
Robust PCPs of Proximity, Shorter PCPsand Applications to Coding�Eli Ben-Sasson y Oded Goldreich z Prahladh Harsha x Madhu Sudan {Salil Vadhan kDecember 27, 2004AbstractWe continue the study of the trade-o� between the length of PCPs and their query complexity,establishing the following main results (which refer to proofs of satis�ability of circuits of size n):1. We present PCPs of length exp(o(log log n)2)�n that can be veri�ed by making o(log log n) Booleanqueries.2. For every " > 0, we present PCPs of length exp(log" n) � n that can be veri�ed by making aconstant number of Boolean queries.In both cases, false assertions are rejected with constant probability (which may be set to be arbitrarilyclose to 1). The multiplicative overhead on the length of the proof, introduced by transforming a proofinto a probabilistically checkable one, is just quasi-polylogarithmic in the �rst case (of query complexityo(log log n)), and 2(log n)" , for any " > 0, in the second case (of constant query complexity).Our techniques include the introduction of a new variant of PCPs that we call \Robust PCPs ofproximity". These new PCPs facilitate proof composition, which is a central ingredient in construction ofPCP systems. (A related notion and its composition properties were discovered independently by Dinurand Reingold.) Our main technical contribution is a construction of a \length-e�cient" Robust PCPof proximity. While the new construction uses many of the standard techniques in PCPs, it does di�erfrom previous constructions in fundamental ways, and in particular does not use the \parallelization"step of Arora et al. The alternative approach may be of independent interest.We also obtain analogous quantitative results for locally testable codes. In addition, we introducea relaxed notion of locally decodable codes, and present such codes mapping k information bits tocodewords of length k1+", for any " > 0.
�Preliminary versions of this paper have appeared on ECCC [BGH+04a] and in STOC `04 [BGH+04b].yRadcli�e Institute for Advanced Study, Cambridge, MA 02139. Email: eli@eecs.harvard.edu.zDepartment of Computer Science, Weizmann Institute of Science, Rehovot, ISRAEL. Email:oded.goldreich@weizmann.ac.il.xComputer Science and Arti�cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA02139. Email: prahladh@mit.edu. Supported in part by NSF Award CCR-0312575.{Computer Science and Arti�cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA02139. Email: madhu@mit.edu. Supported in part by NSF Award CCR-0312575.kDivision of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138. Email:salil@eecs.harvard.edu. Supported in part by NSF grant CCR-0133096 and a Sloan Research Fellowship.0Part of the work was done while the �rst, second, fourth and �fth authors were fellows at the Radcli�e Institutefor Advanced Study of Harvard University. 1

Contents1 Introduction 21.1 PCPs with better length vs query trade-o� . 21.2 New notions and main techniques . 31.3 Related work . 51.4 Applications to coding problems . 71.5 Organization . 71.6 Relation to previous versions of this work . 8I All but the main construct 92 PCPs and variants: de�nitions, observations and transformations 92.1 Standard PCPs . 92.2 PCPs of Proximity . 102.3 Robust Soundness . 132.4 Composition . 142.5 Various observations and transformations . 163 Very short PCPs with very few queries 213.1 Proof of Theorem 3.3 . 223.2 Corollaries to Theorem 3.3 . 274 Applications to coding problems 274.1 Locally Testable Codes . 284.2 Relaxed Locally Decodable codes . 314.2.1 De�nitional issues and transformations . 334.2.2 Constructions . 354.3 Linearity of the codes . 40II The main construct: A short, robust PCP of proximity 415 Overview of our main construct 416 A randomness-e�cient PCP 446.1 Well-structured Boolean circuits . 456.2 Arithmetization . 496.3 The PCP veri�er . 526.4 Analysis of the PCP veri�er . 557 A randomness-e�cient PCP of proximity 587.1 The construction of PCPP{Verifier (Theorem 7.1) . 597.2 The ALMSS-type PCP of Proximity (Theorem 7.2) . 618 A randomness-e�cient robust PCP of proximity 628.1 Robustness of individual tests . 638.2 Bundling . 688.2.1 The Robust-PCPP{Verifier . 728.2.2 The ALMSS-Robust-PCPP{Verifier . 748.3 Robustness over the binary alphabet . 768.4 Linearity of encoding . 78Bibliography 82III Appendices 86A Hadamard-code-based PCP of proximity 86B Randomness-e�cient low-degree tests and the sampling lemma 88
1

1 IntroductionProbabilistically Checkable Proofs [FGL+96, AS98, ALM+98] (a.k.a. Holographic Proofs [BFLS91])are NP witnesses that allow e�cient probabilistic veri�cation based on probing few bits of the NPwitness. The celebrated PCP Theorem [AS98, ALM+98] asserts that probing a constant number ofbits su�ces, and it turned out that three bits su�ce for rejecting false assertions with probabilityalmost 1=2 (cf. [H�as01, GLST98]).Optimizing the query complexity of PCPs has attracted a lot of attention, motivated in part bythe signi�cance of query complexity for non-approximability results (see, for example, [BGLR93,BGS98, H�as01, GLST98, ST00]). However, these works only guarantee that the new NP witness(i.e., the PCP) is of length that is upper-bounded by a polynomial in the length of the original NPwitness.1 Optimizing the length of the new NP witness was the focus of [BFLS91, PS94, HS00,GS02, BSVW03], and in this work we continue the latter research direction.In our view, the signi�cance of PCPs extends far beyond their applicability to deriving non-approximability results. The mere fact that NP-witnesses can be transformed into a format thatsupports super-fast probabilistic veri�cation is remarkable. From this perspective, the question ofhow much redundancy is introduced by such a transformation is a fundamental one. Furthermore,PCPs have been used not only to derive non-approximability results but also for obtaining positiveresults (e.g., CS-proofs [Kil92, Mic00] and their applications [Bar01, CGH98]), and the length ofthe PCP a�ects the complexity of those applications.In any case, the length of PCPs is also relevant to non-approximability results; speci�cally, ita�ects their tightness with respect to the running time (as noted in [Sze99]). For example, suppose(exact) SAT has complexity 2
(n). The original PCP theorem [AS98, ALM+98] only implies thatapproximating MaxSAT requires time 2n� , for some (small) � > 0. The work of Polishchuk andSpielman [PS94] makes � arbitrarily close to 1, whereas the results of [GS02, BSVW03] furtherimprove the lower-bound to 2n1�o(1) . Our results reduce the o(1) term.21.1 PCPs with better length vs query trade-o�How short can a PCP be? The answer may depend on the number of bits we are willing to readin order to reject false assertions (say) with probability at least 1=2. It is implicit in the work ofPolishchuk and Spielman [PS94] that, for proofs of satis�ability of circuits of size n, if we are willingto read n0:01 bits then the length of the new NP witness may be eO(n). That is, stretching the NPwitness by only a poly-logarithmic amount, allows to dramatically reduce the number of bits read(from n to n0:01). More precisely:3Theorem 1.1 (implicit in [PS94]) Satis�ability of circuits of size n can be probabilistically veri�edby probing an NP witness of length poly(log n) � n in no(1) bit locations. In fact, for any integervalue of a parameter m � log n, there is a PCP having randomness complexity (1�m�1) � log2 n+O(log log n) +O(m logm) and query complexity poly(log n) � n1=m.Recall that the proof length of a PCP is at most 2r � q, where r is the randomness complexityand q is the query complexity of the PCP. Thus, the �rst part of the above theorem follows by1We stress that in all the above works as well as in the current work, the new NP witness can be computed inpolynomial-time from the original NP witness.2A caveat: it is currently not known whether these improved lower-bounds can be achieved simultaneously withoptimal approximation ratios, but the hope is that this can eventually be done.3All logarithms in this work are to based 2, but in some places we choose to emphasize this fact by using thenotation log2 rather than log. 2

setting m = log log n= log log log n in the second part.Our results show that the query complexity can be reduced dramatically if we are willing toincrease the length of the proof slightly. First, with a quasi-polylogarithmic stretch, the querycomplexity can be made double-logarithmic:Theorem 1.2 Satis�ability of circuits of size n can be probabilistically veri�ed by probing an NPwitness of length exp(o(log log n)2) �n in o(log log n) bit-locations. In fact, it has a PCP having ran-domness complexity log2 n+O�(log log n)2= log log log n� and query complexity O(log log n= log log log n).We mention that the only prior work claiming query complexity below exp(plog n) (cf. [GS02,BSVW03]) required stretching the NP witness by at least a exp(plog n) factor. With approxi-mately such a stretch factor, these works actually achieved constant query complexity (cf. [GS02,BSVW03]). Thus, Theorem 1.2 represents a vast improvement in the query complexity of PCPsthat use very short proofs (i.e., in the range between exp(o(log log n)2) � n and exp(plog n) � n).On the other hand, considering NP witnesses that allow probabilistic veri�cation by a constantnumber of queries, we reduce the best known stretch factor from exp(log0:5+" n) (establishedin [GS02, BSVW03]) to exp(log" n), for any " > 0. That is:Theorem 1.3 For every constant " > 0, satis�ability of circuits of size n can be probabilisticallyveri�ed by probing an NP witness of length exp(log" n) �n in a constant number of bit-locations. Infact, it has a PCP having randomness complexity log2 n+ log" n and query complexity O(1=").It may indeed be the case that the trade-o� (between length blow-up factors and query complexity)o�ered by Theorems 1.1{1.3 merely re
ects our (incomplete) state of knowledge. In particular, wewonder whether circuit satis�ability can be probabilistically veri�ed by a PCP having proof-lengthn � poly(log n) and constant query complexity.1.2 New notions and main techniquesA natural approach to reducing the query complexity of the PCP provided by Theorem 1.1 is viathe \proof composition" paradigm of [AS98]. However, that PCP (as constructed in [PS94]) doesnot seem amenable to composition (when the parameter m is non-constant).4 The reason beingthat standard proof composition requires that the \outer" proof system makes a constant numberof multi-value oracle queries (or can be converted to such), whereas this speci�c PCP does not havethis property (and we cannot a�ord the standard parallelization involved in a suitable conversion).Thus, we begin by giving a new PCP construction whose parameters match those in Theorem 1.1,but is suitable for composition. As we will see, we cannot a�ord the standard proof compositiontechniques, and thus also introduce a new, more e�cient composition paradigm.The initial PCP. Our new proof of Theorem 1.1 modi�es the constructions of Polishchuk andSpielman [PS94] and Harsha and Sudan [HS00]. The latter construction was already improvedin [GS02, BSVW03] to reduce the length of PCPs to n � 2 eO(plog n). Our results go further byre-examining the \low-degree test" (query-e�cient tests that verify if a given function is close tobeing a low-degree polynomial), and observing that the small-bias sample sets of [BSVW03] givean even more signi�cant savings on the randomness complexity of low-degree tests than noticed intheir work. However, exploiting this advantage takes a signi�cant e�ort in modifying known PCPmodules, and rede�ning the ingredients in \proof composition".4Also for constant m, we get stronger quantitative results by using our new PCP construction as a starting-point.3

For starters, PCP constructions tend to use many (i.e., a super-constant number of) functionsand need to test if each is a low-degree polynomial. In prior results, this was performed e�ciently bycombining the many di�erent functions on, saym variables, into a single new one onm+1 variables,where the extra variable provides an index into the many di�erent old functions. Testing if the newfunction is of low-degree, implicitly tests all the old functions. Such tricks, which involve introducinga few extra variables, turn out to be too expensive in our context. Furthermore, for similar reasons,we can not use other \parallelization" techniques [FRS94, LS92, ALM+98, GS00, Raz98], whichwere instrumental to the proof composition technique of [AS98]. In turn, this forces us to introducea new variant of the proof composition method, which is much more
exible than the one of [AS98].Going back to the PCP derived in Theorem 1.1, we adapt it for our new composition method byintroducing a \bundling" technique that o�ers a randomness e�cient alternative to parallelization.Our new \proof composition" method refers to two new notions: the notion of a PCP of proxim-ity and the notion of a robust PCP. Our method is related to the method discovered independentlyby Dinur and Reingold [DR04]. (There are signi�cant di�erences between the two methods; asexplained in Section 1.3, where we also discuss the relation to Szegedy's work [Sze99].)PCPs of Proximity. Recall that a standard PCP is given an explicit input (which is supposedlyin some NP language) as well as access to an oracle that is supposed to encode a \probabilisticallyveri�able" NP witness. The PCP veri�er uses oracle queries (which are counted) in order toprobabilistically verify whether the input, which is explicitly given to it, is in the language. Incontrast, a PCP of proximity is given access to two oracles, one representing an input (supposedly inthe language) and the other being a redundant encoding of an NP-witness (as in a PCP). Indeed,the veri�er may query both the input oracle and the proof oracle, but its queries to the input oracleare also counted in its query complexity. As usual we focus on veri�ers having very low querycomplexity, certainly smaller than the length of the input. Needless to say, such a constrainedveri�er cannot distinguish inputs in the language from inputs out of the language, but it is notrequired to do so. A veri�er for a PCP of proximity is only required to accept inputs that are inthe language and reject inputs that are far from the language (i.e., far in Hamming distance fromany input in the language). Indeed, PCPs of proximity are related to holographic proofs [BFLS91]and to \PCP spot-checkers" [EKR99]; see further discussion in Section 1.3.Robust PCPs. To discuss robust PCPs, let us review the soundness guarantee of standard(non-adaptive) PCPs. The corresponding veri�er can be thought of as determining, based on itscoin tosses, a sequence of oracle positions and a predicate such that evaluating this predicate on theindicated oracle bits always accepts if the input is in the language and rejects with high probabilityotherwise. That is, in the latter case, we require that the assignment of oracle bits to the predicatedoes satisfy the predicate. In a robust PCP we strengthen the latter requirement. We require thatthe said assignment (of oracle bits) not only fails to satisfy the predicate but rather is far from anyassignment that does satisfy the predicate.Proof Composition. The key observation is that \proof composition" works very smoothly whenwe compose an outer \robust PCP" with an inner \PCP of proximity". We need neither worryabout how many queries the outer \robust PCP" makes nor care about what coding the inner \PCPof proximity" uses in its proof oracle (much less apply the same encoding to the outer answers). Allthat we should make sure is that the lengths of the objects match and that the distance parameterin the robustness condition (of the outer veri�er) is at least as big as the distance parameter in theproximity condition (of the inner veri�er).Indeed, Theorems 1.2 and 1.3 are proved by �rst extending Theorem 1.1 to provide a robust PCPof proximity of similar complexities, and then applying the new \proof composition" method. We4

stress that our contribution is in providing a proof of Theorem 1.1 that lends itself to a modi�cationthat satis�es the robustness property, and in establishing the latter property. In particular, theaforementioned \bundling" is applied in order to establish the robustness property. Some care isalso due when deriving Theorem 1.2 using a non-constant number of \proof compositions". Inparticular, Theorem 1.2 (resp., Theorem 1.3) is derived in a way that guarantees that the querycomplexity is linear rather than exponential in the number of \proof compositions", where thelatter is o(log log n) (resp., 1="). This, in turn, requires obtaining strong bounds on the robustnessproperty of the (\robust") extension of Theorem 1.1.We stress that the
exibility in composing robust PCPs of proximity plays an important rolein our ability to derive quantitatively stronger results regarding PCPs. We believe that robustPCPs of proximity may play a similar role in other quantitative studies of PCPs. We note thatthe standard PCP Theorem of [AS98, ALM+98] can be easily derived using a much weaker andsimpler variant of our basic robust PCP of proximity, and the said construction seems easier thanthe basic PCPs used in the proof composition of [AS98, ALM+98].In addition to their role in our \proof composition" method, PCPs of proximity provide alsoa good starting point for deriving improved locally testable codes (see discussion in Section 1.4).The relation of PCPs of proximity to \property testing" is further discussed in Section 1.3.1.3 Related workAs mentioned above, the notion of a PCP of proximity is related to notions that have appeared inthe literature.Relation to holographic proofs. Firstly, the notion of a PCP of proximity generalizes thenotion of holographic proofs set forward by Babai, Fortnow, Levin, and Szegedy [BFLS91]. In bothcases, the veri�er is given oracle access to the input, and we count its probes to the input in itsquery complexity. The key issue is that holographic proofs refer to inputs that are presented inan error-correcting format (e.g., one aims to verify that a graph that is represented by an error-correcting encoding of its adjacency matrix (or incidence list) is 3-colorable). In contrast, a PCPof proximity refers to inputs that are presented in any format but makes assertions only abouttheir proximity to acceptable inputs (e.g., one is interested in whether a graph, represented by itsadjacency matrix (or incidence list), is 3-colorable or is far from being 3-colorable).Relation to property testing. PCP of proximity are implicit in the low-degree testers thatutilize auxiliary oracles (e.g., an oracle that provides the polynomial representing the value of thefunction restricted to a queried line); cf. [AS98, ALM+98]. PCPs of proximity are a natural specialcase of the \PCP spot-checkers" de�ned by Erg�un, Kumar and Rubinfeld [EKR99]. On the otherhand, PCPs of proximity extend property testing [RS96, GGR98]. Loosely speaking, a propertytester is given oracle access to an input and is required to distinguish the case in which the inputhas the property from the case in which it is far (say in Hamming distance) from any input havingthe property. Typically, the interest is in testers that query their input on few bit-locations (orat the very least on a sub-linear number of such locations). In a PCP of proximity such a tester(now called a veri�er) is also given oracle access to an alleged proof. Thus, the relation of PCPs ofproximity to property testing is analogous to the relation of NP to BPP (or RP). Put di�erently,while property testing provides a notion of approximation for decision procedures, PCP of proximityprovides a notion of approximation for (probabilistic) proof-veri�cation procedures. In both cases,approximation means that inputs in the language should be accepted (when accompanied with5

suitable proofs) while inputs that are far from the language should be rejected (no matter whatfalse proof is provided).We comment that PCPs of proximity are provably stronger than property testers; that is, thereare (natural) separations between property testers and PCPs of proximity (which may be viewedas the \approximation" versions of BPP and NP). For further discussions, refer to Section 2.2Relation to Assignment Testers and another proof composition method. As statedabove, our \proof composition" method is related to the method discovered independently byDinur and Reingold [DR04]. Both methods use the same notion of PCPs of proximity (which arecalled assignment testers in [DR04]). A key di�erence between the two methods is that, while ourmethod refers to the new notion of robustness (i.e., to the robustness of the outer veri�er), themethod of Dinur and Reingold refers to the number of (non-Boolean) queries (made by the outerveri�er). Indeed, the method of Dinur and Reingold uses a (new) parallelization procedure (whichreduces the number of queries by a constant factor), whereas we avoid parallelization altogether(but rather use a related \bundling" of queries into a non-constant number of \bundles" such thatrobustness is satis�ed at the bundle-level).5 We stress that we cannot a�ord the cost of any knownparallelization procedure, because at the very least these procedures increase the length of the proofby a factor related to the answer length, which is far too large in the context of Theorem 1.1 (whichin turn serves as the starting point for all the other results in this work). We comment that theparallelization procedure of [DR04] is combinatorial (albeit inapplicable in our context), whereasour \bundling" relies on the algebraic structure of our proof system.Relation to Szegedy's work [Sze99]. Some of the ideas presented in the current work areimplicit in Szegedy's work [Sze99]. In particular, notions of robustness and proximity are implicitin [Sze99], in which a robust PCP of proximity (attributed to [PS94]) is composed with itself ina way that is similar to our composition theorem. We note that Szegedy does not seek to obtainPCPs with improved parameters, but rather to suggest a framework for deriving nicer proofs ofexisting results such as [PS94]. Actually, he focuses on proving the main result of [PS94] (i.e.,a PCP of nearly linear length and constant number of queries) using as building block a robustPCP of proximity that has length eO(n) and makes eO(pn) queries (plus the constant-query PCPof [ALM+98]).We note that the aforementioned robust PCP of proximity is not presented in [Sze99], but israther attributed to [PS94]. Indeed, observe that Theorem 1.1 above (implicit in [PS94]) achieveseO(n) length and eO(pn) queries when the parameter m = 2. Thus, Szegedy's assertion is thatthis PCP can be strengthened to be a robust PCP of proximity, similarly to our main construct(speci�cally, Theorem 3.1, specialized to m = 2). However, our main construct achieves strongerparameters than those claimed in [Sze99], especially with respect to robust soundness. Indeed, theparameters claimed in [Sze99] only allow for the robust PCP of proximity to be composed withitself a constant number of times.6 As mentioned above, a signi�cant amount of our e�ort is aimed5The main part of the bundling technique takes place at the level of analysis, without modifying the proof systemat all. Speci�cally, we show that the answers read by the veri�er can be partitioned into a non-constant number of(a-priori �xed) \bundles" so that on any no instance, with high probability a constant fraction of the bundles readshould be modi�ed to make the veri�er accept. We stress that the fact that certain sets of queries (namely those ineach bundle) are always made together is a feature that our particular proof system happens to have (or rather it wassomewhat massaged to have). Once \robust soundness" is established at the \bundle level," we may just modify theproof system so that the bundles become queries and the answers are placed in (any) good error-correcting format,which implies robustness at the bit level.6In the language of Section 2, his soundness and robustness parameters are unspeci�ed functions of the proximity6

at ensuring that our robust PCP of proximity has su�ciently strong parameters to be composeda nonconstant number of times and moreoever to ensure that the query complexity grows onlylinearly rather than exponentially with the number of compositions. (See Section 3.2 for furtherexplanation.)1.4 Applications to coding problemsThe
exibility of PCPs of proximity makes them relatively easy to use towards obtaining resultsregarding locally testable and decodable codes. In particular, using a suitable PCP of proximity, weobtain an improvement in the rate of locally testable codes (improving over the results of [GS02,BSVW03]). Loosely speaking, a codeword test (for a code C) is a randomized oracle machinethat is given oracle access to a string. The tester may query the oracle at a constant number ofbit-locations and is required to (always) accept every codeword and reject with (relatively) highprobability every string that is \far" from the code. The locally testable codes of [GS02, BSVW03]used codewords of length exp(log0:5+" k)�k in order to encode k bits of information, for any constant" > 0. Here we reduce the length of the codewords to exp(log" k) � k. That is:Theorem 1.4 (loosely stated, see Section 4.1 for details): For every constant " > 0, there ex-ists locally testable codes that use codewords of length exp(log" k) � k in order to encode k bits ofinformation.We also introduce a relaxed notion of locally decodable codes, and show how to construct such codesusing any PCP of proximity (and ours in particular). Loosely speaking, a code is said to be locallydecodable if whenever relatively few location are corrupted, the decoder is able to recover eachinformation-bit, with high probability, based on a constant number of queries to the (corrupted)codeword. This notion was formally de�ned by Katz and Trevisan [KT00] and the best knownlocally decodable code has codeword of length that is sub-exponential in the number of informationbits. We relax the de�nition of locally decodable codes by requiring that, whenever few locationare corrupted, the decoder should be able to recover most of the individual information-bits (basedon few queries) and for the rest of the locations, the decoder may output a fail symbol (but not thewrong value). That is, the decoder must still avoid errors (with high probability), but is allowedto say \don't know" on a few bit-locations. We show that this relaxed notion of local decodabilitycan be supported by codes that have codewords of length that is almost-linear in the number ofinformation bits. That is:Theorem 1.5 (loosely stated, see Section 4.2 for details): For every constant " > 0, there ex-ists relaxed locally decodable codes that use codewords of length k1+" in order to encode k bits ofinformation.1.5 OrganizationTheorems 1.2 and 1.3, which are the work's main results, are proved by constructing and usinga Robust PCP of Proximity that achieves a very good trade-o� between randomness and querycomplexity. Thus, this Robust PCP of Proximity is the main building block that underlies our work.Unfortunately, the construction of a very e�cient Robust PCP of Proximity is quite involved, andparameter. In retrospect, it seems that the ideas of [PS94] may lead to a robust PCP of proximity with robustness thatis at best linearly related to the proximity parameter; this would make the query complexity increase exponentiallywith the number of compositions (as discussed in Section 3.2).7

is thus deferred to the second part of this work (which starts with an overview). In the �rst partof this work we show how the aforementioned Robust PCP of Proximity can be used to derive allthe results mentioned in the Introduction (and, in particular, Theorems 1.2 and 1.3). Thus, theoverall structure of this work is as follows:Part I: Using the main building block. We start by providing a de�nitional treatment of PCPsof proximity and robust PCPs. The basic de�nitions as well as some observations and use-ful transformations are presented in Section 2. Most importantly, we analyze the naturalcomposition of an outer robust PCP with an inner PCP of proximity.In Section 3, we state the properties of our main building block (i.e., a highly e�cient RobustPCP of proximity), and show how to derive Theorems 1.2 and 1.3, by composing this RobustPCP of proximity with itself multiple times. Speci�cally, o(log log n) compositions are usedto derive Theorem 1.2 and 1=" compositions are used to derive Theorem 1.3. The codingapplications stated in Theorems 1.4 and 1.5 are presented in Section 4.Part II: Constructing the main building block. We start this part by providing an overviewof the construction. This overview (i.e., Section 5) can be read before reading Part I, providedthat the reader is comfortable with the notion of a Robust PCP of proximity.The construction itself is presented in Sections 6{8. We start by presenting a (highly e�cient)ordinary PCP (establishing Theorem 1.1), which lends itself to the subsequent modi�cations.In Section 7, we augment this PCP with a test of proximity, deriving an analogous PCP ofproximity. In Section 8 we present a robust version of the PCP of proximity derived in theprevious sections.Part III: Appendices. The construction presented in Section 3 also uses a PCP of proximity ofpolynomial randomness complexity and constant query complexity. Such a PCP of proximitycan be derived by a simple augmentation of the Hadamard-based PCP of [ALM+98], whichwe present in Appendix A.In Appendix B, we recall results regarding random-e�cient low-degree tests and a relatedsampling lemma, which are used in Part II.1.6 Relation to previous versions of this workThe current version includes a discussion of Szegedy's work [Sze99], of which we were unawarewhen writing the �rst version [BGH+04a]. The relation of his work to ours is now discussed inSection 1.3.Section 4 has been extensively revised, adding formal de�nitions and providing more precisedescriptions of the main constructions and proofs. In addition, we identi�ed a weaker form of thede�nition of a relaxed locally decodable code, proved that it essentially implies the original form,and restructuring our presentation accordingly (see Section 4.2).The parameters of Theorem 1.2 in this version are stronger (to a limited extent) than that ofearlier versions of this paper ([BGH+04a, BGH+04b]). More speci�cally, we show that satis�abilityof circuits of size n can be veri�ed by probing o(log log n) bit-locations in an NP-witness of lengthexp(o(log log n)2) � n as opposed to an NP-witness of length exp(eO(log log n)2) � n, as was claimedin earlier versions. We achieve this strengthening by improving the robustness parameter of theALMSS-type Robust PCP of Proximity (Theorem 7.2) constructed in Part II of this paper takingadvantage of the greater slackness allowed in the randomness complexity of this PCP.8

Part IAll but the main construct2 PCPs and variants: de�nitions, observations and transforma-tionsNotation: Except when otherwise noted, all circuits in this paper have fan-in 2 and fan-out 2,and we allow arbitrary unary and binary Boolean operations as internal gates. The size of a circuitis the number of gates. We will refer to the following languages associated with circuits: the P-complete language Circuit Value, de�ned as CktVal = f(C;w) : C(w) = 1g ;the NP-completeCircuit Satisfiability, de�ned as CktSAT = fC : 9wC(w) = 1g; and the also NP-completeNondeterministic Circuit Value, de�ned as NCktVal = fC : (C;w) : 9zC(w; z) = 1g. (Inthe latter, we assume that the partition of the variables of C into w-variables and z-variables isexplicit in the encoding of C.)We will extensively refer to the relative distance between strings/sequences over some alphabet�: For u; v 2 �`, we denote by �(u; v) the fraction of locations on which u and v di�er (i.e.,�(u; v) , jfi : ui 6= vigj=`, where u = u1 � � � u` 2 �` and v = v1 � � � v` 2 �`). We say that u is �-close to v (resp., �-far from v) if �(u; v) � � (resp., �(u; v) > �). The relative distance of a string toa set of strings is de�ned in the natural manner; that is, �(u; S) , minv2Sf�(u; v)g. Occasionally,we will refer to the absolute Hamming distance, which we will denote by �(u; v) , jfi : ui 6= vigj.Organization of this section: After recalling the standard de�nition of PCP (in Section 2.1),we present the de�nitions of PCPs of Proximity and Robust PCPs (in Sections 2.2 and 2.3, respec-tively). We then turn to discuss (in Section 2.4) the composition of a Robust PCP with a PCP ofProximity. Various observations and transformations regarding the new notions are presented inSection 2.5.2.1 Standard PCPsWe begin by recalling the formalism of a PCP veri�er. Throughout this work, we restrict ourattention to nonadaptive veri�ers, both for simplicity and because one of our variants (namelyrobust PCPs) only makes sense for nonadaptive veri�ers.De�nition 2.1 (PCP veri�ers)� A veri�er is a probabilistic polynomial-time algorithm V that, on an input x of length n,tosses r = r(n) random coins R and generates a sequence of q = q(n) queries I = (i1; : : : ; iq)and a circuit D : f0; 1gq ! f0; 1g of size at most d(n).We think of V as representing a probabilistic oracle machine that queries its oracle � for thepositions in I, receives the q answer bits �jI , (�i1 ; : : : ; �iq), and accepts i� D(�jI) = 1.� We write (I;D) R V (x) to denote the queries and circuit generated by V on input x andrandom coin tosses, and (I;D) = V (x;R) if we wish to specify the coin tosses R.� We call r the randomness complexity, q the query complexity, and d the decision complexity ofV . 9

For simplicity in these de�nitions, we treat the parameters r, q, and d above (and other param-eters below) as functions of only the input length n. However, at times we may also allow themto depend on other parameters, which should be understood as being given to the veri�er togetherwith the input. We now present the standard notion of PCPs, restricted to perfect completenessfor simplicity.De�nition 2.2 (standard PCPs) For a function s : Z+! [0; 1], a veri�er V is a probabilisticallycheckable proof system for a language L with soundness error s if the following two conditions holdfor every string x:Completeness: If x 2 L then there exists � such that V (x) accepts oracle � with probability 1.Formally, 9� Pr(I;D) R V (x)[D(�jI) = 1] = 1:Soundness: If x 62 L then for every oracle �, the veri�er V (x) accepts � with probability strictlyless than s. Formally, 8� Pr(I;D) R V (x)[D(�jI) = 1] < s(jxj):If s is not speci�ed, then it is assumed to be a constant in (0; 1).Our main goal in this work is to construct short PCPs that use very few queries. Recalling thatthe length of a (nonadaptive) PCP is upper-bounded by 2r(n) � q(n), we focus on optimizing the(trade-o� between) randomness and query complexities.We will focus on constructing PCPs for the NP-complete problem Circuit Satisfiability,de�ned as CktSAT = fC : 9w C(w) = 1g. Recall that every language in NTIME(t(n)) reducesto CktSAT in time O(t(n) log t(n)) (cf. [HS66, PF79, Coo88]), and so a nearly linear-sized PCPfor CktSAT implies PCPs for NTIME(t(n)) of size nearly linear in t(n) for every polynomialt(n).2.2 PCPs of ProximityWe now present a relaxation of PCPs that only verify that the input is close to an element of thelanguage. The advantage of this relaxation is that it allows the possibility that the veri�er mayread only a small number of bits from the input. Actually, for greater generality, we will divide theinput into two parts (x; y), giving the veri�er x explicitly and y as an oracle, and we only countthe veri�er's queries to the latter. Thus we consider languages consisting of pairs of strings, whichwe refer to as a pair language. One pair language to keep in mind is the Circuit Value problem:CktVal = f(C;w) : C(w) = 1g. For a pair language L, we de�ne L(x) = fy : (x; y) 2 Lg. Forexample, CktVal(C) is the set of satisfying assignments to C. It will be useful below to treat thetwo oracles to which the veri�er has access as a single oracle, thus for oracles �0 and �1, we de�nethe concatenated oracle � = �0 � �1 as �b;i = �bi .De�nition 2.3 (PCPs of proximity (PCPPs)) For functions s; � : Z+! [0; 1], a veri�er V isa probabilistically checkable proof of proximity (PCPP) system for a pair language L with proximityparameter � and soundness error s if the following two conditions hold for every pair of strings (x; y):
10

Completeness: If (x; y) 2 L, then there exists � such that V (x) accepts oracle y � � with proba-bility 1. Formally, 9� Pr(I;D) R V (x)[D((y � �)jI) = 1] = 1:Soundness: If y is �(jxj)-far from L(x), then for every �, the veri�er V (x) accepts oracle y � �with probability strictly less than s(jxj). Formally,8� Pr(I;D) R V (x)[D((y � �)jI) = 1] < s(jxj):If s and � are not speci�ed, then both are assumed to be constants in (0; 1).Note that the parameters (soundness, randomness, etc.) of a PCPP are measured as a function ofthe length of x, the explicit portion of the input.In comparing PCPPs and PCPs, one should note two di�erences that have con
icting e�ects.On one hand, the soundness criterion of PCPPs is a relaxation of the soundness of PCPs. Whereas,a PCP is required to reject (with high probability) every input that is not in the language, a PCPPis only required to reject input pairs (x; y) in which the second element (i.e., y) is far from beingsuitable for the �rst element (i.e., y is far from L(x)). That is, in a PCPP, nothing is required inthe case that y is close to L(x) and yet y 62 L(x). On the other hand, the query complexity ofa PCPP is measured more stringently, as it accounts also for the queries to the input-part y (ontop of the standard queries to the proof �). This should be contrasted with a standard PCP thathas free access to all its input, and is only charged for access to an auxiliary proof. To summarize,PCPPs are required to do less (i.e., their performance requirements are more relaxed), but they arecharged for more things (i.e., their complexity is evaluated more stringently). Although it may notbe a priori clear, the stringent complexity requirement prevails. That is, PCPPs tend to be moredi�cult to construct than PCPs of the same parameters. For example, while Circuit Value hasa trivial PCP (since it is in P), a PCPP for it implies a PCP for Circuit Satisfiability:Proposition 2.4 If Circuit Value has a PCPP, then Circuit Satisfiability has a PCP withidentical parameters (randomness, query complexity, decision complexity, and soundness).An analogous statement holds for any pair language L and the corresponding projection on �rstelement L1 , fx : 9y s.t. (x; y) 2 Lg; that is, if L has a PCPP then L1 has a PCP with identicalparameters.Proof: A PCP � that C is satis�able can be taken to be w��0, where w is a satisfying assignmentto C and �0 is a PCPP that (C;w) 2 CktVal. This proof � can be veri�ed using the PCPP veri�er.The key observation is that if C 62 Circuit Satisfiability then there exists no w that is 1-closeto Circuit Value(C), because the latter set is empty.Note that we only obtain a standard PCP for Circuit Satisfiability, rather than a PCPof proximity. Indeed, Circuit Satisfiability is not a pair language, so it does not even �tsyntactically into the de�nition of a PCPP. However, we can give a PCPP for the closely related(and also NP-complete) pair language Nondeterministic Circuit Value. Recall that is thelanguage NCktVal = f(C;w) : 9zC(w; z) = 1g (where the variables of C are explicitly partitionedinto w-variables and z-variables). 11

Proposition 2.5 If Circuit Value has a PCPP with proximity parameter �(n), soundness s(n),randomness r(n), query complexity q(n), and decision complexity d(n), then NondeterministicCircuit Value has a PCPP with proximity parameter 2�(4n), soundness s(4n), randomness r(4n),query complexity q(4n), and decision complexity d(4n).Proof: Given a circuit C(�; �) of size n whose variables are partitioned into one group of size kand another of size `, we transform it into a new circuit C 0(�; �) of size n0 = 4n in which the �rstgroup has size k0 � ` and the second group has size `. Speci�cally, we set t = d`=ke and k0 = t � k,and de�ne C 0(x0; y) to be a circuit that checks whether x0 = xt for some x such that C(x; y) = 1. Itcan be veri�ed that this can be done in size n+ 3tk � 4n (over the full binary basis). In addition,if w is �-far from being extendable to a satisfying assignment of C, then wt is �-far from beingextendable to a satisfying assignment of C 0.Now, the NCktVal-veri�er, on explicit input C and input oracle w 2 f0; 1gk , will construct C 0as above and expect a proof oracle of the form z ��, where z 2 f0; 1gm and � is a PCPP that wt �zsatis�es C 0 as constructed above. That is, the NCktVal-veri�er will simulate the CktVal-veri�eron explicit input C 0, input oracle wt � z (which can easily be simulated given oracle access to wand z), and proof oracle �. Completeness can be veri�ed by inspection. For soundness, supposethat w is 2�-far from being extendable to a satisfying assignment of C. Then wt is 2�-far frombeing extendable to a satisfying assignment of C 0, which implies that, for any z, wt � z is �-farfrom satisfying C 0. Thus, by the soundness of the CktVal-veri�er, the acceptance probability isat most s(n0) = s(4n), for any proof oracle �.Relation to property testing: Actually, the requirements from a PCPP for a pair language Lrefer only to its performance on the (\gap") promise problem � = (�Y ;�N), where �Y = L and�N = f(x; y) : y is �-far from L(x)g. That is, this PCPP is only required to (always) accept inputsin �Y and reject (with high probability) inputs in �N (whereas nothing is required with respectto inputs not in �Y [�N). Such a gap problem corresponds to the notion of approximation inproperty testing [RS96, GGR98].7 Indeed, property testers are equivalent to PCPP veri�ers thathave no access to an auxiliary proof �. Thus the relation between property testing and PCPPs isanalogous to the relation between BPP and NP (or MA). For example, the problem of testingBipartiteness can be cast by the pair language L = f(n;G) : the n-vertex graph G is bipartiteg,where the �rst (i.e., explicit) input is only used to specify the length of the second (i.e., non-explicit)input G, to which the tester has oracle access (measured in its query complexity). We commentthat the formulation of pair languages allows to capture more general property testing problemswhere more information about the property (to be tested) itself is speci�ed as part of the input(e.g., by a circuit, as in CktVal).In both property testers and PCPs of proximity, the interest is in testers/veri�ers that querytheir input (and proof oracle) in only a small (preferably constant, and certainly sublinear) numberof bit-locations. It turns out that PCPPs are provably stronger than property testers; that is,there are (natural) separations between property testers and PCPs of proximity. (Some of thefollowing examples were pointed out in [EKR99].) In the adjacency matrix model (cf. [GGR98]),Bipartiteness has a PCP of proximity in which the veri�er makes only O(1=�) queries and rejectsany graph that is �-far from being bipartite with probability at least 2=3. (The proof-oracle consistsof an assignment of vertices to the two parts, and the veri�er queries the assignment of the end-points of O(1=�) random edges. This construction also generalizes to k-colorability, and in fact any7This notion of approximation (of decision problems) should not be confused with the approximation of (search)optimization problems, which is also closely related to PCPs [FGL+96, ALM+98].12

generalized graph partition property (cf. [GGR98]) with an e�cient one-sided tester.) In contrast,Bogdanov and Trevisan [BT04] showed that any tester for Bipartiteness that rejects graphs that are�-far from being bipartite must make
(��3=2) queries. More drastic separations are known in inthe incidence-lists (bounded-degree) model (of [GR02]): testing Bipartiteness (resp., 3-colorability)of n-vertex graphs has query complexity
(pn) [GR02] (resp.,
(n) [BOT02]), but again a PCPof proximity will only use O(1=�) queries.Another example comes from the domain of codes. For any good code (or \even" any code oflinear distance), there exists a PCP of proximity for the property of being a codeword that makesa constant number of queries.8 This stands in contrast to the linear lower-bound on the query-complexity of codeword testing for some (good) linear codes, proved by Ben-Sasson et al. [BHR03].Needless to say, there may be interesting cases in which PCPs of proximity do not out-performproperty testers.Queries vs. proximity: Intuitively, the query complexity of a PCPP should depend on theproximity parameter �. Proposition 2.8 (in Section 2.5) con�rms this intuition.The relation of PCPP to other works: As discussed in the introduction (see Section 1.3),notions related to (and equivalent to) PCPPs have appeared in the literature before [BFLS91,EKR99]. In particular, holographic proofs are a special case of PCPPs (which refer to pair languagesL = f(n; C(x)) : x 2 L0 \ f0; 1gng, where C is an error-correcting code and L0 2 NP), whereasPCPPs are a special case of \PCP spot-checkers" (when viewing decision problems as a specialcase of search problems). In addition, PCPPs play an important role also in the work of Dinurand Reingold [DR04]; again, see Section 1.3. Recall that both our use and their use of PCPPs isfor facilitating \proof composition" (of PCP-type constructs). Finally, existing PCP constructions(such as [ALM+98]) can be modi�ed to yield PCPPs.2.3 Robust SoundnessIn this section, we present a strengthening of the standard PCP soundness condition. Instead ofasking that the bits that the veri�er reads from the oracle are merely rejected with high probability,we ask that the bits that the veri�er reads are far from being accepted with high probability. Themain motivation for this notion is that, in conjunction with PCPPs, it allows for a very simplecomposition without the usual costs of \parallelization".De�nition 2.6 (robust soundness) For functions s; � : Z+ ! [0; 1], a PCP veri�er V for alanguage L has robust-soundness error s with robustness parameter � if the following holds for everyx =2 L: For every oracle �, the bits read by the veri�er V are �-close to being accepted with probabilitystrictly less than s. Formally,8� Pr(I;D) R V (x)[9a s.t. D(a) = 1 and �(a; �jI) � �] < s(jxj):If s and � are not speci�ed, then they are assumed to be constants in (0; 1). PCPPs with robust-soundness are de�ned analogously, with the �jI being replaced by (y � �)jI .Note that for PCPs with query complexity q, robust-soundness with any robustness parameter� < 1=q is equivalent to standard PCP soundness. However, there can be robust PCPs with large8Indeed, this is a special case of our extension of the result of Babai et al. [BFLS91], discussed in Section 1.3. Onthe other hand, this result is simpler than the locally testable code mentioned in Section 1.4, because here the PCPof proximity is not part of the codeword. 13

query complexity (e.g. q = n
(1)) yet constant robustness, and indeed such robust PCPs will bethe main building block for our construction.Various observations regarding robust PCPs are presented in Section 2.5. We brie
y mentionhere the relation of robustness to parallelization; speci�cally, when applied to a robust PCP, thesimple query-reduction technique of Fortnow et al. [FRS94] performs less poorly than usual (i.e.,the resulting soundness is determined by the robustness parameter rather than by the number ofqueries).2.4 CompositionAs promised, a robust \outer" PCP composes very easily with an \inner" PCPPs. Loosely speaking,we can compose such schemes provided that the decision complexity of the outer veri�er matchesthe input length of the inner veri�er, and soundness holds provided that the robustness parameter ofthe outer veri�er upper-bounds the proximity parameter of the inner veri�er. Note that compositiondoes not refer to the query complexity of the outer veri�er, which is always upper-bounded by itsdecision complexity.Theorem 2.7 (Composition Theorem) Suppose that for functions rout; rin; dout; din; qin : N !N, and "out; "in; �out; �in : N! [0; 1], the following hold:� Language L has a robust PCP veri�er Vout with randomness complexity rout, decision com-plexity dout, robust-soundness error 1� "out, and robustness parameter �out.� Circuit Value has a PCPP veri�er Vin with randomness complexity rin, query complexityqin, decision complexity din, proximity parameter �in, and soundness error 1� "in.� �in(dout(n)) � �out(n), for every n.Then, L has a (standard) PCP, denoted Vcomp, with� randomness complexity rout(n) + rin(dout(n)),� query complexity qin(dout(n)),� decision complexity din(dout(n)), and� soundness error 1� "out(n) � "in(dout(n)).Furthermore, the computation of Vcomp (i.e. evaluating (I;D) Vcomp(x;R)) can be performedby some universal algorithm with black-box access to Vout and Vin. On inputs of length n, thisalgorithm runs in time nc for some universal constant c, with one call to Vout on an input of lengthn and one call to Vin on an input of length dout(n). In addition:� If (instead of being a PCP) the veri�er Vout is a PCPP with proximity parameter �out(n) thenVcomp is a PCPP with proximity parameter �out(n).� If Vin has robust-soundness with robustness parameter �in(n), then Vcomp has robust-soundnesswith robustness parameter �in(dout(n)).
14

Proof: We will use the inner PCPP to verify that the oracle positions selected by the (robust)outer-veri�er are close to being accepted by the outer-veri�er's decision circuit. Thus, the newproof will consist of a proof for the outer veri�er as well as proofs for the inner veri�er, where eachof the latter corresponds to a possible setting of the outer veri�er's coin tosses (and is intended toprove that the bits that should have been read by the outer-veri�er satisfy its decision circuit). Wewill index the positions of the new (combined) oracle by pairs such that (out; i) denotes the i'thposition in the part of the oracle that represents the outer-veri�er's proof oracle, and (R; j) denotesthe j'th position in the R'th auxiliary block (which represents the R-th possible proof oracle (forthe inner veri�er's), which in turn is associated with the outer-veri�er's coins R 2 f0; 1grout). Fornotational convenience, we drop the input length n from the notation below; all parameters of Voutare with respect to length n and all parameters of Vin with respect to length dout(n). With theseconventions, here is the description of the composed veri�er, Vcomp(x):1. Choose R R f0; 1grout .2. Run Vout(x;R) to obtain Iout = (i1; : : : ; iqout) and Dout.3. Run Vin(Dout) (on random coin tosses) to obtain Iin = ((b1; j1); : : : ; (bqin ; jqin)) and Din.(Recall that Vin, as a PCPP veri�er, expects two oracles, an input oracle and a proof oracle,and thus makes queries of the form (b; j), where b 2 f0; 1g indicates which oracle it wishes toquery.)4. For each ` = 1; : : : ; qin, determine the queries of the composed veri�er:(a) If b` = 0, set k` = (out; ij`); that is, Vin's queries to its input oracle are directed to thecorresponding locations in Vout's proof oracle. Recall that the j-th bit in Vin's inputoracle is the j-th bit in the input to Dout, which in turn is the ij-th bit in the prooforacle of Vout.(b) If b` = 1, set k` = (R; j`); that is, Vin's queries to its R'th possible proof oracle aredirected to the corresponding locations in the auxiliary proof. Recall that the j-th bit inthe proof oracle that Vin is using to verify the claim referring to the outer-veri�er coinsR is the j-th bit in the R-th block of the auxiliary proof.5. Output Icomp = (k1; : : : ; kqin) and Din.The claims about Vcomp's randomness, query, decision, and computational complexities can beveri�ed by inspection. Thus we proceed to check completeness and soundness.Suppose that x 2 L. Then, by completeness of the outer veri�er, there exists a proof �out makingVout accept with probability 1. In other words, for every R 2 f0; 1grout , if we set (Iout;Dout) =Vout(x;R), we have Dout(�outjIout) = 1. By completeness of the inner veri�er, there exists a proof�R such that Vin(Dout) accepts the oracle �outjIout � �R with probability 1. If we set �(t; �) = �t(�)for all t 2 foutg [f0; 1grout , then Vcomp accepts � with probability 1.Suppose that x =2 L, and let � be any oracle. De�ne oracles �t(�) = �(t; �). By the robust-soundness (of Vout), with probability greater than "out over the choices of R 2 f0; 1grout , if we set(Iout;Dout) = Vout(x;R), then �outjIout is �out-far from satisfying Dout. Fixing such an R, by thePCPP-soundness of Vin (and �in � �out), it holds that Vin(Dout) rejects the oracle �outjIout ��R (or,actually, any proof oracle augmenting the input oracle �outjIout) with probability greater than "in.Therefore, Vcomp(x) rejects oracle � with probability at least "out � "in.15

The additional items follow by similar arguments. If Vout is a PCPP veri�er, then the input isof the form (x; y), where y is given via oracle access. In this case, throughout the proof above weshould replace references to the oracle �out with the oracle y � �out, and for soundness we shouldconsider the case that y is �out-far from L(x). If Vin has robust-soundness, then at the end of thesoundness analysis, we note that not only is �outjIout ��R rejected with probability greater than "inbut rather it is �in-far from being accepted by Vin (and hence also by Vcomp).The above theorem can serve as a substitute for the original Composition Theorem in thederivation of the original PCP Theorem [ALM+98]. Speci�cally, one simply needs to modify the(pre-composition) veri�ers of [ALM+98] to both test proximity and have robust soundness. As weshall see in the next section, robust soundness can be obtained automatically from \parallelizedPCPs" (as already constructed in [ALM+98]). And the PCPs [ALM+98] can easily be made PCPsof proximity by augmenting them with appropriate \proximity tests". Thus, all the technical workin Part II is not forced by the new notion of robust PCPPs, but rather is aimed at constructingones which have nearly linear length.2.5 Various observations and transformationsMost of this subsection refers to robust PCPs, but we start with an observation regarding PCPs ofproximity.Queries vs. proximity: Intuitively, the query complexity of a PCPP should depend on theproximity parameter �. The following proposition con�rms this intuition.Proposition 2.8 (queries vs. proximity) Suppose pair-language L has a PCPP with proximityparameter �, soundness error 1 � ", and query complexity q. Suppose further that there exists(x; y) 2 L such that jxj = n and jyj = m, such that if we let z 2 f0; 1gm be a random string ofrelative Hamming distance �0 , �0(x) from y, we havePrz [z is �-far from L(x)] �
 ,
(x):Then q > " �
�0In particular, if L = CktVal, then q � "=(� +O(1=n)).The �rst part of Proposition 2.8 does not specify the relation of �0 to � (although, surely, �0 > �must hold for any
 > 0, because �(z; L(x)) � �(z; y) = �0). The second part relies on the factthat, for CktVal, one may set �0 as low as � +O(1=n).Proof: By completeness, there exists an oracle � such that the PCPP veri�er V (x) accepts oracley � � with probability 1. Consider z = y��, where � 2 f0; 1gm is a uniformly distributed stringwith relative Hamming weight �0. If we invoke V (x) with oracle to z ��, then the probability (overthe choice of �) that any of the positions read by V has been changed is at most q � �0. Thus, V (x)rejects oracle (y � �) � � with probability at most q � �0.On the other hand, by assumption z is �-far from L(x) with probability at least
, in whichcase V (x) should reject oracle z �� with probability greater than ", by the PCPP soundness. ThusV (x) should reject with probability greater than
 � " (over the choice of z and the coin tosses ofV), and we conclude that q � �0 >
 � ", as desired.16

For the application to CktVal, let C : f0; 1gm ! f0; 1g be a circuit of size n that accepts onlythe all-zeroes string 0m, for m =
(n). Then we have (C; 0m) 2 CktVal, but for every �0 > � andevery string z of relative Hamming weight �0, we see that (C; z) is �-far from satisfying C. Setting
 = 1 and �0 such that �0m is the least integer greater than �m completes the proof.Expected robustness: Occasionally, we will be interested in a variant of robust-soundness,which refers to distance on average rather than with high probability.De�nition 2.9 (expected robustness) For a function � : Z+ ! [0; 1], a PCP has expectedrobustness � if for every x =2 L, we have8�;E(I;D) R V (x)[�(�jI ;D�1(1))] > �(jxj):Expected robustness for PCPPs is de�ned analogously.We now present several generic transformations regarding robustness and soundness. Althoughwe only state them for PCPs, all of these results also hold for PCPPs, with no change in theproximity parameter. The following proposition relates robust-soundness to expected robustness.Proposition 2.10 (robust-soundness vs. expected robustness) If a PCP has robust-soundnesserror 1 � " with robustness �, then it has expected robustness " � �. On the other hand, if a PCPhas expected robustness �, then for every " � �, it has robust-soundness error 1� " with robustnessparameter �� ".Expected robustness can easily be ampli�ed to standard robustness with low robust-soundnesserror, using any averaging (a.k.a. oblivious) sampler (cf., [Gol97]). Combined with Proposi-tion 2.10, we get a (soundness) error reduction for robust PCPs. For example, using the expander-neighborhood sampler of [GW97], we have:Lemma 2.11 (error reduction via expander neighborhoods) If a language L has a PCPwith expected robustness �, randomness complexity r, query complexity q, and decision complex-ity d, then for every two functions s;
 : Z+! [0; 1], then L has PCP having� robust-soundness error s with robustness parameter ��
,� randomness complexity r +O(log(1=s) + log(1=
)),� query complexity O(1=(s
2)) � q, and� decision complexity O(1=(s
2)) � dAn alternative error-reduction procedure that will also be used is given by pairwise independentsamples:Lemma 2.12 (error reduction via pairwise independence) If a language L has a PCP withexpected robustness �, randomness complexity r, query complexity q, and decision complexity d suchthat � � 2r � 2, then L has PCP having� robust-soundness error 1=2 with robustness parameter �=2,� randomness complexity 2r, 17

� query complexity 2q=�, and� decision complexity 2d=�Non-Boolean PCPs: The next few transformations involve non-Boolean PCPs. That is, PCPswhere the oracle returns symbols over some larger alphabet � = f0; 1ga rather than bits; we refer toa = a(n) as the answer length of the PCP. (Often non-Boolean PCPs are discussed in the languageof multi-prover interactive proofs, but it is simpler for us to work with the PCP formulation.)Robust-soundness of a non-Boolean PCP is de�ned in the natural way, using Hamming distanceover the alphabet �. (In the case of a robust non-Boolean PCPP, we still treat the input oracle asbinary.)The �rst transformation provides a way of converting non-Boolean PCPs to Boolean PCPs ina way that preserves robust-soundness.Lemma 2.13 (alphabet reduction) If a language L has a non-Boolean PCP with answer lengtha, query complexity q, randomness complexity r, decision complexity d, and robust-soundness errors with robustness parameter �, then L has a Boolean PCP with query complexity O(a�q), randomnesscomplexity r, decision complexity d+O(a�q), and robust-soundness error s with robustness parameter
(�). If, instead of robust-soundness, the non-Boolean PCP has expected robustness �, then theBoolean PCP has expected robustness
(�).The proof uses a good error-correcting code (i.e., constant relative distance and rate). Furthermore,to obtain decision complexity d+O(a�q) we should use a code having linear-size circuits for encoding(cf. [Spi96]). Using more classical codes would only give decision complexity d+ eO(a � q), which isactually su�cient for our purposes.Proof: This transformation is analogous to converting non-Boolean error-correcting codes toBoolean ones via \code concatenation". Let V be the given non-Boolean PCP veri�er, with answerlength a. Let ECC : f0; 1ga ! f0; 1gb for b = O(a) a binary error-correcting code of constantrelative minimum distance, which can be computed by an explicit circuit of size O(a). We willaugment the original oracle � having a-bit entries with an additional oracle � having b-bit entries,where �i is supposed to be ECC(�i). (We note that including the original oracle simpli�es theargument as well as frees us from assuming a noiseless decoding algorithm.)Our new veri�er V 0(x), on oracle access to ��� , will simulate V (x), and for each query imade byV , will query the a bits in �i and the b bits in �i, for a total of q �(a+b) binary queries. That is, if Vqueries positions I = (i1; : : : ; iq), V 0 will query positions I 0 = ((0; i1); : : : ; (0; iq); (1; i1); : : : ; (1; iq)).If V outputs a decision circuit D : (f0; 1ga)q ! f0; 1g, V 0 will output the circuit D0 : (f0; 1ga)q �(f0; 1gb)q ! f0; 1g de�ned byD0(x1; : : : ; xq; y1; : : : ; yq) = D(x1; : : : ; xq) ^ C(x1; : : : ; xq; y1; : : : ; yq);where C(x1; : : : ; xq; y1; : : : ; yq) = q̂i=1(yi = ECC(xi)):Since ECC can be evaluated by a circuit of size O(a), we see that jD0j = jDj+O(a � q), as desired.For completeness of V 0, we note that any accepting oracle � for V can be augmented to anaccepting oracle for V 0 by setting �i = ECC(�i) for all i. For soundness of V 0, suppose x =2 L18

and let (�; �) be any pair of oracles. De�ne a \decoded" oracle �̂ by setting �̂i to be the stringx 2 f0; 1ga which minimizes the distance between ECC(x) and �i. We will relate the robustness ofV on oracle �̂ to the robustness of V 0 on oracles � and � . Speci�cally, let � > 0 be a constant suchthat the (absolute) minimum distance of ECC is greater than 2� � (a+ b). Then we will show thatfor every sequence R of coin tosses and for every � > 0, if the bits read by V 0(x;R) from � � � are��-close to being accepted, then the bits read by V from �̂ are �-close to being accepted. Thus,both robustness parameters (standard and expected) decrease by at most a factor of �.Consider any sequence R of coin tosses, let (I;D) = V (x;R), and write I = (i1; : : : ; iq).Suppose that (�i1 ; : : : ; �iq ; �i1 ; : : : ; �iq) is ��-close to some (�0i1 ; : : : ; �0iq ; � 0i1 ; : : : ; � 0iq) that satis�esD0 = D ^ C. Then, for at least a 1 � � fraction of j 2 [q], the pair (�ij ; �ij) is �-close to(�0ij ; � 0ij) = (�0ij ;ECC(�0ij)). For such j, the choice of � implies that ECC(�0ij) is the closest codewordto �ij and hence �̂ij = �0ij . Since the �0's satisfy D, we conclude that �̂'s are �-close to satisfyingD, as desired.The usual \parallelization" paradigm of PCPs [LS92, ALM+98] converts a Boolean PCP withmany queries into a non-Boolean PCP with a constant number of queries, where this is typically the�rst step in PCP composition. As mentioned in the introduction, we cannot a�ord parallelization,and robust-soundness will be our substitute. Nevertheless, there is a close (but not close enoughfor us) connection between parallelized PCPs and PCPs with robust-soundness:Proposition 2.14 (parallelization vs. robustness)1. If a language L has a non-Boolean PCP with answer length a, query complexity q, randomnesscomplexity r, decision complexity d, and soundness error s, then L has a (Boolean) PCP withquery complexity O(a � q), randomness complexity r, decision complexity d + O(a � q), androbust-soundness error s with robustness parameter � =
(1=q).2. If a language L has a (Boolean) PCP with query complexity q, randomness complexity r,decision complexity d, and expected robustness �, then L has a 2-query non-Boolean PCPwith answer length q, randomness complexity r + log q, decision complexity d + O(1), andsoundness error 1� �.Thus, for constant soundness and constant robustness parameter, q-query robust (Boolean)PCPs are essentially equivalent to constant-query non-Boolean PCPs with answer length �(q).However, note that in passing from robust-soundness to a 2-query non-Boolean PCP, the random-ness complexity increases by log q. It is precisely this cost that we cannot a�ord, and hence wework with robust-soundness in the rest of the paper.Proof: For Part 1, note that any non-Boolean PCP with query complexity q and soundness errors has robust-soundness error s for any robustness parameter � < 1=q. Thus, the claim follows fromLemma 2.13.Turning to Part 2, let V be a robust PCP veri�er for L with the stated parameters. We usethe usual query-reduction technique for PCPs [FRS94], and observe that when applied to a robustPCP, the detection probability (i.e., one minus the soundness error) does not deteriorate by a factorof q as usual. Instead, the detection probability of the resulting 2-query (non-Boolean) PCP equals
19

the expected robustness of V .9 Speci�cally, the 2-query non-Boolean PCP veri�er V 0 is de�ned asfollows:� V 0 expects two oracles, one Boolean oracle � corresponding to the oracle for V , and a secondoracle � with answer length q, indexed by random strings of V .� On input x, the veri�er V 0 selects a random string R for V and j R [q], and computes(I;D) = V (x;R), where I = (i1; : : : ; iq). It sets I 0 = (R; ij) (which means that the queriesfor the values �R and �ij) and D0(a; b) = [(D(a) = 1) ^ (aj = b)]; that is, it accepts if andonly if [D(�R) = 1] ^ [(�R)j = �ij].It can be veri�ed that the probability that V 0 rejects a false assertion is precisely the expectedrobustness of V . In particular, suppose that V 0(x) accepts the oracle pair (�; �) with probabilityp. We may assume, without loss of generality, that D(�R) = 1 for any R, where (�;D) = V (x;R).Then, it follows that the expected (relative) distance of �jI from �R, where (I;D) = V (x;R) for arandom R, equals 1� p (because 1� p = PrR;j[(�R)j 6= �ij], which in turn equals ER[�(�R; �jI)]).This means that on the average, � is (1 � p)-close to assignments that satisfy the correspondingdecision circuits. Thus, if x 62 L then 1� p > �, and p < 1� � follows.Robustness vs. proximity: Finally, for PCPPs, we prove that the robustness parameter isupper-bounded by the proximity parameter.Proposition 2.15 (robustness vs. proximity) Suppose a pair-language L has a PCPP withproximity parameter � and expected robustness �. Suppose further that there exists (x; y) 2 L suchthat jxj = n and jyj = m, such that if we let z 2 f0; 1gm be a random string at relative Hammingdistance �0 , �0(x) from y, we havePrz [z is �-far to L(x)] �
 ,
(x):Then � � �0=
:In particular, if L = CktVal, then � � � +O(1=n).Proof: The proof is similar to that of Proposition 2.8. By completeness, there exists an oracle� such that the PCPP veri�er V (x) accepts oracle y � � with probability 1. If we run V (x) withoracle z � � instead, then bits read by V have expected distance at most �0 from being accepted,where the expectation is over the choices of z (even when �xing the coins of V).On the other hand, z is �-far from L(x) with probability at least
, and for any such �xed zthe bits read by V from z � � should have expected distance greater than � from being accepted(over the coin tosses of V). Thus, the expected distance of z � � from being accepted is greaterthan
 � �, where here the expectation is over the choice of z and the coin tosses of V . We concludethat �0 >
 � �, as desired.Recall that in the proof of Proposition 2.8, we have demonstrated the existence of a pair (C;w)such that any string z at distance �0 = � + O(1=n) from w it holds that w is �-far from satisfyingC. Setting
 = 1, the second part follows.9It may be more instructive (alas more cumbersome) to discuss what is happening in terms of ordinary robustness.Suppose that V has robust-soundness error s = 1�d with respect to robustness �. The standard analysis ignores therobustness and asserts that the 2-query (non-Boolean) PCP has soundness error s0 = 1 � d0, where d0 = d=q. Thiscrude analysis implicitly assumes the trivial bound (i.e., 1=q) of the robustness parameter. A more re�ned analysistakes advantage of the actual bound of the robustness parameter, and asserts that the 2-query (non-Boolean) PCPhas soundness error s0 = 1� � � d. 20

3 Very short PCPs with very few queriesIn this section we prove the main results of this work; that is, we establish Theorem 1.2 and 1.3.Our starting point is the following Robust PCP of proximity, which is constructed in the secondpart of this work (Part II: Sections 5{8).Theorem 3.1 (Main Construct) There exists a universal constant c such for all n;m 2 Z+,0 < �;
 < 1=2 satisfying n1=m � mcm=(
�)3 and � �
=c, Circuit Value has a robust PCP ofproximity (for circuits of size n) with the following parameters� randomness �1� 1m� log n+O(m logm) +O(log log n) +O(log(1=�)),� decision complexity n1=m � poly(log n; 1=�), which also upper-bounds the query complexity.10� perfect completeness, and� for proximity parameter �, the veri�er has robust-soundness error
 with robustness parameter(1�
)�.We comment that the condition � <
=cmerely means that we present robust PCPs of proximityonly for the more di�cult cases (when � is small), and our robustness parameter does not improvefor larger values of �. We call the reader's attention to the typically small value of the query andrandomness complexities, which yield a proof length that is upper-bounded by poly(mm log n) � n(for � and
 as small as 1=poly(mm; log n)), as well as to the small values of the soundness errorand the the small deterioration of robustness wrt proximity.Note that the Main Construct (of Theorem 3.1) works only when n, the size of the inputcircuit, is not too small (more precisely, when n1=m � mcm=�3). While constructing our shortPCPs (via proof composition), we need robust PCPPs that work for even smaller values of n. Forthis purpose, we also construct the following robust PCP of proximity (of Theorem 3.2) that hasparameters similar to the PCP constructed by Arora et al. [ALM+98]. In comparison to the MainConstruct (of Theorem 3.1), this PCPP is not as e�cient in randomness (i.e., it has randomnesscomplexity O(log n) rather than (1�o(1)) log2 n). However, since we plan to use the latter (robust)PCPP only towards the �nal stages of composition, we can a�ord to pay this cost in randomness.Theorem 3.2 will be proven in the second part of this work, by modifying the proof of Theorem 3.1.An alternate construction of this robust PCPP can be obtained by adding a suitable proximity testto the \parallelized PCPs" of Arora et al. [ALM+98].Theorem 3.2 (ALMSS-type Robust PCP of proximity) For all n 2 Z+ and � 2 (0; 1),Circuit Value has a robust PCP of proximity (for circuits of size n) with the following parameters� randomness O(log n),� decision complexity poly log n, which also upper-bounds the query complexity.� perfect completeness, and� for proximity parameter �, the veri�er has robust-soundness error 1 �
(�) with robustnessparameter
(1).10In fact, we will upper-bound the query complexity by q = n1=m � poly(log n; 1=�) and show that the veri�er'sdecision can be implemented by a circuit of size eO(q), which can also be bounded by n1=m � poly(log n; 1=�) with aslightly larger unspeci�ed polynomial. 21

Theorems 3.1 and 3.2 di�er also in their robustness parameters. Theorem 3.2 provides a betterbound on the robustness parameter (i.e.,
(1) rather than (1 �
)� provided by Theorem 3.1),while guaranteeing only a much weaker robust-soundness error (i.e., 1�
(�) rather than
), where
 > � > 0 is typically small. It is instructive to compare the expected robustness provided by thetwo results: The expected robustness in Theorem 3.1 is at least (1�
)2�, while that in Theorem 3.2is
(�) �
(1) =
(�). Thus, for
 � 1, the expected robustness in Theorem 3.1 can be very close tothe proximity parameter � (which is close to optimal { see Proposition 2.15), whereas in Theorem 3.2the expected robustness is always a constant factor smaller than the proximity parameter. Hence,the robust PCPP of Theorem 3.1 is suitable for a large number of proof composition operations,whereas the one in Theorem 3.2 is useful when the query complexity of the outer veri�er is alreadyvery small (and Theorem 3.1 can no longer be applied). Indeed, this is exactly how these twotheorems are used in the construction of our short PCPs. Using Theorems 3.1 and 3.2, we derivea general trade-o� between the length of PCPs and their query complexity:Theorem 3.3 (Randomness vs. query complexity trade-o� for PCPs of proximity) Forevery parameters n; t 2 N such that 3 � t � 2 log log nlog log log n there exists a PCP of proximity for CircuitValue (for circuits of size n) with the following parameters� randomness complexity log2 n+At(n), whereAt(n) , O(t+ (log n) 1t) log log n+O((log n) 2t) (1)� query complexity O(1),� perfect completeness, and� soundness error 1�
(1=t) with respect to proximity parameter �(1=t).Alternatively, we can have query complexity O(t) and soundness error 1=2 maintaining all otherparameters the same.For t 2 [3; :::; 0:99 log log nlog log log n], we have (log n) 1t > (log log n)1=0:99 and so At(n) = O((log n) 2t). On theother hand, for t � 1:01 log log nlog log log n , we have (log n) 1t � (log log n)1=1:01 and so At(n) = O� (log log n)2log log logn� =o(log log n)2.Theorem 3.3 actually asserts a PCP of proximity (for Circuit Value), but a PCP for CircuitSatisfiability and a PCP of proximity for Nondeterministic Circuit Value (of the samecomplexity) follow; see Propositions 2.4 and 2.5. Theorems 1.2 and 1.3 follow by suitable settingsof the parameter t. Further detail as well as another corollary appear in Section 3.2.3.1 Proof of Theorem 3.3Theorem 3.3 is proved by using the robust PCP of proximity described in Theorem 3.1. Speci�cally,this robust PCP of proximity is composed with itself several times (using the Composition Theoremfrom Section 2). Each such composition drastically reduces the query complexity of the resultingPCP, while only increasing very moderately its randomness complexity. The deterioration of thesoundness error and the robustness is also very moderate. After composing the robust PCP ofproximity with itself O(t(n)) times, we compose the resulting robust PCP with the ALMSS-typerobust PCP of proximity thrice to reduce the query complexity to poly log log log n. Finally wecompose this resultant robust PCP of proximity with a PCPP of proximity parameter roughly22

(1=t) that has query complexity O(1) and exponential length. The latter PCP of proximity canbe obtained by a suitable modi�cation of the Hadamard-based PCP of [ALM+98], as shown inAppendix A. We now turn to the actual proof.Proof: We construct the PCP of proximity of Theorem 3.3 by composing the robust PCP ofproximity described in Theorem 3.1 with itself several times. Each such composition reduces thequery complexity from n to approximately n1=m. Ideally, we would like to do the following: Setm = (log n) 1t and compose the robust PCPP of Theorem 3.1 with parameter m with itself t � 1times. This would result in a robust PCPP of query complexity roughly n1=mt = n1=log n = O(1)giving us the desired result. However, we cannot continue this repeated composition for all thet � 1 steps as the requirements of Theorem 3.1 (namely, n1=m � mcm=(�
)3) are violated in thepenultimate two steps of the repeated composition. So we instead do the following: In the �rst stage,we compose the (new and) highly e�cient veri�er from Theorem 3.1 with itself t � 3 times. Thisyields a veri�er with query complexity roughly n1=mt�2 = (n1=mt)m2 = 2m2 = exp(log2=t n) � n,while the soundness error is bounded away from 1 and robustness is
(1=t). In the second stage,we compose the resultant robust PCPP a constant number of times with the ALMSS-type robustPCPP described in Theorem 3.2 to reduce the query complexity to poly log log log n (and keepingthe other parameters essentially the same). The ALMSS-type PCPP is (relatively) poor in terms ofrandomness, however the input size to the ALMSS-type PCPP is too small to a�ect the randomnessof the resultant PCPP. Finally, we compose with the Hadamard-based veri�er of Theorem A.1 tobring the query complexity down to O(1). In all stages, we invoke the Composition Theorem(Theorem 2.7).Throughout the proof, n denotes the size of the circuit that is given as explicit input to thePCPP veri�er that we construct. We shall actually construct a sequence of such veri�ers. Eachveri�er in the sequence will be obtained by composing the prior veri�er (used as the outer veri�erin the composition) with an adequate inner veri�er. In the �rst stage, the inner veri�er will bethe veri�er obtained from Theorem 3.1, whereas in the second and third stages it will be theone obtained from Theorem 3.2 and Theorem A.1, respectively. Either way, the inner veri�erwill operate on circuits of much smaller size (than n) and will use a proximity parameter that isupper-bounded by the robustness parameter of the corresponding outer veri�er.Stage I: Let m = (log n) 1t � 2 and
 = 1t . For this choice of m and
, let V0 be the veri�er obtainedfrom Theorem 3.1. We recall the parameters of this veri�er: For circuits of size ` and any proximityparameter �0 2 (
=3c;
=c), its randomness complexity is r0(`) , (1 � 1m) � log2 ` + O(log log `) +O(m logm)+O(log t), its decision (and query) complexity is d0(`) , ` 1m �poly(log `; t), its soundnesserror is s0 ,
 and its robustness is �0 � (1�
)�0.We compose V0 with itself t�3 times for the same �xed choice ofm and
 to obtain a sequence ofveri�ers of increasingly smaller query complexity.11 While doing so, we will use the largest possibleproximity parameter for the inner veri�er (V0) in each step; that is, in the i-th composition, we setthe proximity parameter of the inner veri�er to equal the robustness of the outer veri�er, where thelatter is the result of i�1 compositions of V0 with itself. We get a sequence of veri�ers V1; : : : ; Vt�2such that V1 = V0 and the veri�er Vi is obtained by composing (the outer veri�er) Vi�1 with (theinner veri�er) V0, where the proximity parameter of the latter is set to equal the robustness ofthe former. Unlike V0, which is invoked on di�erent circuit sizes and (slightly) di�erent values ofthe proximity parameter, all the Vi's (i 2 [t � 2]) refer to circuit size n and proximity parameter11We assume, for simplicity, that t � 3. Note that it su�ces to establish the claimed result for t that is greaterthan any universal constant. 23

� ,
=c < 1=t.Let ri; di; �i; si and �i denote the randomness complexity, decision (and query) complexity,proximity parameter, soundness error, and the robustness parameter of the veri�er Vi. (Recallthat Vi will be composed with the inner-veri�er V0, where in this composition the input size andproximity parameter of the latter will be set to di and �i respectively, and so we will need to verifythat d1=mi � mcm=(
�i)3 and �i <
=c for i < t� 2).12 We �rst claim that the decision complexity,proximity, soundness-error, robustness, and proof size parameters satisfy the following conditions:1. Decision complexity: di(n) � a(n;m)2 � n1=mi , where a(`;m) , d0(`)=`1=m = poly(log `; t).On the other hand, di(n) � n1=mi .2. Proximity: �i = �.3. Soundness error: si � 1� (1�
)i. (In particular, si < i
.)4. Robustness: �i � (1�
)i � �. On the other hand, �i � �0 <
=c.5. Proof length: 2ri(n)di(n) � b(n;m)i � n, where b(`;m) , 2r0(`) � d0(`)=` = poly(mm; log `; t).We prove this claim by induction on i. For starters, note that the base case (i.e., i = 1) follows fromthe properties of V0: In particular, d1(n) � poly(log n; t)�n1=m and 2r1(n)d1(n) � poly(mm; log n; t)�n. Turning to the induction step, assuming that these claims holds for Vi, we prove that they holdalso for Vi+1. For (1), note thatdi+1(n) = d0(di(n)) [By the Composition Theorem]= a(di(n);m) � di(n)1=m [By de�nition of a(�; �)]� a(n;m) � di(n)1=m [By monotonicity of a(�; �) and di(n) � n]� a(n;m) � �a(n;m)2 � n1=mi�1=m [By induction]� a(n;m)2 � n1=mi+1 [Using m � 2]and di+1(n) � di(n)1=m � n1=mi+1 also holds. Clearly �i = � and the bound on si is straightforwardfrom the Composition Theorem. Recalling that the proximity parameter for V0 in this compositionis set to �i, the robustness of the composed veri�er Vi+1 is �i+1 = (1�
)�i = (1�
)i+1� as desired.Furthermore, �i = (1 �
)i� � (1 � 1t)t� � e�1� =
=O(1). We now move to the last condition(essentially bounding the randomness). Notice �rst that ri+1(n) = ri(n) + r0(di(n)) and thus2ri+1(n) � di+1(n) = 2ri(n) � 2r0(di(n)) � d0(di(n)) [By the Composition Theorem]= 2ri(n) � di(n) � b(di(n);m) [By de�nition of b(�; �)]� b(n;m)i � n � b(n;m) [By induction and monotonicity of b(�; �)]= n � b(n;m)i+1Thus, Part (5) is veri�ed. Recall that we have to verify that d1=mi � mcm=(
�i)3 for i < t � 2 aspromised before. We have d1=mi � (n1=mi)1=m = n1=mi+1 � n1=mt�2 (since i < t � 2). Since m =(log n) 1t , we have n1=mt = 2. Hence, d1=mi � (n1=mt)m2 = 2m2 . On the other hand, mcm=(
�i)3 �12We also need to verify that n1=m � mcm=(
�0)3 and �0 <
=c for the initial veri�er V1 = V0 but this is true for ourchoice of parameters. Furthermore, as �i can only deteriorate with each composition, we have that �0 = �i � �0 �
=c.Thus, the only condition that needs to be veri�ed is d1=mi � mcm=(
�i)3 for i < t� 2.24

mcm=(e�1
�)3 = mcm � poly(t), because � =
=c and
 = 1=t. Thus it su�ces to verify that2m2=mcm � poly(t), for 2 � t � 2 log log n= log log log n, which is straightforward.13Lastly, we consider the running-time of Vi, denoted Ti, which ought to be polynomial. A carefuluse of the Composition Theorem (Theorem 2.7) indicates that Ti(n) = poly(n)+Ti�1(n), for everyi = 2; : : : ; t � 2, where T1(n) = poly(n) (since V1 = V0). Alternatively, unraveling the inductivecomposition, we note that Vi consists of invoking V0 for i times, where in the �rst invocation V0 isinvoked on Vi's input and in later invocations V0 is invoked on an input obtained from the previousinvocation. Furthermore, the output of Vi is obtained by a combining the inputs obtained in thesei � t� 2 < n invocations.We now conclude the �rst stage by showing that the �nal veri�er Vc = Vt�2 has the desiredproperties. By Part (5) above (and the fact that dt�2 � 1), we have rc(n) = rt�2(n) � log n +(t � 2) � log b(n;m) � log n + t log b(n;m). By the de�nition of b(n;m), we have log b(n;m) =O(log log n)+O(m logm)+O(log t) = O(log log n+m logm), whereasm logm = (log n) 1t � 1t log log n.Thus rc(n) � log2 n+O(t�log log n)+t�O(m logm) = log2 n+O(t+(logn) 1t)�log log n. The decisioncomplexity of Vc is dc(n) = dt�2(n) � a(n;m)2 �n1=mt�2 = a(n;m)2 �2m2 , because n1=mt = 2. Usinga(n;m) = poly(log n; t), it follows that dc(n) � 2m2 � poly(log n). The proximity of Vc equals �, itssoundness error is sc = st�2 = 1 � (1 �
)t�2 = 1 � (1 � 1=t)t�2 < 1�
(1), and its robustness is�c = �t�2 � (1�
)t�2� = �=e =
(1=t).Stage II: We now compose the veri�er Vc with the ALMSS-type veri�er Va described in Theorem 3.2thrice to obtain the veri�ers V 0, V 00, and V 000 respectively; that is, V 0 equals Vc composed withVa, whereas V 00 equals V 0 composed with Va, and V 000 equals V 00 composed with Va. We applycomposition as before, setting the proximity parameter of the inner veri�er to equal the robustnessparameter of the outer veri�er. Recall from Theorem 3.2 that the ALMSS-type veri�er Va has thefollowing parameters: randomness ra(`; �a) = O(log `), decision complexity da(`; �a) = poly log `,soundness error sa(`; �a) = 1�
(�a) and robustness �a(`; �a) =
(1) for input size ` and proximityparameter �a. Recall that when composing Vc with Va we set �a = �c =
(1=t), whereas whencomposing V 0 (resp., V 00) with Va we set �a = �0 =
(1) (resp., �a = �00 =
(1)). Each compositionwith the inner veri�er Va adds O(log d) to the randomness, while reducing the query complexity topoly log d, where d is the decision complexity of the outer veri�er. Furthermore, when composingany of these outer veri�ers (i.e., either Vc or V 0; V 00) with Va, the resulting veri�er has robustnessparameter
(1) while its robust-soundness error is 1�
((1�s)�), where � and s are the robustnessand soudness error of the outer veri�er. Hence, the parameters of the veri�ers V 0, V 00 and V 000 areas follows:Parameters of V 0 (recall that dc = 2m2 � poly(log n) and �c =
(�)):r0 = rc +O(log dc(n)) = rc +O(m2 + log log n),d0 = poly(log dc(n)) = poly(m; log log n),s0 = 1�
((1� sc)�c) = 1�
(�),and �0 =
(1).Parameters of V 00:r00 = r0 +O(log d0) = r0 +O(logm+ log log log n),d00 = poly(log d0) = poly(logm; log log log n),s00 = 1�
((1� s0)�0) = 1�
(�),13Note that as t varies from 2 to 2 log log n= log log log n, the value of m varies from plog n to plog log n. Fort 2 [2; 2 log log n= log log log n], the maximum value of poly(t) is poly(log log n= log log log n) = poly(log log n). Onthe other hand, for m 2 [plog log n;plog n], the minimum value of 2m2=mcm > 2m2=2 is 2plog logn2=2 = plog n �poly(log log n). 25

and �00 =
(1).Parameters of V 000:r000 = r00 +O(log d00) = r00 +O(log logm+ log log log log n),d000 = poly(log d00) = poly(log logm; log log log log n),s000 = 1�
((1� s00)�00) = 1�
(�),and �000 =
(1).Recall that the proximity parameter for all three veri�ers equals that of Vc (i.e., �). We have thatr000 = rc +O(m2 + log log n)= log2 n+O(t+ (log n)1=t) � log log n+O(m2);q000 < d000 = poly(log log log log n; log logm);whereas s000 = 1 �
(�) and �000 =
(1). Substituting m = (log n) 1t , we get r000 = log2 n + O(t +(log n)1=t) � log log n+O((log n) 2t) and q000 = poly(log log log n).Stage III: Finally, we compose V 000 with the Hadamard-based inner veri�er Vh of Theorem A.1 toobtain our �nal veri�er Vf . The query complexity of Vh and hence that of Vf is constant. Therandomness complexity of Vf is rf (n) , r000(n) + rh(q000(n)) = r000(n) + poly(log log log n), becauserh(`) = O(`2). Thus, rf (n) = log2 n + O(t + (log n) 1t) � log log n + O((log n) 2t). On proximityparameter �h, the soundness error of Vh is sh = 1 �
(�h). Setting �h = �000 =
(1), we concludethat the soundness error of Vf on proximity parameter � is 1�
(�) = 1�
(1=t), since the soundnesserror of V 000 is 1�
(�).To obtain soundness error 1/2, we perform O(t) repetitions of Vh, yielding a query complex-ity of O(t). This can be done without increasing the randomness complexity by using \recycledrandomness" (speci�cally, the neighbors of a uniformly selected vertex in a Ramanujan expandergraph; see [Gol97, Apdx. C.4]).Comment: We note that the tight bound on the robustness (as a function of the proximityparameter) in our main construct (Theorem 3.1) plays an important role in the proof of Theorem 3.3.The reason is that when we compose two robust PCPs of proximity, the proximity parameter ofthe second must be upper-bounded by the robustness parameter of the �rst. Thus, when wecompose many robust PCPs of proximity, the robustness parameter deteriorates exponentially inthe number of composed systems where the base of the exponent is determined by the tightnessof the robustness (of the second veri�er). That is, let � , �=�, where � and � are the proximityand robustness parameters of the system. Then composing this system t times with itself, meansthat at the lowest PCP-instance we need to set the proximity parameter to be � t�1 times theinitial proximity. This requires the lowest PCP-instance to make at least 1=� t�1 queries (or becomposed with a PCP of proximity that can handle proximity parameter � t, which again lower-bounds the number of queries). For a constant � < 1, we get exp(t) query complexity, whereas for� = 1�
 = (1� (1=t)) we get query complexity that is linear in 1=((1�
)t �
) = O(t). Finally, weargue that in the context of such an application, setting
 = 1=t is actually the \natural" choice.Such a choice, assigns each proof-oracle encountered in the composition almost equal weight (of1=t); that is, such a proof oracle is assigned weight 1=t when it appears as the current proof-oracleand maintains its weight when it appears as part of the input-oracle in subsequent compositions.
26

3.2 Corollaries to Theorem 3.3Recall that Theorem 3.3 asserts a PCP of proximity (for Circuit Value) with randomness com-plexity log2 n+At(n), where At(n) , O(t+ (log n) 1t) log log n+O((log n) 2t) and query complexityO(t) (for soundness error 1=2). For constant t � 3, we have At(n) = O((log n) 2t). On the otherhand, for t � 1:01 log log nlog log log n , we have At(n) = o(log log n)2. Using Proposition 2.4, these PCPPs yieldcorresponding PCPs for Circuit Satisfiability.Deriving Theorems 1.2 and 1.3: Two extreme choices of t(n) are when t(n) = 2" , for some" > 0 (which maintains a constant query complexity), and t(n) = 2 log log nlog log logn (which minimizesthe randomness complexity of the veri�er). Setting t(n) = 2" yields Theorem 1.3 (i.e., constantquery complexity O(1=") and randomness log2 n + O(log" n)), whereas setting t(n) = 2 log log nlog log log nyields Theorem 1.2 (i.e., query complexity O((log log n)= log log log n) and randomness log2 n +O�(log log n)2= log log log n�). Thus, both Theorems 1.2 and 1.3 follow from Theorem 3.3.Deriving a PCP of proximity for Nondeterministic Circuit Value: By Proposition 2.5,we conclude that for every 3 � t(n) � 2 log lognlog log log n , there exists a PCP of proximity for Nondeter-ministic Circuit Value of the same complexities (i.e., randomness complexity log2 n + At(n),query complexity O(t(n)), perfect completeness, and soundness error 1=2 with respect to proximity� =
(1=t(n))).A more
exible notion of a PCP of proximity: Our de�nition of a PCP of proximity (seeDe�nition 2.3) speci�es for each system a unique proximity parameter. In many settings (see, e.g.,Section 4.1), it is better to have the proximity parameter be given as an input to the veri�er andhave the latter behave accordingly (e.g., make an adequate number of queries). We refrain frompresenting a formal de�nition as well as a general transformation of PCPs of proximity to theirmore relaxed form. Instead, we state the following corollary to Theorem 3.3.Corollary 3.4 For every parameters n; t1; t2 2 N such that 3 � t1 � t2 � 2 log log nlog log log n there exists aPCP of proximity for Circuit Value (for circuits of size n) with proof length 2At1 (n) � n, whereAt(n) is as in Eq. (1), query complexity O(t2), perfect completeness, and soundness error 1=2 withrespect to proximity parameter 1=t2. Furthermore, when given (as auxiliary input) a proximityparameter � � 1=t2, the veri�er makes only O(maxf1=�; t1g) queries and rejects any input oraclethat is �-far from satisfying the circuit with probability at least 1=2.Underlying the following proof is a general transformation of PCPs of proximity to the more relaxedform as stated in Corollary 3.4.Proof: The proof oracle consists of a sequence of proofs for the system of Theorem 3.3, wheninstantiated with proximity parameter 2�i, for i = blog2 t1c; :::; dlog2 t2e. When the new veri�er isinvoked with proximity parameter �, it invokes the original veri�er with proximity parameter 2�i,where i = dlog2 1=�e, and emulates the answers using the i-th portion of its proof oracle.4 Applications to coding problemsIn this section we show that, combined with any good code, any PCP of proximity yields a LocallyTestable Code (LTC). Using our PCPs of proximity, we obtain an improvement in the rate of LTCs27

(improving over the results of [GS02, BSVW03]). We also introduce a relaxed notion of LocallyDecodable Codes, and show how to construct such codes using any PCP of proximity (and ours inparticular).Preliminaries: For a string w 2 f0; 1gn and i 2 [n] , f1; 2; :::; ng, unless stated di�erently, widenotes the i-th bit of w.We consider codes mapping sequences of k (input) bits into sequences of n � k (output) bits.Such a generic code is denoted by C : f0; 1gk ! f0; 1gn, and the elements of fC(x) : x2f0; 1gkg �f0; 1gn are called codewords (of C). Throughout this section, the integers k and n are to be thoughtof as parameters, and we are typically interested in the relation of n to k (i.e., how n grows asa function of k). Thus, we actually discuss in�nite families of codes (which are associated within�nite sets of possible k's), and whenever we say that some quantity of the code is a constant wemean that this quantity is constant for the entire family (of codes).The distance of a code C : f0; 1gk ! f0; 1gn is the minimum (Hamming) distance betweenits codewords; that is, minx6=yf�(C(x);C(y))g, where �(u; v) denotes the number of bit-locationson which u and v di�er. Throughout this work, we focus on codes of \linear distance"; that is,codes C : f0; 1gk ! f0; 1gn of distance
(n). The distance of w 2 f0; 1gn from a code C :f0; 1gk ! f0; 1gn, denoted �C(w), is the minimum distance between w and the codewords; thatis, �C(w) , minxf�(w;C(x))g. For � 2 [0; 1], the n-bit long strings u and v are said to be �-far(resp., �-close) if �(u; v) > � � n (resp., �(u; v) � � � n). Similarly, w is �-far from C (resp., �-closeto C) if �C(w) > � � n (resp., �C(w) � � � n).As in the case of PCP, all oracle machines considered below are non-adaptive. Here these oraclemachines will model highly e�cient testing and decoding procedures, which probe their inputw 2 f0; 1gn in relatively few places. Thus, these procedures are modeled as oracle machines havingoracle access to w (which is viewed as a function w : f1; :::; ng ! f0; 1g).4.1 Locally Testable CodesLoosely speaking, by a codeword test (for the code C : f0; 1gk ! f0; 1gn) we mean a randomized(non-adaptive) oracle machine, also called a tester, that is given oracle access to w 2 f0; 1gn. Thetester may query the oracle at a constant number of bit-locations and is required to (always) acceptevery codeword and reject with (relatively) high probability every oracle that is \far" from thecode. Indeed, since our focus is on positive results, we use a strict formulation in which the tester isrequired to accept each codeword with probability 1. (This corresponds to \perfect completeness"in the PCP setting.) The �rst de�nition below provides a general template (in terms of severalparameters) for the rejection condition. Later we will discuss the kinds of asymptotic parameterswe would like to achieve.De�nition 4.1 (codeword tests): A randomized (non-adaptive) oracle machine M is called a(�; s)-codeword test for C : f0; 1gk ! f0; 1gn if it satis�es the following two conditions:1. Accepting codewords (aka completeness): For every x 2 f0; 1gk, given oracle access to w =C(x), machine M accepts with probability 1. That is, Pr[MC(x) = 1] = 1, for every x 2f0; 1gk.2. Rejection of non-codeword (aka soundness): Given oracle access to any w 2 f0; 1gn that is�-far from C, machine M accepts with probability at most s. That is, Pr[Mw=1] � s, forevery w 2 f0; 1gn that is �-far from C. 28

The parameter � is called the proximity parameter and s is called the soundness error. The querycomplexity q of M is the maximum number of queries it makes (taken over all sequences of cointosses).Note that this de�nition requires nothing with respect to non-codewords that are relatively closeto the code (i.e., are �-close to C). In addition to the usual goals in constructing error-correctingcodes (e.g., maximizing minimum distance and minimizing the blocklength n = n(k)), here we arealso interested in simultaneously minimizing the query complexity q, the proximity parameter �,and the soundness error s. More generally, we are interested in the tradeo� between q, �, and s.(As usual, the soundness error can be reduced to sk by increasing the query complexity to k � q.)A minimalistic goal is to have a family of codes with q, �, and s all �xed constants. However, notethat this would only be interesting if � is su�ciently small with respect to the distance parametersof the code, e.g. smaller than half the relative minimum distance. (For example, if � is larger thanthe \covering radius" of the code, then there does not exist any string that is �-far from the code,and the soundness condition becomes vacuous.) A stronger de�nition requires the tester to workfor any given proximity parameter � > o(1), but allows its query complexity to depend on �:De�nition 4.2 (locally testable codes): A family of codes fCk : f0; 1gk ! f0; 1gngk2N is locallytestable if it satis�es1. Linear Distance: There is a constant � > 0, such that for every k, Ck has minimum distanceat least � � n.2. Local Testability: There is a randomized, non-adaptive oracle machine M such that for everyconstant � > 0, there is a constant q = q(�) such that for all su�ciently large k, Mw(1k; �)is a (�; 1=2)-codeword test for Ck with query complexity q.The family is called explicit if both Ck and Mw(1k; �) can be evaluated with computation timepolynomial in k.We comment that De�nition 4.2 is somewhat weaker than the de�nitions used in [GS02].14Using an adequate PCP of proximity, we can transform any code to a related code that hasa codeword tester. This is done by appending each codeword with a PCP of proximity provingthe codeword is indeed the encoding of a message. One technical problem that arises is that thePCP of proximity constitutes most of the length of the new encoding. Furthermore, we cannotassume much about the Hamming distance between di�erent proofs of the same statement, thusthe distance of the new code may deteriorate. But this is easily �xed by repeating the codewordmany times, so that the PCP of proximity constitutes only a small fraction of the total length.15Speci�cally, given a code C0 : f0; 1gk ! f0; 1gm, we consider the code C(x) , (C0(x)t; �(x)), wheret = (d(k) � 1) � j�(x)j=jC0(x)j such that (say) d(k) = log k, and �(x) is a PCP of proximity thatasserts that an m-bit string (given as an input oracle) is a codeword (of C0).14In the weaker among the de�nitions in [GS02], the tester is not given � as input (and thus has query complexitythat is a �xed constant independent of �) but is required to be a (�; 1�
(�))-codeword test for every constant � > 0and su�ciently large k. That is, strings that are �-far from the code are rejected with probability
(�). Such a testerimplies a tester as in De�nition 4.2, with query complexity q(�) = O(1=�) .15Throughout this section we will use repetitions to adjust the \weights" of various parts of our codes. An alternativemethod would be to work with weighted Hamming distance (i.e. where di�erent coordinates of a codeword receivedi�erent weights), and indeed these two methods (weighting and repeating) are essentially equivalent. For the sakeof explicitness we work only with repetitions. 29

Construction 4.3 Let d be a free parameter to be determined later, C0 : f0; 1gk ! f0; 1gm be acode, and V be a PCP of proximity veri�er for membership in S0 = fC0(x) : x2f0; 1gkg. Let �(x)be the proof-oracle corresponding to the claim that the input-oracle equals C0(x); that is, �(x) isthe canonical proof obtained by using x as an NP-witness for membership of C0(x) in S0. Considerthe code C(x) , (C0(x)t; �(x)), where t = (d� 1) � j�(x)j=jC0(x)j.The codeword test emulates the PCP-veri�er in the natural way. Speci�cally, given oracle accessto w = (w1; :::; wt; �) 2 f0; 1gt�m+`, the codeword tester selects uniformly i 2 [t], and emulates thePCP-veri�er providing it with oracle access to the input-oracle wi and to the proof-oracle �. Inaddition, the tester checks that the repetitions are valid (by inspecting randomly selected positionsin some qrep randomly selected pairs of m-bit long blocks, where qrep is a free parameter to beoptimized later). Let us denote this tester by T . That is, Tw proceeds as follows1. Uniformly selects i 2 [t] and invokes V wi;�.2. Repeats the following qrep times: Uniformly selects i1; i2 2 [t] and j 2 [m] and checks whether(wi1)j = (wi2)j .Proposition 4.4 Let d and qrep be the free parameters in the above construction of the code C andtester T . Suppose that the code C0 : f0; 1gk ! f0; 1gm has relative minimum distance �0, and thatthe PCP of proximity has proof length ` > m, soundness error 1=4 for proximity parameter �pcppand query complexity qpcpp. Then, the code C and tester T have the following properties:1. The blocklength of C is n , d � ` and its relative minimum distance is at least �0 � 1=d.2. The oracle machine T is a (�; 1=2)-codeword tester for the C, where � = �pcpp + 4qrep + 1d .3. The query complexity of T is q = qpcpp + 2qrep.Proof: The parameters of the code C are obvious from the construction. In particular, C hasblocklength t � m + ` = d � ` = n, and the PCP of proximity �(x) constitutes only an `=n = 1=dfraction of the length the codeword C(x). Since the remainder consists of replicated versions ofC0(x), it follows that the relative minimum distance of C is at least (n� `)�0=n > �0 � 1=d.The query complexity of T is obvious from its construction, and so we only need to showthat it is a good codeword tester. Completeness follows immediately from the completeness ofthe PCP of proximity, and so we focus on the soundness condition. We consider an arbitraryw = (w1; :::; wt; �) 2 f0; 1gt�m+` that is �-far from C, and observe that w0 = (w1; :::; wt) must be�0-far from C0 = fC0(x)t : x 2 f0; 1gkg, where �0 � (�n � `)=n = � � (1=d). Let u 2 f0; 1gm be astring that minimizes �(w0; ut) =Pti=1�(wi; u); that is, ut is the \repetition sequence" closest tow0. We consider two cases:Case 1: �(w0; ut) � tm=qrep. In this case, a single execution of the basic repetition test (comparingtwo locations) rejects with probability:Er;s2[t] ��(wr; ws)=m� � Er2[t] ��(wr; u)=m�= �(w0; ut)=(t �m)� 1=qrepwhere the last inequality is due to the case hypothesis. It follows that qrep executions of therepetition test would accept with probability at most (1� 1=qrep)qrep < 1=e < 1=2.30

Case 2: �(w0; ut) � tm=qrep. In this case�C0(u)m = �C0(ut)tm � �C0(w0)��(w0; ut)tm � �0 � 1qrepwhere the last inequality is due to the case hypothesis. Also, recalling that on the average(i.e., average i) wi is 1=qrep-close to u, it holds that at least two thirds of the wi's are 3=qrep-close to u. Recalling that u is (�0 � (1=qrep))-far from C0 and using �pcpp = �0 � (4=qrep), itfollows at least two thirds of the wi's are �pcpp-far from C0. Thus, by the soundness conditionof the PCP of proximity, these wi will be accepted with probability at most 1=4. Thus, inthe current case, the tester accepts with probability at most 13 + 23 � 14 = 12 .The soundness condition follows.To prove Theorem 1.4, we instantiate the above construction as follows. We let C0 : f0; 1gk !f0; 1gm come from a family of codes with constant relative minimum distance �0 > 0 and nearlylinear blocklength m = eO(k), where encoding can be done by circuits of nearly linear size s0 =s0(k) = eO(k). We take the PCP of proximity from Corollary 3.4, setting t1 = O(1=") (for anarbitrarily small constant " > 0) and t2 = 2loglogs0= log log log s0 = !(1). Thus, we obtain prooflength ` = s0 � exp(log"=2 s0) and query complexity qpcpp = O(maxf1=�pcpp; t1g) = O(1=�pcpp) forany proximity parameter �pcpp � 1=t2 = o(1). We actually invoke the veri�er twice to reduceits soundness error to 1=4. Setting d = log k = !(1), we obtain �nal blocklength n = d � ` <k � exp(log" k) and relative distance �0 � o(1). We further specify the test T as follows. Given aproximity parameter � � 6=t2 = o(1), the tester T invokes the aforementioned PCPP with �pcpp =�=6, and performs the repetition test qrep = 6=� times. Observing that �pcpp+(4=qrep)+ (1=d) < �,we conclude that the resulting test (i.e., T = T (1k; �pcpp)) is a (�; 1=2)-codeword tester of querycomplexity O(1=�pcpp) + 2qrep = O(1=�). Thus we conclude:Conclusion (Restating Theorem 1.4): For every constant " > 0, there exists a a family oflocally testable codes Ck : f0; 1gk ! f0; 1gn, where n = exp(log" k) � k, with query complexityq(�) = O(1=�).4.2 Relaxed Locally Decodable codesWe �rst recall the de�nition of Locally Decodable Codes (LDCs), as formally stated by Katz andTrevisan [KT00]. A code C : f0; 1gk ! f0; 1gn is locally decodable if for some constant � > 0(which is independent of k) there exists an e�cient oracle machine M that, on input any indexi 2 [k] and access to any oracle w 2 f0; 1gn such that �(w;C(x)) � �n, recovers the i-th bit of xwith probability at least 2=3 while making a constant number of queries to w. That is, wheneverrelatively few location are corrupted, the decoder should be able to recover each information-bit,with high probability, based on a constant number of queries to the (corrupted) codeword.Katz and Trevisan showed that ifM makes q queries then n =
(k1+1=(q�1)) must hold [KT00].16This lower-bound is quite far from the best known upper-bound, due to Beimal et al. [BIKR02],that asserts n = O(exp(k"(q))), where "(q) = O((log log q)=(q log q)) = o(1=q), which improves(already for q = 4) over a previous upper-bound where "(q) = 1=(2q + 1). It has been conjectured16Their lower-bound refers to non-adaptive decoders, and yields a lower-bound of n =
(k1+1=(2q�1)) for adaptivedecoders. A lower-bound of n =
(k1+1=O(q)) for adaptive decoders was presented in [DJK+02], and lower-bound ofn =
(k1+1=(q=2�1)) for non-adaptive decoders was presented in [KdW03]. (We note that below we use a non-adaptive(relaxed) decoder.) 31

that, for a constant number of queries, n should be exponential in k; that is, for every constantq there exists a constant " > 0 such that n > exp(k") must hold. In view of this state of a�airs,it is natural to relax the de�nition of Locally Decodable Codes, with the hope of obtaining moree�cient constructions (e.g., n = poly(k)).We relax the de�nition of Locally Decodable Codes by requiring that, whenever few location arecorrupted, the decoder should be able to recover most (or almost all) of the individual information-bits (based on few queries) and for the remaining locations the decoder outputs either the rightmessage bit or a fail symbol (but not the wrong value). That is, the decoder must still avoid errors(with high probability), but is allowed to say \don't know" on a few bit-locations. The followingde�nition is actually weaker; yet, the (aforementioned) stronger formulation is obtained whenconsidering � � 1 (and using ampli�cation to reduce the error from 1=3 to any desired constant).17Furthermore, it is desirable to recover all bits of the information, whenever the codeword is notcorrupted.De�nition 4.5 (Relaxed LDC) A code C : f0; 1gk ! f0; 1gn is relaxed locally decodable if forsome constants �; � > 0 there exists an e�cient probabilistic oracle machine M that makes aconstant number of queries and satis�es the following three conditions with respect to any w 2f0; 1gn and x 2 f0; 1gk such that �(w;C(x)) � �n:1. If w = C(x) is a codeword then the decoder correctly recovers every bit of x with probabilityat least 2=3. That is, for every x 2 f0; 1gk and i 2 [k], it holds that Pr[MC(x)(i) = xi] � 23 .2. On input any index i 2 [k] and given access to the oracle w, with probability at least 2=3machine M outputs either the i-th bit of x or a special failure symbol, denoted ?. That is,for every i, it holds that Pr[Mw(i) 2 fxi;?g] � 23 .3. For at least a � fraction of the indices i 2 [k], on input i and oracle access to w 2 f0; 1gn,with probability at least 2=3, machine M outputs the i-th bit of x. That is, there exists a setIw � [k] of size at least �k such that for every i 2 Iw it holds that Pr[Mw(i) = xi] � 23 .We call � the proximity parameter.One may strengthen the de�nition by requiring that � be greater than 1=2 or any other favoriteconstant smaller than 1 (but probably refrain from setting � > 1�� or so). A di�erent strengtheningis for Condition 1 to hold with probability 1 (i.e., Pr[MC(x)(i) = xi] = 1). In fact, we achieve boththe stronger forms.Remark 4.6 The above de�nition refers only to strings w that are �-close to the code. However,using Construction 4.3, any relaxed LDC can be augmented so that strings that are �-far fromthe code are rejected with high probability (i.e., for every index i, the decoder outputs ? with highprobability). This can be achieved with only a nearly linear increase in the length of the code (fromlength n to length n � exp(log" n)).Remark 4.7 We stress that Condition 2 does not mean that, for every i and w that is �-close toC(x), either Pr[Mw(i) = xi] � 23 or Pr[Mw(i) = ?] � 23 holds. We refer to the latter conditionas Condition X, and conjecture that the seemingly minor di�erence between Conditions 2 and X is17Here error reduction may be performed by estimating the probability that the machine outputs each of thepossible bits, and outputting the more frequent bit only if it has su�cient statistical support (e.g., say 50% support,which the wrong bit cannot have). Otherwise, one outputs the don't know symbol.32

actually substantial. This conjecture is enforced by a recent work of Buhrman and de Wolf [BdW04]who showed that codes that satisfy Condition X are actually locally decodable in the standard, non-relaxed sense (i.e., according to the de�nition of [KT00]).4.2.1 De�nitional issues and transformationsNote that it is very easy to come up with constructions that satisfy each one of the three conditionsof De�nition 4.5. For example, Condition 2 can be satis�ed by (any code and) a trivial decoderthat always returns ?. On the other hand, the identity encoding (combined with a trivial decoder)satis�es Conditions 1 and 3.18 Our aim, however, is to obtain a construction that satis�es allconditions and beats the performance of the known locally decodable codes.It turns out that codes that satisfy Conditions 1 and 2 can be converted into \equally good"codes that satisfy all three conditions. Let us start with a key de�nition, which refers to thedistribution of the decoder's queries when asked to recover a random bit position.De�nition 4.8 (Average smoothness) Let M be a randomized non-adaptive oracle machinehaving access to an oracle w 2 f0; 1gn and getting input i 2 [k]. Further suppose that M alwaysmakes q queries. Let M(i; j; r) denote the j-th query of M on input i and coin tosses r. We saythat M satis�es the average smoothness condition if, for every v 2 [n],12n < Pri;j;r[M(i; j; r) = v] < 2nwhere the probability is taken uniformly over all possible choices of i 2 [k], j 2 [q], and coin tossesr.By having M randomly permute its queries, average smoothness implies that for every j 2 [q] andv 2 [n], it holds that 12n < Pri;r[M(i; j; r) = v] < 2n , where now the probability is taken uniformlyover all possible choices of i 2 [k] and the coin tosses r. We stress that average smoothness isdi�erent from the notion of smoothness as de�ned by Katz and Trevisan [KT00]: They requirethat for every i 2 [k] (and for every j 2 [q] and v 2 [n]), it holds that 12n < Prr[M(i; j; r) =v] < 2n . Indeed, average smoothness is a weaker requirement, and (as we will shortly see) anycode and decoder pair can be easily modi�ed to satisfy it, while preserving the decoding properties(of De�nition 4.5). (In contrast, Katz and Trevisan [KT00] present a modi�cation that achievessmoothness while preserving strict local-decodability, but their transformation does not preserveDe�nition 4.5.)Lemma 4.9 Let C : f0; 1gk ! f0; 1gn be a code and M be a machine that satis�es Conditions 1and 2 of De�nition 4.5 with respect to proximity parameter �. Then, for some n0 2 [3n; 4n], thereexists a code C0 : f0; 1gk ! f0; 1gn0 and a machine M 0 that satis�es average smoothness as well asConditions 1 and 2 of De�nition 4.5 with respect to proximity parameter �0 = �=20. Furthermore,the query complexity of M 0 is twice the one of M , and if M satis�es also Condition 3, with respectto a constant �, then so does M 0.Jumping ahead, we mention that, for a decoder that satis�es average smoothness, Conditions 1and 2 essentially imply Condition 3. Hence our interest in average smoothness and in Lemma 4.9.18In case one wishes the code to have a linear distance this can be achieved too: Consider C(x) = (x;C0(x)), whereC0 is any code of linear length and linear distance, and a decoder that merely retrieves the desired bit from the �rstpart. 33

Proof: As noted above, we may assume without loss of generality that each of M 's queriesis distributed identically. Throughout the analysis, we refer to the distribution of queries for auniformly distributed index i 2 [k]. Let q denote the query complexity of M .We �rst modifyM such that for a random i 2 [k], each query probes each possible location withprobability
(1=n). This is done by adding q dummy queries, each being uniformly distributed.Thus, each location gets probed by each query with probability at least 1=2n.Next we modify the code and the decoder such that each location is probed with almost uniformdistribution. The idea is to repeat heavily-probed locations for an adequate number of times, andhave the decoder probe a random copy. Speci�cally, let pv be the probability that location vis probed (i.e., pv , Pri2[k];r[M(i; 1; r) = v] or equivalently pv = Pi2[k];j2[2q]Pri;j;r[M(i; j; r) =v]=2kq). By the above modi�cation, we have pv � 1=2n. Now, we repeat location v for rv = b4npvctimes. Note that rv � 4npv and rv > 4npv� 1 � 2� 1 (and so rv � 2). We obtain a new code C0 oflength n0 =Pv rv � 4n. (Note that n0 > 3n.) The relative distance of C0 is at least one fourth thatof C, and the rate changes in the same way. The new decoder, M 0, when seeking to probe locationv will select and probe at random one of the rv copies of that location. (Interestingly, there is noneed to augment this decoder by a testing of the consistency of the copies of an original location.)Each new location is probed with probability p0v , pv � 1rv (by each of these queries). Recallingthat pvrv = pvb4npvc , it follows that p0v � 1=4n and p0v � pv4npv�1 � 1=2n (using pv � 1=2n). Recallingthat n0 2 [3n; 4n], each p0v is in [(3=4) � (1=n0); 2 � (1=n0)], i.e., within a factor of 2 from uniform.Clearly, M 0 satis�es Condition 1 (of De�nition 4.5) and we turn to show that it (essentially)satis�es Condition 2 as well. Let w = (w1; :::; wn) 2 f0; 1gn0 be �0-close to C0(x), where jwvj = rv.Let Yv be a 0-1 random variable that represents the value of a random bit in wv; that is, Pr[Yv = 1]equals the fraction of 1's in wv. Then, Pr[Yv 6= C(x)v] > 0 implies that �(wv; cv) � 1, whereC0(x) = (c1; :::; cn) and jcv j = rv. For Y = Y1 � � � Yn, it follows that E(�(Y;C(x))) � �(w;C0(x)),and so E(�(Y;C(x))) � �0n0 � �5 � n (since �0 = �=20 and n0 � 4n). Thus, with probability at least4=5, the random string Y is �-close to C(x), in which case the M must succeed with probability atleast 2=3. Noting that M 0w(i) merely invokes MY (i), we conclude thatPr[M 0w(i) 2 fxi;?g] = Pr[MY (i) 2 fxi;?g]� Pr[�(Y;C(x)) � �n] � Pr[MY (i) 2 fxi;?g j�(Y;C(x)) � �n]� 45 � 23 = 815An analogous argument can be applied in the caseM satis�es Condition 3. In both cases, additionalerror-reduction is needed in order to satisfy the actual conditions, which require success withprobability at least 2=3. (For details see Footnote 17.)Lemma 4.10 Let C : f0; 1gk ! f0; 1gn be a code and M be a machine that satis�es Conditions 1and 2 of De�nition 4.5 with respect to a constant �. Suppose thatM satis�es the average smoothnesscondition and has query complexity q. Then, invokingM for a constant number of times (and rulingas in Footnote 17) yields a decoder that satis�es all three conditions of De�nition 4.5. Speci�cally,Condition 3 holds with respect to a constant � = 1 � 18q�. Furthermore, for any w and x, for1� 18q�(w;C(x)) fraction of the i's, it holds that Pr[Mw(i) = xi] � 5=9.Our usage of the average smoothness condition actually amounts to using the hypothesis that, fora uniformly distributed i 2 [k], each query hits any �xed position with probabilty at most 2=n.34

Proof: By Condition 1, for any x 2 f0; 1gk and every i 2 [k], it holds that Pr[MC(x)(i) = xi] �2=3. Considering any w that is �-close to C(x), the probability that on input a uniformly distributedi 2 [k] machineM queries a location on which w and C(x) disagree is at most q�(2=n)��n = 2q�. Thisis due to the fact that, for a uniformly distributed i, the queries are almost uniformly distributed;speci�cally, no position is queried with probabilty greater than 2=n (by a single query).Let pwi denote the probability that on input i machine M queries a location on which w andC(x) disagree. We have just established that (1=k) �Pki=1 pwi � 2q�. For Iw , fi 2 [k] : pwi � 1=9g,it holds that jIwj � (1 � 18q�) � k. Observe that for any i 2 Iw, it holds that Pr[Mw(i) = xi] �(2=3) � (1=9) = 5=9. Note that, by replacing � with �(w;C(x))=n, the above argument actuallyestablishes that for 1� 18q ��(w;C(x)) fraction of the i's, it holds that Pr[Mw(i) = xi] � 5=9.Additional error-reduction is needed in order to satisfy the actual de�nition (of Condition 3),which require success with probability at least 2=3. The error-reduction should be done in a mannerthat preserves Conditions 1 and 2 of De�nition 4.5. For details see Footnote 17.In view of the furthermore clause of Lemma 4.10, it makes sense to state a stronger de�nitionof relaxed locally decodable codes.De�nition 4.11 (Relaxed LDC, revisited) A code C : f0; 1gk ! f0; 1gn is relaxed locally de-codable if for some constants � > 0 there exists an e�cient probabilistic oracle machine M thatmakes a constant number of queries and satis�es the following two conditions with respect to anyw 2 f0; 1gn and x 2 f0; 1gk such that �(w;C(x)) � �n:1. For every i 2 [k] it holds that Pr[Mw(i) 2 fxi;?g] � 23 .2. There exists a set Iw � [k] of density at least 1�O(�(w;C(x))=n) such that for every i 2 Iwit holds that Pr[Mw(i) = xi] � 23 .Note that the \everywhere good" decoding of codewords (i.e., Condition 1 of De�nition 4.5) isimplied by Condition 2 of De�nition 4.11. By combining Lemmas 4.9 and 4.10, we get:Theorem 4.12 Let C : f0; 1gk ! f0; 1gn be a code and M be a machine that makes a constantq number of queries and satis�es Conditions 1 and 2 of De�nition 4.5 with respect to a constant�. Then, for some n0 2 [3n; 4n], there exists a code C0 : f0; 1gk ! f0; 1gn0 that is relaxed locallydecodable with respect to proximity parameter �0 = �=20. Furthermore, this code satis�es De�ni-tion 4.11.4.2.2 ConstructionsIn view of Lemma 4.10, we focus on presenting codes with decoders that satisfy Conditions 1 and 2of De�nition 4.5 as well as the average smoothness property. (The latter property will save usthe need to invoke Lemma 4.9.) We will start with a code that has nearly quadratic length (i.e.,n = k2+o(1)), which serves as a good warm-up towards our �nal construction in which n = k1+",for any desired constant " > 0.Motivation to our construction: We seek a code of linear distance that has some weak\local decodability" properties. One idea is to separate the codeword into two parts, the �rstallowing for \local decodability" (e.g., using the identity map) and the second providing the distanceproperty (e.g., using any code of linear distance). It is obvious that a third part that guaranteesthe consistency of the �rst two parts should be added, and it is natural to try to use a PCP ofproximity in the latter part. The natural decoder will check consistency (via the PCPP), and in35

case it detects no error will decode according to the �rst part. Indeed, the �rst part may not be\robust to corruption" but the second part is \robust to corruption" and consistency means thatboth parts encode the same information. Considering this vague idea, we encounter two problems.First, a PCP of proximity is unlikely to detect a small change in the �rst part. Thus, if we use theidentity map in the �rst part then the decoder may output the wrong value of some (although few)bits. Put in other words, the \proximity relaxation" in PCPPs makes sense for the second part ofthe codewords but not for the �rst part. Our solution is to provide, for each bit (position) in the�rst part, a proof of the consistency of this bit (value) with the entire second part. The secondproblem is that the PCPPs (let alone all of them combined) are much longer than the �rst twoparts, whereas the corruption rate is measured in terms of the entire codeword. This problem iseasy to �x by repeating the �rst two parts su�ciently many times. However, it is important notto \overdo" this repetition, because if the third part is too short, then corrupting it may preventmeaningful decoding (as per Condition 3 of De�nition 4.5) even at low corruption rates (measuredin terms of the entire codeword). Put in other words, if the third part too short then we have nochance to satisfy the average smoothness condition.The actual construction. Let C0 : f0; 1gk ! f0; 1gm be a good code of relative distance �0,then we encode x 2 f0; 1gk by C(x) , (xt;C0(x)t0 ; �1(x); :::; �k(x)), where t = j�1(x); :::; �k(x)j=jxj(resp., t0 = j�1(x); :::; �k(x)j=jC0(x)j), and �i(x) is a PCP of proximity to be further discussed. We�rst note that the replicated versions of x (resp., C0(x)) takes a third of the total length of C(x). Asfor �i(x), it is a PCP of proximity that refers to an input of the form (z1; z2) 2 f0; 1gm+m and assertsthat there exists an x = x1 � � � xk (indeed the one that is a parameter to �i) such that z1 = xmi andz2 = C0(x).19 We use our PCP of proximity from Theorem 3.3, while setting its parameters suchthat the proximity parameter is small enough but the query complexity is a constant. Speci�cally,let �pcpp > 0 be the proximity parameter of the PCP of proximity, which will be set to be su�cientlysmall, and let q = O(1=�pcpp) denote the number of queries the veri�er makes in order to support asoundness error of 1=6 (rather than the standard 1=2). A key observation regarding this veri�er isthat its queries to its input-oracle are uniformly distributed. The queries to the the proof oracle canbe made almost uniform by a modi�cation analogous to the one used in the proof of Lemma 4.9.Observe that the code C maps k-bit long strings to codewords of length n , 3 � k � `, where` = s0(m)1+o(1) denotes the length of the PCPP-proof and s0(m) denotes the size of the circuitfor encoding relative to C0. Using a good code C0 : f0; 1gk ! f0; 1gm (i.e., of constant relativedistance �0, linear length m = O(k), and s0(m) = eO(m)), we obtain n = k2+o(1). The relativedistance of C is at least �0=3.We now turn to the description of the decoder D. Recall that a valid codeword has the form(xt;C0(x)t0 ; �1(x); :::; �k(x)). The decoding of the i-th information bit (i.e., xi) will depend on arandom (possibly wrong) copy of xi located in the �rst part (which supposedly equals xt), a random(possibly corrupted) copy of C0(x) located in the second part, and the relevant (i.e., i-th) prooflocated in the third part (which is also possibly corrupted). On input i 2 [k] and oracle accessto w = (w1; w2; w3) 2 f0; 1gn, where jw1j = jw2j = jw3j, the decoder invokes the PCPP-veri�erwhile providing it with access to an input-oracle (z1; z2) and a proof oracle � that are de�ned andemulated as follows: The decoder selects uniformly r 2 [t] and r0 2 [t0], and de�nes each bit of z1to equal the ((r� 1)k+ i)-th bit of w1, the string z2 is de�ned to equal the r0-th (m-bit long) blockof w2, and � is de�ned to equal the i-th block (`-bit long) of w3. That is, when the veri�er asks toaccess the j-th bit of z1 (resp., z2) [resp., �], the decoder answers with the ((r � 1)k + i)-th bit of19Indeed z1 is merely the bit xi repeated jC0(x)j times in order to give equal weight to each part in measuringproximity. 36

w1 (resp., ((r0 � 1)m+ j)-th bit of w2) [resp., the ((i� 1)`+ j)-th bit of w3]. If the veri�er rejectsthen the decoder outputs a special (failure) symbol. Otherwise, it outputs the ((r� 1)k + i)-th bitof w1.The above construction can be performed for any su�ciently small constant proximity parameter� 2 (0; �0=18). All that this entails is setting the proximity parameter of the PCPP to be su�cientlysmall but positive (e.g., �pcpp = (�0� 18�)=2). We actually need to augment the decoder such thatit makes an equal number of queries to each of the three (equal length) parts of the codeword,which is easy to do by adding (a constant number of) dummy queries. Let us denote the resultingdecoder by D.Proposition 4.13 The above code and decoder satisfy Conditions 1 and 2 of De�nition 4.5 with re-spect to proximity parameter � 2 (0; �0=18). Furthermore, this decoder satis�es the average smooth-ness property.Proof: Condition 1 (of De�nition 4.5) is obvious from the construction (and the completenessproperty of the PCPP). In fact, the perfect completeness of the PCPP implies that bits of anuncorrupted codeword are recovered with probability one (rather than with probability at least2=3). The average smoothness property of the decoder is obvious from the construction and thesmoothness property of the PCPP. We thus turn to establish Condition 2 (of De�nition 4.5).Fixing any x 2 f0; 1gk , we consider an arbitrary oracle w = (w1; w2; w3) that is �-close to C(x),where w1 (resp., w2) denotes the alleged replication of x (resp., C0(x)) and w3 = (u1; :::; uk) denotesthe part of the PCPs of proximity. Note that w2 is 3�-close to C0(x)t0 . To analyze the performanceof Dw(i), we de�ne random variables Z1 and Z2 that correspond to the input-oracles to which thePCP-veri�er is given access. Speci�cally, Z1 = �m, where � is set to equal the ((r� 1)k+ i)-th bitof w1, when r is uniformly distributed in [t]. Likewise, Z2 is determined to be the r0-th block ofw2, where r0 is uniformly distributed in [t0]. Finally, we set the proof-oracle, �, to equal the i-thblock of w3 (i.e., � = ui). We bound the probability that the decoder outputs :xi by consideringthree cases:Case 1: � = xi. Recall that � is the bit read by D from w1, and that by construction D alwaysoutputs either � or ?. Thus, in this case, Condition 2 is satis�ed (because, regardless ofwhether D outputs � or ?, the output is always in fxi;?g).Case 2: Z2 is 18�-far from C0(x). Recall that w2 is 3�-close to C0(x)t0 , which means that theexpected relative distance of Z2 and C0(x) is at most 3�. Thus, the current case occurs withprobability at most 1=6.Case 3: Z2 is 18�-close to C0(x) and � 6= xi. Then, on one hand, (Z1; Z2) is 1=2-far from (xmi ;C0(x)),because Z2 = �t. On the other hand, Z2 is (�0 � 18�)-far from any other codeword of C0,because Z2 is 18�-close to C0(x) and the codewords of C0 are �0-far from one another, Thus,(Z1; Z2) is (�0�18�)=2-far from any string of the form (ymi ;C0(y)). Using �pcpp � (�0�18�)=2,we conclude that the PCPP veri�er accepts (Z1; Z2) with probability at most 1=6. It followsthat, in the current case, the decoder outputs :xi with probability at most 1=6.Thus, in total, the decoder outputs :xi with probability at most 1=6 + 1=6 = 1=3.Improving the rate: The reason that our code has quadratic length codewords (i.e., n =
(k2))is that we augmented a standard code with proofs regarding the relation of the standard codewordto the value of each information bit. Thus, we had k proofs each relating to a statement of length37

(k). Now, consider the following improvement: Partition the message into pk blocks, each oflength pk. Encode the original message as well as each of the smaller blocks, via a good errorcorrecting code. Let w be the encoding of the entire message, and wi (i = 1; :::;pk) be theencodings of the blocks. For every i = 1; :::;pk, append a PCP of proximity for the claim \wiis the encoding of the i-th block of a message encoded by w". In addition, for each message bitx(i�1)pk+j residing in block i, append a PCP of proximity of the statement \x(i�1)pk+j is the j-thbit of the pk-bit long string encoded in wi". The total encoding length has decreased, because wehave pk proofs of statements of length O(k) and k proofs of statements of length O(pk), leadingto a total length that is almost linear in k3=2.In general, for any constant `, we consider ` successively �ner partitions of the message intoblocks, where the (i+1)-st partition is obtained by breaking each block of the previous partition intok1=` equally sized pieces. Thus, the i-th partition uses ki=` blocks, each of length k1�(i=`). Encodingis done by providing, for each i = 0; 1; :::; `, encodings of each of the blocks in the i-th partition by agood error-correcting code. Thus, for i = 0 we provide the encoding of the entire messages, whereasfor i = ` we provide an \encoding" of individual bits. Each of these `+1 levels of encodings will beassigned equal weight (via repetitions) in the new codeword. In addition, the new codeword willcontain PCPs of proximity that assert the consistency of \directly related" blocks (i.e., blocks ofconsecutive levels that contain one another). That is, for every i = 1; :::; ` and j 2 [ki=`], we placea proof that the encoding of the j-th block in the i-th level is consistent with the encoding of thedj=k1=`e-th block in the (i�1)-st level. The i-th such sequence of proofs contains ki=` proofs, whereeach such proof refers to statements of length O(k1�(i=`) + k1�((i�1)=`)) = O(k1�((i�1)=`)), whichyields a total length of proofs that is upper-bounded by ki=` � (k1�((i�1)=`))1+o(1) = k1+(1=`)+o(1).Each of these sequences will be assigned equal weight in the new codeword, and the total weightof all the encodings will equal the total weight of all proofs. The new decoder will just check theconsistency of the ` relevant proofs and act accordingly. We stress that, as before, the proofs inuse are PCPs of proximity. In the current context these proofs refer to two input-oracles of vastlydi�erent length, and so the bit-positions of the shorter input-oracle are given higher \weight" (byrepetition) such that both input-oracles are assigned the same weight.20Construction 4.14 Let C0 be a code of minimal relative distance �0, constant rate, and nearlylinear-sized encoding circuits. For simplicity, assume that a single bit is encoded by repetitions; thatis, C0(�) = �O(1) for � 2 f0; 1g. Let V be a PCP of proximity of membership in S0 = fC0(x) : x2f0; 1g�g having almost-linear proof-length, query-complexity O(1=�pcpp) and soundness error 1=9,for proximity parameter �pcpp. Furthermore, V 's queries to both its input-oracle and proof-oracleare distributed almost uniformly.21 For a �xed parameter ` 2 N, let b , k1=`. For x 2 f0; 1gk,we consider ` di�erent partitions of x, such that the j-th partition denoted (xj;1; :::; xj;bj), wherexj;j0 = x(j0�1)�b`�j+1 � � � xj0�b`�j . We de�ne Cj(x) , (C0(xj;1);C0(xj;2); :::;C0(xj;bj)), and �j(x) =(�j;1(x); :::; �j;bj (x)), where pj;j0(x) is a PCPP proof-oracle that asserts the consistency of j0-th blockof Cj(x) and the dj0=be-th block of Cj�1(x). That is, pj;j0(x) refers to an input oracle of the form(z1; z2), where jz1j = jz2j = O(b`�j+1), and asserts the existence of x such that z1 = C0(xj;j0)b andz2 = C0(xj�1;dj0=be). We consider the following codeC(x) , (C0(x)t0 ;C1(x)t0 ; :::;C`(x)t0 ; �t11 ; :::; �t``)20Indeed, this was also done in the simpler code analyzed in Proposition 4.13.21Recall that all these conditions hold for the PCP of proximity of Theorem 3.3, where almost-uniformly distributedqueries to the proof-oracle are obtained by a modi�cation analogous to the proof of Lemma 4.9.38

where the tj's are selected such that each of the 2`+1 parts of C(x) has the same length. The decoder,denoted D, operates as follows. On input i 2 [k] and oracle access to w = (w0; w1; :::; w`; v1; :::; v`),where jw0j = jwj j = jvj j for all j:� D selects uniformly r0; r1; :::; r` 2 [t0], and (r01; r02; :::; r 0̀) 2 [t1]� [t2]� � � � � [t`].� For j = 1; :::; `, the decoder invokes the PCPP-veri�er providing it with access to an input-oracle (z1; z2) and a proof oracle � that are de�ned as follows:{ z1 = ub, where u is the ((rj � 1) � bj + di=b`�je)-th block of wj.{ z2 is the ((rj�1 � 1) � bj�1 + di=b`�j+1e)-th block of wj�1.{ � is the ((r0j � 1) � bj + di=b`�je)-th block of vj.The PCPP-veri�er is invoked with proximity parameter �pcpp = 13`� > 0, where � � �0=81`is the proximity parameter sought for the decoder.� If the PCPP-veri�er rejects, in any of the aforementioned ` invocations, then the decoderoutputs a special (failure) symbol. Otherwise, the decoder outputs a random value in the((r` � 1) � k + i)-th block of w` (which is supposedly a repetition code of xi).� In order to make D satisfy the average smoothness property, we issue some dummy queriesthat are uniformly distributed in adequate parts of w that are queried less by the above.(Suppose that V makes q1 (resp., q2) queries to the �rst (resp., second) part of it input-oracleand q0 queries to its proof oracle. Then, w0 is accessed q2 times, w` is accessed q1 times, eachother wj is accessed q1+q2 times, and each vj is accessed q0 times. Thus, we may add dummyqueries to make each part accessed max(q1+q2; q0) times, which means increasing the numberof queries by a factor of at most (2`+ 1)=(`� 1) assuming ` � 2.)Using an adequate PCP of proximity, it holds that jC(x)j = ` � (jxj1+(1=`))1+o(1) < jxj1+", for" = 2=`. The query complexity of D is O(`) � O(1=�pcpp) = O(`2). The proof of Proposition 4.13can be extended, obtaining the following:Proposition 4.15 The code and decoder of Construction 4.14 satisfy Conditions 1 and 2 of Def-inition 4.5 with respect to proximity parameter � � �0=81`. Furthermore, this decoder satis�es theaverage smoothness property.Using Lemma 4.10, Theorem 1.5 follows.Proof: Again, Condition 1 as well as the average smoothness property are obvious from theconstruction, and we focus on establishing Condition 2. Thus, we �x an arbitrary i 2 [k] and followthe outline of the proof of Proposition 4.13.We consider an oracle (w0; w1; :::; w`; �1; :::; �`) that is �-close to an encoding of x 2 f0; 1gk ,where each wj is supposed to consist of encodings of the kj=` (non-overlapping) k1�(j=`)-bit longblocks of x, and �i consists of the corresponding proofs of consistency. It follows that each wj is(2` + 1) � �-close to Cj(x)t0 . Let Zj denote the block of wj that was selected and accessed by D.Thus, the expected relative distance of Z0 from C0(x) is at most (2` + 1) � �, but we do not knowthe same about the other Zj 's because their choice depends on i (or rather on di=b`�je). Assuming,without loss of generality, that �0 < 1=3 (and ` � 1), we consider three cases:39

Case 1: Z` is 1=9-close to C0(xi). In this case, D outputs either ? or a uniformly selected bit inZ`, and so D outputs :xi with probability at most 1=9.Using � � �0=81` and �0 < 1=3, it follows that 27`� < 1=9. Thus, if Case 1 does not holdthen Z` is 27`�-far from C0(xi).Case 2: Z0 is 27`�-far from C0(x). This case may occur with probability at most 1=9, becauseE[�(Z0;C0(x))] � 3`� � jC0(x)j.Note that if both Cases 1 and 2 do not hold then Z0 is 27`�-close to C0(x) but Z` is 27`�-farfrom C0(xi). Also note that x = x0;1 and xi = x`;i.Case 3: For some j 2 [`], it holds that Zj�1 is 27`�-close to Cj�1(xj�1;di=b`�j+1e) but Zj is 27`�-farfrom Cj(xj;di=b`�je). In this case, the pair (Zbj ; Zj�1) is 27`�=2-far from the consistent pair(Cj(xj;di=b`�je);Cj�1(xj�1;di=b`�j+1e)) and is (�0 � 27`�)=2-far from any other consistent pair.Using �pcpp = 13`� < min(27`�=2; �0 � 27`�)=2), which holds because � � �0=81`, it followsthat in the current case the PCPP-veri�er accepts (and the decoder does not output ?) withprobability at most 1=9.Thus, in total, the decoder outputs :xi with probability at most 1=3.Conclusion (Restating Theorem 1.5): For every constant " > 0, there exists a code C :f0; 1gk ! f0; 1gn, where n = k1+", that is relaxed locally decodable under De�nition 4.11. Thequery complexity of the corresponding decoder is O(1="2) and the proximity parameter is "=O(1).Open Problem: We wonder whether one can obtain relaxed-LDC that can be decoded using qqueries while having length n = o(k1+=(q�1)). The existence of such relaxed-LDC will imply thatour relaxation (i.e., relaxed-LDC) is actually strict, because such codes will beat the lower-boundcurrently known for LDC (cf. [KT00]). Alternatively, it may be possible to improve the lower-bound for (q-query) LDC to n > k1+pc=q, for any constant c and every su�ciently large constantq (where, as usual, k is a parameter whereas q is a �xed constant). (In fact, some conjecture thatn must be superpolynomial in k, for any constant q.)4.3 Linearity of the codesWe note that the codes presented above (establishing both Theorems 1.4 and 1.5) are actuallyGF(2)-linear codes, whenever the base code C0 is also GF(2)-linear. Proving this assertion reducesto proving that the PCPs of proximity used (in the aforementioned constructions) have proof-oraclesin which each bit is a linear functions of the bits to which the proof refers. The main part of thelatter task is undertaken in Section 8.4, where we show the the main construct (i.e., the PCPs ofproximity stated in Theorems 3.1 and 3.2) when applied to a linear circuit yields a an GF(2)-lineartransformation of assignments (satisfying the circuit) to proof-oracles (accepted by the veri�er). Inaddition, we need to show that also the construction underlying the proof of Theorem 3.3 satisfythis property. This is done next, and consequently we get:Proposition 4.16 If C is a linear circuit (see De�nition 8.13), then there is a linear transformationT mapping satisfying assignments w of C to proof oracles T (w) such that the PCPP veri�er ofTheorem 3.3 will, on input C, accept oracle (w; T (w)) with probability 1.40

Proof Sketch: In Section 8.4, we establish a corresponding result for the main construct (i.e.,Proposition 8.14 refers to the linearity of the construction used in the proof of Theorem 3.1, whichin turn underlies Theorems 3.1 and 3.2). Here we show that linearity is preserved in compositionas well as by the most inner (or bottom) veri�er.In each composition step, we append the proof-oracle with new (inner) PCPs of proximity pereach test of the (outer) veri�er. Since all these tests are linear, we can apply Proposition 8.14and infer that the new appended information is a linear transformation of the input-oracle and theouter proof-oracle (where, by induction, the latter is a linear transformation of the input).At the bottom level of composition we apply a Hadamard based PCP (Section A). The encodingde�ned there is not GF (2)-linear (rather it is quadratic), but this was necessary for dealing withnon-linear gates. It can be veri�ed that for a linear circuit, one can perform all necessary tests ofSection A with the Hadamard encoding of the input. Thus, we conclude this �nal phase of theencoding is also linear, and this completes the proof of Proposition 4.16.Part IIThe main construct: A short, robust PCP ofproximity5 Overview of our main constructThroughout this section, n denotes the length of the explicit input given to the PCPP veri�er,which in case of Circuit Value is de�ned as the size of the circuit (given as explicit input). Asstated in the introduction, our main results rely on the following highly e�cient robust PCP ofproximity.Theorem 3.1 (Main Construct - restated): There exists a universal constant c such for alln;m 2 Z+, 0 < �;
 < 1=2 satisfying n1=m � mcm=(
�)3 and � �
=c, Circuit Value has a robustPCP of proximity (for circuits of size n) with the following parameters� randomness �1� 1m� log n+O(m logm) +O(log log n) +O(log(1=�)),� decision complexity n1=m � poly(log n; 1=�), which also upper-bounds the query complexity.22� perfect completeness, and� for proximity parameter �, the veri�er has robust-soundness error
(
) with robustness pa-rameter (1�
)�.We comment that the condition � <
=cmerely means that we present robust PCPs of proximityonly for the more di�cult cases (when � is small). A (simpli�ed) variant of Theorem 3.1 also yieldsthe ALMSS-type Robust PCP of proximity (of Theorem 3.2). Following is an overview of the proofof Theorem 3.1; the actual proof is given in the subsequent three sections.Theorem 3.1 is proved by modifying a construction that establishes Theorem 1.1. We follow[HS00] and modify their construction. (An alternative approach would be to start from [PS94],22In fact, we will upper-bound the query complexity by q = n1=m � poly(log n; 1=�) and show that the veri�er'sdecision can be implemented by a circuit of size eO(q), which can also be bounded by n1=m � poly(log n; 1=�) with aslightly larger unspeci�ed polynomial. 41

but that construction does not seem amenable to achieving robust soundness.) The constructionof [HS00] may be abstracted as follows: To verify the satis�ability of a circuit of size n, a veri�erexpects oracles Fi : Fm ! F , i 2 f1: : : : ; t = poly log ng, where F is a �eld and m is a parametersuch that Fm � mm�n. The veri�er then needs to test that (1) each of the Fi's is close to am-variatepolynomial of low degree and (2) the polynomials satisfy some consistency properties which verifythat Fi is locally consistent with Fi�1.23 (These consistency checks include tests which depend onthe input circuit and verify that Fi's actually encode a satisfying assignment to the circuit.)We work within this framework | namely our veri�er will also try to access oracles forFi's and test low-degreeness and consistency. Our key modi�cation to this construction is arandomness-reduction in the low-degree test obtained by using the small collection of (small-biased) lines of [BSVW03], while using only the \canonical" representations of these lines (andavoiding any complication that was introduced towards \proof composition"). In particular, unlikein [HS00, GS02, BSVW03], we cannot a�ord to pack the polynomials F1; : : : ;Ft into a single poly-nomial (by using an auxiliary variable that blows-up the proof length by a factor of the size of the�eld in use). Instead, we just maintain all these t polynomials separately and test them separatelyto obtain Theorem 1.1. (In the traditional framework of parallelized PCPs, this would give anuna�ordable increase in the number of (non-Boolean) queries. However, we will later amelioratethis loss by a \bundling technique" that will yield robust-soundness.)The resulting PCP is converted into a PCP of proximity by comparing the input-oracle (i.e.supposed satisfying assignment to the circuit) to the proof-oracle (which is supposed to includean encoding of the said assignment). That is, we read a random location of the input and thecorresponding location of the proof oracle, and test for equality. Actually, these locations of theproof-oracle must be accessed via a self-correction mechanism (rather than merely probing at thedesired points of comparison), since they constitute only a small part of the proof oracle (and thuscorruptions there may not be detected). (This technique was already suggested in [BFLS91].)The most complex and subtle part of the proof of Theorem 3.1 is establishing the robust-soundness property. We sketch how we do this below, �rst dealing with the low-degree test andthe consistency tests separately, and then showing how to reconcile the two \di�erent" �xes.Low-degree tests of F1; : : : ;Ft: Selecting a random line ` : F ! Fm (from the aforementionedsample space), we can check that (for each i) the restriction of Fi to the line ` (i.e., the functionfi(j) , Fi(`(j))) is a low-degree (univariate) polynomial. Each of these tests is individually robust;that is, if Fi is far from being a low-degree polynomial then with high probability the restriction ofFi to a random line ` (in the sample space) is far from being a low-degree polynomial. The problemis that the conjunction of the t tests is not su�ciently robust; that is, if one of the Fi's is �-far frombeing a low-degree polynomial then it is only guaranteed that the sequence of t restrictions (i.e.,the sequence of the fi's) is (�=t)-far from being a sequence of t low-degree (univariate) polynomials.Thus robustness decreases by a factor of t, which we cannot a�ord for non-constant t.hOur solution is to observe that we can \bundle" the t functions together into a function F :Fm ! F t such that if one of the Fi's is far from being a low-degree polynomial then the restrictionof F to a random line will be far from being a bundling of t low-degree univariate polynomials.Speci�cally, for every x 2 Fm, de�ne F(x) , (F1(x); :::;Ft(x)). To test that F is a bundling of low-degree polynomials, select a random line ` (as above), and check that f `(j) = F(`(j)) is a bundlingof low-degree univariate polynomials. Thus, we establish robustness at the bundle level; that is, ifone of the Fi's is far from being low degree then, with high probability, one must modify f ` on a23Strictly speaking, the consistency checks are a little more complicated, with the functions really being indexedby two subscripts and consistency tests being between Fi;j and Fi;j�1, as well as between Fi;0 and Fi+1;0. However,these di�erences don't alter our task signi�cantly | we ignore them in this section to simplify our notation.42

constant fraction of values in order to make the test accept. The point is that this robustness refersto Hamming distance over the alphabet F t, rather than alphabet F as before. We can a�ord thisincrease in alphabet size, as we later encode the values of F using an error-correcting code in orderto derive robustness at the bit level.We wish to highlight a key point that makes the above approach work: when we look at thevalues of F restricted to a random line, we get the values of the individual Fi's restricted to somerandom line, which is exactly what a low-degree test of each Fi needs. This fact is not verysurprising, given that we are subjecting all Fi's to the same test. But what happens when weneed to make two di�erent types of tests? This question is not academic and does come up in theconsistency tests.Consistency tests: To bundle the t consistency tests between Fi and Fi+1 we need to lookinto the structure of these tests. We note that for every i, a random test essentially refers to thevalues of Fi and Fi+1 on (random) i-th axis-parallel lines. That is, for every i, and a randomx0 = (x1; :::; xi�1) 2 F i�1 and x00 = (xi+1; :::; xm) 2 Fm�i, we need to check some relation betweenFi(x0; �; x00) and Fi+1(x0; �; x00).24 Clearly, querying F as above on the i-th axis-parallel line, we canobtain the relevant values from F(x0; �; x00), but this works only for one speci�c value of i, and othervalues of i will require us to make other queries. The end result would be that we'll gain nothingfrom the bundling (i.e., from F) over using the individual Fi's, which yields a factor of t loss in therobustness.25 Fortunately, a di�erent bundling works in this case.Consider F0 such that F0(x) , (F1(x);GF (2)(S(x)); :::;Ft(St�1(x))), for every x 2 Fm, where S denotes a (right) cyclic-shift (i.e.,S(x1; :::; xm) = (xm; x1 : : : xm�1) and Si(x1; :::; xm) = (xm�(i�1); : : : ; xm; x1; x2; : : : xm�i)). Now,if we ask for the value of F0 on the �rst and last axis-parallel lines (i.e., on (�; x2; :::; xm) and(x2; :::; xm; �) = S�1(�; x2; :::; xm)), then we get all we need for all the m tests. Speci�cally, forevery i, the i-th component in the bundled function F0(�; x2; :::; xm) is Fi(Si�1(�; x2; :::; xm)) =Fi(xm�i+2; :::; xm; �; x2; :::; xm�i+1), whereas the (i + 1)-st component in F0(S�1(�; x2; :::; xm)) isFi+1(Si(S�1(�; x2 : : : ; xm))) = Fi+1(xm�i+2; :::; xm; �; x2; :::; xm�i+1). Thus, we need only to querytwo bundles (rather than t), and robustness only drops by a constant factor.Reconciling the two bundlings: But what happens with the low-degree tests that we need todo (which were \served" nicely by the original bundling F)? Note that we cannot use both F andF0, because this will requires testing consistency between them, which will introduce new problemsas well as a cost in randomness that we cannot a�ord. Fortunately, the new bundling (i.e., F0),designed to serve the axis-parallel line comparisons, can also serve the low-degree tests. Indeed, thevarious Fi's will not be inspected on the same lines, but this does not matter, because the propertyof being a low-degree polynomial is preserved when \shifted" (under S).Tightening the gap between robustness and proximity: The above description su�ces forderiving a weaker version of Theorem 3.1 in which the robustness is only (say) �=3 rather than(1 �
)� for a parameter
 that may be set as low as 1=poly(log n). Such a weaker result yields aweaker version of Theorem 3.3 in which the query complexity is exponentially larger (e.g., for proof-length exp(o(log log n)2) � n, we would have obtained query complexity exp(o(log log n)) = logo(1) nrather than o(log log n)); see comment at the end of Section 3. To obtain the stronger bound onthe robustness parameter, we take a closer look at the conjunction of the standard PCP test and24Again, this is an oversimpli�cation, but su�ces to convey the main idea of our solution.25It turns out that for constant m (e.g., m = 2) this does not pose a problem. However, a constant m would su�ceonly for proving a slightly weaker version of Theorem 1.2 (where o(log log n) is replaced by log log n). but not forproving Theorem 1.3, which requires setting m = log" n, for constant " > 0.43

the proximity test. The PCP test can be shown to have constant robustness c > 0, whereas theproximity test can be shown to have robustness �0 , (1 �
))�. When combining the two tests,we obtain robustness equal to min(�c; (1 � �)�0), where � is the relative length of queries used inthe PCP test (as a fraction of the total number of queries). A natural choice, which yields theweaker result, is to weight the queries (or replicate the smaller part) so that � = 1=2. (This yieldsrobustness of approximately min(c; �0)=2.) In order to obtain the stronger bound, we assign weightssuch that � =
, and obtain robustness min(
c; (1�
)�0) > min(
(
); (1� 2
)�), which simpli�esto (1�2
)� for � <
=O(1). (The above description avoids the fact that the PCP test has constantsoundness error, but the soundness error can be decreased to
 by using sequential repetitionswhile paying a minor cost in randomness and while approximately preserving the robustness. Wecomment that the proximity test, as is, has soundness error
.)6 A randomness-e�cient PCPIn this section, we present a vanilla version (Theorem 6.1) of Theorem 3.1. More speci�cally, weconstruct a regular PCP forCircuit Satisfiability(i.e., a robust PCP of proximity without eitherthe robustness or proximity properties). This construction favors over earlier PCP constructions inthe fact that it is very e�cient in randomness. As mentioned earlier, this theorem su�ces to proveTheorem 1.1.Theorem 6.1 There exists a universal constant 0 < " < 1 such that the following holds. Supposem 2 Z+ satis�es m � log n=loglogn Then there exists a PCP for Circuit Satisfiability (forcircuits of size n) with the following parameters� randomness �1� 1m� log n+O(m logm) +O(log log n),� query complexity q = O(m2n1=m log2 n) and decision complexity eO(q),� perfect completeness,� and soundness error 1� ".The construction of the PCP for Circuit Satisfiability proceeds in three steps. First,we transform the input circuit ' to a well-structured circuit '0 along the lines of Polishchuk andSpielman [PS94, Spi95] (Section 6.1). '0 is only slightly larger than ', but has an algebraic structurethat will be crucial to our veri�cation process. Any legal assignment to the gates of ' (i.e. onethat preserves the functionality of the gates of ') can be transformed to a legal assignment to '0.The important property of '0 is the following: If we encode an assignment to the gates of '0 usinga speci�c sequence of Reed-Muller codewords (i.e. low degree polynomials), then the legality ofthe assignment can be locally veri�ed (by reading a small random portion of the encoding). Theencoding via low degree polynomials (and resulting local tests) is as in Harsha and Sudan [HS00]and is described in Section 6.2. Thus, our PCP veri�er will essentially test (i) that the encodingof the purported satisfying assignment to '0 is formed of low degree polynomials, (this part will bedone using the randomness-e�cient low degree test of Ben Sasson et al. [BSVW03]); and (ii) thatthe assignment is legal. Section 6.3 describes the construction of the PCP veri�er and Section 6.4analyzes its properties. Most of the above results are implicit in the literature, but carefullyabstracting the results and putting them together helps us in signi�cantly reducing the randomnessof the PCP veri�er. 44

6.1 Well-structured Boolean circuitsThe main problem with designing a randomness-e�cient PCP veri�er directly for Circuit Satis-fiability is that we need to encode the assignment to all gates of the input circuit using certainReed-Muller based codes, in such a way that will allow us to locally verify the legality of all gatesof the circuit, using only the encoded assignment. In order to do this, we require the circuit tohave a well-behaved structure (amenable to our speci�c encoding and veri�cation demands). Ofcourse, an arbitrary circuit does not necessarily have this structure, but luckily we have the tech-nology to overcome this. More to the point, we can restructure any circuit into a well-behavedcircuit that will suit our needs. The natural encoding (used e.g. in the Hadamard based PCP,Section A) incurs a quadratic blowup in size. To get over this problem, Polishchuk and Spiel-man [PS94, Spi95] introduced a di�erent, more e�cient restructuring process that embeds theinput circuit into well-structured graphs known as de Bruijn graphs. Indeed, the blowup in circuitsize using these circuits is merely by a logarithmic multiplicative factor, and their usefulness forthe local veri�cation of legal assignments will become evident later (in Section 6.2). As in Pol-ishchuk and Spielman [PS94, Spi95], we embed the input circuit into wrapped de Bruijn graphs(see De�nition 6.2). We use a slightly di�erent de�nition of de Bruijn graphs, more convenient forour purposes, than that used in [PS94, Spi95]. However it can easily be checked that these twode�nitions yield isomorphic graphs. The main advantage with the de Bruijn graphs is that theneighborhood relations can be expressed very easily using simple bit-operations like cyclic-shiftsand bit-
ips. In [PS94, Spi95] the vertex set of these graphs is identi�ed with a vector space. Weinstead work with a strict embedding of these graphs in a vector space where the vertices are astrict subset of the vector space. The bene�t of both approaches is that the neighborhood functionscan be expressed as a�ne functions (see Section 6.2 for more details). The reason for our approachwill be explained at the end of Section 6.2.De�nition 6.2 The wrapped de Bruijn graph GN;l is a directed graph with l layers each with 2Nnodes which are represented by N -bit strings. The layers are numbered 0; 1; : : : ; l � 1. The noderepresented by v = (b0; : : : ; bi� ; : : : ; bN�1) in layer i has edges pointing to the nodes represented by�i;0(v) = (b0; : : : ; bi� ; : : : ; bN�1) and �i;1(v) = (b0; : : : ; bi��1; : : : ; bN�1) in layer (i + 1) modulo l,where i� is i modulo N and a�b denotes the sum of a and b modulo 2.See Figure 1 for an example.We now describe how to embed a circuit into a wrapped de Bruijn graph (see Figure 2 fora simple example). Given a circuit C with n gates (including both input and output gates), weassociate with it a wrapped de Bruijn graph GN;l where N = log n and l = 5N = 5 log n. We thenassociate the nodes in layer 0 with the gates of the circuit. Now, we wish to map each wire inthe circuit to a path in GN;l between the corresponding nodes of layer 0. Standard packet-routingtechniques (see [Lei92]) can be used to show that if the number of layers l is at least 5N then sucha routing can be done with edge-disjoint paths. (Recall that we work with circuits whose fan-inand fan-out are 2.)Thus, we can �nd \switches" for each of the nodes in layers 1; : : : ; l � 1 of the graph suchthat the output of each gate (i.e., node in layer 0) is routed to the input of the gates that requireit. Each node has two inputs and two outputs, and thus there is a constant number of switchesrouting incoming edges to outgoing ones (See Figure 3). For nodes in layer 0, instead of specifyinga switch, we specify the functionality of the Boolean gate associated to that node in the circuit(e.g. AND, OR, PARITY, NOT, INPUT, OUTPUT). Actually unary gates (such as NOT andOUTPUT) have two forms (NOT, NOT', OUTPUT, OUTPUT') in order to specify which of thetwo incoming edges in the de Bruijn graph to use.45

Figure 1: The wrapped de Bruijn graph G3;3. Notice the �rst and last layer are the same.This speci�es the embedding of the input circuit into a well-structured circuit (based on a deBruijn graph). More precisely, let C = fType of switching actionsg [fType of Boolean gatesg bethe set of allowable gates of the well-structured circuit (see Figure 3). Given a circuit on n gates,we can construct, in polynomial time, a wrapped de Bruijn graph GN;l (where N = log n andl = 5 logN) and l functions T0; T1; : : : ; Tl�1 : f0; 1gN ! C where each function Ti is a speci�cationof the gates of layer i (i.e. a speci�cation of the switching action or Boolean functionality).We now demonstrate how to translate a proof that a circuit is satis�able into an assignmentthat satis�es the embedded circuit. A proof that a circuit is satis�able consists of an assignmentof 0's and 1's to the inputs and the gates of the circuit such that each gate's output is consistentwith its inputs and the output gate evaluates to 1. The corresponding assignment to the embeddedcircuit consists of an assignment of 0's and 1's to the edges entering and leaving the nodes of thewrapped de Bruijn graph that is consistent with the functionality of the gates (in layer 0) and theswitching actions of the nodes (in the other layers). Since we are assigning values to nodes of theembedded graph (and not their edges), the assignment actually associates a 4-tuple of 0's and 1'sto each of the nodes in the graph indicating the value carried by the four edges incident at thatnode (two incoming and two outgoing). More formally, the embedded assignment is given by aset of l functions A0; A1; : : : ; Al�1 where each function Ai : f0; 1gN ! f0; 1g4 speci�es the valuescarried by the 4 edges incident at that vertex. 46

Figure 2: Embedding of a circuit into G3;3. In this example all paths between nodes at 0 layer arevertex disjoint. For general circuits we merely need edge disjoint paths.We now list the constraints on the embedded circuit that assure us that the only legal assign-ments are ones that correspond to legal satisfying assignments of the original circuit, i.e. assign-ments that correctly propagate along the edges of the circuit, correctly compute the value of everygate and produce a 1 at the output gate.De�nition 6.3 The assignment constraints for each node of the well-structured circuit require:� the two outgoing values at the node are propagated correctly to the incoming values of itsneighbors at the next level,� for nodes at layers 6= 0, the two outgoing values have the unique values dictated by the in-coming values and the switching action,� for non-OUTPUT nodes in layer 0, both outgoing values equal the unique value dictated bythe gate functionality and the incoming values (the INPUT functionality merely requires thatthe two outgoing values are equal to each other)� for nodes in layer 0 with an OUTPUT functionality, the appropriate incoming value equals 1Let : C � (f0; 1g4)3 ! f0; 1g be the boolean function such that (t; a; a0; a1) = 0 i� a node whoseT -gate is t, A-assignment is a, and whose neighbors in the next layer have A-assignments a0 anda1 respectively, satis�es the aforementioned assignment constraints.Observe that the de�nition of is independent of N , the assignments Ai and gates Ti. By def-inition, the assignment A = (A0; : : : ; Al�1) is legal for an embedded circuit de�ned by T0; : : : ; Tl�1if and only if for every layer i and every node v in layer i, �Ti(v); Ai(v); Ai+1��i;0(v)�; Ai+1��i;1(v)�� = 0:We are now ready to formally de�ne the well-structured circuit satis�ability problem.47

Figure 3: Some gates of a well-structured circuit. Gates 1{2 are switching gates, and gate 3 sits inlayer 0 and computes the parity (xor) function.De�nition 6.4 The problem Structured-CktSAT has as its instances hGN;l; fT0; T1; : : : ; Tl�1giwhere GN;l is a wrapped de Bruijn graph with l layers and Ti : f0; 1gN ! C is a speci�cation of thenode types of layer i of the graph (Ti's are speci�ed by a table of values).hGN;l; fT0; : : : ; Tl�1gi 2 Structured-CktSAT if there exists a set of assignments A0; A1; : : : ; Al�1where Ai : f0; 1gN ! f0; 1g4 is an assignment to the nodes of layer i of GN such that for all layersi and all nodes v in layer i, �Ti(v); Ai(v); Ai+1��i;0(v)�; Ai+1��i;1(v)�� = 0:The above discussion also demonstrates the existence of a reduction fromCktSAT to Structured-CktSAT which does not blow up the length of the target instance by more than a logarithmicmultiplicative factor.Proposition 6.5 There exists a polynomial time reduction R from CktSAT to Structured-CktSAT such that for any circuit C, it holds that C 2 CktSAT if and only ifR(C) 2 Structured-CktSAT. Moreover, if C is a circuit of size n, then R(C) = hGN;l; fT0; : : : ; Tl�1gi where N =dlog ne and l = 5N .Remark 6.6 The above reduction though known to take polynomial time (via routing techniques)is not known to be of almost linear time.Remark 6.7 We observe that if C is a satis�able circuit, then any set of assignments A0; : : : ; Alproving that the reduced instance R(C) = hGN;l; fT0; : : : ; Tl�1gi is a YES instance of Structured-CktSATcontains within it a satisfying assignment to the circuit C. Speci�cally, let I be the set ofnodes in layer 0 that have gate functionality INPUT associated with them. Then the assignmentA0 restricted to the set of nodes I (i.e.,A0jI) contains a satisfying assignment. More precisely, thesatisfying assignment is obtained by concatenating the third bit (i.e., �rst outgoing bit) of A0ji 2f0; 1g4 for all i 2 I. Conversely, every satisfying assignment w to C can be extended to A0; : : : ; Al�1such that A0jI contains w. This is done by computing the values of all gates in the computationof C(w), setting the outgoing bits of A0 according to these values, and routing them throughout48

Figure 4: Example of legal and illegal assignments. The two vertices on the left are the inputs (atlayer i� 1) to a gate at layer i. Recall that assignments evaluate each incoming and outgoing edgeof a gate.GN;l according to the switching actions to obtain A1; : : : ; Al�1 and the incoming bits of A0. Thisobservation will be vital while constructing PCPs of proximity(see Section 7).Remark 6.8 Suppose the input circuit C is a linear circuit, in the sense that all gates are INPUT,OUTPUT, or PARITY gates, and the OUTPUT gates test for 0 rather 1 (See De�nition 8.13).Then it can be veri�ed that the transformation mapping satisfying assignments w of C to legalassignments A0; : : : ; Al�1 of R(C) is GF(2)-linear. The reason is that each gate in the computationof C(w) is a GF(2)-linear function of w. These remarks will be used in the coding applications, toobtain linear codes (see Section 8.4 for more information).6.2 ArithmetizationIn this section, we construct an algebraic version of Structured-CktSAT by arithmetizing italong the lines of Harsha and Sudan [HS00]. The broad overview of the arithmetization is asfollows: We embed the nodes in each layer of the wrapped de Bruijn graph GN;l in a vector spaceand extend the gate speci�cations and assignments to low-degree polynomials over this space.Finally, we express the assignment constraints (De�nition 6.3) as a pair of polynomial identitiessatis�ed by these polynomials.First for some notation. Let m be a parameter. Set h such that h = N=m where 2N is thenumber of nodes in each layer of the de Bruijn graph. Choose a �nite extension �eld F of GF(2)of size roughly cFm22h = cFm22N=m where cF is a suitably large constant to be speci�ed later.Speci�cally, take F = GF(2)f for f = h + 2 logm + log cF . Let fe0; e1; : : : ; ef�1g be a basis of Fover GF(2). Set H to be a subspace of GF(2)f (and hence a subset of F) spanned by fe0; : : : ; eh�1g.Note that Hm is a subset of the space Fm. Furthermore, jHmj = 2N . Hence, we can embed eachlayer of the graph GN;l in Fm by identifying the node v = (b0; : : : ; bN�1) 2 f0; 1gN with the element(b0e0+ � � �+ bh�1eh�1; bhe0+ � � �+ b2h�1eh�1; : : : ; b(m�1)he0+ � � �+ bmh�1eh�1) of Hm. Henceforth,we use both representations (N -bit string and element of Hm) interchangeably. The representationwill be clear from the context.Any assignment S : Hm ! F can be interpolated to obtain a polynomial ~S : Fm ! F of degreeat most jHj in each variable (and hence a total degree of at most mjHj) such that ~SjHm = S (i.e.,49

the restriction of ~S to Hm coincides with the function S). Conversely, any polynomial ~S : Fm ! Fcan be interpreted as an assignment from Hm to F by considering the function restricted to thesub-domain Hm.Recall that C and f0; 1g4 are the set of allowable gates and assignments given by the gatefunctions Ti and assignments Ai in the Structured-CktSAT problem. We identify C withsome �xed subset of F and we identify f0; 1g4 with the set of elements spanned by fe0; e1; e2; e3gover GF(2). With this identi�cation, we can view the assignments Ai and gates Ti as functionsAi : Hm ! F and Ti : Hm ! F respectively. Furthermore, we can interpolate these functions, asmentioned above, to obtain polynomials ~Ai : Fm ! F and ~Ti : Fm ! F of degree at most mjHjover F .We now express the neighborhood functions of the graph in terms of a�ne functions over Fm.This is where the nice structure of the wrapped de Bruijn graph will be useful. For any positiveinteger i, de�ne a�ne transformations ~�i;0; ~�i;1 : Fm ! Fm as follows: ~�i;0 is the identity function.For ~�i;1, �rst let t = bi=hc modm and u = i mod h. Then ~�i;1(z0; : : : ; zm�1) = (z0; : : : ; zt�1; zt +eu; zt+1; : : : ; zm�1).26 It can checked from the above de�nition that for any layer i and node x inlayer i (which we view as a point in Hm), we have ~�i;j(x) = �i;j(x) for j = 0; 1. In other words, ~�is an extension of the neighborhood relations of the graph GN;l over Fm.Finally, we now express the assignment constraints (De�nition 6.3) as polynomial identities.The �rst of these identities checks that the assignments given by the assignment polynomial ~Ai areactually elements of f0; 1g4 for points in Hm. For this purpose, let 0 : F ! F be the univariatepolynomial of degree 24 given by 0(z) = Y�2f0;1g4(z � �) (2)This polynomial satis�es 0(z) = 0 i� z 2 f0; 1g4 (recall we identi�ed f0; 1g4 with a subsetof F spanned by e0; : : : ; e3). We check that 0(~Ai(x)) = 0 for all x 2 Hm and all layers i.We then arithmetize the rule (from De�nition 6.3) to obtain a polynomial 1 : F 4 ! F .In other words, 1 : F 4 ! F is a polynomial such that 1(t; a; a0; a1) = (t; a; a0; a1) for all(t; a; a0; a1) 2 C � (f0; 1g4)3. The degree of 1 can be made constant, because jCj and jf0; 1g4jare constant.27 The two polynomial identities we would like to check are 0(~Ai(x)) = 0 and 1(~Ti(x); ~Ai(x); ~Ai+1(~�i;0(x)); ~Ai+1(~�i;1(x))) = 0 for all x 2 Hm. For notational convenience, weexpress these two conditions together as a pair of polynomials 0 = (0; 1) : F 4 ! F 2 such that 0(x1; x2; x2; x4) = (0(x2); 1(x1; x2; x3; x4)). Let � be the maximum of the degree of these twopolynomials. In order to make these polynomial identities su�ciently redundant,, we set cF to bea su�ciently large constant (say 100) such that �m22h=jF j is low.We have thus reduced Structured-CktSAT to an algebraic consistency problem, which weshall call the AS-CktSAT problem (short for Algebraic-Structured-CktSAT)28.26An alternate description of ~�i;1 is as follows: Since F = GF(2)f , we can view Fm as mf -dimensional space overGF(2). Hence, any vector (z0; : : : ; zm�1) can be written as (b0;0; : : : ; b0;f�1; b1;0; : : : ; b1;f�1; : : : ; bm�1;0; : : : ; bm�1;f�1).Furthermore, we note that for any vector (z0; : : : ; zm�1) in Hm, br;s = 0 for all s � h and all r. It can now be checkedthat ~�i;1 is the a�ne transformation that
ips the bit bt;u where t = bi=hc modm and u = i mod h..27Notice that we do not specify 1 uniquely at this stage. Any choice of a constant-degree polynomial will workin this section, but to enforce linearity, we will use a somewhat non-standard choice in Section 8.4. Speci�cally, weargue that if C is a linear circuit, then 1 can be picked to be GF(2)-linear transformations over GF (2), and wepoint out that 0 is a GF (2)-linear transformation. For more details see Section 8.4.28AS-CktSAT is actually a promise problem. 50

De�nition 6.9 The promise problem AS-CktSAT = (AS-CktSATYES; AS-CktSATNO) hasas its instances h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi where F is an �nite extension �eld of GF(2) (i.e.,F = GF(2)f for some f), H a GF(2)-linear subspace of F and ~Ti : Fm ! F , for i = 0; : : : ; l� 1, asequence of polynomials of degree d, where jHj = n1=m, d = m � jHj, and F = cF �md. The �eld Fis speci�ed by an irreducible polynomial p(x) of degree f over GF(2), H is taken to be spanned bythe �rst h = log jHj canonical basis elements, and each of the polynomials ~Ti is speci�ed by a listof coe�cients.� h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi 2 AS-CktSATYES if there exist a sequence of degree d polyno-mials ~Ai : Fm ! F; i = 0; : : : ; l � 1 such that for all i = 0; : : : ; l � 1 and all x 2 Hm, 0� ~Ti(x); ~Ai(x); ~Ai+1�~�i;0(x)�; ~Ai+1�~�i;1(x)�� = (0; 0)� h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi 2 AS-CktSATNO if for all functions ~Ai : Fm ! F; i =0; : : : ; l � 1 there exists an i = 0; : : : ; l � 1 and x 2 Hm such that, 0� ~Ti(x); ~Ai(x); ~Ai+1�~�i;0(x)�; ~Ai+1�~�i;1(x)�� 6= (0; 0)where ~�i;j's and 0 are as de�ned earlier. (Recall that the ~�'s are linear function while 0 representsa pair of polynomials of degree at most �.)From the above discussion we have the following reduction from Structured-CktSAT toAS-CktSAT.Proposition 6.10 There exists a polynomial-time computable function R mapping any instanceI = hGN;l; fT0; T1; : : : ; Tl�1gi of Structured-CktSAT and parameter m � log n=loglogn (wheren = jIj) to an instance R(I; 1m) of AS-CktSAT such thatI 2 Structured-CktSAT =) R(I; 1m) 2 AS-CktSATYESI =2 Structured-CktSAT =) R(I; 1m) 2 AS-CktSATNOMoreover, if R(I; 1m) = h1n0 ; 1m0 ; F;H; f ~T0; : : : ; ~Tl0�1gi, then n0 = 2N (the number of nodes ineach layer of the de Bruijn graph GN;l), m0 = m, and l0 = l (the number of layers in the de Bruijngraph).Combining Propositions 6.5 and 6.10, we have the following.Proposition 6.11 There exists a polynomial-time computable function R mapping any circuit Cand parameter m � log n=loglogn (where n = jCj) to an instance R(C; 1m) of AS-CktSAT suchthat C 2 CktSAT () R(C; 1m) 2 AS-CktSAT.Moreover, if C is a circuit of size n then R(C; 1m) = h1n0 ; 1m0 ; F;H; f ~T0; : : : ; ~Tl0�1gi, wheren0 = �(n), m0 = m, and l0 � 5 log n0. Thus, jR(C; 1m)j = O((cFm2)m log n) � jCj.Remark 6.12 Following Remark 6.7, if C is a satis�able circuit, then any set of polynomials~A0; : : : ; ~Al�1 proving that the reduced instance R(C; 1m) = h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi is a YESinstance of AS-CktSAT contain within it a satisfying assignment to the circuit C. Speci�cally,the set I (of layer-0 nodes with INPUT functionality in GN;l) from Remark 6.7 can now be viewedas a subset I � Hm. Then the polynomial ~A0 : Fm ! F restricted to the set I (i.e., ~A0jI) containsa satisfying assignment (again as a concatenation of third-bits). Conversely, every satisfying as-signment w to C can be extended to a set of polynomials ~A0; : : : ; ~Al�1 such that ~A0jI contains w.This is done by taking low-degree extensions of the functions A0; : : : ; Al�1 from Remark 6.7.51

Remark 6.13 Following Remark 6.8, if C is a linear circuit, then the mapping of satisfying as-signments w of C to polynomials ~A0; : : : ; ~Al�1 satisfying R(C) is GF(2)-linear. This is due toRemark 6.8, the association of f0; 1g4 with the linear space spanned by fe0; e1; e2; e3g in F , andfrom the fact that the interpolation from Ai to ~Ai is F -linear and hence GF(2)-linear. For moreinformation see Section 8.4.Comment: Recall that the arithmetization was obtained by considering low-degree extensionsover Fm of functions from Hm to H. If H were a sub�eld of the �eld F this step would have causeda quadratic blow-up, and we avoid this problem by not insisting that H be a �eld. In [PS94, Spi95],H is a �eld and F = H2 is an extension of it, but the PCP system refers only to a O(jHj)-sized ofF . We cannot take this approach because we will be using a total low-degree test, which needs torefer to the entire vector space Fm. In contrast, in [PS94, Spi95] an individual low-degree test isused, which can work with a subset of Fm.6.3 The PCP veri�erWe design a PCP veri�er for CktSAT via the reduction to AS-CktSAT based on the randomness-e�cient low-degree tests of Ben-Sasson et al. [BSVW03]. Given a circuit C, the veri�er reduces itto an instance of the problem AS-CktSAT (Proposition 6.11). The proof consists of a sequenceof oracles ~Ai : Fm ! F for i = 0; : : : ; l� 1 and an auxiliary sequence of oracles Pi;j : Fm ! F 2 fori = 0; : : : ; l � 1 and j = 0; : : : ;m. For each i and j, we view the auxiliary oracle Pi;j : Fm ! F 2as a pair of functions P (0)i;j : Fm ! F and P (1)i;j : Fm ! F (i.e., Pi;j(x) = (P (0)i;j (x); P (1)i;j (x))). Thisauxiliary sequence of oracles helps the veri�er to check that the functions ~Ai satisfy condition 0(see De�nition 6.9).The veri�er expects the �rst subsequence of auxiliary oracles Pi;0(�) for i = 0; : : : ; l�1, to satisfythe following relation:Pi;0(x) = 0� ~Ti(x); ~Ai(x); ~Ai+1�~�i;0(x)�; ~Ai+1�~�i;1(x)�� 8x 2 Fm (3)Furthermore, it expects Pi;0(x) = 0 for every x 2 Hm. Indeed, by De�nition 6.9, we have:Lemma 6.14 1. If h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi is a YES instance of AS-CktSAT, satis�edby polynomials ~A0; : : : ; ~Al�1, and P0;0; : : : ; Pl�1;0 are de�ned according to Equation 3, thenPi;0(x) = (0; 0) for all x 2 Hm.2. If h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi is a NO instance of AS-CktSAT, then for any sequences offunctions ~A0; : : : ; ~Al�1, P0;0; : : : ; Pl�1;0, either Equation 3 fails to hold for some i or Pi;0(x) 6=(0; 0) for some i and some x 2 Hm.Recalling that the degree of the constraint 0 (see De�nition 6.9) is at most � and that the ~Ai'sare of degree at most d = m � jHj, we observe that the Pi;0's can be taken to be of degree at most�d in Part 1.As mentioned above, the veri�er now needs to check that the functions Pi;0 vanish on the setHm.For this we use a \zero-propagation test", based on the sum-check protocol of Lund et al. [LFKN92].Speci�cally, the veri�er expects the remaining set of auxiliary oracles Pi;j = (P (0)i;j ; P (1)i;j) (i =52

0; : : : ; l � 1 and j = 1; : : : ;m) to satisfy the following relations: Let H = fh0; : : : ; hjHj�1g be some�xed enumeration of the elements in H. For all b 2 f0; 1g,P (b)i;j �x1; : : : ; xj�1| {z }; xj ; xj+1; : : : ; xm| {z }� = jHj�1Xk=0 P (b)i;j�1�x1; : : : ; xj�1| {z }; hk; xj+1; : : : ; xm| {z }�xkj ;8(x1; : : : ; xm) 2 Fm (4)These relations ensure that for all i and j � 1, Pi;j(�) vanishes on F j � Hm�j i� the functionPi;j�1(�) vanishes on F j�1 �Hm�j+1. In other words:Lemma 6.15 P (b)i;j jF j�Hm�j � 0 () P (b)i;j�1jF j�1�Hm�j+1 � 0:Thus, for all i, Pi;m vanishes on the entire space Fm i� Pi;0 vanishes on Hm. Also, as P (b)i;0 hasdegree at most �d in each variable, so does P (b)i;j for each i and j. Hence, the degree of P (b)i;j is atmost �d.Thus, the veri�er needs to make the following checks� Low-Degree TestFor i = 0; : : : ; l � 1 and j = 0; : : : ;m, the sequence of functions ~Ai are polynomials of degreeat most d = m � jHj and the sequence of functions Pi;j are pairs of polynomials of degree atmost �d,� Edge-Consistency TestFor i = 0; : : : ; l � 1, the functions Pi;0 obey Equation (3),� Zero Propagation TestFor i = 0; : : : ; l � 1 and j = 1; : : : ;m, the functions Pi;j satisfy Equation (4),� Identity TestFor i = 0; : : : ; l � 1, the functions Pi;m are identically zero on the entire domain Fm.The Low-Degree test in most earlier construction of PCP veri�ers is performed using the \line-point" test. The \line-point" low degree test �rst chooses a random line, a random point on thisline and checks if the restriction of the function to the line (given by a univariate polynomial) agreeswith the value of the function at the point. A random line l is typically chosen by choosing tworandom points x; y 2 Fm and setting l = lx;y = fx + tyjt 2 Fg. However, this requires 2m log jF jbits of randomness which is too expensive for our purposes. We save on randomness by using thelow-degree test of Ben-Sasson et al. [BSVW03] based on small-biased spaces (see Section B for moredetails). The low-degree test of [BSVW03] uses pseudorandom lines instead of totally random linesin the following sense: The pseudorandom line l = lx;y is chosen by choosing the �rst point x atrandom from Fm, while the second point y is chosen from a �-biased subset S� of Fm. This needsonly log jS�j+ log jF jm bits of randomness. We further save on randomness by the use of canonicallines29. Consider any pseudorandom line l = lx;y where x 2 Fm and y 2 S�. We observe that forevery x0 2 l, we have lx0;y = lx;y. In other words, jF j di�erent choices of random bits leads to thesame line lx;y. We prevent this redundancy by representing each line in a canonical manner. A29It is to be noted that the canonical representation of lines has been used either implicitly or explicitly in thesoundness analysis of all earlier uses of the Low-Degree Test. However, this is the �rst time that the canonicalrepresentation is used to save on the number of random bits.53

canonical line is chosen by �rst choosing a random point y from the �-biased set S�. We view thisy as specifying the direction (i.e., slope) of the line. This direction partitions the space Fm intojF jm�1 parallel lines (each with direction y). We enumerate these lines arbitrarily and select one ofthem uniformly at random. Thus, choosing a random canonical line costs only log jS�j+log jF jm�1bits of randomness. A further point to be noted is that we perform a \line" test instead of theregular \line-point" test: The test queries the function for all points along the canonical line lx;yand veri�es that the restriction of the function to this line is a low-degree polynomial.Having performed the low-degree test (i.e., veri�ed that the polynomials ~Ai's and Pi;j 's are closeto low-degree polynomials), the veri�er then performs each of the Node-Consistency Test,Zero Propagation Test, and Identity Tests by choosing a suitable small-sized sample inthe entire space and checking if the corresponding condition is satis�ed on that sample. For theZero Propagation Test indeed the natural sample is an axis-parallel line. For the Edge-Consistency Test and Identity Test, the sample we use is any set of jF j points selected froma partition of Fm into jF jm�1 equal sets.We are now ready to formally describe the PCP veri�er for CktSAT. We parameterize thePCP veri�er in terms of m, the number of dimensions in our intermediate problem AS-CktSAT,and �, the parameter of the �-biased sets of Fm required for the low-degree tests of Ben-Sassonet al. [BSVW03]. We rely on the fact that �-biased subsets of Fm of size at most poly(log jF jm; 1=�)can be constructed e�ciently [NN90, AGHP92].PCP{Verifier ~Ai;Pi;j ;i=0;:::;l�1;j=0;:::;mm;� (C).1. Use Proposition 6.11 to reduce the instance C of CktSAT, using parameter m, to aninstance h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi of AS-CktSAT, and set d = m � jHj.Notation: We let S� � Fm be a �-biased set of size at most � log jF jm� �2 [AGHP92]. LetFm = UjF jm�1�=1 U� and Fm = UjF jm�1�=1 V� be two arbitrary partitions of the space Fm intojF j-sized sets each.2. Choose a random string R of length log(jS�j � jF jm�1). [Note: We reuse R in all tests,but only the Low-Degree Test utilizes the full length of R.]3. Low-Degree TestUse random string R to determine a random canonical line L in Fm using the �-biasedset S�.For i = 0; : : : ; l � 1,Query oracle ~Ai on all points along the line L and reject if the restriction ~Ai to Lis not a (univariate) polynomial of degree at most d.For i = 0; : : : ; l � 1, j = 0; : : : ;m, and b 2 f0; 1g,Query oracle P (b)i;j on all points along the line L and reject if the restriction of P (b)i;jto L is not a (univariate) polynomial of degree at most �d.4. Edge-Consistency TestUse the random string R to determine a random set U� of the partition Fm = UjF jm�1�=1 U�.For i = 0; : : : ; l � 1,For all x 2 U�, query Pi;0(x); ~Ai(x); ~Ai+1(~�i;0(x)) and ~Ai+1(~�i;1(x)) and reject ifEquation (3) is not satis�ed. 54

5. Zero Propagation TestFor i = 0; : : : ; l � 1, j = 1; : : : ;m, and b 2 f0; 1g,Use random string R to determine a random j-th axis-parallel line in Fm of theform L = f(a1; : : : ; aj�1;X; aj+1; : : : ; am) : X 2 Fg. Query P (b)i;j�1 and P (b)i;j alongall the points in L. Reject if either the restriction of P (b)i;j�1 or P (b)i;j to L is not aunivariate polynomial of degree at most �d or if any of the points on the line Lviolate Equation (4).6. Identity TestUse the random string R to determine a random set V� of the partition Fm = UjF jm�1�=1 V�.For i = 0; : : : ; l � 1,For all x 2 V�, query Pi;m(x). Reject if any of these Pi;m(x) is not (0; 0).Accept if none of the above tests reject.Remark 6.161. The Low-Degree Test requires log(jS�j � jF jm�1) random bits to generate a canonical linein Fm using the �-biased set, while each of the other tests require at most log(jF jm�1) bits ofrandomness. Hence, the string R su�ces for each of the tests. For the settings of parameterswe use, log(jS�j � jF jm�1) is typically signi�cantly smaller than log(jF jm), which we would notbe able to a�ord.2. The Edge-Consistency Test and Identity Test in the \standard" sense are usuallyperformed by selecting a random point in the space Fm and checking whether the correspond-ing condition is satis�ed. However, we state these tests in a \non-standard" manner usingpartitions of the space Fm into jF j sized tests so that these tests can easily be adapted whenwe construct the robust PCP veri�er (see Section 8). The non-standard tests are performedin the following manner: Choose a random set in the partition and perform the standard testfor each point in the set. At present, we can work with any partition of Fm, however we willlater need speci�c partitions to get \robustness".6.4 Analysis of the PCP veri�erWe now analyze the PCP veri�er above. The analysis below assumes that the parameters satisfym � log n=loglogn and � � 1=c log n for a su�ciently large constant c. Theorem 6.1 can be deducedby setting � = 1=c log n.Complexity: The PCP Verifier makes O(lmjF j) = O(m3n1=m log n) queries each of which ex-pects as an answer an element of F or F 2 (i.e., a string of length O(log jF j)). Hence, the total (bit)query complexity is O(lmjF j log jF j) = O(lm�cFm2n1=m log(cFm2n1=m)). Recalling that l = 5 log n,this quantity is at most O(m2n1=m log2 n) for m � log n. For the decision complexity, we note thatthe main computations required are (a) testing whether a function is a low-degree univariate poly-nomial over F (for Low-Degree Test and Zero Propagation Test), (b) evaluating 0 on jF jquadruples of points (for Edge-Consistency Test), and (c) univariate polynomial interpolationand evaluation (for testing (4) in Zero Propagation Test). We now argue that each of thesecan be done with a nearly linear (eO(jF j)) number of operations over F , yielding a nearly linear(eO(q)) decision complexity overall. Each evaluation of 0 can be done with a constant numberof F -operations because 0 is of constant degree. Polynomial interpolation and evaluation can be55

done with a nearly linear number of F -operations by [SS71, Sch77], and testing whether a functionis of low degree reduces to polynomial interpolation (interpolate to represent as a polynomial ofdegree jF j � 1 and check that the high-degree coe�cients are zero). Each F -operations can bedone with eO(log jF j) bit-operations, using the polynomial multiplication algorithm of [SS71, Sch77](over GF(2)).The number of random bits used by the veri�er is exactly log(jS�j�jF jm�1). Let n0 = jF jm. Thenlog(jS�j�jF jm�1) = �1� 1m� log n0+log �poly� log n0� �� = �1� 1m� log n0+O(log log n0)+O �log � 1���.Now, n0 = (cFm2)mn. Hence, log n0 = log n+2m logm+O(m) and log log n0 = log log n+O(logm).Thus, the total randomness is at most �1� 1m� log n+O(m logm) +O(log log n) +O �log � 1���.We summarize the above observations in the following proposition for future reference.Proposition 6.17 The randomness, query and decision complexities of the PCP{Verifier arer = �1� 1m� log n+ O(m logm) + O(log log n) + O �log � 1���, q = O(m2n1=m log2 n) and d = eO(q)respectively.Completeness: If C is satis�able, then the reduction reduces it to an YES instance ofAS-CktSAT.Then by de�nition there exist polynomials ~Ai that satisfy constraint 0. Setting Pi;j according toEquations (3) and (4), we notice that the veri�er accepts with probability one.Soundness: To prove the soundness, we need to prove that if C is not satis�able then the veri�eraccepts with probability bounded away from 1. We will prove a stronger statement. Recall fromRemark 6.12 that the function ~A0 : Fm ! F supposedly has the satisfying assignment embeddedwithin it. Let I � Fm be the set of locations in Fm that contains the assignment (i.e., ~A0jI issupposedly the assignment).Lemma 6.18 There exists a constant c and a constant 0 < "0 < 1 such that for all ";m; � satisfying" � "0, m � log n=loglogn and � � 1=c log n, the following holds. If ~A0 is 4"-far to every polynomialbA0 of degree md such that C(bA0jI) = 1, then for all proof oracles f ~Aig and fPi;jg, the veri�er acceptswith probability at most 1� ".Proof: Let � be the universal constant from Theorem B.4. Set "0 = minf�; 122g. Let d = m2h,and choose cF to be a large enough constant such that �md=jF j = �=cF � "0. Suppose each of thefunctions ~Ai are 4"-close to some polynomial of degree md and each of the functions P (b)i;j is 4"-closeto some polynomial of �md. If this were not the case, then by Theorem B.4 the Low-DegreeTest accepts with probability at most 1 � " for the polynomial that is 4"-far. It can be veri�edthat the parameters satisfy the requirements of Theorem B.4, for su�ciently large choices of theconstants cF and c and su�ciently small ".For each i = 0; : : : ; l�1, let bAi : Fm ! F be the polynomial of degree at mostmd that is 4"-closeto ~Ai. Similarly, for each i = 0; : : : ; l � 1; j = 0; : : : ;m and b 2 f0; 1g, let bP (b)i;j be the polynomialof degree at most �md that is 4"-close to P (b)i;j . Such polynomials are uniquely de�ned since everytwo polynomials of degree �md disagree in at least a 1� �mdjF j � 1� "0 > 8" fraction of points. Asin the case of the Pi;j 's, let bPi;j : Fm ! F 2 be the function given by bPi;j(x) = (bP (0)i;j (x); bP (1)i;j (x)).By hypothesis, bA0jI does not satisfy C. Then, by Lemmas 6.14 and 6.15, at least one of thefollowing must hold.(a) There exists i = 0; : : : ; l � 1 and b 2 f0; 1g such that bP (b)i;m 6� 0.Then for this i, the Identity Test fails unless a random set V� is chosen such that for all56

x 2 V�, P (b)i;m(x) = 0. Hence, it must be the case that for all x 2 V�, either P (b)i;m(x) 6= bP (b)i;m(x)or bP (b)i;m(x) = 0. Since the V 0�s form a partition of Fm, the probability of this occurring isupper-bounded by the probability that a random x 2 Fm satis�es either P (b)i;m(x) 6= bP (bi;m(x)or bP (b)i;m(x) = 0. This probability is at most 4" + �mdjF j = 4" + �cF � 5"0, where we use thefact that bP (b)i;m is 4"-close to P (b)i;m and that a nonzero polynomial of degree �md vanishes onat most a �md=jF j fraction of points.(b) There exists i = 0; : : : ; l � 1 such that bPi;0, bAi, and bAi+1 do not obey Equation (3).In other words, bPi;0(x) 6� 0((~Ti(x); bAi(x); bAi+1(~�i;0(x)); bAi+1(~�i;1(x))). Then for this i, theEdge-Consistency Test fails unless a random partition U� is chosen such that for allx 2 U�, Pi;0(x) = 0((~Ti(x); ~Ai(x); ~Ai+1(~�i;0(x)); ~Ai+1(~�i;1(x))). Hence, it must be the casethat for every x 2 U�, that one of the following holds:P (0)i;0 (x) 6= bP (0)i;0 (x); P (1)i;0 (x) 6= bP (1)i;0 (x); ~Ai(x) 6= bAi(x); ~Ai+1(~�i;0(x)) 6= bAi+1(~�i;0(x));~Ai+1(~�i;1(x)) 6= bAi+1(~�i;1(x)); bPi;0(x) = 0((~Ti(x); bAi(x); bAi+1(~�i;0(x)); bAi+1(~�i;1(x))):The probability of this happening is at most the probability that a random x 2 Fm satis�esthese conditions, which is at most 5 � 4"+ �mdjF j � 21"0.(c) For some i = 0; : : : ; l � 1, j = 1; : : : ;m, and b 2 f0; 1g, bP (b)i;j does not obey Equation (4).In other words, bP (b)i;j (: : : ; xj ; : : :) 6�PjHjk=1 bP (b)i;j�1(: : : ; hj ; : : :)xki . Then, for this i; j, the ZeroPropagation Test rejects unless a random axis parallel line L is chosen such that bothP (b)i;j jL and P (b)i;j�1jL are polynomials of degree at most �d and for every x 2 L, P (b)i;j (: : : ; x; : : :) =PjHj�1k=0 P (b)i;j�1(: : : ; hk; : : :)xk. Suppose we have that for all x 2 L, P (b)i;j (x) = bP (b)i;j (x) andP (b)i;j�1(x) = bP (b)i;j�1(x). Then, it must be the case that for all x 2 L, bP (b)i;j (: : : ; x; : : :) =PjHj�1k=0 bP (b)i;j�1(: : : ; hk; : : :)xk. Since the axis-parallel lines cover Fm uniformly, the probabil-ity of this occurring is at most the probability of a random x 2 Fm satisfying this conditionwhich is at most �mdcF � ". The probability that that both P (b)i;j jL and P (b)i;j�1jL are polynomialsof degree �d and either P (b)i;j jL 6= bP (b)i;j jL or P (b)i;j�1jL 6= P (b)i;j�1jL is at 2 � 4"=(1� "0) � 9"0, sinceP (b)i;j and P (b)i;j�1 are 4"-close to bP (b)i;j and bP (b)i;j�1 respectively, and any two distinct polynomialsof degree �md disagree on at least a 1��md=jF j � 1� "0 fraction of points.Hence, the ZeroPropagation Test accepts with probability at most 10"0.We thus have that the veri�er accepts with probability at most max f1� "; 5"0; 21"0; 10"0g =1� ".Proof (of Theorem 6.1): Theorem 6.1 is proved using the PCP{Verifier de�ned in this sectionsetting � = 1=c log n. Step 1 of the veri�er reduces the instance C of CktSAT to an instanceh1n0 ; 1m; F;H; f ~T0; : : : ; ~Tl�1gi of AS-CktSAT. We have from Proposition 6.11 that n0 = �(n) andl = O(log n) where n is the size of the input circuit C. Setting n = n0 in Proposition 6.17, we havethat the randomness, query and decision complexity of the veri�er are as claimed in Theorem 6.1.The soundness of the veri�er follows from Lemma 6.18.
57

7 A randomness-e�cient PCP of proximityIn this section, we modify the PCP for Circuit Satisfiability and construct a PCP of proximityfor Circuit Value while maintaining all the complexities. (Recall that, by Proposition 2.4, thelatter implies the former.) We do so by adding a proximity test to the PCP{Verifier de�ned inSection 6.3. This new proximity test, as the name suggests, checks the closeness of the input tothe satisfying assignment that is supposed to be encoded in the proof oracle (see Remark 6.12).This check is done by locally decoding a bit (or several bits) of the input from its encoding andcomparing it with the actual input oracle.Theorem 7.1 There exists universal constants c and 0 < " < 1 such that the following holds forall n;m 2 Z+ and 0 < � < 1 satisfying n1=m � mcm=�3. There exists a PCP of proximity forCircuit Value (for circuits of size n) with the following parameters� randomness �1� 1m� log n+O(m logm) +O(log log n) +O(log(1=�)),� query complexity q = O(m2n1=m log2 n) and decision complexity d = eO(q),� perfect completeness,� soundness error 1� " for proximity parameter �.Note that the condition n1=m � mcm=�3 (made in Theorem 7.1) implies the condition m �log n=loglogn stated in Theorem 6.1. Thus, the PCPP of Theorem 7.1 works only when n, thesize of the circuit, is not too small (more, precisely, when n � mcm2=�3m). As explained in Sec-tion 3, when applying multiple proof compositions, we need (at the last compositions) PCPPs thatwork for even smaller values of n. For this purpose, we construct the following PCP of proximitythat works for small values of n. This PCPP, however, performs relatively poorly with respect torandomness (i.e., it has randomness complexity O(log n) rather than (1 � o(1)) log2 n). This willnot be a concern for us since this veri�er (or rather the robust version of this veri�er) is only usedin the inner levels of composition.Theorem 7.2 For all n 2 Z+ and � 2 (0; 1), Circuit Value has a PCP of proximity (for circuitsof size n) with the following parameters� randomness O(log n),� decision complexity poly log n, which also upper-bounds the query complexity.� perfect completeness, and� soundness error 1�
(�) for proximity parameter �.Preliminaries. Recall that a PCPP veri�er is supposed to work as follows: The veri�er is givenexplicit access to a circuit C with n gates on k input bits and oracle access to the input w in theform of an input oracle W : [k] ! f0; 1g. The veri�er should accept W with probability 1 if it isa satisfying assignment and accept it with probability at most 1� " if it �-far from any satisfyingassignment.For starters, we assume that k � n=5. In other words, the size of the input w is linear in thesize of the circuit C. The reason we need this assumption is that we wish to verify the proximity58

of w to a satisfying assignment, but our proofs encode the assignment to all n gates of the circuit,thus it better be the case that w is a non-negligible fraction of the circuit. This assumption is nota major restriction, because if this is not the case then we work with the modi�ed circuit C 0 andinput w0 that are de�ned as follows: For t = dn=ke, the circuit C 0 has n0 = n+3tk gates and k0 = tkinput bits such that C 0(w0) = 1 i� w0 = wt for some w such that C(w) = 1; that is, C 0 checks if itsinput consists of t copies of some satisfying assignment of C. (It can be veri�ed that C 0 can indeedbe implemented on a circuit of size n + 3tk.) We choose t such that k0 � n0=10. However, notethat the input oracle W cannot be altered. So the veri�er emulates the input w0 using the originalinput oracle W : [k] ! f0; 1g in the straightforward manner; that is, it de�nes W 0 : [tk] ! f0; 1gsuch that W 0(i) , W ((i � 1) mod k) + 1). Indeed, in view of the way W 0 is emulated based onW , testing that W 0 is a repetition of some k-bit string makes no sense. This test is incorporatedinto C 0 in order to maintain the distance features of C; that is, if w is �-far from satisfying C thenw0 = wt is �-far from satisfying C 0. We state this fact for future reference.Remark 7.3 The above transformation from (C;w) to (C 0; w0) is a generic one that increases thelength of the input oracle compared to the proof oracle (here, the values of all gates in C). Thetransformation preserves the relative distance to the set of satisfying assignments; that is, if w is �-far from the set of satisfying assignments of C then w0 = wt is �-far from the satisfying assignmentsof C 0.We �rst describe the PCPP{Verifier that proves Theorem 7.1 and later describe theALMSS-PCPP{Verifier that proves Theorem 7.2.7.1 The construction of PCPP{Verifier (Theorem 7.1)As in the case of the PCP{Verifier described in Section 6.3, the PCPP{Verifier is constructedby reducing the input circuit C, an instance of CktSAT, using parameter m, to an instanceh1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi of AS-CktSAT. The proof oracle for the PCPP{Verifier is thesame as that of the PCP{Verifier (i.e., the proof oracle consists of a sequence of functions~Ai : Fm ! F; i = 0; : : : ; l � 1 and Pi;j : Fm ! F 2; i = 0; : : : ; l � 1; j = 0; : : : ;m where l = 5 log n).Recall that the function ~A0 : Fm ! F is supposed to contain within it an assignment (See Re-marks 6.7,6.12). Let I � Hm � Fm be the set of locations in Fm that contain the assignment. ThePCPP{Verifier in addition to the tests of the PCP{Verifier performs the following ProximityTest to check if the assignment given by ~A0jI matches with the input oracle W . Speci�cally:PCPP{VerifierW ; ~Ai;Pi;j ;i=0;:::;l�1;j=0;:::;mm;�;� (C).1. Run PCP{VerifierW ; ~Ai;Pi;jm;� (C) and reject if it rejects.Let R be the random string generated during the execution of this step.2. Proximity TestUse random string R to determine a random canonical line L in Fm using the �-biasedset S�. Query oracle ~A0 on all points along the line L and reject if the restriction ~A0 toL is not a polynomial of degree at most d = m � jHj. Query the input oracle W on alllocations corresponding to those in I \ L and reject if W disagrees with ~A0 on any ofthe locations in I \ L.By inspection, the proximity test increases the query and decision complexity by (even less than)a constant factor. For the randomness complexity, the randomness is used only to generate a random59

canonical line (as in the PCP veri�er), so the randomness complexity is log(jF jm�1 � jS�j) as before.However, in order to prove soundness, we need to assume not only that � � 1=c log n for someconstant c (as before), but also that � � �3=mcm.30 Thus, setting � = minf1=c log n; �3=mcmg, therandomness complexity increases by at most O(m logm)+O(log(1=�)), as claimed in Theorem 7.1.Summarizing the above observations for future reference, we have the following proposition.Proposition 7.4 The randomness, query and decision complexities of the PCPP{Verifier arer = �1� 1m� log n+O(m logm) +O(log log n) +O (log (1=�)), q = O(m2n1=m log2 n) and d = eO(q)respectively.It is straightforward to check perfect completeness of this veri�er. To prove soundness, weobserve that if the input W is �-far from satisfying the circuit, then one of the following musthappen: (1) the veri�er detects an inconsistency in the proof oracle or (2) the input oracle does notmatch with the encoding of the input in the proof oracle. In case of the former, we prove soundnessby invoking Lemma 6.18 while in the latter case, we prove soundness by analyzing the proximitytest. These ideas are explained in detail in the following lemma which proves the soundness of theveri�er.Lemma 7.5 There exists a constant c and a constant " > 0 such that for all m;�; � satisfyingn � 8000jF jm�1=�3, � � 1=c log n, and � � �=mcm, the following holds. If the input w given bythe input oracle W : [k] ! f0; 1g is �-far from satisfying the circuit, then for any proof oracle theveri�er rejects W with probability at least ".Proof: Set " to be the constant "0 in Lemma 6.18.Case (i): ~A0 is not 4"-close to any polynomial bA0 of degree md such that C(bA0jI) = 1. Then byLemma 6.18, we conclude that the veri�er rejects with probability at least ".Case (ii): ~A0 is 4"-close to some polynomial bA0 of degree md such that C(bA0jI) = 1. Since w is�-far from any satisfying assignment, the assignment given by bA0jI must be at least �-farfrom w. Let B � Fm denote the set of locations in I where the assignment given by bA0disagrees with w (i.e., B = fx 2 Ij bA0(x) disagrees with w at xg). Hence, jBj=jIj � �. SincejIj = k � n=5, we have jBj � �n=5. Consider the following 2 events.[Event I]: ~A0jL is 5"-far from bA0jL.By the Sampling Lemma (Lemma B.3) with � = 4" and � = ", this event occurs withprobability at most � 1jF j + �� � 4""2 � 14 since jF j; 1� � 32=".[Event II]: B \ L = ;.Again by the Sampling Lemma (Lemma B.3) with � = � = jBjjFmj , this event occurs withprobability at most � 1jF j + �� � jFmjjBj = � 1jF j + �� � 5jFmj�n � 14 , where the last inequalityfollows because n � 8000jF jm�1=�3 � 40jF jm�1=� and � � �=(40(cFm2)m).Suppose Event I does not occur. Then, if bA0jL 6= ~A0jL, the Proximity Test rejects sincethen ~A0jL cannot be a polynomial of degree at most d as it is 5"-close to the polynomial bA0and hence cannot be closer to any other polynomial (as 5" � 12(1 � djF j) = 12 (1 � 1cF). Now30Actually, for the proximity test we only need � � �=mcm, however to prove robustness of the proximity test (seeSection 8.1) we require � � �3=mcm. 60

if bA0jL = ~A0jL and Event II does not occur, then the Proximity Test detects a mismatchbetween the input oracle W and ~A0jL. Hence, if both Event I and Event II do not occur,then the test rejects. Thus, the probability of the test accepting in this case is at most theprobability of either Event I or Event II occurring which is at most 1=2.Thus, the probability that the veri�er accepts is at most max�1� "; 12	 = 1 � ". This completesthe proof of the lemma.Proof (of Theorem 7.1): Theorem 7.1 is proved using the PCPP{Verifier de�ned in thissection setting � = minf1=c log n; �3=mcmg. The randomness and decision (query) complexityfollow from Proposition 7.4. The only fact to be veri�ed is the soundness of the veri�er. Byhypothesis of Theorem 7.1, n1=m � mcm=�3 for a suitably large constant c. This implies thatn1=m � 8000(cFm2)m�1=�3 or equivalently n � 8000jF jm�1=�3. Hence, Lemma 7.5 applies and wehave that the veri�er has soundness error 1�" for proximity parameter �. This proves Theorem 7.1.7.2 The ALMSS-type PCP of Proximity (Theorem 7.2)We now turn to designing a PCPP that proves Theorem 7.2. We call this the ALMSS-PCPP{Verifier as it has parameters similar to the \parallelized" PCPs of [ALM+98]. The ALMSS-PCPP{Verifier is identical to the PCPP{Verifier (of Theorem 7.1) except for the fact that ithas a slightly di�erent proximity test. All other details remain the same.ALMSS-PCPP{VerifierW ; ~Ai;Pi;j ;i=0;:::;l�1;j=0;:::;m� (C).1. Set m = log n= log log n and � = 1=c log n.2. Run PCP{VerifierW ; ~Ai;Pi;jm;� (C) and reject if it rejects.3. ALMSS Proximity TestChoose a random position i R f1; : : : ; kg in the input and a random direction y 2 Fm.Let x 2 I be the point corresponding to i in Hm. Let L be the line through x in thedirection y. Query oracle ~A0 on all points along the line L and reject if the restriction~A0 to L is not a polynomial of degree at most d = m � jHj. Query the input oracle W atlocation i and reject if W [i] 6= ~A0(x).Unlike the PCPP{Verifier, we will not calculate the randomness used by this veri�er exactly.An upper bound within a constant factor su�ces for our purposes. The extra randomness usedby the ALMSS Proximity Test is log k +m log jF j = O(log n) (i.e., the randomness requiredto choose a random index in f1; : : : ; kg and a random direction in Fm). For our choice of m and�, the randomness of the PCP{Verifier is at most O(log n) (see Proposition 6.17). Hence, thetotal randomness of the ALMSS-PCPP{Verifier is at most O(log n). The query and decisioncomplexity are at most a constant times that of PCP{Verifier which is turn is upper-boundedby poly log n. Summarizing the above observations for future reference, we have the followingproposition.Proposition 7.6 The randomness, and decision complexities of the ALMSS-PCPP{Verifierare O(log n) and poly log n respectively.The soundness of the veri�er is given by the following lemma.61

Lemma 7.7 For all � 2 (0; 1), the following holds. If the input w given by the input oracleW : [k]! f0; 1g is �-far from satisfying the circuit, then for any proof oracle the veri�er rejects Wwith probability
(�).Proof: Let "0 be the constant that appears in Lemma 6.18.Case (i): ~A0 is not 4"0-close to any polynomial bA0 of degree md such that C(bA0jI) = 1. Then byLemma 6.18, we conclude that the veri�er rejects with probability at least "0.Case (ii): ~A0 is 4"0-close to some polynomial bA0 of degree md such that C(bA0jI) = 1. Since wis �-far from any satisfying assignment, the assignment given by bA0jI must be �-far from w.With probability greater than � over the choice of i 2 f1; : : : ; kg (and the corresponding pointx 2 I in Hm), we have W [i] 6= bA0(x). If this occurs, the only way the veri�er can accept isif ~A0jL is a degree md polynomial other than bA0jL. We will show that for any �xed point xin Fm, with probability at least 1� 16"0 over the choice of random line L through x, ~A0jL isa di�erent degree md polynomial from bA0jL. We can then conclude that the veri�er rejectswith probability at least � � (1� 16"0) =
(�).Since L is a random line through x, every point on L other than x is a a uniformly randompoint in Fm. Recall that ~A0 and bA0 are 4"0-close. By a Markov argument it follows thatfor every �xed value of x and a random line L through x, with probability at least 1� 16"0,~AjLnfxg and bAjLnfxg are at least 1=4-close. This implies that ~AjL cannot be a polynomial ofdegree md other than bAjL (since two distinct polynomials agree in at most md points, and(md� 1)=jF j < 1=4).In either case, the ALMSS-PCPP{Verifier rejects with probability at least minf"0;
(�)g =
(�).Conclusion: Theorem 7.2 follows from Proposition 7.6 and Lemma 7.7.8 A randomness-e�cient robust PCP of proximityIn this section, we modify the PCP of proximity for Circuit Value constructed in Section 7 to de-sign a robust PCP of proximity, while essentially maintaining all complexities. Recall the de�nitionof robustness: If the input oracle W is �-far from a satisfying assignment, then a \regular" PCPPveri�er rejects the input for most choices of its random coins; that is, it observes an inconsistencyin the (input and) proof. In contrast, for most choices of its random coins, a robust PCPP veri�ernot only notices an inconsistency in the (input and) proof but also observes that a considerableportion of the (input and) proof read by it has to be modi�ed to remove this inconsistency.We construct two robust PCPPs, which are robust analogues of the two PCPPs presented inSection 7: The �rst robust PCPP is the main construct (claimed in Theorem 3.1), which is the therobust analogue of PCPP{Verifier. The second robust PCPP is an ALMSS-type robust PCPP(claimed in Theorem 3.2), which is the robust analogue of ALMSS-PCPP{Verifier. Thus, weprove Theorems 3.1 and 3.2.Overview of the proofs of Theorem 3.1 and 3.2: We \robustify" the PCPP veri�er in 3steps. Recall that a single execution of the veri�er actually involves several tests (in fact lm + 2lLow-Degree Tests, l Edge-Consistency Tests, lm Zero Propagation Tests, l Identity62

Tests and a single proximity test (either the Proximity Test or the ALMSS Proximity Testas the case may be)). In the �rst step (Section 8.1), we observe that each of these tests is robustindividually. In the second step (Section 8.2), we perform a \bundling" of the queries so that a cer-tain set of queries can always be asked together. Indeed, bundling is analogous to \parallelization"except that it does not involve any increase in the randomness complexity (unlike parallelization,which introduces such an increase, which although small is too big for our purposes). We stressthat bundling is tailored to the speci�c tests, in contrast to parallelization which is generic. Theaforementioned bundling achieves robustness, albeit over a much a larger alphabet. In the �nalstep (Section 8.3), we use a good error-correcting code to transform the \bundles" into regularbit-queries such that robustness over the binary alphabet is achieved.8.1 Robustness of individual testsFor each possible random string R, the PCPP{Verifier (ALMSS-PCPP{Verifier) performsseveral tests. More precisely, it performs l(m + 2) Low-Degree Tests, l Edge-ConsistencyTests, lm Zero Propagation Tests, l Identity Tests and a single Proximity Test(ALMSSProximity Test). In this section, we prove that each of these test are robust individually. Inother words, we show that when one of these tests fail, it fails in a \robust" manner; that is, aconsiderable portion of the input read by the test has to be modi�ed for the test to pass.First, some notation. We view functions g; g0 : Fm ! F as strings of length jF jm over thealphabet F , so their relative Hamming distance �(g; g0) is simply Prx[g(x) 6= g0(x)]. As before, letI � Hm � Fm be the set of locations in Fm that contains the assignment.Let 0 < " < 1 be a small constant to be speci�ed later. As before, for i = 0; : : : ; l � 1,j = 0; : : : ;m and b 2 f0; 1g, let bAi (resp., bP (b)i;j) be the closest polynomials of degree md (resp.,�md) to ~Ai and Pi;j respectively. (If there is more than one polynomial, choose one arbitrarily.) Theproof of the soundness of the PCPP veri�ers, PCPP{Verifier and ALMSS-PCPP{Verifier(see Sections 6 and 7) was along the following lines: If the input oracle W : [k] ! f0; 1g is �-farfrom satisfying the circuit, then one of the following must happen (changing " by a factor of 2).1. There exists a i = 0; : : : ; l�1 such that ~Ai is 8"-far from every degree md polynomial or thereexists a i = 0; : : : ; l� 1, j = 0; : : : ;m and b 2 f0; 1g such that P (b)i;j is 8"-far from every degree�md polynomial. In this case, the Low-Degree Test detects the error with probability atleast 2".2. There exists i = 0; : : : ; l � 1 and b 2 f0; 1g, such that �(P (b)i;m; bP (b)i;m) � 8" and bPi;m 6� 0. Inthis case, the Identity Test detects the error with probability at least 1� 10".3. There exists i = 0; : : : ; l � 1, j = 1; : : : ;m and b 2 f0; 1g such that �(Pi;j; bPi;j) � 8",�(Pi;j�1; bPi;j�1) � 8", and bPi;j(: : : ; xj ; : : :) 6�PjHj�1k=0 bPi;j�1(: : : ; hk; : : :)xkj . In this case, theZero Propagation Test detects the error with probability at least 1� 20".4. There exists a i = 0; : : : ; l�1 such that �(P (0)i;0 ; bP (0)i;0) � 8", �(P (1)i;0 ; bP (1)i;0) � 8", �(~Ai; bAi) � 8",�(~Ai+1; bAi+1) � 8", and bPi;0(x) 6� 0((~Ti(x); bAi(x); bAi+1(~�i;0(x)); bAi+1(~�i;1(x))). In this case,the Edge-Consistency Test detects the error with probability at least 1� 42".5. �(~A0; bA0) � 8" but W and bA0jI disagree on at least � fraction of the points. In this case, theProximity Test (or the ALMSS Proximity Test as the case may be) detects the errorwith probability at least 1=2 (in Case I). 63

Claims 8.1 to 8.6 below strengthen the above analysis and show that one of the tests not onlydetects the error, but a signi�cant portion of the input read by that test needs to be modi�ed inorder to make the test accept. More formally, recall that each of our tests T (randomly) generatesa pair (I;D) where I is a set of queries to make to its oracle and D is the predicate to apply to theanswers. For such a pair (I;D) T and an oracle �, we de�ne the distance of �jI to T to be therelative Hamming distance between �jI and the nearest satisfying assignment of D. Similarly, wesay that � has expected distance � from satisfying T if the expectation of the distance of �jI to Tover (I;D) R T equals �.We then have the following claims about the robustness of the individual tests.The robustness of the Low-Degree Test can be easily be inferred from the analysis of the�-biased low-degree test due to Ben-Sasson et al. [BSVW03] as shown below.Claim 8.1 The following holds for all su�ciently small " > 0. If A : Fm ! F (resp., P : Fm ! F)is 8"-far from every polynomial of degree md (resp., degree �md), then the expected distance of A(resp. P) from satisfying the Low-Degree Test with degree parameter d (resp., �d) is at least2".Proof: Recall that the Low-Degree Test chooses a random canonical line L and checks if AjLis a univariate polynomial of degree d. For each canonical line L, de�ne Alines(L) to be the degreed univariate polynomial mapping L ! F having maximum agreement with A on L, breaking tiesarbitrarily. The distance of AjL to satisfying Low-Degree Test is precisely �(AjL; Alines(L)).The low-degree test LDT of Ben-Sasson et al. [BSVW03] works as follows (see Section B formore details): The test LDT has oracle access to a points-oracle f : Fm ! F and a lines oracle g.It chooses a random canonical line L using the �-biased set, queries the lines-oracle g on the lineL and the points-oracle f on a random point x on L. It accepts i� g(L) agrees with f at x.By inspection, the probability that LDTA;Alines rejects the points-oracle A and lines-oracle Alinesas de�ned above equals EL[�(AjL; Alines(L))]. By Theorem B.4, if A is 8"-far from every degree mdpolynomial, then LDTA;Alines rejects with probability at least 2" (for su�ciently small "). (Recallthat our parameters satisfy the conditions of Theorem B.4 for su�ciently large choices of theconstants c and cF .) Thus, A has expected distance 2" from satisfying our Low-Degree Test,as desired.The intuition behind the proofs of robustness of Identity Test, Zero Propagation Test,and Edge-Consistency Test is as follows. The key point to be noted is that the checks made byeach of these tests are in the form of polynomial identities. Hence, if the functions read by these testsare close to being polynomials, then it follows from the Schwartz-Zippel Lemma that the inputs readby these tests either satisfy these polynomial identities or are in fact far from satisfying them. Weformalize this intuition and prove the robustness of Identity Test, Edge-Consistency Test,and Zero Propagation Test in Claims 8.2, 8.3, and 8.4 respectively.Claim 8.2 The following holds for all su�ciently small " > 0. If for some i = 0; : : : ; l � 1 andb 2 f0; 1g, �(P (b)i;m; bP (b)i;m) � 8" and bP (b)i;m(�) 6� 0, then Pi;m has expected distance at least 1� 9" fromsatisfying the Identity Test.
64

Proof: The expected distance of Pi;m from satisfying the Identity Test equalsEV� [�(Pi;mjV� ; 0)] = �(Pi;m; 0)(since the fV�g are a partition)� �(bPi;m; 0)��(Pi;m; bPi;m)� �1� �mdjF j �� 8"(by Schwartz-Zippel and hypothesis)� 1� 9"Claim 8.3 The following holds for all su�ciently small " > 0. Suppose for some i = 0; : : : ; l �1, we have �(P (0)i;0 ; bP (0)i;0) � 8", �(P (1)i;0 ; bP (1)i;0) � 8", �(~Ai; bAi) � 8", �(~Ai+1; bAi+1) � 8", andbPi;0(�) 6� 0(~Ti(�); bAi(�); bAi+1(~�i;0(�)); bAi+1(~�i;1(�))). Then �Pi;0(�); Ai(�); Ai+1(~�i;0(�))Ai+1(~�i;1(�))	has expected distance at least (1� 41")=5 from satisfying the Edge-Consistency Test.Proof: Note that the distance of �Pi;0(�); Ai(�); Ai+1(~�i;0(�))Ai+1(~�i;1(�))	jU� from satisfying theEdge-Consistency Test is at least 1=5 times the the distance of Pi;0(�)jU� to the function 0(~Ti(�); Ai(�); Ai+1(~�i;0(�)); Ai+1(~�i;1(�)))jU� (Since for each point x 2 U� where the latter twofunctions disagree, at least one of Pi;0; Ai; Ai+1 � ~�i;0; Ai+1 � ~�i;1 needs to be changed at x to makethe test accept). As in the proof of Claim 8.2, we have:EU� [�(Pi;0(�)jU� ; 0(~Ti(�); Ai(�); Ai+1(~�i;0(�)); Ai+1(~�i;1(�)))jU�)] � �1� �mdjF j �� 5 � 8" � 1� 41";where the (1 � �md=jF j) term corresponds to the distance if we replace all �ve functions withtheir corrected polynomials (e.g., bPi;0, bAi, bAi+1 � ~�i;0, bAi+1 � ~�i;1) and the �5 � 8" accounts forthe distance between each of the �ve functions and their corrected polynomials. Thus, the overallexpected distance to satisfying the Edge-Consistency Test is at least (1� 41")=5.Claim 8.4 The following holds for all su�ciently small " > 0. Suppose for some i = 0; : : : ; l � 1,j = 1; : : : ;m, and b 2 f0; 1g, we have �(P (b)i;j ; bP (b)i;j) � 8", �(P (b)i;j�1; bP (b)i;j�1) � 8", and bP (b)i;j (: : : ; xj; : : :) 6�PjHj�1k=0 bP (b)i;j�1(: : : ; hk; : : :)xkj . Then (P (b)i;j ; P (b)i;j�1) has expected distance at least (1�19")=2 from sat-isfying the Zero Propagation Test.Proof: Suppose that L is a j-th axis-parallel line such thatbP (b)i;j (: : : ; xj ; : : :)jL 6� jHj�1Xk=0 bP (b)i;j�1(: : : ; hk; : : :)xkj jL;Then in order for the Zero Propagation Test to accept, either P (b)i;j jL must be modi�ed toequal a degree �d polynomial other than bP (b)i;j�1(: : : ; xj ; : : :)jL or P (b)i;j�1jL must be modi�ed to equala degree �d polynomial other than bP (b)i;j�1(: : : ; xj ; : : :)jL. (Recall that the Zero PropagationTest checks that the said restrictions are in fact polynomials of degree �d.) This would requiremodifying P (b)i;j jL (resp., P (b)i;j�1jL) in at least a 1 � �d=jF j � �(P (b)i;j jL; bP (b)i;j jL) fraction (resp., 1 �65

�d=jF j��(P (b)i;j�1jL; bP (b)i;j�1jL) fraction) of points. This implies that the pair (P (b)i;j jL; P (b)i;j�1jL) wouldhave to be modi�ed in at least a12 � �1� �djF j ��(P (b)i;j jL; bP (b)i;j jL)��(P (b)i;j�1jL; bP (b)i;j�1jL)�fraction of points.Thus the expected distance of (P (b)i;j ; P (b)i;j�1) to satisfying the Zero Propagation Test is atleast 12 � EL �1� �djF j ��(P (b)i;j jL; bP (b)i;j jL)��(P (b)i;j�1jL; bP (b)i;j�1jL)��PrL 24 bP (b)i;j (: : : ; xj ; : : :)jL � jHj�1Xk=0 bP (b)i;j�1(: : : ; hk; : : :)xkj jL35� 12 (1� "� 8"� 8") � �djF j� 12 (1� 19") :We are now left with analyzing the robustness of the proximity tests (Proximity Test andALMSS Proximity Test). Note that the input for either of these proximity tests comes in twoparts: (a) the restriction of A0 to the line L and (b) the input W restricted to the line L (or toa point on L). Thus, the robustness of these tests refers to both parts (i.e., parts of each of thetwo oracles), and it is bene�cial to decouple the corresponding robustness properties. We note thatthe robustness of the Proximity Test is proved by repeated applications of the Sampling Lemma(Lemma B.3), while the robustness of the ALMSS Proximity Test follows by a simple Markovargument.Let B � Fm denote the set of locations in I where the assignment given by bA0 disagrees withW (i.e., B = fx 2 Ij bA0(x) disagrees with W at xg). Recall that jIj = k � n=5.Claim 8.5 There exists a constant c and a constant " > 0 such that for all m;�; �; �0 satisfyingn � 8000jF jm�1=�3, � � 1=c log n, � � �3=mcm, �0 > �, the following holds. Suppose �(~A0; bA0) �1=4 and the input oracle W is �0-far from bA0jI (i.e., jBj=jLj � �0), then with probability at least1 � �=4 (over the choice of the canonical line L) either at least a "-fraction of A0jL or at least a(�0 � �=4)-fraction of W jL needs to be changed to make the Proximity Test accept.This claim is the robust analogue of Lemma 7.5. Observe that the robustness of the veri�eris expressed separately for the proof and input oracles. As expected, the robustness of the inputoracle depends on the proximity parameter �0 while that of the proof oracle is independent of �0.Proof: Consider the following three events.Event 1: �(~A0jL; bA0jL) � 1=3 .By the Sampling Lemma (Lemma B.3) with � = 1=4 and � = 1=12, this event occurs withprobability at most � 1jF j + �� � 1=4(1=12)2 � �12 since jF j � (8000jF jm)=(�3n) > (123=2)=� and� < 2�=123. 66

Event 2: jI\LjjLj > �1 + �8� � jIjjFmj .Again by the Sampling Lemma (Lemma B.3) with � = jIj=jFmj � n5jF jm and � = ��8 , thisevent occurs with probability at most� 1jF j + �� � 82�2� = � 1jF j + �� � 320jF jm�2n � �12 ;where the last inequality follows from the fact that n � 24 � 320 � jF jm�1=�3 and � � �3=(24 �320(cFm2)m).Event 3: jB\LjjLj < jBjjFmj � �8 � jIjjFmj .Again by the Sampling Lemma (Lemma B.3) with � = jBj=jFmj = �0n5jF jm and � = �n40jF jm ,this event occurs with probability at most� 1jF j + �� � ��2 � � 1jF j + �� � 320jF jm�2n � �12 :Hence, the probability that at least one of the three events occurs is at most �=4.Now, suppose none of the three events occur. We then get thatjB \ LjjI \ Lj � jBj � �jIj=8(1 + �=8)jIj = �0 � �=81 + �=8 � �0 � �=4:Now for the Proximity Test to accept the pair (~A0jL;W \ L), either we must change ~A0jL toa polynomial other than bA0jL or correct the input for all x 2 B \ L. The former requires us tochange at least (1 � djF j � 1=3) � 1=2 fraction of the points of A0jL while the latter requires us tochange at least �0 � �=4-fraction of the input read (i.e., the input oracle W restricted to the lineL). This proves the claim.We now turn to analyze the robustness of the ALMSS Proximity Test.Claim 8.6 There exists a constant "0 > 0 such that for all � 2 (0; 1), the following holds. Suppose�(~A0; bA0) � 4"0 and the input oracle W is �-far from bA0jI (i.e., jBj=jLj � �), then with probabilityat least
(�) (over the choice of index i and direction y), either at least a 1=2-fraction of A0jL orW [i] (i.e., the single symbol of the input oracle read by the veri�er) needs to be changed to makethe ALMSS Proximity Test accept.This claim is the robust analogue of Lemma 7.7. As before, the robustness of the veri�er isexpressed separately for the proof and input oracles.Proof: Since w is �-far from any satisfying assignment, the assignment given by bA0jI must be�-far from w. Thus with probability greater than � over the choice of i 2 f1; : : : ; kg (and thecorresponding point x 2 I), we have W [i] 6= bA0(x). If this occurs, the only way to make the veri�eraccept is to either change W [i] or change ~A0jL to a degree md polynomial other than bA0jL. As inthe proof of Lemma 7.7, for any �xed x, with probability at least 1 � 16"0 (over the choice of therandom direction y), ~A0jLnfxg and bA0jLnfxg have distance at most 1=4, and hence ~A0jL would haveto be changed in at least 1� ((md�1)=jF j)�1=4 � 1=2 points to be a degree md polynomial otherthan bA0jL. Thus, with probability at least �(1 � 16"0) =
(�), either W [i] would have to changeor at least half of ~A0jL would have to change to make the veri�er accept.67

8.2 BundlingIn Section 8.1, we showed that each of the tests performed by the PCPP veri�er is individuallyrobust. However, we need to show that the conjunction of all these tests is also robust. This is nottrue for the PCPP veri�er in its present form for the following reason: Suppose the input oracleW is �-far from satisfying the circuit. We then know that one of the tests detects this fact withnon-negligible probability. Moreover as seen in Section 8.1, this test is robust. However, since thistest is only one of the O(lm) tests being performed by the veri�er, the oracle bits read by this testcomprise a small fraction of the total query complexity of the veri�er. For instance, the number ofbits read by a single Low-Degree Test is about 1=lm times the query complexity. This causesthe robustness of the veri�er to drop by a factor of at least lm. Note that the issue here is not thefact that the veri�er performs di�erent types of tests (i.e., Low-Degree Test, Identity Test,Zero Propagation Test, etc) but rather that it performs many instances of each test and thatthe soundness analysis only guarantees that one of these test instances rejects (robustly). This isnot su�cient to make the veri�er robust.For this purpose, we \bundle" the various functions in the proof oracle so that the inputsrequired for the several test instances can be read together. This maintains the robustness of theindividual tests, albeit over a larger alphabet. To understand this \bundling", let us assume forthe present that the only type of tests that the veri�er performs is the Low-Degree Test. Thereexists a natural bundling in this case. Instead of l(m+2) di�erent oracles f ~Aig and fPi;jg, we haveone oracle � which bundles together the data of all these oracles. The oracle � : Fm ! F l�(2m+3)is supposed to satisfy �(x) = (~A0(x); : : : ; ~Al�1(x); P0;0(x); : : : ; Pl�1;m(x)) for all x 2 Fm. It cannow be easily checked that over this proof oracle, the conjunction of all the Low-Degree Testsis robust (over alphabet F l�(2m+3)) with the same soundness and robustness parameters as a singleLow-Degree Test(over alphabet F). However, this natural bundling does not lend itself tothe other tests performed by the PCPP veri�er (namely, Zero Propagation Test, and Edge-Consistency Test). Next, we provide an alternate bundling and massage our veri�er slightly towork with this bundling.First for some notation. As mentioned earlier, we will be able to prove robustness of the veri�ervia bundling, however over a larger alphabet. This large alphabet will be � = F l+2l�(m+1). Unlikebefore, the proof oracle for the robust PCPP veri�er will consist of only one function � : Fm ! �.The robust PCPP veri�er simulates the PCPP veri�er as follows: To answer the queries of thePCPP veri�er, the robust veri�er bundles several queries together, queries the new proof oracle �and then unbundles the answer to obtain the answers of the queries of the original PCPP veri�er.For convenience, we index the l+2l � (m+ 1) coordinates of � = F l+2l�(m+1) as follows: The �rst lcoordinates are indexed by a single index i ranging from 0 to l� 1, while the remaining 2l � (m+1)are indexed by a triplet of indices (i; j; b) where i ranges over 0; : : : ; l � 1, j ranges over 0; : : : ;mand b 2 f0; 1g. Let S : Fm ! Fm denote the (linear) transformation that performs one cyclic shiftto the right; that is, S(x0; : : : ; xm�1) = (xm�1; x0; : : : ; xm�2). The bundling of the proof oracles~Ai's and Pi;j's by the modi�ed proof oracle � is as follows:8x 2 Fm; 8<:�(x)i = ~Ai �Sb ih c(x)� i = 0; : : : ; l � 1�(x)(i;j;b) = P (b)i;j �Sj+b ih c(x)� i = 0; : : : ; l � 1; j = 0; : : : ;m and b 2 f0; 1g (5)where h = log jHj = log n=m. Note that the size of the new proof oracle � is exactly equal to thesum of the size of the oracles ~Ai's and Pi;j 's.We now state how the robust veri�er performs the unbundling and the individual tests. Weconsider each step of the PCPP veri�er and present their robust counterparts.68

The �rst steps of the PCPP{Verifier (and ALMSS-PCPP{Verifier) are independent ofthe proof oracle and are performed as before. That is, the robust veri�er, as before, reduces theCktSAT instance to an instance h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi of AS-CktSAT, sets d = m � jHj,and generates a random string R of length log(jS�j � jF jm�1). The remaining steps are proof-oracledependent and we will discuss each of them in detail.Proximity Test. For the proximity test, the only portion of the proof oracle that we requireis the portion containing ~A0. For this, we observe that �(x)0 is ~A0 � Sb 0h c(x) = ~A0(x). The twodi�erent proximity tests (Robust Proximity Test and Robust ALMSS Proximity Test) caneasily be describes as follows:Robust Proximity TestW ; �(R){ Use random string R to determine a random canonical line L in Fm using the �-biasedset S�. Query oracle � on all points along the line L. Unbundle �(L) to obtain thevalues of ~A0 on all points along the line L and reject if the restriction ~A0 to L is not apolynomial of degree at most d. Query the input oracleW on all locations correspondingto those in I \ L and reject if W disagrees with ~A0 on any of the locations in I \ L.Robust ALMSS Proximity TestW ; �{ Choose a random position i R f1; : : : ; kg in the input and a direction y Fm. Letx 2 I be the point corresponding to i in Hm, and let L be the line through x in directiony. Query oracle � on all points along the line L. Unbundle �(L) to obtain the values of~A0 on all points along the line L and reject if the restriction ~A0 to L is not a polynomialof degree at most d. Query the input oracle W at location i and reject if W [i] 6= ~A0(x).Low-Degree Test. We note that the distance of the polynomial ~Ai : Fm ! F to being degreek (for any k 2 Z+) is exactly the same as that of ~Ai � Sb ih c : Fm ! F since Sb ih c is an invertiblelinear transformation. Hence, it is su�cient if we check that ~Ai �Sb ih c is low-degree. The case withthe P (b)i;j 's is similar. Thus, the new Robust Low-Degree Test can be described as follows:Robust Low-Degree Test�(R)Use random string R to determine a random canonical line L in Fm using the �-biasedset S�.Query the oracle � on all points along the line L.For i = 0; : : : ; l � 1,Unbundle �(L) to obtain the values of ~Ai � Sb ih c on all points along the line L andreject if the restriction ~Ai � Sb ih c to L is not a polynomial of degree at most d.For i = 0; : : : ; l � 1, j = 0; : : : ;m and b 2 f0; 1g,Unbundle �(L) to obtain the values of P (b)i;j � Sj+b ih c on all points along the line Land reject if the restriction of P (b)i;j � Sj+b ih c to L is not a polynomial of degree atmost �d.Thus, e�ectively we are testing ~Ai (respectively Pi;j) using the line space Sb ih c �S� (respectivelySj+b ih c � S�). 69

Identity Test. In the case of the Identity Test, we observe that P (b)i;m vanishes on Fm i�P (b)i;m �Sm+b ih c vanishes on Fm. Recall that we were allowed to use arbitrary partitions of the spaceFm. The set of random 1st axis-parallel lines is one such partition and we use this partition.robust Identity Test�(R)Use random string R to determine a random 1st axis-parallel line in Fm of the formL = (X; a1; : : : ; am�1). Query the oracle � on all points along the line L.For i = 0; : : : ; l � 1 and b 2 f0; 1g,Unbundle �(L) to obtain the values of P (b)i;m � Sm+b ih c on all points along the line Land reject if any of these is non-zero.Edge Consistency Test. For any x 2 Fm, we say that Pi;0 is well-formed at x if the Equation (3)is satis�ed for this x. The Edge-Consistency Test veri�es that Pi;0 is well-formed for all x 2 U�and i = 0; : : : ; l � 1. This was done earlier by reading the values of Pi;0; ~Ai; ~Ai+1 � ~�i;0 = ~Ai+1 and~Ai+1 � ~�i;1 for all x 2 U�.Let L be a random 1st axis-parallel line. The robust version of this test checks that Pi;0 is well-formed for all points on Sb ih c(L). Consider any x = (x0; : : : ; xm�1) 2 L. To verify that Pi;0 is well-formed at Sb ih c(x), the veri�er needs the values Pi;0(Sb ih c(x)); ~Ai(Sb ih c(x)); ~Ai+1(Sb ih c(x)) and ~Ai+1�~�i;1(Sb ih c(x)). We will show that all these values can be obtained from unbundling the value of � onL and S�1(L). Clearly, the values Pi;0(Sb ih c(x)) and ~Ai(Sb ih c(x)) can be obtained from unbundlingthe value of � at x. The other two values that we require are ~Ai+1(Sb ih c(x)) and ~Ai+1�~�i;1(Sb ih c(x)).We �rst show that ~�i;1(Sb ih c(x)) = Sb ih c(x0) for x0 = (x0 + e(imodh); x1; : : : ; xm�1) 2 L (recall thatfe0; : : : ; ef�1g are a basis for F over GF(2) and fe0; : : : ; eh�1g span H � F). For this purpose, we�rst recall the de�nition of ~�i;1: ~�i;1(z0; : : : ; zm�1) = (z0; : : : ; zt�1; zt + eu; zt+1; : : : ; zm�1) wheret = bi=hc modm and u = i mod h. Furthermore, since Sm is the identity map, we have thatSb ih cmodm = Sb ih c. With these observations, we have the following:~�i;1 �Sb ih c(x)� = ~�i;1 �Sbi=hcmodm(x)�= ~�i;1 �Sbi=hcmodm(x0; : : : ; xm�1)�= Sbi=hcmodm �x0 + e(imodh); x1; : : : ; xm�1�= Sb ih c(x0)Now, Sb i+1h c is either Sb ih c or Sb ih c+1 depending on the value of i. Suppose Sb i+1h c = Sb ih c. Wethen have that ~Ai+1(Sb ih c(x)) = Ai+1(Sb i+1h c(x)) and ~Ai+1 � ~�i;1(Sb ih c(x)) = ~Ai+1(Sb ih c(x0)) =~Ai+1(Sb i+1h c(x0)). Both these values can be obtained by unbundling the value of � on L (sinceboth x and x0 lie on L). In the other case, where Sb i+1h c = Sb ih c+1, we have Ai+1(Sb ih c(x)) =Ai+1(Sb i+1h c(S�1x)) and Ai+1 � ~�i;1(Sb ih c(x)) = Ai+1(Sb ih c(x0)) = Ai+1(Sb i+1h c(S�1x0)). Thesevalues can be obtained by unbundling the value of � on S�1(L). Thus, to check that Pi;0 iswell-formed for all points on Sb ih c(L), it su�ces if the veri�er queries � on all points on L andS�1(L).Robust Edge-Consistency Test�(R) 70

Use the random string R to determine a random 1st axis-parallel line in Fm of the formL = (X; a2; : : : ; am). Query the oracle � along all points in the lines L and S�1(L).For i = 0; : : : ; l � 1,For all x 2 Sb ih c(L), reject if Pi;0 is not well-formed at x. [Note that all the valuesrequired for this veri�cation can be obtained by unbundling �(L) and �(S�1(L)).]Zero Propagation Test. For each i = 0; : : : ; l�1 and b 2 f0; 1g, the Zero Propagation Testchecks that P (b)i;0 vanishes on Hm by verifying that Equation (4) is satis�ed for all j = 1; : : : ;m� 1(we also need to check that P (b)i;m � 0, however this is taken care by the Identity Test). SinceS(Hm) = Hm, checking if P (b)i;0 vanishes on Hm is equivalent to checking if P (b)i;0 � Sb ih c vanishes onHm. Hence, we can perform the zero propagation on the polynomials P (b)i;0 �Sb ih c; i = 0; : : : ; l�1; b 2f0; 1g instead of the polynomials P (b)i;0 ; i = 0; : : : ; l� 1; b 2 f0; 1g. In other words, we need to verifythe following equation instead of Equation (4).P (b)i;j � Sb ih c�x1; : : : ; xj�1| {z }; xj ; xj+1; : : : ; xm| {z }� = jHj�1Xk=0 P (b)i;j�1 � Sb ih c�x1; : : : ; xj�1| {z }; hk; xj+1; : : : ; xm| {z }�xkj ;8(x1; : : : ; xm) 2 Fm (6)This equation can be further rewritten in terms of the cyclic shift S as follows:P (b)i;j �Sb ih c+j�1(x1; x2; : : : ; xm)� = jHj�1Xk=0 P (b)i;j�1 �Sb ih c+j�1(hk; x2; : : : ; xm)� xk1; 8(x1; : : : ; xm) 2 Fm(7)This helps us to rewrite the Zero Propagation Test with bundling as follows:Zero Propagation Test�(R)Use random string R to determine a random 1st axis-parallel line in Fm of the formL = (X; a2; : : : ; am). Query the oracle � along all points in the lines L and S�1(L).For i = 0; : : : ; l � 1, j = 1; : : : ;m, and b 2 f0; 1gUnbundle �(L) to obtain the value of P (b)i;j�1 � Sb ih c+j�1 on all points along theline L. Similarly, unbundle �(S�1(L)) to obtain the value of P (b)i;j � Sb ih c+j on allpoints along the line S�1(L) (Equivalently, this is the value of P (b)i;j � Sb ih c+j�1 onall points along the line L). Reject either if the restriction of P (b)i;j�1 � Sb ih c+j�1 orP (b)i;j �Sb ih c+j�1 to L is not a polynomial of degree at most �d or if any of the pointson the line L violate Equation (7).The integrated robust veri�ers. Having presented the robust version of each of the tests,the integrated robust veri�ers are as follows: Robust-PCPP{Verifier is the robust analogueof the PCPP{Verifier, while ALMSS-Robust-PCPP{Verifier is that of ALMSS-PCPP{Verifier. Following are full descriptions of these veri�ers as well as their analyses.71

8.2.1 The Robust-PCPP{VerifierUsing the robust tests presented above, we present a robust analogue of the PCPP of Section 7.1.Robust-PCPP{VerifierW ; �m;�;�(C).1. Using Proposition 6.11, reduce the instance C of CktSAT, using parameter m, to aninstance h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi of AS-CktSAT, and set d = m � jHj.We let S� � Fm be a �-biased set of size at most � log jF jm� �2 [AGHP92].2. Choose a random string R of length log(jS�j � jF jm�1). [Note: We reuse R in all tests,but only the Low-Degree Test utilizes the full length of R.]3. Run Robust Low-Degree Test�(R).4. Run Robust Edge-Consistency Test�(R).5. Run Robust Zero Propagation Test�(R).6. Run robust Identity Test�(R).7. Run Robust Proximity TestW ;�(R).Reject if any of the above tests reject.The randomness of the Robust-PCPP{Verifier is exactly the same as before whereas the querycomplexity and decision complexity increase by a constant factor31.Proposition 8.7 The randomness, query and decision complexities of the Robust-PCPP{Verifierare r = �1� 1m� log n + O(m logm) + O(log log n) + O (log (1=�)), q = O(m2n1=m log2 n) andd = eO(q) respectively.It is straightforward to check perfect completeness of this veri�er.Robustness analysis of the integrated veri�er. For future use, it is bene�cial (alas morecumbersome) to state the robustness of the integrated veri�er in a way that decouples the robustnesswith respect to the input oracle from the robustness with respect to the proof oracle. LetW : [k]!f0; 1g be the input oracle and � the proof oracle. For every sequence of coin tosses R (and a givensetting of parameters), let �W;�inp (R) (resp., �W;�pf (R)) denote the fraction of the bits read from W(resp., �) that would need to be changed to make the Robust-PCPP{Verifier accept on cointosses R. The following lemma states the (expected) robustness property of our veri�er.Lemma 8.8 There are constants c 2 Z+ and � > 0 such the following holds for every n;m 2 Z+,�0; � > 0 satisfying m � log n=loglogn, n1=m � mcm=�03, � � minf1=c log n; �03=mcmg, � > �0. If Wis �-far from satisfying the circuit, then for any proof oracle � : Fm ! �, either ER[�W;�pf (R)] � �or ER[�W;�inp (R)] � � � �0=2.That is, the expected robustness with respect to the input is � � �0=2 (which should be comparedagainst the proximity parameter �), whereas the expected robustness with respect to the proofis a universal constant. Note that combining the two bounds to a single expected robustnessparameter depends on the relative number of queries made to the input and proof oracles. Toobtain Theorem 3.1, we will later modify the Robust-PCPP{Verifier such that the relativenumber of queries is optimized to yield the best result.31Though the new proof oracle returns elements of � and not bits, we express the query complexity as the numberof bits read by the veri�er rather than the number of symbols (i.e., elements of j�j) to maintain consistency acrosscalculating the query complexity into the proof and input oracles.72

Proof: Unbundle the proof oracle � to obtain the functions ~Ai and Pi;j using Equation (5).Consider the action of the PCPP{Verifier (i.e., the non-robust veri�er) on the proof oracles~Ai; Pi;j and input oracle W .Let " be a su�ciently small constant such that the Claims 8.1{8.5 hold. SupposeW is �-far fromsatisfying the circuit. We then know that one of the following holds and that the correspondingtest instance of the PCPP{Verifier rejects its input robustly (see Claims 8.1 to 8.5).1. There exists a i = 0; : : : ; l�1 such that ~Ai is 8"-far from every degree md polynomial or thereexists a i = 0; : : : ; l� 1, j = 0; : : : ;m and b 2 f0; 1g such that P (b)i;j is 8"-far from every degree�md polynomial. In this case,the expected distance of ~Ai (or resp. P (b)i;j) from satisfying theLow-Degree Test with degree parameter d (resp., �d) is at least 2" (Claim 8.1).2. There exists i = 0; : : : ; l � 1 and b 2 f0; 1g, such that �(P (b)i;m; bP (b)i;m) � 8" and bPi;m 6� 0.In this case, Pi;m has expected distance at least 1 � 9" from satisfying the Identity Test(Claim 8.2).3. There exists a i = 0; : : : ; l�1 such that �(P (0)i;0 ; bP (0)i;0) � 8", �(P (1)i;0 ; bP (1)i;0) � 8", �(~Ai; bAi) � 8",�(~Ai+1; bAi+1) � 8", and bPi;0(x) 6� 0((~Ti(x); bAi(x); bAi+1(~�i;0(x)); bAi+1(~�i;1(x))). In thiscase, �Pi;0(�); Ai(�); Ai+1(~�i;0(�))Ai+1(~�i;1(�))	 has expected distance at least (1�41")=5 fromsatisfying the Edge-Consistency Test (Claim 8.3).4. There exists i = 0; : : : ; l � 1, j = 1; : : : ;m and b 2 f0; 1g such that �(Pi;j; bPi;j) � 8",�(Pi;j�1; bPi;j�1) � 8", and bPi;j(: : : ; xj; : : :) 6� PjHj�1k=0 bPi;j�1(: : : ; hk; : : :)xkj . In this case,(P (b)i;j ; P (b)i;j�1) has expected distance at least (1� 19")=2 from satisfying the Zero Propaga-tion Test (Claim 8.4).5. �(~A0; bA0) � 8" but W and bA0jI disagree on at least �0 fraction of the points. In this case,with probability at least 1 � �0=4 (over the choice of the canonical line L) either at least a"-fraction of A0jL or at least a (� � �0=4)-fraction of W jL needs to be changed to make theProximity Test accept (Claim 8.5).This implies that either A0 has expected distance (1 � �0=4)" � "=2 or W has expecteddistance (1� �0=4)(� � �0=4) � (� � �0=2) from satisfying the Proximity Test.For instance, lets us assume ~A0 is 8"-far from being low degree so the Low-Degree Testrejects it robustly; that is, for a random canonical line L, the expected distance of ~A0jL fromsatisfying the Low-Degree Test is at least 2". Recall from Equation (5) that ~A0(x) is one of theco-ordinates in the bundled �(x). Hence, if ~A0jL is �-far from satisfying the Low-Degree Test,so is �L from satisfying the Robust Low-Degree Test. Thus, � has expected distance at least2" from satisfying the Robust Low-Degree Test. Now, the oracle positions read by the RobustLow-Degree Test constitute a constant fraction of the oracle positions read by the Robust-PCPP{Verifier, so � has expected distance
(") from satisfying the Robust-PCPP{Verifier.Thus, the robustness of the individual test instance is transfered to the combined Robust Low-Degree Test by bundling. The case with the other test types is similar. We thus have thatER[�W;�pf (R)] �
(") or ER[�W;�inp (R)] � � � �0=2. The lemma then follows by setting � =
(").
73

8.2.2 The ALMSS-Robust-PCPP{VerifierWe now describe the ALMSS-Robust-PCPP{Verifier(which is a robust analogue of the PCPPof Section 7.2) and analyze its complexity. The ALMSS-Robust-PCPP{Verifier veri�er isidentical to the Robust-PCPP{Verifier except that the Robust Proximity Test is replacedby the Robust ALMSS Proximity Test.ALMSS-Robust-PCPP{VerifierW ; �� (C).1. Set parameters m = log n= log log n and � = 1=c log n.Using Proposition 6.11, reduce the instance C of CktSAT, using parameter m, to aninstance h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi of AS-CktSAT, and set d = m � jHj.We let S� � Fm be a �-biased set of size at most � log jF jm� �2 [AGHP92].2. Choose a random string R of length log(jS�j � jF jm�1).3. Run Robust Low-Degree Test�(R).4. Run Robust Edge-Consistency Test�(R).5. Run Robust Zero Propagation Test�(R).6. Run robust Identity Test�(R).7. Run Robust ALMSS Proximity TestW ;�.Reject if any of the above tests reject.The randomness of theALMSS-Robust-PCPP{Verifier is exactly the same as before whereasthe query complexity and decision complexity increase by a constant factor. Furthermore, it caneasily be veri�ed that ALMSS-Robust-PCPP{Verifier has perfect completeness.Proposition 8.9 The randomness, and decision complexities of the ALMSS-Robust-PCPP{Verifier are O(log n) and poly log n respectively.Robustness analysis of the integrated veri�er. As in the case of the Robust-PCPP{Verifier, it is bene�cial to state the robustness of ALMSS-Robust-PCPP{Verifier by de-coupling the robustness with respect to the input oracle from the robustness with respect to theproof oracle. Here, however, we refer to the robustness and soundness parameters (rather than toexpected robustness).Lemma 8.10 If W is �-far from satisfying the circuit, then for any proof oracle � : Fm ! �,with probability at least
(�), either a constant fraction of the portion of the proof oracle � read bythe veri�er or the single symbol of the input oracle W read by the veri�er (i.e., W [i]) needs to bechanged in order to make the ALMSS-Robust-PCPP{Verifier accept.Proof: This proof proceeds in the same way as Lemma 8.8. For the sake of completeness, wepresent the entire proof.Let " be a su�ciently small constant such that the Claims 8.1{8.4 hold and eps � "0=8 where"0 is the constant that appears in Claim 8.6. Suppose W is �0-far from satisfying the circuit.We then know that one of the following holds and that the corresponding test instance of theALMSS-PCPP{Verifier rejects its input robustly (see Claims 8.1 to 8.6).74

1. There exists a i = 0; : : : ; l�1 such that ~Ai is 8"-far from every degree md polynomial or thereexists a i = 0; : : : ; l� 1, j = 0; : : : ;m and b 2 f0; 1g such that P (b)i;j is 8"-far from every degree�md polynomial. In this case,the expected distance of ~Ai (or resp. P (b)i;j) from satisfying theLow-Degree Test with degree parameter d (resp., �d) is at least 2" (Claim 8.1).Translating to the bundled alphabet, we have that the expected distance of � from satisfyingthe Robust Low-Degree Test is at least 2". Since the number of oracle positions readby the Robust Low-Degree Test is at least a constant fraction of the number of oraclepositions read by the ALMSS-Robust-PCPP{Verifier, the expected distance of � fromsatisfying the ALMSS-Robust-PCPP{Verifier in this case is at least
("). Hence, withprobability at least
(") (= constant), at least
(") (= constant) fraction of the proof oracle� needs to be modi�ed to make the ALMSS-Robust-PCPP{Verifier accept.2. There exists i = 0; : : : ; l � 1 and b 2 f0; 1g, such that �(P (b)i;m; bP (b)i;m) � 8" and bPi;m 6� 0.In this case, Pi;m has expected distance at least 1 � 9" from satisfying the Identity Test(Claim 8.2).Arguing as in the earlier case, we have that with probability at least
(1 � 9"), at least
(1 � 9") fraction of the proof oracle � needs to be modi�ed in this case to make theALMSS-Robust-PCPP{Verifier accept.3. There exists a i = 0; : : : ; l�1 such that �(P (0)i;0 ; bP (0)i;0) � 8", �(P (1)i;0 ; bP (1)i;0) � 8", �(~Ai; bAi) � 8",�(~Ai+1; bAi+1) � 8", and bPi;0(x) 6� 0((~Ti(x); bAi(x); bAi+1(~�i;0(x)); bAi+1(~�i;1(x))). In thiscase, �Pi;0(�); Ai(�); Ai+1(~�i;0(�))Ai+1(~�i;1(�))	 has expected distance at least (1�41")=5 fromsatisfying the Edge-Consistency Test (Claim 8.3).Again, we have that with probability at least
(1�41"), at least
(1�41") fraction of the prooforacle � needs to be modi�ed in this case to make the ALMSS-Robust-PCPP{Verifieraccept.4. There exists i = 0; : : : ; l � 1, j = 1; : : : ;m and b 2 f0; 1g such that �(Pi;j; bPi;j) � 8",�(Pi;j�1; bPi;j�1) � 8", and bPi;j(: : : ; xj; : : :) 6� PjHj�1k=0 bPi;j�1(: : : ; hk; : : :)xkj . In this case,(P (b)i;j ; P (b)i;j�1) has expected distance at least (1� 19")=2 from satisfying the Zero Propaga-tion Test (Claim 8.4).We have that with probability at least
(1 � 19"), at least
(1 � 19") fraction of the prooforacle � needs to be modi�ed in this case to make the ALMSS-Robust-PCPP{Verifieraccept.5. �(~A0; bA0) � 8" � "0 but W and bA0jI disagree on at least � fraction of the points. In thiscase, with probability at least
(�) (over the choice of index i and direction y), either at leasta 1=2-fraction of A0jL or W [i] (i.e., the entire portion of the input oracle read by the veri�er)needs to be changed to make the ALMSS Proximity Test accept.This implies that with probability at least �, either a constant fraction of the proof oracle �or W [i] (i.e., the entire portion of the input oracle read by the veri�er) needs to be modi�edto make the veri�er accept.Since, we do not know which of the �ve cases occur, we can only guarantee the weakest of the�ve claims. Hence, with probability at least
(�), either a constant fraction of the portion of theproof oracle � read by the veri�er or W [i] (i.e., the entire portion of the input oracle W read bythe veri�er) needs to be changed in order to make the ALMSS-Robust-PCPP{Verifier accept.75

8.3 Robustness over the binary alphabetThe transformation from a robust veri�er over the alphabet � to one over the binary alphabetis analogous to converting non-Boolean error correcting codes to Boolean ones via \code con-catenation". This transformation is exactly the same transformation as the one in the proof ofLemma 2.13. However, we cannot directly use Lemma 2.13 as we may apply the \code concate-nation" process only to the proof oracle � and not to the input oracle W . However, this is nota problem, because the input oracle is already binary. Recall that applying the aforementionedtransformation maintains the robustness of the proof oracle upto a constant factor, whereas therobustness of the input oracle remains unchanged (like the input oracle itself). Actually, in order toavoid decoding (by the modi�ed decision circuit), we maintain the original proof oracle along withits encoded form. Thus, the complexity of this circuit will depend on the minimum between thecomplexity of encoding and decoding (rather than on the complexity of decoding). Details follow.Let ECC : f0; 1glog j�j ! f0; 1gb for b = O(log j�j) be a binary error-correcting code of constantrelative minimum distance, which can be computed by an explicit circuit of size O(log j�j)[Spi96].We augment the original proof oracle �, viewed now as having log j�j-bit long entries (i.e., elementsof �) with an additional oracle � having b-bit long entries, where �(x) is supposed to be ECC(�(x)).The actual transformation. We describe the transformation to binary alphabet in the caseof the Robust-PCPP{Verifier. The ALMSS-Robust-PCPP{Verifier can be transformedsimilarly. Our new veri�er V , on oracle access to the input W and proof � � �, will simulatethe Robust-PCPP{Verifier. The queries to the input oracle are performed just as before how-ever, for each query x 2 Fm in the proof oracle � made by Robust-PCPP{Verifier, V willquery the corresponding log j�j bits in �(x) and the b bits in �(x). Thus, the query complex-ity of V is at most log j�j + b times the number of queries issued by the earlier veri�er. Sinceb = O(log j�j), the query complexity of the new veri�er V is a constant times that of the pre-vious one32, and the decision complexity will increase by at most the encoding time (which caneven be linear). The randomness is exactly the same. The action of the new veri�er V is asfollows: Suppose Robust-PCPP{Verifier issues queries x1; : : : ; xq1 to the proof oracle �, andqueries i1; : : : ; iq2 to the input oracle, then V issues queries x1; : : : ; xq1 to the proof oracle �, asimilar set of queries x1; : : : ; xq1 to the proof oracle � and i1; : : : ; iq2 to the input oracle. V ac-cepts (�(x1); : : : ;�(xq1);�(x1); : : : ;�(xq1);W (i1); : : : ;W (iq2)) i� the Robust-PCPP{Verifieraccepts (�(x1); : : : ;�(xq1);W (i1); : : : ;W (iq2)) and �(xi) = ECC(�(xi)) for all i = 1; : : : ; q1. It isstraightforward to check that V has perfect completeness if Robust-PCPP{Verifier has perfectcompleteness. For the robust soundness, we de�ne �W;���inp (R) and �W;���pf (R) wrt V analogouslyto before (cf. just before Lemma 8.8), but referring to distance over f0; 1g (rather than �) for theproof oracle. The proof of the following claim regarding the robust-soundness of V mimics theproof of Lemma 2.13.Lemma 8.11 There are constants c 2 Z+ and �0 > 0 such the following holds for every n;m 2 Z+,�; �0 > 0 satisfying m � log n=loglogn, n1=m � mcm=�03, � � minf1=c log n; �03=mcmg, � > �0. IfW is �-far from satisfying the circuit, then for any proof oracles � : Fm ! f0; 1glog j�j;� : Fm !f0; 1gb, either ER[�W;���pf (R)] � �0 or ER[�W;���inp (R)] � � � �0=2.32Recall that the query complexity of the old veri�er was measured in terms of \bits of information" rather thanin terms of queries. That is, each query, answered by an element of �, contributes log2 j�j to the query complexity.76

A similar transformation for theALMSS-Robust-PCPP{Verifier yields a veri�er the robustnessof which is stated in the following Lemma 8.12. It is to be noted that the robustness of theproof oracle (i.e., �0 in Lemma 8.11 and
(1) in Lemma 8.12) is a constant factor smaller thanthe corresponding parameter in the non-binary veri�er (i.e., the constant � in Lemma 8.8 and adi�erent
(1) in Lemma 8.10). (Indeed, this constant factor appears also in Lemma 2.13.)Lemma 8.12 If W is �-far from satisfying the circuit, then for any proof oracles � : Fm !f0; 1glog j�j;� : Fm ! f0; 1gb, with probability at least
(�), either a constant (i.e.,
(1)) fractionof the portion of the proof oracle � � � read by the veri�er or W [i] (i.e., the entire portion ofthe input oracle W read by the veri�er) needs to be changed in order to make the transformedALMSS-Robust-PCPP{Verifier accept.We �nally turn to derive Theorem 3.1 (and Theorem 3.2).Proof (of Theorem 3.1): Theorem 3.1 is proved using the Robust-PCPP{Verifier de�ned inthis section setting � = minf1=c log n; �3=mcmg. The randomness, query and decision complexityof the Robust-PCPP{Verifier (i.e., before the transformation to the binary alphabet) are asmentioned in Proposition 8.7. As mentioned in the earlier paragraph, the transformation fromthe alphabet � to the binary alphabet maintains the randomness complexity while the query (anddecision) complexity increase by at most a constant factor.The manner in which the robustness of the veri�er is expressed in Lemma 8.11 di�ers fromthat in Theorem 3.1 in two aspects. First, Lemma 8.11 expresses the robustness for the proofand input oracles separately, while Theorem 3.1 expresses them together. Second, Lemma 8.11expresses robustness in terms of expected robustness while Theorem 3.1 does it in terms of standardrobustness. We obtain robustness as claimed in Theorem 3.1 in two steps { �rst, combining theproof and input oracles and then, moving from expected robustness to standard robustness.First we combine the robustness of the proof and input oracle, which were expressed separatelyin Lemma 8.11. This is done by giving adequate weights to the two oracle portions in the decisioncircuits (i.e. repeating queries, see Remark 7.3). Let n;m; �, and
 be as speci�ed in Theorem 3.1.We give weight (1�
=3) to the input oracle and
=3 to the proof oracle. Recall that these weightsmean that each query to the input oracle is repeated several times such that the relative length ofthe input-part in the decision circuit is 1 �
=3. These repeated queries may increase the query(and decision) complexity increase by a factor of at most O(1=
). Note that weighting does nota�ect the randomness complexity (or any other parameter such as the proximity parameter �).Since n1=m � mcm=�3, we have n1=m � 8000(cFm2)m�1=�3 or equivalently n � 8000jF jm�1=�3.Hence, Lemma 8.11 can be applied. Setting �0 = 2�
=3 in Lemma 8.11, we have that eitherER[�W;���pf (R)] � �0 or ER[�W;���inp (R)] � ���0=2 = �(1�
=3). Note that the �rst expression refersto the \expected robustness" of the proof-part whereas the second expression refers to the input-part. The overall expected robustness is obtained by a weighted average of these two expressions,where the weights are with respect to the aforementioned weighting (which assigns weight
=3 tothe input-part). Hence, the expected robustness with respect to the said weighting is
3 � ER[�W;���pf (R)] + �1�
3� � ER[�W;���inp (R)] � min�
3 � �0;�1�
3�2 � �� :This quantity is lower-bounded by � , (1�
=3)2� since � �
=c for a suitably large c (and �0 > 0is a constant). We have thus obtained a robust PCPP for CktVal with randomness and decisioncomplexities as claimed in Proposition 8.7, perfect completeness and � = (1 �
=3)2� expectedrobustness for proximity parameter �. 77

We now move from expected robustness to standard robustness, by using Lemma 2.11. ApplyingLemma 2.11 with a slackness parameter of
0 ,
�=3 and s =
=3, yields robust-soundness errorof
=3 �
 with robustness parameter of ��
0 = (1�
=3)3 � � � (1�
)� for proximity parameter�. Using
 � 1=2, note that the randomness increases by an additive term of O(log(1=
0)) +O(log(1=
)) = O(log(1=�)), and the decision complexity increases by a multiplicative factor ofO �1=(
 � (
�)2)� = poly(1=�). Hence, the randomness, query and decision complexities of theveri�er are as claimed in Theorem 3.1Proof (of Theorem 3.2): For this purpose we use the ALMSS-Robust-PCPP{Verifierdescribed in this section. This veri�er is then transformed to one over the binary alphabet asindicated earlier in this section. We combine the robustness of the proof and input oracles by givingequal wights to both the oracles. This weighting may increase the query (and decision) complexityincrease by at most a factor of 2, and has no a�ect on any other parameter. Proposition 8.9 andLemma 8.12 then imply Theorem 3.2. .8.4 Linearity of encodingIn this section we point out that, for linear circuits (to be de�ned below), the mapping from anassignment to the corresponding PCP of proximity is linear. Throughout this section, \linear"means GF (2)-linear (yet, we will sometimes refer to F -linearity, for an extension �eld F of GF (2)).The main motivation to the current study is to derive linear codes satisfying local-testability andrelaxed local-decodability (i.e., Theorems 1.4 and 1.5, respectively). Speci�cally, the constructionspresented in Section 4 yield linear codes provided that the corresponding PCP of proximity is linearin the aforementioned sense.We call a circuit is linear if it is a conjunction of linear constraints. However, instead ofrepresenting this conjunction via AND gates, it is more convenient for us to work with circuits thathave multiple output gates, one for each linear constraint. That is:De�nition 8.13 A multi-output circuit is linear if all its internal gates are parity gates and aninput is accepted by it if and only if all output gates evaluate to zero.Proposition 8.14 If C is a linear circuit, then there is a linear transformation T mapping satis-fying assignments w of C to proof oracles T (w) such that the PCPP veri�er of Theorem 3.1 will,on input C, accept oracle (w; T (w)) with probability 1. Moreover, all the decision circuits producedby the veri�er, on input C, can be made linear (while maintaining the claimed decision complexity).A similar result is true for the PCPP veri�er of Theorem 3.2In the rest of this section, we provide a proof of Proposition 8.14, starting with an assignmentw that satis�es the linear circuit. We prove that the mapping from w to a proof-oracle is linearby reviewing our construction of this mapping and ensuring that all steps in this construction arelinear transformations.Phase I - Structured-CktSAT: In this phase (described in Section 6.1) we write down thevalues to all gates of the circuit and route them along the wrapped de Bruijn graph. Actually, wemake a few minor and straightforward modi�cations to De�nition 6.3: we allow multiple outputgates (rather than a single output gate) and require that each such gate evaluates to zero (ratherthan to 1).33 Also, here we deal with gate types that are linear (e.g., XOR), rather than arbitrary(e.g., AND and OR).33Recall that an input is accepted by the linear circuit if and only if all output gates evaluate to zero.78

Since all the circuit gates are linear functions of the input, the values on the wires leaving thezero-th layer of the well-structured circuit (i.e., the last two bits of the mapping A0 : f0; 1gN !f0; 1g4 in Section 6.1) are linear in the input (i.e., in w). As to Ai, i > 0, (and the �rst two bitsof A0) notice that it is obtained by permuting the values of the previous layer Ai�1 and settingsome wires to zero (if they are not needed in the routing (e.g. gates 3 and 4 in Figure 3)). Theseoperations are linear, and so all assignment functions are linear in the input.Phase II - Arithmetization: In this phase (described in Section 6.2) we extend the valuesgiven by Ai to an evaluation of a low-degree multivariate polynomial over some �nite �eld F thatis an extension �eld of GF (2) of degree f . Each value of Ai is four bits long (say b0; b1; b2; b3) andidenti�ed with the element b0e0 + b1e1 + b2e2 + b3e3, where e0; : : : ; ef�1 is a basis for F viewed asa vector space over GF (2). We view Ai as a function Ai : Hm ! F and construct a low-degreeextension ~Ai : Fm ! F of Ai by interpolation. on all inputs in Hm and use these values tointerpolate and evaluate ~Ai on all points in Fm. Notice that interpolation is F -linear and hencealso GF (2)-linear. We conclude that the values of ~Ai on all points in Fm is a linear transformationof the values of Ai. Since Ai is linear in the input assignment, so is ~Ai.Clari�cation: Many parts of our encoding (starting with ~Ai) consist of evaluations of multivariatepolynomials P (x) over Fm. The linearity we claim is not linearity in x (the free variables of thepolynomial). Rather, we claim the table of values fP (a) : a 2 Fmg is linear in the initial assignmentw, which may be viewed as the information encoded in this table. In contrast, throughout thissection, x is merely an index to this table. For example, in Phase II we showed the table f ~Ai(a) :a 2 Fmg is obtained by a linear transformation applied to the table fAi(a0) : a0 2 Hmg (but wecertainly do not claim ~Ai(a) is linear in a). That is, each ~Ai(a) is a linear combination of theAi(a0)'s.Phase III - The Constraint Polynomials: We now discuss the polynomials P (0)i;0 and P (1)i;1de�ned in Equation (3), and show their values are a linear transformation of the values of ~Ai.The �rst polynomial (i.e., P (0)i;0) is obtained by applying the univariate polynomial 0 de�ned inEquation 2 to each value of ~Ai (i.e., P (0)i;0 (x) = 0(~Ai(x))). By de�nition, 0 evaluates to zeroi� its input, when represented as a vector in GF (2)f , belongs to the linear space spanned byfe0; e1; e2; e3g. This polynomial de�nes a linear transformation, as claimed by the following lemma.Lemma 8.15 Let L be a GF(2)-linear subspace of F = GF (2f) and L(t) = Q�2L(t � �). Thenthe mapping L : F ! F is linear.Proof: We use the fact that for any integer i, the transformation t 7! t2i is linear; that is,(t+ t0)2i = t2i + t02i . Our main claim is that the polynomial L(t) can be written as Pi cit2i andhence is linear (being a sum of linear transformations). We prove this claim by induction on thedimension of L � GF (2)f . Indeed, for dim(L) = 0 (i.e., L = f0fg), it holds that L(t) = t and ourclaim follows. In the induction step, write L as L = L0 [f�+ L0g where L0 is some linear space ofdimension k�1 and � 2 LnL0. Clearly, L(t) = L0(t) � L0 (t+�). Using the inductive hypothesis
79

for L0 (and the linearity of t 7! t2j), we get L(t) = Xi ci � t2i! �0@Xj cj � (t+ �)2j1A= Xi ci � t2i! �0@Xj cj � �t2j + �2j�1A= Xi;j cicjt2it2j +Xi;j cicjt2i�2j= Xi c2i t2i+1 +Xi c0it2iwhere c0i =Pj cicj�2j and Pi 6=j cicjt2it2j = 2Pi<j cicjt2it2j = 0 (because F has characteristic 2).This completes the proof of the inductive claim.We now turn to the second polynomial, P (1)i;0 . Recall that P (1)i;0 (x) = 1(s; a; a0; a1), wheres = ~Ti(x), a = ~Ai(x) and aj = ~Ai+1(~�i;j(x)). It can be veri�ed that ~Ti(x) (which represents thegate type) is independent of the input w to the circuit, and by our previous discussion a; a0; a1are linear in the input w (to the circuit). Thus, it will su�ce to show that 0 is linear in itslast three inputs. When discussing Equation (3) we did not go into the speci�c construction ofthe polynomial 0 because only its functionality mattered, and we showed that there exists someconstant-degree polynomial that does the job. But for our current purposes (of showing linearity)we need to present some speci�c polynomial 0 that is linear (as an operator over GF (2)f) and hasthe desired properties needed by the veri�cation process. To do this, recall C is the set of allowablegates in the well-structured circuit, and so we de�ne �s0(z) to be the (minimal degree) uni-variatepolynomial of degree jCj that is 1 if z = s0 and is 0 if z 2 C n fs0g, and write 0 as 0(s; a; a0; a1) = Xs02C �s0(s) � 0s0(a; a0; a1) (8)Claim 8.16 For any s0 2 C that can occur as a gate in a well-structured circuit constructed from alinear circuit C, the polynomial 0s0(a; a0; a1) of Equation 8 can be written as a linear transformation(of (a; a0; a1)).Proof: Recall that the value of 0s0(a; a0; a1) is supposed to represent whether or not the fourleast signi�cant bits of the three inputs (denoted a0, a00 and a01) satisfy some condition. By in-specting De�nition 6.3, it can be veri�ed that (in our case) this condition is a linear one. That is, 0s0(a; a0; a1) = 0 if and only if the triplet (a0; a00; a01), viewed as a 12-bit vector over GF (2), belongsto some speci�c linear space Ls0 � GF (2)12.Recall that we may assume that a = 0f�4a0 (and similarly for a0 and a1), because this conditionis imposed by the constraint polynomial P (0)i;0 . Thus, we seek a polynomial (over F 3) such that ifeach of its three inputs belongs to Span(e0; : : : ; e3) then it will output 0 i� the inputs residein the linear space that is analogous to Ls0 ; that is, the input (a; a0; a1) should evaluate to 0 i�a0�a00�a01 2 Ls0 . To obtain this, we assume the existence of � 2 F such that multiplying an elementby � corresponds to a left cyclic shift by four positions (e.g., � � �0 � � � �f�1 = �4 � � � �f�1�0 � � � �3).Such an element exists for the standard representation of F . Using this element we can write 0s0 : F 3 ! F as 0s0(a; a0; a1) = Ls0 (�2a+ �a0 + a1)80

where Ls0 is the univariate polynomial that is zero i� its input is in Ls0 . Note that, for inputsin Span(e0; : : : ; e3), indeed 0s0(a; a0; a1) = 0 i� a0 � a00 � a01 2 Ls0 . By Lemma 8.15, Ls0 is linear.It follows that 0s0 is linear, because multiplication by a �xed element of F (i.e., �) is a linearoperation.Recall �s0(s) depends only on the circuit and not on its input (i.e., w). Thus, each summand of(8) is linear in w and hence the sum is itself linear in w. We conclude that the table of evaluationsof the polynomials given by Equation (3) is obtained by linear transformations applied to the inputto the circuit.Phase IV - The Sum-check Polynomials: In this phase (described by Equation (4)) we applya sequence of interpolations to previously constructed polynomials P (b)i;j . Each such interpolation isan F -linear transformation and hence also a GF(2)-linear one. Thus, the sequence of polynomialsP (b)i;j is obtained by a linear transformation applied to the input.Phase V - Bundling and Encoding: In this phase (described in Sections 8.2 and 8.3) weapply some cyclic shifts to the (values of the) sequence of l + 2l(m + 1) polynomials obtainedin the previous phases. Then we bundle the polynomials together, obtaining an alphabet of sizejF jl+2l(m+1). This bundling does not change the encoding (only the partitioning of the proof intosymbols) and hence is also a linear transformation. Finally, we apply an error correcting code toeach symbol in order to reduce the alphabet size (from jF jl+2l(m+1)) to binary, and this is also alinear transformation as long as the error correcting code is itself linear.The result of this shifting, bundling and encoding is the actual proof given to the (outer)veri�er of Theorem 3.1 (the veri�er of Theorem 3.2 is dealt with in a similar fashion). Notice thistransformation from l+2l(m+1) polynomials (each evaluated in F) to one proof (over the binaryalphabet) is linear, because all three parts of it are linear.Now we argue that all tests performed by the veri�er are linear and the decision complexityclaimed in Theorem 3.1 and Theorem 3.2 can be achieved by using small linear circuits. Thiscan be seen by inspecting the various tests described in Section 6.3, noticing that they all checkeither linear or F -linear conditions, and applying the general result of Strassen [Str73] showing thatany algebraic circuit that computes a linear function (as a formal polynomial) can be convertedinto a linear circuit with only a constant-factor increase in size. This completes the proof ofProposition 8.14.AcknowledgmentsWe are grateful to Avi Wigderson for collaborating with us at early stages of this research and toIrit Dinur for inspiring discussions at late stages of this research.

81

References[AGHP92] Alon, N., Goldreich, O., H�astad, J., and Peralta, R. Simple constructionsof almost k�wise independent random variables. Journal of Random Structures andAlgorithms 3, 3 (Fall 1992), 289{304.[ALM+98] Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. Proof veri�-cation and the hardness of approximation problems. Journal of the ACM 45, 3 (May1998), 501{555. (Preliminary Version in 33rd FOCS, 1992).[AS98] Arora, S., and Safra, S. Probabilistic checking of proofs: A new characterizationof NP. Journal of the ACM 45, 1 (Jan. 1998), 70{122. (Preliminary Version in 33rdFOCS, 1992).[BFLS91] Babai, L., Fortnow, L., Levin, L. A., and Szegedy, M. Checking computationsin polylogarithmic time. In Proc. 23rd ACM Symp. on Theory of Computing (NewOrleans, Louisiana, 6{8 May 1991), pp. 21{31.[Bar01] Barak, B. How to go beyond the black-box simulation barrier. In Proc. 42ndIEEE Symp. on Foundations of Comp. Science (Las Vegas, Nevada, 14{17 Oct. 2001),pp. 106{115.[BIKR02] Beimel, A., Ishai, Y., Kushilevitz, E., and Raymond, J. F. Breaking theO(n1=(2k�1)) barrier for information-theoretic private information retrieval. In Proc.43rd IEEE Symp. on Foundations of Comp. Science (Vancouver, British Columbia,Canada, 16{19 Nov. 2002), pp. 261{270.[BGS98] Bellare, M., Goldreich, O., and Sudan, M. Free bits, PCPs, andnonapproximability|towards tight results. SIAM Journal of Computing 27, 3 (June1998), 804{915. (Preliminary Version in 36th FOCS, 1995).[BGLR93] Bellare, M., Goldwasser, S., Lund, C., and Russell, A. E�cient probabilis-tically checkable proofs and applications to approximation. In Proc. 25th ACM Symp.on Theory of Computing (San Diego, California, 16{18 May 1993), pp. 294{304.[BGH+04a] Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., and Vadhan, S. Ro-bust PCPs of proximity, Shorter PCPs and Applications to Coding. ECCC TechnicalReport TR04-021, March 2004.[BGH+04b] Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., and Vadhan, S.Robust PCPs of proximity, Shorter PCPs and Applications to Coding. In Proc. 36thACM Symp. on Theory of Computing , (Chicago, Illinois, 13{15 June 2004), pp. 1{10.[BHR03] Ben-Sasson, E., Harsha, P., and Raskhodnikova, S. Some 3CNF propertiesare hard to test. In Proc. 35th ACM Symp. on Theory of Computing (San Diego,California, 9{11 June 2003), pp. 345{354.[BSVW03] Ben-Sasson, E., Sudan, M., Vadhan, S., and Wigderson, A. Randomness-e�cient low degree tests and short PCPs via epsilon-biased sets. In Proc. 35th ACMSymp. on Theory of Computing (San Diego, California, 9{11 June 2003), pp. 612{621.82

[BLR93] Blum, M., Luby, M., and Rubinfeld, R. Self-testing/correcting with applicationsto numerical problems. Journal of Computer and System Sciences 47, 3 (Dec. 1993),549{595. (Preliminary Version in 22nd STOC, 1990).[BOT02] Bogdanov, A., Obata, K., and Trevisan, L. A lower bound for testing 3-colorability in bounded-degree graphs. In Proc. 43rd IEEE Symp. on Foundationsof Comp. Science (Vancouver, Canada, 16{19 Nov. 2002), pp. 93{102.[BT04] Bogdanov, A., and Trevisan, L. Lower bounds for testing bipartiteness in densegraphs. In Proc. 19th IEEE Conference on Computational Complexity (Amherst, Mas-sachusetts, 21{24 June 2004), pp. 75{81.[BdW04] Buhrman, H., and de Wolf, R. On relaxed locally decodable codes. Unpublishedmanuscript, July 2004.[CGH98] Canetti, R., Goldreich, O., and Halevi, S. The random oracle methodology,revisited. In Proc. 30th ACM Symp. on Theory of Computing (Dallas, Texas, 23{26 May 1998), pp. 209{218.[Coo88] Cook, S. A. Short propositional formulas represent nondeterministic computations.Information Processing Letters 26, 5 (Jan. 1988), 269{270.[DJK+02] Deshpande, A., Jain, R., Kavitha, T., Radhakrishnan, J., and Lokam, S. V.Better lower bounds for locally decodable codes. In Proc. 17th IEEE Conference onComputational Complexity (Montr�eal, Qu�ebec, Canada, 21{24 May 2002), pp. 184{193.[DR04] Dinur, I., and Reingold, O. Assignment-testers: Towards a combinatorial proofof the PCP-Theorem. To appear in Proc. 45rd IEEE Symp. on Foundations of Comp.Science (Rome, Italy, 17{19 Oct. 2004).[EKR99] Erg�un, F., Kumar, R., and Rubinfeld, R. Fast approximate PCPs. In Proc. 31stACM Symp. on Theory of Computing (Atlanta, Georgia, 1{4 May 1999), pp. 41{50.[FGL+96] Feige, U., Goldwasser, S., Lov�asz, L., Safra, S., and Szegedy, M. Interactiveproofs and the hardness of approximating cliques. Journal of the ACM 43, 2 (Mar.1996), 268{292. (Preliminary version in 32nd FOCS, 1991).[FRS94] Fortnow, L., Rompel, J., and Sipser, M. On the power of multi-prover interactiveprotocols. Theoretical Computer Science 134, 2 (Nov. 1994), 545{557. (PreliminaryVersion in 3rd IEEE Symp. on Structural Complexity, 1988).[Gol97] Goldreich, O. A sample of samplers { a computational perspective on sampling.Tech. Rep. TR97-020, Electronic Colloquium on Computational Complexity, 1997.[GGR98] Goldreich, O., Goldwasser, S., and Ron, D. Property testing and its connectionto learning and approximation. Journal of the ACM 45, 4 (July 1998), 653{750.(Preliminary Version in 37th FOCS, 1996).[GR02] Goldreich, O., and Ron, D. Property testing in bounded degree graphs. Algorith-mica 32, 2 (Jan. 2002), 302{343. (Preliminary Version in 29th STOC, 1997).83

[GS00] Goldreich, O., and Safra, S. A combinatorial consistency lemma with applicationto proving the PCP theorem. SIAM Journal of Computing 29, 4 (2000), 1132{1154.(Preliminary Version in RANDOM, 1997).[GS02] Goldreich, O., and Sudan, M. Locally testable codes and PCPs of almost linearlength. In Proc. 43rd IEEE Symp. on Foundations of Comp. Science (Vancouver,Canada, 16{19 Nov. 2002), pp. 13{22. (See ECCC Report TR02-050, 2002).[GW97] Goldreich, O., and Wigderson, A. Tiny families of functions with random prop-erties: A quality{size trade{o� for hashing. Journal of Random structures and Algo-rithms 11, 4 (Dec. 1997), 315{343. (Preliminary Version in 26th STOC, 1994).[GLST98] Guruswami, V., Lewin, D., Sudan, M., and Trevisan, L. A tight characteriza-tion of NP with 3-query PCPs. In Proc. 39th IEEE Symp. on Foundations of Comp.Science (Palo Alto, California, 8{11 Nov. 1998), pp. 18{27.[HS00] Harsha, P., and Sudan, M. Small PCPs with low query complexity. ComputationalComplexity 9, 3{4 (Dec. 2000), 157{201. (Preliminary Version in 18th STACS, 2001).[H�as01] H�astad, J. Some optimal inapproximability results. Journal of the ACM 48, 4 (July2001), 798{859. (Preliminary Version in 29th STOC, 1997).[HS66] Hennie, F. C., and Stearns, R. E. Two-tape simulation of multitape Turingmachines. Journal of the ACM 13 , 4 (Oct. 1966), 533{546.[KT00] Katz, J., and Trevisan, L. On the e�ciency of local decoding procedures forerror-correcting codes. In Proc. 32nd ACM Symp. on Theory of Computing (Portland,Oregon, 21{23 May 2000), pp. 80{86.[KdW03] Kerenidis, I., and de Wolf, R. Exponential lower bound for 2-query locallydecodable codes via a quantum argument. In Proc. 35th ACM Symp. on Theory ofComputing (San Diego, California, 9{11 June 2003), pp. 106{115.[Kil92] Kilian, J. A note on e�cient zero-knowledge proofs and arguments (extendedabstract). In Proc. 24th ACM Symp. on Theory of Computing (Victoria, BritishColumbia, Canada, 4{6 May 1992), pp. 723{732.[LS92] Lapidot, D., and Shamir, A. Fully parallelized multi prover protocols for NEXP-time (extended abstract). In Proc. 32nd IEEE Symp. on Foundations of Comp. Science(San Juan, Puerto Rico, 1{4 Oct. 1991), pp. 13{18.[Lei92] Leighton, F. T. Introduction to Parallel Algorithms and Architectures. MorganKaufmann Publishers, Inc., San Mateo, CA, 1992.[LFKN92] Lund, C., Fortnow, L., Karloff, H., and Nisan, N. Algebraic methods forinteractive proof systems. In Proc. 31st IEEE Symp. on Foundations of Comp. Science(St. Louis, Missouri, 22{24 Oct. 1990), pp. 2{10.[Mic00] Micali, S. Computationally sound proofs. SIAM Journal of Computing 30, 4 (2000),1253{1298. (Preliminary Version in 35th FOCS, 1994).84

[NN90] Naor, J., and Naor, M. Small-bias probability spaces: E�cient constructionsand applications. In Proc. 22nd ACM Symp. on Theory of Computing (Baltimore,Maryland, 4{16 May 1990), pp. 213{223.[PF79] Pippenger, N., and Fischer, M. J. Relations among complexity measures. Journalof the ACM 26, 2 (Apr. 1979), 361{381.[PS94] Polishchuk, A., and Spielman, D. A. Nearly-linear size holographic proofs. InProc. 26th ACM Symp. on Theory of Computing (Montr�eal, Qu�ebec, Canada, 23{25May 1994), pp. 194{203.[Raz98] Raz, R. A parallel repetition theorem. SIAM Journal of Computing 27, 3 (June1998), 763{803. (Preliminary Version in 27th STOC, 1995).[RS96] Rubinfeld, R., and Sudan, M. Robust characterizations of polynomials with appli-cations to program testing. SIAM Journal of Computing 25, 2 (Apr. 1996), 252{271.(Preliminary Version in 23rd STOC, 1991 and 3rd SODA, 1992).[ST00] Samorodnitsky, A., and Trevisan, L. A PCP characterization of NP with optimalamortized query complexity. In Proc. 32nd ACM Symp. on Theory of Computing(Portland, Oregon, 21{23 May 2000), pp. 191{199.[Sch77] Sch�onhage, A. Schnelle multiplikation von polynomen �uber K�orpern der charakter-istik 2 (German). Acta Informatica 7, 4 (1977), 395{398.[SS71] Sch�onhage, A., and Strassen, V. Schnelle multiplikation gro�er zahlen (German).Computing 7, 3{4 (1971), 281{292.[Spi95] Spielman, D. A. Computationally E�cient Error-Correcting Codes and HolographicProofs. PhD thesis, Massachusetts Institute of Technology, June 1995.[Spi96] Spielman, D. Linear-time encodable and decodable error-correcting codes. IEEETransactions on Information Theory 42, 6 (Nov. 1996), 1723{1732. (Preliminary Ver-sion in 27th STOC, 1995).[Str73] Strassen, V. Vermeidung von Divisionen (German). J. Reine Angew. Math., 264(1973), 184{202.[Sze99] Szegedy, M. Many-valued logics and holographic proofs. In Proc. 26th InternationalColloquium on Automata, Languages and Programming (ICALP) (Prague, Czech Re-public, 11{15 July 1999), J. Wiedermann, P. van Emde Boas, and M. Nielsen, Eds.,vol. 1644 of Lecture Notes in Computer Science, Springer-Verlag, pp. 676{686.

85

Part IIIAppendicesA Hadamard-code-based PCP of proximityIn this section we note that the Hadamard-code-based inner veri�er from Arora et al. [ALM+98]can be converted in to a PCP of proximity. Recall that the inner veri�er of [ALM+98] accessesO(1) input oracles, where the i-th oracle is supposed to provide the Hadamard encoding of somestring wi, and veri�es that their concatenation satis�es some given circuit C.Here we simplify this veri�er to work with a single string w and the veri�er accesses a singleinput oracle that represents this string itself (not some encoding of it), and veri�es that w is closeto an assignment acceptable by the circuit C given as explicit input.Theorem A.1 There exists a constant �0 > 0 such that there exists a PCP of proximity forCircuit Value (for circuits of size n) with randomness complexity O(n2), query complexity O(1),perfect completeness, soundness error 1 � �, and proximity parameter 5� for any � � �0. That is,inputs that are �-far from satisfying the circuit are rejected with probability at least min(�; �0)=5.Notice that we do not claim robustness of this PCP of proximity. This is because we don't intend touse this veri�er (or any veri�er derived from it) as the outer veri�er during composition. However,this veri�er is robust (in a trivial sense). Indeed, any PCP of proximity with O(1) query complexityis trivially �-robust for some constant � > 0 (since the relative distance between two query patternsis lower-bounded by the inverse of number of bits queried).Proof: Let V denote the claimed veri�er. We �rst list the oracles used by V , then we describe thetests that V performs, and �nally we will verify that V 's complexities are as claimed and analyzeits performance (most notably its soundness and proximity).Oracles. Let C be a circuit with n gates on m input bits. The veri�er accesses an inputoracle W : [m] ! f0; 1g (representing a string w 2 f0; 1gm), and a proof oracle � = (A;B), withA : f0; 1gn ! f0; 1g and B : f0; 1gn�n ! f0; 1g.To motivate the veri�er's tests, we describe what is expected from the oracles in the \com-pleteness" case, i.e., when C(w) = 1. The input oracle, by de�nition, gives the string w, i.e.,W [i] = wi. Now let z 2 f0; 1gn be the string of values of all the gates of the circuit C (includingthe input, the internal gates, and the output gate(s)). W.l.o.g., assume z = w � y, where y rep-resents the values assumed for internal gates. The oracle A is expected to give the values of alllinear functions at z (over GF(2)); and the oracle B is supposed to give the value of all quadraticfunctions at z. More precisely A = A[x]x2f0;1gn is expected to be A[x] =Pni=1 xizi = xT z (wherex and z are being thought of as column vectors). Similarly, B = B[M]M2f0;1gn�n is expected to beB[M] =Pi;jMijzizj = zTMz (where M is an n�n matrix). In order to verify that w satis�es C,the veri�er will verify that A and B have indeed been constructed according to some string z asabove, that z represents an accepting computation of the circuit, and �nally that A is the encodingof some string w0 � y where w0 is close to the string w given by the input oracle W .Tests. Given the circuit C, the veri�er �rst constructs polynomials P1(z); : : : ; Pn(z) as follows.Viewing the variables fzig as representing the values at the individual gates of the circuit C (withz1; : : : ; zm being the input gates), the polynomial Pi(z) is the quadratic polynomial (over GF(2))86

expressing the constraint imposed by the i'th gate of the circuit on an accepting computation. Forexample:Pi(z) = 8>>>>>><>>>>>>:
zi � zjzk if the i-th gate is an AND gate with inputs from gates j and k.zi � zj � zk + zjzk if the i-th gate is an OR gate with inputs from gates j and k.zi � (1� zj) if the i-th gate is a NOT gate with input from gate j.zi � (zj + zk) if the i-th gate is a PARITY gate with inputs from gates j and k.1� zj if the i-th gate is an output gate with input from gate j.0 if the i-th gate is an input gate (i.e. i � m).Note that z = w � y re
ects the computation of C on an acceptable input w i� Pi(z) = 0 for everyi 2 [n]. The veri�er conducts the following tests:Codeword tests: These tests refer to (A;B) being a valid encoding of some string z 2 f0; 1gn. Thatis, these tests check that both A and B are linear functions, and that B is consistent withA. In the latter check, the veri�er employs a self-correction procedure (cf. [BLR93]) to theoracle B. (There is no need to employ self-correction to A, because it is queried at randomlocations.)Linearity of A: Pick x1, x2 uniformly at random from f0; 1gn and verify that A[x1 + x2] =A[x1] +A[x2].Linearity of B: Pick M1, M2 uniformly at random from f0; 1gn�n and verify that B[M1 +M2] = B[M1] +B[M2].Consistency of A and B: Pick x1; x2 uniformly at random from f0; 1gn andM uniformly fromf0; 1gn�n and verify that B[M + x1xT2]�B[M] = A[x1]A[x2].Circuit test: This test checks that the string z encoded in (A;B) represents an accepting compu-tation of C; that is, that Pi(z) = 0 for every i 2 [n]. The test checks that a random linearcombination of the Pi's evaluates to 0, while employing self-correction to A and B.Pick �1; : : : ; �n 2 f0; 1g uniformly and independently and letPnk=1 �kPk(z) = c0+Pi `izi+Pi;j Qi;jzizj . Pick x 2 f0; 1gn and M 2 f0; 1gn�n uniformly at random. Verify that c0 +(A[x+ `]�A[x]) + (B[M +Q]�B[M]) = 0.Proximity test: This test checks that the m-bit long pre�x of the string z, encoded in A, matches(or is close to) the input oracle W , while employing self-correction to A.Pick j 2 [m] and x 2 f0; 1gn uniformly. Let ej 2 f0; 1gn denote the vector that is 1 in thej-th coordinate and 0 everywhere else. Verify that W [j] = A[x+ ej]�A[x].The veri�er accepts if all the tests above accept, else it rejects.Resources. The veri�er uses O(n2) random bits and makes O(1) binary queries.Completeness. It is straightforward to see that if w, the string given by W satis�es C, thenletting z be the set of values of the gates of C and letting A[x] = xT z and B[M] = zTMz willsatisfy all tests above. Thus the veri�er has perfect completeness.Soundness (with proximity). It follows directly from the analysis of [ALM+98] that thereexists a �0 > 0 such that for every � � �0, if the Codeword tests and the Circuit test above acceptwith probability at least 1�� then the oracle A is 2�-close to the Hadamard encoding of some stringz = w0 � y such that C(w0) accepts. Now we augment this soundness with a proximity condition.87

Suppose the veri�er also accepts the Proximity test with probability at least 1��. Then we have thatwj 6= A[x+ej]�A[x] with probability at most �. Furthermore the events A[x+ej] 6= (x+ej)T z, andA[x] 6= xT z happen with probability at most 2� each. Thus, with probability at least 1� 5� (overthe possible choices of j and x), both wj = A[x+ ej]�A[x] and A[x+ ej]�A[x] = (x+ ej)T z�xT zhold. Since (x+ ej)T z�xT z = eTj z = zj = w0j , it follows that, with probability at least 1�5� (overthe choices of j), wj = w0j . In other words, the string w represented by the oracle W is at distanceat most 5� away from some string w0 that is accepted by the circuit C.B Randomness-e�cient low-degree tests and the sampling lemmaFollowing [BSVW03], our construction makes heavy use of small-bias spaces [NN90] to save onrandomness when choosing random lines. For a �eld F and parameters m 2 Z+ and � > 0, werequire a set S � Fm that is �-biased (with respect to the additive group of Fm). Rather thande�ne small-bias spaces here, we simply state the properties we need. (See, e.g., [BSVW03] forde�nitions and background on small-bias spaces.)Lemma B.1 For every F of characteristic 2, m 2 Z+, and � > 0, there is an explicit constructionof a �-biased set S � Fm of size at most (log jFmj)=�2 [AGHP92].We now discuss the properties of such sets that we will use.Expanding Cayley Graphs. �-biased sets are very useful pseudorandom sets in algebraicapplications, and this is due in part to the expansion properties of the Cayley graphs they generate:Lemma B.2 If S � Fm is �-biased and we let GS be the graph with vertex set Fm and edge setf(x; x + s) : x 2 Fm; s 2 Sg, then all the nontrivial eigenvalues of GS have absolute value at most�jSj.Randomness-E�cient Line Samplers. In [BSVW03], Lemma B.2 was used to prove thefollowing sampling lemma. This lemma says that if one wants to estimate the density of a setB � Fm using lines in Fm as the sample sets, one does not need to pick a random line in Fmwhich costs 2 log jFmj random bits. A pseudorandom line whose slope comes from an �-biased setwill do nearly as well, and the randomness is only (1 + o(1)) � log jFmj. In what follows lx;y is theline passing through point x in direction y, formally: lx;y = fx+ ty : t 2 FgLemma B.3 ([BSVW03], Sampling Lemma 4.3) Suppose S � Fm is �-biased. Then, for anyB � Fm of density � = jBj=jFmj, and any � > 0,Prx2Fm;y2S ����� jlx;y \Bjjlx;yj � ����� > �� � � 1jF j + �� � ��2 :Randomness-E�cient Low Degree Tests Ben-Sasson et al. [BSVW03] use the randomness-e�cient Sampling Lemma B.3 to obtain randomness e�cient low degree tests, by performing a\line vs. point" test only for pseudorandom lines with a direction y coming from a small �-biasedset. That is for a set S � Fm, we consider lines of the form lx;y(t) = x+ ty, for x 2 Fm and y 2 S,and let L be the set of all such lines, where each line is parametrized in a canonical way.Then for functions f : Fm ! F , and g : L ! Pd, where Pd is the set of univariate polynomialsof degree at most d over F , we let LDTf;gS;d be the test that uniformly selects l R L , flx;y : x 288

Fm; y 2 Sg and t 2 F , and accepts i� g(l)(t) = f(l(t)). That is, the value of the degree d univariatepolynomial g(l) at point t equals the value of f at l(t). We quote their main theorem and will useit in our constructions.Theorem B.4 ([BSVW03], Theorem 4.1) There exists a universal constant � > 0 such thatthe following holds. Let d � jF j=3;m � �jF j= log jF j; S � Fm be a �-biased set for � � �=(m log jF j),and � � �. Then, for every f : Fm ! F and g : L ! Pd such that f is at least 4�-far from, anypolynomial of degree at most md, we have the following:Pr[LDTf;gS;d = rej] > �:

89

