
Uniform Generation of NP-witnessesusing an NP-oracleMihir Bellare� Oded Goldreichy Erez PetrankzMay 1998AbstractA Uniform Generation procedure for NP is an algorithm which given any input in a �xedNP-language, outputs a uniformly distributed NP-witness for membership of the input in thelanguage. We present a Uniform Generation procedure for NP that runs in probabilisticpolynomial-time with an NP-oracle. This improves upon results of Jerrum, Valiant and Vazi-rani, which either require a �P2 oracle or obtain only almost uniform generation. Our procedureutilizes ideas originating in the works of Sipser, Stockmeyer, and Jerrum, Valiant and Vazirani.

�Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,California 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Supported inpart by NSF CAREER Award CCR-9624439 and a 1996 Packard Foundation Fellowship in Science and Engineering.yDepartment of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.E-Mail: oded@wisdom.weizmann.ac.il. Work done while being on a sabbatical leave at MIT.zE-Mail: erez@dimacs.rutgers.edu. 1

1 IntroductionFix an NP language L and an NP-relation R de�ning it. (Thus, L = fx j 9w such that R(x; w) =1 g, it being understood that R is polynomial time computable and R(x; w) can equal 1 only ifjwj � p(jxj), for some �xed polynomial p.) We consider the following problem:Uniform Generation of NP-witnessesGiven: x 2 LOutput: A string w uniformly distributed in Rx def= f w j R(x; w) = 1 g.1This was �rst considered by Jerrum, Valiant and Vazirani [15], who showed that it could be ac-complished in probabilistic polynomial time given access to a �P2 oracle.The same paper also considered a weaker version of the problem, called \almost uniform gen-eration". Here, the requirement is that the output distribution of the algorithm be statisticallyclose to the uniform distribution on Rx. (To be speci�c, let's say the distance should be exponen-tially small in jxj.) They showed that this could be accomplished more e�ciently, in probabilistic,polynomial time given access to an NP-oracle.In this paper we provide a procedure that has the \best of both worlds:" it accomplishes uniformgeneration of NP-witnesses in probabilistic polynomial time with access to an NP oracle.Note it is not hard to see that any algorithm for uniform (or almost uniform) generation ofNP-witnesses must be probabilistic and must have at least NP power.Jerrum et. al. [15] obtained their results by reducing uniform generation to the problem ofapproximate counting. The latter problem can be solved using the \hashing paradigm" introducedby Sipser [19] and employed in previous works on this problem [20, 15] (see Section 4.1 for a morecomplete description of the history.). In contrast, we directly apply the \hashing paradigm" to theproblem of uniform generation, rather than utilizing the above reduction.Our investigation of the process of uniform generation is to some extent the outcome of ouruses for it. Over the last few years, there has been a body of work in the area of interactiveproof systems and knowledge complexity that has exploited uniform generation to develop e�cientdecision procedures for certain languages based on their interactive proof or knowledge complexity[5, 11, 3, 10]. The complexity of the procedure is the crucial issue in these works, and it dependslargely on the complexity of uniform generation. We survey these applications in Section 4.2. Inone case that we note, our new procedure leads to an improved result, but it turns out that forthe bulk of them, almost uniform generation su�ces. Yet, even in these cases, something is gained:conceptually, and in terms of analysis, it is simpler to use uniform generation. One can now do sowithout losing in the complexity.2 PreliminariesWe begin with some general notation, then describe the most basic versions of the uniform gener-ation problems, then describe extensions and enhancements, and �nally some tools.2.1 Notation and conventionsIf S is a probability space then x R S denotes the operation of selecting an element uniformlyat random according to S. If S is a set we let Unif(S) denote the probability space which puts a1 An algorithm for this problem is allowed, for technical reasons, to fail with some small probability, and thisrefers only to its output given that it did not fail. 2

uniform distribution on S. We typically use the shorthand x R S for x R Unif(S). If S1; S2 areprobability spaces then their statistical di�erence iskS1 � S2k = 12Xw ���Pr h x = w : x R S1 i� Pr h x = w : x R S2 i��� :If A is a probabilistic algorithm then we denote by A(x; y; � � � ;R) the output of A on inputs x; y; : : :and coin tosses R. We denote by A(x; y; � � �) the probability space that assigns to each possibleoutput the probability it is generated, taken over the choice of R. We allow A to output a specialsymbol ? to indicate \failure." If f is a real-valued function of the inputs, We say A has failureprobability at most f(�) |where f is a real-valued function of the inputs| ifPr h o = ? : o R A(x; y; : : :) i � f(x; y; : : :) ;for all inputs x; y; : : :. We are interested in the distribution over A's outputs when it does not fail.We let Succ(A; x; y; : : :) denote the set of all random tapes R for which A(x; y; : : : ;R) 6= ?.De�nition 2.1 If A(�; �; : : :) is a probabilistic algorith, we let Asucc(x; y; : : :) be the probabilityspace in which strings are assigned the probability of appearing as outputs ofA(x; y; : : :) conditionedon the algorithm not failing; in other words, the probability of a string w under Asucc(x; y; : : :) isPr hA(x; y; : : : ;R) = w : R R Succ(A; x; y; : : :) i :An algorithm can take an oracle, to emphasize which we might call it an oracle algorithm. Tosupply an algorithm with an NP oracle means to supply it with an oracle for some NP-completelanguage, which to be speci�c we �x to be SAT.NP-relations. Let R(�; �) be a binary relation. We say that R is anNP-relation if it is polynomialtime computable and, moreover, there exists a polynomial p such that R(x; w) = 1 implies jwj �p(jxj). For any x 2 f0; 1g� we let Rx = f w 2 f0; 1g� j R(x; w) = 1 g denote the witness set of x.We let LR = f x 2 f0; 1g� j Rx 6= ; g denote the language de�ned by R. Note that a language L isin NP i� there exists an NP-relation R such that L = LR. We say that R is NP-complete if LRis NP-complete.2.2 Uniform GenerationThe basic problem, as considered by [15], �xes some NP-relation R and seeks a probabilisticalgorithm that on input x 2 LR outputs a string distributed uniformly in Rx. For technical reasonswe allow algorithm to fail some fraction of the time. It will indicate this by outputting somespecial symbol ?. Thus, the actual requirement is that the output distribution be uniform over Rxconditioned on the event that the output not be the special failure symbol ?.De�nition 2.2 A generator for an NP-relation R is a (possibly probabilistic, oracle) algorithm Gthat takes as input a string x 2 LR. It outputs either an element w 2 Rx, or the special symbol ?indicating failure, and is required to have failure probability at most c for some constant c strictlyless than 1.De�nition 2.3 Let G be a generator for NP-relation R. We say that G is a uniform generatorfor R if for every x 2 LR we have Gsucc(R; x) = Unif(Rx).In other words, conditioned on the event that G does not fail, its output is distributed uniformlyin Rx. (Refer to De�nition 2.1 for the notation Gsucc.)Our results pertain to uniform generation. For the sake of discussing the history in the area,however, we also de�ne the weaker notion of almost uniform generation.3

De�nition 2.4 Let �: N! [0; 1] and let G be a generator forNP. We say that G is a �(�)-uniformgenerator for R if for every x 2 LR we havekGsucc(x)� Unif(Rx)k � �(jxj) :If �(�) � 2�(�) we call G an almost uniform generator.Note a 0-uniform generator for R is a uniform generator for R.2.3 Extensions and variationsAbove we have described the most basic form of the problem. For applications, we often wantadditional properties. Since they are easily obtainable from the basic procedures, however, wemake them the subject only of these remarks.Lowering the failure probability. The �rst concern is the failure probability, which inapplications we often need to be much lower than a constant. Standard error reduction techniqueswork. Namely, given a �(�)-uniform generator U1 for R and a security parameter k we can builda �(�)-uniform generator U2 for R with failure probability f(k) = 2�k, and running time k timesthat of the original generator. Just repeat the execution of the original generator (on input x),each repetition with new coins, until some execution yields a non ? output, or we have exceededk executions. In the former case output whatever was obtained, and in the latter output ?. It iseasy to see this yields a �(�)-uniform generator with failure probability 2�k.Universal generators. Another issue is that in applications we often need the uniform genera-tion ability for not one, but many NP-relations, these being determined in some dynamic way, sayvia another algorithm. For this reason, we consider a slightly more general problem. We will not�x R, but provide it as input to the uniform generator. We will denote by hRi a \description" of R,meaning, speci�cally, a deterministic algorithm M that on input x; w, halts in poly(jxj+ jwj) stepswith output R(x; w). The generator is given hRi as input and must then perform like a generatorfor R. We call such a generator universal.For notational simplicity we view R as �xed in our constructions. However here, as with allknown constructions of uniform or �(�)-uniform generators, it is easy to see that the constructioncan work just as well if R is an input and not �xed, meaning the construction extends to one of auniversal generator.If one does not want to go back to the proof, here is a general reduction of universal generationto generation for a �xed NP relation. Let U be a universal NP relation, namely U((M;x; 1t); y)is 1 i� M(x; y) halts within t steps with output 1. Let G be a uniform generator for U . Then onecan get a universal generator via G, by running G on input (hRi; x; 1t) to generate uniformly inRx, where t is an appropriate time bound.Separating parameters. A more minor point is that the function �(�) which measures thequality of a �(�)-uniform generator is viewed as a function of the length of x. We can also make ita function of an independent security parameter k, so that for a given x, even a short one, we canget a distribution closer and closer to Unif(Rx) by using larger and larger values of k. We will notdo this explicitly here. 4

2.4 HashingLet H(n;m; t) denote a collection of t-wise independent hash functions of n bits to m bits. Thismeans that for any y1; : : : ; yt 2 f0; 1gm and any distinct x1; : : : ; xt 2 f0; 1gn we havePr h h(x1) = y1 ^ : : : ^ h(xt) = yt : h R H(n;m; t) i = 2�mt :To be concrete, we can use an implementation based on degree t� 1 polynomials over a �nite �eld.A hash function h in the family is described by a sequence (a0; : : : ; at�1) of elements in the �nite�eld F = GF(2max(n;m)). The function h takes input x 2 f0; 1gn, interprets it as an element of Funder some �xed embedding of f0; 1gn in F , computesPt�1j=0 ajxj in F , and outputs the �rstm bitsof the result. The distribution over H(n;m; t) is that induced by a random choice of (a0; : : : ; at�1).Note functions have description size O(tmax(n;m)) = poly(t; n;m), are poly(n;m; t) time com-putable, and can be identi�ed from their description, properties we will need in the constructions.For � 2 f0; 1gm we let h�1(�) = f y 2 f0; 1gn j h(y) = � g.2.5 Coin tossingSince we are interested in picking elements uniformly from arbitrary sized sets we must look a littlemore closely at how coin tossing is modeled and achieved. The standard model for probabilisticalgorithms allows algorithms to toss coins, namely the primitive operation is to be able to pick arandom bit. But what if we want to pick an element at random out of a set of size three, eg. f1; 2; 3g?In fact, a coin tossing primitive does not allow one to always halt in polynomial time with outputuniformly distributed in a set of size three. But we can take advantage of the fact that we areallowed to fail with a small probability. It is easy to see that there is a procedure C which runs intime poly(k), has Csucc = Unif(f1; 2; 3g), and failure probability at most 2�k . This generalizes toany polynomial sized set which is explicitly given. Thus we will assume in the following that we canpick uniformly at random from any explicitly given polynomial sized set, with the understandingthat the sum of the accumulated errors can be made small and included in the bound on the overallfailure probability of the algorithm.Notice this indicates that the need to have a failure probability in a uniform generation processis inherent from the model of coin tossing.3 The procedureThe goal of this section is to establish the following:Theorem 3.1 Let R be an NP-relation. Then there is a uniform generator for R which is imple-mentable in probabilistic, polynomial time with an NP-oracle.We will now prove this theorem. Fix an NP-relation R. We let n = jxj and assume Rx � f0; 1gn,meaning all witnesses have the same length, and this is the length of the input. (This is withoutloss of generality: it can be achieved by suitable padding.) Below, we begin by describing somefacts about hash function induced partitions of Rx which guide the choice of parameters in ourprocedure. The high level procedure is then discussed, and following that we explain how itsconstituent subroutines are implemented.3.1 PartitionsFor h: f0; 1gn! f0; 1gm, x 2 LR and � 2 f0; 1gm we de�neRx;h;� = f y 2 Rx j h(y) = � g = h�1(�) \ Rx :5

Namely, the set of pre-images of � under h that fall in Rx. As we range over � 2 f0; 1gm (withx; h �xed) these sets partition Rx. We call them the cells of the partition. Our uniform generationprocedure will utilize properties of this partition. To this end we make the following:De�nition 3.2 We say that a map h: f0; 1gn! f0; 1gm makes small cells in Rx ifjRx;h;�j < 2n2 for all � 2 f0; 1gm.We say it makes non-trivial cells in Rx ifjRx;h;�j � n2=2 for all � 2 f0; 1gm.If h is drawn at random from H(n;m; t) for t � 1, then the expected size of a cell Rx;h;� is jRxj=2m,for any � 2 f0; 1gm. We would like the partition to be \well balanced," meaning all cells are aboutthe expected size. (Speci�cally, between 1=2 and 3=2 of the expected size.) The following lemmaupper bounds the chance that the partition of Rx induced by a random t-wise independent hashfunction is not well balanced, as a function of jRxj; m; t.Lemma 3.3 Assume Rx � f0; 1gn. Let m be an integer, t � 4 an even integer, and let � =t2m=jRxj. ThenPr � 9� 2 f0; 1gm such that jRx;h;�j < jRxj2m+1 or jRx;h;�j > 3jRxj2m+1 : h R H(n;m; t) �< 2m+3 � [4�(1 + �)]t=2 :The proof uses standard t-wise independence techniques and can be found in Appendix A. The goalof our procedure will be to �nd h that always makes small cells in Rx, and with high probabilitymakes non-trivial cells. The latter will exploit the above lemma by choosing appropriate values ofm; t to make small the probability that the partition is not well balanced. Speci�cally, the nextlemma shows a choice of parameters which reduce the probability of getting a partition whose sizedeviates signi�cantly from n2.Lemma 3.4 Assume Rx � f0; 1gn and jRxj > 2n2. Let i = log2 jRxj and ` = 2 log2 n and assumethese are integers. Let m = i� ` and t = n and assume t is even and at least 4. ThenPr h 9� 2 f0; 1gm such that jRx;h;�j < n2=2 or jRx;h;�j > 3n2=2 : h R H(n;m; t) i < 0:1 :Proof: Notice the choice of parameters guarantees that 2` = n2 and 2i = jRxj and 2m = 2i=2` =jRxj=n2 and m > 0. Apply Lemma 3.3. We have jRxj=2m+1 = n2=2 and � = t2m=jRxj = t=n2 =1=n which gives usPr h 9� 2 f0; 1gm such that jRx;h;�j < n2=2 or jRx;h;�j > 3n2=2 : h R H(n;m; t) i< 2m+3 � � 4n �1 + 1n��n=2� 2n+3 � �8n�n=2But this is at most 0:1 for large enough n.This lemma guides the choice of 2n2 as the value based on which the following procedure \pivots."6

3.2 High level procedureThe following generator G takes as input x 2 LR. Recall that Rx � f0; 1gn. Let ` def= 2dlog2 ne.We describe the algorithm at a high level, and later explain how exactly the individual steps canbe implemented in probabilistic polynomial time with an NP oracle.Algorithm G(x)1. If jRxj � 2n2 then compute a listing y1; : : : ; ys of the members of the set Rx, select j at randomfrom f1; : : : ; sg, output yj , and halt. Else go on to the next step. // Lemma 3.5 indicates how,in polynomial time with an NP-oracle, to test the size of Rx and obtain the set when its size is at most2n2.2. Find an i 2 f`; : : : ; ng and a h 2 H(n; i� `; n) such that� h makes small cells in Rx� With probability at least 0:9 it is the case that h makes non-trivial cells in Rx.// See De�nition 3.2 for the meaning of the terms. The probability of 0:9 is over the choices of theprocedure. See Lemma 3.6 for how to do this in the desired complexity.3. Select � at random from f0; 1gi�` and compute a listing y1; : : : ; ys of the member of the setRx;h;�. // Since h makes small cells in Rx we know that 0 � s � 2n2. See Lemma 3.7 for how to dothis in the desired complexity.4. Pick j at random from f1; : : : ; 2n2g. If j � s output yj and halt, else output ? and halt.In the next subsection we will prove the above mentioned lemmas which show how to implementthe above steps in probabilistic, polynomial time with an NP oracle. Then in Section 3.4 we willconclude the proof of Theorem 3.1 by showing that G is a uniform generator for R.3.3 Implementation of subroutinesTo simplify the exposition we assume n2 = 2` (rather than ` = 2dlog2 ne) and also that log2 jRxj isan integer (meaning jRxj is a power of two). A more careful analysis removes these assumptions.Step 1. Lemma 3.5 below indicates how to execute the �rst step of the high level procedure inprobabilistic polynomial time with anNP-oracle. Namely runMS1;S21 (x; 12n2), where the algorithmM1 and the NP sets S1; S2 are as in the lemma. If this returns 0 then go to step two of the highlevel procedure. Else it returns Rx with the guarantee that this set has size at most 2n2, as the�rst step of the high level procedure requires.Lemma 3.5 There is a polynomial time oracle algorithm M1 and sets S1; S2 2 NP such thatMS1;S21 (x; 1m) outputs 0 if jRxj > m, and outputs the set Rx otherwise, for any x 2 f0; 1g� andm 2 N.Proof: LetS1 = f (x0; 1k) j 9 y1; : : : ; yk such that y1; : : : ; yk are distinct and 8i 2 [k] : R(x0; yi) = 1 gS2 = f (x0; 1s0 ; 1i0; 1j0) j 9 y1; : : : ; ys0 such that y1 � � � � � ys0 and 8i 2 [s0] : R(x0; yi) = 1and 1 � j0 � jyi0 j and 1 � i0 � s0 and the j 0-th bit of yi0 is 0 g :Here � denotes some ordering (eg. lexicographic) on f0; 1g�. These sets are certainly in NP giventhat R is an NP-relation. M1 begins be executing the following code, which outputs 0 if jRxj > m,and otherwise computes the cardinality s of Rx. 7

If (x; 1m+1) 2 S1 then output 0 and haltElses 0While (x; 1s+1) 2 S1 do s s+ 1If s = 0 then Rx is empty, so M1 outputs the empty set ; and halts. If s > 0 then M1 �nds theelements y1; : : : ; ys of Rx one by one, and bit by bit for each one. It does so using queries to S2 inthe natural way:For i = 1; : : : ; s doFor j = 1; : : : ; n do // Recall that all witnesses have length n = jxj by assumptionIf (x; 1s; 1i; 1j) 2 S2 then yi;j 0 else yi;j 1yi yi;1y1;2 : : : yi;nOutput fy1; : : : ; ysgIt is easy to verify that M1 runs in poly(n;m) time and has the claimed properties.Step 2. The following lemma indicates how to �nd the hash function h to satisfy the propertiesrequired in Step 2 of the procedure G.Lemma 3.6 There is a probabilistic, polynomial time algorithm M2 and a set S3 2 NP such thatgiven x 2 LR for which jRxj > 2n2, algorithm MS32 outputs a pair (i; h) such that(1) ` � i � n and h 2 H(n; i� `; n)(2) h makes small cells in Rx(3) With probability at least 0:9 it is the case that h makes non-trivial cells in Rx.Here ` = 2 log2 n.Proof: LetS3 = f (x0; h0; 1m) j 9�; y1; : : : ; yk such that k = 2jx0j2 and y1; : : : ; yk are distinct andh0 2 H(jx0j; m; jx0j) and 8j 2 [k] : R(x0; yj) = 1 and 8j 2 [k] : h0(yj) = � g :This set is certainly in NP . (We use here that h0 can be evaluated in poly(n;m) time if it is inH(n;m; n), and membership in the latter set can be tested in polynomial time.) Procedure M2goes through the values i = `; : : : ; n � 1 seeking h 2 H(n; i� `; n) with the desired properties, asfollows. Below hid: f0; 1gn ! f0; 1gn�` is the map which on input z 2 f0; 1gn returns the �rstn� ` bits of z.i `� 1Repeati i+ 1Choose h at random from H(n; i� `; n)Until (x; h; 1i�`) 62 S3 or i = n � 1If (x; h; 1m) 62 S3 then output (i; h) else output (n; hid)Claim 1. ` � i � n and h 2 H(n; i� `; n) where (i; h) is the output of the above.Proof. Clearly h 2 H(n; i� `; n) for i � n� 1. However, it is also true for i = n because h = hid isthe truncation of the polynomial consisting of just a linear term, and hence is in H(n; n� `; n). 28

Claim 2. If (i; h) is the output of the above then h makes small cells in Rx.Proof. First suppose i � n � 1. In this case, the procedure has tested that (x; h; 1i�`) 62 S3. Byde�nition of S3 this means that jRx;h;�j < 2n2 for all � 2 f0; 1gi�`.Now suppose i = n. In this case, h = hid. Clearly jh�1(�)j = 2` for any � 2 f0; 1gn�`. ButRx;h;� � h�1(�) so jRx;h;�j � 2` = n2 < 2n2. 2Claim 3. i � log2 jRxj where (i; h) is the output of the above.Proof. jRxj =P�2f0;1gi�` jRx;h;�j < 2i�` �2n2 = 2i+1. Taking logs, we have log2 jRxj < i+1. Underthe assumption that log2 jRxj is an integer, the claim follows. 2Claim 4. Let (i; h) be the output of the above. With probability at least 0:9 it will be the case thath makes non-trivial cells in Rx.Proof. We know from Claim 3 that i � log2 jRxj, so the �rst value with which the procedure couldhalt is i = log2 jRxj. We show that in fact when the value of i after the �rst step in the Repeatloop is log2 jRxj then, with probability 0:9 over the choice of h from H(n; i� `; n) that is made inthe loop, it will be the case that (x; h; 1i�`) 62 S3 and h makes non-trivial cells in Rx. This meansthat with probability 0:9 the procedure halts with i = log2 jRxj and the corresponding h makesnon-trivial cells in Rx, and this implies the claim.So let i = log2 jRxj. We claim thatPr h 9� 2 f0; 1gi�` such that jRx;h;�j < n2=2 or jRx;h;�j > 3n2=2 : h R H(n; i� `; n) i < 0:1 :This is true by Lemma 3.4. To check this, notice that the premises of Lemma 3.4 are true here.We have jRxj > 2n2 by assumption in the lemma statement. We have i = log2 jRxj and ` = 2 log2 nby de�nition. And we may assume wlog that n is even and at least 4.So with probability at least 0:9 the h chosen in the loop at this point will satisfy8� 2 f0; 1gi�` : n22 � jRx;h;�j � 3n22 :So this h makes small cells in Rx and also makes non-trivial cells in Rx. The former implies that(x; h; 1i�`) 62 S3 so the procedure halts. 2Putting together the claims gives the desired conclusions for the lemma.Step 3. The �nal lemma shows how to implement Step 3 of G. It is analgous to Lemma 3.5.Lemma 3.7 There is a polynomial time oracle algorithm M3 and sets S4; S5 2 NP such thatMS4;S53 (x; h; �; 1m) outputs 0 if jRx;h;�j � 2jxj2, and outputs the set Rx;h;� otherwise, for anyx 2 LR, h 2 H(jxj; m; jxj), � 2 f0; 1gm, and m 2 N.Proof: The proof is analogous to that of Lemma 3.5. The corresponding sets areS4 = f (x0; h0; �0; 1k) j 9 y1; : : : ; yk such that y1; : : : ; yk are distinct and 8i 2 [k] : R(x0; yi) = 1and h0 2 H(jxj; m; jxj) and 8i 2 [k] : h0(yi) = �0 gS5 = f (x0; h0; �0; 1s0 ; 1i0; 1j0) j 9 y1; : : : ; ys0 such that y1 � � � � � ys0 and 8i 2 [s0] : R(x0; yi) = 1and h0 2 H(jxj; m; jxj) and 8i 2 [s0] : h0(yi) = �0 and 1 � j 0 � jyi0 jand 1 � i0 � s0 and the j 0-th bit of yi0 is 0 g :9

Here � denotes some ordering (eg. lexicographic) on f0; 1g�. These sets are certainly in NP giventhat R is an NP-relation, and testing membership or evaluation of functions in the hash familycan be done in polynomial time. As in Lemma 3.5, M3 begins by making a sequence of queries toS4 at the end of which it outputs 0 if jRx;h;�j � 2n2 and otherwise outputs the size s of Rx;h;�.Then it computes the members y1; : : : ; ys of Rx;h;� bit by bit, using queries to S5.3.4 Proof of Theorem 3.1From the above we already know that G can be implemented in probabilistic, polynomial timegiven an NP oracle. We now claim that G is a uniform generator for R with failure probability atmost c def= 0:8. This will prove Theorem 3.1.In case jRxj � 2n2 the algorithm always halts in Step 1, outputting a uniformly chosen elementof Rx. Thus, we focus on the case jRxj > 2n2.We note that by choice of h in Step 2 we have jRx;h;�j � 2n2 for every � 2 f0; 1gi�`, and also,with probability at least 0:9, jRx;h;�j � n2=2 for every � 2 f0; 1gi�`. Thus, an element in Rx isoutput in Step 3 with probability at least 0:9 � n2=22n2 = 0:225. We allow an additional 0:025 failureproability to cover any failure in the coin tossing, as discussed in Section 2.5, so that the probabilityof a non-? output is at least 0:2, meaning the failure probability is at most 0:8.Now, we need to establish (still for the case jRxj > 2n2 since the other is done) that in case ofnon-failure, the output is uniformly distributed in Rx. To establish this, we compute the probabilitythat any �xed y 2 Rx is output. Here we consider any possible (�xed) choice of h in Step 2 (notnecessarily one of the 90% of choices that makes non-trivial cells in Rx). Thus, the randomizationis only over the choice of � in Step 3, and the choices in Step 4. We have:Pr [y is output] = Pr h h(y)=� : � R f0; 1gi�` i � 12n2= 2�(i�`) � 12n2 :And this last number is independent of y.4 History and ApplicationsThis is a survey of the history and some applications of uniform or almost uniform generation. Insome applications which we will note, our procedure leads to improvements.4.1 HistoryFix an NP language L and its de�ning NP relation R. The approximate counting problem is thefollowing:Approximate Counting of NP-witnessesGiven: x 2 L and � > 0Output: A number r such that r=(1 + �) � jRxj � (1 + �)r.Jerrum et. al. [15] provided a probabilistic, polynomial time reduction of the problem of uniformgeneration to the problem of approximate counting. Earlier, Stockmeyer [20] had presented a pro-cedure that achieved approximate counting in poly(jxj; log ��1) time given a �P2 oracle. Combined,this yielded a uniform generator for NP-witnesses that ran in probabilistic, polynomial time witha �P2 oracle. 10

As for almost uniform generation, one can relax the notion of approximate counting to oneof almost approximate counting. Here the output r must satisfy the above property only withprobability 1�� for some parameter � < 1. Jerrum et. al. [15] de�ned this notion. A polynomial time(more speci�cally, poly(jxj; log ��1; log ��1) time) with NP oracle solution for almost approximatecounting would yield, via their reduction, a probabilistic polynomial time with NP-oracle solutionto almost uniform generation.Jerrum et. al. [15] note that a polynomial time with NP oracle solution to almost approximatecounting is implicit in Sipser [19] and Stockmeyer [20], or can be derived via the probabilisticbisection technique of Valiant and Vazirani [21]. Details of the former solution were worked outand presented by Bellare and Petrank [5] in the context of applications to zero-knowledge proofsystems, based on more recent versions of Sipser and Stockmeyer's hashing techniques that weredeveloped in [14, 9, 1]. Putting this together yields the probabilistic, polynomial time with NPoracle solution to almost uniform generation.As an inspection of our procedure shows, we do not use the Jerrum et. al.'s reduction to approx-imate counting to achieve uniform generation. Instead, we directly use hashing based techniquesof works like [19, 20, 14, 9, 1]. Appropriate enhancement and application of these techniques yieldsthe new result.4.2 ApplicationsWe discuss a collection of results obtained in the area of interactive proof systems over the last fewyears that have exploited uniform or almost uniform generation. The goal of these results has beento classify certain functions or languages, arising in this area, in terms of their time complexity.A typical result in this class has the following form. We start with an interactive proof system(P; V) for a language L which has some extra features, pertaining perhaps to its knowledge com-plexity, or the complexity of the interactive proof system. We now want to �nd the most e�cientpossible decision procedure for L or some associated function. The approach is to simplify theprover P via a use of uniform generation and thereby get the desired procedure.For the bulk of these applications, the complexity of the �nal procedure is the object to minimize,while small errors in the uniform generation process do not a�ect the result. Thus, they have for themost part exploited the fact that almost uniform generation is possible in probabilistic polynomialtime with an NP oracle. This accounts for the fact that in these results, you will typically seeconclusions about certain languages being in BPPNP . (In some cases, the results are about certainfunctions being computable in probabilistic polynomial time with an NP oracle.)The complexity of ZK provers. The prover in a statistical zero knowledge (SZK) proof for alanguage L is a (probabilistic) function which given the common input x and conversation so faroutputs the next message to send to the veri�er. The question here is: what is the computationalcomplexity of this function? Even though SZK languages are known to be in �P2 \�P2 [9, 1], it isnot a priori clear that the prover, as a function is even restricted to probabilistic PSPACE.The question was �rst considered by [4] who reduced the complexity of the prover to that of(almost) uniform generation in such a way that SZK versus an honest veri�er was maintained. Amore general reduction, provided by [5], maintained SZK against all veri�ers, as the de�nition ofSZK requires. Jerrum et. al.'s result [15] could then be applied to say that any language having aSZK proof has one in which the prover is a probabilistic, polynomial algorithm with an NP oracle.However, almost uniform generation is not enough to maintain perfect zero knowledge (PZK)and in this case, the result of [5], exploiting the uniform generation procedure of [15], was that anylanguage with a PZK proof has one in which the prover is a probabilistic, polynomial algorithm11

with a �P2 oracle. Our Theorem 3.1 can be used to improve this: combining it with the reductionof [5] we get that any language with a PZK proof has one in which the prover is a probabilistic,polynomial algorithm with a NP oracle.Time complexity versus knowledge complexity. Knowledge complexity, suggested by [13]and de�ned by [12], provides a way to measure the number of bits of knowledge that a proverreveals to a veri�er about some string x, in the process of proving that x belongs to some underlyinglanguage L. Let SKC[�(�)] denotes the class of languages possessing interactive proofs of negligibleerror probability and statistical knowledge complexity (SKC) at most �(�). A body of work [5, 11,17] has sought extensions to non-zero SKC of the results of [9, 1] which showed SKC[0] � �P2 \�P2.The �rst results used almost uniform generation. Speci�cally, Bellare and Petrank [5] provideda decision procedure for a language based on a SKC simulator and (almost) uniform generation,which Goldreich, Ostrovsky and Petrank [11] exploited to show that SKC[log(�)] � BPPNP . (Later,Petrank and Tardos [17] showed that SKC[log(�)] � �P2 \�P2; this �nal result did not use uniformgeneration.)Shared randomness in two prover proofs. We know that the class of languages recognizedby two prover statistical zero-knowledge interactive proof systems equals NEXP [2, 7]. Bellare,Feige and Kilian [3] showed that a certain model feature |namely the fact that the two provers areallowed to share a random string before the protocol begins| is crucial to this result. Speci�cally,they showed that if this string is absent then the class of languages possessing SZK two proverproofs collapses to BPPNP . The decision procedure which establishes this is based on almostuniform generation.Complexity of proofs with bounded communication. Goldreich and H�astad [10] investigatethe complexity of languages as a function of the communication complexity of interactive proofsystems that recognize them. One of their results is that if the total number of bits sent bythe prover in the interactive proof is logarithmic then the language is in BPPNP . The decisionprocedure that establishes this exploits almost uniform generation.References[1] W. Aiello and J. H�astad. Statistical Zero-Knowledge Languages can be Recognized inTwo Rounds. Journal of Computer and System Sciences, Vol. 45, No. 3, 1991, pp. 327{345.[2] L. Babai, L. Fortnow and C. Lund. Non-Deterministic Exponential Time has Two-ProverInteractive Protocols. Computational Complexity, Vol. 1, 1991, pp. 3{40. (See also addendumin Vol. 2, 1992, pp. 374.)[3] M. Bellare, U. Feige and J. Kilian. On the Role of Shared Randomness in Two ProverProof Systems. Proceedings of the third Israel Symposium on Theory and Computing Systems,IEEE, 1995.[4] M. Bellare, S. Micali and R. Ostrovsky. The (true) complexity of statistical zero-knowledge. Proceedings of the 22nd Annual Symposium on the Theory of Computing, ACM,1990.[5] M. Bellare and E. Petrank. Making Zero-Knowledge Provers E�cient. Proceedings ofthe 24th Annual Symposium on the Theory of Computing, ACM, 1992.12

[6] M. Bellare and J. Rompel. Randomness-e�cient oblivious sampling. Proceedings of the35th Symposium on Foundations of Computer Science, IEEE, 1994.[7] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-prover InteractiveProofs: How to Remove Intractability Assumptions. Proceedings of the 20th Annual Sympo-sium on the Theory of Computing, ACM, 1988.[8] B. Berger and J. Rompel. Simulating (logc n)-wise independence in NC. Proceedings ofthe 30th Symposium on Foundations of Computer Science, IEEE, 1989.[9] L. Fortnow. The Complexity of Perfect Zero-Knowledge. In Advances in Computing Re-search: a research annual, Vol. 5 (Randomness and Computation, S. Micali, ed.), pp. 327{343,1989.[10] O. Goldreich and J. H�astad. On the Complexity of Interactive Proofs with BoundedCommunication. To appear in IPL. See also ECCC Report TR96-018, 1996.[11] O. Goldreich, R. Ostrovsky and E. Petrank. Knowledge Complexity and Computa-tional Complexity. Proceedings of the 26th Annual Symposium on the Theory of Computing,ACM, 1994.[12] O. Goldreich and E. Petrank. Quantifying Knowledge Complexity. Proceedings of the32nd Symposium on Foundations of Computer Science, IEEE, 1991.[13] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of InteractiveProof Systems. SIAM Journal on Computing, Vol. 18, pp. 186{208, 1989.[14] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive ProofSystems. Advances in Computing Research: a research annual, Vol. 5 (Randomness and Com-putation, S. Micali, ed.), pp. 73{90, 1989.[15] M. Jerrum, L. Valiant and V. Vazirani.Random Generation of Combinatorial Structuresfrom a Uniform Distribution. Theoretical Computer Science, Vol. 43, pp. 169{188, 1986.[16] R. Motwani, J. Naor, and M. Naor. The probabilistic method yields deterministic par-allel algorithms. Proceedings of the 30th Symposium on Foundations of Computer Science,IEEE, 1989.[17] E. Petrank and G. Tardos. On the knowledge complexity of NP. Proceedings of the 37thSymposium on Foundations of Computer Science, IEEE, 1996.[18] J. Schmidt, A. Siegel, A. Srinivasan. Cherno�-Hoe�ding bounds for Applications withLimited Independence. Proceedings of the 4th Annual Symposium on Discrete Algorithms,ACM-SIAM, 1993.[19] M. Sipser. A Complexity Theoretic Approach to Randomness. Proceedings of the 15thAnnual Symposium on the Theory of Computing, ACM, 1983.[20] L. Stockmeyer. The Complexity of Approximate Counting. Proceedings of the 15th AnnualSymposium on the Theory of Computing, ACM, 1983.[21] L. Valiant and V. Vazirani. NP is as Easy as Detecting Unique Solutions. TheoreticalComputer Science, Vol. 47, No. 1, pp. 85{93, 1986.13

A Proof of Lemma 3.3We will make use of a \t-wise independent tail inequality". This is a Chebychev type bound forthe case where the random variables are not fully independent, but are t-wise independent. Suchinequalities are proved by a higher moment method, and can be found in the literature. Speci�cally,we use the following one from [6]. (It seems that [8, 16] were the �rst to use such bounds in thecomputer science literature. An in depth investigation which provides a variety of bounds is [18].)Lemma A.1 [6] Let t � 4 be an even integer. Suppose X1; : : : ; Xn are t-wise independent randomvariables taking values in [0; 1]. Let X = X1 + � � �+Xn and � = E [X], and let A > 0. ThenPr [jX � �j � A] � 8 � t� + t2A2 !t=2 :Now let us proceed to the proof of Lemma 3.3. Fix an � 2 f0; 1gm and for each y 2 Rx de�ne therandom variable �y = (1 if h(y) = �0 otherwise.Under a random choice of h from H(n;m; t) we haveE [�y] = Pr [h(y) = �] = 2�m :Let � = Py2Rx �y and � = E [�]. Notice that � = jRx;h;�j. Linearity of expectation tells us that� = jRxj=2m. SoPr � jRx;h;�j < jRxj2m+1 or jRx;h;�j > 3jRxj2m+1 � = Pr [jX � �j > �=2] :Now, notice also that the random variables f�ygy2Rx are t-wise independent. So we can applyLemma A.1 to get Pr [jX � �j � �=2] � 8 � t� + t2(�=2)2 !t=2= 8 � tjRxj2�m + t2jRxj22�2m=4 !t=2= 8[4�(1 + �)]t=2 ;where � = t2m=jRxj.Finally, note this was true for any �xed � 2 f0; 1gm. The desired bound of the lemma is obtainedby applying the union bound.
14

