
Free Bits, PCPs and Non-Approximability – Towards Tight Results

MIHIR BELLARE� ODED GOLDREICHy MADHU SUDANz
In honor of Shimon Even’s 60th Birthday

Abstract

The first part of this paper presents new proof systems and
improved non-approximability results. In particular we present
a proof system for NP using logarithmic randomness and two
amortized free bits, so that Max Clique is hard within N1=3
and Chromatic Number within N1=5. We also show hardness
of 38=37 for Max-3-SAT, 27=26 for Vertex Cover, 82=81 for
Max-Cut, and 94=93 for Max-2-SAT.

The second part of this paper presents a “reverse” of the
FGLSS connection by showing that an NP-hardness result for
the approximation of Max Clique to within a factor ofN1=(g+1)
would imply a probabilistic verifier for NP with logarithmic
randomness and amortized free-bit complexity g. We also show
that “existing techniques” won’t yield proof systems of less than
two bits in amortized free bit complexity.

Finally, we initiate a comprehensive study of PCP and FPCP
parameters, proving several triviality results and providing sev-
eral useful transformations.

1 Introduction

The success of the interactive proof based approach to deriving
non-approximability results seems beyond question— not only
has problem after problem fallen, but results grow succesively
stronger. Key to these improvements has been the considera-
tion of new parameters in proof checking complexity such as
the number of “free bits” and “amortized free bits.” Today,
it even seems possible that this approach may lead to tight
non-approximability results for several popular optimization
problems.

This is the topic which this paper investigates. Broadly, we
are interested in two things. The first is to exploit as well
as possible the existing relations betweens proofs and non-� Department of Computer Science & Engineering, Mail Code 0114, Uni-
versity of California at San Diego, 9500 Gilman Drive, La Jolla, California
92093. E-mail: mihir@cs.ucsd.edu. This work was done while the author
was at the IBM T. J. Watson Research Center.yComputer Science and Applied Math. Dept., Weizmann Institute of
Science, Rehovot, Israel. Supported by grant No. 92-00226 from the
Israel–US Binational Science Foundation (BSF), Jerusalem, Israel. Email:
oded@wisdom.weizmann.ac.ilzIBM Research Division, T.J. Watson Research Center, P.O. Box 218, York-
town Heights, NY 10598. Email: madhu@watson.ibm.com

approximation to get improved hardness results. This involves
continuing previous work by the construction of new proof sys-
tems of improved complexity. The second,which is more novel,
is to understand the limits of the relation between proofs and ap-
proximation, and the limits to improvements in proof systems.
It has lead us to a variety of different kinds of investigations
and results. Let us begin with a high level overview.

1.1 Overview of main results

NEW PROOF SYSTEMS AND NON-APPROXIMABILITY RESULTS.
We continue previous work [4, 18, 3, 2, 7, 19, 9] by construct-
ing new proof systems of improved complexity. They are based
on a new error correcting code called the long code. A central
result in this category is a proof system for NP using loga-
rithmic randomness and two amortized free-bits, and directly
yielding a N1=3 non-approximability factor for Max Clique.
We also obtain improved non-approximability results for Chro-
matic Number and Max-3-SAT, and the first reasonable and
explicit constant factor non-approximability results for the Min
Vertex Cover problem, Max Cut, and Max-2-SAT. Several of
these results are strong enough to indicate that the gap between
factors that are attainable by polynomial time algorithms, and
those we can indicate are not, is now quite narrow. See Section 3
and Figure 1.

As the above indicates, non-approximability results are get-
ting steadily stronger, especially for Max Clique. How large a
Max Clique non-approximability factor can we show? And, in
minimizing amortized free-bits, are we on the right track? Are
there other ways? The next set of results provides answers to
these kinds of questions.

A REVERSE CONNECTION. We essentially show that proof check-
ing is necessary to getting non-approximability results for Max
Clique. Furthermore, it indicates that not just proof checking,
but the minimization of the amortized free-bit complexity is
necessary. Roughly, we show that if, for some f > 0, Max
Clique is NP-hard to approximate within N1=(1+f) then NP
has proof systems of (logarithmic randomness and) amortized
free-bit complexity f . This result can be viewed as “inverting,”
in a strong way, the FGLSS-connection. (See Section 4.) So
our current efforts are in the right direction.

A LOWER BOUND ON AMORTIZED FREE-BITS. Now that we know

we must minimize amortized free-bits, we ask ourselves how
low we can take them. Our approach here is to look at current
techniques and assess their limitations. We derive lower bounds
showing that any proof system using the existing frameworks (of
this and previous papers) must use at least two amortized free-
bits. Our reverse connection now implies that proving a better
than N1=3 hardness for Max Clique requires new techniques.
See Section 5.

We stress that this last result makes various assumptions
about methods, and is intended to show that significantly novel
techniques are required to go further. But it does not suggest an
inherent limitation. Indeed, if we believe Max Clique is hard to
approximate within N1�o(1) then our reverse connection saysNP has proof systems with arbitrarily small constant amortized
free-bit complexity; we are just saying they may be hard to find.

PCP AND FPCP: PROPERTIES AND TRANSFORMS. Probabilistic
proofs involve a vast arena of complexity parameters: query
complexity, free-bit complexity, amortized free-bit complexity,
randomness, and proof sizes to name a few. A better under-
standing of the basic properties and relations between these pa-
rameters would help move us forward. We initiate, accordingly,
a systematic investigation of the properties of pcp complexity
classes as a function of the parameter values. Besides provid-
ing new results we take the opportunity to state and prove a
few folklore ones. We focus in particular on “triviality” results.
These are results which say that certain parameter combinations
yield classes probably not capable of capturing NP. For ex-
ample, the class of languages recognizable with error 1=2 and
logarithmic randomness using one (non-amortized!) free-bit
is in P— so don’t expect to prove NP using just one free-bit.
(But nothing rules this out when amortization is considered).
We also investigate transformations: to reduce the randomness,
error or other complexities at various costs. See Sections 6
and 7.

DISCUSSION. The reverse connection does more than guide
our choice of parameters. It provides a new conceptual tool
because it enables us to reflect, in the language of proof systems,
theorems, properties and transformations of graphs, and vice
versa. This turns out to be useful and revealing. It also leads, in
some cases to new results derived by turning graphs into proof
systems via our connection, and then back to graphs via the
FGLSS connection, in the process gaining some property.

A related contribution of this work is to distill and formalize
the role of randomized reductions. These transforms provide an
elegant and concise way of stating connections between proofs
and approximability, or just between different kinds of proof
systems, and make it easier to manipulate the many connections
that exist to derive new results.

VERSIONS. This extended abstract is a very abridged version of
our full paper, with almost no proofs. The latest (100+ page)
version of our full paper is [8]. It contains complete definitions,

proofs, and history.

WHAT FOLLOWS. In later sections we will detail the results
sketched here more precisely. First, however, we provide some
history, then some definitions.

1.2 History of non-approximability

Early work in non-approximability includes that of Garey and
Johnson [22] showing that it is NP-hard to approximate the
chromatic factor within a factor less than two. The indication
of higher factors, and results for other problems, had to wait for
the interactive proof approach which began with [18].

The works of [18, 3, 2] culminated in the proof that there
is a constant � > 0 for which approximating Max Clique
within N � is NP-hard. This was based on the characteriza-
tion NP = PCP1;1=2[log; O(1)]. The work on improving the
value of � progressed by looking a new complexity parameters
and constructing new proof systems to minimize them. Thus
[7] looked at the average number of query bits; [19] looked at
free bits; and finally [9] looked at amortized free bits. The last
built new proof systems achieving amortized free-bit complex-
ity three, implying a N1=4 hardness for Max Clique assumingNP 6� coReP.

Arora et. al. [2] showed that there exists a constant � > 1 such
that approximating Max-3-SAT within � is NP-hard. (This im-
plied the same for all of Max-SNP [31].) The above mentioned
works [7, 19, 9] have found increasingly larger values for the
Max-3-SAT non-approximability factor �.
1.3 Related work

Following the presentation of our results of Sections 3 and 4,
Arora has also investigated the limitations of proof checking
techniques in proving non-approximability results [1]. Like in
our free-bit lower bound result, he tries to assess the limita-
tions of current techniques by making some assumptions about
these techniques and then showing a lower bound. His focus
is on the reductions, which he assumes are “code like.” In
this setting he can show that one should not expect to prove
non-approximability of Max Clique within N1=2. In contrast
we have a larger lower bound of N1=3, but we make different
kinds of assumptions about the way proof systems are designed.
(The assumptions made by us and by Arora do not seem to be
comparable: neither implies the other.)

2 Background and definitions

PROOF SYSTEMS AND PARAMETERS. A probabilistic proof sys-
tem [20, 18]1 is described by a probabilistic, polynomial time
verifier V . It takes an input x of length n and tosses coins R.
It has oracle access to a poly(n) length string � describing the
proof: to access a bit it writes a O(logn) bit address and is1 An analogous discussion can be carried out also using the model of
transparent proofs due to Babai et. al. [4].

returned the corresponding bit of the proof. Following its com-
putation it will either accept or reject its input x. The accepting
probability is the maximum, over all �, of the probability (overR) that V accepts x on coins R and proof string �. While
the task is typically language recognition, we will, more gen-
erally, consider promise problems (A;B) consisting of a set A
of “positive” instances and a setB of “negative” instances [15].
(Languages are a special case of promise problems; a languageL is represented by the promise problem (L;L).)

Of interest in the applications are various parameters of the
system. The completeness probability c = c(n) and the sound-
ness probability s = s(n) are defined in the usual ways. In
case c = 1 we say that the system has perfect completeness.
The gap is g = c=s. The query complexity is the maximum
(over all coin tosses and proof strings) of the number of bits
of the proof that are examined by the verifier. The free-bit
complexity, roughly speaking, is the logarithm of number of
possible accepting configurations of V on coins R and inputx. (This omits a technical constructivity condition.) For exam-
ple a verifier which makes 3 queries and accepts iff the parity
of the answers is odd has 4 accepting configuration and thus
free-bit complexity 2. Either the query or the free-bit complex-
ity may be considered in amortized form: e.g. the amortized
free-bit complexity is the free-bit complexity (of a proof system
with perfect completeness) divided by the logarithm of the gap.
(That is, the number of free-bits needed per factor of 2 increase
in the gap.) Also, either the query or free-bit complexity may be
considered on the average, the average being over the random
string of the verifier.

We use the notation PCPc;s[r; q] to denote the class of
promise problems recognized by verifiers tossing r coins, hav-
ing query complexity q, and achieving completeness probabilityc and soundness probability s. FPCPc;s[r; f] is defined anal-
ogously with f being the free-bit complexity. PCP[r; q] is de-
fined analogously with q being the amortized query complexity,
and FPCP[r; f] is defined analogously with f the amortized
free-bit complexity. Also we sometimes use a more generic no-
tation in which parameters are specified by name; this is pretty
self-explanatory.

APPROXIMATION. Recall that an approximation algorithm A
for a maximization problem achieves a ratio of � 2 [1;1)
if the output A(w) of the algorithm on instance w is at least
the optimum divided by � and at most the optimum. For a
minimization problem it is required that A(w) is at most �
times the optimum and at least the optimum.

MAX CLIQUE APPROXIMATION. Recall the best known poly-
nomial time approximation algorithm for Max Clique achieves
a factor of only N1�o(1) [14], scarcely better than the trivial
factor of N . (Throughout the paper, when discussing the Max
Clique problem,N denotes the number of vertices in the graph.)
There is not even a heuristic algorithm that is conjectured to do
better. (The Lovász Theta function had been conjectured to ap-

proximate the Max Clique size withinN1=2, but this conjecture
was disproved by Feige [16].) The same situation holds for the
chromatic number.

An additional motivation for investigating whether there ex-
ist even “weak” approximation algorithms for Max Clique was
suggested by Blum [12]: he shows that a factorN1�� factor ap-
proximation algorithm for some constant � > 0would imply an
algorithm for coloring a 3-colorable graph with O(logN) col-
ors, which is significantly fewer colors than known algorithms
use.

GAPS IN CLIQUE SIZE. Hardness of approximation (say
of Max Clique) is typically shown via the construction of
promise problems with gaps in max clique size. Specif-
ically, let MaxClique(G) denote the Max Clique size of
a graph G, and let Gap-Cliquec;s be the promise problem(A;B) defined as follows: A is the set of all graphs G withMaxClique(G)=N � c(N), and B is the set of all graphs G
with MaxClique(G)=N � s(N). The gap is defined as c=s.
Now, a hardness result will typically specify a value of the gapg(N) = c(N)=s(N) for which Gap-Cliquec;s is NP-hard un-
der a (possibly randomized) Karp reduction. This means that
there is no polynomial time algorithm to approximate the Max
Clique size of an N node graph within g(N) unless NP has
randomized polynomial time algorithms.

Gap problems can be similarly defined for all the other op-
timization problems we consider. From now on, we discuss
approximation in terms of these gap problems.

THE FORWARD CONNECTION. To explain our “reverse” connec-
tion for Max Clique it will help to recall the “forward” connec-
tion. It relates the non-approximability factor of Max Clique to
proof checking complexity. The basic reduction is that of [18],
used today in slightly tighter randomized form due to [11, 34].
The sequence of works [18, 3, 2, 7, 19, 9] lead us through a
sequence of parameters: query complexity, free bit complexity
and, finally, for the best known results, amortized free bit com-
plexity. The final relation is that if NP is in FPCP[log; f]
then the Max Clique size of an N -vertex graph is NP-hard
to approximate (under randomized Karp reductions) within a
factor of N1=(1+f+�), for any � > 0.

3 New proof systems and applications

This section is about our non-approximability results and proof
systems obtained via the long code. (This is our new error
corrcting code.)

3.1 Statements of results

We provide the following new proof systems.

Theorem 3.1 Let � > 0 be arbitrary. Then NP is contained in

each of the following–

(1) FPCP[log; 2+�].

(2) FPCP1;s[log; 2] for s=0:884464.

(3) PCP1;1=2[coins= log ; queries=19 ; queriesav=15:58]
where queriesav is the average number of queries.

(4) PCP1;s[log; 3] for s=0:8999.

The first result above improves the result of [9] showing thatNP � FPCP[log; 3+�] for every � > 0. The second min-
imizes the soundness error one can get using only two free
(non-amortized) bits. Both these have applications to approx-
imation. The last two results although not used to obtain any
of our non-approximation results, are of some intrinsic interest.
Specifically, we look at the problem of how few bits of the proof
one need query to detect an error 1=2 of the time, and at how
low an error one can get using only three queries.

For the applications to Max-SNP we construct a special ver-
ifier. It is a simple verifier for NP which achieves soundness
error of about 86% while performing one of two very simple
tests.

Proposition 3.2 (The MaxSNP Verifier): For any > 0 and

for any language L 2 NP, there exists a verifier VSNP for L such

that VSNP uses logarithmic randomness and is perfectly complete;VSNP has soundness error 1� 614444969 + ; and

on access to an oracle �, the verifier VSNP performs one of

the following actions:

(1) Parity check: VSNP makes three queries q1; q2 and q3
to the proof � and rejects if �(q1)� �(q2) 6= �(q3).

(2) RMB check: VSNP makes four queries q1; q2; q3 and q4
to the proof � and rejects if �(q1) � �(q2) 6= �(q3) ��(q4).

Furthermore, the probability (over its coin tosses) that VSNP
performs a parity check is q def= 2858544969 � 0:6356 and the

probability that VSNP performs a RMB check is 1� q.

The next theorem states our non-approximability results. Fig-
ure 1 summarizes the results and compares them to past work
and the factors achieved by the best known approximation al-
gorithms.

Theorem 3.3 Let � > 0 be an arbitrary constant. AssumingNP 6= coRP there is no polynomial time approximation algorithm

achieving any of the following:

(1) A factor of N 13�� for Max Clique

(2) A factor of N 15�� for Chromatic Number.

Assuming P 6= NP there is no polynomial time approximation

algorithm achieving any of the following:

(3) A factor of 27=26 for Min Vertex Cover

(4) A factor of 38=37 for Max-3-SAT

(5) A factor of 38=37 for Max-Exact-3-SAT2
(6) A factor of 82=81 for Max CUT2 Max-Exact-3-SAT is Max-3-SAT with exactly three literals per clause.

(7) A factor of 94=93 for Max-2-SAT.

The Max Clique hardness result is of course a direct conse-
quence of the first part of Theorem 3.1. Via the recent reduction
of Furer [21], which in turn builds upon the previous reductions
presented in [29, 28, 9], we get the improved Chromatic number
result. The result on Vertex Cover is a consequence of the sec-
ond part of Theorem 3.1. The other Max-SNP results exploit
Proposition 3.2.

Even though we do not know if the “pcp approach” allows
to get the best possible non-approximability results for these
problems, we feel that the current results are not ridiculously
far from the known upper bounds.

3.2 Discussion of techniques

The construction and analysis of the proof systems based on the
long code is the most technical part of our work. We will now
provide only some very brief intuition.

The starting point for all our proof systems is a two-prover
proof system achieving arbitrarily small but fixed constant error
with logarithmic randomness and constant answer size, as pro-
vided by Raz [32]. This proof system has the property that the
answer of the second prover is supposed to be a predetermined
function of the answer of the first prover. Thus, verification in
it amounts to checking that the first answer satisfies some pred-
icate and that the second answer equals the value obtained from
the first answer. Following the “proof composition” paradigm
of Arora and Safra [3], we will “encode” the answers of the two
provers under a suitable code and then, “recursively”, check
these encodings. As usual, we will check both that these en-
codings are valid and that they correspond to answers which
would have been accepted by the original verifier. Specifically,
the first answer needs to satisfy some fixed predicate and the
second answer needs to be a function (e.g., a projection) of the
first answer.

Our main technical contribution is a new code, called the
long code, and means to check it. The long code of an l-bit
information word a is the sequence of 22l bits consisting of the
values of all possible boolean functions at a. The long code
is certainly a disaster in terms of coding theory, but it has big
advantages in the context of proof verification, arising from
the fact that it carries enormous amounts of data about a. The
difficulty will be to check that a prover claiming to write the
long code of some string a is really doing so.

Let � = f0; 1g = GF(2). Let Fl denote the set of all

functions mapping �l to �. Regarding a 22l-bit string as a
functionA ofFl to�, we prove a characterizationof codewords
saying that such an A is a codeword (of the long code) if and
only if it is linear (i.e., satisfies A(f + g) = A(f) + A(g),8f; g 2 Fl) and “respects the monomial basis” (i.e., satisfiesA(�;) = 1 and A(�S) � A(�T) = A(�S[T), for all S; T �[l], where �S(x) equals the product of the bits of x in locationsS). We then show that checking that the oracle is “close”

Problem Approx Non-Approx

Factor Due to New Factor Previous Factor Assumption

Max-3-SAT 1:319 [33, 24, 25] 1:027 1 + 172 [9] P 6= NP
Max-E3-SAT 1 + 17 folklore 1 + 137 unspecified [2] P 6= NP
Max-2-SAT 1:075 [25, 17] 1:010 1 + 1504 (implied [9]) P 6= NP
MAX CUT 1:139 [25] 1:012 unspecified [2] P 6= NP
Min-VC 2� o(1) [5, 30] 1 + 126 unspecified [2] P 6= NP
Max-Clique N1�o(1) [14] N 14 [9] NP 6� coR~PN 13 N 15 coRP 6= NPN 14 N 16 [9] P 6= NP
Chromatic N1�o(1) [14] N 110 [9] NP 6� coR~P
Number N 15 N 113 coRP 6= NPN 17 N 114 [9] P 6= NP

Figure 1: Approximation factors attainable by polynomial-time algorithms (Approx) versus factors we show are hard to achieve
(Non-Approx).

to a codeword amounts to two tests – a linearity test and a
multiplication, or RMB (respect of monomial basis) test. For
the former we can use the standard linearity test of [13], and
benefit from the recent analysis of [6]. The latter is new, and,
although the the test itself is simple, its analysis is not. We
also need a projection test to make sure that the oracle encodes
an answer of the second prover which matches the enconding
of the answer of the first prover. Finally, an additional idea
of “folding” of functions is used to eliminate the need for a
“circuit” test (i.e., testing that the encoded answer of the first
prover would be accepted by the original verifier).3

The tests are put together in a variety of ways to yield the
different proof systems stated above. In order to obtain the
hardness results for the Max-SNP problems we define “gadgets”
which encode the computation of the verifier of Proposition 3.2.
In what follows, we illustrate this for Max-3-SAT.

Let MaxSAT(') denote the maximum number of clauses inS that are simultaneously satisfiable. A Parity Check (PC)
gadget PC(a; b; c; x1; x2; : : : ; xn) is a set of clauses over
three distinguished variables a; b; c and n auxiliary variablesx1; : : : ; xn. It is an (�; �)-PC gadget if the following is true: Ifa + b = c then MaxSAT(PC(a; b; c; x1; x2; : : : ; xn)) = �;
else it is at most � � �. Similarly a Respect-Monomial-
Basis Check (RMBC) gadget RMBC(a; b; c; d; x1; : : : ; xn)
is a set of clauses over four distinguished variables a; b; c; d
and n auxiliary variables x1; : : : ; xn. It is an (�; �)-RMBC3 This additional idea is inessential for the construction of a pcp system with
amortized free-bit complexity 2.

gadget if the following is true: If a � b = c + d thenMaxSAT(RMBC(a; b; c; d; x1; x2; : : : ; xn)) = �; else it is
at most � � �. We stress that in both cases the maximum
number of clauses which are simultaneously satisfied is at most�. The result for MAX 3-SAT follows from the existence of a(4; 1)-PC gadget and a (7; 1)-RMBC gadget and the following
lemma.

Lemma 3.4 (Max-3-SAT implementation of a verifier): Let V
be a verifier for L of logarithmic randomness, with perfect com-

pleteness and soundness s, such that V performs either a sin-

gle Parity Check (with probability q) or a single RMB check (with

probability 1 � q). If there exists an (�1; �)-Parity-Check gadget

and an (�2; �)-RMBC gadget then L reduces to approximating

Max-3-SAT to within a factor of 1 + (1�s)��1q+�2(1�q)�(1�s)� .

4 FPCP and Clique Approximation

Our result essentially “inverts” the forward connection dis-
cussed in Section 2.

Theorem 4.1 For every constant f > 0, the following two state-

ments are equivalent.

(1) For all � > 0, approximating the Max Clique size of an N -

vertex graph to within a factor of N1=(1+f+�) is NP-hard via

a randomized Karp reduction.

(2) For all � > 0, the class NP is random Karp reducible toFPCP[O(logn); f + �].

The same holds for Cook reductions.

Thus if there is some (any) way to show hardness of Max
Clique approximaiton to within N1=(1+f+�) then NP has (via
a randomized reduction) a proof system with logarithmic ran-
domness and amortized free bit complexity f + �. We stress
both the “qualitative” and the “quantitative” aspects of this re-
sult. Qualitatively, it provides an answer to the following kind
of a question: “What do proofs have to do with approximating
clique size, and can we not prove the non-approximability re-
sult without using proof checking?” The result indicates that
proofs are inherent, and explains, perhaps, why hardness results
avoiding the proof connection have not appeared. However, at
this stage it is the quantitative aspect that interests us more.
It says that to get tighter results on Max Clique hardness, we
must construct proof systems to minimize the amortized free
bit complexity.

Can we hope to do so? It is a feature of the measure that so
far this seems entirely possible. In particular it seems possible
that the amortized free bit complexity of a pcp verifier for NP
can be � for any � > 0. Indeed, the theorem says that if Max
Clique is indeed hard to approximate to within N1�� as we
believe, then such a system will exist.

Let us now see how this reverse connection is obtained. De-
note by G(V; x) the graph constructed from verifier V and inputx by the FGLSS reduction. The vertices correspond to possible
accepting transcripts in V ’s computation and edges correspond-
ing to consistent/non-conflicting computations. The maximum
clique size in the constructed graph is proportional to the ac-
cepting probability of V . Here we “reverse” the process; given
a graph we constract a verifier such that the same proportion
holds. Furthermore, applying the FGLSS-construction to our
verifier retreives the original graph. We stress that by the term
graph we mean an undirected simple graph (i.e., no self-loops
or parallel edges).

Theorem 4.2 (Clique verifier of ordinary graphs): There exists

a verifier, denoted W , of logarithmic randomness-complexity, loga-

rithmic query-length and zero free-bit complexity, that, on input aN -

vertex graphG, satisfiesmax� Pr[W � accepts G] = w(G)=N:
Furthermore, G(W;G) is isomorphic to G where the isomorphism

is easily computable.

THE CONSTRUCTION OF W . On input a graph G on N nodes,
the verifier W works with proofs of length

�N2 ��jE(G)j. The
proof � is indexed by the edges in G (i.e., non-edges in G). For
clarity of the proof we assume that the binary value �(fu; vg)
is either u or v. On input G and access to oracle �, the verifierW picks uniformly a vertex u in the vertex set of G and queries
the oracle at each fu; vg 2 E(G). The verifier accepts if and
only if all answers were u. Clearly, W tosses log2N coins.
Also, once W picks a vertex u, the only pattern it may accepts
is (u; u; : : : ; u). Thus the free-bit complexity of W is 0. To

analyze the probability thatW accepts the input G, when given
the best oracle access, one may merely prove that the graphsG(W;G) and G are isomorphic.

We now generalize the above construction to get verifiers
which indicate the existence of large cliques in layered graphs.
An (L;M;N)-layered graph is an N -vertex graph in which
the vertices are arranged in L layers so that there are no edges
between vertices in the same layer and each layer has at mostM vertices. We use a convention by which, whenever a layered
graph is given to some algorithm, a partition into layers is given
along with it.

Theorem 4.3 (clique verifier for layered graphs): There exists

a verifier, denoted W , of logarithmic randomness-complexity and

logarithmic query-length so that, on input an (L;M;N)-layered

graph G, the free-bit complexity of W is log2M and it satisfiesmax� Pr[W � accepts G] = w(G)=L.

THE GENERALIZED CONSTRUCTION OF W . On input a(L;M;N)-layered graph G, the verifier W works with proofs
consisting of two parts. The first part assigns every layer (i.e.,
every integer i 2 [L]) a vertex in the layer (i.e., again we use
a redundant encoding by which the answers are vertex names
rather then an index between 1 and the number of vertices in
the layer). The second part assigns pairs of non-adjacent (in G)
vertices, a binary value, which again is represented as one of the
two vertices. On input G and access to oracle �, the verifier W
picks uniformly a layer i in f1; :::; Lgand queries � at i obtain-
ing as answer a vertex u. If u is not in the ith layer of G then
the verifier rejects. Otherwise, it continues as in Theorem 4.2
(i.e., queries the oracle at each fu; vg 2 E(G) and accepts iff
all answers equal u). (Actually, it is not needed to query the
oracle on pairs of vertices belonging to the same layer.) The
properties of W are established as before; in particular, observe
that once a vertex u is specified, the only accepting pattern is(u; u; : : :; u). The free-bit complexity is determined by the
number of vertices in layer i, which is upper bounded by M
(and on the average equals N=L).

Main Consequences

We are interested in problems exhibiting a gap in Max-Clique
size between positive and negative instances. It is convenient
to let MaxClique(G) = MaxClique(G)=N be the fraction of
nodes in a maximum clique of G. As a direct consequence of
Theorem 4.2, we get

Corollary 4.4 For functions c; s mapping Z+ to [0; 1] we have

Gap-Cliquec;s 2 FPCPc;s[log; 0].
This corollary transforms the gap in the promise problem into
a gap in a pcp system. However, the accepting probabilities in
this pcp system are very low (also on yes-instances). Below,
we use Theorem 4.3 to obtain a pcp system with almost perfect

completeness for this promise problem. We start by present-
ing a randomized reduction of the promise problem to a layer
version. An alternative method is presented in Section 7 (cf.,
Proposition 7.5).

Proposition 4.5 (Layering the clique promise problem): There

exists a polynomial-time randomized transformation, T , of graphs

into layered graphs so that, on input a graph G, integers C andL � C=(3 log2N), outputs a subgraph H = T (G;C;L) of G
in L layers such that with high probability H has at most 2N=L
vertices per layer and ifw(G) � C then w(H) = L.

We remark that there exist an alternative transformation,4 us-
ing only logarithmically many coins, and guranteeing onlyPr [w(H) � (1� �) � L] < L=(�C), for every � 2 [0; 1],
provided w(G) � C. Combining Theorem 4.3 and Proposi-
tion 4.5, we obtain

Proposition 4.6 (Inverse of FGLSS-reduction): For any

polynomial-time computable functions c; s; � of Z+ to [0; 1], the

promise problem Gap-Cliquec;s is randomly (Karp-) reducible toFPCP1;s0[log; f 0], wheref 0(N) = log2(1=c(N)) + log2 log2(N) + 2s0(N) = 2 log2(N) � s(N)c(N) :
Namely, Gap-Cliquec;s has a pcp system with logarithmic ran-
domness and free-bit complexity f 0 in which YES instances are
always accepted and NO instances are accepted with probability
at most s0(N).

Proposition 4.6 shows that the well-known method of ob-
taining clique-approximation results from efficient pcp systems
(cf., [18, 19, 9]) is “complete” in the sense that if clique-
approximation to within some factor can be shown NP-hard
then this can be done via the “pcp method”. This concludes the
sketch of the proof of Theorem 4.1.

5 Limitations of Common Approaches

The basic tasks of a verifier constructed by recursion are to
check that a given string is close to a codeword, and that another
given string encodes the projection of the data word of the first
string. These tasks are central to all existing (“low-complexity”)
pcps. In this section we provide lower bounds on the free-bit
complexity of these tasks. Specifically, we consider the task of
checking that a string (given by oracle access) is close5 to a valid
codeword and the task of checking that one oracle is an encoding
of a projection of a string encoded by a second oracle. Loosely4 This alternative transformation is used for presenting an alternative inverse
of the FGLSS-reduction. See our technical report [8].5 Here ‘close’ means closer than half the distance of the code. Indeed, our
Max Clique result may use a verifier that makes such a test, but other verifiers
in the paper perform a weaker form of a codeword test which is required to
detect only strings that are at distance almost equal to the distance of the code.

speaking, we show that each of these tasks has amortized free-
bit complexity of at least one (and this is tight by the long code
and the tests we present for it). Furthermore, we show that the
amortized free-bit complexity of performing both tasks (with
respect to the same given oracles) is at least two (which is also
tight). We consider these bounds as an indication that one will
have to depart significantly from the known techniques in order
to obtain lower (than two) amortized free-bit complexity forNP. One possible avenue which may lead to a amortized free-
bit complexity of 1 is to perform a relaxed form of the codeword
test (see footnote above) at free-bit complexity less than one.

Definition 5.1 The absolute distance between two wordsw; u 2 f0; 1gn, denoted d(w; u), is the number of bits on
which w and u disagree. We say that the code E : f0; 1gm !f0; 1gn has absolute distance d if for every x 6= y 2 f0; 1gm
the absolute distance betweenE(x) andE(y) is at least d. The
absolute distance between a word w and a code E, denoteddE(w), is defined as the minimum absolute distance betweenw and a codeword of E. A codeword test (with respect to E) is
an oracle machine, T , such that TE(a)(R) accepts for all a;R.
The error probability of T is defined to bemaxPrR �TA(R) accepts

� ;
the maximum being taken over all A 2 f0; 1gn such thatdE(A) � bd=2c.
Lemma 5.2 Let E : f0; 1gm 7! f0; 1gn be a code of absolute

distance d > 1, and let T be a codeword test with respect toE which uses fav free-bits on the average. Then, T has error

probability at least 1F � 1M , where F = 2fav and M = 2m, and

its amortized free bits complexity is at least 1� F=M .

Definition 5.3 Let E1, mapping f0; 1gm to f0; 1gn, andE2, mapping f0; 1gk to f0; 1gn0, be two codes, and let� : f0; 1gm ! f0; 1gk be a function. A projection test (with
respect to the above) is a two-oracle machine, T , such thatTE1(x);E2(�(x))(R) accepts for all x;R. The error probability
of T is defined to bemaxPrR hTE1(a);E2(b)(R) accepts

i ;
the maximum being taken over all a; b such that �(a) 6= b.
Lemma 5.4 Let E1, E2 and � be as above, and T be a pro-

jection test with respect to them, which uses fav bits on the av-

erage. Then, T has error probability at least 1F � 1K , whereK = jf�(a)ja 2 f0; 1gmgj and F = 2fav , and thus its amor-

tized free-bit complexity is at least 1� F=K .

Finally, we define a tester which combines the two tests above:
i.e., T takes two oracles A andB and performs a codeword test
on A and a projection test on the pair A;B.

Definition 5.5 Given a codeE1 : f0; 1gm ! f0; 1gn of abso-
lute distance d a code E2 : f0; 1gk ! f0; 1gn0 and a function� : f0; 1gm ! f0; 1gk, a Combined Test for (E1; E2; �) is
a two-oracle machine T such that TE1(a);E2(�(a))(R) accepts
on all a;R. The error of the test is defined to bemaxPrR �TA;B(R) accepts

� ;
where the maximum is over all (A;B) 2 S, and where S
contains (A;B) iff either dE1(A) � bd=2c orA = E1(a) andB = E2(b) for some b 6= �(a).
Lemma 5.6 Let E1 (of distance > 1), E2 and � be as above

and T be a combined codeword and projection test with respect to

them. Suppose that, given access to a pair of oracles, of lengthn and n0 respectively, T accepts at most F 2 = 22f possible

patterns for each possible sequence of coin tosses. Then, T has

error probability at least 164F� 14K� 12M , whereK = 2k andM is

the minimum, over all b 2 f0; 1gk, of the number of a 2 f0; 1gm
projected by � to b. Thus, the amortized free-bit complexity of T is

at least 2� O(1f + FminfK;Mg).
6 Complexity of PCP and FPCP

In the rest of this extended abstract, unless stated differently,r, l, p, q and k are integer functions, c; s; � :Z+! [0; 1] andf :Z+!R+
Proposition 6.1 (pcp systems with at most 3 queries):

(1) 8 c; s so that s is strictly less than c, PCPc;s[log; 1] = P.

(2) 8 s strictly less than 1, PCP1;s[log; 2] = P. In contrast, for

some constants 0<s<c<1,PCPc;s[log; 2] = NP.

(3) PCP1;0:9[log; 3] = NP. In contrast, 8s � 0:299,naPCP1;s[log; 3] = P, where naPCP is a restriction ofPCP in which the verifier is required to be non-adaptive.

Item (2) is folklore. The bound obtained in the second part of
Item (3), let alone that it is restricted to the non-adaptive case,
is weaker than what can be proven for MIP proof systems (see
below). This contrast may perhaps provide a testing ground
to separate PCP from MIP, a question raised by [7]. Below,MIP�;�[�; p] denotes the class of languages accepted by a one-
round p-prover protocol in which is prover answer is a single
bit.

Proposition 6.2 (mip systems with at most 3 queries):
(1) 8c; s; r; p,MIPc;s[r; p]� MIPc;2s[r; p� 1].
(2) 8s < 12 , MIP1;s[log; 3] = P.

Lemma 6.3 8c; s; r; q such that cs > 2q , –PCPc;s[r; q] � RTIME(poly(n; r; q; (c� 2qs)�1) :
Furthermore, if r and q are both logarithmically bounded thenPCPc;s[r; q] = P.

Corollary 6.4 8 c>0, PCPc[log; 1] = P.

Before turning to free-bit complexity, we comment that results
analogous to Proposition 6.1, where PSPACE plays the role
of P and NEXP the role of NP, can be derived for the classesPCP�;�(poly; �). Furthermore, for all functions c; s so thatc(n) > s(n) + 1= poly(n), we obtain PCPc;s[poly; 1] �AM. In light of the last item of Proposition 6.5, this result may
be hard to strengthen.

Proposition 6.5 8s strictly smaller than 1:

(1) FPCP1;s[log; 1] = P. In contrast, NP equals the

classes FPCP0:5;0:45[log; 1], FPCP0:25;0:22[log; 0],
and FPCP1;0:95[log; f] for f = log2 3.

(2) FPCP1;s[poly; 0] � coNP
and FPCP1;s[poly; 1] � PSPACE.

(3) Graph Non-Isomorphism and Quadratic Non-Residousity have

pcp systems, with perfect completeness, soundness error 12 ,

query complexity 1 and 0 free-bits.

The last item follows from [27, 26].
In consequence of the above, we note that both the freeness and
the amortization are key to going as low as two amortized free
bits. Such efficiency under query complexity, amortized query
complexity, and (non-amortized) free bit complexity is ruled
out because PCP1;1=2[log; 2] � P , PCP[log; 1] � P , andFPCP1;1=2[log; 1] � P .

7 Transformations of FPCP Systems

In this section we show several useful transformations which
can be applied to pcp systems. We concentrate on the free-
bit complexity, and introduce an additional parameter into the
notation – the proof length (i.e., FPCPc;s[r; f; l] refers to ran-
domnessr, free-bit f and proof length l). We start by stating the
simple fact that the ratio between the completeness and sound-
ness bounds (also referred to as gap) is amplified (i.e., raise
to the power k) when one repeats the pcp system (k times).
Note, however, that if the original system is not perfectly com-
plete then the completeness bound in the resulting system gets
decreased.

Proposition 7.1 (gap amplification): 8c; s; r; f; l; k –FPCPc;s[r; f; l] � FPCPck;sk [kr; kf; l]:
Next, we show that in some sense the randomness-complexity
of a proof system need not be higher than logarithmic in the
length of the proofs/oracles employed. The notation�RK is used
to indicate a randomized Karp reduction.

Proposition 7.2 (reducing randomness): 8s; r; f; l; � –FPCP1;s[r; f; l] �RK FPCP1;s0 [r0; f; l] ;
where s0 = (1 + �)�s and r0 = O(1) + log2(l=�2s).

An analogous statement for two-sided error pcp is omitted.
Combining Propositions 7.1 and 7.2, we obtain the following
corollary which plays a central role in deriving clique approxi-
mation results via the FGLSS method 6–

Corollary 7.3 8r; f; k –FPCP[r; f] �RK FPCP1;2�k [r + k + log ; kf] :
An alternative error reduction procedure, which allows to obtain
inapproximability results under P 6= NP, follows (stated here
only for the one-sided error case)

Proposition 7.4 8r; f; k and all constants �; s>0 –FPCP1;s[r; f] � FPCP1;sk [r+ (2 + �)�k + log ; kf]:
The following transformation is analogous to the randomized
layering procedure for the clique promise problem (i.e., Propo-
sition 4.5). In view of the relation between FPCP and the
clique promise problem (shown in Section 4), this analogy is
hardly surprising. In this transformation the acceptance proba-
bility bounds are pushed higher at the expense of increasing the
free-bit complexity.

Proposition 7.5 (Increasing acceptance probabilities):8c; s; r; f; k –FPCPc;s[r; f] �RK FPCPc0;s0 [r; f + log2 k] ;
where c0 = 1� 4(1� c)k and s0 = k � s.

The following transformation has an opposite effect than the
previous one, reducing the free-bit complexity at the expense
of lowering the bounds on acceptance probability.

Proposition 7.6 (Decreasing acceptance probabilities): 8c; s;r, f and 8k�f –FPCPc;s[r; f] � FPCP c2k ; s2k [r + k; f � k]
Acknowledgements

We thank Uri Feige, Marcos Kiwi, and Luca Trevisan for com-
ments on early drafts.

References

[1] S. ARORA. Reductions, Codes, PCPs and Inapproxima-
bility. FOCS 1995.

[2] S. ARORA, C. LUND, R. MOTWANI, M. SUDAN AND M.
SZEGEDY. Proof verification and intractability of approx-
imation problems. FOCS 1992.6In a typical application, r = O(logn) and one sets k to be a large multiple

of r. The FGLSS-graph corresponding to the resulting pcp system will have
size N = 2(r+k+O(1))+kf and a gap in clique size of factor 2k, which can
be rewritten as N1=(1+f+�) where � = r=k.

[3] S. ARORA AND S. SAFRA. Probabilistic checking of
proofs: a new characterization of NP. FOCS 1992.

[4] L. BABAI, L. FORTNOW, L. LEVIN, AND M.
SZEGEDY. Checking computations in polylogarithmic
time. STOC 1991.

[5] R. BAR-YEHUDA AND S. EVEN. A local ratio theorem
for approximating the weighted vertex cover problem.
In Analysis and Design of Algorithms for Combinatorial
Problems Vol. 25 of Annals of Discrete Math, Elsevier,
1985.

[6] M. BELLARE, D. COPPERSMITH, J. HÅSTAD, M. KIWI

AND M. SUDAN. Linearity testing in characteristic two.
FOCS 1995.

[7] M. BELLARE, S. GOLDWASSER, C. LUND AND A. RUS-
SELL. Efficient probabilistically checkable proofs and ap-
plications to approximation. STOC 1993.

[8] M. BELLARE, O. GOLDREICH AND M. SUDAN. Free
Bits, PCPs and Non-Approximability – Towards Tight
Results. August 1995 (replacing previous version of
May 1995). Available from ECCC, Electronic Collo-
quium on Computational Complexity, via WWW using
http://www.eccc.uni-trier.de/eccc/.

[9] M. BELLARE AND M. SUDAN. Improved non-
approximability results. STOC 1994.

[10] M. BEN-OR, S. GOLDWASSER, J. KILIAN AND A. WIGDER-
SON. Multi-Prover interactive proofs: How to remove
intractability assumptions. STOC 1988.

[11] P. BERMAN AND G. SCHNITGER. On the complexity of
approximating the independent set problem. Information
and Computation 96, 77–94 (1992).

[12] A. BLUM. Algorithms for approximate graph coloring.
Ph. D Thesis, MIT, 1991.

[13] M. BLUM, M. LUBY AND R. RUBINFELD. Self-
testing/correcting with applications to numerical prob-
lems. JCSS Vol. 47, pp. 549–595, 1993.

[14] R. BOPPANA AND M. HALDÓRSSON. Approximating max-
imum independent sets by excluding subgraphs. BIT
Vol. 32, No. 2, 1992.

[15] S. EVEN, A. SELMAN AND Y. YACOBI. The complex-
ity of promise problems with applications to public-key
cryptography. Information and Control Vol. 2, 159–173,
1984.

[16] U. FEIGE. Randomized graph products, chromatic num-
bers, and the Lovász theta function. STOC 1995.

[17] U. FEIGE AND M. GOEMANS. Approximating the value of
two prover proof systems, with application to Max-2SAT
and Max-DICUT. ISTCS 1995.

[18] U. FEIGE, S. GOLDWASSER, L. LOVÁSZ, S. SAFRA,
AND M. SZEGEDY. Approximating clique is almost NP-
complete. FOCS 1991.

[19] U. FEIGE AND J. KILIAN. Two prover protocols – Low
error at affordable rates. STOC 1994.

[20] L. FORTNOW, J. ROMPEL AND M. SIPSER. On the power
of multiprover interactive protocols. Structures 1988.

[21] M. FURER. Improved hardness results for approximating
the chromatic number. FOCS 1995.

[22] M. GAREY AND D. JOHNSON. The complexity of near
optimal graph coloring. Journal of the ACM Vol. 23,
No. 1, 43–49, 1976.

[23] M. GAREY, D. JOHNSON AND L. STOCKMEYER. Some
simplified NP-complete graph problems. TCS 1,
pp. 237–267, 1976.

[24] M. GOEMANS AND D. WILLIAMSON. New 3/4-
approximation algorithm for MAX SAT. Proceedings of
the 3rd Mathematical Programming Society Conference
on Integer Programming and Combinatorial Optimiza-
tion, 1993.

[25] M. GOEMANS AND D. WILLIAMSON. :878 approximation
algorithms for Max-CUT and Max-2SAT. STOC 1994.

[26] O. GOLDREICH, S. MICALI, AND A. WIGDERSON. Proofs
that yield nothing but their validity and a methodology
of cryptographic protocol design. FOCS 1986.

[27] S. GOLDWASSER, S. MICALI, AND C. RACKOFF. The
knowledge complexity of interactive proofs. SIAM J.
Computing Vol 18, No. 1, 186–208, 1989.

[28] S. KHANNA, N. LINIAL AND S. SAFRA. On the hardness
of approximating the chromatic number. ISTCS 1993.

[29] C. LUND AND M. YANNAKAKIS. On the hardness of ap-
proximating minimization problems. STOC 1993.

[30] MONIEN AND SPECKENMEYER. Some further approxima-
tion algorithms for the vertex cover problem. Proceed-
ings of CAAP 83, Lecure Notes in Computer Science
Vol. 159, Springer-Verlag, 1983.

[31] C. PAPADIMITRIOU AND M. YANNAKAKIS. Optimiza-
tion, approximation, and complexity classes. JCSS 43,
pp. 425–440, 1991.

[32] R. RAZ. A parallel repetition theorem. STOC 1995.

[33] M. YANNAKAKIS. On the approximation of maximum
satisfiability. SODA 1992.

[34] D. ZUCKERMAN. NP-Complete Problems have a version
that is hard to Approximate. Structures 1993.

