding via low degree polynomials (and resulting lo
al tests) is as in Harsha and Sudan [31℄ andis des
ribed in Se
tion 6.2. Thus, our PCP veri�er will essentially test (i) that the en
oding ofthe purported satisfying assignment to '0 is formed of low degree polynomials, (this part will bedone using the randomness-eÆ
ient low degree test of Ben Sasson et al. [12℄); and (ii) that theassignment is legal. Se
tion 6.3 des
ribes the 
onstru
tion of the PCP veri�er and Se
tion 6.4analyzes its properties. Most of the above results are impli
it in the literature, but 
arefullyabstra
ting the results and putting them together helps us in signi�
antly redu
ing the randomnessof the PCP veri�er. 35



6.1 Well-stru
tured Boolean 
ir
uitsThe main problem with designing a randomness-eÆ
ient PCP veri�er dire
tly for Cir
uit Satis-fiability is that we need to en
ode the assignment to all gates of the input 
ir
uit using 
ertainReed-Muller based 
odes, in su
h a way that will allow us to lo
ally verify the legality of all gatesof the 
ir
uit, using only the en
oded assignment. In order to do this, we require the 
ir
uit to havea well-behaved stru
ture (amenable to our spe
i�
 en
oding and veri�
ation demands). Of 
ourse,an arbitrary 
ir
uit does not ne
essarily have this stru
ture, but lu
kily we have the te
hnology toover
ome this. More to the point, we 
an restru
ture any 
ir
uit into a well-behaved 
ir
uit thatwill suit our needs. The natural en
oding (used e.g. in the Hadamard based PCP, Se
tion A) in
ursa quadrati
 blowup in size. To get over this problem, Polish
huk and Spielman [44, 52℄ introdu
eda di�erent, more eÆ
ient restru
turing pro
ess that embeds the input 
ir
uit into well-stru
turedgraphs known as de Bruijn graphs. Indeed, the blowup in 
ir
uit size using these 
ir
uits is merelyby a logarithmi
 multipli
ative fa
tor, and their usefulness for the lo
al veri�
ation of legal assign-ments will be
ome evident later (in Se
tion 6.2). As in Polish
huk and Spielman [44, 52℄, we embedthe input 
ir
uit into wrapped de Bruijn graphs (see De�nition 6.2). We use a slightly di�erent def-inition of de Bruijn graphs, more 
onvenient for our purposes, than that used in [44, 52℄. Howeverit 
an easily be 
he
ked that these two de�nitions yield isomorphi
 graphs. The main advantagewith the de Bruijn graphs is that the neighborhood relations 
an be expressed very easily usingsimple bit-operations like 
y
li
-shifts and bit-
ips. In [44, 52℄ the vertex set of these graphs isidenti�ed with a ve
tor spa
e. We instead work with a stri
t embedding of these graphs in a ve
torspa
e where the verti
es are a stri
t subset of the ve
tor spa
e. The bene�t of both approa
hesis that the neighborhood fun
tions 
an be expressed as aÆne fun
tions (see Se
tion 6.2 for moredetails). The reason for our approa
h will be explained at the end of Se
tion 6.2.De�nition 6.2 The wrapped de Bruijn graph GN;l is a dire
ted graph with l layers ea
h with 2Nnodes whi
h are represented by N -bit strings. The layers are numbered 0; 1; : : : ; l � 1. The noderepresented by v = (b0; : : : ; bi� ; : : : ; bN�1) in layer i has edges pointing to the nodes represented by�i;0(v) = (b0; : : : ; bi� ; : : : ; bN�1) and �i;1(v) = (b0; : : : ; bi��1; : : : ; bN�1) in layer (i + 1) modulo l,where i� is i modulo N and a�b denotes the sum of a and b modulo 2.See Figure 1 for an example.We now des
ribe how to embed a 
ir
uit into a wrapped de Bruijn graph (see Figure 2 fora simple example). Given a 
ir
uit C with n gates (in
luding both input and output gates), weasso
iate with it a wrapped de Bruijn graph GN;l where N = log n and l = 5N = 5 log n. We thenasso
iate the nodes in layer 0 with the gates of the 
ir
uit. Now, we wish to map ea
h wire inthe 
ir
uit to a path in GN;l between the 
orresponding nodes of layer 0. Standard pa
ket-routingte
hniques (see [39℄) 
an be used to show that if the number of layers l is at least 5N then su
h arouting 
an be done with edge-disjoint paths. (Re
all that we work with 
ir
uits whose fan-in andfan-out are 2.)Thus, we 
an �nd \swit
hes" for ea
h of the nodes in layers 1; : : : ; l � 1 of the graph su
h thatthe output of ea
h gate (i.e., node in layer 0) is routed to the input of the gates that require it.Ea
h node has two inputs and two outputs, and thus there is a 
onstant number of swit
hes routingin
oming edges to outgoing ones (See Figure 3). For nodes in layer 0, instead of spe
ifying a swit
h,we spe
ify the fun
tionality of the Boolean gate asso
iated to that node in the 
ir
uit (e.g. AND,OR, PARITY, NOT, INPUT, OUTPUT). A
tually unary gates (su
h as NOT and OUTPUT) havetwo forms (NOT, NOT', OUTPUT, OUTPUT') in order to spe
ify whi
h of the two in
oming edgesin the de Bruijn graph to use. 36



Figure 1: The wrapped de Bruijn graph G3;3. Noti
e the �rst and last layer are the same.This spe
i�es the embedding of the input 
ir
uit into a well-stru
tured 
ir
uit (based on a deBruijn graph). More pre
isely, let C = fType of swit
hing a
tionsg [ fType of Boolean gatesg bethe set of allowable gates of the well-stru
tured 
ir
uit (See Figure 3) . Given a 
ir
uit on n gates,we 
an 
onstru
t, in polynomial time, a wrapped de Bruijn graph GN;l (where N = logn andl = 5 logN) and l fun
tions T0; T1; : : : ; Tl�1 : f0; 1gN ! C where ea
h fun
tion Ti is a spe
i�
ationof the gates of layer i (i.e. a spe
i�
ation of the swit
hing a
tion or Boolean fun
tionality).We now demonstrate how to translate a proof that a 
ir
uit is satis�able into an assignmentthat satis�es the embedded 
ir
uit. A proof that a 
ir
uit is satis�able 
onsists of an assignmentof 0's and 1's to the inputs and the gates of the 
ir
uit su
h that ea
h gate's output is 
onsistentwith its inputs and the output gate evaluates to 1. The 
orresponding assignment to the embedded
ir
uit 
onsists of an assignment of 0's and 1's to the edges entering and leaving the nodes of thewrapped de Bruijn graph that is 
onsistent with the fun
tionality of the gates (in layer 0) and theswit
hing a
tions of the nodes (in the other layers). Sin
e we are assigning values to nodes of theembedded graph (and not their edges), the assignment a
tually asso
iates a 4-tuple of 0's and 1'sto ea
h of the nodes in the graph indi
ating the value 
arried by the four edges in
ident at thatnode (two in
oming and two outgoing). More formally, the embedded assignment is given by aset of l fun
tions A0; A1; : : : ; Al�1 where ea
h fun
tion Ai : f0; 1gN ! f0; 1g4 spe
i�es the values
arried by the 4 edges in
ident at that vertex. 37



Figure 2: Embedding of a 
ir
uit into G3;3. In this example all paths between nodes at 0 layer arevertex disjoint. For general 
ir
uits we merely need edge disjoint paths.We now list the 
onstraints on the embedded 
ir
uit that assure us that the only legal assign-ments are ones that 
orrespond to legal satisfying assignments of the original 
ir
uit, i.e. assign-ments that 
orre
tly propagate along the edges of the 
ir
uit, 
orre
tly 
ompute the value of everygate and produ
e a 1 at the output gate.De�nition 6.3 The assignment 
onstraints for ea
h node of the well-stru
tured 
ir
uit require:� the two outgoing values at the node are propagated 
orre
tly to the in
oming values of itsneighbors at the next level,� for nodes at layers 6= 0, the two outgoing values have the unique values di
tated by the in-
oming values and the swit
hing a
tion,� for non-OUTPUT nodes in layer 0, both outgoing values equal the unique value di
tated bythe gate fun
tionality and the in
oming values (the INPUT fun
tionality merely requires thatthe two outgoing values are equal to ea
h other)� for nodes in layer 0 with an OUTPUT fun
tionality, the appropriate in
oming value equals 1Let  : C � (f0; 1g4)3 ! f0; 1g be the boolean fun
tion su
h that  (t; a; a0; a1) = 0 i� a node whoseT -gate is t, A-assignment is a, and whose neighbors in the next layer have A-assignments a0 anda1 respe
tively, satis�es the aforementioned assignment 
onstraints.Observe that the de�nition of  is independent of N , the assignments Ai and gates Ti. By def-inition, the assignment A = (A0; : : : ; Al�1) is legal for an embedded 
ir
uit de�ned by T0; : : : ; Tl�1if and only if for every layer i and every node v in layer i, �T (v); A(v); A��i;0(v)�; A��i;1(v)�� = 0:We are now ready to formally de�ne the well-stru
tured 
ir
uit satis�ability problem.38



Figure 3: Some gates of a well-stru
tured 
ir
uit. Gates 1{2 are swit
hing gates, and gate 3 sits inlayer 0 and 
omputes the parity (xor) fun
tion.De�nition 6.4 The problem Stru
tured-CktSAT has as its instan
es hGN;l; fT0; T1; : : : ; Tl�1giwhere GN;l is a wrapped de Bruijn graph with l layers and Ti : f0; 1gN ! C is a spe
i�
ation of thenode types of layer i of the graph (Ti's are spe
i�ed by a table of values).hGN;l; fT0; : : : ; Tl�1gi 2 Stru
tured-CktSAT if there exists a set of assignments A0; A1; : : : ; Al�1where Ai : f0; 1gN ! f0; 1g4 is an assignment to the nodes of layer i of GN su
h that for all layersi and all nodes v in layer i, �T (v); A(v); A��i;0(v)�; A��i;1(v)�� = 0:The above dis
ussion also demonstrates the existen
e of a redu
tion fromCktSAT to Stru
tured-CktSAT whi
h does not blow up the length of the target instan
e by more than a logarithmi
multipli
ative fa
tor.Proposition 6.5 There exists a polynomial time redu
tion R from CktSAT to Stru
tured-CktSAT su
h that for any 
ir
uit C, it holds that C 2 CktSAT if and only ifR(C) 2 Stru
tured-CktSAT. Moreover, if C is a 
ir
uit of size n, then R(C) = hGN;l; fT0; : : : ; Tl�1gi where N =dlog ne and l = 5N .Remark 6.6 The above redu
tion though known to take polynomial time (via routing te
hniques)is not known to be of almost linear time.Remark 6.7 We observe that if C is a satis�able 
ir
uit, then any set of assignments A0; : : : ; Alproving that the redu
ed instan
e R(C) = hGN;l; fT0; : : : ; Tl�1gi is a YES instan
e of Stru
tured-CktSAT
ontains within it a satisfying assignment to the 
ir
uit C. Spe
i�
ally, let I be the set ofnodes in layer 0 that have gate fun
tionality INPUT asso
iated with them. Then the assignmentA0 restri
ted to the set of nodes I (i.e.,A0jI) 
ontains a satisfying assignment. More pre
isely, thesatisfying assignment is obtained by 
on
atenating the third bit (i.e., �rst outgoing bit) of A0ji 2f0; 1g4 for all i 2 I. Conversely, every satisfying assignment w to C 
an be extended to A0; : : : ; Al�1su
h that A0jI 
ontains w. This is done by 
omputing the values of all gates in the 
omputationof C(w), setting the outgoing bits of A0 a

ording to these values, and routing them throughout39



Figure 4: Example of legal and illegal assignments. The two verti
es on the left are the inputs (atlayer i� 1) to a gate at layer i. Re
all that assignments evaluate ea
h in
oming and outgoing edgeof a gate.GN;l a

ording to the swit
hing a
tions to obtain A1; : : : ; Al�1 and the in
oming bits of A0. Thisobservation will be vital while 
onstru
ting PCPs of proximity(see Se
tion 7).Remark 6.8 Suppose the input 
ir
uit C is a linear 
ir
uit, in the sense that all gates are INPUT,OUTPUT, or PARITY gates, and the OUTPUT gates test for 0 rather 1 (See De�nition 8.13).Then it 
an be veri�ed that the transformation mapping satisfying assignments w of C to legalassignments A0; : : : ; Al�1 of R(C) is GF(2)-linear. The reason is that ea
h gate in the 
omputationof C(w) is a GF(2)-linear fun
tion of w. These remarks will be used in the 
oding appli
ations, toobtain linear 
odes (see Se
tion 8.4 for more information).6.2 ArithmetizationIn this se
tion, we 
onstru
t an algebrai
 version of Stru
tured-CktSAT by arithmetizing italong the lines of Harsha and Sudan [31℄. The broad overview of the arithmetization is as follows:We embed the nodes in ea
h layer of the wrapped de Bruijn graph GN;l in a ve
tor spa
e andextend the gate spe
i�
ations and assignments to low-degree polynomials over this spa
e. Finally,we express the assignment 
onstraints (De�nition 6.3) as a pair of polynomial identities satis�edby these polynomials.First for some notation. Let m be a parameter. Set h su
h that h = N=m where 2N is thenumber of nodes in ea
h layer of the de Bruijn graph. Choose a �nite extension �eld F of GF(2)of size roughly 
Fm22h = 
Fm22N=m where 
F is a suitably large 
onstant to be spe
i�ed later.Spe
i�
ally, take F = GF(2)f for f = h + 2 logm + log 
F . Let fe0; e1; : : : ; ef�1g be a basis of Fover GF(2). Set H to be a subspa
e of GF(2)f (and hen
e a subset of F ) spanned by fe0; : : : ; eh�1g.Note that Hm is a subset of the spa
e Fm. Furthermore, jHmj = 2N . Hen
e, we 
an embed ea
hlayer of the graph GN;l in Fm by identifying the node v = (b0; : : : ; bN�1) 2 f0; 1gN with the element(b0e0+ � � �+ bh�1eh�1; bhe0+ � � �+ b2h�1eh�1; : : : ; b(m�1)he0+ � � �+ bmh�1eh�1) of Hm. Hen
eforth,we use both representations (N -bit string and element of Hm) inter
hangeably. The representationwill be 
lear from the 
ontext.Any assignment S : Hm ! F 
an be interpolated to obtain a polynomial ~S : Fm ! F of degreeat most jHj in ea
h variable (and hen
e a total degree of at most mjHj) su
h that ~SjHm = S (i.e.,40



the restri
tion of ~S to Hm 
oin
ides with the fun
tion S). Conversely, any polynomial ~S : Fm ! F
an be interpreted as an assignment from Hm to F by 
onsidering the fun
tion restri
ted to thesub-domain Hm.Re
all that C and f0; 1g4 are the set of allowable gates and assignments given by the gatefun
tions Ti and assignments Ai in the Stru
tured-CktSAT problem. We identify C withsome �xed subset of F and we identify f0; 1g4 with the set of elements spanned by fe0; e1; e2; e3gover GF(2). With this identi�
ation, we 
an view the assignments Ai and gates Ti as fun
tionsAi : Hm ! F and Ti : Hm ! F respe
tively. Furthermore, we 
an interpolate these fun
tions, asmentioned above, to obtain polynomials ~Ai : Fm ! F and ~Ti : Fm ! F of degree at most mjHjover F .We now express the neighborhood fun
tions of the graph in terms of aÆne fun
tions over Fm.This is where the ni
e stru
ture of the wrapped de Bruijn graph will be useful. For any positiveinteger i, de�ne aÆne transformations ~�i;0; ~�i;1 : Fm ! Fm as follows: ~�i;0 is the identity fun
tion.For ~�i;1, �rst let t = bi=h
 mod m and u = i mod h. Then ~�i;1(z0; : : : ; zm�1) = (z0; : : : ; zt�1; zt +eu; zt+1; : : : ; zm�1).20 It 
an 
he
ked from the above de�nition that for any layer i and node x inlayer i (whi
h we view as a point in Hm), we have ~�i;j(x) = �i;j(x) for j = 0; 1. In other words, ~�is an extension of the neighborhood relations of the graph GN;l over Fm.Finally, we now express the assignment 
onstraints (De�nition 6.3) as polynomial identities.The �rst of these identities 
he
ks that the assignments given by the assignment polynomial ~Ai area
tually elements of f0; 1g4 for points in Hm. For this purpose, let  0 : F ! F be the univariatepolynomial of degree 24 given by  0(z) = Y�2f0;1g4(z � �) (1)This polynomial satis�es  0(z) = 0 i� z 2 f0; 1g4 (re
all we identi�ed f0; 1g4 with a subsetof F spanned by e0; : : : ; e3). We 
he
k that  0( ~Ai(x)) = 0 for all x 2 Hm and all layers i.We then arithmetize the rule  (from De�nition 6.3) to obtain a polynomial  1 : F 4 ! F .In other words,  1 : F 4 ! F is a polynomial su
h that  1(t; a; a0; a1) =  (t; a; a0; a1) for all(t; a; a0; a1) 2 C � (f0; 1g4)3. The degree of  1 
an be made 
onstant, be
ause jCj and jf0; 1g4jare 
onstant.21 The two polynomial identities we would like to 
he
k are  0( ~Ai(x)) = 0 and 1( ~Ti(x); ~Ai(x); ~Ai+1(~�i;0(x)); ~Ai+1(~�i;1(x))) = 0 for all x 2 Hm. For notational 
onvenien
e, weexpress these two 
onditions together as a pair of polynomials  0 = ( 0;  1) : F 4 ! F 2 su
h that 0(x1; x2; x2; x4) = ( 0(x2);  1(x1; x2; x3; x4)). Let � be the maximum of the degree of these twopolynomials. In order to make these polynomial identities suÆ
iently redundant,, we set 
F to bea suÆ
iently large 
onstant (say 100) su
h that �m22h=jF j is low.We have thus redu
ed Stru
tured-CktSAT to an algebrai
 
onsisten
y problem, whi
h weshall 
all the AS-CktSAT problem (short for Algebrai
-Stru
tured-CktSAT)22.De�nition 6.9 The promise problem AS-CktSAT = (AS-CktSATYES; AS-CktSATNO) hasas its instan
es h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi where F is an �nite extension �eld of GF(2) (i.e.,20An alternate des
ription of ~�i;1 is as follows: Sin
e F = GF(2)f , we 
an view Fm as mf -dimensional spa
e overGF(2). Hen
e, any ve
tor (z0; : : : ; zm�1) 
an be written as (b0;0; : : : ; b0;f�1; b1;0; : : : ; b1;f�1; : : : ; bm�1;0; : : : ; bm�1;f�1).Furthermore, we note that for any ve
tor (z0; : : : ; zm�1) in Hm, br;s = 0 for all s � h and all r. It 
an now be 
he
kedthat ~�i;1 is the aÆne transformation that 
ips the bit bt;u where t = bi=h
 modm and u = i mod h..21Noti
e that we do not spe
ify  1 uniquely at this stage. Any 
hoi
e of a 
onstant-degree polynomial will workin this se
tion, but to enfor
e linearity, we will use a somewhat non-standard 
hoi
e in Se
tion 8.4. Spe
i�
ally, weargue that if C is a linear 
ir
uit, then  1 
an be pi
ked to be GF(2)-linear transformations over GF (2), and wepoint out that  0 is a GF (2)-linear transformation. For more details see Se
tion 8.4.22AS-CktSAT is a
tually a promise problem. 41



F = GF(2)f for some f), H a GF(2)-linear subspa
e of F and ~Ti : Fm ! F , for i = 0; : : : ; l� 1, asequen
e of polynomials of degree d, where jHj = n1=m, d = m � jHj, and F = 
F �md. The �eld Fis spe
i�ed by an irredu
ible polynomial p(x) of degree f over GF(2), H is taken to be spanned bythe �rst h = log jHj 
anoni
al basis elements, and ea
h of the polynomials ~Ti is spe
i�ed by a listof 
oeÆ
ients.� h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi 2 AS-CktSATYES if there exist a sequen
e of degree d polyno-mials ~Ai : Fm ! F; i = 0; : : : ; l � 1 su
h that for all i = 0; : : : ; l � 1 and all x 2 Hm, 0� ~Ti(x); ~Ai(x); ~Ai+1�~�i;0(x)�; ~Ai+1�~�i;1(x)�� = (0; 0)� h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi 2 AS-CktSATNO if for all fun
tions ~Ai : Fm ! F; i =0; : : : ; l � 1 there exists an i = 0; : : : ; l � 1 and x 2 Hm su
h that, 0� ~Ti(x); ~Ai(x); ~Ai+1�~�i;0(x)�; ~Ai+1�~�i;1(x)�� 6= (0; 0)where ~�i;j's and  0 are as de�ned earlier. (Re
all that the ~�'s are linear fun
tion while  0 representsa pair of polynomials of degree at most �.)From the above dis
ussion we have the following redu
tion from Stru
tured-CktSAT toAS-CktSAT.Proposition 6.10 There exists a polynomial-time 
omputable fun
tion R mapping any instan
eI = hGN;l; fT0; T1; : : : ; Tl�1gi of Stru
tured-CktSAT and parameter m � logn=loglogn (wheren = jIj) to an instan
e R(I; 1m) of AS-CktSAT su
h thatI 2 Stru
tured-CktSAT =) R(I; 1m) 2 AS-CktSATYESI =2 Stru
tured-CktSAT =) R(I; 1m) 2 AS-CktSATNOMoreover, if R(I; 1m) = h1n0 ; 1m0 ; F;H; f ~T0; : : : ; ~Tl0�1gi, then n0 = 2N (the number of nodes inea
h layer of the de Bruijn graph GN;l), m0 = m, and l0 = l (the number of layers in the de Bruijngraph).Combining Propositions 6.5 and 6.10, we have the following.Proposition 6.11 There exists a polynomial-time 
omputable fun
tion R mapping any 
ir
uit Cand parameter m � log n=loglogn (where n = jCj) to an instan
e R(C; 1m) of AS-CktSAT su
hthat C 2 CktSAT () R(C; 1m) 2 AS-CktSAT.Moreover, if C is a 
ir
uit of size n then R(C; 1m) = h1n0 ; 1m0 ; F;H; f ~T0; : : : ; ~Tl0�1gi, wheren0 = �(n), m0 = m, and l0 � 5 log n0. Thus, jR(C; 1m)j = O((
Fm2)m logn) � jCj.Remark 6.12 Following Remark 6.7, if C is a satis�able 
ir
uit, then any set of polynomials~A0; : : : ; ~Al�1 proving that the redu
ed instan
e R(C; 1m) = h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi is a YESinstan
e of AS-CktSAT 
ontain within it a satisfying assignment to the 
ir
uit C. Spe
i�
ally,the set I (of layer-0 nodes with INPUT fun
tionality in GN;l) from Remark 6.7 
an now be viewedas a subset I � Hm. Then the polynomial ~A0 : Fm ! F restri
ted to the set I (i.e., ~A0jI) 
ontainsa satisfying assignment (again as a 
on
atenation of third-bits). Conversely, every satisfying as-signment w to C 
an be extended to a set of polynomials ~A0; : : : ; ~Al�1 su
h that ~A0jI 
ontains w.This is done by taking low-degree extensions of the fun
tions A0; : : : ; Al�1 from Remark 6.7.42



Remark 6.13 Following Remark 6.8, if C is a linear 
ir
uit, then the mapping of satisfying as-signments w of C to polynomials ~A0; : : : ; ~Al�1 satisfying R(C) is GF(2)-linear. This is due toRemark 6.8, the asso
iation of f0; 1g4 with the linear spa
e spanned by fe0; e1; e2; e3g in F , andfrom the fa
t that the interpolation from Ai to ~Ai is F -linear and hen
e GF(2)-linear. For moreinformation see Se
tion 8.4.Comment: Re
all that the arithmetization was obtained by 
onsidering low-degree extensionsover Fm of fun
tions from Hm to H. If H were a sub�eld of the �eld F this step would have 
auseda quadrati
 blow-up, and we avoid this problem by not insisting that H be a �eld. In [44, 52℄, His a �eld and F = H2 is an extension of it, but the PCP system refers only to a O(jHj)-sized ofF . We 
annot take this approa
h be
ause we will be using a total low-degree test, whi
h needs torefer to the entire ve
tor spa
e Fm. In 
ontrast, in [44, 52℄ an individual low-degree test is used,whi
h 
an work with a subset of Fm.6.3 The PCP veri�erWe design a PCP veri�er for CktSAT via the redu
tion to AS-CktSAT based on the randomness-eÆ
ient low-degree tests of Ben-Sasson et al. [12℄. Given a 
ir
uit C, the veri�er redu
es it to aninstan
e of the problem AS-CktSAT (Proposition 6.11). The proof 
onsists of a sequen
e ofora
les ~Ai : Fm ! F for i = 0; : : : ; l � 1 and an auxiliary sequen
e of ora
les Pi;j : Fm ! F 2 fori = 0; : : : ; l � 1 and j = 0; : : : ;m. For ea
h i and j, we view the auxiliary ora
le Pi;j : Fm ! F 2as a pair of fun
tions P (0)i;j : Fm ! F and P (1)i;j : Fm ! F (i.e., Pi;j(x) = (P (0)i;j (x); P (1)i;j (x))). Thisauxiliary sequen
e of ora
les helps the veri�er to 
he
k that the fun
tions ~Ai satisfy 
ondition  0(see De�nition 6.9).The veri�er expe
ts the �rst subsequen
e of auxiliary ora
les Pi;0(�) for i = 0; : : : ; l�1, to satisfythe following relation:Pi;0(x) =  0� ~Ti(x); ~Ai(x); ~Ai+1�~�i;0(x)�; ~Ai+1�~�i;1(x)�� 8x 2 Fm (2)Furthermore, it expe
ts Pi;0(x) = 0 for every x 2 Hm. Indeed, by De�nition 6.9, we have:Lemma 6.14 1. If h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi is a YES instan
e of AS-CktSAT, satis�edby polynomials ~A0; : : : ; ~Al�1, and P0;0; : : : ; Pl�1;0 are de�ned a

ording to Equation 2, thenPi;0(x) = (0; 0) for all x 2 Hm.2. If h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi is a NO instan
e of AS-CktSAT, then for any sequen
es offun
tions ~A0; : : : ; ~Al�1, P0;0; : : : ; Pl�1;0, either Equation 2 fails to hold for some i or Pi;0(x) 6=(0; 0) for some i and some x 2 Hm.Re
alling that the degree of the 
onstraint  0 (see De�nition 6.9) is at most � and that the ~Ai'sare of degree at most d = m � jHj, we observe that the Pi;0's 
an be taken to be of degree at most�d in Part 1.As mentioned above, the veri�er now needs to 
he
k that the fun
tions Pi;0 vanish on theset Hm. For this we use a \zero-propagation test", based on the sum-
he
k proto
ol of Lundet al. [40℄. Spe
i�
ally, the veri�er expe
ts the remaining set of auxiliary ora
les Pi;j = (P (0)i;j ; P (1)i;j )(i = 0; : : : ; l � 1 and j = 1; : : : ;m) to satisfy the following relations: Let H = fh0; : : : ; hjHj�1g be43



some �xed enumeration of the elements in H. For all b 2 f0; 1g,P (b)i;j �x1; : : : ; xj�1| {z }; xj ; xj+1; : : : ; xm| {z }� = jHj�1Xk=0 P (b)i;j�1�x1; : : : ; xj�1| {z }; hk; xj+1; : : : ; xm| {z }�xkj ;8(x1; : : : ; xm) 2 Fm (3)These relations ensure that for all i and j � 1, Pi;j(�) vanishes on F j � Hm�j i� the fun
tionPi;j�1(�) vanishes on F j�1 �Hm�j+1. In other words:Lemma 6.15 P (b)i;j jF j�Hm�j � 0 () P (b)i;j�1jF j�1�Hm�j+1 � 0:Thus, for all i, Pi;m vanishes on the entire spa
e Fm i� Pi;0 vanishes on Hm. Also, as P (b)i;0 hasdegree at most �d in ea
h variable, so does P (b)i;j for ea
h i and j. Hen
e, the degree of P (b)i;j is atmost �d.Thus, the veri�er needs to make the following 
he
ks� Low-Degree TestFor i = 0; : : : ; l � 1 and j = 0; : : : ;m, the sequen
e of fun
tions ~Ai are polynomials of degreeat most d = m � jHj and the sequen
e of fun
tions Pi;j are pairs of polynomials of degree atmost �d,� Edge-Consisten
y TestFor i = 0; : : : ; l � 1, the fun
tions Pi;0 obey Equation (2),� Zero Propagation TestFor i = 0; : : : ; l � 1 and j = 1; : : : ;m, the fun
tions Pi;j satisfy Equation (3),� Identity TestFor i = 0; : : : ; l � 1, the fun
tions Pi;m are identi
ally zero on the entire domain Fm.The Low-Degree test in most earlier 
onstru
tion of PCP veri�ers is performed using the \line-point" test. The \line-point" low degree test �rst 
hooses a random line, a random point on thisline and 
he
ks if the restri
tion of the fun
tion to the line (given by a univariate polynomial) agreeswith the value of the fun
tion at the point. A random line l is typi
ally 
hosen by 
hoosing tworandom points x; y 2 Fm and setting l = lx;y = fx + tyjt 2 Fg. However, this requires 2m log jF jbits of randomness whi
h is too expensive for our purposes. We save on randomness by usingthe low-degree test of Ben-Sasson et al. [12℄ based on small-biased spa
es (see Se
tion B for moredetails). The low-degree test of [12℄ uses pseudorandom lines instead of totally random lines in thefollowing sense: The pseudorandom line l = lx;y is 
hosen by 
hoosing the �rst point x at randomfrom Fm, while the se
ond point y is 
hosen from a �-biased subset S� of Fm. This needs onlylog jS�j + log jF jm bits of randomness. We further save on randomness by the use of 
anoni
allines23. Consider any pseudorandom line l = lx;y where x 2 Fm and y 2 S�. We observe that forevery x0 2 l, we have lx0;y = lx;y. In other words, jF j di�erent 
hoi
es of random bits leads to thesame line lx;y. We prevent this redundan
y by representing ea
h line in a 
anoni
al manner. A
anoni
al line is 
hosen by �rst 
hoosing a random point y from the �-biased set S�. We view this23It is to be noted that the 
anoni
al representation of lines has been used either impli
itly or expli
itly in thesoundness analysis of all earlier uses of the Low-Degree Test. However, this is the �rst time that the 
anoni
alrepresentation is used to save on the number of random bits.44



y as spe
ifying the dire
tion (i.e., slope) of the line. This dire
tion partitions the spa
e Fm intojF jm�1 parallel lines (ea
h with dire
tion y). We enumerate these lines arbitrarily and sele
t one ofthem uniformly at random. Thus, 
hoosing a random 
anoni
al line 
osts only log jS�j+log jF jm�1bits of randomness. A further point to be noted is that we perform a \line" test instead of theregular \line-point" test: The test queries the fun
tion for all points along the 
anoni
al line lx;yand veri�es that the restri
tion of the fun
tion to this line is a low-degree polynomial.Having performed the low-degree test (i.e., veri�ed that the polynomials ~Ai's and Pi;j 's are 
loseto low-degree polynomials), the veri�er then performs ea
h of the Node-Consisten
y Test,Zero Propagation Test, and Identity Tests by 
hoosing a suitable small-sized sample inthe entire spa
e and 
he
king if the 
orresponding 
ondition is satis�ed on that sample. For theZero Propagation Test indeed the natural sample is an axis-parallel line. For the Edge-Consisten
y Test and Identity Test, the sample we use is any set of jF j points sele
ted froma partition of Fm into jF jm�1 equal sets.We are now ready to formally des
ribe the PCP veri�er for CktSAT. We parameterize thePCP veri�er in terms of m, the number of dimensions in our intermediate problem AS-CktSAT,and �, the parameter of the �-biased sets of Fm required for the low-degree tests of Ben-Sassonet al. [12℄. We rely on the fa
t that �-biased subsets of Fm of size at most poly(log jF jm; 1=�) 
anbe 
onstru
ted eÆ
iently [42, 2℄.PCP{Verifier ~Ai;Pi;j ;i=0;:::;l�1;j=0;:::;mm;� (C).1. Use Proposition 6.11 to redu
e the instan
e C of CktSAT, using parameter m, to aninstan
e h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi of AS-CktSAT, and set d = m � jHj.Notation: We let S� � Fm be a �-biased set of size at most � log jF jm� �2 [2℄. Let Fm =UjF jm�1�=1 U� and Fm = UjF jm�1�=1 V� be two arbitrary partitions of the spa
e Fm into jF j-sized sets ea
h.2. Choose a random string R of length log(jS�j � jF jm�1). [Note: We reuse R in all tests,but only the Low-Degree Test utilizes the full length of R.℄3. Low-Degree TestUse random string R to determine a random 
anoni
al line L in Fm using the �-biasedset S�.For i = 0; : : : ; l � 1,Query ora
le ~Ai on all points along the line L and reje
t if the restri
tion ~Ai to Lis not a (univariate) polynomial of degree at most d.For i = 0; : : : ; l � 1, j = 0; : : : ;m, and b 2 f0; 1g,Query ora
le P (b)i;j on all points along the line L and reje
t if the restri
tion of P (b)i;jto L is not a (univariate) polynomial of degree at most �d.4. Edge-Consisten
y TestUse the random string R to determine a random set U� of the partition Fm = UjF jm�1�=1 U�.For i = 0; : : : ; l � 1,For all x 2 U�, query Pi;0(x); ~Ai(x); ~Ai+1(~�i;0(x)) and ~Ai+1(~�i;1(x)) and reje
t ifEquation (2) is not satis�ed.5. Zero Propagation TestFor i = 0; : : : ; l � 1, j = 1; : : : ;m, and b 2 f0; 1g,45



Use random string R to determine a random jth axis-parallel line in Fm of theform L = f(a1; : : : ; aj�1;X; aj+1; : : : ; am) : X 2 Fg. Query P (b)i;j�1 and P (b)i;j alongall the points in L. Reje
t if either the restri
tion of P (b)i;j�1 or P (b)i;j to L is not aunivariate polynomial of degree at most �d or if any of the points on the line Lviolate Equation (3).6. Identity TestUse the random string R to determine a random set V� of the partition Fm = UjF jm�1�=1 V�.For i = 0; : : : ; l � 1,For all x 2 V�, query Pi;m(x). Reje
t if any of these Pi;m(x) is not (0; 0).A

ept if none of the above tests reje
t.Remark 6.161. The Low-Degree Test requires log(jS�j � jF jm�1) random bits to generate a 
anoni
al linein Fm using the �-biased set, while ea
h of the other tests require at most log(jF jm�1) bits ofrandomness. Hen
e, the string R suÆ
es for ea
h of the tests. For the settings of parameterswe use, log(jS�j � jF jm�1) is typi
ally signi�
antly smaller than log(jF jm), whi
h we would notbe able to a�ord.2. The Edge-Consisten
y Test and Identity Test in the \standard" sense are usuallyperformed by sele
ting a random point in the spa
e Fm and 
he
king whether the 
orrespond-ing 
ondition is satis�ed. However, we state these tests in a \non-standard" manner usingpartitions of the spa
e Fm into jF j sized tests so that these tests 
an easily be adapted whenwe 
onstru
t the robust PCP veri�er (see Se
tion 8). The non-standard tests are performedin the following manner: Choose a random set in the partition and perform the standard testfor ea
h point in the set. At present, we 
an work with any partition of Fm, however we willlater need spe
i�
 partitions to get \robustness".6.4 Analysis of the PCP veri�erWe now analyze the PCP veri�er above. The analysis below assumes that the parameters satisfym � log n=loglogn and � � 1=
 log n for a suÆ
iently large 
onstant 
. Theorem 6.1 
an be dedu
edby setting � = 1=
 log n.Complexity: The PCP Verifier makes O(lmjF j) = O(m3n1=m log n) queries ea
h of whi
hexpe
ts as an answer an element of F or F 2 (i.e., a string of length O(log jF j)). Hen
e, the to-tal (bit) query 
omplexity is O(lmjF j log jF j) = O(lm � 
Fm2n1=m log(
Fm2n1=m)). Re
alling thatl = 5 log n, this quantity is at most O(m2n1=m log2 n) for m � log n. For the de
ision 
omplexity,we note that the main 
omputations required are (a) testing whether a fun
tion is a low-degreeunivariate polynomial over F (for Low-Degree Test and Zero Propagation Test), (b) evalu-ating  0 on jF j quadruples of points (for Edge-Consisten
y Test), and (
) univariate polynomialinterpolation and evaluation (for testing (3) in Zero Propagation Test). We now argue thatea
h of these 
an be done with a nearly linear ( ~O(jF j)) number of operations over F , yielding anearly linear ( ~O(q)) de
ision 
omplexity overall. Ea
h evaluation of  0 
an be done with a 
onstantnumber of F -operations be
ause  0 is of 
onstant degree. Polynomial interpolation and evaluation
an be done with a nearly linear number of F -operations by [50, 49℄, and testing whether a fun
tionis of low degree redu
es to polynomial interpolation (interpolate to represent as a polynomial ofdegree jF j � 1 and 
he
k that the high-degree 
oeÆ
ients are zero). Ea
h F -operations 
an be46



done with ~O(log jF j) bit-operations, using the polynomial multipli
ation algorithm of [50, 49℄ (overGF(2)).The number of random bits used by the veri�er is exa
tly log(jS�j�jF jm�1). Let n0 = jF jm. Thenlog(jS�j�jF jm�1) = �1� 1m� log n0+log�poly� log n0� �� = �1� 1m� logn0+O(log log n0)+O �log � 1���.Now, n0 = (
Fm2)mn. Hen
e, log n0 = log n+2m logm+O(m) and log log n0 = log logn+O(logm).Thus, the total randomness is at most �1� 1m� log n+O(m logm) +O(log log n) +O �log � 1���.We summarize the above observations in the following proposition for future referen
e.Proposition 6.17 The randomness, query and de
ision 
omplexities of the PCP{Verifier arer = �1� 1m� logn+ O(m logm) + O(log logn) + O �log � 1���, q = O(m2n1=m log2 n) and d = ~O(q)respe
tively.Completeness: If C is satis�able, then the redu
tion redu
es it to an YES instan
e ofAS-CktSAT.Then by de�nition there exist polynomials ~Ai that satisfy 
onstraint  0. Setting Pi;j a

ording toEquations (2) and (3), we noti
e that the veri�er a

epts with probability one.Soundness: To prove the soundness, we need to prove that if C is not satis�able then the veri�era

epts with probability bounded away from 1. We will prove a stronger statement. Re
all fromRemark 6.12 that the fun
tion ~A0 : Fm ! F supposedly has the satisfying assignment embeddedwithin it. Let I � Fm be the set of lo
ations in Fm that 
ontains the assignment (i.e., ~A0jI issupposedly the assignment).Lemma 6.18 There exists a 
onstant 
 and a 
onstant 0 < "0 < 1 su
h that for all ";m; � satisfying" � "0, m � log n=loglogn and � � 1=
 log n, the following holds. If the veri�er a

epts proof ora
lesf ~Aig and fPi;jg with probability greater than 1 � ", then ~A0 is 4"-
lose to some polynomial bA0 ofdegree md su
h that C( bA0jI) = 1.Proof: Let � be the universal 
onstant from Theorem B.4. Set "0 = minf�; 122g. Let d = m2h,and 
hoose 
F to be a large enough 
onstant su
h that �md=jF j = �=
F � "0. Suppose ea
h of thefun
tions ~Ai are 4"-
lose to some polynomial of degree md and ea
h of the fun
tions P (b)i;j is 4"-
loseto some polynomial of �md. If this were not the 
ase, then by Theorem B.4 the Low-DegreeTest a

epts with probability at most 1 � " for the polynomial that is 4"-far. It 
an be veri�edthat the parameters satisfy the requirements of Theorem B.4, for suÆ
iently large 
hoi
es of the
onstants 
F and 
 and suÆ
iently small ".For ea
h i = 0; : : : ; l�1, let bAi : Fm ! F be the polynomial of degree at mostmd that is 4"-
loseto ~Ai. Similarly, for ea
h i = 0; : : : ; l � 1; j = 0; : : : ;m and b 2 f0; 1g, let bP (b)i;j be the polynomialof degree at most �md that is 4"-
lose to P (b)i;j . Su
h polynomials are uniquely de�ned sin
e everytwo polynomials of degree �md disagree in at least a 1� �mdjF j � 1� "0 > 8" fra
tion of points. Asin the 
ase of the Pi;j 's, let bPi;j : Fm ! F 2 be the fun
tion given by bPi;j(x) = ( bP (0)i;j (x); bP (1)i;j (x)).By hypothesis, bA0jI does not satisfy C. Then, by Lemmas 6.14 and 6.15, at least one of thefollowing must hold.(a) There exists i = 0; : : : ; l � 1 and b 2 f0; 1g su
h that bP (b)i;m 6� 0.Then for this i, the Identity Test fails unless a random set V� is 
hosen su
h that for allx 2 V�, P (b)i;m(x) = 0. Hen
e, it must be the 
ase that for all x 2 V�, either P (b)i;m(x) 6= bP (b)i;m(x)or bP (b)i;m(x) = 0. Sin
e the V 0�s form a partition of Fm, the probability of this o

urring is47



upper-bounded by the probability that a random x 2 Fm satis�es either P (b)i;m(x) 6= bP (bi;m(x)or bP (b)i;m(x) = 0. This probability is at most 4" + �mdjF j = 4" + �
F � 5"0, where we use thefa
t that bP (b)i;m is 4"-
lose to P (b)i;m and that a nonzero polynomial of degree �md vanishes onat most a �md=jF j fra
tion of points.(b) There exists i = 0; : : : ; l � 1 su
h that bPi;0, bAi, and bAi+1 do not obey Equation (2).In other words, bPi;0(x) 6�  0(( ~Ti(x); bAi(x); bAi+1(~�i;0(x)); bAi+1(~�i;1(x))). Then for this i, theEdge-Consisten
y Test fails unless a random partition U� is 
hosen su
h that for allx 2 U�, Pi;0(x) =  0(( ~Ti(x); ~Ai(x); ~Ai+1(~�i;0(x)); ~Ai+1(~�i;1(x))). Hen
e, it must be the 
asethat for every x 2 U�, that one of the following holds:P (0)i;0 (x) 6= bP (0)i;0 (x); P (1)i;0 (x) 6= bP (1)i;0 (x); ~Ai(x) 6= bAi(x); ~Ai+1(~�i;0(x)) 6= bAi+1(~�i;0(x));~Ai+1(~�i;1(x)) 6= bAi+1(~�i;1(x)); bPi;0(x) =  0(( ~Ti(x); bAi(x); bAi+1(~�i;0(x)); bAi+1(~�i;1(x))):The probability of this happening is at most the probability that a random x 2 Fm satis�esthese 
onditions, whi
h is at most 5 � 4"+ �mdjF j � 21"0.(
) For some i = 0; : : : ; l � 1, j = 1; : : : ;m, and b 2 f0; 1g, bP (b)i;j does not obey Equation (3).In other words, bP (b)i;j (: : : ; xj ; : : :) 6� PjHjk=1 bP (b)i;j�1(: : : ; hj ; : : :)xki . Then, for this i; j, the ZeroPropagation Test reje
ts unless a random axis parallel line L is 
hosen su
h that bothP (b)i;j jL and P (b)i;j�1jL are polynomials of degree at most �d and for every x 2 L, P (b)i;j (: : : ; x; : : :) =PjHj�1k=0 P (b)i;j�1(: : : ; hk; : : :)xk. Suppose we have that for all x 2 L, P (b)i;j (x) = bP (b)i;j (x) andP (b)i;j�1(x) = bP (b)i;j�1(x). Then, it must be the 
ase that for all x 2 L, bP (b)i;j (: : : ; x; : : :) =PjHj�1k=0 bP (b)i;j�1(: : : ; hk; : : :)xk. Sin
e the axis-parallel lines 
over Fm uniformly, the probabilityof this o

urring is at most the probability of a random x 2 Fm satisfying this 
ondition whi
his at most �md
F � ". The probability that that both P (b)i;j jL and P (b)i;j�1jL are polynomials ofdegree �d and either P (b)i;j jL 6= bP (b)i;j jL or P (b)i;j�1jL 6= P (b)i;j�1jL is at 2 � 4"=(1 � "0) � 9"0, sin
eP (b)i;j and P (b)i;j�1 are 4"-
lose to bP (b)i;j and bP (b)i;j�1 respe
tively, and any two distin
t polynomialsof degree �md disagree on at least a 1��md=jF j � 1� "0 fra
tion of points.Hen
e, the ZeroPropagation Test a

epts with probability at most 10"0.We thus have that the veri�er a

epts with probability at most max f1� "; 5"0; 21"0; 10"0g =1� ".Proof (of Theorem 6.1): Theorem 6.1 is proved using the PCP{Verifier de�ned in this se
tionsetting � = 1=
 log n. Step 1 of the veri�er redu
es the instan
e C of CktSAT to an instan
eh1n0 ; 1m; F;H; f ~T0; : : : ; ~Tl�1gi of AS-CktSAT. We have from Proposition 6.11 that n0 = �(n) andl = O(log n) where n is the size of the input 
ir
uit C. Setting n = n0 in Proposition 6.17, we havethat the randomness, query and de
ision 
omplexity of the veri�er are as 
laimed in Theorem 6.1.The soundness of the veri�er follows from Lemma 6.18.7 A randomness-eÆ
ient PCP of proximityIn this se
tion, we modify the PCP for Cir
uit Satisfiability and 
onstru
t a PCP of proximityfor Cir
uit Value while maintaining all the 
omplexities. (Re
all that the latter is stronger than48



the former, via Proposition 2.4.) We do so by adding a proximity test to the PCP{Verifierde�ned in Se
tion 6.3. This new proximity test, as the name suggests, 
he
ks the 
loseness ofthe input to the satisfying assignment that is supposed to be en
oded in the proof ora
le (seeRemark 6.12). This 
he
k is done by lo
ally de
oding a bit (or several bits) of the input from itsen
oding and 
omparing it with the a
tual input ora
le.Theorem 7.1 There exists universal 
onstants 
 and 0 < " < 1 su
h that the following holds forall n;m 2 Z+ and 0 < Æ < 1 su
h that m � logn=loglogn. There exists a PCP of proximity forCir
uit Value (for 
ir
uits of size n) with the following parameters� randomness �1� 1m� log n+O(m logm) +O(log log n) +O(log(1=Æ)),� query 
omplexity q = O(m2n1=m log2 n) and de
ision 
omplexity d = ~O(q),� perfe
t 
ompleteness,� Case I: if n1=m � m
m=Æ3, then the veri�er has soundness error 1�" for proximity parameterÆ.� Case II: if n1=m < m
m=Æ3, then the veri�er has soundness error 1 � Æ=
 for proximityparameter Æ.Re
all that the PCPP{Verifier is supposed to work as follows: The veri�er is given expli
ita

ess to a 
ir
uit C with n gates on k input bits and ora
le a

ess to the input w in the form of aninput ora
le W : [k℄ ! f0; 1g. The veri�er should a

ept W with probability 1 if it is a satisfyingassignment and a

ept it with probability at most 1� " if it Æ-far from any satisfying assignment.For starters, we assume that k � n=5. In other words, the size of the input w is linear in thesize of the 
ir
uit C. The reason we need this assumption is that we wish to verify the proximityof w to a satisfying assignment, but our proofs en
ode the assignment to all n gates of the 
ir
uit,thus it better be the 
ase that w is a non-negligible fra
tion of the 
ir
uit. This assumption is nota major restri
tion, be
ause if this is not the 
ase we work with the 
ir
uit C 0 and input w0 whi
hare as follows: For t = dn=ke, C 0 is a 
ir
uit with n0 = n+3tk gates on k0 = tk input bits su
h thatC 0(w0) = 1 i� w0 = wt for some w su
h that C(w) = 1; that is, C 0 
he
ks if its input is t 
opiesof some satisfying assignment of C. (It 
an be veri�ed that C 0 
an indeed be implemented on a
ir
uit of size n+3tk over the full binary basis.) We 
hoose t su
h that k0 � n0=10. However, notethat the input ora
le W 
annot be altered. So the veri�er emulates the input w0 using the originalinput ora
le W : [k℄ ! f0; 1g in the straight-forward manner. Whenever it wants to read the i-thbit of the w0, it queries the (((i� 1) mod k) + 1)-th bit of w.Remark 7.2 The above transformation from (C;w) to (C 0; w0) is a generi
 one that in
reases thelength of the input ora
le 
ompared to the proof ora
le. The 
ir
uit C 0 
he
ks that w0 is a repetition
odeword in order to maintain the distan
e features of C; that is, if w is Æ-far from the set ofsatisfying assignments of C then w0 = wt is also Æ-far from the satisfying assignments of C 0.As in the 
ase of the PCP{Verifier des
ribed in Se
tion 6.3, the PCPP{Verifier is 
on-stru
ted by redu
ing the input 
ir
uit C, an instan
e of CktSAT, using parameter m, to aninstan
e h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi of AS-CktSAT. The proof ora
le for the PCPP{Verifieris the same as that of the PCP{Verifier (i.e., the proof ora
le 
onsists of a sequen
e of fun
tions~Ai : Fm ! F; i = 0; : : : ; l � 1 and Pi;j : Fm ! F 2; i = 0; : : : ; l � 1; j = 0; : : : ;m where l = 5 log n).49



Re
all that the fun
tion ~A0 : Fm ! F is supposed to 
ontain within it an assignment (See Re-marks 6.7,6.12). Let I � Hm � Fm be the set of lo
ations in Fm that 
ontain the assignment. ThePCPP{Verifier in addition to the tests of the PCP{Verifier performs the followingProximityTest to 
he
k if the assignment given by ~A0jI mat
hes with the input ora
le W . Spe
i�
ally:PCPP{VerifierW ; ~Ai;Pi;j ;i=0;:::;l�1;j=0;:::;mm;�;Æ (C).1. Run PCP{VerifierW ; ~Ai;Pi;jm;� (C) and reje
t if it reje
ts.Let R be the random string generated during the exe
ution of this step.2. Proximity TestCase I: n � 8000jF jm�1=Æ3.Use random string R to determine a random 
anoni
al line L in Fm using the �-biased set S�. Query ora
le ~A0 on all points along the line L and reje
t if therestri
tion ~A0 to L is not a polynomial of degree at most d = m � jHj. Query theinput ora
le W on all lo
ations 
orresponding to those in I \ L and reje
t if Wdisagrees with ~A0 on any of the lo
ations in I \ L.Case II: n < 8000jF jm�1=Æ3.Use random string R to determine a position i R f1; : : : ; kg in the input and adire
tion y R S�. Let x 2 I be the point 
orresponding to i in Hm, and let L bethe 
anoni
al line through x in dire
tion y. Query ora
le ~A0 on all points along theline L and reje
t if the restri
tion ~A0 to L is not a polynomial of degree at mostd = m � jHj. Query the input ora
le W at lo
ation i and reje
t if W [i℄ 6= ~A0(x).By inspe
tion, the proximity test in
reases the query and de
ision 
omplexity by (even less than)a 
onstant fa
tor. For the randomness 
omplexity, we �rst 
onsider Case I, the randomness is usedonly to generate a random 
anoni
al line (as in the PCP veri�er), so the randomness 
omplexityis log(jF jm�1 � jS�j) as before. However, in order to prove soundness, we will need to assumenot only that � � 1=
 log n for some 
onstant 
 (as before), but also that � � Æ3=m
m.24 Thus,setting � = minf1=
 log n; Æ3=m
mg, the randomness 
omplexity in
reases by at most O(m logm)+O(log(1=Æ)), as 
laimed in Theorem 7.1. For Case II, the randomness 
omplexity is log(n � jS�j) �log(8000jF jm�1 � jS�j=Æ3), whi
h is the same as in Case I plus an additional O(log(1=Æ)) + O(1)random bits. Summarizing the above observations for future referen
e, we have the followingproposition.Proposition 7.3 The randomness, query and de
ision 
omplexities of the PCPP{Verifier arer = �1� 1m� log n+O(m logm) +O(log logn) +O (log (1=Æ)), q = O(m2n1=m log2 n) and d = ~O(q)respe
tively.It is straightforward to 
he
k perfe
t 
ompleteness of this veri�er. To prove soundness, weobserve that if the input W is Æ-far from satisfying the 
ir
uit, then one of the following musthappen: (1) the veri�er dete
ts an in
onsisten
y in the proof ora
le or (2) the input ora
le does notmat
h with the en
oding of the input in the proof ora
le. In 
ase of the former, we prove soundnessby invoking Lemma 6.18 while in the latter 
ase, we prove soundess by analyzing the proximitytest. These ideas are explained in detail in the following two lemmas whi
h prove the soundness ofthe veri�er.24A
tually, for the proximity test we only need � � Æ=m
m, however to prove robustness of the proximity test (seeSe
tion 8.1) we require � � Æ3=m
m. 50



Lemma 7.4 (Case I) There exists a 
onstant 
 and a 
onstant " > 0 su
h that for all m;�; Æsatisfying n � 8000jF jm�1=Æ3, � � 1=
 log n, and � � Æ=m
m, the following holds. If the input wgiven by the input ora
le W : [k℄ ! f0; 1g is Æ-far from satisfying the 
ir
uit, then for any proofora
le the veri�er reje
ts W with probability at least ".Proof: Set " to be the 
onstant "0 in Lemma 6.18.Case (i): ~A0 is not 4"-
lose to any polynomial bA0 of degree md su
h that C( bA0jI) = 1. Then byLemma 6.18, we 
on
lude that the veri�er reje
ts with probability at least ".Case (ii): ~A0 is 4"-
lose to some polynomial bA0 of degree md su
h that C( bA0jI) = 1. Sin
e w isÆ-far from any satisfying assignment, the assignment given by bA0jI must be at least Æ-farfrom w. Let B � Fm denote the set of lo
ations in I where the assignment given by bA0disagrees with w (i.e., B = fx 2 Ij bA0(x) disagrees with w at xg ). Hen
e, jBj=jIj � Æ. Sin
ejIj = k � n=5, we have jBj � Æn=5. Consider the following 2 events.[Event I℄: ~A0jL is 5"-far from bA0jL.By the Sampling Lemma (Lemma B.3) with � = 4" and � = ", this event o

urs withprobability at most � 1jF j + �� � 4""2 � 14 sin
e jF j; 1� � 32=".[Event II℄: B \ L = ;.Again by the Sampling Lemma (Lemma B.3) with � = � = jBjjFmj , this event o

urs withprobability at most � 1jF j + �� � jFmjjBj = � 1jF j + �� � 5jFmjÆn � 14 , where the last inequalityfollows be
ause n � 8000jF jm�1=Æ3 � 40jF jm�1=Æ and � � Æ=(40(
Fm2)m).Suppose Event I does not o

ur. Then, if bA0jL 6= ~A0jL, the Proximity Test reje
ts sin
ethen ~A0jL 
annot be a polynomial of degree at most d as it is 5"-
lose to the polynomial bA0and hen
e 
annot be 
loser to any other polynomial (as 5" � 12(1 � djF j) = 12 (1 � 1
F ). Nowif bA0jL = ~A0jL and Event II does not o

ur, then the Proximity Test dete
ts a mismat
hbetween the input ora
le W and ~A0jL. Hen
e, if both Event I and Event II do not o

ur,then the test reje
ts. Thus, the probability of the test a

epting in this 
ase is at most theprobability of either Event I or Event II o

urring whi
h is at most 1=2.Thus, the probability that the veri�er a

epts is at most max �1� "; 12	 = 1 � ". This 
ompletesthe proof of the lemma.Lemma 7.5 (Case II) There exists a 
onstant 
 su
h that for allm;�; Æ satisfying n < 8000jF jm�1=Æ3,� � 1=
 log n, and � � Æ=m
m, the following holds. If the input w given by the input ora
leW : [k℄! f0; 1g is Æ-far from satisfying the 
ir
uit, then for any proof ora
le the veri�er reje
ts Wwith probability Æ=
.Proof: Set � = 4Æ=
 � Æ=16.Case (i): ~A0 is not �-
lose to any polynomial bA0 of degree md su
h that C( bA0jI) = 1. Then byLemma 6.18, we 
on
lude that the veri�er reje
ts with probability at least �=4 = Æ=
.Case (ii): ~A0 is �-
lose to some polynomial bA0 of degree md su
h that C( bA0jI) = 1. Sin
e w is Æ-farfrom any satisfying assignment, the assignment given by bA0jI must be Æ-far from w. With51



probability greater than Æ over the 
hoi
e of i 2 f1; : : : ; kg (and the 
orresponding point x 2 Iin Hm), we have W [i℄ 6= bA0(x). If this o

urs, the only way the veri�er 
an a

ept is if ~A0jLis a degree md polynomial other than bA0jL. Below, we will bound the probability of thislatter event by Æ=2, and thereby 
on
lude that the veri�er reje
ts with probability at leastÆ � Æ=2 > Æ=
.Re
all that ~A0 and bA0 are �-
lose. Thus, if we show that the points on L are almost-uniformlydistributed, it will follow that the expe
ted distan
e between ~A0jL and bA0jL is small, andhen
e they are distin
t degree md polynomials with small probability. Let B � Fm be theset of points where ~A0 and bA0 disagree. Consider any point z on L other than x. That is,z = x+ ty, where t 2 F n f0g is �xed, x is 
hosen uniformly in I, and y is 
hosen uniformly inS�. The probability (over x, y) that z lands in B is pre
isely 1=(jIj � jS�j) times the numberof (dire
ted) edges between I and B in the (expander) graph on vertex set Fm with edge setE = f(a; b) : (a� b) 2 tS�g. This graph has se
ond eigenvalue �, so by the Expander MixingLemma, the fra
tion of edges between I and B satis�esjE \ (I �B)jjEj � jIjjFmj � jBjjFmj + � �s jIjjFmj � jBjjFmj :Multiplying by jEj=(jIjjS�j), and using jBj=jFmj � � and jEj = jFmj � jS�j, we obtainjE \ (I �B)jjIj � jS�j � �+ � �s jFmjjIj � �� Æ16 + � �r(
Fm2n1=m)mn� Æ8 ;where in the last inequality we use � � Æ=m
m. Thus, the expe
ted fra
tion of L n fxg thatlands in B is at most Æ=8. By Markov's inequality, with probability at least 1� Æ=2, ~A0jLnfxgand bA0jLnfxg are 1=4-
lose. This implies that ~A0jL 
annot be a polynomial of degree md otherthan bA0jL (sin
e two distin
t polynomials agree in at mostmd points, and (md�1)=jF j < 1=4).By Markov's Inequality, this o

urs with probability at most Æ=2, as 
laimed.Proof (of Theorem 7.1): Theorem 7.1 is proved using the PCPP{Verifier de�ned in thisse
tion setting � = minf1=
 log n; Æ3=m
mg. The randomness and de
ision (query) 
omplexityfollow from Proposition 7.3. The only fa
t to be veri�ed is the soundness of the veri�er. Thesoundness requirements of Theorem 7.1 are di�erent for the two 
ases when n1=m � m
m=Æ3 andn1=m < m
m=Æ3. On the other hand, the PCPP{Verifier's a
tions are di�erent depending onwhether n � 8000jF jm�1=Æ3 or n < 8000jF jm�1=Æ3. These two 
ases of the soundness requirementsand that of the PCPP{Verifier do not dire
tly 
orrespond to ea
h other. We �rst note that the
ondition n � 8000jF jm�1=Æ3 is equivalent to n1=m � 8000(
Fm2)m�1=Æ3. Suppose n1=m � m
m=Æ3for a suitably large 
onstant 
 (i.e., Case I of Theorem 7.1). Then, n1=m � 8000(
Fm2)m�1=Æ3 orequivalently n � 8000jF jm�1=Æ3). Hen
e, Lemma 7.4 applies and we have that the veri�er hassoundness error 1 � " for proximity parameter Æ. Now, suppose n1=m < m
m=Æ3 (i.e., Case II ofTheorem 7.1). In this 
ase, we do not know whi
h of n1=m or 8000(
Fm2)m�1=Æ3 is greater. Hen
e,we do not know whi
h one of Lemma 7.4 or Lemma 7.5 applies. Thus, we 
an only guarantee the52



weaker of the two soundness 
laims. Hen
e, the soundness-error for proximity parameter Æ is atmost maxf1� "; 1� Æ=
g = 1� Æ=
. This proves Theorem 7.1.8 A randomness-eÆ
ient robust PCP of proximityIn this se
tion, we modify the PCP of proximity for Cir
uit Value 
onstru
ted in Se
tion 7 todesign a robust PCP of proximity, while essentially maintaining all 
omplexities. Re
all the de�ni-tion of robustness: If the input ora
le W is Æ-far from a satisfying assignment, a \regular" PCPPveri�er for most 
hoi
es of its random 
oins reje
ts the input; that is, it observes an in
onsisten
yin the input. A robust PCPP veri�er, on the other hand, for most 
hoi
es of its random 
oins notonly noti
es an in
onsisten
y in the input but also observes that a 
onsiderable portion of the inputread by it has to be modi�ed to remove this in
onsisten
y.Theorem 8.1 There exists a universal 
onstant 
 su
h that the following holds for all n;m 2 Z+,Æ; 
 > 0 satisfying m � logn=loglogn: There exists a robust PCP of proximity for Cir
uit Value(for 
ir
uits of size n) with the following parameters� randomness �1� 1m� log n+O(m logm) +O(log log n) +O(log(1=Æ)),� query 
omplexity q = O((m2n1=m log2 n)=
) and de
ision 
omplexity d = ~O(q),� perfe
t 
ompleteness, and� Case I: if n1=m � m
m=Æ3, then for every Æ0 > Æ, the veri�er has expe
ted robustnessminf
(
); (1 � 
) � (Æ0 � (Æ=2))gfor proximity parameter Æ0.� Case II: if n1=m < m
m=Æ3, then the veri�er has expe
ted robustness 
(Æ) for proximityparameter Æ.Note that the expe
ted robustness in Case I 
an be very 
lose to the proximity parameter Æ0(provided Æ � Æ0 � 
 � 1), whereas in Case II it is always a 
onstant fa
tor smaller. Thus, Case Iis suitable for a large number of proof 
omposition operations, whereas Case II is useful when thequery 
omplexity of the outer veri�er is already very small (and Case I 
an no longer be applied).Indeed, this is how these 
ases (whi
h yield Theorems 3.1 and 3.2, respe
tively) are used in theproof of Theorem 3.3.How Theorem 8.1 implies Theorems 3.1 and 3.2: Our main 
onstru
t (i.e., Theorem 3.1)follows from Case I of Theorem 8.1 by using the error-redu
tion lemma (Lemma 2.11). Spe
i�
ally,repla
ing Æ by Æ0
 and using Æ0 < 
=
, Case I yields expe
ted robustness of minf
(
); (1 � 
) �(Æ0 � Æ0
=2)g, whi
h is lower-bounded by �0 , (1� 
)2 � Æ0. Applying Lemma 2.11 with a sla
knessparameter of 
0 , 
�0 and s = 
, yields robust-soundness error of 
 with robustness parameter of�0�
0 = (1�
)3 �Æ0 for proximity parameter Æ0. Using 
 � 1=2, note that the randomness in
reasesby an additive term of O(log(1=
0)) + O(log(1=Æ0)) = O(log(1=Æ0)), and the de
ision 
omplexityin
reases by a multipli
ative fa
tor of 1=(
 � (
�0)2) = poly(1=Æ0). These modi�
ations do not a�e
tthe general form of the 
orresponding 
omplexities 
laimed in Theorem 3.1, and the latter follows(when substituting Æ0 for Æ and 
 by 
=3). We now turn to establishing Theorem 3.2: Settingm = (log n)= log log n (whi
h satis�es the 
ondition of Case II) and 
 = 1=2, we obtain randomnessO(log n=Æ), de
ision 
omplexity ~O((log n)3+1+2) = poly(log n) and expe
ted robustness 
(Æ) forproximity parameter Æ. Applying Lemma 2.12, Theorem 3.2 follows.53



Overview of the proof of Theorem 8.1: We \robustify" our PCPP{Verifier in 3 steps.First we observe that a single exe
ution of the veri�er a
tually involves several tests (in fa
t lm+2lLow-Degree Tests, l Edge-Consisten
y Tests, lm Zero Propagation Tests, l IdentityTests and a single Proximity Test). In the �rst step (Se
tion 8.1), we observe that ea
h ofthese tests is robust individually. In the se
ond step (Se
tion 8.2), we perform a \bundling" ofthe queries so that a 
ertain set of queries 
an always be asked together. This bundling a
hievesrobustness, albeit over a mu
h a larger alphabet. In the �nal step (Se
tion 8.3), we use a gooderror-
orre
ting 
ode to transform the \bundles" into regular bit-queries su
h that robustness overthe binary alphabet is a
hieved.8.1 Robustness of individual testsFor ea
h possible random string R, the PCPP{Verifier performs several tests. More pre
isely, itperforms l(m + 2) Low-Degree Tests, l Edge-Consisten
y Tests, lm Zero PropagationTests, l Identity Tests and a single Proximity Test. In this se
tion, we prove that ea
h ofthese test are robust individually. In other words, we show that when one of these tests fail, itfails in a \robust" manner; that is, a 
onsiderable portion of the input read by the test has to bemodi�ed for the test to pass.First, some notation. We view fun
tions g; g0 : Fm ! F as strings of length jF jm over thealphabet F , so their relative Hamming distan
e �(g; g0) is simply Prx[g(x) 6= g0(x)℄. As before, letI � Hm � Fm be the set of lo
ations in Fm that 
ontains the assignment.Let 0 < " < 1 be a small 
onstant to be spe
i�ed later. As before, for i = 0; : : : ; l � 1,j = 0; : : : ;m and b 2 f0; 1g, let bAi (resp., bP (b)i;j ) be the 
losest polynomials of degree md (resp.,�md) to ~Ai and Pi;j respe
tively. (If there is more than one polynomial, 
hoose one arbitrarily.)The proof of the soundness of the PCPP{Verifier (see Se
tions 6 and 7) was along the followinglines: If the input ora
le W : [k℄ ! f0; 1g is Æ-far from satisfying the 
ir
uit, then one of thefollowing must happen (
hanging " by a fa
tor of 2).1. There exists a i = 0; : : : ; l�1 su
h that ~Ai is 8"-far from every degree md polynomial or thereexists a i = 0; : : : ; l� 1, j = 0; : : : ;m and b 2 f0; 1g su
h that P (b)i;j is 8"-far from every degree�md polynomial. In this 
ase, the Low-Degree Test dete
ts the error with probability atleast 2".2. There exists i = 0; : : : ; l � 1 and b 2 f0; 1g, su
h that �(P (b)i;m; bP (b)i;m) � 8" and bPi;m 6� 0. Inthis 
ase, the Identity Test dete
ts the error with probability at least 1� 10".3. There exists i = 0; : : : ; l � 1, j = 1; : : : ;m and b 2 f0; 1g su
h that �(Pi;j; bPi;j) � 8",�(Pi;j�1; bPi;j�1) � 8", and bPi;j(: : : ; xj ; : : :) 6� PjHj�1k=0 bPi;j�1(: : : ; hk; : : :)xkj . In this 
ase, theZero Propagation Test dete
ts the error with probability at least 1� 20".4. There exists a i = 0; : : : ; l�1 su
h that �(P (0)i;0 ; bP (0)i;0 ) � 8", �(P (1)i;0 ; bP (1)i;0 ) � 8", �( ~Ai; bAi) � 8",�( ~Ai+1; bAi+1) � 8", and bPi;0(x) 6�  0(( ~Ti(x); bAi(x); bAi+1(~�i;0(x)); bAi+1(~�i;1(x))). In this 
ase,the Edge-Consisten
y Test dete
ts the error with probability at least 1� 42".5. �( ~A0; bA0) � 8" but W and bA0jI disagree on at least Æ fra
tion of the points. In this 
ase,the Proximity Test dete
ts the error with probability at least 1=2 (in Case I).Claims 8.2 to 8.7 below strengthen the above analysis and show that one of the tests not onlydete
ts the error, but a signi�
ant portion of the input read by that test needs to be modi�ed in54



order to make the test a

ept. More formally, re
all that ea
h of our tests T (randomly) generatesa pair (I;D) where I is a set of queries to make to its ora
le and D is the predi
ate to apply to theanswers. For su
h a pair (I;D) T and an ora
le �, we de�ne the distan
e of �jI to T to be therelative Hamming distan
e between �jI and the nearest satisfying assignment of D. Similarly, wesay that � has expe
ted distan
e � from satisfying T if the expe
tation of the distan
e of �jI to Tover (I;D) R T equals �.We then have the following 
laims about the robustness of the individual tests.The robustness of the Low-Degree Test 
an be easily be infered from the analysis of the�-biased low-degree test due to Ben-Sasson et al. [12℄ as shown below.Claim 8.2 The following holds for all suÆ
iently small " > 0. If A : Fm ! F (resp., P : Fm ! F )is 8"-far from every polynomial of degree md (resp., degree �md), then then the expe
ted distan
eof A (resp. P ) from satisfying the Low-Degree Test with degree parameter d (resp., �d) is atleast 2".Proof: Re
all that the Low-Degree Test 
hooses a random 
anoni
al line L and 
he
ks if AjLis a univariate polynomial of degree d. For ea
h 
anoni
al line L, de�ne Alines(L) to be the degreed univariate polynomial mapping L ! F having maximum agreement with A on L, breaking tiesarbitrarily. The distan
e of AjL to satisfying Low-Degree Test is pre
isely �(AjL; Alines(L)).The low-degree test LDT of Ben-Sasson et al. [12℄ works as follows (see Se
tion B for moredetails): The test LDT has ora
le a

ess to a points-ora
le f : Fm ! F and a lines ora
le g. It
hooses a random 
anoni
al line L using the �-biased set, queries the lines-ora
le g on the line Land the points-ora
le f on a random point x on L. It a

epts i� g(L) agrees with f at x.By inspe
tion, the probability that LDTA;Alines reje
ts the points-ora
le A and lines-ora
le Alinesas de�ned above equals EL[�(AjL; Alines(L))℄. By Theorem B.4, if A is 8"-far from every degree mdpolynomial, then LDTA;Alines reje
ts with probability at least 2" (for suÆ
iently small "). (Re
allthat our parameters satisfy the 
onditions of Theorem B.4 for suÆ
iently large 
hoi
es of the
onstants 
 and 
F .) Thus, A has expe
ted distan
e 2" from satisfying our Low-Degree Test,as desired.The intuition behind the proofs of robustness of Identity Test, Zero Propagation Test,and Edge-Consisten
y Test is as follows. The key point to be noted is that the 
he
ks made byea
h of these tests are in the form of polynomial identities. Hen
e, if the fun
tions read by these testsare 
lose to being polynomials, then it follows from the S
hwartz-Zippel Lemma that the inputs readby these tests either satisfy these polynomial identities or are in fa
t far from satisfying them. Weformalize this intuition and prove the robustness of Identity Test, Edge-Consisten
y Test,and Zero Propagation Test in Claims 8.3, 8.4, and 8.5 respe
tively.Claim 8.3 The following holds for all suÆ
iently small " > 0. If for some i = 0; : : : ; l � 1 andb 2 f0; 1g, �(P (b)i;m; bP (b)i;m) � 8" and bP (b)i;m(�) 6� 0, then Pi;m has expe
ted distan
e at least 1� 9" fromsatisfying the Identity Test.Proof: The expe
ted distan
e of Pi;m from satisfying the Identity Test equalsEV� [�(Pi;mjV� ; 0)℄ = �(Pi;m; 0)(sin
e the fV�g are a partition)� �( bPi;m; 0)��(Pi;m; bPi;m)� �1� �mdjF j �� 8"(by S
hwartz-Zippel and hypothesis)� 1� 9" 55



Claim 8.4 The following holds for all suÆ
iently small " > 0. Suppose for some i = 0; : : : ; l �1, we have �(P (0)i;0 ; bP (0)i;0 ) � 8", �(P (1)i;0 ; bP (1)i;0 ) � 8", �( ~Ai; bAi) � 8", �( ~Ai+1; bAi+1) � 8", andbPi;0(�) 6�  0( ~Ti(�); bAi(�); bAi+1(~�i;0(�)); bAi+1(~�i;1(�))). Then �Pi;0(�); Ai(�); Ai+1(~�i;0(�))Ai+1(~�i;1(�))	has expe
ted distan
e at least (1� 41")=5 from satisfying the Edge-Consisten
y Test.Proof: Note that the distan
e of �Pi;0(�); Ai(�); Ai+1(~�i;0(�))Ai+1(~�i;1(�))	jU� from satisfying theEdge-Consisten
y Test is at least 1=5 times the the distan
e of Pi;0(�)jU� to the fun
tion 0( ~Ti(�); Ai(�); Ai+1(~�i;0(�)); Ai+1(~�i;1(�)))jU� (Sin
e for ea
h point x 2 U� where the latter twofun
tions disagree, at least one of Pi;0; Ai; Ai+1 Æ ~�i;0; Ai+1 Æ ~�i;1 needs to be 
hanged at x to makethe test a

ept). As in the proof of Claim 8.3, we have:EU� [�(Pi;0(�)jU� ;  0( ~Ti(�); Ai(�); Ai+1(~�i;0(�)); Ai+1(~�i;1(�)))jU� )℄ � �1� �mdjF j �� 5 � 8" � 1� 41";where the (1 � �md=jF j) term 
orresponds to the distan
e if we repla
e all �ve fun
tions withtheir 
orre
ted polynomials (e.g., bPi;0, bAi, bAi+1 Æ ~�i;0, bAi+1 Æ ~�i;1) and the �5 � 8" a

ounts forthe distan
e between ea
h of the �ve fun
tions and their 
orre
ted polynomials. Thus, the overallexpe
ted distan
e to satisfying the Edge-Consisten
y Test is at least (1� 41")=5.Claim 8.5 The following holds for all suÆ
iently small " > 0. Suppose for some i = 0; : : : ; l � 1,j = 1; : : : ;m, and b 2 f0; 1g, we have �(P (b)i;j ; bP (b)i;j ) � 8", �(P (b)i;j�1; bP (b)i;j�1) � 8", and bP (b)i;j (: : : ; xj; : : : ) 6�PjHj�1k=0 bP (b)i;j�1(: : : ; hk; : : : )xkj . Then (P (b)i;j ; P (b)i;j�1) has expe
ted distan
e at least (1�19")=2 from sat-isfying the Zero Propagation Test.Proof: Suppose that L is a jth axis-parallel line su
h thatbP (b)i;j (: : : ; xj ; : : : )jL 6� jHj�1Xk=0 bP (b)i;j�1(: : : ; hk; : : : )xkj jL;Then in order for the Zero Propagation Test to a

ept, either P (b)i;j jL must be modi�ed toequal a degree �d polynomial other than bP (b)i;j�1(: : : ; xj ; : : : )jL or P (b)i;j�1jL must be modi�ed to equala degree �d polynomial other than bP (b)i;j�1(: : : ; xj ; : : : )jL. (Re
all that the Zero PropagationTest 
he
ks that the said restri
tions are in fa
t polynomials of degree �d.) This would requiremodifying P (b)i;j jL (resp., P (b)i;j�1jL) in at least a 1 � �d=jF j � �(P (b)i;j jL; bP (b)i;j jL) fra
tion (resp., 1 ��d=jF j��(P (b)i;j�1jL; bP (b)i;j�1jL) fra
tion) of points. This implies that the pair (P (b)i;j jL; P (b)i;j�1jL) wouldhave to be modi�ed in at least a12 � �1� �djF j ��(P (b)i;j jL; bP (b)i;j jL)��(P (b)i;j�1jL; bP (b)i;j�1jL)�fra
tion of points.
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Thus the expe
ted distan
e of (P (b)i;j ; P (b)i;j�1) to satisfying the Zero Propagation Test is atleast 12 � EL �1� �djF j ��(P (b)i;j jL; bP (b)i;j jL)��(P (b)i;j�1jL; bP (b)i;j�1jL)��PrL 24 bP (b)i;j (: : : ; xj ; : : : )jL � jHj�1Xk=0 bP (b)i;j�1(: : : ; hk; : : : )xkj jL35� 12 (1� "� 8"� 8") � �djF j� 12 (1� 19") :We are now left with analyzing the robustness the Proximity Test. Note that the input ofthe Proximity Test 
omes in two parts: (a) the restri
tion of A0 to the line L and (b) the inputW restri
ted to the line L. Unlike earlier tests, we do not 
ollate the robustness of these two partsof the input but express them separately. The robustness of the Proximity Test is proved byrepeated appli
ations of the Sampling Lemma (Lemma B.3).Let B � Fm denote the set of lo
ations in I where the assignment given by bA0 disagrees withW (i.e., B = fx 2 Ij bA0(x) disagrees with W at xg ). Re
all that jIj = k � n=5.Claim 8.6 (Case I) There exists a 
onstant 
 and a 
onstant " > 0 su
h that for all m;�; Æ; Æ0satisfying n � 8000jF jm�1=Æ3, � � 1=
 log n, � � Æ3=m
m, Æ0 > Æ, the following holds. Suppose�( ~A0; bA0) � 1=4 and the input ora
leW is Æ0-far from bA0jI (i.e., jBj=jLj � Æ0), then with probabilityat least 1 � Æ=4 (over the 
hoi
e of the 
anoni
al line L) either at least a "-fra
tion of A0jL or atleast a (Æ0 � Æ=4)-fra
tion of W jL needs to be 
hanged to make the Proximity Test a

ept.This 
laim is the robust analogue of Lemma 7.4. Observe that the robustness of the veri�eris expressed separately for the proof and input ora
les. As expe
ted, the robustness of the inputora
le depends on the proximity parameter Æ while that of the proof ora
le is independent of Æ.Proof: Consider the following three events.Event 1: �( ~A0jL; bA0jL) � 1=3 .By the Sampling Lemma (Lemma B.3) with � = 1=4 and � = 1=12, this event o

urs withprobability at most � 1jF j + �� � 1=4(1=12)2 � Æ12 sin
e jF j � (8000jF jm)=(Æ3n) > (123=2)=Æ and� < 2Æ=123.Event 2: jI\LjjLj > �1 + Æ8� � jIjjFmj .Again by the Sampling Lemma (Lemma B.3) with � = jIj=jFmj � n5jF jm and � = Æ�8 , thisevent o

urs with probability at most� 1jF j + �� � 82Æ2� = � 1jF j + �� � 320jF jmÆ2n � Æ12 ;where the last inequality follows from the fa
t that n � 24 � 320 � jF jm�1=Æ3 and � � Æ3=(24 �320(
Fm2)m). 57



Event 3: jB\LjjLj < jBjjFmj � Æ8 � jIjjFmj .Again by the Sampling Lemma (Lemma B.3) with � = jBj=jFmj = Æ0n5jF jm and � = Æn40jF jm ,this event o

urs with probability at most� 1jF j + �� � ��2 � � 1jF j + �� � 320jF jmÆ2n � Æ12 :Hen
e, the probability that at least one of the three events o

urs is at most Æ=4.Now, suppose none of the three events o

ur. We then get thatjB \ LjjI \ Lj � jBj � ÆjIj=8(1 + Æ=8)jIj = Æ0 � Æ=81 + Æ=8 � Æ0 � Æ=4:Now for the Proximity Test to a

ept the pair ( ~A0jL;W \ L), either we must 
hange ~A0jL toa polynomial other than bA0jL or 
orre
t the input for all x 2 B \ L. The former requires us to
hange at least (1 � djF j � 1=3) � 1=2 fra
tion of the points of A0jL while the latter requires us to
hange at least Æ0 � Æ=4-fra
tion of the input read (i.e., the input ora
le W restri
ted to the lineL). This proves the 
laim.Claim 8.7 (Case II) There exists a 
onstant 
 su
h that for allm;�; Æ satisfying n < 8000jF jm�1=Æ3,� � 1=
 log n, � � Æ3=m
m, the following holds. Suppose �( ~A0; bA0) � Æ=16 and the input ora
le Wis Æ-far from bA0jI (i.e., jBj=jLj � Æ), then with probability at least Æ=2 (over the 
hoi
e of index iand dire
tion y R S�), either at least a 1=2-fra
tion of A0jL or W [i℄ (i.e., the entire portion of theinput ora
le read by the veri�er) needs to be 
hanged to make the Proximity Test a

ept.This 
laim is the robust analogue of Lemma 7.5. As before, the robustness of the veri�er isexpressed separately for the proof and input ora
les.Proof: Sin
e w is Æ-far from any satisfying assignment, the assignment given by bA0jI must beÆ-far from w. Thus with probability greater than Æ over the 
hoi
e of i 2 f1; : : : ; kg (and the
orresponding point x 2 I), we have W [i℄ 6= bA0(x). If this o

urs, the only way to make the veri�era

ept is to either 
hange W [i℄ or 
hange ~A0jL to a degree md polynomial other than bA0jL. As inthe proof of Claim 8.6, with probability at least 1 � Æ=2, ~A0jLnfxg and bA0jLnfxg have distan
e atmost 1=4, and hen
e ~A0jL would have to be 
hanged in at least 1 � ((md � 1)=jF j) � 1=4 � 1=2points to be a degree md polynomial other than bA0jL. Thus, with probability at least Æ�Æ=2 = Æ=2,either W [i℄ would have to 
hange or at least half of ~A0jL would have to 
hange to make the veri�era

ept.8.2 BundlingIn Se
tion 8.1, we showed that ea
h of the tests performed by the PCPP veri�er is individuallyrobust. However, we need to show that the 
onjun
tion of all these tests is also robust. This is nottrue for the PCPP veri�er in its present form for the following reason: Suppose the input ora
leW is Æ-far from satisfying the 
ir
uit. We then know that one of the tests dete
ts this fa
t withnon-negligible probability. Moreover as seen in Se
tion 8.1, this test is robust. However, sin
e thistest is only one of the O(lm) tests being performed by the veri�er, the ora
le bits read by this test
omprise a small fra
tion of the total query 
omplexity of the veri�er. For instan
e, the number of58



bits read by a single Low-Degree Test is about 1=lm times the query 
omplexity. This 
ausesthe robustness of the veri�er to drop by a fa
tor of at least lm. Note that the issue here is not thefa
t that the veri�er performs di�erent types of tests (i.e., Low-Degree Test, Identity Test,Zero Propagation Test, et
) but rather that it performs many instan
es of ea
h test and thatthe soundness analysis only guarantees that one of these test instan
es reje
ts (robustly). This isnot suÆ
ient to make the veri�er robust.For this purpose, we \bundle" the various fun
tions in the proof ora
le so that the inputsrequired for the several test instan
es 
an be read together. This maintains the robustness of theindividual tests, albeit over a larger alphabet. To understand this \bundling", let us assume forthe present that the only type of tests that the veri�er performs is the Low-Degree Test. Thereexists a natural bundling in this 
ase. Instead of l(m+2) di�erent ora
les f ~Aig and fPi;jg, we haveone ora
le � whi
h bundles together the data of all these ora
les. The ora
le � : Fm ! F l�(2m+3)is supposed to satisfy �(x) = ( ~A0(x); : : : ; ~Al�1(x); P0;0(x); : : : ; Pl�1;m(x)) for all x 2 Fm. It 
annow be easily 
he
ked that over this proof ora
le, the 
onjun
tion of all the Low-Degree Testsis robust (over alphabet F l�(2m+3)) with the same soundness and robustness parameters as a singleLow-Degree Test(over alphabet F ). However, this natural bundling does not lend itself tothe other tests performed by the PCPP veri�er (namely, Zero Propagation Test, and Edge-Consisten
y Test). Next, we provide an alternate bundling and massage our veri�er slightly towork with this bundling.First for some notation. As mentioned earlier, we will be able to prove robustness of the veri�ervia bundling, however over a larger alphabet. This large alphabet will be � = F l+2l�(m+1). Unlikebefore, the proof ora
le for the robust PCPP veri�er will 
onsist of only one fun
tion � : Fm ! �.The robust PCPP veri�er simulates the PCPP veri�er as follows: To answer the queries of thePCPP veri�er, the robust veri�er bundles several queries together, queries the new proof ora
le �and then unbundles the answer to obtain the answers of the queries of the original PCPP veri�er.For 
onvenien
e, we index the l+2l � (m+ 1) 
oordinates of � = F l+2l�(m+1) as follows: The �rst l
oordinates are indexed by a single index i ranging from 0 to l� 1, while the remaining 2l � (m+1)are indexed by a triplet of indi
es (i; j; b) where i ranges over 0; : : : ; l � 1, j ranges over 0; : : : ;mand b 2 f0; 1g. Let S : Fm ! Fm denote the (linear) transformation that performs one 
y
li
 shiftto the right; that is, S(x0; : : : ; xm�1) = (xm�1; x0; : : : ; xm�2). The bundling of the proof ora
les~Ai's and Pi;j's by the modi�ed proof ora
le � is as follows:8x 2 Fm; 8<:�(x)i = ~Ai �Sb ih 
(x)� i = 0; : : : ; l � 1�(x)(i;j;b) = P (b)i;j �Sj+b ih 
(x)� i = 0; : : : ; l � 1; j = 0; : : : ;m and b 2 f0; 1g (4)where h = log jHj = log n=m. Note that the size of the new proof ora
le � is exa
tly equal to thesum of the size of the ora
les ~Ai's and Pi;j 's.We now state how the robust veri�er performs the unbundling and the individual tests. We
onsider ea
h step of the PCPP veri�er and present their robust 
ounterparts.The �rst steps of the PCP{Verifier (and PCPP{Verifier) are independent of the proofora
le and are performed as before. That is, the robust veri�er, as before, redu
es the CktSATinstan
e to an instan
e h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi ofAS-CktSAT, sets d = m�jHj, and generatesa random string R of length log(jS�j � jF jm�1). The remaining steps are proof-ora
le dependentand we will dis
uss ea
h of them in detail.Proximity Test. For the proximity test, the only portion of the proof ora
le that we require isthe portion 
ontaining ~A0. Sin
e �(x)0 is ~A0 Æ Sb 0h 
(x) = ~A0(x), the Robust Proximity Test
an easily be des
ribes as follows: 59



Robust Proximity TestW ; �(R)Case I: n � 8000jF jm�1=Æ3.Use random string R to determine a random 
anoni
al line L in Fm using the �-biasedset S�. Query ora
le � on all points along the line L. Unbundle �(L) to obtain thevalues of ~A0 on all points along the line L and reje
t if the restri
tion ~A0 to L is not apolynomial of degree at most d. Query the input ora
leW on all lo
ations 
orrespondingto those in I \ L and reje
t if W disagrees with ~A0 on any of the lo
ations in I \ L.Case II: n < 8000jF jm�1=Æ3.Use random string R to determine a position i R f1; : : : ; kg in the input and a dire
tiony R S�. Let x 2 I be the point 
orresponding to i in Hm, and let L be the 
anoni
al linethrough x in dire
tion y. Query ora
le � on all points along the line L. Unbundle �(L)to obtain the values of ~A0 on all points along the line L and reje
t if the restri
tion ~A0to L is not a polynomial of degree at most d. Query the input ora
le W at lo
ation iand reje
t if W [i℄ 6= ~A0(x).Low-Degree Test. We note that the distan
e of the polynomial ~Ai : Fm ! F to being degreek (for any k 2 Z+) is exa
tly the same as that of ~Ai Æ Sb ih 
 : Fm ! F sin
e Sb ih 
 is an invertiblelinear transformation. Hen
e, it is suÆ
ient if we 
he
k that ~Ai ÆSb ih 
 is low-degree. The 
ase withthe P (b)i;j 's is similar. Thus, the new Robust Low-Degree Test 
an be des
ribed as follows:Robust Low-Degree Test�(R)Use random string R to determine a random 
anoni
al line L in Fm using the �-biasedset S�.Query the ora
le � on all points along the line L.For i = 0; : : : ; l � 1,Unbundle �(L) to obtain the values of ~Ai Æ Sb ih 
 on all points along the line L andreje
t if the restri
tion ~Ai Æ Sb ih 
 to L is not a polynomial of degree at most d.For i = 0; : : : ; l � 1, j = 0; : : : ;m and b 2 f0; 1g,Unbundle �(L) to obtain the values of P (b)i;j Æ Sj+b ih 
 on all points along the line Land reje
t if the restri
tion of P (b)i;j Æ Sj+b ih 
 to L is not a polynomial of degree atmost �d.Thus, e�e
tively we are testing ~Ai (respe
tively Pi;j) using the line spa
e Sb ih 
 ÆS� (respe
tivelySj+b ih 
 Æ S�).Identity Test. In the 
ase of the Identity Test, we observe that P (b)i;m vanishes on Fm i�P (b)i;m ÆSm+b ih 
 vanishes on Fm. Re
all that we were allowed to use arbitrary partitions of the spa
eFm. The set of random 1st axis-parallel lines is one su
h partition and we use this partition.robust Identity Test�(R)Use random string R to determine a random 1st axis-parallel line in Fm of the formL = (X; a1; : : : ; am�1). Query the ora
le � on all points along the line L.For i = 0; : : : ; l � 1 and b 2 f0; 1g, 60



Unbundle �(L) to obtain the values of P (b)i;m Æ Sm+b ih 
 on all points along the line Land reje
t if any of these is non-zero.Edge Consisten
y Test. For any x 2 Fm, we say that Pi;0 is well-formed at x if the Equation (2)is satis�ed for this x. The Edge-Consisten
y Test veri�es that Pi;0 is well-formed for all x 2 U�and i = 0; : : : ; l � 1. This was done earlier by reading the values of Pi;0; ~Ai; ~Ai+1 Æ ~�i;0 = ~Ai+1 and~Ai+1 Æ ~�i;1 for all x 2 U�.Let L be a random 1st axis-parallel line. The robust version of this test 
he
ks that Pi;0 is well-formed for all points on Sb ih 
(L). Consider any x = (x0; : : : ; xm�1) 2 L. To verify that Pi;0 is well-formed at Sb ih 
(x), the veri�er needs the values Pi;0(Sb ih 
(x)); ~Ai(Sb ih 
(x)); ~Ai+1(Sb ih 
(x)) and ~Ai+1Æ~�i;1(Sb ih 
(x)). We will show that all these values 
an be obtained from unbundling the value of � onL and S�1(L). Clearly, the values Pi;0(Sb ih 
(x)) and ~Ai(Sb ih 
(x)) 
an be obtained from unbundlingthe value of � at x. The other two values that we require are ~Ai+1(Sb ih 
(x)) and ~Ai+1Æ~�i;1(Sb ih 
(x)).We �rst show that ~�i;1(Sb ih 
(x)) = Sb ih 
(x0) for x0 = (x0 + e(i mod h); x1; : : : ; xm�1) 2 L (re
all thatfe0; : : : ; ef�1g are a basis for F over GF(2) and fe0; : : : ; eh�1g span H � F ). For this purpose, we�rst re
all the de�nition of ~�i;1: ~�i;1(z0; : : : ; zm�1) = (z0; : : : ; zt�1; zt + eu; zt+1; : : : ; zm�1) wheret = bi=h
 mod m and u = i mod h. Furthermore, sin
e Sm is the identity map, we have thatSb ih 
 mod m = Sb ih 
. With these observations, we have the following:~�i;1 �Sb ih 
(x)� = ~�i;1 �Sbi=h
 mod m(x)�= ~�i;1 �Sbi=h
 mod m(x0; : : : ; xm�1)�= Sbi=h
 mod m �x0 + e(i mod h); x1; : : : ; xm�1�= Sb ih 
(x0)Now, Sb i+1h 
 is either Sb ih 
 or Sb ih 
+1 depending on the value of i. Suppose Sb i+1h 
 = Sb ih 
. Wethen have that ~Ai+1(Sb ih 
(x)) = Ai+1(Sb i+1h 
(x)) and ~Ai+1 Æ ~�i;1(Sb ih 
(x)) = ~Ai+1(Sb ih 
(x0)) =~Ai+1(Sb i+1h 
(x0)). Both these values 
an be obtained by unbundling the value of � on L (sin
eboth x and x0 lie on L). In the other 
ase, where Sb i+1h 
 = Sb ih 
+1, we have Ai+1(Sb ih 
(x)) =Ai+1(Sb i+1h 
(S�1x)) and Ai+1 Æ ~�i;1(Sb ih 
(x)) = Ai+1(Sb ih 
(x0)) = Ai+1(Sb i+1h 
(S�1x0)). Thesevalues 
an be obtained by unbundling the value of � on S�1(L). Thus, to 
he
k that Pi;0 iswell-formed for all points on Sb ih 
(L), it suÆ
es if the veri�er queries � on all points on L andS�1(L).Robust Edge-Consisten
y Test�(R)Use the random string R to determine a random 1st axis-parallel line in Fm of the formL = (X; a2; : : : ; am). Query the ora
le � along all points in the lines L and S�1(L).For i = 0; : : : ; l � 1,For all x 2 Sb ih 
(L), reje
t if Pi;0 is not well-formed at x. [Note that all the valuesrequired for this veri�
ation 
an be obtained by unbundling �(L) and �(S�1(L)).℄Zero Propagation Test. For ea
h i = 0; : : : ; l�1 and b 2 f0; 1g, the Zero Propagation Test
he
ks that P (b)i;0 vanishes on Hm by verifying that Equation (3) is satis�ed for all j = 1; : : : ;m� 161



(we also need to 
he
k that P (b)i;m � 0, however this is taken 
are by the Identity Test). Sin
eS(Hm) = Hm, 
he
king if P (b)i;0 vanishes on Hm is equivalent to 
he
king if P (b)i;0 Æ Sb ih 
 vanishes onHm. Hen
e, we 
an perform the zero propagation on the polynomials P (b)i;0 ÆSb ih 
; i = 0; : : : ; l�1; b 2f0; 1g instead of the polynomials P (b)i;0 ; i = 0; : : : ; l� 1; b 2 f0; 1g. In other words, we need to verifythe following equation instead of Equation (3).P (b)i;j Æ Sb ih 
�x1; : : : ; xj�1| {z }; xj ; xj+1; : : : ; xm| {z }� = jHj�1Xk=0 P (b)i;j�1 Æ Sb ih 
�x1; : : : ; xj�1| {z }; hk; xj+1; : : : ; xm| {z }�xkj ;8(x1; : : : ; xm) 2 Fm (5)This equation 
an be further rewritten in terms of the 
y
li
 shift S as follows:P (b)i;j �Sb ih 
+j�1(x1; x2; : : : ; xm)� = jHj�1Xk=0 P (b)i;j�1 �Sb ih 
+j�1(hk; x2; : : : ; xm)� xk1; 8(x1; : : : ; xm) 2 Fm(6)This helps us to rewrite the Zero Propagation Test with bundling as follows:Zero Propagation Test�(R)Use random string R to determine a random 1st axis-parallel line in Fm of the formL = (X; a2; : : : ; am). Query the ora
le � along all points in the lines L and S�1(L).For i = 0; : : : ; l � 1, j = 1; : : : ;m, and b 2 f0; 1gUnbundle �(L) to obtain the value of P (b)i;j�1 Æ Sb ih 
+j�1 on all points along theline L. Similarly, unbundle �(S�1(L)) to obtain the value of P (b)i;j Æ Sb ih 
+j on allpoints along the line S�1(L) (Equivalently, this is the value of P (b)i;j Æ Sb ih 
+j�1 onall points along the line L). Reje
t either if the restri
tion of P (b)i;j�1 Æ Sb ih 
+j�1 orP (b)i;j ÆSb ih 
+j�1 to L is not a polynomial of degree at most �d or if any of the pointson the line L violate Equation (6).The integrated robust veri�er. Having presented the robust version of ea
h of the tests, theintegrated robust veri�er is as follows.Robust-PCPP{VerifierW ; �m;�;Æ(C).1. Using Proposition 6.11, redu
e the instan
e C of CktSAT, using parameter m, to aninstan
e h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi of AS-CktSAT, and set d = m � jHj.We let S� � Fm be a �-biased set of size at most � log jF jm� �2 [2℄.2. Choose a random string R of length log(jS�j � jF jm�1). [Note: We reuse R in all tests,but only the Low-Degree Test utilizes the full length of R.℄3. Run Robust Low-Degree Test�(R).4. Run Robust Edge-Consisten
y Test�(R).5. Run Robust Zero Propagation Test�(R).62



6. Run robust Identity Test�(R).7. Run Robust Proximity TestW ;�(R).Reje
t if any of the above tests reje
t.The randomness of the Robust-PCPP{Verifier is exa
tly the same as before whereas the query
omplexity and de
ision 
omplexity in
rease by a 
onstant fa
tor25.Proposition 8.8 The randomness, query and de
ision 
omplexities of the Robust-PCPP{Verifierare r = �1� 1m� log n + O(m logm) + O(log log n) + O (log (1=Æ)), q = O(m2n1=m log2 n) andd = ~O(q) respe
tively.It is straightforward to 
he
k perfe
t 
ompleteness of this veri�er.Robustness analysis of the integrated veri�er. To state the robust soundness, it is useful forus to separate the robustness wrt the input ora
le and wrt the proof ora
le. Let W : [k℄ ! f0; 1gbe the input ora
le and � the proof ora
le. For every sequen
e of 
oin tosses R (and a given settingof parameters), let �W;�inp (R) (resp., �W;�pf (R)) denote the fra
tion of the bits read from W (resp.�) that would need to be 
hanged to make the Robust-PCPP{Verifier a

ept on 
oin tossesR. Then the following lemmas state the robustness property of our veri�er.Lemma 8.9 (Case I) There are 
onstants 
 2 Z+ and � > 0 su
h the following holds for everyn;m 2 Z+, Æ; Æ0 > 0 satisfying m � logn=loglogn, n1=m � m
m=Æ3, � � minf1=
 log n; Æ3=m
mg,Æ0 > Æ. If W is Æ0-far from satisfying the 
ir
uit, then for any proof ora
le � : Fm ! �, eitherER[�W;�pf (R)℄ � � or ER[�W;�inp (R)℄ � Æ0 � Æ=2.Proof: Unbundle the proof ora
le � to obtain the fun
tions ~Ai and Pi;j using Equation (4).Consider the a
tion of the PCPP{Verifier (i.e., the non-robust veri�er) on the proof ora
les~Ai; Pi;j and input ora
le W .Let " be a suÆ
iently small 
onstant su
h that the Claims 8.2{8.6 hold. Suppose W is Æ0-farfrom satisfying the 
ir
uit. We then know that one of the following holds and that the 
orrespondingtest instan
e of the PCPP{Verifier reje
ts its input robustly (see Claims 8.2 to 8.6).1. There exists a i = 0; : : : ; l�1 su
h that ~Ai is 8"-far from every degree md polynomial or thereexists a i = 0; : : : ; l� 1, j = 0; : : : ;m and b 2 f0; 1g su
h that P (b)i;j is 8"-far from every degree�md polynomial. In this 
ase,the expe
ted distan
e of ~Ai (or resp. P (b)i;j ) from satisfying theLow-Degree Test with degree parameter d (resp., �d) is at least 2" (Claim 8.2).2. There exists i = 0; : : : ; l � 1 and b 2 f0; 1g, su
h that �(P (b)i;m; bP (b)i;m) � 8" and bPi;m 6� 0.In this 
ase, Pi;m has expe
ted distan
e at least 1 � 9" from satisfying the Identity Test(Claim 8.3).3. There exists a i = 0; : : : ; l�1 su
h that �(P (0)i;0 ; bP (0)i;0 ) � 8", �(P (1)i;0 ; bP (1)i;0 ) � 8", �( ~Ai; bAi) � 8",�( ~Ai+1; bAi+1) � 8", and bPi;0(x) 6�  0(( ~Ti(x); bAi(x); bAi+1(~�i;0(x)); bAi+1(~�i;1(x))). In this
ase, �Pi;0(�); Ai(�); Ai+1(~�i;0(�))Ai+1(~�i;1(�))	 has expe
ted distan
e at least (1�41")=5 fromsatisfying the Edge-Consisten
y Test (Claim 8.4).25Though the new proof ora
le returns elements of � and not bits, we express the query 
omplexity as the numberof bits read by the veri�er rather than the number of symbols (i.e., elements of j�j) to maintain 
onsisten
y a
ross
al
ulating the query 
omplexity into the proof and input ora
les.63



4. There exists i = 0; : : : ; l � 1, j = 1; : : : ;m and b 2 f0; 1g su
h that �(Pi;j; bPi;j) � 8",�(Pi;j�1; bPi;j�1) � 8", and bPi;j(: : : ; xj ; : : :) 6� PjHj�1k=0 bPi;j�1(: : : ; hk; : : :)xkj . In this 
ase,(P (b)i;j ; P (b)i;j�1) has expe
ted distan
e at least (1 � 19")=2 from satisfying the Zero Propa-gation Test (Claim 8.5).5. �( ~A0; bA0) � 8" but W and bA0jI disagree on at least Æ fra
tion of the points. In this 
ase,with probability at least 1 � Æ=4 (over the 
hoi
e of the 
anoni
al line L) either at least a"-fra
tion of A0jL or at least a (Æ0 � Æ=4)-fra
tion of W jL needs to be 
hanged to make theProximity Test a

ept (Claim 8.6).This implies that either A0 has expe
ted distan
e (1�Æ=4)" � "=2 orW has expe
ted distan
e(1� Æ=4)(Æ0 � Æ=4) � (Æ0 � Æ=2) from satisfying the Proximity Test.For instan
e, lets us assume ~A0 is 8"-far from being low degree so the Low-Degree Testreje
ts it robustly; that is, for a random 
anoni
al line L, the expe
ted distan
e of ~A0jL fromsatisfying the Low-Degree Test is at least 2". Re
all from Equation (4) that ~A0(x) is one of the
o-ordinates in the bundled �(x). Hen
e, if ~A0jL is �-far from satisfying the Low-Degree Test,so is �L from satisfying the Robust Low-Degree Test. Thus, � has expe
ted distan
e at least2" from satisfying the Robust Low-Degree Test. Now, the ora
le positions read by the RobustLow-Degree Test 
onstitute a 
onstant fra
tion of the ora
le positions read by the Robust-PCPP{Verifier, so � has expe
ted distan
e 
(") from satisfying the Robust-PCPP{Verifier.Thus, the robustness of the individual test instan
e is transfered to the 
ombined Robust Low-Degree Test by bundling. The 
ase with the other test types is similar. We thus have thatER[�W;�pf (R)℄ � 
(") or ER[�W;�inp (R)℄ � Æ0 � Æ=2. The lemma then follows by setting � = 
(").Lemma 8.10 (Case II) There is a 
onstant 
 2 Z+ su
h the following holds for every n;m 2 Z+,Æ > 0 satisfying m � log n=loglogn, n1=m < m
m=Æ3, � � minf1=
 log n; Æ3=m
mg. If W is Æ-farfrom satisfying the 
ir
uit, then for any proof ora
le � : Fm ! �, either ER[�W;�pf (R)℄ � Æ=
 orER[�W;�inp (R)℄ � Æ=
.Proof: This proof pro
eeds in the same way as Lemma 8.9 ex
ept that in this 
ase we set " tobe Æ=(8 � 32) whi
h is mu
h smaller than the 
onstant required by Claims 8.2{8.5. The reason forthis is that the individual robustness of the Proximity Test - Case II (Claim 8.7) requires that�( ~A0; bA0) � Æ=16 unlike in Case I (Claim 8.7) whi
h just required �( ~A0; bA0) � 1=4.Suppose W is Æ-far from satisfying C, then as before we have �ve di�erent 
ases. The �rst four
ases are exa
tly as before. We mention below the only 
ase that di�ers from before (i.e., the �fthone).5. �( ~A0; bA0) � 8" = Æ=16 but W and bA0jI disagree on at least Æ fra
tion of the points. In this
ase, with probability at least Æ=2 (over the 
hoi
e of index i and dire
tion y R S�), eitherat least a 1=2-fra
tion of A0jL or W [i℄ (i.e., the entire portion of the input ora
le read by theveri�er) needs to be 
hanged to make the Proximity Test a

ept (Claim 8.7).This implies that either A0 has expe
ted distan
e Æ2 � 12 = 
(") or W has expe
ted distan
eÆ=2 from satisfying the Proximity Test.Arguing as before, we have that ER[�W;�pf (R)℄ � 
(") = 
(Æ) or ER[�W;�inp (R)℄ � Æ=2. The lemmathen follows by setting 
 to be a large enough 
onstant su
h that Æ=
 = minf
(Æ; Æ=2g.64



8.3 Robustness over the binary alphabetThe transformation from a robust veri�er over the alphabet � to one over the binary alphabet isanalogous to 
onverting non-Boolean error 
orre
ting 
odes to Boolean ones via \
ode 
atenation".This transformation is exa
tly the same transformation as the one in the proof of Lemma 2.13.However, we 
annot dire
tly use Lemma 2.13 as we may apply the \
ode 
on
atenation" pro
essonly to the proof ora
le � and not to the input ora
le W . However, this is not a problem, be
ausethe input ora
le is already binary and has good robustness.Let ECC : f0; 1glog j�j ! f0; 1gb for b = O(log j�j) be a binary error-
orre
ting 
ode of 
onstantrelative minimum distan
e, whi
h 
an be 
omputed by an expli
it 
ir
uit of size O(log j�j)[51℄. Weaugment the original proof ora
le �, viewed now as having log j�j-bit long entries (i.e., elements of�) with an additional ora
le � having b-bit long entries, where �(x) is supposed to be ECC(�(x)).Our new veri�er V , on ora
le a

ess to the input W and proof � Æ �, will simulate theRobust-PCPP{Verifier. The queries to the input ora
le are performed just as before how-ever, for ea
h query x 2 Fm in the proof ora
le � made by Robust-PCPP{Verifier, V willquery the 
orresponding log j�j bits in �(x) and the b bits in �(x). Thus, the query 
omplex-ity of V is at most log j�j + b times the number of queries issued by the earlier veri�er. Sin
eb = O(log j�j), the query 
omplexity of the new veri�er V is a 
onstant times that of the pre-vious one. The randomness is exa
tly the same. The a
tion of the new veri�er V is as fol-lows: Suppose Robust-PCPP{Verifier issues queries x1; : : : ; xq1 to the proof ora
le �, andqueries i1; : : : ; iq2 to the input ora
le, then V issues queries x1; : : : ; xq1 to the proof ora
le �, asimilar set of queries x1; : : : ; xq1 to the proof ora
le � and i1; : : : ; iq2 to the input ora
le. V a
-
epts (�(x1); : : : ;�(xq1);�(x1); : : : ;�(xq1);W (i1); : : : ;W (iq2)) i� the Robust-PCPP{Verifiera

epts (�(x1); : : : ;�(xq1);W (i1); : : : ;W (iq2)) and �(xi) = ECC(�(xi)) for all i = 1; : : : ; q1. It isstraightforward to 
he
k that V has perfe
t 
ompleteness if Robust-PCPP{Verifier has perfe
t
ompleteness. For the robust soundness, we de�ne �W;�Æ�inp (R) and �W;�Æ�pf (R) wrt V analogouslyto before (
f. just before Lemma 8.9), but referring to distan
e over f0; 1g (rather than �) for theproof ora
le. The proofs of the following 
laims regarding the robust-soundness of V mimi
s theproof of Lemma 2.13.Lemma 8.11 (Case I) There are 
onstants 
 2 Z+ and � > 0 su
h the following holds for everyn;m 2 Z+, Æ; Æ0 > 0 satisfying m � logn=loglogn, n1=m � m
m=Æ3, � � minf1=
 log n; Æ3=m
mg,Æ0 > Æ. If W is Æ0-far from satisfying the 
ir
uit, then then for any proof ora
les � : Fm !f0; 1glog j�j;� : Fm ! f0; 1gb, either ER[�W;�Æ�pf (R)℄ � � or ER[�W;�Æ�inp (R)℄ � Æ0 � Æ=2.Lemma 8.12 (Case II) There is a 
onstant 
 2 Z+ su
h the following holds for every n;m 2 Z+,Æ > 0 satisfying m � log n=loglogn, n1=m < m
m=Æ3, � � minf1=
 log n; Æ3=m
mg. If W is Æ-farfrom satisfying the 
ir
uit, then for any proof ora
le � : Fm ! �, either ER[�W;�pf (R)℄ � Æ=
 orER[�W;�inp (R)℄ � Æ=
.It is to be noted that the expe
ted robustness of the proof ora
le (� in Case I and Æ=
 in CaseII) is not the same as similar parameters in Lemmas 8.9 and 8.10, but weaker by a 
onstant fa
toras suggested in Lemma 2.13.Finally, we 
on
lude by proving Theorem 8.1.Proof (of Theorem 8.1): Theorem 8.1 is proved using the Robust-PCPP{Verifier de�ned inthis se
tion setting � = minf1=
 log n; Æ3=m
mg. The randomness, query and de
ision 
omplexityof the Robust-PCPP{Verifier (i.e., before the transformation to the binary alphabet) are asmentioned in Proposition 8.8. As mentioned in the earlier paragraph, the transformation from65



the alphabet � to the binary alphabet maintains the randomness 
omplexity while the query (andde
ision) 
omplexity in
rease by at most a 
onstant fa
tor. Hen
e, the randomness, query andde
ision 
omplexities of the veri�er are as 
laimed in Theorem 8.1So far, we have 
onsidered the proof and input ora
le separately. Hen
e the expe
ted robustnessin Lemmas 8.11 and 8.12 were expressed separately for the proof and input ora
les. We 
an 
onsiderthem together by giving weights to the two ora
le portions in the de
ision 
ir
uits (i.e. repeatingqueries, see Remark 7.2). Also, the expe
ted robustness mentioned in Theorem 8.1 are di�erentfor the two 
ases when n1=m � m
m=Æ3 and n1=m < m
m=Æ3 (and, as in the proof of Theorem 7.1,these two 
ases do not dire
tly 
orrespond to the two 
ases expressed in Lemmas 8.11 and 8.12respe
tively). We will give weights to the input and proof ora
les di�erently in ea
h of these 
ases.Case I: n1=m � m
m=Æ3In this 
ase, we give weight (1�
) to the input ora
le and 
 to the proof ora
le, where 
 is asspe
i�ed in Theorem 8.1. Re
all that these weights mean that ea
h query to the input ora
leis repeated several times su
h that the relative length of the input-part in the de
ision 
ir
uitis 1 � 
. These repeated queries may in
rease the query (and de
ision) 
omplexity in
reaseby a fa
tor of at most 1=
. Note that weighting does not afe
t the randomness 
omplexity(or any other parameter su
h as the proximity parameter Æ).Sin
e n1=m �m
m=Æ3, we have n1=m � 8000(
Fm2)m�1=Æ3 or equivalently n � 8000jF jm�1=Æ3.Hen
e, Lemma 8.11 applies and we have that either ER[�W;�Æ�pf (R)℄ � � or ER[�W;�Æ�inp (R)℄ �Æ0 � Æ=2. Note that the �rst expression refers to the \expe
ted robustness" of the proof-partwhereas the se
ond expression refers to the input-part. The overall expe
ted robustness isobtained by a weighted average of these two expressions, where the weights are with respe
t tothe aforementioned weighting (whi
h assigns weight 
 to the input-part). Hen
e, the expe
tedrobustness with respe
t to the said weighting is
 � ER[�W;�Æ�pf (R)℄ + (1� 
) � ER[�W;�Æ�inp (R)℄ � minf
 � �; (1� 
) � (Æ0 � Æ=2)g :Case II: n1=m < m
m=Æ3In this 
ase, we give equal weight to the input and proof ora
les (i.e., we e�e
tively set
 = 1=2). This weighting may in
rease the query (and de
ision) 
omplexity in
rease by atmost a fa
tor of 2, and has no a�e
t on any other parameter.In this 
ase, we do not know whi
h of n1=m or 8000(
Fm2)m�1=Æ3 is greater. Hen
e, we donot know whi
h one of Lemma 8.11 or Lemma 8.12 applies. Thus, we 
an only guarantee theweaker of the two expe
ted robustness 
laims. Hen
e, we have that either ER[�W;�Æ�pf (R)℄ �minf�; Æ=
g = Æ=
 or ER[�W;�Æ�inp (R)℄ � minfÆ � Æ=2; Æ=
g = Æ=
. Hen
e, the expe
tedrobustness with respe
t to the said weighting is12 � ER[�W;�Æ�pf (R)℄ + 12 � ER[�W;�Æ�inp (R)℄ � 12 � Æ
 = 
(Æ) :Thus, in both 
ases, the expe
ted robustness is as 
laimed. Noting that the other parameters (e.g.,the randomness and de
ision 
omplexities) are as 
laimed, Theorem 8.1 follows.8.4 Linearity of en
odingIn this se
tion we point out that, for linear 
ir
uits (to be de�ned below), the mapping from anassignment to the 
orresponding PCP of proximity is linear. Throughout this se
tion, \linear"66



means GF (2)-linear (yet, we will sometimes refer to F -linearity, for an extension �eld F of GF (2)).The main motivation to the 
urrent study is to derive linear 
odes satisfying lo
al-testability andrelaxed lo
al-de
odability (i.e., Theorems 1.4 and 1.5, respe
tively). Spe
i�
ally, the 
onstru
tionspresented in Se
tion 4 yield linear 
odes provided that the 
orresponding PCP of proximity is linearin the aforementioned sense.We 
all a 
ir
uit is linear if it is a 
onjun
tion of linear 
onstraints. However, instead ofrepresenting this 
onjun
tion via AND gates, it is more 
onvenient for us to work with 
ir
uits thathave multiple output gates, one for ea
h linear 
onstraint. That is:De�nition 8.13 A multi-output 
ir
uit is linear if all its internal gates are parity gates and aninput is a

epted by it if and only if all output gates evaluate to zero.Proposition 8.14 If C is a linear 
ir
uit, then there is a linear transformation T mapping satis-fying assignments w of C to proof ora
les T (w) su
h that the PCPP veri�er of Theorem 3.1 will,on input C, a

ept ora
le (w; T (w)) with probability 1. Moreover, all the de
ision 
ir
uits produ
edby the veri�er, on input C, 
an be made linear (while maintaining the 
laimed de
ision 
omplexity).In the rest of this se
tion, we provide a proof of Proposition 8.14, starting with an assignmentw that satis�es the linear 
ir
uit. We prove that the mapping from w to a proof-ora
le is linearby reviewing our 
onstru
tion of this mapping and ensuring that all steps in this 
onstru
tion arelinear transformations.Phase I - Stru
tured-CktSAT: In this phase (des
ribed in Se
tion 6.1) we write down thevalues to all gates of the 
ir
uit and route them along the wrapped de Bruijn graph. A
tually, wemake a few minor and straightforward modi�
ations to De�nition 6.3: we allow multiple outputgates (rather than a single output gate) and require that ea
h su
h gate evaluates to zero (ratherthan to 1).26 Also, here we deal with gate types that are linear (e.g., XOR), rather than arbitrary(e.g., AND and OR).Sin
e all the 
ir
uit gates are linear fun
tions of the input, the values on the wires leaving thezero-th layer of the well-stru
tured 
ir
uit (i.e., the last two bits of the mapping A0 : f0; 1gN !f0; 1g4 in Se
tion 6.1) are linear in the input (i.e., in w). As to Ai, i > 0, (and the �rst two bitsof A0) noti
e that it is obtained by permuting the values of the previous layer Ai�1 and settingsome wires to zero (if they are not needed in the routing, e.g. gates 3 and 4 in Figure 3). Theseoperations are linear, and so all assignment fun
tions are linear in the input.Phase II - Arithmetization: In this phase (des
ribed in Se
tion 6.2) we extend the valuesgiven by Ai to an evaluation of a low-degree multivariate polynomial over some �nite �eld F thatis an extension �eld of GF (2) of degree f . Ea
h value of Ai is four bits long (say b0; b1; b2; b3) andidenti�ed with the element b0e0 + b1e1 + b2e2 + b3e3, where e0; : : : ; ef�1 is a basis for F viewed asa ve
tor spa
e over GF (2). We view Ai as a fun
tion Ai : Hm ! F and 
onstru
t a low-degreeextension ~Ai : Fm ! F of Ai by interpolation. on all inputs in Hm and use these values tointerpolate and evaluate ~Ai on all points in Fm. Noti
e that interpolation is F -linear and hen
ealso GF (2)-linear. We 
on
lude that the values of ~Ai on all points in Fm is a linear transformationof the values of Ai. Sin
e Ai is linear in the input assignment, so is ~Ai.Clari�
ation: Many parts of our en
oding (starting with ~Ai) 
onsist of evaluations of multivariatepolynomials P (x) over Fm. The linearity we 
laim is not linearity in x (the free variables of thepolynomial). Rather, we 
laim the table of values fP (a) : a 2 Fmg is linear in the initial assignment26Re
all that an input is a

epted by the linear 
ir
uit if and only if all output gates evaluate to zero.67



w, whi
h may be viewed as the information en
oded in this table. In 
ontrast, throughout thisse
tion, x is merely an index to this table. For example, in Phase II we showed the table f ~Ai(a) :a 2 Fmg is obtained by a linear transformation applied to the table fAi(a0) : a0 2 Hmg (but we
ertainly do not 
laim ~Ai(a) is linear in a). That is, ea
h ~Ai(a) is a linear 
ombination of theAi(a0)'s.Phase III - The Constraint Polynomials: We now dis
uss the polynomials P (0)i;0 and P (1)i;1de�ned in Equation (2), and show their values are a linear transformation of the values of ~Ai.The �rst polynomial (i.e., P (0)i;0 ) is obtained by applying the univariate polynomial  0 de�ned inEquation 1 to ea
h value of ~Ai (i.e., P (0)i;0 (x) =  0( ~Ai(x))). By de�nition,  0 evaluates to zeroi� its input, when represented as a ve
tor in GF (2)f , belongs to the linear spa
e spanned byfe0; e1; e2; e3g. This polynomial de�nes a linear transformation, as 
laimed by the following lemma.Lemma 8.15 Let L be a GF(2)-linear subspa
e of F = GF (2f ) and  L(t) = Q�2L(t � �). Thenthe mapping  L : F ! F is linear.Proof: We use the fa
t that for any integer i, the transformation t 7! t2i is linear; that is,(t+ t0)2i = t2i + t02i . Our main 
laim is that the polynomial  L(t) 
an be written as Pi 
it2i andhen
e is linear (being a sum of linear transformations). We prove this 
laim by indu
tion on thedimension of L � GF (2)f . Indeed, for dim(L) = 0 (i.e., L = f0fg), it holds that  L(t) = t and our
laim follows. In the indu
tion step, write L as L = L0 [ f�+ L0g where L0 is some linear spa
e ofdimension k�1 and � 2 LnL0. Clearly,  L(t) =  L0(t) � L0 (t+�). Using the indu
tive hypothesisfor L0 (and the linearity of t 7! t2j ), we get L(t) =  Xi 
i � t2i! �0�Xj 
j � (t+ �)2j1A=  Xi 
i � t2i! �0�Xj 
j � �t2j + �2j�1A= Xi;j 
i
jt2it2j +Xi;j 
i
jt2i�2j= Xi 
2i t2i+1 +Xi 
0it2iwhere 
0i =Pj 
i
j�2j and Pi 6=j 
i
jt2it2j = 2Pi<j 
i
jt2it2j = 0 (be
ause F has 
hara
teristi
 2).This 
ompletes the proof of the indu
tive 
laim.We now turn to the se
ond polynomial, P (1)i;0 . Re
all that P (1)i;0 (x) =  1(s; a; a0; a1), wheres = ~Ti(x), a = ~Ai(x) and aj = ~Ai+1(~�i;j(x)). It 
an be veri�ed that ~Ti(x) (whi
h represents thegate type) is independent of the input w to the 
ir
uit, and by our previous dis
ussion a; a0; a1are linear in the input w (to the 
ir
uit). Thus, it will suÆ
e to show that  0 is linear in itslast three inputs. When dis
ussing Equation (2) we did not go into the spe
i�
 
onstru
tion ofthe polynomial  0 be
ause only its fun
tionality mattered, and we showed that there exists some
onstant-degree polynomial that does the job. But for our 
urrent purposes (of showing linearity)we need to present some spe
i�
 polynomial  0 that is linear (as an operator over GF (2)f ) and hasthe desired properties needed by the veri�
ation pro
ess. To do this, re
all C is the set of allowable68



gates in the well-stru
tured 
ir
uit, and so we de�ne Æs0(z) to be the (minimal degree) uni-variatepolynomial of degree jCj that is 1 if z = s0 and is 0 if z 2 C n fs0g, and write  0 as 0(s; a; a0; a1) = Xs02C Æs0(s) �  0s0(a; a0; a1) (7)Claim 8.16 For any s0 2 C that 
an o

ur as a gate in a well-stru
tured 
ir
uit 
onstru
ted from alinear 
ir
uit C, the polynomial  0s0(a; a0; a1) of Equation 7 
an be written as a linear transformation(of (a; a0; a1)).Proof: Re
all that the value of  0s0(a; a0; a1) is supposed to represent whether or not the fourleast signi�
ant bits of the three inputs (denoted a0, a00 and a01) satisfy some 
ondition. By in-spe
ting De�nition 6.3, it 
an be veri�ed that (in our 
ase) this 
ondition is a linear one. That is, 0s0(a; a0; a1) = 0 if and only if the triplet (a0; a00; a01), viewed as a 12-bit ve
tor over GF (2), belongsto some spe
i�
 linear spa
e Ls0 � GF (2)12.Re
all that we may assume that a = 0f�4a0 (and similarly for a0 and a1), be
ause this 
onditionis imposed by the 
onstraint polynomial P (0)i;0 . Thus, we seek a polynomial (over F 3) su
h that ifea
h of its three inputs belongs to Span(e0; : : : ; e3) then it will output 0 i� the inputs residein the linear spa
e that is analogous to Ls0 ; that is, the input (a; a0; a1) should evaluate to 0 i�a0Æa00Æa01 2 Ls0 . To obtain this, we assume the existen
e of � 2 F su
h that multiplying an elementby � 
orresponds to a left 
y
li
 shift by four positions (e.g., � � �0 � � � �f�1 = �4 � � � �f�1�0 � � � �3).Su
h an element exists for the standard representation of F . Using this element we 
an write 0s0 : F 3 ! F as  0s0(a; a0; a1) =  Ls0 (�2a+ �a0 + a1)where  Ls0 is the univariate polynomial that is zero i� its input is in Ls0 . Note that, for inputsin Span(e0; : : : ; e3), indeed  0s0(a; a0; a1) = 0 i� a0 Æ a00 Æ a01 2 Ls0 . By Lemma 8.15,  Ls0 is linear.It follows that  0s0 is linear, be
ause multipli
ation by a �xed element of F (i.e., �) is a linearoperation.Re
all Æs0(s) depends only on the 
ir
uit and not on its input (i.e., w). Thus, ea
h summand of(7) is linear in w and hen
e the sum is itself linear in w. We 
on
lude that the table of evaluationsof the polynomials given by Equation (2) is obtained by linear transformations applied to the inputto the 
ir
uit.Phase IV - The Sum-
he
k Polynomials: In this phase (des
ribed by Equation (3)) we applya sequen
e of interpolations to previously 
onstru
ted polynomials P (b)i;j . Ea
h su
h interpolation isan F -linear transformation and hen
e also a GF(2)-linear one. Thus, the sequen
e of polynomialsP (b)i;j is obtained by a linear transformation applied to the input.Phase V - Bundling and En
oding: In this phase (des
ribed in Se
tions 8.2 and 8.3) weapply some 
y
li
 shifts to the (values of the) sequen
e of l + 2l(m + 1) polynomials obtainedin the previous phases. Then we bundle the polynomials together, obtaining an alphabet of sizejF jl+2l(m+1). This bundling does not 
hange the en
oding (only the partitioning of the proof intosymbols) and hen
e is also a linear transformation. Finally, we apply an error 
orre
ting 
ode toea
h symbol in order to redu
e the alphabet size (from jF jl+2l(m+1)) to binary, and this is also alinear transformation as long as the error 
orre
ting 
ode is itself linear.The result of this shifting, bundling and en
oding is the a
tual proof given to the (outer) veri�erof Theorem 8.1. Noti
e this transformation from l + 2l(m + 1) polynomials (ea
h evaluated in F )to one proof (over the binary alphabet) is linear, be
ause all three parts of it are linear.69



Now we argue that all tests performed by the veri�er are linear and the de
ision 
omplexity
laimed in Theorem 8.1 
an be a
hieved by using small linear 
ir
uits. This 
an be seen by inspe
tingthe various tests des
ribed in Se
tion 6.3, noti
ing that they all 
he
k either linear or F -linear
onditions, and applying the general result of Strassen [53℄ showing that any algebrai
 
ir
uit that
omputes a linear fun
tion (as a formal polynomial) 
an be 
onverted into a linear 
ir
uit with onlya 
onstant-fa
tor in
rease in size. This 
ompletes the proof of Proposition 8.14.A
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Part IIIAppendi
esA Hadamard-
ode-based PCP of proximityIn this se
tion we note that the Hadamard-
ode-based inner verifer from Arora et al. [4℄ 
an be
onverted in to a PCP of proximity. Re
all that the inner veri�er of [4℄ a

esses O(1) input ora
les,where the ith ora
le is supposed to provide the Hadamard en
oding of some string wi, and veri�esthat their 
on
atenation satis�es some given 
ir
uit C.Here we simplify this veri�er to work with a single string w and the veri�er a

esses a singleinput ora
le that represents this string itself (not some en
oding of it), and veri�es that w is 
loseto an assignment a

eptable by the 
ir
uit C given as expli
it input.Theorem A.1 There exists a 
onstant Æ0 > 0 su
h that there exists a PCP of proximity forCir
uit Value (for 
ir
uits of size n) with randomness 
omplexity O(n2), query 
omplexity O(1),perfe
t 
ompleteness, soundness error 1 � Æ, and proximity parameter 5Æ for any Æ � Æ0. That is,inputs that are Æ-far from satisfying the 
ir
uit are reje
ted with probability at least min(Æ; Æ0)=5.Noti
e that we do not 
laim robustness of this PCP of proximity. This is be
ause we don't intend touse this veri�er (or any veri�er derived from it) as the outer veri�er during 
omposition. However,this veri�er is robust (in a trivial sense). Indeed, any PCP of proximity with O(1) query 
omplexityis trivially �-robust for some 
onstant � > 0 (sin
e the relative distan
e between two query patternsis lower-bounded by the inverse of number of bits queried).Proof: Let V denote the 
laimed veri�er. We �rst list the ora
les used by V , then we des
ribe thetests that V performs, and �nally we will verify that V 's 
omplexities are as 
laimed and analyzeits performan
e (most notably its soundness and proximity).Ora
les. Let C be a 
ir
uit with n gates on m input bits. The veri�er a

esses an inputora
le W : [m℄ ! f0; 1g (representing a string w 2 f0; 1gm), and a proof ora
le � = (A;B), withA : f0; 1gn ! f0; 1g and B : f0; 1gn�n ! f0; 1g.To motivate the veri�er's tests, we des
ribe what is expe
ted from the ora
les in the \
om-pleteness" 
ase, i.e., when C(w) = 1. The input ora
le, by de�nition, gives the string w, i.e.,W [i℄ = wi. Now let z 2 f0; 1gn be the string of values of all the gates of the 
ir
uit C (in
ludingthe input, the internal gates, and the output gate(s)). W.l.o.g., assume z = w Æ y, where y rep-resents the values assumed for internal gates. The ora
le A is expe
ted to give the values of alllinear fun
tions at z (over GF(2)); and the ora
le B is supposed to give the value of all quadrati
fun
tions at z. More pre
isely A = A[x℄x2f0;1gn is expe
ted to be A[x℄ =Pni=1 xizi = xT z (wherex and z are being thought of as 
olumn ve
tors). Similarly, B = B[M ℄M2f0;1gn�n is expe
ted to beB[M ℄ =Pi;jMijzizj = zTMz (where M is an n�n matrix). In order to verify that w satis�es C,the veri�er will verify that A and B have indeed been 
onstru
ted a

ording to some string z asabove, that z represents an a

epting 
omputation of the 
ir
uit, and �nally that A is the en
odingof some string w0 Æ y where w0 is 
lose to the string w given by the input ora
le W .Tests. Given the 
ir
uit C, the veri�er �rst 
onstru
ts polynomials P1(z); : : : ; Pn(z) as follows.Viewing the variables fzig as representing the values at the individual gates of the 
ir
uit C (withz1; : : : ; zm being the input gates), the polynomial Pi(z) is the quadrati
 polynomial (over GF(2))75



expressing the 
onstraint imposed by the i'th gate of the 
ir
uit on an a

epting 
omputation. Forexample:Pi(z) = 8>>>>>><>>>>>>:
zi � zjzk if the ith gate is an AND gate with inputs from gates j and k.zi � zj � zk + zjzk if the ith gate is an OR gate with inputs from gates j and k.zi � (1� zj) if the ith gate is a NOT gate with input from gate j.zi � (zj + zk) if the ith gate is a PARITY gate with inputs from gates j and k.1� zj if the ith gate is an output gate with input from gate j.0 if the ith gate is an input gate (i.e. i � m).Note that z = w Æ y re
e
ts the 
omputation of C on an a

eptable input w i� Pi(z) = 0 for everyi 2 [n℄. The veri�er 
ondu
ts the following tests:Codeword tests: These tests refer to (A;B) being a valid en
oding of some string z 2 f0; 1gn. Thatis, these tests 
he
k that both A and B are linear fun
tions, and that B is 
onsistent with A.In the latter 
he
k, the veri�er employs a self-
orre
tion pro
edure (
f. [13℄) to the ora
le B.(There is no need to employ self-
orre
tion to A, be
ause it is queried at random lo
ations.)Linearity of A: Pi
k x1, x2 uniformly at random from f0; 1gn and verify that A[x1 + x2℄ =A[x1℄ +A[x2℄.Linearity of B: Pi
k M1, M2 uniformly at random from f0; 1gn�n and verify that B[M1 +M2℄ = B[M1℄ +B[M2℄.Consisten
y of A and B: Pi
k x1; x2 uniformly at random from f0; 1gn andM uniformly fromf0; 1gn�n and verify that B[M + x1xT2 ℄�B[M ℄ = A[x1℄A[x2℄.Cir
uit test: This test 
he
ks that the string z en
oded in (A;B) represents an a

epting 
ompu-tation of C; that is, that Pi(z) = 0 for every i 2 [n℄. The test 
he
ks that a random linear
ombination of the Pi's evaluates to 0, while employing self-
orre
tion to A and B.Pi
k �1; : : : ; �n 2 f0; 1g uniformly and independently and letPnk=1 �kPk(z) = 
0+Pi `izi+Pi;j Qi;jzizj . Pi
k x 2 f0; 1gn and M 2 f0; 1gn�n uniformly at random. Verify that 
0 +(A[x+ `℄�A[x℄) + (B[M +Q℄�B[M ℄) = 0.Proximity test: This test 
he
ks that the m-bit long pre�x of the string z, en
oded in A, mat
hes(or is 
lose to) the input ora
le W , while employing self-
orre
tion to A.Pi
k j 2 [m℄ and x 2 f0; 1gn uniformly. Let ej 2 f0; 1gn denote the ve
tor that is 1 in thejth 
oordinate and 0 everywhere else. Verify that W [j℄ = A[x+ ej ℄�A[x℄.The veri�er a

epts if all the tests above a

ept, else it reje
ts.Resour
es. The veri�er uses O(n2) random bits and makes O(1) binary queries.Completeness. It is straightforward to see that if w, the string given by W satis�es C, thenletting z be the set of values of the gates of C and letting A[x℄ = xT z and B[M ℄ = zTMz willsatisfy all tests above. Thus the veri�er has perfe
t 
ompleteness.Soundness (with proximity). It follows dire
tly from the analysis of [4℄ that there exists aÆ0 > 0 su
h that for every Æ � Æ0, if the Codeword tests and the Cir
uit test above a

ept withprobability at least 1 � Æ then the ora
le A is 2Æ-
lose to the Hadamard en
oding of some stringz = w0 Æ y su
h that C(w0) a

epts. Now we augment this soundness with a proximity 
ondition.Suppose the veri�er also a

epts the Proximity test with probability at least 1�Æ. Then we have that76



wj 6= A[x+ej℄�A[x℄ with probability at most Æ. Furthermore the events A[x+ej ℄ 6= (x+ej)T z, andA[x℄ 6= xT z happen with probability at most 2Æ ea
h. Thus, with probability at least 1� 5Æ (overthe possible 
hoi
es of j and x), both wj = A[x+ ej℄�A[x℄ and A[x+ ej℄�A[x℄ = (x+ ej)T z�xT zhold. Sin
e (x+ ej)T z�xT z = eTj z = zj = w0j , it follows that, with probability at least 1�5Æ (overthe 
hoi
es of j), wj = w0j . In other words, the string w represented by the ora
le W is at distan
eat most 5Æ away from some string w0 that is a

epted by the 
ir
uit C.B Randomness-eÆ
ient low-degree tests and the sampling lemmaFollowing [12℄, our 
onstru
tion makes heavy use of small-bias spa
es [42℄ to save on randomnesswhen 
hoosing random lines. For a �eld F and parameters m 2 Z+ and � > 0, we require a setS � Fm that is �-biased (with respe
t to the additive group of Fm). Rather than de�ne small-biasspa
es here, we simply state the properties we need. (See, e.g., [12℄ for de�nitions and ba
kgroundon small-bias spa
es.)Lemma B.1 For every F of 
hara
teristi
 2, m 2 Z+, and � > 0, there is an expli
it 
onstru
tionof a �-biased set S � Fm of size at most (log jFmj)=�2 [2℄.We now dis
uss the properties of su
h sets that we will use.Expanding Cayley Graphs. �-biased sets are very useful pseudorandom sets in algebrai
appli
ations, and this is due in part to the expansion properties of the Cayley graphs they generate:Lemma B.2 If S � Fm is �-biased and we let GS be the graph with vertex set Fm and edge setf(x; x + s) : x 2 Fm; s 2 Sg, then all the nontrivial eigenvalues of GS have absolute value at most�jSj.Randomness-EÆ
ient Line Samplers. In [12℄, Lemma B.2 was used to prove the followingsampling lemma. This lemma says that if one wants to estimate the density of a set B � Fm usinglines in Fm as the sample sets, one does not need to pi
k a random line in Fm whi
h 
osts 2 log jFmjrandom bits. A pseudorandom line whose slope 
omes from an �-biased set will do nearly as well,and the randomness is only (1 + o(1)) � log jFmj. In what follows lx;y is the line passing throughpoint x in dire
tion y, formally: lx;y = fx+ ty : t 2 FgLemma B.3 ([12℄, Sampling Lemma 4.3) Suppose S � Fm is �-biased. Then, for any B �Fm of density � = jBj=jFmj, and any � > 0,Prx2Fm;y2S ����� jlx;y \Bjjlx;yj � ����� > �� � � 1jF j + �� � ��2 :Randomness-EÆ
ient Low Degree Tests Ben-Sasson et al. [12℄ use the randomness-eÆ
ientSampling Lemma B.3 to obtain randomness eÆ
ient low degree tests, by performing a \line vs.point" test only for pseudorandom lines with a dire
tion y 
oming from a small �-biased set. Thatis for a set S � Fm, we 
onsider lines of the form lx;y(t) = x+ ty, for x 2 Fm and y 2 S, and letL be the set of all su
h lines, where ea
h line is parametrized in a 
anoni
al way.Then for fun
tions f : Fm ! F , and g : L ! Pd, where Pd is the set of univariate polynomialsof degree at most d over F , we let LDTf;gS;d be the test that uniformly sele
ts l R L , flx;y : x 2Fm; y 2 Sg and t 2 F , and a

epts i� g(l)(t) = f(l(t)). That is, the value of the degree d univariatepolynomial g(l) at point t equals the value of f at l(t). We quote their main theorem and will useit in our 
onstru
tions. 77



Theorem B.4 ([12℄, Theorem 4.1) There exists a universal 
onstant � > 0 su
h that the fol-lowing holds. Let d � jF j=3;m � �jF j= log jF j; S � Fm be a �-biased set for � � �=(m log jF j),and Æ � �. Then, for every f : Fm ! F and g : L ! Pd su
h that f is at least 4Æ-far from, anypolynomial of degree at most md, we have the following:Pr[LDTf;gS;d = rej℄ > Æ:
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