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AbstractThis paper continues the investigation of the connection between proof systems and approxima-tion. The emphasis is on proving tight non-approximability results via consideration of measureslike the \free bit complexity" and the \amortized free bit complexity" of proof systems.The �rst part of the paper presents a collection of new proof systems based on a new error-correcting code called the long code, and means to test it. We provide a proof system which hasamortized free bit complexity of 2+ �, implying that approximating Max Clique within N 13��, andapproximating the Chromatic Number within N 15��, are hard assuming NP 6= coRP, for any � > 0.We also derive the �rst explicit and reasonable constant hardness factors for Min Vertex Cover,Max-2-SAT, and Max Cut, and improve the hardness factor for Max-3-SAT. We note that ournon-approximability factors for Max-SNP problems are appreciably close to the values known to beachievable by polynomial time algorithms. Finally we note a general approach to the derivation ofstrong non-approximability results under which the problem reduces to the construction of certain\gadgets."The increasing strength of non-approximability results via the proof checking connection moti-vates us to ask how far this can go, and whether proofs are inherent in any way. This is addressedin the second part of the paper. Recall that [FGLSS] showed how to translate proof systems forNP into NP-hardness of approximation results for Max Clique. We begin with a result of a novelnature which essentially reverses this connection, showing how any NP-hardness of approximationresult yields a proof system for NP. Roughly our result says that for any constant f if Max Cliqueis NP-hard to approximate within N1=(1+f) then NP is in the class FPCP[log; f ] of languages pos-sessing proofs of logarithmic randomness and amortized free bit complexity f . This indicates thatproofs are inherent to obtaining non-approximability results. But it does more: it provides a tightrelation indicating that to get large hardness factors we must minimize the amortized free bit com-plexity. Motivated by this result we look at how low the amortized free bit complexity can go.We show that a 2 free bit complexity is inherent to veri�ers constructed using \current" recursiveproof veri�cation techniques, and thus the long code is optimal for its use here. In particular, newtechniques are required to prove a better than N1=3 factor hardness for Max Clique.The third part of our paper initiates a systematic investigation of the properties of PCP andFPCP as a function of the various parameters: randomness, query complexity, free bit complexity,amortized free bit complexity, proof size, etc. We are particularly interested in \triviality" resultswhich indicate which combinations of parameters are not powerful enough to capture NP. We alsodistill the role of randomized reductions in this area, and provide a variety of useful transformationsbetween proof checking complexity classes.
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C h a p t e r 1Introduction
In the Max Clique problem we are given a graph G and must �nd the value of MaxClique(G) =maxf jSj : S is a clique in G g. It is an example of an NP-optimization problem, of which othersare to �nd the chromatic number of a graph; to �nd the size of the smallest vertex cover; etc. Theseproblems arise in a large and varied number of settings, and e�cient solutions are much desired.Unfortunately, many important NP-optimization problems (those mentioned above in particular)are NP-hard to solve. So algorithm designers seek e�cient (polynomial time) approximation algo-rithms.An approximation algorithm A delivers a number that is supposed to be close to optimal. Thequality of the algorithm is measured in terms of what factor of optimal is the delivered number.For example, a factor �(�) � 1 approximation for Max Clique is one which given G outputs a valuev satisfying MaxClique(G)=�(N)� v � MaxClique(G) where N is the number of nodes in G.The search for e�cient approximation algorithms achieving good factors has met with variedsuccess. In some cases, good approximation algorithms were found. But many important problems,including Max Clique, Chromatic Number and Min Vertex Cover, escaped e�orts to be approx-imated at all (in the case of the �rst two problems) or reasonably well (in the case of the last).Algorithm designers want to know whether this is due to some inherent intractability, or only tothe lack of cleverness in algorithm design.Some early non-approximability results were able to indicate, in some cases, that very good ap-proximation (ie. achieving factors very close to optimal) can be NP-hard. But the real breakthroughcame more recently, when a connection was established between proof checking and approximation,yielding a strong non-approximability result for Max Clique. This connection has, over the last fewyears, been broadened and deepened: more and more problems have fallen to this approach, andmeanwhile the factors that one can indicate hard to approximate increase. Indeed, in some cases,even tight results seem in sight.We will now provide a high level overview of our main contributions. Then we will providesome de�nitions and state precise theorems.The above, and most of the following discussion has omitted, for explanatory simplicity, thehistorical story that accompanies the technical advances. In Section 1.6 we provide a history of themain ow of works and ideas in the area. More detailed credits and historical discussions on speci�ctopics can be found in the text relating to the topic in question, and pointers to these discussionsare also given in Section 1.6. 5



mrBellare, Goldreich, Sudan 61.1 Overview of main resultsThis paper continues and expands the research in non-approximability via proof systems, with afocus on the obtaining of tight results. Here we briey summarize our contributions. Later we willstate the results more precisely.1.1.1 New proof systems and non-approximability resultsOur �rst set of results continues previous work by building new and more e�cient proof systemsand thus improving (increasing) factors shown non-approximable for a wide variety of optimizationproblems.We obtain improved non-approximability results for Max Clique, Chromatic Number, andMax-3-SAT. We also obtain the �rst reasonable and explicit constant factor non-approximabilityresult for the Min Vertex Cover problem, Max Cut, and Max-2-SAT. Several of these results arestrong enough to indicate that the gap between factors that are attainable by polynomial timealgorithms, and those we can indicate are not, is now quite narrow. See Figure 1.2.The technical foundation of these results is a new code, call the long code, and a collection ofassociated tests. The tests are used to construct proof systems for NP. Key to the improvementsin non-approximability factors (for some of the above problems) is the focus on certain measures ofproof checking complexity such as \free-bits" and \amortized free-bits." In the latter domain themain result is a proof system for NP using two amortized free-bits, and directly yielding a N1=3non-approximability factor for Max Clique.We emphasize a general framework for the derivation of strong non-approximability results forMax-SNP problems which results from our tests and proof systems: obtaining a non-approximabilityresult for a particular problem is reduced to the construction of appropriate \gadgets" to \repre-sent" two simple functions: boolean XOR and boolean AND.1.1.2 Proofs and approximation: Potential and limitationsAs the above indicates, non-approximability results are getting steadily stronger, especially for MaxClique. How far can they go? And, in minimizing amortized free-bits, are we on the right track?Are there other ways? The next set of results provides answers to these kinds of questions.A reverse connectionWe focus on the Max Clique problem. We present a result which indicates that proof checkingis necessary to getting non-approximability results. Furthermore, it indicates that not just proofchecking, but the minimization of the amortized free-bit complexity is necessary.Roughly, we show that if, for some f > 0, Max Clique is NP-hard to approximate withinN1=(1+f)then NP has proof systems of (logarithmic randomness and) amortized free-bit complexity f . Thisresult can be viewed as \inverting," in a strong way, the FGLSS-connection.So our current e�orts (recall that we have the amortized free-bit complexity down to two,yielding a N1=3 hardness for Max Clique) are in the right direction. To prove that, say Max Cliqueis hard to approximate within pN , our reverse connection says we must construct proof systemswith amortized free-bit complexity one.



mrBellare, Goldreich, Sudan 7A lower bound on amortized free-bitsNow that we know we must minimize amortized free-bits, we ask ourselves how low we can takethem. Our approach here is to look at current techniques and assess their limitations. We derivelower bounds showing that any proof system using the existing frameworks (of this and previouspapers) must use at least two amortized free-bits. Our reverse connection now implies that provinga better than N1=3 hardness for Max Clique requires new techniques.We stress that this last result makes various assumptions about methods, and is intended to showthat signi�cantly novel techniques are required to go further. But it does not suggest an inherentlimitation. Indeed, if we believe Max Clique is hard to approximate within N1�o(1) then our reverseconnection says proof systems with arbitrarily small constant amortized free-bit complexity exist;we are just saying they may be hard to �nd.1.1.3 PCP and FPCP: Properties and transformsProbabilistic proofs involve a vast arena of complexity parameters: query complexity, free-bitcomplexity, amortized free-bit complexity, randomness, and proof sizes to name a few. Somemight, at �rst glance, seem less \natural" than others; yet all are important in applications. Abetter understanding of the basic properties and relations between these parameters would helpmove us forward.We initiate, accordingly, a systematic investigation of the properties of pcp complexity classesas a function of the parameter values. Besides providing new results we take the opportunity tostate and prove a few folklore ones.We focus in particular on \triviality" results. These are results which say that certain pa-rameter combinations yield classes probably not capable of capturing NP. For example, the classof languages recognizable with error 1=2 and logarithmic randomness using one (non-amortized!)free-bit is in P| so don't expect to prove NP using just one free-bit. (But nothing rules this outwhen amortization is considered).We also investigate transformations: to reduce the randomness, error or other complexities atvarious costs.1.1.4 Conceptual contributionsThe reverse connection does more than guide our choice of parameters. It provides a new conceptualtool because it enables us to reect, in the language of proof systems, theorems, properties andtransformations of graphs, and vice versa. This turns out to be very useful and revealing. It alsoleads, in some cases to new results derived by turning graphs into proof systems via our connection,and then back to graphs via the FGLSS connection, in the process gaining some property. As anexample we show how all known hardness results for chromatic number can be viewed (with almostno loss in e�ciency) as reductions from Max Clique | even though these were essentially hardnessresults based on proof checking. Other examples demonstrating the usefulness of the equivalencemay be found in Section 4.1.3. We believe that exploring and exploiting further this duality is afruitful avenue to pursue.A second (and related) conceptual contribution of this work is to distill and formalize the role ofrandomized reductions. These transforms provide an elegant and concise way of stating connectionsbetween proofs and approximability, or just between di�erent kinds of proof systems, and make iteasier to manipulate the many connections that exist to derive new results.



mrBellare, Goldreich, Sudan 81.1.5 Previous version, current version and future versionsThis is a revised preliminary version of our work. This version improves over the previous one,dated May 1995, in the analysis of the MAX-SNP veri�er and consequently in the hardness factorsachieved via this veri�er (i.e., for Max-3-SAT, Max-2-SAT, and Max CUT). In addition, a newtransformation of pcp systems is presented (Proposition 5.2.9) resolving an open problem mentionedin the previous version (i.e., showing a pcp system for NP with perfect completeness, logarithmicrandomness, soundness error s < 0:943 < 1 and free-bit complexity log2 3 < 2). Finally, some minoraws in the previous expositions were removed (e.g., see De�nition 3.3.1 and \double folding").We have recently improved many of the results of Chapter 3. In particular, we get hardness fac-tors of 27/26, 74/73, 66/65 and 16/15 for Max3SAT, Max2SAT, MaxCUT and MinVC, respectively.In addition, we have NP = PCP1;0:5[log; 11] = FPCP1;0:5[log; 6] and NP = PCP1;0:851[log; 3] =FPCP1;0:794[log; 2]. These were obtained via a new (adpative!) RMB test. Details will be providedin the next version of this paper.1.2 Some background and de�nitionsIn the next sections we will state more precisely the results and theorems corresponding to theabove discussion. In order to do this we have to recall some minimal number of de�nitions andbackground. Here we will be informal and as brief as possible; formal de�nitions can be found inChapter 2.Proof systems and parameters. A probabilistic proof system is described by a probabilistic,polynomial time veri�er V . It takes an input x of length n and tosses coins R. It has oracle accessto a poly(n) length string � describing the proof: to access a bit it writes a O(logn) bit addressand is returned the corresponding bit of the proof. Following its computation it will either acceptor reject its input x. The accepting probability, denoted ACC [V (x) ], is the maximum, over all �, ofthe probability (over R) that V accepts x on coins R and proof string �. While the task is typicallylanguage recognition, we will, more generally, consider promise problems (A;B) consisting of a setA of \positive" instances and a set B of \negative" instances [ESY]. (Languages are a special caseof promise problems; a language L is represented by the promise problem (L; L).)Of interest in the applications are various parameters of the system. The completeness proba-bility c = c(n) and the soundness probability s = s(n) are de�ned in the usual ways. In case c = 1we say that the system has perfect completeness. The gap is g = c=s. The query complexity isthe maximum (over all coin tosses and proof strings) of the number of bits of the proof that areexamined by the veri�er. The free-bit complexity, roughly speaking, is the logarithm of numberof possible accepting con�gurations of V on coins R and input x. (For example a veri�er whichmakes 3 queries and accepts i� the parity of the answers is odd has 4 accepting con�guration andthus free-bit complexity 2.)Either the query or the free-bit complexity may be considered in amortized form: eg. the amor-tized free-bit complexity is the free-bit complexity (of a proof system with perfect completeness)divided by the logarithm of the gap. (That is, the number of free-bits needed per factor of 2 increasein the gap.) Also, either the query or free-bit complexity may be considered on the average, theaverage being over the random string of the veri�er.We use the notation PCPc;s[r; q] to denote the class of promise problems recognized by veri�erstossing r coins, having query complexity q, and achieving completeness probability c and soundnessprobability s. FPCPc;s[r; f ] is de�ned analogously with f being the free-bit complexity. PCP[r; q]is de�ned analogously with q being the amortized query complexity, and FPCP[r; f ] is de�ned



mrBellare, Goldreich, Sudan 9analogously with f the amortized free-bit complexity.Max Clique approximation. Although we look at many optimization problems there is aparticular focus on Max Clique. Recall the best known polynomial time approximation algorithmfor Max Clique achieves a factor of only N1�o(1) [BoHa], scarcely better than the trivial factor ofN . (Throughout the paper, when discussing the Max Clique problem, N denotes the number ofvertices in the graph.) There is not even a heuristic algorithm that is conjectured to do better.(The Lov�asz Theta function had been conjectured to approximate the Max Clique size within pNbut this conjecture was disproved by Feige [Fei].)The question of whether one can do even slightly better is of interest. Namely, can one presentan N1�� factor approximation algorithm for Max Clique for some � < 1? An additional motivationfor searching for such \weak" approximation algorithms was suggested by Blum. He showed thata polynomial-time N1��-factor approximation algorithm for Max Clique implies a polynomial timealgorithm to color a three colorable graph with O(logN) colors [Bl], which is much better thancurrently known [KMS].But perhaps N1�o(1) is the best possible. Resolving the approximation complexity of this basicproblem seems, in any case, to be worth some e�ort.Gaps in clique size. Hardness of approximation (say of Max Clique) is typically shown via theconstruction of promise problems with gaps in max clique size. Speci�cally, let Gap-Cliquec;s be thepromise problem (A;B) de�ned as follows:A is the set of all graphsGwithMaxClique(G)=N � c(N),and B is the set of all graphs G with MaxClique(G)=N � s(N). The gap is de�ned as c=s. Now, ahardness result will typically specify a value of the gap g(N) = c(N)=s(N) for which Gap-Cliquec;sis NP-hard under a (randomized) Karp reduction. This means that there is no polynomial timealgorithm to approximate the Max Clique size of an N node graph within g(N) unless NP hasrandomized polynomial time algorithms.Gap problems can be similarly de�ned for all the other optimization problems we consider.From now on, we discuss approximation in terms of these gap problems.The connection: Making gaps from proofs. We need to recall something about the mannerin which proof systems are translated into (NP-hard) gap problems. We will refer to the FGLSS-reduction, which we recall is a reduction of a promise problem (A;B), or rather a pcp system for(A;B), which maps an input x 2 A [ B to a graph Gx so that MaxClique(Gx) reects ACC [V (x) ].For the best results one typically uses a randomized form of this reduction due to [BeSc, Zu] andit is this that we will assume henceforth.A NP-hard gap problem is obtained roughly as follows. First, one exhibits an appropriateproof system for NP. Then one applies the FGLSS reduction. The factor indicated hard dependson the proof system parameters. A key factor in getting better results has been the distilling ofappropriate pcp-parameters. The sequence of works [FGLSS, ArSa, ALMSS, BGLR, FeKi, BeSu]lead us through a sequence of parameters: query complexity, free-bit complexity and, �nally, for thebest known results, amortized free-bit complexity. The connection in terms of amortized free-bitscan be stated as follows: if NP reduces to FPCP[log; f ] then NP also reduces to Gap-Cliquec;s, withgap c(N)=s(N) = N1=(1+f). (In both cases the reduction is via randomized Karp reductions, andterms of � > 0 which can be arbitrarily small are ignored.) In particular if NP � FPCP[log; f ] thenapproximating the max clique size of an N vertex graph within N1=(1+f) in polynomial time is notpossible unless NP has e�cient randomized polynomial time algorithms.



mrBellare, Goldreich, Sudan 101.3 New proof systems and non-approximability resultsThis section describes the proof systems that we construct and the non-approximability results thatwe derive from them. All proof systems are based on the long code and its checking machinery. Forsome of the non-approximability results we introduce new reductions or improve currently knownreductions.1.3.1 New proof systemsThe following theorem summarizes the new proof systems that we obtain. Some are motivatedby applications, others purely as interesting items in proof theory. Following the theorem is thediscussion and motivation.Theorem 1.3.1 We provide the following new proof systems for NP|(1) For every � > 0 it is the case that NP � FPCP[ log; 2 + � ].(2) NP � PCP1;1=2[ coins = log ; query = 19 ; queryav = 15:58 ].(3) NP � FPCP1;s[log; 2] for s = 0:884464.(4) NP � PCP1;s[log; 3] for s = 0:8999.The search for proof systems of low amortized free-bit complexity is motivated of course by theFGLSS reduction. Bellare and Sudan [BeSu] have shown that NP � FPCP[ log; 3 + � ] for every� > 0. The �rst result above improves upon this, presenting a new proof system with amortizedfree-bit complexity 2 + �.The question of how low one can get the (worst-case and average) query complexity requiredto attain soundness error 1=2 was investigated a lot in earlier works because they were applyingthe result to obtain Max Clique hardness results. We now know we can do better with amortizedfree-bit complexity. Nevertheless, the original question is still one to which we are curious to knowthe answer.Minimizing the soundness error obtainable using only two (non-amortized!) free-bits is impor-tant for a more pragmatic reason. It enables us to get the �rst explicit and reasonably strongconstant non-approximability result for the Min Vertex Cover problem. This application is dis-cussed below.Finally, what soundness one can achieve using only three query bits is a natural question giventhe Max 3SAT gap results. Indeed, if there is an NP-hard Max 3SAT gap problem with certainfocus error queries free-bits previous related resultworst averageMax SNP 0:864 4 3.37 33 queries 0:900 3 3 2 error 7273 via MaxSAT [BeSu]2 free-bits 0.885 4 3.45 2error 1/2 12 19 15.6 11 32 queries (24 on average) [FeKi]amortized free-bits O(2�m) 23m 23m 2m 3m free-bits [BeSu]Figure 1.1: New PCP Systems for NP, all with logarithmic randomness.



mrBellare, Goldreich, Sudan 11gap then one can easily get a three query proof system with the same gap. But in fact one can dobetter as indicated above.In Figure 1.1 we present a table which depicts the parameters of our new proof systems and com-pares them to previous related result. The �rst row in the table corresponds to a proof system (notmentioned in Theorem 1.3.1) which we use to derive Max SAT and Max CUT non-approximabilityresults. The last row in the table corresponds to the proof system used to establish Part (1) ofTheorem 1.3.1.1.3.2 New non-approximability resultsAgain we �rst state the theorem and then discuss it. But the best thing to do is look at Figure 1.2.Theorem 1.3.2 The following indicate factors not achievable in polynomial time for the indicatedproblems, and the assumption under which the result is shown. Here � > 0 is an arbitrary constantand N is, for the �rst two results, the number of vertices in the graph{(1) A factor of N 13�� for Max Clique assuming NP 6= coRP(2) A factor of N 15�� for Chromatic Number assuming NP 6= coRP(3) A factor of 27=26 for Min Vertex Cover assuming P 6= NP(4) A factor of 38=37 for Max-3-SAT and Max Exact 3SAT assuming P 6= NP(5) A factor of 82=81 for Max CUT assuming P 6= NP.(6) A factor of 94=93 for Max-2-SAT assuming P 6= NP.The conclusion for Max Clique follows, of course, from the FGLSS-reduction and Part (1) ofTheorem 1.3.1. The conclusion for the Chromatic Number follows from a recent reduction ofFurer [Fu], which in turn builds on reductions in [LuYa, KLS, BeSu].The improvements for the Max-SNP problems are perhaps more signi�cant than the Max Cliqueone: for the �rst time, we see hardness results for Max-SNP problems which are comparable to thefactors achieved by known polynomial time approximation algorithms.We are obtaining the �rst explicit and reasonable non-approximability factor for the minimumvertex cover. Recall that it is approximable within 2-o(1) [BaEv, MoSp]. Our results for MaxCUT and Max-2-SAT show that it is not possible to �nd a solution with value which is only 1%away from being optimal. This may be contrasted with the recent results of [GoWi2, FeGo] whichshows that solutions which are within 14% and 7.5%, respectively, of the optimum are obtainablein polynomial time. Thus even though, we do not know if the \pcp approach" allows to get thebest possible non-approximability results for these problems, we feel that the current results arenot ridiculously far from the known upper bounds. Consider, for example, the ratio u�1l�1 , where uand l are the currently known upper and lower bounds, respectively. Then, the ratios for the abovementioned Max-SNP problems are 5.3 for Max Exact 3SAT, 7 for Max-2-SAT, 11.3 for Max-CUT,11.8 for Max-3-SAT, and 26 for MinVC (Minimum Vertex Cover).Figure 1.2 we present a table which depicts, for each problem we have considered, the bestknown factor achievable by a polynomial time algorithm, our lower bound, and the best previouslower bound. We ignore, as usual, terms of N � where � > 0 is an arbitrary positive constant.1.3.3 TechniquesAs in all recent constructions of e�cient pcp's our construction also relies on the use of recursiveconstruction of veri�ers, introduced by Arora and Safra [ArSa]. We have the advantage of beingable to use, at the outer level, the veri�er of Raz [Raz] which appeared only recently and was not



mrBellare, Goldreich, Sudan 12Problem Approx Non-ApproxFactor Due to New Factor Previous Factor AssumptionMax-3-SAT 1:319 [Ya, GoWi1, GoWi2] 1:027 1 + 172 [BeSu] P 6= NPMax-E3-SAT 1 + 17 folklore 1 + 137 unspeci�ed [ALMSS] P 6= NPMax-2-SAT 1:075 [GoWi2, FeGo] 1:010 1 + 1504 (implied [BeSu]) P 6= NPMAX CUT 1:139 [GoWi2] 1:012 unspeci�ed [ALMSS] P 6= NPMin-VC 2� o(1) [BaEv, MoSp] 1 + 126 unspeci�ed [ALMSS] P 6= NPMax-Clique N1�o(1) [BoHa] N 14 [BeSu] NP 6� coR~PN 13 N 15 coRP 6= NPN 14 N 16 [BeSu] P 6= NPChromatic N1�o(1) [BoHa] N 110 [BeSu] NP 6� coR~PNumber N 15 N 113 coRP 6= NPN 17 N 114 [BeSu] P 6= NPFigure 1.2: Approximation factors attainable by polynomial-time algorithms (Approx) versus fac-tors we show are hard to achieve (Non-Approx).available to previous works. The inner level veri�er relies on the use of a \good" encoding scheme.Since [ALMSS], constructions of this veri�er have used the Hadamard Code for this purpose. Inthis paper we change this aspect of the protocol and use instead a much more redundant codewhich we call the long code. This code encodes an n-bit string as a 22n bit string which consistsof the value of every boolean function on the n bit string. It is easy to see such codes have largeHamming distance. What is important is that this code is also easily \testable" and \correctable".This is shown in Section 3, where we show how this code translates into the theorem describedabove.A second aspect of the improved hardness result is the fact that we use direct reductions fromveri�ers to the problems of interest. This follows and extends [BGLR], prior to which results hadused \generic" reductions, which did not take advantage of the nature of the tests performed by theveri�er. In particular, in our case it turns out that the veri�er only performs two kinds of tests |(1) verify that a + b + c = 0 (mod 2); and (2) verify that a � b = c + d (mod 2), where a; b; c; dare all elements of GF(2) = f0; 1g. By constructing local gadgets (i.e., one gadget per random cointoss sequence) to verify each of the veri�er's tests, we achieve better non-approximability resultsthan using more general reductions. In particular our work seems to suggest that optimizing forgadgets which \check" the two conditions listed above will lead to reasonably good lower boundsfor many Max-SNP problems.1.4 Proofs and approximation: Potential and limitsNext we describe the results concerned with exploring the limitations of proof theoretic techniquesin approximation.



mrBellare, Goldreich, Sudan 131.4.1 Reversing the connection: Making proofs from gapsThe FGLSS Reduction Lemma indicates that one route to good non-approximability results forMax Clique is to show NP � FPCP[log; f ] for values of f which are as small as possible. Ourreverse connection says that, in fact, this is the only way to proceed. Namely, we \invert" theabove FGLSS-reduction. The following states an equivalence: (2))(1) is just the FGLSS-reduction;(1))(2) is our reversed connection. The following statement ignores terms of � > 0 which can bearbitrarily small. The proof and a more precise statement are in Section 4.1.Theorem 1.4.1 Let f be a constant. Then the following statements are equivalent:(1) NP reduces to Gap-Cliquec;s with gap c(N)=s(N) = N1=(1+f).(2) NP reduces to FPCP[log; f ].In both cases the reduction is randomized. Furthermore the statement holds both for Karp and forCook reductions. Also, if (1) holds with a deterministic Karp reduction then NP � FPCP0[log; f ],where FPCP0 is de�ned as being the amortized free-bit complexity of proof systems with almost-perfect completeness (i.e., c = 1� o(1)).In other words any method of proving NP-hardness of Max Clique approximation to a factor ofN1=(1+f) implies that NP has proof systems of amortized free-bit complexity f .We stress both the \qualitative" and the \quantitative" aspects of this result. Qualitatively,it provides an answer to the following kind of a question: \What do proofs have to do withapproximating clique size, and can we not prove non-approximability results without using proofchecking?" The result indicates that proofs are inherent, and explains, perhaps, why hardnessresults avoiding the proof connection have not appeared.However, at this stage it is the quantitative aspect that interests us more. It says that to gettighter results on Max Clique hardness, we must construct proof systems to minimize the amortizedfree-bit complexity. Thus our work with the long code was in the right direction. A question iswhether the amortized free-bit bound of 2 can be improved.1.4.2 A lower bounds on amortized free-bitsWe show that, under the framework used within this and previous papers on this subject, amortizedfree-bit complexity of 2 seems to be a natural barrier: any proof system in this framework mustuse 2� � amortized free-bits, where � > 0 as usual can be aribtrarily small. The result, includinga de�nition of what we mean by the \framework," is in Section 4.2. Loosely speaking, it considersproof systems which, among other things, probe two oracles in order to check that one oracle is\close" to a codeword (i.e., a codeword test) and the second oracle encodes a projection of theinformation encoded in the �rst oracle (i.e., a projection test). We also prove a lower bound of1 � � on the amortized free-bit complexity of performing only the codeword test (resp., only theprojection test). Our lower bound refers to a codeword test that is required to reject oracleswhich are at distance at least d=2 from the code, where d is the distance of the coded. All threelower bounds are tight (by proof systems presented in this paper). A more relaxed de�nition ofa codeword test only requires the test to reject oracles at distance more that (1 � �) � d from thecode.1 We do not know whether our lower bound (on the amortized free-bit complexity) holds alsofor the relaxed codeword test.All known constructions (of reasonablly e�cient pcp systems) fall into the framework discussedabove (i.e., perform both a codeword test and a projection test). Furthermore, a pcp system of1 In contrast to the original de�nition, passing a relaxed codeword test does not guarantee unique decoding.However, as we see in Section 3.4, this does not matter.



mrBellare, Goldreich, Sudan 14amortized free-bit complexity 2 + � (cf. Theorem 1.3.1 Part 1) can be constructed both by usingthe relaxed and non-relaxed forms of the codeword test. Thus improving on the amortized free-bitcount of 2 + � requires either departure from the abovementioned framework or the constructionof a relaxed codeword test with amortized free-bit complexity signi�cantly lower than 1. In thelatter case (i.e., when remaining in the above framework), such a construction is necessary but notsu�cient in order to obtain a pcp system for NP with free-bit complexity lower than 2 (since oneneeds to perform the projection test also in case the oracles are close but not equal to codewords).Furthermore, in such a case the lower bound of 1 on the free-bit complexity of the projection teststill holds.We conclude that improving on the amortized free-bit count of 2+ � would require some signif-icant changes in the design or analysis of pcp veri�ers. It follows from our reverse connection thatproving a larger than N1=3 non-approximability factor for Max Clique would also require signi�cantnew techniques.We stress that these results are about limitations of techniques, not inherent limitations. We arenot saying there is any reason to dis-believe the existence of, say, of a pcp veri�er with amortizedfree-bit complexity of � > 0 for all NP languages, where � > 0 is an arbitrary constant. Indeed, ifwe believe Max Clique is hard to approximate within N1�o(1) then such veri�ers exist! We are justsaying they may be hard to �nd.1.5 Properties and transforms of PCP and FPCPThe results mentioned in the �rst two subsections can be found in Section 5.1; whereas the resultsin the last subsection are from Section 5.2.1.5.1 Triviality resultsWe begin our investigation of the roles of various parameters with triviality results. These resultsare directed at seeing what kinds of parameter combinations we can expect are too weak to recognizeNP.Perhaps the �rst thing to ask is whether, instead of amortized free-bit complexity, we couldwork with any of the simpler measures. After all FPCP[log; f ] contains each of the following classes:(1) PCP1;1=2[log; f ]; (2) PCP[log; f ]; (3) FPCP1;1=2[log; f ]. Thus it would su�ce to minimize thequery complexity to get error 1=2; or the amortized query complexity; or the free-bit complexityto get error 1=2. However it turns out these complexities will not enable us to reach our target(of reducing the complexity to almost zero and thus proving that clique is hard to approximate towithin a N1�� factor, for every � > 0). This is because of the following (where the �rst result isfolklore and included here only for completeness).Theorem 1.5.1 The following classes are all contained in P{(1) PCP1;1=2[ log; 2 ](2) PCP[ log; 1 ](3) FPCP1;1=2[log; 1].Thus we cannot expect to construct pcp systems for NP with query complexity 2; amortized querycomplexity 1; or free-bit complexity 1. However it is a feature of amortized free-bit complexitythat so far it seems entirely possible that NP reduces to FPCP[log; f ] with f an arbitrarily smallconstant. Indeed, if we believe (conjecture) that Max Clique is hard to approximate with N1�� forany � > 0 then such proof systems must exist, by virtue of Theorem 1.4.1 above. In fact, even if we



mrBellare, Goldreich, Sudan 15do not believe that Max Clique is hard to approximate with N1�� for any � > 0, it turns out thatthe amortized free bit parameter will be too weak to capture the hardness of the clique function. Infact if Max Clique is hard to approximate to within N�, then the best hardness result obtainablefrom the amortized query bit parameter would be of the form N �2�� . This is shown by invokingCorollary 5.1.9 which shows that the amortized query complexity parameter is always one largerthan the amortized average free bit parameter (and we know that the amortized free bit parametercaptures the hardness of Max Clique tightly).1.5.2 Other resultsWe have already mentioned above (cf., Theorem 1.5.1) that strict limitations on various queryparameters make PCP very weak. Actually, for every s < 1, PCP1;s[ log; 2 ] and FPCP1;s[log; 1]collapse to P. This means that pcp systems with perfect completeness are very weak when restrictedto either two queries or to free-bit complexity one. However, pcp systems with completeness errorand the very same query (resp., free-bit) bounds are not so weak. In particular, it is well knownthat NP = PCPc;s[log; 2] for some 0 < s < c < 1 (e.g., by using the NP-hardness of approximatingMax2SAT). We show that NP = FPCPc;s[log; 1] for some 0 < s < c < 1 (speci�cally, c = 12 ands = 0:885 � c). Furthermore, for some smaller 0 < s < c < 1, the following holdsNP = FPCPc;s[log; 0] (1.1)(speci�cally, with c = 14 and s = 0:885 � c). We �nd the last assertion quite intriguing. It seems toindicate that one needs to be very careful when making conjectures regarding free-bit complexity.Furthermore, one has to be very careful also when making conjectures regarding amortized free-bit complexity; for example, the result P = PCP[ log; 1 ] holds also when one allows non-perfectcompleteness (in the de�nition of PCP[ �; � ]) as long as the gap is greater than 2q per q queries, butan analogous result cannot hold for two-sided error amortized free-bit complexity (i.e., FPCP[ �; � ]).Trying to understand the power of pcp systems with low free-bit complexity, we have waivedthe bound on the randomness complexity. Recall that in this case pcp systems are able to recognizenon-deterministic exponential time (i.e., NEXPT = PCP1;1=2[poly; poly]) [BFL]. Thus, it may beof interest to indicate that for every s < 1,FPCP1;s[poly; 0] � coNP (1.2)FPCP1;s[poly; 1] � PSPACE (1.3)It seems that FPCP1;1=2[log; 0] is not contained in BPP, since Quadratic Non-Residuosity andGraph Non-Isomorphism belong to the former class. (Speci�cally, the interactive proofs of [GMR]and [GMW] can be viewed as a pcp system with polynomial randomness, query complexity 1 andfree-bit complexity 0.) Thus, it seems that also the obvious observation PCP1;s[poly; 1] � AM (forevery s < 1, where AM stands for one round Arthur-Merlin games), would be hard to improveupon.1.5.3 Transformations between proof systemsWe provide various useful transformation of pcp systems. These transformations are analogous totransformations which can be applied to graphs with respect to the max-clique problem. In viewof the relation (mentioned above), between FPCP and the clique promise problem, this analogy ishardly surprising.



mrBellare, Goldreich, Sudan 16One type of transformations amplify the gap (i.e., the ratio between completeness and soundnessbounds) of the proof system while preserving its amortized free-bit complexity and incurring arelatively small additional cost in the randomness complexity. Speci�cally, using a randomizedreduction we can transform FPCP1; 12 [log; f ] into FPCP1;2�k[log+k; k � f ]. (This transformation isanalogous to the well-known transformation of Berman and Schnitger [BeSc].) Alternatively, using aknown deterministic ampli�cation method based on [AKS, LPS] one can transform FPCP1; 12 [log; f ]into FPCP1;2�k[log+2k; k � f ] (ignoring multiplicative factors of 1 + � for arbitrarily small � > 0).(To the best of our knowledge this transformation has never appeared with a full proof.) Bothalternatives are important ingredients in transforming pcp results into clique in-approximabilityresults via the FGLSS method.A second type of transformations are ones which move the location of the gap (or, equivalently,the completeness parameter). The gap itself is preserved by the transformation but moving itis related to changing the free-bit complexity (and thus the amortized free-bit complexity is notpreserved). Moving the gap `up' requires increasing the free-bit complexity, whereas moving the gap`down' allows to decrease the free-bit complexity. For example, we randomly reduce FPCPc;s[log; f ]to FPCP1;s�log[log; f+log(1=c)+log log]. On the other hand, for every k � f , we (deterministically)reduce FPCPc;s[log; f ] into FPCP c2k ; s2k [log; f � k], provided that the original system has at least2k accepting con�gurations per each possible sequence of coin-tosses. (This condition is satis�ed inmany natural pcp systems, even for k = f .)1.6 HistoryEarly work in non-approximability includes that of Garey and Johnson [GJ1] showing that it isNP-hard to approximate the chromatic factor within a factor less than two. The indication ofhigher factors, and results for other problems, had to wait for the interactive proof approach.Interactive proofs were introduced by Goldwasser, Micali and Racko� [GMR] and Babai [Bab].Ben-Or, Goldwasser, Kilian and Wigderson [BGKW] extended these ideas to de�ne a notion ofmulti-prover interactive proofs. Fortnow, Rompel and Sipser [FRS] showed that the class, MIP, oflanguages possessing multi-prover interactive proofs equals the class of languages which have (usingtodays terms) probabilistically checkable proofs (of unrestricted, and thus polynomial, randomnessand query complexity).First indication to the power of interactive proof systems was given in [GMW], where it wasshown that interactive proofs exist for Graph Non-Isomorphism (whereas this language is not knownto be in NP). However, the real breakthrough came with the result of Lund, Fortnow, Karlo� andNisan [LFKN] who used algebraic methods for showing that all coNP languages (and actually, alllanguages in P#P ) have interactive proof systems. These techniques were used by Shamir [Sh] toshow that IP = PSPACE.A central result which enabled the approximation connection is that of Babai, Fortnow andLund [BFL] who showed that the class MIP equals the class NEXP (i.e., languages recognizablein non-deterministic exponential time). The latter result has been \scaled-down" to the NP-levelby two independent groups of researchers. Babai, Fortnow, Lund and Szegedy [BFLS] showedthat if the input is encoded using a special error-correcting code (for which encoding and decodingcan be performed in polynomial-time) then NP has transparent proof systems (i.e., it is possibleto verify the correctness of the proof in poly-logarithmic time). Feige, Goldwasser, Lov�asz, Safraand Szegedy [FGLSS] showed that NP has probabilistically checkable proofs of poly-logarithmicrandomness and query complexity; namely, NP � PCP1;1=2[r; q], where r(n) = q(n) = O(logn �log log n).



mrBellare, Goldreich, Sudan 17The breakthrough connection to approximation was made by Feige, Goldwasser, Lov�asz, Safraand Szegedy [FGLSS]. They have shown that NP � PCP1;s[r; q] implies that approximating themaximum clique in a 2r(n)+q(n)-vertices graph to within a 1=s(n) factor is infeasible (i.e., not doablein polynomial-time), provided that NP is not in Dtime(2O(r+q)). (Here n is the length of the inputx to the pcp veri�er.) Combined with the above-mentioned results, they have obtained the �rst ina sequence of strong non-approximability results for Max Clique: a non-approximability factor of2log1�� N , 8� > 0, assuming NP did not have quasi-polynomial time algorithms.After the work of [FGLSS] the �eld took o� in two major directions. One was to extend theinteractive proof approach to apply also to other optimization problems. Direct reductions fromproofs were used to show hardness of quadratic programming [BeRo, FeLo], Max-3-SAT [ALMSS],set cover [LuYa], and other problems [Be]. Also, reductions from Max Clique lead to hardnessresults for the chromatic number [LuYa] and other problems [Zu], while previous reductions fromMax-3-SAT lead to hardness results for all of Max-SNP [PaYa].The other direction was to increase factors and reduce assumptions for problems already shownhard to some factor under some assumption, by improving the e�ciency of the underlying proofsystems and/or the e�ciency of the reductions.The �rst stage of this enterprise started with the work of Arora and Safra [ArSa] which, show-ing that NP � PCP1;1=2[log; o(log)], provided the �rst strong NP-hardness result for Max Clique(speci�cally, a hardness factor of 2plogN). This work has introduced the idea of recursive proofchecking which turned out to play a fundamental role in all subsequent developments. Interest-ingly, the idea of encoding inputs in an error-correcting form (as suggested in [BFLS]) is essentialto make \recursion" work. Arora, Lund, Motwani, Sudan and Szegedy [ALMSS], have reduced thequery complexity of pcp systems for NP to a constant, while preserving the logarithmic randomnesscomplexity; namely, they have shown that NP = PCP1;1=2[log; O(1)]. This immediately implied theNP-hardness of approximating Max Clique within N �, for some � > 0. Furthermore, it also impliedthat Max-3-Sat is NP-hard to approximate to within some constant factor [ALMSS] and so is theentire class Max-SNP [PaYa].Attempts to improve the constant in the exponent of the Max Clique hardness factor, and alsoimprove the constant values of the hardness factors in the Max-SNP hardness results, begin withBellare, Goldwasser, Lund and Russell [BGLR]. They presented new proof systems minimizingquery complexity and exploited a slightly improved version of the FGLSS-reduction due to [BeSc,Zu] to get a N1=30 hardness of approximation factor for Max Clique. Feige and Kilian [FeKi],however, observed that one should work with free-bits, and noted that the free-bit complexity of thesystem of [BGLR] was 14, yielding a N1=15 hardness factor. Bellare and Sudan then suggested thenotion of amortized free-bits and built new proof systems achieving amortized free-bit complexitythree, and in particular a N1=4 hardness for Max Clique assuming NP 6� coReP.Detailed histories for speci�c topics are given in the sections addressing this topic. In particularsee Section 2.4 for history of PCP and its growing list of parameters; Section 3.4 for a perspectiveof the role of constant prover proofs; Section 3.6 for previous work in query complexity minimiza-tion; Section 3.8 for previous work, both on approximation algorithms and hardness results, forMax-3-SAT and Max-2-SAT; Section 3.13 for previous work on Max Clique and history of variouschromatic number reductions.1.7 Related workFollowing the presentation of our results, Arora has also investigated the limitations of proof check-ing techniques in proving non-approximability results [Ar]. Like in our free-bit lower bound result,



mrBellare, Goldreich, Sudan 18he tries to assess the limitations of current techniques by making some assumptions about thesetechniques and then showing a lower bound. His focus is on the reductions, which he assumes are\code like." In this setting he can show that one should not expect to prove non-approximability ofMax Clique within N1=2. In contrast we have a larger lower bound of N1=3, but we make di�erentkinds of assumptions about the way proof systems are designed. (The assumptions made by us andby Arora do not seem to be comparable: neither implies the other.)1.8 Directions for further researchA central open problem is whether NP has proof systems of amortized free-bit complexity lessthan 2. We believe that the answer is in the a�rmative. (However, Section 4.2 demonstrates thatthis cannot be shown by using the current paradigms for constructing pcp systems.) Furthermore,we conjecture that, for every � > 0, NP � FPCP[log; �] and challenge the reader to refute thisconjecture.Two questions of a de-randomization avor follow. As stated above, we know that FPCP[log; f ]is randomly reducible to FPCP1;2�k [log+k; k � f ]. On the other hand, the former class is containedin (i.e., is deterministically reduced to) the class FPCP1;2�k [log+(2 + �)k; (1 + �)k � f ], for arbi-trarily small � > 0. Can one obtain the best of both worlds; namely, a deterministic reduction ofFPCP[log; f ] to, say, FPCP1;2�k [log+(1+�)k; (1+�)k �f ], for arbitrarily small � > 0. An a�rmativeanswer will allow to infer from NP � FPCP[log; f ] that approximating Max Clique to within anN 11+f+� factor is NP-hard (rather than infeasible under the assumption that NP is not containedin BPP).One ingredient of our method for reversing the FGLSS-reduction is the randomized reduction ofthe class FPCPc;s[log; f ] to the class FPCP1; logc �s[log; f+log(1=c)+log log]. (This statement followsthe exposition in Section 5.2. An alternative exposition, making use of a randomized graph-layeringprocess, is given in Section 4.1.) Anyhow, randomness plays an essential role in obtaining a pcpsystem with perfect completeness.2 The question is whether the class FPCPc;s[log; f ] is containedin the class FPCP1; logc �s[log; f + log(1=c) + log log] (rather than being randomly reducible to it).Our NP-hardness (of approximation) results for MaxSNP make use of problem-dependent gad-gets which implement two simple tests (i.e., testing that x+y = z and testing that x �y = z+w, forvariables/oracle-answers x; y; z and w). For example, when proving Max3SAT we construct 3CNFformulii, over these and auxiliary variables, so that the formula is satis�ed if and only if the basicvariables satisfy the test. Speci�cally, the formula for the �rst test has 4 clauses (and no auxiliaryvariables) whereas the formula for the second has 7 clauses (and one auxiliary variable). In gen-eral, what matters is the relation between the number of clauses satis�ed by the best assignmentextending values which satisfy the test and the number of clauses satis�ed by the best assignmentextending values which do not satisfy the test. Let �i (resp., �i � �i < �i) denote the �rst (resp.,second) number, for the ith test, and let �i = �i�i . Then, the non-approximability factor has the form1c1�1+c2�2 , where c1 and c2 depend on the proof system. Thus, constructing 3CNF (resp., 2CNF)formulae for which the ratios �i are small is a key ingredient in getting better non-approximabilityresults. Currently, for 3CNF we have �1 = 4 and �2 = 7, whereas for 2CNF we have �1 = 11and �2 = 16. De�ning analogous quantities for Max Cut, we currently have �1 = 9 and �2 = 15.(For MinVC we could obtain �1 = 6 and �2 = 9, but used an alternative method instead { seeSection 3.10). We suggest the construction of better gadgets as an open problem.2This makes our results more elegant, but actually { as indicated in Section 4.1, we could have settled for \almostperfect" completeness which su�ces for presenting an inverse of the \FGLSS-reduction".



mrBellare, Goldreich, Sudan 19Regarding (non-amortized) free-bits, we know that NP � FPCP1;0:8845[log; 2] and on the otherhand that FPCP1;s[log; 1] � P, for every s < 1. As motivation to the following questions we notethat the �rst result was used to establish the NP-hardness of approximating Man Vertex Coverupto a 2726 factor. In general, NP � FPCP1;s[log; f ] implies that approximating Min Vertex Coverup to a 2f�s2f�1 factor is NP-hard. We ask whether(1) NP � FPCP1;s[log; 2] for every s > 0 (this would imply a hardness factor of 43 � �, 8� > 0).(2) NP � FPCP1;s[log; log2 3] for every s > 0 (this would imply a hardness factor of 32� �, 8� > 0).Note that obtaining a result for s < 2�f=2, where f is the free bit complexity, would imply amortizedfree-bit complexity lower than 2. Thus, it may be easier to try to obtain soundness bounds of s � 12and s � 1p3 , respectively (yielding non-approximation factors of 76 and � 1:211, resp.).1.9 AcknowledgementsWe thank Marcos Kiwi and Luca Trevisan for carefully reading the previous version of our workand pointing out several aws and improvements. We also wish to thank Uri Feige for helpfuldiscussions.



C h a p t e r 2Notation and De�nitions
2.1 General notation and de�nitionsFor integer n let [n] = f1; : : : ; ng. A graph always means an undirected graph with no self-loops,unless otherwise indicated. We let kGk denote the number of vertices in graph G = (V;E).A probabilistic machine K has one or more inputs x1; x2; : : : and tosses some random coins R,usually of some length r(�) which is a function of the (lengths of the) inputs. We let K(x1; x2; : : : ;R)denote the output of K when it uses the particular sequence of coin tosses given by R. Typicallywe are interested in the probability space associated to a random choice of R.A function is admissible if it is polynomially bounded and polynomial time computable. Wewill ask that all functions measuring complexity (eg. the query complexity q = q(n)) be admissible.In de�ning complexity classes we will consider promise problems rather than languages.1 Fol-lowing Even et. al. [ESY], a promise problem is a pair of disjoint sets (A;B), the �rst being the setof \positive" instances and the second the set of \negative" instances. A language L is identi�edwith (L; L). (We refer the reader to [ESY] for issues in promise problems.)2.2 Proof systemsA veri�er is a probabilistic machine V taking one or more inputs and also allowed access to one ormore oracles. Let x denote the sequence of all inputs to V and let n denote its length. During thecourse of its computation on coins R and input x it makes queries of its oracles. Its �nal decisionto accept or reject is a function DECV (x; a;R) of x;R and the sequence a of all the bits obtainedfrom the oracle in the computation. Contrary to standard terminology, acceptance in this paperwill correspond to outputting 0 and rejection to outputting 1.Oracles are formally functions, with the context specifying for each the domain and range;sometimes, however, we may write strings, to be interpreted as functions in the natural way. Let� denote the sequence (tuple) of all proof oracles supplied to the veri�er V . Now for veri�er Vexamining the proofs � and having input x, we letACC [V �(x) ] = PrR [V �(x;R) = 0]1This convention is adopted since approximation problems are easily casted as promise problems.20



mrBellare, Goldreich, Sudan 21denote the probability that V accepts in this particular case. We then letACC [V (x) ] = max� ACC [V �(x) ]denote the maximum accepting probability, over all possible choices of proof sequences �; thedomain from which the proofs are chosen depending, as mentioned above, on the context.Let patternV (x;R) be the set of all sequences a such that DECV (x; a;R) = 0. (That is, allsequences of oracle answers leading to acceptance). A generator for V is a poly(n)-time computablefunction G such that patternV (x;R) = G(x;R) for all x;R. (That is, it can e�ciently generate theset of accepted patterns.)We are interested in a host of parameters which capture various complexity measures of theproof checking process. They are all functions of the length n of the input x given to the veri�er V .In the following � denotes the concatenation of all the proof strings given to the veri�er. Also recallwe are interested in proof systems for promise problems (A;B) rather than just for languages.coins = Number of coins tossed by veri�er. Typically denoted rpen = Length of the proof provided to the veri�er. Typically denoted l.c = Completeness probability. Namely minf ACC [V (x) ] : x 2 A and jxj = n g.s = Soundness probability. Namely maxf ACC [V (x) ] : x 2 B and jxj = n g.g = Gap. Namely c=s.Now we move to various measures of the \information" conveyed by the oracle to the veri�er.For simplicity we consider here only oracles which return a single bit; that is, they correspond to\written" proofs.query = The query complexity on input x is the maximum, over all possible cointosses R of V , of the number of bits of � accessed by V on input x. Thequery complexity of the system q = q(n) is the maximum of this over allinputs x 2 A [ B of length n.queryav = The average query bit complexity on input x is the average, over R, of thenumber of bits of the proof � accessed by V on input x and coins R. Theaverage query complexity of the system is the maximum of this over allx 2 A [ B of length n. Typically denoted qav.query = V is said to have amortized query bit complexity �q if q= lg(g) � �q where qis the query bit complexity and g is the gap, and, furthermore, q is at mostlogarithmic in n.free = The free bit complexity of V is f if there is a generator G such thatjG(x;R)j � 2f for all R and all x 2 A [B of length n.freeav = The average free bit complexity of V is fav if there is a generator G suchthat ER [jG(x;R)j]� 2fav for all x 2 A [B of length n.free = V is said to have amortized free bit complexity �f if f= lg(g) � �f where f isthe free bit complexity and g is the gap.Notice that amortized query complexity is restricted to be at most logarithmic. We don't need toexplicitly make this restriction for the amortized free bit complexity: it is a consequence of thee�cient generation condition.



mrBellare, Goldreich, Sudan 22In case the completeness parameter equals 1 (i.e., c = 1), we say that the system is of perfectcompleteness. In case the completeness parameter, c, satis�es c(n) = 1 � o(1), we say that thesystem is of almost-perfect completeness.The consideration of all these parameters give rise to a potentially vast number of di�erentcomplexity classes. We will use a generic notation in which the parameter values are speci�edby name, except that, optionally, the completeness and soundness can, if they appear, do so assubscripts. Thus for example we have things like:PCPc;s[ coins = r ; query = q ; pen = 2r ; free = f : : : ] :However most often we'll work with the following abbreviations:PCPc;s[r; q] def= PCPc;s[ coins = r ; query = q ]PCPc[ r; q ] def= PCPc;�[ coins = r ; query = q ]FPCPc;s[r; f ] def= PCPc;s[ coins = r ; free = f ]FPCPc;s[r; f; l] def= PCPc;s[ coins = r ; free = f ; pen = l ]FPCPc[ r; f ] def= PCPc;�[ coins = r ; free = f ] :We stress that in the de�nitions of the amortized classes, PCPc[ r; q ] and FPCPc[ r; f ], we referto the completeness parameter c (but not to the soundness parameter). In case c = 1, we mayomit this parameter and shorthand the amortized classes of perfect completeness by PCP[ r; q ] andFPCP[ r; f ], respectively. Namely, PCP[ r; q ] def= PCP1[ r; q ]FPCP[ r; f ] def= FPCP1[ r; f ]2.3 Randomized reductionsWe will consider reductions between promise problems. A (randomized) Karp reduction from(A1; B1) to (A2; B2) is a probabilistic, polynomial time function T which takes two arguments: aninput x and a security parameter k, the latter written in unary. The transformation is required tohave the property thatx 2 A1 =) Pr � T (x; 1k) 2 A2 � def= p1(x; k) � 1� 2�kx 2 B1 =) Pr � T (x; 1k) 2 B2 � def= p2(x; k) � 1� 2�k :The probability is over the coin tosses of T . We say the reduction has perfect completeness if p1 = 1and perfect soundness if p2 = 1. (In the special case of deterministic transformations it must bethat p1 = p2 = 1.) We write (A1; B1) �KR (A2; B2) if there is a randomized Karp reduction from(A1; B1) to (A2; B2). If the reduction is deterministic we omit the subscript of \R," or, sometimes,for emphasis, replace it by a subscript of \D."An example is the randomized FGLSS transformation [FGLSS, BeSc, Zu]. Here (A1; B1) is typ-ically an NP-complete language L, and (A2; B2) is Gap-Cliquec;s for some c; s which are determinedby the transformation. This transformation has perfect soundness, while, on the other hand, it ispossible to get p1 = 1� 2�poly(n).



mrBellare, Goldreich, Sudan 23Similarly one can de�ne (randomized) Cook reductions. The notation for reductions is �CR .Let C be a complexity class (eg. NP). We say that C reduces to (A2; B2) if for every (A1; B1)in C it is the case that (A1; B1) reduces to (A2; B2). An example is to say that NP reduces toGap-Cliquec;s. We say that C1 reduces to C2, where C1 and C2 are complexity classes, if for every(A1; B1) in C1 there is an (A2; B2) in C2 such that (A1; B1) reduces to (A2; B2). An example is tosay that NP reduces to FPCP[ log; f ]. The notation of �KR or �CR extends to these cases as well.Notice that our de�nition of reducibility ensures that this relation is transitive.For simplicity we sometimes view a reduction T as a function only of x, and write T (x). Insuch a case it is to be understood that the security parameters has been set to some convenientvalue, such as k = 2.2.4 HistoryThe model underlying what are now known as \probabilistically checkable proofs" is the \oracle"model of Fortnow, Rompel and Sipser [FRS], introduced as an equivalent (with respect to languagerecognition power) version of the multi-prover model of Ben-Or, Goldwasser, Kilian and Wigderson[BGKW]. Interestingly, as shown by [BFLS, FGLSS], this framework can be applied in a meaningfulmanner also to languages in NP. These works provide the veri�er V with a \written" proof, modeledas an oracle to which V provides the \address" of a bit position in the proof string and is returnedthe corresponding bit of the proof. Babai et. al. [BFLS] suggested a model in which the instancesare encoded in a special (polynomail-time computable and decodable) error-correting code andthe veri�er works in polylogarithmic time. Here we follow the model of Feige et. al. [FGLSS]where the veri�er is probabilistic polynomial-time (as usual) and one considers �ner complexitymeasures such as the query and randomness complexity. The reduction of [FGLSS] identi�ed theparameters of query complexity (number of binary queries), randomness complexity and error. Theclass PCP1;1=2[r; q] was made explicit by [ArSa].The parametrization was expanded by [BGLR] to explicitly consider the answer size (the oracleis now allowed to return more than one bit at a time) and query size{ their notation included�ve parameters: randomness, number of queries, size of each query, size of each answer, and errorprobability. They also similarly parametrized (single round) multi-prover proofs, drawing attentionto the analogue with pcp. This served to focus attention on the roles of various parameters,both in reductions and in constructions. Also they introduced the consideration of average querycomplexity, the �rst in a sequence of parameter changes towards doing better for clique.Free bits are implicit in [FeKi] and formalized in [BeSu]. Amortized free bits are introduced in[BeSu] but formalized a little better here.Proof sizes were considered in [BFLS, PoSp]. We consider them here for a di�erent reason{they play an important role in that the randomized FGLSS reduction [BeSc, Zu] depends actuallyon this rather than the randomness.To deal with the now huge array of parameters we have generalized the notation of [BGLR] toallow speci�cation of parameters by name.We've followed the common tradition regarding the names of polynomial-time reductions: many-to-one reductions are called Karp-reductions whereas (polynomial-time) Turing reductions arecalled Cook-reductions. This terminology is somewhat unfair towards Levin whose work on NP-completeness [Lev] was independent of those of Cook [Co] and Karp [Ka]. Actually, the reductionsconsidered by Levin are more restricted as they also e�ciently transform the corresponding NP-witnesses (this is an artifact of Levin's desire to treat search problems rather than decision problem).In fact, such reductions (not surprisingly termed Levin-reductions) are essential for results such as



mrBellare, Goldreich, Sudan 24Corollary 4.1.12. (Yet, this is the only example in the current paper.)



C h a p t e r 3New proof systems andnon-approximability results
This chapter presents some new proof systems minimizing complexity under various measures.These proof systems are then used to derive the best known in-approximability results forMax-3-SAT,Max-E3-SAT (Max Exact 3SAT), Max-2-SAT, Max Cut, Min Vertex Cover (Min VC), Max Clique,and Chromatic number. This is a long chapter and it will help to begin with some indication ofwhat we will be doing.3.1 Overview and guidemapThe starting point for all our proof systems is a two-prover proof system achieving arbitrarily smallbut �xed constant error with logarithmic randomness and constant answer size, as provided byRaz [Raz]. This proof system has the property that the answer of the second prover is supposedto be a predetermined function of the answer of the �rst prover. Thus, veri�cation in it amountsto checking that the �rst answer satis�es some predicate and that the second answer equals thevalue obtained from the �rst answer. Following the \proof composition" paradigm of Arora andSafra [ArSa], we will \encode" the answers of the two provers under a suitable code and then,\recursively", check these encodings. As usual, we will check both that these encodings are validand that they correspond to answer which would have been accepted by the original veri�er.Our main technical contribution is a new code, called the long code, and means to check it. Thelong code of an n-bit information word a is the sequence of 22n bits consisting of the values of allpossible boolean functions at a. The long code is certainly a disaster in terms of coding theory,but it has big advantages in the context of proof veri�cation, arising from the fact that it carriesenormous amounts of data about a. The di�culty will be to check that a prover claiming to writethe long code of some string a is really doing so.The long code is described in Section 3.3. In Section 3.5 we provide what we call the \atomic"tests for this code. These tests and their analysis are instrumental to all that follows. Section 3.4is also instrumental to all that follows. This section sets up the framework for recursive proofchecking which is used in all the later proof systems.In Section 3.6 we minimize the (worst-case and average) number of bits queried in a PCP toattain soundness error 1=2 | the result is not of direct applicability, but it is intruiging to know25



mrBellare, Goldreich, Sudan 26how low this number can go. More importantly, the atomic tests are exploited in a di�erent wayin Section 3.7, introducing a veri�er which queries the proof at 3{4 locations and performs one oftwo simple tests on the answers obtained. These simple tests are implemented by gadgets of theMaxSNP problem at hand, yielding the non-approximability results. Section 3.8 presents gadgetswhich are CNF formulae of the corresponding type and Section 3.9 presents Max-CUT gadgets.The non-approximability results for Max-3-SAT, Max-E3-SAT, Max-2-SAT and Max-CUT follow.The veri�er of Section 3.7 bene�ts from another noval idea which is referred to as folding. Westress that folding contributes to the improved results for Max-3-SAT, Max-E3-SAT, Max-2-SATand Max-CUT, but not to the results regarding Max Clique (and Chromatic Number).A reasonable non-approximability result for Min-VC (minimum Vertex Cover) can be obtainedby the above procedure, but a better result is obtained by constructing a di�erent veri�er whichuses exactly two-free bits. The computation of this veri�er is then reduced to the vertex coverproblem (by means of the FGLSS reduction). The latter approach is presented in Section 3.10where we try to minimizing the soundness error attainable using exactly two free-bits.We then turn toMax Clique (and Chromatic Number). In Section 3.12 we provide the \iterated"tests (in which the atomic tests are sequentially invoked many times). These iterations will berelated to one another (pairwise independent to be more speci�c) leading to a proof system inwhich the number of amortized free-bits used is two. We then draw the implications for Max Clique(and Chromatic Number). A reader interested only in the (amortized) free-bit and Max Cliqueresults can proceed directly from Section 3.5 to Section 3.12 and Section 3.13.The improvement in the complexities of the proof systems is the main source of our improvednon-approximability results. In addition we also use (for the Max-SAT and Max-CUT problems)a recent improvement in the analysis of linearity testing [BCHKS] and introduce special (problemspeci�c) gadgets which represent the various tests.Credits and histories pertaining to each topic are discussed alongside the topic. Thus eachsubsection contains the historical material relevant to it.3.2 PreliminariesIn this chapter, � = f0; 1g will be identi�ed with the �nite �eld of two elements, the �eld operationsbeing addition and multiplication modulo two. If X and Y are sets then Map(X; Y ) denotes theset of all maps of X to Y . For any m we regard �m as a vector space over �, so that strings andvectors are identi�ed.Linearity. Let G;H be groups. A map f : G ! H is linear if f(x + y) = f(x) + f(y) for allx; y 2 G. Let Lin(G;H) denote the set of all linear maps of G to H .Distance. The distance between functions f1; f2 de�ned over a common �nite domain D isDist(f1; f2) = PrxR D [f1(x) 6= f2(x)] :Functions f1; f2 are �-close if Dist(f1; f2) < �. If f maps a group G to a group H we denote byDist(f;Lin) the minimum, over all g 2 Lin(G;H), of Dist(f; g). (Note the notation does not specifyG;H which will be evident from the context). We are mostly concerned with the case of G beinga vector space V over � and H being �. Notice that in this case we have Dist(f;Lin) � 1=2 forall f : V ! �.Boolean Functions. Let l be an integer. We let Fl def= Map(�l;�) be the set of all maps of �lto �. We regard Fl as a vector space (of dimension 2l) over �. Addition and multiplication offunctions are de�ned in the natural way.



mrBellare, Goldreich, Sudan 27We let Lm � Fm be the set Lin(�m;�) of linear functions of �m to �, and let L�m = Lm � f0gbe the non-zero linear functions.Let g 2 Fm and ~f = (f1; : : : ; fm) 2 Fml . Then g � ~f denotes the function in Fl which assignsthe value h(f1(x); : : : ; fm(x)) to x 2 �l.If a 2 �m then a(i) denotes its i-th bit. Similarly, if f is any function with range �m then f (i)denotes the i-th bit of its output.The Monomial Basis. For each S � [l] we let �S 2 Fl be the monomial corresponding to S,de�ned for x 2 �l by �S(x) = Q i2S x(i) :The empty monomial, namely �;, is de�ned to be the constant-one function (i.e., �;(x) = 1, forall x 2 �l). The functions f�SgS�[l] form a basis for the vector space Fl which we call the monomialbasis. This means that for each f 2 Fl, there exists a unique vector C(f) = (Cf(S) )S�[l] 2 �2lsuch that f = PS�[l] Cf(S) � �S : (3.1)The expression of Equation (3.1) is called the monomial series for f , and the members of C(f)are called the coe�cients of f with respect to the monomial basis. We note that C: Fl ! �2l is abijection.Folding. Fix � to be some canonical, polynomial time computable total order (reexive, anti-symmetric, transitive) on the set Fl. Given functions A: Fl ! � and h 2 Fl n f0g (i.e., h is not theconstant function 0) and bit b 2 �, the (h; b)-folding of A is the function A(h;b): Fl ! � given byA(h;b)(f) = 8<: A(f) if f � h + fA(f + h)� b otherwise.(Notice that the above is well-de�ned for any h 6= 0.) For sake of technical simplicity (see De�ni-tion 3.4.3), we de�ne the (0; 0)-folding of A to be A itself; namely, A(0;0)(f) = A(f), for every f 2 Fl.As shown below, the (h; b)-folding of a function A is forced to satisy A(h;b)(f + h) = A(h;b)(f) + b,for every f 2 Fl (whereas A itself may not necessarily satisfy these equalities). Before proving this,let us generalize the notion of folding to folding over several, speci�cally two, functions h1; h2 2 Fl(and bits b1; b2 2 �).De�nition 3.2.1 (folding): Let f; h1; h2 2 Fl. The (h1; h2)-span of f , denoted spanh1;h2(f), isde�ned as the set ff + �1h1+ �2h2 : �1; �2 2 �g. Let A: Fl ! �, h1 6= h2 2 Fl n f0g and b1; b2 2 �.The folding of A over (h1; b1) and (h2; b2), denoted A(h1;b1);(h2;b2), is de�ned for every f 2 Fl byA(h1;b1);(h2;b2)(f) = A(f + �1h1 + �2h2)� �1b1 � �2b2where �1; �2 2 � so that the function f + �1h1 + �2h2 is the smallest function (according to �) inspanh1 ;h2(f).The de�nition extends naturally to the the following two case. In case (h1; b1) = (h2; b2), foldingover the two (identical) pairs is de�ned as folding over one pair. In case h1 � 0 and b1 = 0, foldingover both (h1; b1) and (h2; b2) is de�ned as folding over (h2; b2). Note that folding over two pairs isinvariant under the order between the pairs; namely, A(h1 ;b1);(h2;b2) � A(h2;b2);(h1;b1). Finally, observethat a function A: Fl ! � that is folded over two functions (i.e., over both (h1; b1) and (h2; b2)) isfolded over each of them (i.e., over each (hi; bi)).



mrBellare, Goldreich, Sudan 28Proposition 3.2.2 (folding forces equalities): Let A: Fl ! �, h1; h2 2 Fl and b1; b2 2 � (withbi = 0 in case hi � 0). Then, for every f 2 Fl,A(h1;b1);(h2;b2)(f + h1) = A(h1;b1);(h2;b2)(f) + b1Proof: By de�nition, A(h1 ;b1);(h2 ;b2)(f) = A(f + �1h1 + �2h2) � �1b1 � �2b2, where the functionf + �1h1 + �2h2 is the smallest function in spanh1;h2(f). Since spanh1 ;h2(f + h1) = spanh1;h2(f),we have A(h1;b1);(h2 ;b2)(f + h1) = A(f + �1h1 + �2h2)� (�1 � 1)b1� �2b2. The claim follows.It may be instructive to hint that the veri�ers constructed below make virtual access to foldedfunctions rather to the function themselves. Virtual access to a folding of A is implemented byactual accessing A itself according to the de�nition of folding (e.g., say one wants to access A(h;0) atf then one determines whether f � h+ f or not and accesses either A(f) or A(f +h), accordinly).One bene�t of folding in our context is illustrated by Proposition 3.3.3; in case a (h; b)-foldedfunction is close to a codeword (in the long code), we infer that the codeword encodes a string asatisfying h(a) = b. We will see that folding (the long code) over (h; 0) allows us to get rid of astandard ingrediant in proof veri�cation; the so-called \circuit test".In the sequal, we will use folding over the pairs (h; 0) and (�1; 1), where h 2 Fl is an arbitraryfunction (typically not identically zero) and �1 is the constant-one function. Folding over (�1; 1)allows us to simplify the \codeword" test (w.r.t. the long-code).3.3 Evaluation operators and the long codeLet a 2 �l. We de�ne the map Ea: Fl ! � by Ea(f) = f(a) for all f 2 Fl. We say that a mapA: Fl ! � is an evaluation operator if there exists some a 2 �l such that A = Ea. We now providea useful characterization of evaluation operators. First we need a de�nition.De�nition 3.3.1 (respecting the monomial basis): A map A: Fl ! � is said to respect the mono-mial basis if A(�;) = 1 and 8 S; T � [l] : A(�S) �A(�T ) = A(�S[T ) :Proposition 3.3.2 (characterization of the evaluation operator): A map ~A: Fl ! � is an evalua-tion operator if and only if it is linear and respects the monomial basis.Proof: Let a 2 �l. It is easy to see that Ea is linear: Ea(f+g) = (f+g)(a) = f(a)+g(a) = Ea(f)+Ea(g). It is also easy to see Ea respects the monomial basis. Firstly we have Ea(�;) = �;(a) = 1.Next, for every S; T � [l],Ea(�S) �Ea(�T ) = �S(a) � �T (a) = Q i2S a(i) � Q i2T a(i) :However x2 = x for any x 2 � soQ i2S a(i) � Q i2T a(i) = Yi2S[T a(i) = �S[T (a) = Ea(�S[T )Now we turn to the converse. Let ~A: Fl ! � be linear and respecting the monomial basis. Fori = 1; : : : ; l, let ai def= ~A(�fig), and let a def= a1 : : : al. We claim that ~A = Ea. The proof is as follows.We �rst claim that 8 S � [l] : ~A(�S) = �S(a) : (3.2)



mrBellare, Goldreich, Sudan 29Since ~A respects the monomial basis we have ~A(�;) = 1 which in turn equals �;(a), provingEq. (3.2) for S = ;. To establish Eq. (3.2) for S = fi1; : : : ; itg 6= ;, we write~A(�S) = ~A ��fi1g[���[fitg� = Q tj=1 ~A(�fijg) = Q tj=1 aij = �S(a) :where the second equality is due to the fact that ~A respects the monomial basis. This establishesEq. (3.2). Now for any f 2 Fl we can use the linearity of ~A to see that~A(f) = ~A (PS Cf(S) � �S)) = PS Cf(S) � ~A(�S) = PS Cf(S) � �S(a) = f(a) = Ea(f) :Thus ~A = Ea.The long code E: �l ! Map(Fl;�) is de�ned for any a 2 �l by E(a) = Ea. Thus, formally, acodeword is a map of Fl to �. Intuitively, think of the codeword E(a) as the 22l bit string whichin position f 2 Fl stores the bit f(a). It is thus an extremely \redundant" code, encoding an l-bitstring by the values, at a, of all functions in Fl. In some sense E is the longest possible code: E isthe longest code which is not repetitive (i.e., does not have two positions which are identical in allcodewords).We let Dist(A;Eval) = mina2�l Dist(A;Ea) be the distance from A to a closest codewordof E. It is convenient to de�ne E�1(A) 2 �l as the lexicographically least a 2 �l such thatDist(A;Ea) = Dist(A;Eval). Notice that if Dist(A;Eval) < 1=4 then there is exactly one a 2 �lsuch that Dist(A;Ea) = Dist(A;Eval), and so E�1(A) is this a. The following is useful in relatingfolding to the long code.Proposition 3.3.3 (folding and the evaluation operator): Let A: Fl ! �, h 2 Fl, b 2 � anda 2 �l. Suppose that for any f 2 Fl it is the case that A(f+h) = A(f)+b. Then Dist(A;Ea) < 1=2implies h(a) = b. Consequently, if Dist(A(h;b);(h0;b0); Ea) < 1=2 then h(a) = b, provided b = 0 ifh � 0.Proof: By the hypothesis, we have A(h + f) = A(f) + b, for every f 2 Fl. Suppose thatDist(A;Ea) < 1=2. Then, noting that Ea is linear and applying Corollary 3.5.2 (below), we getEa(h) = b. Using the de�nition of the Evaluator operator (i.e., Ea(h) = h(a)) we have h(a) = b.The consequence for A(h;b);(h0;b0) follows since by Proposition 3.2.2 we have A(h;b);(h0 ;b0)(f + h) =A(h;b);(h0;b0)(f) + b for any f 2 Fl.The long code is certainly a disaster in terms of coding theory, but it has a big advantage in thecontext of proof veri�cation. Consider, for example, the so-called \circuit test" (i.e., testing thatthe answer of the �rst prover satis�es some predetermined predicate/circuit). In this context oneneeds to check that the codeword corresponds to a string which satis�es a predetermined predicate(i.e., the codeword encodes some w 2 f0; 1gn which satis�es h(w) = 0, for some predeterminedpredicate h). The point is that the value of this predicate appears explicitly in the codeword itself,and furthermore it can be easily \self-corrected" by probing the codeword for the values of thefunctions f and f + h, for a uniformly selected function f : f0; 1gn ! f0; 1g (as all these valuesappear explicitly in the codeword). Actually, the process of verifying, via self-correction, that thevalue under h is zero can be incorporated into the task of checking the validity of the codeword; thisis done by the notion of \(h; 0)-folding" (see above). The fact that we can avoid testing whetherthe codeword encodes a string which satis�es a given function (or that this testing does not costus anything) is the key to the complexity improvements in our proof systems (over previous proofsystems in which a \circuit test" was taking place).



mrBellare, Goldreich, Sudan 303.4 Recursive veri�cation of proofsThis section speci�es the basic structure of proof construction, and in particular provides thede�nitions of the notions of inner and outer veri�ers which will be used throughout. It is useful tounderstand these things before proceeding to the tests.Overview. The constructions of e�cient proofs that follow will exploit the notion of recursiveveri�er construction due to Arora and Safra [ArSa]. We will use just one level of recursion. We�rst de�ne a notion of a canonical outer veri�er whose intent is to capture two-prover one-roundproof systems [BGKW] having certain special properties; these veri�ers will be our starting point.We then de�ne a canonical inner veri�er. Recursion is captured by an appropriate de�nition of acomposed veri�er whose attributes we relate to those of the original veri�ers in Theorem 3.4.5.The speci�c outer veri�er we will use is one obtained by a recent work of Raz [Raz]. We willconstruct various inner veri�ers based on the long code and the tests in Section 3.5 and Section 3.12.Theorem 3.4.5 will be used ubiquitously to combine the two.For a better understanding of the role of constant-prover proof systems in this context, and anexplanation of what the use of [Raz] buys as opposed to the use of other systems, we have providedat the end of this subsection an explanatory history.3.4.1 Outer veri�ersAs mentioned above, outer veri�ers will model certain special kinds of two-prover, one-round proofsystems. We think of the veri�er as provided with a pair of proof oracles �; �1, and allowed onequery to each. The desired properties concern the complexity of the system and a certain behaviorin the checking of the proof, as we now describe.Let r1; s; s1: Z+ ! Z+ and let l and l1 be positive integers. A (l; l1)-canonical outer veri�er Voutertakes as input x 2 �n, and has oracle access to a pair of proofs ��: [s(n)]! �l and ��1: [s1(n)]! �l1 .He does the following.Picks a random string R1 of length r1(n).Computes, as a function of x and R1, queries q 2 [s(n)] and q1 2 [s1(n)], and a (circuitcomputing a) function �: �l ! �l1 (which is determined by x and R1). Determines, based onx and q, a function h: �l ! � (and computes an appropriate representation of it).(We stress that h does not depend on R1, only on q and x).Lets a = ��(q) and a1 = ��1(q1).If h(a) 6= 0 then rejects.If �(a) 6= a1 then rejects.Otherwise accepts.We call s; s1 the proof sizes for Vouter and r1 the randomness of Vouter.Recall that by the conventions in Section 2, ACC [V ��;��1outer(x) ] denotes the probability, over thechoice of R1, that Vouter accepts, and ACC [Vouter(x) ] denotes the maximum of ACC [V ��;��1outer(x) ] overall possible proofs ��; ��1.De�nition 3.4.1 (soundness of outer veri�er): An outer veri�er Vouter is �-good for a language Lif(1) If x 2 L then ACC [Vouter(x) ] = 1.(2) If x 62 L then ACC [Vouter(x) ] � �.



mrBellare, Goldreich, Sudan 31Employing the FRS-method [FRS] to any PCP(log,O(1))-system for NP (e.g., [ALMSS]) one getsa canonical veri�er which is �-good for some � < 1. Using the Parallel Repetition Theorem of Raz,we obtain our starting point {Lemma 3.4.2 (construction of outer veri�ers [Raz]): Let L 2 NP. Then for every � > 0 thereexist positive integers l; l1 and c such that there exists an (l; l1)-canonical outer veri�er which is�-good for L and uses randomness r(n) = c log2 n.Actually, Raz's Theorem [Raz] enables one to assert that l; l1 and c are O(log ��1); but we will notneed this fact. Also, the function � determined by this veri�er is always a projection, but we don'tuse this fact either.3.4.2 Inner veri�ersWe now describe the form of a typical inner veri�er. It may be illustrative to remember that theinner veri�er will perform a combination of the atomic linear test, the atomic respect of monomialbasis test and the atomic projection test. It turns out that the inner veri�ers never need to perform a\circuit test" (i.e., test that h(a) = 0). This is achieved by use of the folding mechanism introducedin Section 3.2, and we refer the reader there for the notation \A(h;b)" that is used below.Let r2; l; l1 2 Z+. A (l; l1)-canonical inner veri�er Vinner takes as inputs functions �: �l ! �l1and h 2 Fl. (It may also take additional inputs, depending on the context). It has oracle access toa pair of functions A: Fl ! � and A1: Fl1 ! �, and uses r2 random bits. The parameters �1; �2 > 0in the following should be thought as extremely small: in our constructions, they are essentially 0(see comment below).De�nition 3.4.3 (soundness of inner veri�er): An inner veri�er Vinner is (�; �1; �2)-good if for all�; h as above{(1) Suppose a 2 �l is such that h(a) = 0. Let a1 = �(a) 2 �l1 . Then ACC [V Ea;Ea1inner (�; h) ] = 1.(2) Suppose A;A1 are such that ACC [V A;A1inner (�; h) ] � �. Then there exists a 2 �l such that:(2.1) Dist(A(h;0);(�1;1); Ea) < 1=2� �1.(2.2) Dist(A1; E�(a)) < 1=2� �2.We stress that although the inner veri�er has access to the oracle A (and the hypothesis in condition(2) of De�nition 3.4.3 refers to its computations with oracle A), the conclusion in condition (2.1)refers to A folded over both (h; 0) and (�1; 1), where �1 is the constant-one function. (Typically,but not necessarily, the veri�er satisfying De�nition 3.4.3 accesses the virtual oracle A(h;0);(�1;1)by actual access to A according to the de�nition of folding.) Furthermore, by Proposition 3.3.3,condition (2.1) implies that h(a) = 0. (Thus, there is no need to explicitly require h(a) = 0 in orderto make Theorem 3.4.5 work.) We comment that the upper bounds in conditions (2.1) and (2.2)are chosen to be the largest ones which still allow us to prove Theorem 3.4.5 (below). Clearly, thecomplexity of the inner veri�er decreases as these bounds increase. This is the reason for setting�1 and �2 to be extremely small. We stress that this optimization is important for the MaxSNPresults but not for the Max Clique result. In the latter case, we can use �i's greater than 14 whichsimpli�es a little the analysis of the composition of veri�ers (below).A tedious remark: The above de�nition allows h to be identically zero (although this case neveroccurs in our constructions nor in any other reasonable application). This is the reason that wehad to de�ne folding over (0,0) as well. An alternative approach would have been to require h 6� 0and assert that this is the case with respect to the outer veri�er of Lemma 3.4.2.



mrBellare, Goldreich, Sudan 323.4.3 Composition of veri�ersWe now describe the canonical composition of a canonical outer veri�er with a canonical innerveri�er.Let Vouter be a (l; l1)-canonical outer veri�er with randomness r1 and proof sizes s; s1. Let Vinnerbe a (l; l1)-canonical inner veri�er with randomness r2. Their composed veri�er hVouter; Vinneri takesas input x 2 �n and has oracle access to proofs �: [s(n)]� Fl ! � and �1: [s1(n)]� Fl1 ! �. Weask that it does the following {Picks random strings for both Vouter and Vinner; namely, picks a random string R1 of lengthr1(n) and a random string R2 of length r2(n).Computes queries q and q1 and functions � and h as Vouter would compute them given x;R1Outputs V A;A1inner (�; h;R2) where A(�) = �(q; �) and A1(�) = �1(q1; �).The randomness complexity of the composed veri�er is r1 + r2 whereas its query and free-bitcomplexities equal those of Vinner.We show how the composite veri�er hVouter; Vinneri inherits the goodness of the Vouter and Vinner.To do so we need the following Lemma. It is the counterpart of a claim in [BGLR, Lemma 3.5]and will be used in the same way. The lemma can be derived from a coding theory bound which isslight extension of bounds in [MaSl, Ch. 7] and is provided in Section 3.14.Lemma 3.4.4 Suppose 0 � � � 1=2 and A: Fl ! �. Then��f a 2 �l : Dist(A;Ea) � 1=2� � g�� � 14�2 :Furthermore, for � > 1=4 the above set contains at most one string.Proof: We know that Ea is linear for any a (cf. Proposition 3.3.2). So it su�ces to upper boundthe size of the set A = fX 2 Lin(Fl;�) : Dist(A;X) � 1=2� � g :This set has the same size asB = fX � A : X 2 Lin(Fl;�) and Dist(A;X)� 1=2� � g :Let n = 22l and identify Map(Fl;�) with �n in the natural way. Let w(�) denote the Hammingweight. Now note that Z = X � A 2 B implies w(Z)=n = Dist(X;A) � 1=2 � �. Furthermore ifZ1 = X1 � A and Z2 = X2 � A are in B then Dist(Z1; Z2) = Dist(X1; X2) and the latter is 1=2if X1 6= X2, since X1; X2 are linear. So we can apply Lemma 3.14.1 (with � = � and � = 0) toupper bound the size of B as desired. Finally, when � > 1=4 the triangle inequality implies that wecannot have a1 6= a2 so that Dist(A;Eai) � 1=2� � < 1=4 for both i = 1; 2.In some applications of the following theorem, �1; �2 > 0 will �rst be chosen to be so small thatthey may e�ectively be thought of as 0. (This is done in order to lower the complexities of theinner veri�ers.) Once the �i's are �xed, � will be chosen to be so much smaller (than the �i's) that�=(16�21�22) may be thought of as e�ectively 0. The latter explains why we are interested in outerveri�ers which achieve a constant, but arbitrarily small, error �. For completeness we provide aproof, following the ideas of [ArSa, ALMSS, BGLR].Theorem 3.4.5 (the composition theorem): Let Vouter be a (l; l1)-canonical outer veri�er. Supposeit is �-good for L. Let Vinner be an (l; l1)-canonical inner veri�er that is (�; �1; �2)-good. LetV = hVouter; Vinneri be the composed veri�er, and let x 2 ��. Then |



mrBellare, Goldreich, Sudan 33(1) If x 2 L then ACC [V (x) ] = 1(2) If x 62 L then ACC [V (x) ] � �+ �16�21�22 .For �1; �2 > 1=4 the upper bound in (2) can be improved to �+ �.(The latter case (i.e., �1; �2 > 1=4) su�ces for the Max Clique results.)Proof: Let n = jxj, and let s; s1 denote the proof sizes of Vouter.Suppose x 2 L. By De�nition 3.4.1 there exist proofs ��: [s(n)] ! �l and ��1: [s1(n)] ! �l1 suchthat ACC [V ��;��1outer(x) ] = 1. Let �: [s(n)] � Fl ! � be de�ned by �(q; f) = E��(q)(f). (In otherwords, replace the l bit string ��(q) with its 22l bit encoding under the long code, and let the newproof provide access to the bits in this encoding). Similarly let �1: [s1(n)]�Fl1 ! � be de�ned by�1(q1; f1) = E��1(q1)(f1). Now one can check that the item (1) properties in De�nitions 3.4.1 and 3.4.3(of the outer and inner veri�erpectively) imply that ACC [V �;�1(x) ] = 1.Now suppose x 62 L. Let �: [s(n)]� Fl ! � and �1: [s1(n)]� Fl1 ! � be proof strings for V . Wewill show that ACC [V �;�1(x) ] � � + �=(16�21�22). Since �; �1 were arbitrary, this will complete theproof.We set N1 = b1=(4�21)c and N2 = b1=(4�22)c (with N1 = 1 if �1 > 1=4 and N2 = 1 if �2 > 1=4).The idea to show ACC [V �;�1(x) ] � �+N1N2 � � is as follows. We will �rst de�ne a collection of N1proofs ��1; : : : ; ��N1 and a collection of N2 proofs ��11 ; : : : ; ��N21 so that each pair (��i; ��j1) is a pair oforacles for the outer veri�er. Next we will partition the random strings R1 of the outer veri�er intotwo categories, depending on the performance of the inner veri�er on the inputs (i.e., the functions�; h and the oracles A;A1) induced by R1. On the \bad" random strings of the outer veri�er, theinner veri�er will accept with probability at most �; on the \good" ones, we will use the soundnessof the inner veri�er to infer that that the outer veri�er accepts under some oracle pair (��i; ��j1), fori 2 [N1] and j 2 [N2]. The soundness of the outer veri�er will be used to bound the probability ofsuch acceptances. Let us now proceed to the actual proof.We now turn to the actual analysis. We de�ne N1 proofs ��1; : : : ; ��N1: [s(n)] ! �l as follows. Fixq 2 [s(n)] and let A = �(q; �). Let Bq = fa 2 �l : Dist(A(h;0);(�1;1); Ea) < 1=2��1g. (Notice that forthis set to be well-de�ned we use the fact that h is well-de�ned given q.) Note that jBq j � N1 byLemma 3.4.4. Order the elements of Bq in some canonical way, adding dummy elements to bringthe number to exactly N1, so that they can be written as a1(q); : : : ; aN1(q). Now set ��i(q) = ai(q)for i = 1; : : : ; N1. In a similar fashion we de�ne ��j1(q1) = aj1(q1) for j = 1; : : : ; N2, where eachaj1 = aj1(q1) satis�es Dist(�1(q1; �); Eaj1) � 1=2� �2.Let R1 be a random string of Vouter. We say that R1 is good ifACC [V �(q;�);�1(q1;�)inner (�; h) ] � � ;where q; q1; �; h are the queries and functions speci�ed by R1. If R1 is not good we say it is bad .The claim that follows says that if R1 is good then there is some choice of the above de�ned proofswhich leads the outer veri�er to accept on coins R1.Claim. Suppose R1 is good. Then there is an i 2 [N1] and a j 2 [N2] such that V ��i;��j1outer (x;R1) = 0.Proof. Let q; q1; �; h be the queries and functions speci�ed by R1. Let A = �(q; �) and A1 = �1(q1; �)(be the oracles accessed by the inner veri�er). Since R1 is good we have ACC [V A;A1inner (�; h) ] � �. Soby Item (2) of De�nition 3.4.3 there exists a 2 �l such that Dist(A(h;0);(�1;1); Ea) < 1=2 � �1 andDist(A1; E�(a)) < 1=2� �2. Let a1 = �(a). Since Dist(A(h;0);(�1;1); Ea) � 1=2� �1 it must be the casethat a 2 Bq , and hence there exists i 2 [N1] such that a = ��i(q). Similarly Dist(A1; E�(a)) < 1=2��



mrBellare, Goldreich, Sudan 34implies that there is some j 2 [N ] such that a1 = ��j1(q1). By Proposition 3.3.3 we have h(a) = 0,and we have �(a) = a1 by (the above) de�nition. Now, by de�nition of the (execution of the)canonical outer veri�er, V ��i;��j1outer (x;R1) = 0 holds. 2By conditioning we have ACC [V �;�1(x) ] � � + � where� = PrR1 [R1 is good]� = PrR1;R2 [ V �;�1(x;R1R2) = 0 j R1 is bad ] :The de�nition of badness implies � � �. On the other hand we can use the Claim to see that� � PrR1 �9i 2 [N1] , j 2 [N2] : V ��i;��j1outer (x;R1) = 0�� PN1i=1PN2j=1PrR1 �V ��i;��j1outer (x;R1) = 0�� N1N2 � � ;the last by the soundness of Vouter (i.e., Item (2) of De�nition 3.4.1). Using the bound on N1 andN2, the proof is concluded.3.4.4 Constant-prover proofs in PCP | perspectiveConstant-prover proofs have been instrumental in the derivation of non-approximability results inseveral ways. One of these is that they are a good starting point for reductions| examples ofsuch are reductions of two-prover proofs to quadratic programming [BeRo, FeLo] and set cover[LuYa]. However, it is a di�erent aspect of constant prover proofs that is of more direct concernto us. This aspect is the use of constant-prover proof systems as the penultimate step of therecursion, and begins with [ALMSS]. It is instrumental in getting PCP systems with only a constantnumber of queries. Their construction requires that these proof systems have low complexity: errorwhich is any constant, and randomness and answer sizes that are preferably logarithmic. Thenumber of provers and the randomness and query complexity determine the quality of many non-approximability results (e.g., poly-logarithmic rather than logarithmic complexities translate intonon-approximability results using assumptions about quasi-polynomial time classes rather thanpolynomial time ones). The available constant-prover proof systems appear in Figure 3.1 and arediscussed below.The two-prover proofs of Lapidot-Shamir and Feige-Lov�asz [LaSh, FeLo] had poly-logarithmicrandomness and answer sizes, so [ALMSS] used a modi�cation of these, in the process increasingthe number of provers to a constant much larger than two. The later constructions of few-proverproofs of [BGLR, Ta, FeKi] lead to better non-approximability results.Bellare and Sudan [BeSu] identi�ed some extra features of constant prover proofs whose pres-ence they showed could be exploited to further increase the non-approximability factors. Thesefeatures are captured in their de�nition of canonical veri�ers. But the proof systems of [FeKi] thathad worked above no longer su�ced| they are not canonical. So instead [BeSu] used (a slightmodi�cation of) the proofs of [LaSh, FeLo], thereby incurring poly-logarithmic randomness and an-swer sizes, so that the assumptions in their non-approximability results pertain to quasi-polynomialtime classes. (Alternatively they modify the [FeKi] system to a canonical three-prover one, but thenincur a decrease in the non-approximability factors due to having more provers).



mrBellare, Goldreich, Sudan 35Due to Provers Coins Answer size Canonical? Can be made canonical?[LaSh, FeLo] 2 polylog polylog No Yes [BeSu][ALMSS] poly(��1) log polylog No ??[BGLR] 4 log polyloglog No ??[Ta] 3 log O(1) No ??[FeKi] 2 log O(1) No At cost of one more prover[BeSu][Raz] 2 log O(1) Yes (NA)Figure 3.1: Constant prover PCPs achieving error which is a �xed, but arbitrarily small, constant�. We indicate the number of provers, the randomness and answer sizes, and whether or not thesystem is canonical. The notation ?? means \don't know and don't care because stronger thingshave become available." In all cases the randomness and answer sizes hide factors which dependon �.Our outer veri�ers ask for almost the same canonicity properties. (The only di�erence is thatthey have required � to be a projection function, whereas we can deal with an arbitrary function.But we don't take advantage of this fact.) In addition we need answer sizes of O(log logn) asopposed to the O(logn) of previous methods, for reasons explained below. This means that even the(modi�ed) [LaSh, FeLo] type proofs won't su�ce for us. We could use the three-prover modi�cationof [FeKi] but the cost would wipe out our gain. Luckily this discussion is moot since we can usethe recent result of Raz [Raz] to provide us with a canonical two-prover proof having logarithmicrandomness, constant answer size, and any constant error. This makes an ideal starting point. Tosimplify the de�nitions above we insisted on constant answer size and two provers from the start.The inner veri�ers used in all previous works are based on the use of the Hadamard codeconstructions of [ALMSS]. (The improvements mentioned above are obtained by checking thissame code in more e�cient ways). We instead use a new code, namely the long code, as the basisof our inner veri�ers. Note the codewords (in the long code) have length double exponential in themessage, explaining our need for O(log logn) answer sizes in the outer veri�er. We also incorporateinto the de�nitions the new idea of folding which we will see means we don't need a circuit test (ahint towards this fact is already present in the de�nition of a good inner veri�er).3.5 The atomic testsMotivation. Our constructions of proofs systems will use the outer veri�er of Lemma 3.4.2,composed via Theorem 3.4.5 with inner veri�ers to be constructed. The brunt of our constructionsis the construction of appropriate inner veri�ers. The inner veri�er will have oracle access to afunction A: Fl ! � and a function A1: Fl1 ! �. In all our applications, A is supposed to be afolding of an encoding of the answer a of the �rst prover (in a two-prover proof system) and A1 issupposed to be the encoding of the answer a1 of the second prover. The veri�er will perform varioustests to determine whether these claims are true. The subject of this subsection is the design ofthese tests.The atomic tests we provide here will be used directly in the proof systems for showing non-



mrBellare, Goldreich, Sudan 36The Atomic Tests. Here A: Fl ! � and A1: Fl1 ! � are the objects being tested.The tests also take additional inputs or parameters: below f; f1; f2; f3 2 Fl; g 2 Fml1 ; and�: �l ! �l1 .LinTest(A; f1; f2) (Linearity Test)If A(f1) +A(f2) = A(f1 + f2) then output 0 else output 1.MBTest(A; f1; f2; f3) (Respecting-Monomial-Basis Test)If A(f1) �A(f2) = A(f1 � f2 + f3)� A(f3) then output 0, else output 1.ProjTest�(A;A1; f; g) (Projection Test)If A1(g) = A(g � � + f)�A(f) then output 0, else output 1.The Passing Probabilities. These are the probabilities we are interested in:LinPass(A) = Prf1;f2 R Fl [ LinTest(A; f1; f2) = 0 ]MBPass(A) = Prf1;f2;f3 R Fl [MBTest(A; f1; f2; f3) = 0 ]ProjPass�(A;A1) = Prf R Fl ; g R Fl1 [ProjTest�(A;A1; f; g) = 0 ]Figure 3.2: The atomic tests and their passing probabilities.approximability of Max-3-SAT, Max-2-SAT and Max CUT. Furthermore, they are also the basis ofiterated tests which will lead to proof systems of amortized free-bit complexity � 2, which in turnare used for the Max Clique and Chromatic Number results. We remark that for the applicationsto the above-mentioned Max-SNP problems it is important to have the best possible analysis ofour atomic tests, and what follows strives to this end. We stress that the exposition and analysisof these tests, in this subsection, is independent of the usage of the codes in our proof systems.Testing for a codeword. The �rst task that concerns us is to design a test which, with highprobability, passes if and only if A is close to an evaluation operator (i.e., a valid codeword). Theidea is to exploit the characterization of Proposition 3.3.2. Thus we will perform (on A) a linearitytest, and then a \respect of monomial basis" test. Linearity testing is well understood, and we willuse the test of [BLR], with the analyses of [BLR, BGLR, BCHKS]. The main novelty is the respectof monomial basis test.Circuit and projection. Having established that A is close to some evaluation operator Ea, wenow want to test two things. The �rst is that h(a) = 0 for some predetermined function h. Thistest which would normally be implemented by \self-correction" (i.e., evaluating h(a) by uniformlyselecting f 2 Fl and computing A(f + h) �A(f)) is not needed here, since in our applications wewill use an (h; 0)-folding of A instead of A. Thus, it is left to test that the two oracles are consistentin the sense that A1 is not too far from an evaluation operator which corresponds to �(a) for some



mrBellare, Goldreich, Sudan 37predetermined function �.Self-correction. The following self-correction lemma is due to [BLR] and will be used through-out.Lemma 3.5.1 (Self Correction Lemma [BLR]): Let A; ~A: Fl ! � with ~A linear, and letx = Dist(A; ~A). Then for every f 2 Fl:Prh R Fl hA(f + h)� A(h) = ~A(f)i � 1� 2x :Corollary 3.5.2 Let A; ~A: Fl ! � with ~A linear, and suppose x def= Dist(A; ~A) < 1=2. Supposealso that A(f + h) = A(h) + �, for some f 2 Fl, � 2 � and every h 2 Fl. Then ~A(f) = �.Proof: By the hypothesis, we have A(f + h)� A(f) = � for all h's. Thus, we can writePrhR Fl hA(f + h)� A(f) = ~A(f)i = Prh R Fl h� = ~A(f)i :But the right hand side (and hence the left) is either 0 or 1. However, by Lemma 3.5.1 the lefthand side is bounded below by 1� 2x > 0 and so the corollary follows.Convention. All our tests output a bit, with 0 standing for accept and 1 for reject.3.5.1 Atomic linearity testThe atomic linearity test shown in Figure 3.2 is the one of Blum, Luby and Rubinfeld [BLR].We want to lower bound the probability 1 � LinPass(A) that the test rejects when its inputsf1; f2 are chosen at random, as a function of x = Dist(A;Lin). The following lemma, due toBellare et. al. [BCHKS], gives the best known lower bound today. Detailed description of thehistory of developments in this area follows.Lemma 3.5.3 [BCHKS] Let A: Fl ! � and let x = Dist(A;Lin). Then 1�LinPass(A) � �lin(x)where the function �lin: [0; 1=2]! [0; 1] is de�ned as follows:�lin(x) def= 8>>><>>>: 3x� 6x2 0 � x � 5=1645=128 5=16 � x � 45=128x 45=128 � x � 1=2:The above lower bound is composed of three di�erent bounds with \phase transitions" at x = 516and x = 45128. It was shown in [BCHKS] (see below) that this combined lower bound is close to thebest one possible.History. The general problem of linearity testing as introduced and studied by Blum et. al. [BLR]is stated as follows: given a function A: G! H , where G;H are groups, obtain a lower bound on�A as a function of xA, where�A = Pra;bR G [A(a) +A(b) 6= A(a+ b)]xA = Dist(A;Lin) :



mrBellare, Goldreich, Sudan 38Blum et. al. showed that �A � 29xA, for every A. Their analysis was used in the proof system andMax-3-SAT non-approximability result of [ALMSS]. Interest in the tightness of the analysis fromthe point of view of improving the Max-3-SAT non-approximability began with [BGLR]. Theyshowed that �A � 3xA � 6x2A, for every A. This establishes the �rst segment of the lower boundquoted above (i.e., of the function �lin). Also, it is possible to use [BLR] to show that �A � 2=9when xA � 1=4. Putting these together implies a two segment lower bound with phase transitionat the largest root of the equation 3x � 6x2 = 29 (i.e., at 14 + p3336 ). This lower bound was used inthe Max-3-SAT analyses of [BGLR] and [BeSu].However, for our applications (i.e., linearity testing over Fl as in Lemma 3.5.3), the case ofinterest is when the underlying groups are G = GF(2)n and H = GF(2) (since Fl may be identi�edwith GF(2)n for n = 2l). The work of [BCHKS] focused on this case and improved the bound on�A for the case xA � 14 where A: GF(2)n! GF(2). Speci�cally, they showed that �A � 45=128 forxA � 14 which establishes the second segment of �lin . They also showed that �A � xA, for everyA: GF(2)n ! GF(2). Combining the three lower bounds, they have derived the three-segmentlower bound stated in Lemma 3.5.3.The optimality of the above analysis has been demonstrated as well in [BCHKS]. Essentially1,for every x � 5=16 there are functions A: GF(2)n ! GF(2) witnessing �A = �lin(xA) with xA = x.In particular, for x = 5=16 (and n � 4), there is a function A with 1=4 < xA < 1=2 and �A =45=128 = �lin(xA). For the interval ( 516 ; 12 ], no tight results are known. Instead, [BCHKS] reportsof computer constructed examples of functions A: GF(2)n ! GF(2) with xA in every interval[ k100; k+1100 ], for k = 32; 33; :::; 49, and �A < �lin(xA) + 120 . Furthermore, they showed that there existsuch functions with both xA and �A arbitrarily close to 12 .3.5.2 Atomic respect of monomial basis testHaving determined that A is close to linear, the atomic respect of monomial basis test makes surethat the linear function close to A respects the monomial basis. Let us denote the latter function(i.e., the linear function closest to A) by ~A. Recalling De�nition 3.3.1 we need to establish twothings: namely, that ~A(�;) = 1 and that ~A(�S) � ~A(�T ) = ~A(�S[T ), for every S; T � [l]. Recall thatwe do not have access to ~A but rather to A; still, the Self-Correction Lemma provides an obviousavenue to bypass the di�culty provided Dist(A; ~A) < 1=4. This would have yielded a solution butquite a wasteful one (alas su�cient for the Max Clique and Chromatic Number results). Instead,we adopt the following more e�cient procedure.Firstly, by considering only oracles folded over (�1; 1), we need not check that ~A(�;) = 1 sinceit will be guaranteed that the (�1; 1)-folded oracle A satis�es A(f + �1) = A(f) + 1, for all f 2 Fl.Secondly, we test that ~A(�S) � ~A(�T ) = ~A(�S[T ), for every S; T � [l], by taking random linearcombinations of the S's and T 's to be tested. Such linear combinations are nothing but uniformlyselected functions in Fl. Namely, we wish to test ~A(f) � ~A(g) = ~(f � g), where f and g are uniformlyselected in Fl. Thus, we can inspect A(f) (resp., A(g)) rather than ~A(f) (resp., ~A(g)) with littleharm. However, f � g is not uniformly distributed (when f and g are uniformly selected in Fl) andthus Self Correction will be applied here. The resulting test is depicted in Figure 3.2. To analyzethe performance of this test, we need some technical lemmas. The reader skip their proofs, in �rstreading, and proceed below to their usage (in Lemma 3.5.7).Technical lemmas. First we recall the following lemma of [BGLR] which provides an improvedanalysis of Frievalds's matrix multiplication test in the special case when the matrices are symmetricwith common diagonal.1Actually, the statment holds only for x's which are integral multiple of 2�n



mrBellare, Goldreich, Sudan 39Lemma 3.5.4 (symmetric matrix multiplication test [BGLR]): LetM1;M2 be N -by-N symmetricmatrices over � which agree on their diagonals. SupposePrx;y R �N [xM1y = xM2y] > 5=8 :Then M1 =M2.Begin by imagining that A is actually linear. In that case, the following lemma provides a conditionunder which A (or rather ~A) respects the monomial basis.Lemma 3.5.5 (RMB test for linear functions): Suppose ~A: Fl ! � is linear, ~A(�;) = 1 andPrf;g R Fl h ~A(f) � ~A(g) = ~A(fg)i > 5=8 :Then ~A respects the monomial basis.Proof: Let N = 2l. We de�ne a pair of N -by-N matrices whose rows and columns are indexed bythe elements of 2[l]. Speci�cally, for S; T � [l], we setM1[S; T ] = ~A(�S) � ~A(�T )M2[S; T ] = ~A(�S[T ) :We wish to show that M1 = M2. It is easy to see that this implies that ~A respects the monomialbasis.Recall that C:Fl ! �2l is the transformation which to any f 2 Fl associates the vector (Cf(S) )S�[l]whose entries are the coe�cients of f in its monomial series. Using the linearity of ~A we note that~A(f) � ~A(g) = ~A (PS Cf(S) � �S) � ~A (PT Cg(T ) � �T )= hPS Cf(S) � ~A(�S)i � hPT Cg(S) � ~A(�T )i= PS;T Cf(S) � ~A(�S) � ~A(�T ) � CT(g)= C(f)M1C(g) :For the next step we �rst need the following.Fact. Let f; g 2 Fl and U � [l]. Then Cfg(U) =PS[T=U Cf(S) �Cg(T ).Using this fact (and the linearity of ~A) we have:~A(fg) = ~A (PU Cfg(U) � �U)= PU Cfg(U) � ~A(�U)= PU PS[T=U Cf(S) � Cg(T ) � ~A(�U)= PS;T Cf(S) � Cg(T ) � ~A(�S[T )= C(f)M2C(g) :Now we note that C is a bijection, so that if h is randomly and uniformly distributed in Fl thenC(h) is randomly and uniformly distributed in �2l. From the above, it follows thatPrf;g R Fl h ~A(f) � ~A(g) = ~A(fg)i = Prf;g R Fl [C(f)M1C(g) = C(f)M2C(g)]= Prx;y R �2l [xM1y = xM2y] :



mrBellare, Goldreich, Sudan 40Now by assumption this probability is more than 5=8. Furthermore M1;M2 are symmetric andagree on their diagonals. So Lemma 3.5.4 implies that M1 =M2, as desired.Lemma 3.5.5 suggests that if we knew A was linear we could test that it respects the monomialbasis by picking f; g at random and testing whether A(f) �A(g) = A(fg). However, we only knowthat A is close to linear. But we can still perform an approximation of this test via self-correctionof the value A(fg). This, indeed, is our test as indicated in Figure 3.2. Obviously, the fact thatA is not quite linear will introduce some error. The purpose of the next lemma is to analyze thiserror.Lemma 3.5.6 (RMB test { error introduced by non-linear functions): Let A; ~A: Fl ! � with ~Alinear and satisfying ~A(�1) = 1. Let x = Dist(A; ~A). ThenPrf1;f2 R Fl hA(f1) �A(f2) 6= ~A(f1) � ~A(f2)i � x+ x2 :If additionally the function A satis�es A(f + �1) = A(f) + 1, for all f 2 Fl, thenPrf1;f2 R Fl hA(f1) �A(f2) 6= ~A(f1) � ~A(f2)i = x� x2=2 :The additional claim is not required for the Max Clique result. Its main application is for theMaxSNP results.Proof: We start by analyzing the case of general A. Since ~A is linear and ~A(�1) = 1 it must be thatPrf R Fl h ~A(f) = 0i = Prf R Fl h ~A(f) = 1i = 1=2 :Now let x0 = Prf R Fl hA(f) = 1 j ~A(f) = 0 ix1 = Prf R Fl hA(f) = 0 j ~A(f) = 1 i :Using this and conditioning arguments we havep def= Prf1;f2 R Fl hA(f1) �A(f2) 6= ~A(f1) � ~A(f2)i= Prf1;f2 R Fl h(A(f1) = A(f2) = 1)^ ( ~A(f1) � ~A(f2) = 0)i+Prf1;f2 R Fl h(A(f1) �A(f2) = 0) ^ ( ~A(f1) = ~A(f2) = 1)i= 14 � x20 + 24 � x0(1� x1) + 14 � [1� (1� x1)2]= 14 � (x20 � x21 + 2x0 + 2x1 � 2x0x1)But conditioning shows that x = 12x0+ 12x1. Substituting x1 = 2x�x0 in the above and simplifying,we get p = x� x2 + x20=2. Using x0 � 2x we upper bound p by x+ x2.



mrBellare, Goldreich, Sudan 41We now turn to the special case in which A satis�es A(f + �1) = A(f) + 1 for all f . By linearity of~A and ~A(�1) = 1 we have ~A(f + �1) = ~A(f) + 1, for all f 's. Thus, we can express x0 asx0 = Prf R Fl hA(f) + 1 = 0 j ~A(f) + 1 = 1 i= Prf R Fl hA(f + �1) = 0 j ~A(f + �1) = 1 i= x1and x0 = x1 = x follows. In this case, we get an exact expression for p = x � x2 + x20=2 (ratherthan an upper bound); namely, p = x� x2=2. The lemma follows.The RMB test. We are interested in lower bounding the probability 1�MBPass(A) that the testrejects when f1; f2; f3 are chosen at random, as a function of the distance of A to a linear function ~A,given that ~A does not respect the monomial basis. We assume that A satis�es A(f +�1) = A(f)+1(for all f 2 Fl), as is the case in all our applications (since we use veri�ers which access a (�1; 1)-foldedfunction). The proof of the following exploits the above lemmas.Lemma 3.5.7 (RMB test { �nal analysis): Let A; ~A: Fl ! � with ~A linear but not respectingthe monomial basis and let x = Dist(A; ~A). Suppose that x � 1=2 and that the function A satis�esA(f + �1) = A(f) + 1, for all f 2 Fl. Then1�MBPass(A) � �RMB(x) def= (1� 2x) � (38 � x+ x22 ) = 38 � 74x + 52x2 � x3Consequently, for every A: Fl ! � and h 2 Fl, so that the linear function, ~A, closest to A doesnot respect the monomial basis we have 1�MBPass(A(h;0);(�1;1)) � �RMB(Dist(A(h;0);(�1;1); ~A)).Proof: Using Lemma 3.5.1 we can lower bound the rejection probability of the test as follows:1�MBPass(A) = Prf1;f2 ;f3 R Fl [A(f1) �A(f2) 6= A(f1 � f2 + f3)�A(f3)]� Prf1;f2 ;f3 R Fl hA(f1) �A(f2) 6= ~A(f1f2) and A(f1f2 + f3)�A(f3) = ~A(f1f2)i� Prf1;f2 R Fl hA(f1) �A(f2) 6= ~A(f1f2)i � minf1;f22Fl nPrf3 R Fl hA(f1f2 + f3)�A(f3) = ~A(f1f2)io� Prf1;f2 R Fl hA(f1) �A(f2) 6= ~A(f1f2)i � (1� 2x)Now, using Lemmas 3.5.5 and 3.5.6 (assuming for a moment that ~A(�1) = 1), we getPrf1 ;f2 R Fl hA(f1) �A(f2) 6= ~A(f1f2)i � Prf1;f2 R Fl h ~A(f1) � ~A(f2) 6= ~A(f1f2)i�Prf1 ;f2 R Fl hA(f1) �A(f2) 6= ~A(f1) � ~A(f2)i� 3=8� x+ x2=2It is left to justify the assumption that ~A(�1) = 1. For x < 1=2 this is justi�ed by Corollary 3.5.2(using the hypothesis A(f + �1) = A(f) + 1, 8f 2 Fl). Otherwise (i.e., in case x = 1=2) the claimedbound (i.e., 3=8� (1=2) + (1=2)2=2 = 0) holds vacuasly. This concludes the proof.Remark: An RMB test for arbitrary A's (rather than folded ones) can be derived by augmentingthe above test with a test of A(f + �1) = A(f) + 1 for uniformly chosen f 2 Fl. The analysis of theaugmented part is as in the circuit test (below).



mrBellare, Goldreich, Sudan 423.5.3 Atomic projection testThe �nal test checks that the second function A1 is not too far from the evaluation operator Ea1where a1 = �(a) is a function of the string a whose evaluation operator is close to A. Here, unlikeprevious works (for instance [BeSu]), � may be an arbitrary mapping from �l to �l1 rather thanbeing a projection (i.e., satisfying �(x) = x(i1) : : : x(il1 ) for some sequence 1 � i1 < � � �< il1 � l andall x 2 �l). Thus, the name \projection test" is adopted for historical reasons.Lemma 3.5.8 Let A: Fl ! � and let �: �l ! �l1 be a function. Let a 2 �l and let x =Dist(A;Ea). Let a1 = �(a) 2 �l1 . Then 1� ProjPass�(A;A1) � Dist(A1; Ea1) � (1� 2x).Proof: We lower bound the rejection probability as follows:Prf R Fl ; g R Fl1 [A1(g) 6= A(g � � + f)�A(f)]� Prf R Fl ; g R Fl1 [A1(g) 6= Ea(g � �) and A(g � � + f)� A(f) = Ea(g � �)]� Prg R Fl1 [A1(g) 6= Ea(g � �)] � (1� 2x) :Here we used Lemma 3.5.1 in the last step. Now we note that Ea(g � �) = Ea1(g). Hence the �rstterm in the above product is justPrg R Fl1 [A1(g) 6= Ea1(g)] = Dist(A1; Ea1) :This concludes the proof.3.5.4 Atomic circuit testFor sake of elegancy, we present also a Circuit Test, denoted CircTesth(A; f). The test consists ofchecking whether A(h + f) = A(f) and it outputs 0 if equality holds and 1 otherwise. Assumingthat A is close to some evaluation operator Ea, the atomic circuit test (above) uses self-correction[BLR] to test that a given function h has value 0 at a. As explained above, this test is not neededsince all our proof systems will use a (h; 0)-folding (of A) and thus will impose h(a) = 0. Theanalysis lower bounds the rejection probability, as a function of the distance of A from linear, giventhat h(a) = 1.Lemma 3.5.9 Let A: Fl ! � and let a 2 �l. Let h 2 Fl and x = Dist(A;Ea). If h(a) = 1 then1�CircPassh(A) � 1� 2x, whereCircPassh(A) = Prf R Fl [CircTesth(A; f) = 0 ]Proof: Follows directly from Lemma 3.5.1.3.6 Minimizing the number of queriesThe problem we consider here is to minimize the values of q (and qav) for which we can constructPCPs for NP using q queries in the worst case (and qav on the average) to achieve a soundnesserror of 1=2. We allow only logarithmic randomness. In other words we want results of the form:NP = PCP1;1=2[ coins = log ; query = q ; queryav = qav ] : (3.3)



mrBellare, Goldreich, Sudan 43Due to q qav[ALMSS] some constant some constant[BGLR] 36 29[FeKi] 32 24This paper 19 16Figure 3.3: Worst case (q) and average (qav) number of queries needed to get 1=2 soundness withlogarithmic randomness. Ie. results of the form NP � PCP1;1=2[ coins = log ; query = q ; queryav =qav ].Later in this paper we will return to this question by looking at lower bounds.Previous work. It was shown by [ALMSS] that there are constants q; qav for which (3.3) isachieved. Reductions in the values of these numbers obtained since then are depicted in Figure 3.3.The interest of [BGLR] in these numbers was to improve non-approximability factors for MaxClique. But we now know that free-bits are a better measure towards this end [FeKi, BeSu]. Yetwe remain interested in query bits for their own sake. Indeed, the number of bits queried remainsa most natural measure, and it is an intruiging question as to how many bits of a proof you needto look at to detect an error with a given probability. Furthermore it remains a good way to get a�rst rough estimate on non-approximability factors in general.We exploit the idea of [BGLR] of re-using proof bits across di�erent tests. As we will see in thenext subsection, an alternative approach seems more adequate for deriving non-approximabilityresults for problems such as Max-3-SAT.Sources of our improvements. The principal part of our improvement comes from the use ofthe new long code based inner veri�er, the atomic tests and their analysis in Section 3.5, and thenew idea of folding.3.6.1 The PCP inner veri�erOur theorem is based on the construction of the (l; l1)-canonical inner veri�er VPCPinner depictedin Figure 3.4. In addition to its standard inputs h; � it takes parameters N1; N2; N3. It repeatsthe atomic linearity test N1 times, the atomic respect of monomial basis test N2 times and theatomic projection test N3 times. Note that the tests are executed on the function A(h;0);(�1;1) towhich the veri�er has an e�ective oracle access given his access to A; this eliminates the needto check that h assumes the value 0 (on the relevant input) and simpli�es the RMB test (asexplained above). Also notice how the values of A(h;0);(�1;1) on f1; : : : ; fm are used in many di�erenttests. By inspection it is clear that the total number of accesses to the oracles for A and A1 ismaxf2N1; 3N2; N3g+N1+N2+2N3 (whereas the free-bit complexity is maxf2N1; 3N2; N3g+N3).We now examine the goodness of VPCPinner.Recall the de�nitions of the functions �lin(x) (from Lemma 3.5.3) and �RMB(x) = 3=8 � 7x=4 +5x2=2� x3 (from Lemma 3.5.7). De�ne �suplin (x) = minx�z�1=2f�lin(z)g.



mrBellare, Goldreich, Sudan 44Lemma 3.6.1 (soundness of VPCPinner): For any �1; �2 > 0 and any l; l1; N1; N2 and N3, the (l; l1)-canonical inner veri�er VPCPinner is (�; �1; �2)-good, where� = min�2[0;1=2��1] max � [1� �suplin (�)]N1 ; [1� �RMB(�)]N2 ; [1=2 + �+ �2]N3 � :Notice that our analysis uses each of the three tests to justify one of the three expressions beingmaximized. This explains why re-using the same probes in di�erent tests does not harm us. Theminimization over � represents a degree of freedom in the analysis which is broken into cases(according to whether the distance of the �rst oracle from being linear is above � or not).Proof: Let � 2 [0; 1=2��1] be arbitrary. We split the analysis into several cases based on the valueof x = Dist(A(h;0);(�1;1);Lin). We di�erentiate between whether x is above or below the \pivot"value �.Case 1: x � �Lemma 3.5.3 implies that LinPass(A(h;0);(�1;1)) � 1� �lin(x) � 1� �suplin (�). Since the N1 linearitytests are independent, ACC [V A;A1PCPinner(�; h) ]� [1� �suplin (�)]N1.The PCP inner veri�er. This (l; l1)-canonical inner veri�er is given functions h 2 Fland �: �l ! �l1 , and has access to oracles for A: Fl ! � and A1: Fl1 ! �. In addition ittakes three integer parameters N1; N2 and N3.Let m = maxf2N1; 3N2; N3g.Pick functions f1; : : : ; fm R Fl.For i = 1 to N1 doLinTest(A(h;0);(�1;1); f2i�1; f2i).EndForFor i = 1 to N2 doMBTest(A(h;0);(�1;1); f3i�2; f3i�1; f3i).EndForFor i = 1 to N3 doPick g R Fl1 .ProjTest�(A(h;0);(�1;1); A1; fi; g).EndForAccept i� all the above tests accept.Remark: access toA(h;0);(�1;1)(f) is implemented by accessing either A(f), A(f+h), A(f+�1)or A(f + h+ �1). Figure 3.4: The PCP inner veri�er VPCPinner



mrBellare, Goldreich, Sudan 45Case 2: x � �Let ~B: Fl ! � be a linear function such that Dist(A(h;0);(�1;1); ~B) � �. The proof splits into twosubcases.Case 2.1: ~B does not respect the monomial basisIn this case Lemma 3.5.7 implies thatMBPass(A(h;0);(�1;1)) � 1��RMB(x). Since �RMB is decreasingin the range [0; 1=2] we have MBPass(A(h;0);(�1;1)) � 1 � �RMB(�). Thus ACC [V A;A1PCPinner(�; h) ] �[1� �RMB(�)]N2.Case 2.2: ~B respects the monomial basisBy Proposition 3.3.2, ~B is an evaluation operator. So there exists a 2 �l such that ~B = Ea. SoDist(A(h;0);(�1;1); Ea) = x. Let a1 = �(a). The proof splits into two further sub-cases.Case 2.2.1: d def= Dist(A1; Ea1) � 1=2� �2By Lemma 3.5.8 we have ProjPass�(A(h;0);(�1;1); A1) � 1� d � (1� 2x), which is bounded above by1=2 + �2 + x� 2�2x � 1=2 + �+ �2. Thus, ACC [V A;A1PCPinner(�; h) ]� [1=2 + �+ �2]N3 .Case 2.2.2: Else (d < 1=2� �2) {In this case, we have x = Dist(A(h;0);(�1;1); Ea) � 1=2 � �1 and Dist(A1; Ea1) < 1=2 � �2. Thusthe functions A(h;0);(�1;1) and A1 satisfy the properties required in conditions (2.1) and (2.2) ofDe�nition 3.4.3.The above analysis is valid for any � and in particular for one minimizing max([1��suplin (�)]N1; [1��RMB(�)]N2; [1=2 + � + �2]N3). Recall that � is de�ned as the minimum value. Thus, we concludethat the only case which allows ACC [V A;A1PCPinner(�; h) ] > � is case (2.2.2) which also satis�es condi-tions (2.1) and (2.2) of De�nition 3.4.3. Thus, VPCPinner satis�es condition (2) of De�nition 3.4.3.Clearly, VPCPinner also satis�es condition (1) of De�nition 3.4.3, and thus the lemma follows.3.6.2 The new proof systemWe show that a veri�er need examine only 19 bits of the proof, and less than 16 on the average, todetect error with probability 1=2. Our numbers are rounded up to the near multiple of a hundredth;see the proof for more exactness.Theorem 3.6.2 : NP = PCP1;1=2[ coins = log ; query = 19 ; queryav = 15:58 ].Furthermore, the free-bit complexity of the proof system is 11.Proof: We consider a canonical (l; l1)-inner veri�er Vinner which probabilistically chooses the pa-rameters N1; N2 and N3 for VPCPinner as follows2:With probability p1 > 0 chooses N1 = 3 and with probability 1� p1 chooses N1 = 2.With probability p2 > 0 chooses N2 = 3 and with probability 1� p2 chooses N2 = 2.With probability p3 > 0 chooses N3 = 2 and with probability 1� p3 chooses N3 = 1.De�ne the functionsh1(�; p1) = p1 � [1� �suplin (�)]3 + (1� p1) � [1� �suplin (�)]22The choice of these parameters is justi�ed by the rest of the analysis and it can be seen that setting theseparameters di�erently will not improve the result.



mrBellare, Goldreich, Sudan 46h2(�; p2) = p2 � [1� �RMB(�)]3 + (1� p2) � [1� �RMB(�)]2h3(�; p3; �2) = p3 � [1=2 + � + �2]2 + (1� p3) � [1=2+ �+ �2]1 :The parameters p1; p2; p3 will be chosen so that there exist values �1 > 0, � 2 [0; 1=2� �1], �2 > 0and  > 0 for which: h1(�; p1) � 1=2� h2(�; p2) � 1=2� h3(�; p3; �2) � 1=2�  :This will imply, by Lemma 3.6.1 that Vinner is (�; �1; �2)-good for � = 1=2�  < 1=2. To �gure outhow to choose p1; p2; p3 let us look at the number of bits queried by Vinner. This is the same asthe number queried by VPCPinner, namely maxf2N1; 3N2; N3g+N1+N2+2N3 except that now N1,N2 and N3 are random variables. In the worst case N1 = N2 = 3 and N3 = 2 making the querycomplexity of Vinner equal 19. The expected number of bits probed by Vinner is (6+3p2)+(2+p1)+(2+ p2) + 2(1+ p3) = 12+ p1 + 4p2+ 2p3. Thus our task is to choose p1; p2; p3 so that this value isminimal, subject to having max(h1(�; p1); h2(�; p2); h3(�; p3; �2)) strictly less than 1=2.To do this, begin by imagining that we could set  = �1 = �2 = 0. Next, we set p1 = 1. By inspectionof �suplin we guess that a good choice of � lies in the range [0; 1=4]. Thus we replace �suplin (�) in h1by 3�� 6�2. Set � to be the smaller root of the quadratic equation 1� 3x+ 6x2 = 3p1=2, so thath1(�; p1) = 1=2. A calculation shows that � is approximately 0:08231948733 { thereby validitingour guess that � 2 [0; 1=4]. From this point on, � is �xed (to this values), and we consider the(linear) maps p2 7! h2(�; p2) and p3 7! h3(�; p3; 0). As both maps are linear, we easily solve forvalues p2; p3 satisfying h2(�; p2) = h3(�; p3; 0) = 1=2. Calculations show p2 � 0:47476014 andp3 � 0:3384520, yielding an expected number of bits 12 + p1 + 4p2 + 2p3 � 15:57594456.However we must slightly adjust the above so that ; �1; �2 are positive. This can be done byincreasing p2 and p3 slightly.To complete the proof we now choose an appropriate outer veri�er. Let � = 16�21�22 . Lemma 3.4.2provides us with l and l1 such that an �-good (l; l1)-canonical outer veri�er Vouter with randomnessO(logn) exists. Let V = hVouter; Vinneri be the composition of Vouter and Vinner according to thede�nitions in Section 3.4. This veri�er has randomness O(logn). Apply Theorem 3.4.5 to see thatV has completeness parameter 1 and soundness parameter �+�=(16�21�22) = �+ = 1=2. The querycomplexity of V is the same as that of Vinner above.3.7 The MAX SNP veri�erThe PCP veri�er of Section 3.6 got a signi�cant advantage by reusing the probed bits for di�erenttests. When deriving non-approximability results for problems like Max-3-SAT, Max-2-SAT andMax Cut, this does not seem to be the best strategy. In this section we describe an alternativestrategy which amounts to a veri�er that performs the tests mutually exclusively. This veri�er willbe the basis for the non-approximability results regarding the above-mentioned problems (presentedin Section 3.8 and Section 3.9). Figure 3.5 describes the corresponding inner veri�er.The inner veri�er takes parameters l; l1 and also additional parameters p1; p2 and p3 such thatp1 + p2 + p3 = 1. It performs just one test: with probability p1 the linearity test; with probability



mrBellare, Goldreich, Sudan 47p2 the respect of monomial basis test; and with probability p3 the projection test. Formally, this isachieved by picking p at random and making cases based on its value. (For simplicity p is depictedas being chosen as a random real number between 0 and 1. Of course we cannot quite do this. Butwe will see later that the values of p1; p2; p3 in our �nal veri�ers are appropriate constants. So infact an appropriate choice of p can be made using O(1) randomness, which is what we will implicitlyassume). To improve the results, we perform the tests on a folding of A over both (h; 0) and (�1; 1)(i.e., on A(h;0);(�1;1)). We stress that A(h;0);(�1;1) is a virtual oracle which in implemented by the veri�erwhich accesses the actual oracle A (on points determined by the de�nition of folding). We nowexamine the goodness of VSNPinner. Recall the de�nitions of �lin(x) and �RMB(x) = 38� 74x+ 52x2�x3.Informally, the following lemma considers all the possible strategies of a \dishonest" prover andindicates the probability (denoted 1��) with which the veri�er detects an error (when run againstsuch strategies). The three cases correspond to the events that(1) the function A(h;0);(�1;1) may be very far from being linear;(2) the function A(h;0);(�1;1) is x-close to linear, for some x < 12 � �1, but does not respect themonomial basis; and(3) the function A(h;0);(�1;1) is x-close to linear but the encoding of �(E�1(A(h;0);(�1;1))) is not (12��2)-close to the function A1.The Max-SNP inner veri�er. Given functions h 2 Fl and �: �l ! �l1 , the veri�er hasaccess to oracles for A: Fl ! � and A1: Fl1 ! �. In addition it takes three [0; 1] valuedparameters p1; p2 and p3 such that p1 + p2 + p3 = 1.Pick p R [0; 1].Case: p � p1 :Pick f1; f2 R Fl.LinTest(A(h;0);(�1;1); f1; f2).Case: p1 < p � p1 + p2 :Pick f1; f2; f3 R Fl.MBTest(A(h;0);(�1;1); f1; f2; f3).Case: p1 + p2 < p :Pick f R Fl and g R Fl1 .ProjTest�(A(h;0);(�1;1); A1; f; g).Remark: access toA(h;0);(�1;1)(f) is implemented by accessing either A(f), A(f+h), A(f+�1)or A(f + h+ �1). Figure 3.5: The Max-SNP inner veri�er VSNPinner



mrBellare, Goldreich, Sudan 48Lemma 3.7.1 (soundness of VSNPinner): Suppose �1; �2 > 0, with �1 < 19128 and l; l1 2 Z+. Supposep1; p2; p3 2 [0; 1] satisfy p1 + p2 + p3 = 1. Then the (l; l1)-canonical inner veri�er VSNPinner is(�; �1; �2)-good, where 1� � is the minimum of the following three quantities{(1) p1 � (12 � �1)(2) min x�1=2��1 [ p1 � �lin(x) + p2 � �RMB(x) ](3) min x�1=2��1 [ p1 � �lin(x) + p3 � (12 � �2)(1� 2x) ].Proof: The proof is similar to that of Lemma 3.6.1. The analysis is broken up into cases as in theproof of Lemma 3.6.1, except that instead of \pivoting" on an arbitrary � 2 [0; 1=2��1] we pivot onthe boundary (i.e., 12 � �1). We use the hypothesis that 12 � �1 > 45128 . Let x = Dist(A(h;0);(�1;1);Lin).Case 1: x � 12 � �1Lemma 3.5.3 implies that 1� LinPass(A(h;0);(�1;1)) � �lin(x) � x � 12 � �1. (The second inequalityfollows from the fact that �lin(x) = x for x 2 [45=128; 1=2].) Since VSNPinner performs the atomiclinearity test with probability p1 we have 1� ACC [V A;A1SNPinner(�; h) ]� p1 � (1=2� �1).Case 2: x � 12 � �1Lemma 3.5.3 implies that 1 � LinPass(A(h;0);(�1;1)) � �lin(x) and so the probability that VSNPinnerperforms the linearity test and rejects is at least p1 � �lin(x). Now let ~B be a linear function suchthat Dist(A(h;0);(�1;1); ~B) � x. We consider the following sub-cases.Case 2.1: ~B does not respect the monomial basisIn this case Lemma 3.5.7 implies that 1�MBPass(A(h;0);(�1;1)) � �RMB(x). So the probability thatVSNPinner performs the atomic respect of monomial basis test and rejects is at least p2��RMB(x). Sincethe events that the veri�er performs a linearity test or a respect of monomial basis test are mutuallyexclusive we can add the probabilities of rejection and thus in this case 1� ACC [V A;A1SNPinner(�; h) ] �p1 � �lin(x) + p2 � �RMB(x).Case 2.2: ~B respects the monomial basisBy Proposition 3.3.2, ~B is an evaluation operator. So there exists a 2 �l such that ~B = Ea. SoDist(A(h;0);(�1;1); Ea) = x. Let a1 = �(a). The proof splits into two further sub-cases.Case 2.2.1: d def= Dist(A1; Ea1) � 12 � �2By Lemma 3.5.8 we have 1�ProjPass�(A(h;0);(�1;1); A1) � d � (1�2x) � (1=2��2) � (1�2x). So theprobability that VSNPinner performs the projection test and rejects is at least p3 � (1=2+ �2)(1� 2x).Thus 1 � ACC [V A;A1SNPinner(�; h) ] � p1 � �lin(x) + p3 � (1=2 � �2)(1 � 2x) (adding probabilities as incase (2.1)).Case 2.2.2: Else{In this case, we have x = Dist(A(h;0);(�1;1); Ea) � 1=2 � �1 and Dist(A1; Ea1) < 1=2� �2. Thus thefunctions A(h;0);(�1;1) and A1 satisfy conditions (2.1) and (2.2) in De�nition 3.4.3.Similarly to the proof of Lemma 3.6.1, we infer that the lower bound on 1 � � is as claimed andthe lemma follows.The upper bound on the soundness error of VSNPinner, provided by Lemma 3.7.1, is somewhatcomplicated to grasp. In the next claim we simplify this expression (for the soundness error)



mrBellare, Goldreich, Sudan 49under the assumption that 45128 � p1 + �RMB( 45128) � p2 = 38 � p2 = 12 � p3. This choice represents ourguess, which is actually proven correct in Claim 3.15.1, that the best strategy for an adversary(trying to maximize the above expression for the soundness error) is either to pick A so thatDist(A(h;0);(�1;1);Lin) = 45=128 or to pick A that is linear and does not respect the monomial basis,or to pick A = Ea (i.e., linear and respects the monomial basis) but to pick A1 which is not closeto E�(a). Under these strategies it is optimal to set the probabilities p1, p2 and p3 so that Eq. (3.4)holds.Claim 3.7.2 Let �1; �2 > 0 and p1; p2; p3 2 [0; 1] satisfy p1 + p2 + p3 = 1 and45128 � p1 + �RMB(45=128) � p2 = 38 � p2 = 12 � p3 (3.4)Then p1 = 1629744969 ; p2 = 1638444969 and p3 = 1228844969 (3.5)and the minimum of the three expressions in Lemma 3.7.1 is strictly greater than p32 � �1 � �2.Proof: A straightforward computation shows that Eq. (3.5) indeed solves the conditions imposedon the pi's. Our main task is to lower bound each of the following expressions (while the pi's are�xed as in Eq. (3.5)): T1 def= (12 � �1) � p1T2 def= minx�1=2��1 [ �lin(x) � p1 + �RMB(x) � p2 ]T3 def= minx�1=2��1 [ �lin(x) � p1 + (12 � �2)(1� 2x) � p3 ]We �rst de�ne h(x) def= �lin(x) � p1 + �RMB(x) � p2and observe that h(0) = 38 � p2 = 45128 � p1 + �RMB(45=128) � p2 = h(45=128)(where the second equality is due to the hypothesis regarding the pi's).Also note that T2 = min x�1=2��1 [ h(x) ].Fact 1: (12 � �1) � p1 > (1� 2�1) � h(0).Consequently, T1 > (1� 2�1) � (1� 2�2) � h(0).Proof: By Eq. (3.5) we have 12 �p1 > 38 �p2 which in turn equals h(0). Thus, T1 = (1�2�1) � (p1=2) >(1� 2�1)(1� 2�2)h(0). 2Fact 2: for every x 2 [0; 1=2], (1=2� �2) � (1� 2x) � p3 � (1� 2�2) � �RMB(x) � p2.Consequently, T3 > (1� 2�1)(1� 2�2)min x�1=2��1 [ h(x) ].Proof: Within the [0; 1=2] interval, the function �RMB(x)1�2x = 38 � x+ x22 is maximized at x = 0. Thus,for all x 2 [0; 1=2], �RMB(x)1� 2x � p2 � �RMB(0) � p2 = 38 � p2 = 12 � p3



mrBellare, Goldreich, Sudan 50(with the last equality due to Eq. (3.4)). We get�lin(x) � p1 + (1=2� �2)(1� 2x) � p3 > (1� 2�1) � (1� 2�2) � (�lin(x) � p1 + �RMB(x) � p2)and the fact follows. 2Fact 3: for every x 2 [0; 1=2], h(x) � h(0).Proof: We break the analysis into three cases corresponding to the three (di�erentiable) segmentsof the function �lin .Case (1): x � 5=16. In this case �lin(x) = 3x� 6x2 and thush(x) = (3x� 6x2) � p1 + (38 � 74x+ 52x2 � x3) � p2= 38p2 + �3p1 � 74p2�x+ ��6p1 + 52p2�x2 � p2x3= 614444969 + 2021944969x� 5682244969x2 � 1638944969x3� 614444969 = h(0)(The third equality uses the values of p1 and p2 as set above, whereas the inequality is veri�ed by�nding the minimum of the cubic function in the [0; 5=16] interval.)Case (2): 5=16 � x � 45=128. In this case �lin(x) = 45=128 (for every x) whereas �RMB(x) decreasesas x grows. Thus, h(x) = 45128 � p1 + �RMB(x) � p2� 45128 � p1 + �RMB(45=128) � p2 = h(45=128)Case (3): 45=128 � x � 1=2. In this case �lin(x) = x.h(x) = x � p1 + (38 � 74x+ 52x2 � x3) � p2= p2 � �38 + �p1p2 � 74�x+ 52x2 � x3�� 614444969 = h(45=128)(The inequality is veri�ed by �nding the minimum of the cubic function in the [45=128; 1=2] inter-val.)Using h(45=128) = h(0) for the last two cases, the fact follows. 2Combining the above three facts, we are done. Speci�cally, for each i = 1; 2; 3Ti > (1� 2�1) � (1� 2�2) � h(0)> (1� 2�1 � 2�2) � p32and the claim follows.



mrBellare, Goldreich, Sudan 51We are now ready to state the main result of this section. It is a simple veri�er for NP whichachieves soundness error of about 86% while performing one of two very simple tests.Proposition 3.7.3 (The MaxSNP Veri�er): For any  > 0 and for any language L 2 NP, thereexists a veri�er VSNP for L such that� VSNP uses logarithmic randomness and is perfectly complete;� VSNP has soundness error 1� 614444969 +  (i.e., soundness error 0:8634 can be achieved); and� on access to an oracle �, the veri�er VSNP performs one of the following actions:(1) Parity check: VSNP makes three queries q1; q2 and q3, and rejects if �(q1)� �(q2) 6= �(q3).(2) RMB check: VSNP makes four queries q1; q2; q3 and q4, and rejects if �(q1) � �(q2) 6=�(q3)� �(q4).Furthermore, the probability (over its coin tosses) that VSNP performs a parity check is q def=2858544969 � 0:6356 and the probability that VSNP performs a RMB check is 1� q.Proof: Assume, without loss of generality, that  < 57=128 and set �1 = �2 = =3 (observing that�1 > 19=128 which is needed for invoking Lemma 3.7.1). Next, set � = 3 � (16�21�22) = 5243=16 > 0.Now, let l and l1 be integers such that the outer veri�er, Vouter, guaranteed by Lemma 3.4.2 is(l; l1)-canonical and �-good for L Consider the (l; l1)-cannonical inner veri�er VSNPinner, workingwith parameters p1, p2 and p3 as in Eq. (3.5). Let VSNP be the veri�er obtained by composing Vouterwith VSNPinner.We start by analyzing the soundness error of VSNP. By Lemma 3.7.1 and Claim 3.7.2, we knowthat the inner veri�er VSNPinner is (�; �1; �2)-good, for� < 1� 12 � p3 + �1 + �2= 1� 614444969 + 23 � Invoking Theorem 3.4.5, we upper bound the soundness error of VSNP by 1� 614444969 + 23 �  + �16�21�22which by the setting of � yields the claimed bound.It is left to observe that the projection test, performed by VSNPinner, amounts to a Parity Check onanswers taken from two di�erent oracles (which can actually be viewed as one oracle). It is clearthat VSNP uses logarithmic randomness, has perfect completeness, and performs the Parity Checkswith probability p1 + p3 = 2858544969 = q and an RMB check with probability p2 = 1� q.A tedious remark: The probability that veri�er VSNP, of the above proposition, makes two identicalqueries is negligible. Speci�cally, it can be made smaller than  (mentioned in the proposition).Thus, we can ignore this case3 in the next two sections and assume, without loss of generality, thatall queries are distinct.In the following sections we use the veri�er of Proposition 3.7.3 to obtain hardness results for variousvariants of Max Sat as well as for Max CUT. The hardness results are obtained by constructing aninstance of the given problem which represent the veri�ers computation on input x. The primaryaspect of the reduction is the construction of gadgets which reect the result of the veri�er's3 Formally, suppose that when it occurs the veri�er perfoms some standard check on �xed di�erent queries. Thismodi�cation increases the soundness error by at most  which tends to zero anyhow.



mrBellare, Goldreich, Sudan 52computation (i.e., accept/reject) after performing one of the two types of tests i.e., parity check orRMB check. We de�ne a performance measure of a gadget and then relate the �nal hardness resultachieved to the performance measure obtained by the gadgets used. Given that the performanceof the various gadgets might be di�erent for the di�erent tests, one might suspect that it mighthave been a better idea to �rst construct the gadgets and then to optimize the soundness of VSNPkeeping in mind the relative performance measures of the two kinds of gadgets being employed.Surprisingly enough it turns out (see Claim 3.15.2) that the optimization is not a function of theperformance of the gadgets and indeed the choice of parameters p1; p2 and p3 is optimal for thefollowing reductions.Sources of our improvements. The explicit statment of a generic veri�er for deriving MaxSNP hardness results is a novelity of our paper. Thus, a quantative comparison to previous worksis not readily available. Certainly, we improve over these works thanks to the use of the new longcode based inner veri�er, the atomic tests and their analysis in Section 3.5, the new idea of foldingand the improved analysis of linearity testing due to [BCHKS]. It may be instructive to quote theresults obtainable without this latter improvement. Using the prior analysis of linearity testing, dueto [BGLR], we would have obtained soundness error of s = 1� 1(9=2)+(8=3)+2+ = 1� 655+ < 0:8910(with parity check performed with probability q = 0:71). Recall that we have obtained s < 0:8634(alas with q = 0:63).3.8 Max-3-SAT and Max-2-SATIn this section we mainly deal with DNF formulae, however the last subsection deals formulaeconsisting of a conjunction of partity (rather than or) clauses.3.8.1 De�nitionsA formula is a set of clauses (i.e., or-clauses) over some set of literals. We consider various classesof formulae. In particular, 3-SAT formulae (at most three literals in each clause), E3-SAT formulae(exactly three di�erent literals in each clause) and 2-SAT formulae (at most two literals in eachclause). We use the generic notation X-SAT to stand for some unspeci�ed class; thus the abovecorrespond to X 2 f3;E3; 2g.Let ' be a formula. We let j'j denote the number of clauses in '. We let MaxSAT(') denotethe maximum number of clauses in S that are simultaneously satis�able. (That is, the maximum,over all assignments to the variables, of the number of clauses satis�ed). We also let MaxSAT(') =MaxSAT(')=j'j denote the maximum fraction of simultaneously satis�able clauses. Max-X-SAT isthe problem, given a X-SAT instance ', of �nding MaxSAT(').An approximation algorithm A for Max-X-SAT achieves a ratio, or factor, of � 2 [1;1] if(1=�) �MaxSAT(') � A(') � MaxSAT(') for all X-SAT instances '.Remark. As this de�nition indicates, we adopt the convention that the approximation factor is anumber at least 1. Sometimes Max-SNP approximation is discussed in terms of factors at most 1(e.g. [GoWi2, FeGo]) but obviously the two are equivalent via an inversion of the factor.We are interested in promise versions of Max-X-SAT which exhibit a gap in the MaxSAT(�)value between yes and no instances.De�nition 3.8.1 (MaxSAT promise problems): For any 0 � s � c � 1 we let the promise problemGap-X-SATc;s be the pair (A;B), where{



mrBellare, Goldreich, Sudan 53Due to Assuming Factor Technique[ALMSS] P 6= NP some constant NP � PCP1;1=2[ log; O(1) ]; Reduction of this toMax-3-SAT.[BGLR] eP 6= NeP 94=93 Framework; better analyses; uses proof systems of[LaSh, FeLo].[BGLR] P 6= NP 113=112 New four-prover proof systems.[FeKi] P 6= NP 94=93 New two-prover proof systems.[BeSu] eP 6= NeP 66=65 Canonicity and some optimizations.[BeSu] P 6= NP 73=72 Canonicity and some optimizations.This paper P 6= NP 38=37 Long code and new proof systems.Figure 3.6: Non-approximability results for Max-3-SAT indicating the factor shown hard and theassumption under which this was done.(1) A is the set of all X-SAT instances ' satisfying MaxSAT(') � c, and(2) B is the set of all X-SAT instances ' satisfying MaxSAT(') � s.The gap of this problem is de�ned to be c=s.Our goal is to �nd such promise problems having gap as large as possible while being NP-hard.This will imply that the Max-X-SAT problem is hard to approximate within a factor equal to thereciprocal of the gap, unless P = NP.3.8.2 Previous workApproximation algorithms. Max-3-SAT is the canonical Max-SNP complete problem [PaYa].A polynomial-time algorithm due to Yannakakis [Ya] approximates it to within a factor of 4=3 �1:334 (see Goemans and Williamson [GoWi1] for an alternate algorithm). Currently the bestknown algorithm for this achieves about 1:319 and is from Goemans and Williamson [GoWi2]. ForMax-E3-SAT, which is also Max-SNP complete, a very simple algorithm achieves an approximationof 8=7 � 1:143 (where 7=8 is the expected fraction of clauses satis�ed by a uniformly chosenassignment).Max-2-SAT is also Max-SNP complete [GJS, PaYa]. This problem is particularly interestingbecause it has been the focus of recent improvements in the approximation factor attainable inpolynomial-time. Speci�cally, Goemans and Williamson [GoWi2] exhibited a polynomial timealgorithm achieving an approximation factor of 10:878 � 1:139, and consequently Feige and Goemans[FeGo] exhibited an algorithm achieving 10:931 � 1:074.Non-approximability. Non-approximability results for Max-SNP problems begin with [ALMSS]who proved that there exists a constant � > 0 such that Gap-3-SAT1;1�� is NP-hard. They didthis by providing a reduction from a given NP language L to the promise problem in question,constructed by encoding as a 3-SAT instance the computation of a PCP1;1=2[ log; O(1) ] veri�er foran NP-complete language, the variables in the instance corresponding to bits in the proof string.The basic paradigm of their reduction has been maintained in later improvements.



mrBellare, Goldreich, Sudan 54Figure 3.6 depicts the progress. Improvements (in the constant value of the non-approximabilityfactor) begin with [BGLR]. They used Hadamard code based inner veri�ers following [ALMSS].They also introduced a framework for better analysis, and improved some previous analyses; weexploit in particular their better analyses of linearity testing (cf. Section 3.5) and of Frievalds'smatrix multiplication test (cf. Lemma 3.5.4). The improvement of Feige and Kilian [FeKi] wasobtained via new proof systems; that of [BeSu] by use of the canonicity property of constant proverproofs and some optimizations. (See Section 3.4 for a discussion of the role of constant-proverproofs in this context).Garey, Johnson and Stockmeyer [GJS] had provided, as early as 1976, a reduction of Max-3-SATto Max-2-SAT which showed that if the former is in-approximable within (k + 1)=k then the lat-ter is in-approximable within (7k + 1)=(7k). With the best previous non-approximability fac-tor for Max-3-SAT (namely 66=65) we would only get a 456=455 factor non-approximability forMax-2-SAT. In fact, even using our new Max-3-SAT result we would only get 273=272.3.8.3 New ResultsA consequence of the following theorem is that, assuming P 6= NP there is no polynomial timealgorithm to approximate: (1) Max-3-SAT within a factor of 1:027; (2) Max-E3-SAT within afactor of 1:027; (3) Max-2-SAT within a factor of 1:010.Theorem 3.8.2 (MaxSAT non-approximability results): The following promise problems are NP-hard {(1) Gap-3-SATc;s with c = 1 and s = 37=38.(2) Gap-E3-SATc;s with c = 1 and s = 37=38.(3) Gap-2-SATc;s for some 0 < s < c < 1 satisfying c > 0:9 and c=s = 94=93.Actually, items (1) and (2) hold for any s > 1� 153657257 whereas item (3) holds as long as cs < 1+ 2048190145.Item (1) is implied by item (2) so we will prove only the latter. The value of c for item (3) can bedetermined from our proof.Sources of our improvements. The principal part of our improvement for Max-3-SAT comesfrom the use of the Max SNP veri�er of the previous section. The latter veri�er bene�ts from theuse of the new long code based inner veri�ers and the atomic tests and their analysis in Section 3.5.We also gain by using the new idea of folding and the improved analysis, due to [BCHKS], ofthe linearity test. Our Max-2-SAT result is based on the above as well as a new reduction whichdirectly encodes the computation of the veri�er in 2-SAT instances. Finally, for both Max-3-SATand Max-2-SAT, an important feature of the optimization is explicit 3-SAT and 2-SAT expressionsfor the di�erent tests which use as few clauses as possible. The expressions used for Max-3-SATare in fact of E3-SAT form thus yielding the result for Max-E3-SAT.3.8.4 Gadgets and the Hardness of MaxSATWe need to implement two types of checks: the Parity Check (checking that a+b = c for a, b and cobtained from the oracle) and the RMB-Check (checking a � b = c+d). Accordingly a Parity Check(PC) gadget PC(a; b; c; x1; x2; : : : ; xn) is a set of clauses over three distinguished variables a; b; c andn auxiliary variables x1; : : : ; xn. It is an (�; �)-PC gadget if the following is true: If a+ b = c thenMaxSAT(PC(a; b; c; x1; x2; : : : ; xn)) = �; else it is at most � � �. Similarly a Respect-Monomial-Basis Check (RMBC) gadget RMBC(a; b; c; d; x1; : : : ; xn) is a set of clauses over four distinguishedvariables a; b; c; d and n auxiliary variables x1; : : : ; xn. It is an (�; �)-RMBC gadget if the following



mrBellare, Goldreich, Sudan 55is true: If a � b = c+ d then MaxSAT(RMBC(a; b; c; d; x1; x2; : : : ; xn)) = �; else it is at most �� �.We stress that in both cases the maximum number of clauses which are simultaneously satis�ed isat most �. A gadget is said to be a X-SAT gadget if, as a formula, it is a X-SAT formula.The following lemma describes how a gadget of the above form can be used to obtain thehardness of MaxSAT.Lemma 3.8.3 (MaxSAT implementation of a veri�er): Let V be a veri�er for L of logarithmicrandomness, with perfect completeness and soundness s, such that V performs either a singleParity Check (with probability q) or a single RMB check (with probability 1 � q). Furthermore,suppose that in either case, the veri�er never makes two identical queries. If there exists an (�1; �)-Parity-Check X-SAT gadget containing m1 clauses and an (�2; �)-RMBC X-SAT gadget containingm2 clauses then L reduces to Gap-X-SATc0;s0 for c0 = �1q+�2(1�q)m1q+m2(1�q) and s0 = �1q+�2(1�q)�(1�s)�m1q+m2 (1�q) . Inparticular c0s0 � 1 + (1�s)��1q+�2(1�q)�(1�s)� .Remark: In the above lemma, we have assumed that both the PC and RMBC gadgets have thesame second parameter �. This assumption is not really a restriction since we can transform a pairof a (�1; �1)-PC gadget and (�2; �2)-RMBC gadget into a pair of a (�1�2; �1�2)-PC gadget and a(�2�1; �1�2)-RMBC gadget, thereby achieving this feature. (Actually, what really matters are thefractions �i=�.)Proof: Let PC(a; b; c; x1; : : : ; xn1) denote the Parity Check gadget and let RMBC(a; b; c; d; x1; : : : ; xn2)denote the RMBC gadget. We encode V 's computation on input x by a CNF formula 'x. Cor-responding to every bit �[q] of the proof (oracle) accessed by the veri�er V we create a variabley[q]. In addition we create some auxiliary variables yAux[R; i] for each random string R used by theveri�er V and i going from 1 to max(n1; n2). For each such R we will construct a formula 'R whichencodes the computation of the veri�er when its coins are R. The union of all these formulae willbe our 'x.On random string R if the veri�er performs a parity check on bits �[q1]; �[q2] and �[q3], then'R consists of the clauses PC(y[q1]; y[q2]; y[q3]; yAux[R; 1]; : : : ; yAux[R; n1]). On the other hand ifthe veri�er performs a RMB check on bits �[q1]; �[q2]; �[q3]; �[q4], then 'R consists of the clausesRMBC(y[q1]; y[q2]; y[q3]; y[q4]; yAux[R; 1]; : : : ; yAux[R; n2]).Let N denote the number of possible random strings used by V . Observe that the number of clausesin 'x equals m1 � qN +m2 � (1� q)N . We now analyze the value of MaxSAT('x).If x 2 L then there exists an oracle � such that V �(x) always accepts. Consider the assignmenty[q] = �[q] (i.e., y[q] is true i� �[q] = 1). Then for every R, there exists an assignment to thevariables yAux[R; i]'s such that the number of clauses of 'R that are satis�ed by this assignment is�1 if R corresponds to a Parity Check and �2 if R corresponds to a RMB-check. Since qN of thegadgets are PC-gadgets and (1� q)N of the gadgets are RMBC-gadgets, we have MaxSAT('x) �qN�1 + (1� q)N�2, and the expression for c0 follows.Now consider the case when x 62 L. We claim that if there exists an assignment which satis�esqN�1+(1�q)N�2� (1�s)N� clauses of 'x, then there exists an oracle � such that V �(x) acceptswith probability at least s. Since we know this can not happen we conclude that MaxSAT('x) <qN�1 + (1� q)N�2� (1� s)N� = s0j'xj and the expression for s0 follows.To prove the claim, we convert any assignment to the variables y's into an oracle � in the nat-ural way, i.e., �[q] = 1 i� y[q] is true. Now by the property of the gadgets if a PC gadgetPC(y[q1]; y[q2]; y[q3]; yAux[R; 1]; : : :) has more than �1�� clauses satis�ed then �[q1]��[q2] = �[q3].In turn this implies that the veri�er V accepts � on random string R. A similar argument can be



mrBellare, Goldreich, Sudan 56made about the random strings R which correspond to RMB checks. We also use the propertythat a PC (resp., RMB) gadget cannot have more than �1 (resp., �2) satis�ed clauses, even if theclaim it checks does hold. Thus, if an assignment satis�es qN � (�1��)+ (1� q)N � (�2��)+ sN�clauses, then there must exists sN random strings R on which V accepts. This proves the claimand the lemma follows.Figure 3.7 describes gadgets which will be used for our Max-E3-SAT construction: notice they areexact-3-SAT gadgets. We have a (4; 1)-PC gadget PC3 consisting of 4 clauses and a (7; 1)-RMBgadget RMBC3 consisting of 7 clauses in which all the clauses have exactly three variables. The�rst has no auxiliary variables and the second has one, named e. The PC3(a; b; c) gadget is merelythe canonical 3CNF of the expression a+b+c = 0. The �rst three clauses in the RMBC3(a; b; c; d; e)gadget are obtained by writing the canonical 3CNF for ((a^b)) e) and (e) (c 6= d)), respectively.The other four clauses are equivalent to ((a = 0)_ (b = 0))^ (c = d). Figure 3.8 similarly describes2-SAT gadgets for our Max-2-SAT construction. We have a (11; 1)-PC gadget PC2 consisting of12 clauses, and a (16; 1)-RMB gadget RMBC2 consisting of 18 clauses. The �rst has four auxiliaryvariables and the second has �ve. The auxiliary variable x�� in the PC2 gadget is supposed tobe the indicator of the event ((a = �) ^ (b = �)). Thus, a + b = c allows to satisfy 11 clausesby appropriately setting the indicator variables (e.g., if a = b = c = 0 then setting x00 = 1 andthe other x�� 's to 0 satis�es all clauses except the last one). The RMBC2 gadget is composed ofa PC2(c; d; e) gadget and an expression for e = a � b. The latter is developed by �rst writing thecondition ((e _ a) ^ (e _ b) ^ (a _ b _ e)). The 3-literal clause is then replaced by 4 clauses takingadvantage on the presence of the clauses (e _ a) and (e _ b).Lemma 3.8.4 (SAT gadgets): The following gadgets existE3-SAT gadgets: a (4; 1)-PC gadget of 4 clauses and a (7; 1)-RMB gadget of 7 clauses.2-SAT gadgets: a (11; 1)-PC gadget of 12 clauses and a (16; 1)-RMB gadget of 18 clauses.Remark: a ratio of 4 between the number of clauses and the second parameter (i.e., �) is minimal forboth E3-SAT gadgets. More generally, we claim that for E3-SAT, an (�; �)-gadget with m clausesfor a test which holds with probability 1=2 (for a random assignment to the distinguished variables)must satisfy m � 4�. Note that both the Parity test and the RMB test satisfy the condition of theclaim. The claim is proven by considering the expected number of clauses satis�ed by a randomassignment to all variables of a gadget. We may assume, without loss of generality, that no clause isa tautology and thus no clause may contain di�erent literals of the same variable. Thus, each clausecontains three literals belonging to three di�erent variables and is satis�ed with probability 7=8. ItThe Max-E3-SAT Gadgets.PC3(a; b; c) =f(a_ b _ c); (a_ b _ c); (a _ b _ c); (a _ b _ c)gRMBC3(a; b; c; d; e) =f(e_ a _ b); (c _ d _ e); (c _ d_ e); (a _ c _ d); (a _ c _ d); (b _ c _ d); (b _ c _ d) gFigure 3.7: The Max-E3-SAT Gadgets



mrBellare, Goldreich, Sudan 57follows that the expected number of unsatis�ed clauses under a random assignment which does notsatisfy the test is at most m=4. Therefore there exists an assignment to the distinguished variableswhich does not satisfy the test and yet the auxiliary variables can be set to satisfy at least 34m ofthe clauses of the gadget. Thus, � � m=4 and if one wants to derive results for Gap-E3-SAT1;s0 then� � 4� follows. Many questions arise. In particular, can one construct a (4�; �)-RMB gadget forE3-SAT (or even for 3-SAT)? This would yield a hardness factor of � 3029 for E3-SAT (or 3-SAT).Furthermore, can one get below this �=� ratio for 3-SAT (or even for E3-SAT when giving awaythe requirement that � equals the number of clauses). What about 2-SAT? In general, it will beinteresting to �nd the best possible gadgets (in terms of lowest �=� ratio) for both tests and allformula classes and to prove that these gadgets are really the best possible.Proof of Lemma 3.8.4: We use the gadgets presented in Figure 3.7 and Figure 3.8. The claimregarding E3-SAT follows from the motivating discussion above. Speci�cally, note that a^b = c+dis equivalent to the conjunction of the formulae ((a ^ b) ) (c 6= d)) and (:(a ^ b) ) (c = d)).The �rst formula is equivalent to ((a ^ b) ) e) ^ (e ) (c 6= d)); whereas the second formula isequivalent to ((a = 0) _ (b = 0))^ (c = d). Thus, the E2-SAT gadgets are satis�able if and only ifthe corresponding condition (i.e., parity or RMB) holds and the �rst part of the lemma follows.We now turn to the 2-SAT gadgets in Figure 3.8, starting with the PC-gadget PC2(a; b; c; x00; x01;x10; x11). We �rst claim that if a + b = c then we can satisfy 11 clauses. This is done by settingeach x�� to 1 if and only if both a = � and b = � . Clearly, this assignment satisfy the three clausesin which the variable x�� appears. Out of the other 9 clauses, 6 are satis�ed by the 0-assignmentto the other 3 auxiliary variables and two are satis�ed by the variable c = � + � . We next claimthat no assignment for which a+ b = c can satisfy all 12 clauses. Let a = �, b = � and c = �+ � bean arbitrary partial assignment and consider the three clauses in which the variable x�� appears.To satisfy any of the �rst two clauses we must have x�� = 0 but this cannot satisfy the third clauseunless c 6= �+� , in contradiction to our hypothesis. Finally, we show that no assignment for whichThe MAX 2SAT Gadgets.PC2(a; b; c; x00; x01; x10; x11) =f(x00 _ a); (x00 _ b); (x00 _ c);(x01 _ a); (x01 _ b); (x01 _ c);(x10 _ a); (x10 _ b); (x10 _ c);(x11 _ a); (x11 _ b); (x11 _ c)gRMBC2(a; b; c; d; e; x00; x01; x10; x11) =f(x00 _ c); (x00 _ d); (x00 _ e);(x01 _ c); (x01 _ d); (x01 _ e);(x10 _ c); (x10 _ d); (x10 _ e);(x11 _ c); (x11 _ d); (x11 _ e);(e _ a); (e_ b); (a_ b); (e_ a); (e_ b); (e)g:Figure 3.8: The Max-2-SAT Gadgets



mrBellare, Goldreich, Sudan 58a + c 6= c can satisfy more than 10 clauses. Let a = �, b = � and c = 1 + � + � be an arbitrarypartial assignment and consider the three clauses in which the variable x�� appears. To satisfythe �rst clause we must have x�� = 0 but this cannot satisfy the third clause unless c = � + � , incontradiction to our hypothesis. Applying the same analysis to the clauses in which the variablex�� appears, the claim follows.Finally, we consider the RMB-gadget RMB2(a; b; c; d; e; x00; x01; x10; x11). This gadget is the con-junction of a PC2(c; d; e; x00; x01; x10; x11) gadget and an expression for e = a � b which is writtenas MULT(a; b; e) def= (e_ a) ^ (e _ b) ^ (a _ b) ^ (e _ a) ^ (e_ b) ^ (e)Using the analysis of the PC-gadget it remains to show thatMaxSAT(MULT(a; b; e)) = 5 if a � b = eand MaxSAT(MULT(a; b; e))� 4 otherwise. We proceed by a case analysisSuppose a = b = e = 0. Then all clauses, except the third clause, are satis�ed.Suppose a = 1 and b = e = 0. Then all clauses, except the fourth clause, are satis�ed.(Similarly for b = 1 and a = e = 0)Suppose a = b = e = 1. Then all clauses, except the last clause, are satis�ed.Suppose a � b = 0 and e = 1. Then at least one of the �rst two clauses is not satis�ed.Furthermore, the last clause is unsatis�ed as well.Suppose a � b = 1 and e = 0. Then the fourth and �fth clauses are unsatis�ed.The �rst three cases cover a � b = e, whereas the other two cover a � b 6= e. The lemma follows.Proof of Theorem 3.8.2: The theorem follows by applying Lemma 3.8.3 to the veri�er ofProposition 3.7.3 and the gadgets of Lemma 3.8.4. Details follows.Recall that by the remark following the proof of Proposition 3.7.3, we may assume that the veri�erdoes not make two identical queries. Applying Lemma 3.8.3 to the veri�er of Proposition 3.7.3 weobtain a reduction of any language in NP to Gap-X-SATc0;s0 for values of c0 and s0 determined as afunction of the gadget parameters, the probability parameter q and the soundness s of the veri�erof Proposition 3.7.3. Speci�cally, we observe that for E3-SAT we have c0 = 1 (since �i = mi fori = 1; 2), whereas for 2-SAT we have c0 < 1 (since �i < mi for i = 1; 2). In both cases, � = 1 andthe expression for c0=s0 is given by1 + 1� sq�1 + (1� q)�2 � (1� s) (3.6)where s and q are determined by Proposition 3.7.3; that is (for every  > 0)s = 1� 614444969 +  (3.7)q = 2858544969 (3.8)Substituting Eq. (3.7) and (3.8) in Eq. (3.6), and letting  ! 0, we getc0s0 ! 1 + 614428585�1 + 16384�2 � 6144 :The bounds for E3-SAT and 2-SAT now follow by using the �i's values of Lemma 3.8.4.



mrBellare, Goldreich, Sudan 59Remark. It may be instructive to quote the results obtainable without using the latest analysis oflinearity testing due to [BCHKS]. Using the prior analysis of linearity testing, due to [BGLR], wewould have used the values s = 0:8910 and q = 0:71 which would have yielded a 45=44 hardnessfactor for E3-SAT and 115=114 for 2-SAT.3.8.5 Maximum Sati�able Linear ConstraintsAnalogously to the MaxSAT problems considered above, we consider parity/linear clauses ratherthan disjunctive clauses. In other words, we are given a symstem of linear equations over GF(2),and need to determine the maximum number of equations which may be simultaneously satis�ed.It was shown by Petrank [Pet] that the maximization problem does not have a polynomial-timeapproximation scheme (by using a reduction from Max-3-SAT). Here we provide a stronger boundvia a direct reduction from the MaxSNP veri�er. Before continuing, we remark that the problem ofMaximizing the number of satis�able equations should not be confused with the \complementary"problem of minimizing the number of violated constraints, investigated by Arora et. al. [ABSS].Theorem 3.8.5 Let GapParityc;s be de�ned analogously to the above. Then, for some c > 3=4 andcs = 1:13, GapParityc;s id NP-hard.Proof: The theorem follows by constructing appropriate gardgets. A PC-gadget is straigtforwardhere and so we have a (1; 1)-PC gadget, which also yields a (2; 2)-PC gadget. We conclude bypresenting a (3; 2)-RMB gadget consisting of 4 equations. Speci�cally, for a � b = c+ d we presentthe equations a + c + d = 0, b + c + d = 0, a + b + c + d = 1 and c + d = 0. We now show thatthese 4 equations are indeed a (3; 2)-gadget for ab = c+ d. First, if ab = 1 = c+ d then the �rst 3equations are satis�ed. If, on the other hand, ab = 0 = c+d then the last equation as well as 2 outof the �rst 3 equations are satis�ed. Next, if ab = 1 6= c+ d then only the last equation is satis�ed.Finally, if ab = 0 6= c+ d then the last equation is violated as well as 2 out of the �rst 3 equations.3.9 Max CUT3.9.1 De�nitionsA cut in a graph G = (V;E) is a partition of the vertex set into sets S and S. Given an assignmentof weights w : E ! R+, the weight of a cut (S; S) is the sum of the weights of the edges with oneendpoint in S and the other in S. We let MaxCUT(G;w) denote the maximum weight of any cutin G for a weight assignment w. Let MaxCUT(G;w) denote the quantity MaxCUT(G;w)=Pew(e).Max CUT is the problem whose instances are the pairs (G;w), where G is a graph and w a weightassignment on it, and one has to �nd MaxCUT(G;w). An approximation algorithm A for Max CUTachieves a ratio of � 2 [1;1) if MaxCUT(G;w)=� � A(G;w) � MaxCUT(G;w) for all instances(G;w). As usual, we capture the approximation problem by a promise problem {De�nition 3.9.1 (MaxCUT promise problem): For any 0 � s � c � 1, we let the promise problemGap-Cutc;s be the pair (A;B), where:(1) A is the set of MAX CUT instances satisfying MaxCUT(G;w)� c.(2) B is the set of MAX CUT instances satisfying MaxCUT(G;w) � s.The gap of this problem is de�ned to be c=s.



mrBellare, Goldreich, Sudan 603.9.2 Previous workIn 1976, Sahni and Gonzales [SaGo] gave a simple 2-approximation algorithm for this problem.Recently, in a breakthrough result, Goemans and Williamson [GoWi2] gave a new algorithm whichachieves a ratio of 10:878 = 1:139 for this problem. On the other hand, [PaYa] give an approximationpreserving reduction from Max-3-SAT to MAX CUT. Combined with [ALMSS] this shows thatthere exists a constant � > 1 such that approximating MAX CUT within a factor of � is NP-hard.No explicit bounds were given since and even using the best known hardness results for MAX3SAT, one suspects that the bound for MAX CUT would not be very large, since the reductionuses constructions of constant degree expanders etc.3.9.3 New ResultWe get the �rst explicit lower bounds on the constant upto which approximating the MAX CUTproblem is NP-hard. We show in the following theorem that the MAX CUT problem is NP-hardto approximate to within a factor of 1:012. The following theorem presents a non-approximabilityresult for a weighted graph. We stress that it holds even when the weights are given in unary.Theorem 3.9.2 (MaxCUT non-approximability result): Gap-Cutc;s is NP-hard for some c; s sat-isfying c > 0:6 and c=s > 82=81.Actually, the theorem holds for any c=s < 1 + 2048165627. A (much) weaker result can be presented forsimple graphs without weights or parallel edges { we do not present that case.3.9.4 Gadgets and the hardness of Max CUTGadgets will be used to express the veri�er's computation in terms of cuts in graphs. A parity checkgadget PC-CUT(a; b; c; T ; x1; : : : ; xn) is a weighted graph on n+ 4 vertices. Of these three verticesa; b; c correspond to oracle queries made by the veri�er. The vertex T will be a special vertexmapping cuts to truth values so that a vertex corresponding to an oracle query is considered set to1 if it resides in the T -side of the cut (i.e., a is considered set to 1 by a cut (S; S) i� either a; T 2 S ora; T 2 S). The gadget is an (�; �)-PC gadget if MaxCUT(PC-CUT(a; b; c; T ;x1; : : : ; xn)) is exactly� when restricted to cuts which induce a+b = c (i.e., either 0 or 2 of the vertices fa; b; cg lie on thesame side of the cut as T ), and is at most ��� when restricted to cuts for which a+b 6= c. Similarlya weighted graph RMBC-CUT(a; b; c; d; T ;x1; : : : ; xn) is an (�; �)-RMBC gadget if it satis�es theproperty that MaxCUT(RMBC-CUT(a; b; c; d; T ;x1; : : : ; xn)) is exactly � when restricted to cutssatisfying a^b = c+d and is at most ��� otherwise. The following lemma (similar to Lemma 3.8.3)shows how to use the above forms of gadgets to derive a reduction from NP to Gap-Cut.Lemma 3.9.3 (MaxCUT implementation of a veri�er): Let V be a veri�er for L of logarithmicrandomness, with perfect completeness and soundness s, such that V performs either a single ParityCheck (with probability q) or a single RMB check (with probability 1� q). Furthermore, supposethat in either case, the veri�er never makes two identical queries. If there exists an (�1; �)-PCgadget consisting of edges of total weight w1 and an (�2; �)-RMBC gadget consisting of edges oftotal weight w2 then L reduces to Gap-Cutc0;s0 for c0 = �1q+�2(1�q)w1q+w2(1�q) and s0 = �1q+�2(1�q)�(1�s)�w1q+w2(1�q) . Inparticular c0=s0 � 1 + (1�s)��1q+�2(1�q)�(1�s)� .Proof: Let PC-CUT(a; b; c; T; x1; : : : ; xn1) denote the Parity Check gadget and RMBC-CUT(a; b;c; d; T; x1; : : : ; xn2) denote the RMBC gadget.We create a graph Gx and weight function wx which encodes the actions of the veri�er V on inputx. The vertices of Gx are as follows:



mrBellare, Goldreich, Sudan 61(1) For every bit �[q] of the proof queried by the veri�er V , the graph Gx has a vertex v�[q] .(2) For every random string R tossed by the veri�er V , we create vertices vR;i, for i going from 1to maxfn1; n2g.(3) There will be one special vertex T .The edges of Gx are de�ned by the various gadgets. We stress that the same edge may appear indi�erent gadgets (and its weight in these gadgets may be di�erent). The graph Gx is de�ned bytaking all these edges and thus it is a graph (or multi-graph) with parallel edges and weights. Thenatural conversion of Gx into a graph with no parallel edges replaces the parallel edges between twovertices with a single edge whose weight is the sum of the weights of the original edges. Alternatively,since the weights are small (actually they are always in fi=2 : 1� i� 10g), we can transform Gxinto a unweighted graph with parallel edges.Suppose that on random string R the veri�er V queries the oracle for bits �[q1], �[q2] and �[q3],and then does a parity check on these three bits. Then corresponding to this random string we addthe weighted edges of the graph GR to the graph Gx where GR = PC-CUT(v�[q1 ]; v�[q2 ]; v�[q3 ]; T ;vR;1; : : : ; vR;n1). Alternatively, if the veri�er V performs a respect of monomial basis test on the bits�[q1], �[q2], �[q3] and �[q4], then we add the weighted edges of the graph GR = RMBC-CUT(v�[q1 ];v�[q2 ]; v�[q3]; v�[q4]; T ; vR;1; : : : ; vR;n2).Let N denote the number of possible random strings used by V . Observe that the total weight ofthe edges of Gx is w1qN + w2(1� q)N . We now analyze the value of MaxCUT(Gx).If x 2 L then there exists an oracle � such that V �(x) always accepts. We de�ne a cut (S; �S) inGx in the following way: We place T 2 S and for every q we place v�[q] 2 S i� �[q] = 1. Then foreach R, there exists an placement of the vertices vR;i so that the size of the cut induced in GR is�1 if R corresponds to V performing a Parity Check and �2 if R corresponds to V performing anRMB check. The weight of the so obtained cut is �1qN + �2(1� q)N .Now consider x 62 L. We claim that if there exists a cut (S; �S) such that the weight of thecut is greater than qN�1 + (1 � q)N�2 � (1 � s)N�, then there exists an oracle �, such thatV �(x) accepts with probability at least s. Since we know this can not happen we conclude thatMaxCUT(Gx) < qN�1 + (1 � q)N�2 � (1 � s)N�. To prove the claim, we convert any cut in Gxinto an oracle � where �[q] = 1 i� T and v�[q] lie on the same side of the cut. Now by the propertyof the gadgets if a graph GR = PC-CUT(y[q1]; y[q2]; y[q3]; T ; x1; : : : ; xn1) contributes more than aweight of �1 � � to the cut, then V accepts � on random string R. (Similarly if the graph GR isan RMBC-gadget and contributes more than �2� � to the cut then V accepts � on random stringR.) Recall that no gadget can contribute more than the corresponding � to any cut. Thus if thetotal weight of the cut is more than (�1� �)qN + (�2� �)(1� q)N + sN � �, then V accepts on atleast sN random strings. This proves the claim and the lemma follows.We now turn to the construction of cut-gadgets. Our �rst gadget, denoted PC-CUT(a; b; c; T ;Aux),is a complete graph de�ned on �ve vertices fa; b; c; T;Auxg. The weight function, w, assign theedge fu; vg weight wuwv, where wa = wb = wc = wT = 1 and wAux = 2. The following claim showshow PC-CUT(a; b; c; T ;Aux) functions as a parity check gadget.Claim 3.9.4 (MaxCUT PC-gadget): PC-CUT(a; b; c; T ;Aux) is a (9; 1)-parity check gadget con-sisting of edges of total weight 14.Proof: Recall that the edges in the graph are of two types: (1) edges to Aux having weight 2;and (2) other edges having weight 1. Thus, the total weight of the edges is 4 � 2 + 6 � 1 = 14. The



mrBellare, Goldreich, Sudan 62weight function is decomposed as a product of vertices \weights" and so we can express the weightof a cut (S; S) by the corresponding product (Pu2S wu) � (Pv2S wv). It turns out that the weightof a cut is maximized when the weight of the vertices on both sides are equal and speci�cally equal62 = 3. Thus, the maximum cut has weight 32 = 9. Furthermore, a max-cut must have Aux andexactly one of the other vertices on one side. On the other hand, all other cuts (i.e., in which thevertex weights are not split evenly) have weight at most 8. Using the above characterization of amax-cut we conclude that the max-cut may have one of the two forms:(1) Aux resides in the same side with T : since a; b and c are on the other side, the inducedassignment is a = b = c = 0 which satis�es the parity condition.(2) Aux resides in the same side with x 2 fa; b; cg: this induces x = 0 and an assignment of 1 tothe other two variables and thus the parity condition is satis�ed again.Thus a max-cut corresponds to an assignment which satis�es the parity condition and each suchassignment (can be extended to) corresponds to a max-cut. The claim follows.The second gadget, denoted RMBC-CUT(a; b; c; d; T ;Aux), is a complete graph on six verticesfa; b; c; d; T;Auxg. Again, we de�ne edge-weights as product of weight of vertices; speci�cally,w(fu; vg) = wuwv=2, where wa = wb = wT = 1, wc = wd = 2 and wAux = 4. The followingclaim, which can be veri�ed case by case, shows exactly how good this gadget is in \verifying" thata ^ b = c+ d.Claim 3.9.5 (MaxCUT RMB-gadget): RMBC-CUT(a; b; c; d; T ;Aux) is a (15; 1)-RMBC gadgetconsisting of edges of total weight 23:5.Proof: Clearly, the total edge weight is 3 � 2 + 2 � 4+ 6 � 1+ 3 � 12 + 1 � 2 = 23:5 and the total weightof vertices equals 11. Employing the strategy of the previous proof, we characterize max-cuts ashaving vertex weight 5 on one of their sides. Thus, max-cuts have weight 5�62 = 15. Any other cuthas weight at most 4�72 = 14. Furthermore, a max-cut falls into one of the following categories,where S denotes the side of the cut containing Aux:(1) S = fAux; Tg : in this case the induced assignment is a = b = c = d = 0 which satis�es theRMB condition.(2) S = fAux; ag : in this case the induced assignment is a = 0 and b = c = d = 1, satisfyinga ^ b = 0 = c+ d. (Similarly, for S = fAux; bg).(3) S = fAux; cg : in this case the induced assignment is c = 0 and a = b = d = 1, satisfyinga ^ b = 1 = c+ d. (Similarly, for S = fAux; dg).(4) S = fAux; a; bg : in this case the induced assignment is a = b = 0 and c = d = 1, satisfyinga ^ b = 0 = c+ d.(5) S = fAux; a; Tg : in this case the induced assignment is a = 1 and b = c = d = 0, satisfyinga ^ b = 0 = c+ d. (Similarly, for S = fAux; b; Tg).(The �rst two cases cover Pu2S wu = 5 and the others Pu2S wu = 6.) Note that all assignmentssatisfying the RMB condition are covered above (i.e., in total 8 cases are considered correspondingto the 8 assignments satisfying the RMB condition). The claim follows.Proof of Theorem 3.9.2: The theorem follows by combining Proposition 3.7.3, Lemma 3.9.3,Claim 3.9.4 and Claim 3.9.5. Details follows.



mrBellare, Goldreich, Sudan 63As in the proof of Theorem 3.8.2, when applying Lemma 3.9.3 to the veri�er in Proposition 3.7.3,we obtain the same expression for the gap, c0=s0, for which NP �KD Gap-Cutc0;s0 ; namely,c0s0 ! 1 + (1� s)�q � �1 + (1� q) � �2 � (1� s)�= 1 + 614428585�1 + 16384�2 � 6144 :Substituting �1 = 9 and �2 = 15, the above simpli�es to 1 + 6144496881 > 8281 and the bound on c0s0follows.3.10 Free bits and vertex coverIt is known that approximating the minimum vertex cover of a graph to within a 1 + � factor ishard, for some � > 0 [PaYa, ALMSS]. However, we do not know of any previous attempt to providea lower bound for �. Our initial attempt uses VC-gadgets that implement the various tests inVSNPinner, analogously to the way it was done in the previous sections for the Max SAT versions andMax Cut. This yields a lower bound of � > 154 > 0:018 However, a stronger result is obtained viafree-bit complexity. Speci�cally, we apply the FGLSS-reduction to a proof system (for NP) in whichthe free-bit complexity is the lowest one possible: which, by the results of Section 5.1, is 2 free-bits.Consequently, the clique size, in case the original input is in the language, is at least one fourth(1/4) of the size of the graph which means that translating clique-approximation factors to VC-approximation factors yields only a loss of one third. Since the FGLSS-transformation translatesthe completeness/soundness ratio to the gap-factor for approximating clique, our �rst goal is toconstruct for NP a proof system which uses two free-bits and has soundness error as low as possible.Recall that the proof system of subsection 3.6 uses 11 free-bits and achieves soundness error lessthan 1=2. The reader may observe that, following this approach, it is not worthwhile to use theproof system of subsection 3.6 or any proof systems which achieves a soundness error of 1=2 at thecost of 5 free-bits or more.3.10.1 Minimizing the error achievable with two free bitsThe pcp proof system of Proposition 3.7.3 had free-bit complexity 3. To reduce the free-bit com-plexity, we rearrange the tests in the corresponding inner veri�er VSNPinner (cf., Figure 3.5) in aslightly di�erent way. In particular, we split the Respect of Monomial Basis test into two parts: a\Product Test" and a \Self-Correction Test" (see Figure 3.9). The resulting inner veri�er, denotedV2inner, is depicted in Figure 3.10. It works with functions/oracles A that are folded twice | onceacross (h; 0) and once across (�1; 1), where (�1; 1)-folding means imposing (f + �1)(a) = f(a) + 1 forall f 's and the encoded string a. For the case of such functions A, it is possible to improve onthe analysis of the respect of monomial basis tests. The following function captures the detectionprobability of the Monomial-Basis Self-Correction Test.Def: Let g(x; y) = (1� 2x) � [38 � x+ x22 � y].We �rst need a technical lemma.Lemma 3.10.1 (analysis of the Monomial-Basis Self-Correction Test): Let A; ~A: Fl ! � with Asatisfying A(f + �1) = A(f) + 1 for all f and ~A linear but not respecting the monomial basis. Let



mrBellare, Goldreich, Sudan 64More Atomic Tests. Here A: Fl ! � and A1: Fl1 ! � are the objects being tested.The tests also take additional inputs or parameters: below f; f1; f2; f3 2 Fl; g 2 Fml1 ; and�: �l ! �l1 .MB-ProdTest(A; f1; f2) (Monomial-Basis Product Test)If A(f1) �A(f2) = A(f1 � f2) then output 0, else output 1.MB-SeCoTest(A; f1; f2; f3) (Monomial-Basis Self Correction Test)If A(f1 � f2) = A(f1 � f2 + f3)�A(f3) then output 0, else output 1.The Passing Probabilities. These are the probabilities we are interested in:MB-ProdPass(A) = Prf1;f2 R Fl [MB-ProdTest(A; f1; f2) = 0 ]MB-SeCoPass(A) = Prf1;f2 ;f3 R Fl [MB-SeCoTest(A; f1; f2; f3) = 0 ]Figure 3.9: More atomic tests and their passing probabilities.x = Dist(A; ~A) and y = 1�MB-ProdPass(A). Then1�MB-SeCoPass(A) � �38 � x+ x22 � y� � (1� 2x) :Proof: The proof resembles the proof of Lemma 3.5.7. We may assume, without loss of generality,that ~A 6� 0 (since otherwise x = 1=2 and the lemma holds vacuasly). We use Lemma 3.5.1 to seethat Prf1;f2 ;f3 R Fl [A(f1f2) 6= A(f1f2 + f3)�A(f3)]� Prf1 ;f2;f3 R Fl hA(f1f2) 6= ~A(f1f2) and ~A(f1f2) = A(f1f2 + f3)� A(f3)i� Prf1 ;f2 R Fl hA(f1f2) 6= ~A(f1f2)i � (1� 2x) :Now lower bound the �rst term of the last line byPrf1 ;f2 R Fl hA(f1f2) = A(f1) �A(f2) = ~A(f1) � ~A(f2) 6= ~A(f1f2)i� Prf1;f2 R Fl h ~A(f1) � ~A(f2) 6= ~A(f1f2)i� Prf1;f2 R Fl hA(f1f2) 6= A(f1) �A(f2) or A(f1) �A(f2) 6= ~A(f1) � ~A(f2)i� Prf1;f2 R Fl h ~A(f1) � ~A(f2) 6= ~A(f1f2)i



mrBellare, Goldreich, Sudan 65� Prf1;f2 R Fl [A(f1f2) 6= A(f1) �A(f2)]� Prf1;f2 R Fl hA(f1) �A(f2) 6= ~A(f1) � ~A(f2)i� 38 � y � (x� x2=2) :In the last step we used Lemma 3.5.5 to bound the �rst term, the de�nition of y for the secondterm, and the special case in Lemma 3.5.6 for bounding the third term. The lemma follows.The following lemma is analogous to Lemma 3.7.1. Loosely speaking, it considers three possiblestrategies of a \dishonest" prover and indicates the probability with which the veri�er detects anerror. (The reader may notice that here we do not try to push �1 to zero but rather set 12 � �1 = 316and use only the �rst segment of the �lin bound. It turns out that one does not gain anything fromthe alternative more-general analysis { see Claim 3.15.3)Lemma 3.10.2 (soundness of V2inner): Let �2 > 0, �1 = 5=16 and l; l1 2 Z+. Suppose p1; p2; p3 2[0; 1] satisfy p1+p2+p3 = 1. Then the (l; l1)-canonical inner veri�er V2inner is (�; �1; �2)-good, where1� � is the minimum of the following three quantities{(1) min y�1 [p1 �max(y; 45=128)](2) min x�3=16;y�1 [ p1 �max(y; 3x� 6x2) + p2 � g(x; y) ](3) min x�3=16;y�1 [ p1 �max(y; 3x� 6x2) + p3 � (1=2� �2)(1� 2x) ].The two free-bit inner veri�er. Given functions h 2 Fl and �: �l ! �l1 , the veri�erhas access to oracles for A: Fl ! � and A1: Fl1 ! �. In addition it takes three [0; 1]valued parameters p1; p2 and p3 such that p1 + p2 + p3 = 1.Pick p R [0; 1].Case: p � p1 :Pick f1; f2 R Fl.LinTest(A(h;0);(�1;1); f1; f2).MB-ProdTest(A(h;0);(�1;1); f1; f2).Case: p1 < p � p1 + p2 :Pick f1; f2; f3 R Fl.MB-SeCoTest(A(h;0);(�1;1); f1; f2; f3).Case: p1 + p2 < p :Pick f R Fl and g R Fl1 .ProjTest�(A(h;0);(�1;1); A1; f; g).Remark: access to A(h;0);(�1;1)(f) is implemented by accessing either A(f) or A(f + h) orA(f + �1) or A(f + h+ �1).Figure 3.10: The two free-bit inner veri�er V2inner



mrBellare, Goldreich, Sudan 66Proof: The analysis is broken up into several cases as in the proof of Lemma 3.7.1. Here, we \pivot"on 3=16 (which equals 12��1). Let x = Dist(A(h;0);(�1;1);Lin) and y = 1�MB-ProdPass(A(h;0);(�1;1)).Case 1: x � 3=16Lemma 3.5.3 implies that 1 � LinPass(A(h;0);(�1;1)) � �lin(x) � 45=128 (the last inequality is dueto the fact that, within the interval [0; 5=16], the function f(x) def= 3x � 6x2 is minimized at both3=16 and 5=16, and f(5=16) = 45=128). Since V2inner performs both the atomic linearity test andthe (MB{) Product Test with probability p1, we have 1� ACC [V A;A12inner(�; h) ] � p1 �max(45=128; y).Case 2: x � 3=16 (< 1=4)Lemma 3.5.3 implies that 1 � LinPass(A(h;0);(�1;1)) � �lin(x) = 3x � 6x2. It follows that the prob-ability that V2inner performs both the linearity test and the product test and rejects is at leastp1 �max(3x� 6x2; y). Now let ~B be the (unique) linear function such that Dist(A(h;0);(�1;1); ~B) � �.We consider the following sub-cases.Case 2.1: ~B does not respect the monomial basisIn this case Lemma 3.10.1 implies that 1�MB-SeCoPass(A(h;0);(�1;1)) � g(x; y). So the probabilitythat V2inner performs the Respect of Monomial Basis Self-Correction test and rejects is at leastp2 � g(x; y). Since the events that the veri�er performs the tests from the case p � p1 and the RMBSelf-Correction test are mutually exclusive we can add the probabilities of rejection and thus inthis case 1� ACC [V A;A12inner(�; h) ] � p1 �max(y; 3x� 6x2) + p2 � g(x; y)Case 2.2: ~B respects the monomial basisBy Proposition 3.3.2, ~B is an evaluation operator. So there exists a 2 �l such that ~B = Ea. SoDist(A(h;0);(�1;1); Ea) = x. Let a1 = �(a). The proof splits into two further sub-cases.Case 2.2.1: d def= Dist(A1; Ea1) � 1=2� �2By Lemma 3.5.8 we have 1�ProjPass�(A(h;0);(�1;1); A1) � d � (1�2x) � (1=2��2) � (1�2x). So theprobability that V2inner performs the projection test and rejects is at least p3 � (1=2� �2)(1� 2x).Thus, adding probabilities as in case (2.1),1� ACC [V A;A12inner(�; h) ] � p1 �max(y; 3x� 6x2) + p3 � (1=2� �2)(1� 2x)Case 2.2.2: Else{In this case, we have x = Dist(A(h;0);(�1;1); Ea) � 3=16 = 1=2 � �1 and Dist(A1; Ea1) < 1=2 � �2.Thus the functions A(h;0);(�1;1) and A1 satisfy conditions (2.1) and (2.2) in De�nition 3.4.3.Similarly to the proof of Lemma 3.7.1, we infer that the lower bound on 1 � � is as claimed andthe lemma follows.Again, we simplify the soundness bound of the lemma by using a (provably optimal) choice of theprobabilities pi's (for the inner veri�er V2inner).Claim 3.10.3 Suppose p1 = 0:447, p2 = 0:321, p3 = 0:232 and �2 = 10�4. Then:(1) min y�1 [max(y; 45=128) � p1] > 0:157(2) min x�3=16;y�1 [ max(y; 3x� 6x2) � p1 + g(x; y) � p2 ] > 0:115536



mrBellare, Goldreich, Sudan 67(3) min x�3=16;y�1 [ max(y; 3x� 6x2)p1 + (1=2� �2)(1� 2x) � p3 ] > 0:1159.Proof: Clearly p1 �min y�1 [max(y; 45=128)] = 45128 � p1 > 0:157, proving (1).We now prove (3). First note that min x�3=16;y�1 [max(y; 3x�6x2)p1 ] � min x�3=16 [ (3x�6x2) �p1 ].Thus the quantity we want to lower bound is min x�3=16[ (3x� 6x2) � p1 + (1=2� �2)(1� 2x) � p3 ].Using the fact that p3 < p1 and �2 > 0, we have, for any x < 1=3(3x� 6x2) � p1 + (1=2� �2)(1� 2x) � p3 = (1=2� �2) � p3 + [3p1 � 2p3 � (1=2� �2)]x� 6p1x2> (1=2� �2)p3 + [3p1 � 2p1=2]x� 6p1x2= (1=2� �2)p3 + 2xp1 � (1� 3x)> (1=2� �2)p3Now, using �2 = 10�4, we lower bound the expression in Part (3) by p32 � p3 � p3 > 0:1159.We now prove Part (2). Let f(x; y) def= max(y; 3x� 6x2) � p1 + g(x; y) � p2. We consider two cases.Case 1 y � 3x� 6x2. In this casef(x; y) = (3x� 6x2)p1 + g(x; y)p2 = (3=8� x+ x2=2)(1� 2x)p2 + (3x� 6x2)p1 � y(1� 2x)p2This function is decreasing with y and so minimized at y = 3x � 6x2. Thus we are reduced tominimizing h(x) def= f(x; 3x� 6x2) over x 2 [0; 3=16].Case 2 y � 3x� 6x2. In this casef(x; y) = yp1 + g(x; y)p2 = (3=8� x+ x2=2)(1� 2x)p2 + [p1 � p2(1� 2x)]ySince p1 > p2 this function increases with y and so minimized at y = 3x� 6x2. Thus we are againreduced to minimizing the same function h(x) = f(x; 3x� 6x2).We now express h(x) = �ax3+bx2+cx+d where a = 13p2, b = �6p1+ 292 p2 > 0, c = 3p1� 194 p2 > 0and d = 38p2. The derivative is h0(x) = �3ax2+ 2bx+ c. For the speci�ed values of p1; p2 the rootsare x1 � 0:0568251 and x2 � 0:258296. Thus in the range of x 2 [0; 3=16], the function h isminimized at the point x1 � 0:0568251 and one can verify that h(x1) > 0:115536.Composing the above inner veri�er with an adequate outer veri�er, we getTheorem 3.10.4 NP � FPCP1;s[log; 2] for s = 0:884464.3.10.2 Hardness of vertex coverPreliminaries. A vertex cover of a graph G = (V;E) is a set V 0 � V such that V 0 \ fu; vg 6= ;for every fu; vg 2 E. We let MinVC(G) denote the size of a smallest vertex cover in G, and welet MinVC(G) = MinVC(G)=jV j. Min-VC is the problem whose instances are graphs G and onehas to �nd MinVC(G). An approximation algorithm A for Min-VC achieves a ratio, or factor, of� 2 [1;1) if MinVC(G) � A(G) � � �MinVC(G) for all graphs G. (Here we have adopted theconvention by which for minimization problems the approximation factor is at least 1.) Again, wecapture the approximation problem by a promise problem, but this time the parameter c referringto yes-instances is lower from the parameter s for no-instances.



mrBellare, Goldreich, Sudan 68De�nition 3.10.5 For any 0 � c � s � 1 we let the promise problem Gap-VCc;s be the pair(A;B), where {(1) A is the set of all graphs G satisfying MinVC(G) � c, and(2) B is the set of all graphs G satisfying MinVC(G) � s.The gap of this problem is de�ned to be s=c.Known upper and lower bounds. There is a simple polynomial time algorithm to approxi-mate Min-VC in unweighted graphs within a factor of 2, using maximal matching (F. Gavril, see[GJ2]). For weighted graphs, Bar-Yehuda and Even [BaEv1] and Hochbaum [Hoc], gave algorithmsachieving the same approximation factor. The best known algorithm today achieves a factor onlyslightly better, namely 2� (log log jV j)=(2 log jV j) [BaEv, MoSp]. Evidence to the hardness of ap-proximating Min-VC was given by Bar-Yehuda and Moran who showed that, for every k � 2 and� > 0, a 1+ 1k � � approximator for (�nding) a minimum vertex cover would yield an algorithm forcoloring (k + 1)-colorable graphs using only logarithmically many colors [BaMo].Min-VC-B, the version of Min-VC in which one restricts attention to graphs of degree boundedby B, is Max-SNP complete for suitably large B [PaYa]. In particular they provide a reductionfrom Max-3-SAT. Combined with [ALMSS] this implies the existence of a constant � > 0 suchthat approximating Min-VC within a factor of 1 + � is hard unless P = NP. No explicit value of� has been stated until now. Indeed, the value that could be derived, even using the best existingin-approximability results for Max-3-SAT, will be very small, because of the cost of the reductionof [PaYa], which �rst reduces Max-3-SAT to its bounded version using expanders, and then reducesthis to Min-VC-B.Free bits to VC. Rather than reduce from Max-3-SAT, we will �rst use Theorem 3.10.4 to getgaps in Clique size. Then we apply the standard reduction.Proposition 3.10.6 FPCPc;s[log; f ] �KD Gap-VCc0;s0 for c0 = 1� 2�f c and s0c0 = 1 + c�s2f�c .Proof: The FGLSS reduction says that FPCPc;s[log; f ] �KD Gap-Cliquec00;s00 where c00 = 2�f � c ands00 = 2�f � s. (See Section 3.13 for de�nition of Gap-Clique.) Now we will apply the standard Karpreduction (of MaxClique to Min VC) which maps a graph G to its complement G | note thatMinVC(G) = 1�MaxClique(G). Thus Gap-Cliquec00;s00 �KD Gap-VC1�c00;1�s00 . Finally,1� s001� c00 = 1� s2�f1� c2�f = 1 + c� s2f � c:This completes the proof.Our results. We obtain the �rst explicit and reasonable constant factor in-approximabilityresult for Min-VC. A consequence of the following theorem is that, assuming P 6= NP there is nopolynomial time algorithm to approximate Min-VC within a factor of 27=26.Theorem 3.10.7 Gap-VCc;s is NP-complete for some c; s satisfying s=c � 1:038512 > 27=26.Moreover c = 3=4.Proof: Follows immediately fromProposition 3.10.6 and Theorem 3.10.4. Namely, for s = 0:884464,NP � FPCP1;s[log; 2] �KD Gap-VCc0;s0 for c0 = 1� 2�2 = 34 and s0c0 = 1 + 1�s22�1 = 1 + 1�s3 .



mrBellare, Goldreich, Sudan 69We remark that a special case of Proposition 3.10.6 in which the statment is restricted to f = 0would have su�ces for proving the above theorem. The reason being that we could have appliedProposition 5.2.8 to Theorem 3.10.4 and obtain NP � FPCP1=4;s=4[log; 0], for s = 0:884464, whichby the special case of Proposition 3.10.6 is reducible to Gap-VCc0;s0 with c0 = 1 � 14 = 34 ands0c0 = 1 + (1=4)�(s=4)1�(1=4) = 1 + 1�s3 (as above). Interestingly, the special case of Proposition 3.10.6 canbe \reversed": namely, Gap-VCc0;s0 is reducible to FPCPc;s[log; 0] with c = 1 � c0, s = 1 � s0 andsc = 1�s01�c0 (which reverses s0c0 = 1�s1�c = 1 + c�s1�c). The key fact in proving this \reverse reduction" isCorollary 4.1.5 which asserts that Gap-Cliquec;s �KD FPCPc;s[log; 0]. However, we do not know ifit is possible to \reverse" the other step in the alternative proof; namely, whether FPCPc;s[log; 0]is reducible to FPCP4c;4s[log; 2] (our reverse transformation is weaker { see Proposition 5.2.6).3.10.3 On using the MaxSNP veri�er to establish Min VC hardnessAlthough our current VC-gadgets yield a hardness result which is inferior to what has been pre-sented above, it may be the case that improved results can be obtained by a better implementationof the MaxSNP veri�er. As in Sections 3.8 and 3.9, we �rst de�ne problem-speci�c gadgets and es-tablish a reduction of pcp systems to the promised problem at hand. The gadgets will be graphs withdistinguished vertices corresponding to the two literals of each variable appearing in the test/check.Edge-covers will induce truth assignments in the standard manner (i.e., a literal is set to 1 i� thecorresponding vertex is in the cover). (Edge-covers which contain none or both literals of the samevariable are de�ned to set the variable to a special symbol ? which does not satisfy any equal-ity.) Speci�cally, a Parity Check gadget PC-VC(a; b; c; a; bc; x1; : : : ; xn) is a graph on 6+n verticeswhere a; b; c correspond to oracle queries made by the veri�er. The gadget is an (�; �)-PC gadget ifMinVC(PC-VC(a; b; c; a; b; c; x1; : : : ; xn)) is exactly � when restricted to covers which induce a+b = c(i.e., either 0 or 2 of the vertices fa; b; cg are in the cover), and is at least �+ � when restricted tocovers for which a+ b 6= c. Similarly a graph RMBC-VC(a; b; c; d; a; b; c; d; x1; : : : ; xn) is an (�; �)-RMBC gadget if it satis�es the property that MinVC(RMBC-VC(a; b; c; d; a; b; c; d; x1; : : : ; xn)) isexactly � when restricted to covers satisfying a ^ b = c + d and is at least � + � otherwise. Westress that edge-covers of minimal size must contain exactly of the two vertices corresponding tothe distinguished pair of literals. The following lemma (similar to Lemmas 3.8.3 and 3.9.3) showshow to use the above forms of gadgets to derive a reduction from NP to Gap-VC.Lemma 3.10.8 (MinVC implementation of a veri�er): Let V be a veri�er for L of logarithmicrandomness, with perfect completeness and soundness s, such that V performs either a single ParityCheck (with probability q) or a single RMB check (with probability 1� q). Furthermore, supposethat in either case, the veri�er never makes two identical queries. If there exists an (�1; �)-PC gadgetconsisting of n1 vertices and an (�2; �)-RMBC gadget consisting of n2 vertices then L reduces toGap-Cutc0;s0 for c0 = �1q+�2(1�q)n1q+n2(1�q) and s0 = �1q+�2(1�q)+(1�s)�n1q+n2(1�q) . In particular s0=c0 � 1 + (1�s)��1q+�2(1�q) .Proof: The reduction is analogous to the other two reductions presented above. Namely, for eachpossible random string R we introduce a graph GR which is a copy of the corresponding gadget.All vertices and edges in these copies are distinct. In addition, for each variable v (correspondingto an oracle location) we join by edges all occurrences of v and v. Namely, if v is a query underboth random strings R and R0, then we join by an edge the vertex labeled v in GR and the vertexlabeled v in GR0 .Letting N denote the number of possible random strings, we observe that the number of verticesin the resulting graph is n1 � qN +n2 � (1� q)N . Also, if x 2 L then the resulting graph has an edgecover with �1 � qN +�2 � (1� q)N vertices (i.e., just use the cover corresponding to the oracle which



mrBellare, Goldreich, Sudan 70always makes the prover accept). On the other hand, we claim that if x 62 L then the resultinggraph, denoted Gx, does not have a cover of size smaller than �1qN + �2(1 � q)N + (1 � s)N�.Once the claim is proven the bound on s0 follows.Fixing an arbitrary edge-cover of Gx, we �rst de�ne an oracle, �, by setting �(v) = 1 if all copiesof v are in the cover and �(v) = 0 otherwise. Using the edges joining all occurances of v and v, weconclude that in the latter case all copies of v are in the cover. Now, each copy of the PC-gadget(resp., RMB-gadget) having �1 (resp., �2) vertices in the cover corresponds to a random stringwhich makes the veri�er accept the oracle �. Using the soundness of the veri�er, we conclude thatat least (1� s)N of the gadgets correspond to random strings on which the veri�er rejects � andthe claim follows.Hardness results for MinVC can be derived by combining Proposition 3.7.3 and Lemma 3.10.8.Namely, the existence of a (�1; 1)-PC gadget with n1 vertices and a (�2; 1)-RMB gadget with n2vertices implies NP-hardness of Gap-VCc0;s0 withc0s0 ! 1 + 614428585�1+ 16384�2 (3.9)c0 = 28585�1 + 16384�228585n1 + 16384n2 (3.10)We know how to construct a (6; 1)-PC gadget with 10 vertices and a (9; 1)-RMB gadget with 14vertices. This yields a gap of 1 + 6144318966 > 5352 . In order to beat the current hardness gap of 1:0385(established by the reduction from 2 free-bit pcp) one would need to construct gadgets with �i's (ofweighted average) below 3.6 (i.e., 2858544969�1+ 1638444969�2 < 3:55). So it seems that this approach (i.e., ofusing the MaxSNP veri�er to establish MinVC hardness) o�ers little hope for signi�cant progress.3.11 Minimizing the error achievable with three query bitsFor sake of elegancy, we also try to minimize the error achievable by proof systems for NP whichuse only three queries. (It is well known that two queries do not su�ce, unless NP � BPP.)The veri�ers used in Sections 3.7 and 3.10 have query complexity 4. Here we reduce the querycomplexity to 3 by letting the inner veri�er performs the 4 tests (of V2inner) mutually exclusively.The resulting inner veri�er, denoted V3inner, is described in Figure 3.11. For its analysis, we use thefunction g(x; y) def= (1� 2x) � [38 � x+ x22 � y] again.Lemma 3.11.1 (soundness of V3inner): Let �1; �2 > 0 so that �1 < 19=128 and l; l1 2 Z+. Supposep1; p2; p3; p4 2 [0; 1] satisfy p1+p2+p3+p4 = 1. Then the (l; l1)-canonical inner veri�er of Figure 3.11is (�; �1; �2)-good, where 1� � is the minimum of the following three quantities{(1) (12 � �1) � p1(2) min x�1=2��1; y�1 [ �lin(x) � p1 + y � p2 + g(x; y) � p3 ](3) min x�1=2��1 [ �lin(x) � p1 + (1=2� �2)(1� 2x) � p4 ].Proof: Analogous to the proofs of Lemmas 3.7.1 and 3.10.2 (the \pivot" here is 1=2� �1).Observe that the above expressions are analogous to those in Lemma 3.7.1 except that the expressionin (2) equals minx�1=2��1; y�1 [ �lin(x) � p1 + y � p2 + (�RMB(x)� (1� 2x)y) � p3 ]



mrBellare, Goldreich, Sudan 71rather than minx�1=2��1; y�1 [ �lin(x) � p1 + �RMB(x) � (p2 + p3) ]To simplify the bound of the lemma, we consider setting p1; p2; p3 and p4 so that 45128 � p1 +�RMB(45=128) � p3 = 38 � p2 = 38 � p3 = 12 � p4.Claim 3.11.2 Let �1; �2 > 0 and p1; p2; p3 2 [0; 1] satisfy p1 + p2 + p3 = 1 and45128 � p1 + �RMB(45=128) � p3 = 38 � p2 = 38 � p3 = 12 � p4 (3.11)Then p1 = 1629761353 ; p2 = 1638461353 ; p3 = 1638461353 and p4 = 1228861353 = 409620451 (3.12)and the minimum of the three expressions in Lemma 3.11.1 is strictly greater than p42 � �1 � �2.Proof: A straightforward computation shows that Eq. (3.12) indeed solves the conditions imposedon the pi's. Our main task is to lower bound each of the following expressions (while the pi's areThe three query inner veri�er. Given functions h 2 Fl and �: �l ! �l1 , the veri�erhas access to oracles for A: Fl ! � and A1: Fl1 ! �. In addition it takes four [0; 1] valuedparameters p1; p2; p3 and p4 such that p1 + p2 + p3 + p4 = 1.Pick p R [0; 1].Case: p � p1 :Pick f1; f2 R Fl.LinTest(A(h;0); f1; f2).Case: p1 < p � p1 + p2 :Pick f1; f2 R Fl.MB-ProdTest(A(h;0); f1; f2).Case: p1 + p2 < p � p1 + p2 + p3 :Pick f1; f2; f3 R Fl.MB-SeCoTest(A(h;0); f1; f2; f3).Case: p1 + p2 + p3 < p :Pick f R Fl and g R Fl1 .ProjTest�(A(h;0); A1; f; g).Remark: access toA(h;0)(f) is implemented by accessing either A(f) or A(f+h) orA(f+�1)or A(f + h+ �1). Figure 3.11: The three query inner veri�er V3inner



mrBellare, Goldreich, Sudan 72�xed as in Eq. (3.12)):T1 def= (12 � �1) � p1T2 def= minx�1=2��1; y�1 [ �lin(x) � p1 + y � (p2 � p3) + (�RMB(x) + 2xy) � p3 ]T3 def= minx�1=2��1 [ �lin(x) � p1 + (12 � �2)(1� 2x) � p4 ]Using p2 = p3, observe that T2 is minimized at y = 0 and is thus simpli�ed to minx�1=2��1 [ h(x) ],where h(x) def= �lin(x) � p1 + �RMB(x) � p2 (as in the proof of Claim 3.7.2). The reader can easilyverify that the three facts in the proof of Claim 3.7.2 still hold and so we get Ti > h(0)� �1 � �2for i = 1; 2; 3. Using h(0) = 38 � p2 = 12 � p4, the claim follows.We are now ready to state the main result of this section. It is a 3-query veri�er for NP whichachieves soundness error less than 90%.Theorem 3.11.3 For any  > 0, NP � PCP1;s[log; 3] for s = 1840320451 + . In particular, NP �PCP1;0:8999[log; 3].Proof: We compose the above inner veri�er with an adequate outer veri�er (see Lemma 3.4.2) andinvoking Theorem 3.4.5, Lemma 3.11.1 and Claim 3.11.2, we obtain the claimed soundness boundof 1� 204820451 + .3.12 The iterated testsThe iterated tests will be used in our two free-bits proof system. We will be running each ofthe atomic tests many times, but, to keep the free-bit count low, these will not be independentrepetitions. Rather, following [BeSu], we will run about 2O(m) copies of each test in a way which ispairwise, or \almost" pairwise independent, to lower the error probability to O(2�m). This will bedone using 2m free-bits. Speci�cally, we will select uniformly m functions in Fl (and m functionsin Fl1) and invoke the atomic tests with functions resulting from all possible linear combinationsof the selected functions.3.12.1 Linearity and randomnessWe begin with some observations relating probabilistic to linear independence. Note that Lmis a sub-vector-space of Fm, and in particular a vector space over � in its own right. So wecan discuss the linear independence of functions in Lm. We say that ~L = (L1; : : : ; Lk) 2 Lkmis linearly independent if L1; : : : ; Lk are linearly independent. Furthermore we say that ~L1 =(L1;1; : : : ; L1;k) and ~L2 = (L2;1; : : : ; L2;k) are mutually linearly independent if the 2k functionsL1;1; L2;1; : : : ; L1;k; L2;k are linearly independent.Lemma 3.12.1 For ~L = (L1; : : : ; Lk) 2 Lkm let J~L: Fml ! Fkl be de�ned by J~L(~f) = (L1 �~f; : : : ; Lk � ~f), for ~f = (f1; :::; fm). Fix ~L and consider the probability space de�ned by havingf1; :::; fm be uniformly and independently distributed over Fl. Regard the J~L's as random variablesover the above probability space.(1) If ~L is linearly independent then J~L is uniformly distributed in Fkl .



mrBellare, Goldreich, Sudan 73(2) If ~L1; ~L2 are mutually linearly independent then J~L1 and J~L2 are independently distributed.The analysis of the Iterated Projection test (see Figure 3.12) can be done relatively straightfor-wardly, given the above, because the invoked projection test uses a single linear combination ratherthan several such combinations (as in the other iterated tests). Thus we begin with the iteratedprojection tests. The analysis of the other iterated tests, where the atomic tests are invoked ontwo/three linear combinations, require slightly more care. The corresponding lemmas could havebeen proven using the notion of \weak pairwise independence" introduced in [BeSu]. However, wepresent here an alternative approach.3.12.2 Iterated projection testThe iterated projection test described in Figure 3.12 takes as input a vector ~f 2 Fml and also alinear function L 2 Lm. Note that f = L � ~f is in Fl. The test is just the atomic projection test onthis input. The following lemma says that if the passing probability ProjPassmA (), representing2m invocations of the atomic projection test, is even slightly signi�cant and if A is close to Ea, thenA1 is close to the encoding of the projection of a.Lemma 3.12.2 There is a constant c3 such that the following is true. Let �: �l ! �l1 be a func-tion. Let a 2 �l be such that Dist(Ea; A) � 1=4, and let a1 = �(a) 2 �l1 . If ProjPassm� (A;A1) �c3 � 2�m then Dist(Ea1; A1) � 0:1.Proof: The proof is similar to that of [BeSu, Lemma 3.5]. Let �1 = Dist(A1; Ea1) and assume it isat least 0:1. We show that there is a constant c3 such that ProjPassmh (A) < c3 � 2�m.Let N = jL�mj = 2m � 1. For L 2 L�m let XL: Fml �Fml1 ! � be de�ned byXL(~f;~g) def= ProjTestm� (A;A1; ~f;~g; L) = ProjTest�(A;A1;L � ~f; L � ~g) :Regard it as a random variable over the uniform distribution on Fml � Fml1 . Let X = PL2L�m XL.It su�ces to show that Pr [X = 0 ] � O(1=N).Lemma 3.12.1 implies that fXLgL2L�m are pairwise independent, identically distributed randomvariables. Let L 2 L�m and let p = E[XL]. Again using Lemma 3.12.1 we havep = Pr~f R Fml ; ~g R Fml1 hProjTest�(A;A1;L � ~f ; L � ~g) = 1i= Prf R Fl ; g R Fl1 [ProjTest�(A;A1; f; g) = 1] :But by Lemma 3.5.8, p is at least �1(1� 2�) � 0:05, since � def= Dist(Ea; A) � 1=4. We can concludeby applying Chebyshev's inequality. Namely,Pr [X = 0 ] � Pr [ jX �Npj � Np ] � Np(Np)2 � 20Nas desired.



mrBellare, Goldreich, Sudan 743.12.3 Technical claimFor analyzing the other two tests we will use the following simple claim.Claim 3.12.3 Let k � 1 and N = 2m. Then Lkm contains a subset S of cardinality N22k such thatevery ~L1 6= ~L2 2 S are mutually linearly independent.Proof: Let ~L 2 Lkm be linearly independent. Then, the probability that L chosen uniformly in Lmis linearly independent of ~L is 1 � 2kN . Thus, the probability that a uniformly chosen ~L0 2 Lkm ismutually linearly independent of ~L is greater than 1 �Pi=1 k 2k+i�1N > 1 � 22kN . Now, consider agraph with vertex set Lkm and edges connecting pairs of mutually linearly independent sequences(i.e., ~L1 and ~L2 are connected if and only they are mutually linearly independent). This graph hasNk vertices and every vertex which is linearly independent has degree greater than (1� 22kN ) �Nk.Clearly this graph has a clique of size N22k (e.g., consider a greedy algorithm which pick a vertexof maximal degree among all vertices connected to the previously selected vertices). Noting that aclique corresponds to a set of mutually linear independent sequences, we are done.3.12.4 Iterated linearity testThe iterated linearity test described in Figure 3.12 takes as input a vector ~f 2 Fml and also linearfunctions L1; L2 2 Lm. Note that f1 = L1 � ~f and f2 = L2 � ~f are in Fl. The test is just theatomic linearity test on these inputs. The following lemma says that if the passing probability iseven slightly signi�cant, then A is almost linear.Lemma 3.12.4 There is a constant c1 such that if LinPassm(A) � c1�2�m then Dist(A;Lin) � 0:1.Proof: Assume that � def= Dist(A;Lin) � 0:1. We show that there is a constant c1 such thatLinPassm(A) < c1 � 2�m. Let N = 2m. For ~L = (L1; L2) 2 L2m let X~L: Fml ! � be de�ned byX~L(~f) def= LinTestm(A; ~f; L1; L2) = LinTest(A;L1 � ~f; L2 � ~f) :Regard it as a random variable over the uniform distribution on Fml . Let S � L2m be a set asguaranteed by Claim 3.12.3 and X = P~L2S X~L. It su�ces to show that Pr [X = 0 ] � O(1=N).(Thus our analysis of LinPassm(A) is based only on a small fraction of all possible invocationsof the iterated linear test; yet, this small fraction corresponds to a su�ciently large number ofinvocations.)Using Lemma 3.12.1, it follows that the random variables fX~Lg~L2S are pairwise independent andthat for every ~L 2 Sp def= Pr~f R Fml hX~L(~f) = 1i = Prf1 ;f2 R Fl [LinTest(A; f1; f2) = 1] :By Lemma 3.5.3, p � �lin(�) and so p � 3� � 6�2 if � � 1=4 and p � 45=128 otherwise. In eithercase, we get p > 0:2. Now by Chebyshev's inequality we havePr [X = 0 ] � Pr [ jX �N 0pj � N 0p ] � O(1=N 0)where N 0 def= jSj = 2m=16. The lemma follows.



mrBellare, Goldreich, Sudan 75The Iterated Tests. Here A: Fl ! � and A1: Fl1 ! � are the objects being tested. Thetests also take additional inputs or parameters: below ~f 2 Fml ; ~g 2 Fml1 ; L; L1; L2; L3 2 Lm;and �: �l ! �l1 . The tests are speci�ed in terms of the atomic tests of Figure 3.2.LinTestm(A; ~f; L1; L2) = LinTest(A;L1 � ~f; L2 � ~f).MBTestm(A; ~f; L1; L2; L3) =MBTest(A;L1 � ~f; L2 � ~f; L3 � ~f).ProjTestm� (A;A1; ~f;~g; L) = ProjTest�(A;A1;L � ~f; L � ~g).The Passing Probabilities. These are the probabilities we are interested in:LinPassm(A) = Pr~f R Fml h 8 L1; L2 2 Lm : LinTestm(A; ~f; L1; L2) = 0iMBPassm(A) = Pr~f R Fml h 8 L1; L2; L3 2 Lm : MBTestm(A; ~f; L1; L2; L3) = 0iProjPassm� (A;A1) = Pr~f R Fml ; ~g R Fml1 h 8 L 2 Lm : ProjTestm� (A;A1; ~f;~g; L) = 0iFigure 3.12: The iterated tests and their passing probabilities.3.12.5 Iterated RMB testThe iterated respect of monomial basis test in Figure 3.12 takes an input ~f and also three linearfunctions L1; L2; L3 2 Lm. For simplicity of exposition, we assume that A is folded over (�1; 1).(This assumption is justi�ed by our usage of the test { see next subsection.) If the probabil-ity MBPassm(A) is signi�cant, we can conclude that the linear function close to A respects themonomial basis.Lemma 3.12.5 There is a constant c2 such that the following is true. Let A: Fl ! � so thatA(f + �1) = A(f) + 1, for every f 2 Fl. Let � � 0:1 so that A is �-close to a linear function ~A andsuppose that MBPassm(A) � c2 � 2�m. Then ~A respects the monomial basis.Proof: Assume that ~A is linear but does not respect the monomial basis. We will show that thereis a constant c2 such that MBPassm(A) < c2 � 2�m.Let N = 2m. For ~L = (L1; L2; L3) 2 L3m let X~L: Fml ! � be de�ned byX~L(~f) def= MBTestm(A; ~f; L1; L2; L3) = MBTest(A;L1 � ~f; L2 � ~f; L3 � ~f) :Regard it as a random variable over the uniform distribution on Fml . Again, let S � L3m be a setas guaranteed by Claim 3.12.3 and X =P~L2S X~L. It su�ces to show that Pr [X = 0 ] � O(1=N).



mrBellare, Goldreich, Sudan 76Using Lemma 3.12.1, it follows that the random variables fX~Lg~L2S are pairwise independent andthat for every ~L 2 Sp def= Pr~f R Fml hX~L(~f) = 1i = Prf1;f2;f3 R Fl [MBTest(A; f1; f2; f3) = 1] :By Lemma 3.5.7, p � 3=8 � 7�=4 + 5�2=2 � �3. Using � � 0:1, it follows that p > 0:2. UsingChebyshev's inequality we are done.Remark. For general A's (which are not folded over (�1; 1)) a similar result can be proven byaugmenting the iterated RMB test so that on input A, ~f and ~L = (L1; L2; L3) it also checks ifA((L1 � ~f) + �1) = A(L1 � ~f) + 1.3.12.6 Putting some things togetherThe last two lemmas above allow us to conclude that if A(h;0);(�1;1) passes the �rst two tests withany signi�cant probability then A(h;0);(�1;1) is close to some evaluation operator Ea so that h(a) = 0.Thus, again, there is no need for a \circuit test".Corollary 3.12.6 There is a constant c such that the following is true. Let A: Fl ! �, andsuppose LinPassm(A(h;0);(�1;1)) � c �2�m andMBPassm(A(h;0);(�1;1)) � c �2�m. Then there is a stringa 2 �l such that Dist(Ea; A(h;0);(�1;1)) � 0:1 and h(a) = 0.Proof: Let c be the larger of the constants from Lemmas 3.12.4 and 3.12.5. By the �rst lemmathere is a linear ~A such that Dist(A(h;0);(�1;1); ~A) < 0:1. Now the second lemma implies that ~Arespects the monomial basis (using the fact that A(h;0);(�1;1)(f+�1) = A(h;0);(�1;1)(f)+1 for all f 's). SoProposition 3.3.2 says ~A is an evaluation function. Finally, by Proposition 3.3.3, we have h(a) = 0.3.13 Amortized free bits, Max Clique, and Coloring3.13.1 De�nitionsA clique in a graph G = (V;E) is a subset S of the vertices such that any pair of vertices in S isconnected by an edge. We let MaxClique(G) = maxf jSj : S is a clique in Gg denote the maximumclique size, and we let MaxClique(G) = MaxClique(G)=N be the ratio of the Max Clique size to thenumber of nodes N = kGk in the graph. Max Clique is the problem whose instance is a graph Gand one has to �nd MaxClique(G). An approximation algorithm A for Max Clique achieves a ratioof � 2 [1;1) if MaxClique(G)=� � A(G) � MaxClique(G) for all graphs G. Here � is a function ofthe number N of nodes in G.The chromatic number of G is the smallest number of colors with which the nodes of G canbe colored so that no two adjacent vertices have the same color. It is denoted ChromNum(G),and as usual ChromNum(G) = ChromNum(G)=N . Coloring is the problem, given G, of �nd-ing ChromNum(G). An approximation algorithm A for coloring achieves a ratio of � 2 [1;1)if ChromNum(G) � A(G) � � � ChromNum(G) for all graphs G.Promise problems Gap-Cliquec;s and Gap-ChromNumc;s corresponding to the approximation arede�ned analogously to our previous de�nitions for other problems. Here c; s are functions of Nsuch that 0 � s(N) � c(N) � 1.



mrBellare, Goldreich, Sudan 773.13.2 Sources of our improvementsWe adopt the basic framework of the construction of proof systems with low free-bit complexityas presented in [BeSu]. Our improvement comes from the use of the new long code instead of theHadamard code as a basis for the construction of inner veri�ers. This allows us to save one bitin the amortized free-bit complexity. The reason being that the long code contains explicitly allfunctions of the encoded string whereas the Hadamard code contains only linear combinations of thebits of the string. Typically, we need to check that the veri�er accepts a string and this conditionis unlikely to be expressed by a linear combination of the bits of the string. Thus, one needs tokeep also the linear combinations of all two-bit products and using these extra combinations (viaself-correcting) increases the amortized free-bit by one. Instead, as seen above, the long code allowsus to directly handle any function. The fact that we take linear combinations of these functionsshould not confuse the reader; these are linear combinations of random functions rather than beinglinear combinations of random linear functions (as in [BeSu]).3.13.3 Construction and resultsOur construction of a proof systems with amortized free-bit complexity of two bits is obtained bycomposing the (l; l1)-canonical outer veri�er of Lemma 3.4.2 with a (l; l1)-canonical inner veri�er,denoted Vfree-in, which is depicted in Figure 3.13. The inner veri�er Vfree-in consists of invokingthe three iterated tests of Figure 3.12. In addition, Vfree-in also applies the linearity test to theoracle A1. This is not done in order to improve the rejection probability of Vfree-in (in case theoracles A and A1 are far from being �ne), but rather in order to decrease the number of acceptingcon�gurations (and consequently the free-bit complexity). We also remark that Vfree-in invokes theiterated tests while providing them with access to a double folding of A (i.e., A(h;0);(�1;1)) ratherthan to A itself. This eliminates the need for checking that A encodes a string which evaluates tozero under h and simpli�es the iterated RMB test (see remark at the end of subsection 3.12.5).However, unlike in previous subsections, these simpli�cations do not buy us anything signi�cantThe free inner veri�er. Given functions h 2 Fl and �: �l ! �l1 , the veri�er has accessto oracles for A: Fl ! � and A1: Fl1 ! �. It also takes an integer parameter m.Random choices: ~f R Fml ; ~g R Fml18 L1; L2 2 Lm : LinTestm(A(h;0);(�1;1); ~f; L1; L2)8 L1; L2; L3 2 Lm : MBTestm(A(h;0);(�1;1); ~f; L1; L2; L3)8L 2 Lm : ProjTestm� (A(h;0);(�1;1); A1; ~f;~g; L)8 L1; L2 2 Lm : LinTestm(A1;~g; L1; L2)Remark: access toA(h;0);(�1;1)(f) is implemented by accessing either A(f), A(f+h), A(f+�1)or A(f + h+ �1). Figure 3.13: The free inner veri�er Vfree-in



mrBellare, Goldreich, Sudan 78(here), since the additional testing could have been done without any additional cost in free-bits.Lemma 3.13.1 There exists a constant c such that the following is true. Let l; l1; m be integers.Then the (l; l1)-canonical inner veri�er Vfree-in with parameterm is (�; �1; �2)-good, where � = c�2�mand �i = 0:4, for i = 1; 2.Proof: Here the analysis can be less careful than in analogous statements such as in Lemmas 3.6.1and 3.7.1. Using Corollary 3.12.6, with respect to the oracle A(h;0);(�1;1), we conclude that if A(h;0);(�1;1)passed both the iterated Linearity and RMB Tests with probability at least c�2�m then there exists astring a 2 �l such that Dist(Ea; A(h;0);(�1;1)) � 0:1 = 12��1 < 1=4 and h(a) = 0. Using Lemma 3.12.2,we conclude that if (A(h;0);(�1;1); A1) passed the iterated Projection Test, with probability at leastc3 �2�m, then Dist(E�(a); A1) < 0:1 = 12��2. Setting � = c0 �2�m, where c0 = maxfc; c3g, we concludethat Vfree-in satis�es condition (2) of De�nition 3.4.3. Clearly, Vfree-in also satis�es condition (1)and the lemma follows.Proposition 3.13.2 Let l; l1; m be integers. Then the (l; l1)-canonical inner veri�er Vfree-in withparameter m uses 2m free-bits.Proof: We consider only accepting computations of Vfree-in. We start by observing that all oraclevalues obtained from A, during the iterated Linearity Test (on A(h;0);(�1;1)), are determined by thevalues of A in locations f 01; f 02; :::; f 0m, where each f 0i is either fi or fi + h. Likewise, all oraclevalues obtained from A, during the iterated RMB Test, are determined by the values of A in theselocations f 01; f 02; :::; f 0m. Finally, all oracle values obtained from A, during the iterated ProjectionTest, are determined by the values of A1 in locations L � ~g (for all L's) and the values of A in thelocations f 01; f 02; :::; f 0m.Now we use the fact that Vfree-in applies an iterated Linearity Test to the oracle A1. It follows thatall oracle values obtained from A1, in accepting computations of Vfree-in, are determined by thevalues of A1 in locations g1; g2; :::; gm.We conclude that, in accepting computations of Vfree-in, all values obtained from the oracles aredetermined by 2m bits (i.e., A(f 01); :::; A(f 0m) and A1(g1); :::; A1(gm)).Composing the canonical outer veri�er of Lemma 3.4.2 and the canonical inner veri�er Vfree-in, weget the followingTheorem 3.13.3 There is a constant c such that the following is true. Let L 2 NP and m aninteger. Then L 2 PCP1;s[ coins = log ; free = 2m ] with s = c � 2�m.Proof: Given an NP language L and an integer m, we use Lemma 3.4.2 to constract a 2�m-goodouter veri�er, denoted Vouter, for L. Recall that this outer veri�er uses logarithmic randomness(actually the randomness depends linearily on m which is a constant). Next, compose Vouter withthe inner veri�er Vfree-in, where Vfree-in uses m as its integer parameter. The composed veri�er hasfree-bit complexity 2m (as inherited from Vfree-in by Proposition 3.13.2). By Theorem 3.4.5 thesoundness error of the composed veri�er is at most (c + 1) � 2�m, where c � 2�m is the soundnesserror of Vfree-in (due to Lemma 3.13.1). The theorem follows.By selecting m to be su�ciently large (i.e., m = (2+ �) log2 c=�, where c is the constant above), wegetTheorem 3.13.4 For any � > 0 it is the case that NP � FPCP[ log; 2 + � ].



mrBellare, Goldreich, Sudan 79Using the FGLSS-transformation, we getTheorem 3.13.5 For any � > 0(1) NP �KR Gap-Cliquec;s for s(N) = N � and c(N) = N1=3.(2) NP �KD Gap-Cliquec;s for s(N) = N � and c(N) = N1=4.Proof: For Part (1) we use Corollary 5.2.3 (below), with r = O(logn) and k = r� . We get that NPis randomly reducible to a pcp system with randomness r+ k +O(1), free-bit complexity (2 + �)kand error probability 2�k. The FGLSS-graph corresponding to the resulting pcp system has sizeN = 2(r+k+O(1))+(2+�)k and a gap in clique size of factor 2k, which can be rewritten as N1=(1+2+2�).The clique size in case of input not in the language is 2r which can be rewritten as N �. Substituting� for �=2, the claim of Part (1) follows. For Part (2) we use Corollary 5.2.5, and get a pcp systemfor NP with randomness r+ (2+ �)k, free-bit complexity (2+ �)k and error probability 2�k. Usingthe FGLSS-construction on this system, the claim of Part (2) follows.Combining the above with a recent reduction of Furer [Fu], which in turn improved the reductionsof [LuYa, KLS, BeSu], we getTheorem 3.13.6 For any � > 0(1) NP �KR Gap-ChromNumc;s for s(N)=c(N) = N1=5��.(2) Gap-ChromNumc;s is NP-complete for s(N)=c(N) = N1=7��.3.13.4 Previous workMax Clique. Prior to 1991, no non-approximability results on Max Clique were known. In1991 the connection to proofs was made by Feige et. al. [FGLSS]. The FGLSS reduction saysthat PCP1;e[ coins = r ; query = q ] Karp reduces to Gap-Cliquec;s via a reduction running in timepoly(2r+q), and with the gap c=s being a function of (r; q and) the error e. In applying it one workswith PCP classes containing NP. One obtains a result saying Max Clique has no polynomial timeapproximation algorithm achieving a certain factor, under an assumption about the deterministictime complexity of NP (the time complexity depends on r; q and the factor on these, but, mostimportantly, on the error e). In particular, these authors were able to \scale-down" the proof systemof [BFL] to indicate strong non-approximability factors of 2log� N for some � > 0, assuming NP isnot in quasi-polynomial deterministic time. They also initiated work on improving the factors andassumptions via better proof systems. The best result in their paper is indicated in Figure 3.14.Arora and Safra [ArSa] reduced the randomness complexity of a PCP veri�er for NP to loga-rithmic | they showed NP = PCP1;1=2[ coins = log ; query = plogN ]. They also observed thatrandom bits can be recycled for error-reduction via the standard techniques [AKS, CW, ImZu]. Theconsequence was the �rst NP-hardness result for Max Clique approximation. The correspondingfactor was 2plogN .Arora et. al. showed that NP = PCP1;1=2[ coins = log ; query = O(1) ], which implied that thereexists an � > 0 for which approximating Max Clique within N � was NP-complete. The number ofqueries was unspeci�ed, but indicated to be � 104, so � � 10�4. Later work has focused on reducingthe constant value of � in the exponent.4In later work a slightly tighter form of the FGLSS reduction due to [BeSc, Zu] has been used.It says that PCP1;1=2[ coins = r ; queryav = qav ] reduces, via a randomized Karp reduction, to4 The value � = 10�4 means that the size N of the graph must be at least 21000, which is more than the numberof particles in the universe, before the factor N � exceeds 2!



mrBellare, Goldreich, Sudan 80Due to Factor Assumption[FGLSS] 2log1�� N for any � > 0 NP 6� eP[ArSa] 2plogN P 6= NP[ALMSS] N � for some � > 0 P 6= NP[BGLR] N1=25 NP 6� coReP[BGLR] N1=30 NP 6= coRP[FeKi] N1=15 NP 6= coRP[BeSu] N1=4 NP 6� coReP[BeSu] N1=6 P 6= NPThis paper N1=4 P 6= NPThis paper N1=3 NP 6= coRPFigure 3.14: Some Milestones in the project of proving non-approximability of the Clique number:Approximation Factor (in terms of the graph size N) which is infeasible to achieve under anindicated Assumption. In stating results from [BGLR] on, we ignore N � terms in which � > 0 canbe arbitrary small.Gap-Cliquec;s for some c; s satisfying c(N)=s(N) = N1=(1+qav), and with the running time of thereduction being poly(2r). (We assume qav = O(1) for simplicity.) (We omit factors of N � where� > 0 can be arbitrarily small, here and in the following.) Thus the hardness factor was tied tothe (average) number of queries required to get soundness error 1=2. Meanwhile the assumptioninvolved the probabilistic, rather than deterministic time complexity of NP{ it would be NP 6� coRePif r = polylog(n) and NP 6= coRP if r = log(n).New proof systems of [BGLR] were able to obtain signi�cantly smaller query complexity: theyshowed NP � PCP1;1=2[ coins = polylog ; query = 24 ] and NP � PCP1;1=2[ coins = log ; query = 29 ].This leads to their hardness results shown in Figure 3.14. However, signi�cantly reducing the(average) number of bits queried seemed hard.However, as observed by Feige and Kilian, the performance of the FGLSS reduction actuallydepends on the free-bit complexity which may be signi�cantly smaller than the query complexity[FeKi]. Namely, the factor in the above mentioned reduction is N1=(1+f) where f is the free-bitcomplexity. They observed that the proof system of [BGLR] has free-bit complexity 14, yielding aN1=15 hardness of approximation factor.The notion of amortized free-bits was introduced in [BeSu]. They observed that the performanceof the reduction depended in fact on this quantity, and that the factor was N1=(1+ �f) where �f is theamortized free bit complexity. They then showed that NP � FPCP[polylog; 3]. This lead to a N1=4hardness factor assuming NP 6= coReP.Chromatic Number. The �rst hardness result for the chromatic number is due to Garey andJohnson [GJ1]. They showed that if P 6= NP then there is no polynomial time algorithm that canachieve a factor less than 2. This remained the best result until the connection to proofs, and theabove mentioned results, emerged.Now hardness results for the chromatic number are obtained via reduction from Max Clique. A



mrBellare, Goldreich, Sudan 81N � factor hardness for Max Clique translates into a N � factor hardness for the Chromatic number5,with � a function of �. To discuss the quality of reductions, let us, following [BeSu], de�ne an (a; b)-reduction to be one that achieves � = 1a�b+(b=�) = �b+(a�b)� .The �rst reduction, namely that of Lund and Yannakakis [LuYa], was a (1; 5)-reduction. Viathe Max Clique hardness results of [ArSa, ALMSS] this implies the chromatic number is hard toapproximate within N � for some � > 0. But, again, � is very, very small. Improvements to � are afunction both of improvements to � and the values a; b for which (a; b)-reductions are available.A subsequent reduction of Khanna, Linial and Safra [KLS] is simpler but in fact slightly lesse�cient, being a (6; 5)-reduction. However a more e�cient reduction is given by [BeSu]{ theypresent a (1; 3)-reduction. Our N1=3 hardness for Clique would yield, via this, a N1=7 hardness forthe chromatic number. But more recently an even more e�cient reduction has become available,namely that of Furer [Fu]. It is a (1; 2)-reduction, and thereby we get our N1=5 hardness.Randomized and de-randomized error reduction. As mentioned above, randomized and de-randomized error reduction techniques play an important role in obtaining the best Clique hardnessresults via the FGLSS method. Typically, one �rst reduces the error so that its logarithm relatesto the query (or free-bit) complexity and so that the initial randomness cost can be ignored (aslong as it were logarithmic). (Otherwise, one would have needed to construct proof systems whichminimize also this parameter; i.e., the constant factor in the logarithmic randomness complexity.)The randomized error reduction method originates in the work of Berman and Schnitger [BeSc]were it is applied to the Clique Gap promise problem. An alternative description is given byZuckerman [Zu]. Another alternative description, carried out in the proof system, is presented inSection 5.2.The de-randomized error reduction method consists of applying general, de-randomized, error-reduction techniques to the proof system setting. The best method knows as the \Expander Walk"technique is due to Ajtai, Komlos and Szemeredi [AKS] (see also [CW, ImZu]). It is easy to see thatthis applies in the pcp context. (The usage of these methods in the pcp context begins with [ArSa].)It turns out that the (constant) parameters of the expander, speci�cally the ratio � def= log2 dlog2 � , whered is the degree of the expander and � is the second eigenvalue (of its adjacency matrix), play animportant role here. In particular, ��1 determines how much we lose with respect to the randomizederror reduction (e.g., NP 2 FPCP[ log; f ] translates to a hardness factor of N 11+f under NP 6� BPPand to a hardness factor of N 1�+f under NP 6= P). Thus the Ramanujan Expander of Lubotzky,Phillips and Sarnak [LPS] play an important role yielding � � 2 (cf. Proposition 5.2.4), which isthe best possible.3.14 The coding theory boundWe provide here the coding theory bound used in the proof of Lemma 3.4.4. It is a slight extensionof bounds in [MaSl, Ch. 17] which consider only vectors of weight exactly w rather than at mostw. For sake of completeness, we include a proof of this bound. In discussing binary vectors, theweight is the number of ones in the vector and the distance between two vectors is the number ofplaces in which they disagree.5Actually all the reductions presented here, make assumptions regarding the structure of the graph and hence donot directly yield the hardness results stated here. However, as a consequence of some results from this paper, we areable to remove the assumptions made by the earlier papers and hence present those results in a simpler form. SeeSection 4.1.3 for details.



mrBellare, Goldreich, Sudan 82Lemma 3.14.1 Let B = B(n; d; w) be the maximum number of binary vectors of length n, eachwith weight at most w, and any two being distance at least d apart. Then B � (1�2�)=(4�2�2�),provided �2 > �=2, where � = (1=2)� (w=n) and � = (1=2)� (d=n).Proof: Consider an arbitrary sequence, v1; :::; vM, of n-vectors which are at mutual distance atleast n=2. Let us denote by vi;j the jth entry in the ith vector, by wi the weight of the ith vector,and by w the average value of the wi's. De�neS def= MXi=1 MXj=1 nXk=1 vi;kvj;kThen, on one hand S = MXi=1 nXk=1 v2i;k + X1�i 6=j�M nXk=1 vi;kvj;k� Xi wi + X1�i 6=j�M wi + wj � d2= Mw +M(M � 1) � (w � (d=2))where the inequality follows from observing that, for i 6= j,wi + wj = 2jfk : vi;k=vj;k=1gj+ jfk : vi;k 6= vj;kgj� 2 nXk=1 vi;kvj;k + dOn the other hand S = Pnk=1 jfi : vi;k = 1gj2. This allows to lower bound S by the minimum ofPk x2k subject to Pk xk =Mw. The minimum is obtained when all xk's are equal and yieldsS � n ��Mwn �2Confronting the two bounds, we getM � w2n �M � w � (M � 1) � (d=2)which yields (w2n � w + d2 )M � d2 . Letting � = (1=2)� (w=n) and using �2 � �2 > �=2, we getM � 1� 2�4�2 � 2�and the lemma follows by observing that the bound maximizes when � = �.3.15 On the optimality of some choices in our analysisIn this section we demonstrate the optimality of several of the choices made in the analysis inprevious sections.Choice of the probability parameters for VSNPinner We start by proving that the choiceof probabilities for VSNPinner (i.e., requiring the pi's to satisfy Eq. (3.4) is optimal for minimizingthe soundness upper bound provided by Lemma 3.7.1. Actually, we show that no matter how oneselects these probabilities, the expression given in Lemma 3.7.1 is at least 1� 614444969.



mrBellare, Goldreich, Sudan 83Claim 3.15.1 For any choice of the parameters p1; p2; p3 > 0 so that p1 + p2 + p3 = 1 one of thefollowing three expressions, 12 � p1, min x�1=2 [ p1 ��lin(x)+ p2 ��RMB(x) ] and min x�1=2 [ p1 ��lin(x)+p3 � 12(1� 2x) ], is at most 614444969. Furthermore, the minimum of the above expressions is boundedabove by min( 45128 � p1 + �RMB(45=128) � p2; 38 � p2; 12 � p3)Proof: We consider three cases according to which of the expressions in Eq. (3.4) is smallest. Inother words, let p�i be the solution to Eq. (3.4) as given by Eq. (3.5). We consider the followingcases:Case 1: 45128 � p1+�RMB(45=128) � p2 < 45128 � p�1+�RMB(45=128) � p�2. In this case, we upper bound thesecond expression, min x�1=2 [ p1 � �lin(x) + p2 � �RMB(x) ], by its value at x = 45=128, which equalsp1 � 45128 + p2 � �RMB(45=128) < p�1 � 45128 + p�2 � �RMB(45=128) = 614444969Case 2: p2 < p�2. In this case, we upper bound the second expression by its value at x = 0, whichequals p2 � �RMB(0) = p2 � 38 < p�2 � 38 = 614444969Case 3: p3 < p�3. In this case, we upper bound the third expression, min x�1=2 [ p1 � �lin(x) + p3 �12(1� 2x) ], by its value at x = 0, which equals p3 � 12 < p�3=2 = 6144=44969. The claim follows.We remark that the setting of x represents plausible existence of oracles for which the proof ofLemma 3.7.1 provides the soundness bounds appearing in the claim. Speci�cally, Case (1) corre-sponds to having a �rst oracle, A, which is 45=128-away from being linear (and may be at distance1=2 from the long code). Case (2) corresponds to having A linear but not respecting the monomialbasis (and thus at distance 1=2 from the code). Finally, Case (3) corresponds to having A = Ea(i.e., a codeword for a) and A1 be at distance 1=2 from E�(a).Evaluating VSNPinner independently of the gadgets Lemmas 3.8.3 and 3.9.3 (as well asLemma 3.10.8) provide hardness results for factor 1�s�1�q+�2 �(1�q) where s and q depend on the veri�erbeing used whereas �1 and �2 depend on the gadgets. Speci�cally, s is the soundness error for averi�er (based on VSNPinner) which performs a parity check with probability q and an RMB checkwith probability 1 � q. Our approach was to select the probabilities for VSNPinner so to minimizes and this in turn determines q = 1 � p2. A natural question is whether it is not better to allowgreater error, s, so to obtain a smaller value for 1�q. This is natural since �1 is likely to be smallerthan �2 (since the parity check is obtained as a special case of the RMB check when setting the�rst bit to 1).Claim 3.15.2 Let a1 < �2, p1; p2; p3 > 0 s.t. p1+ p2+ p3 = 1 and let s(p1; p2; p3) be the soundnessupper bound provided by Lemma 3.7.1 (i.e., the minimum of the expressions in Claim 3.15.1).Then 1�s(p1;p2;p3)�1�(1�p2)+�2�p2 is maximized at pi's satisfying Eq. (3.4).Proof: Using Claim 3.15.1, we getfactor(p1; p2; p3) def= 1� s(p1; p2; p3)�1 + (�2 � �1) � p2� 38 � p2�1 + (�2 � �1) � p2



mrBellare, Goldreich, Sudan 84= 3=8(�1=p2) + (�2 � �1)On the other hand, by Claim 3.7.2,factor(p�1; p�2; p�3) = 1� s(p�1; p�2; p�3)�1 + (�2 � �1) � p�2= 38 � p�2�1 + (�2 � �1) � p�2= 3=8(�1=p�2) + (�2 � �1)where the p�i 's are the solution to the pi's under p1 + p2 + p3 = 1 and Eq. (3.4). The claim followsby noting that for p2 < p�2 we have factor(p1; p2; p3) < factor(p1; p2; p3). (There is no need toconsider p2 > p�2 since in this case, by Claim 3.15.1, 1 � s(p1; p2; p3) < 1 � s(p�1; p�2; p�3) whereas�1 + (�2 � �1) � p2 > �1 + (�2 � �1) � p�2.)Analysis of V2inner We need to justify two choices. Firstly, our choice to use 3=16 as a \pivot"(rather than 1=2��1) and secondly the setting of the pi's. Both choices are justi�ed by the followingClaim 3.15.3 Let g(x; y) def= (1� 2x) � [38 � x+ x22 � y] and �1 = �2 = 10�4. For any choice of theparameters p1; p2; p3 > 0 so that p1 + p2 + p3 = 1 one of the following three expressions,(1) min y�1 [p1 �max(y; 12 � �1)](2) min x�1=2��1; y�1 [ p1 �max(y;�lin(x)) + p2 � g(x; y) ](3) min x�1=2��1; y�1 [ p1 �max(y;�lin(x)) + p3 � (1=2� �2)(1� 2x) ].is smaller than 0:116.Proof: As in the proof of Claim 3.15.1, we only consider the expressions in (2) and (3). Here weconsider only two cases.Case 1: p3 � 0:232. In this case we upper bound (3) by its value at x = y = 0, which is boundedabove by p3=2 � 0:116.Case 2: p1 + p2 � 0:768. In this case we upper bound (2) by its values on the curve y = �lin(x).Actaully, we consider only x < 3=16 thus upper bound (2) by minx�3=16 [ h(x) ], where h is as inthe proof of Claim 3.10.3; namely,h(x) = p1 � (3x� 6x2) + p2 � (1� 2x)(38 � x+ x22 � (3x� 6x2)) = �ax3 + bx2 + cx+ dwhere a = 13p2, b = �6p1 + 292 p2 > 0, c = 3p1 � 194 p2 > 0 and d = 38p2. The proof is completedby computer optimizations of the function h, for all admissible values of p1 and p2 within steps of0.001. (Actually, this is the way we came up with our choice of the pi's.)The reader may note that the function g becomes negative for some choices of x and y (e.g., forall 3=26 < x < 3=16 and y = 3x� 6x2). Indeed, it would make more sense to rede�ne g as zero incase its value is negative (and indeed Lemma 3.10.2 can be proven also under this de�nition of g).However, we have veri�ed that Claim 3.15.3 also remains valid for this new de�nition of g.



C h a p t e r 4Proofs and approximation: Potentialand limitations
We have seen in the last chapter that non-approximability results are getting steadily stronger,particularly for Max Clique. How far can they go? This chapter is about answering this kind ofquestion.The �rst Section describes our \reverse connection" indicating the necessity of proof checkingtechniques to the derivation of non-approximability results for Max Clique, and pointing to amor-tized free bits as the crucial parameter. The second Section focuses on lower bounds on amortizedfree bits which will indicate that our two free bit result of the last section is tight in the light ofcurrent techniques. The two together indicate that one needs new techniques to prove better thana N1=3 hardness for Max Clique.4.1 The reverse connection and its consequencesFeige et al. [FGLSS] describe a procedure which takes a veri�er V , and an input x and constructsa graph, which we denote GV (x), whose vertices correspond to possible accepting transcripts in V 'scomputation and edges corresponding to consistent/non-conicting computations. They then showthe following connection between the maximum (over all possible oracles) acceptance probabilityof the veri�er and the clique size in the graph. Recall that ACC [V (x) ] = max� PrR [V �(x;R) = 0]is the maximum accepting probability. Also recall that MaxClique(G) is the maximum clique size.Theorem 4.1.1 ([FGLSS]) If, on input x, a veri�er V tosses r coins then the following relationshipholds: ACC [V (x) ] = MaxClique(GV (x))2r :In this section we essentially show an inverse of their construction.4.1.1 The Clique-Gap Veri�erWe stress that by the term graph we mean an undirected simple graph (i.e., no self-loops or paralleledges). 85



mrBellare, Goldreich, Sudan 86Theorem 4.1.2 (Clique veri�er of ordinary graphs): There exists a veri�er, denoted W , of log-arithmic randomness-complexity, logarithmic query-length and zero free-bit complexity, that, oninput an N -node graph G, satis�esACC [W (G) ] = MaxClique(G)N :Furthermore, GW (G) is isomorphic to G where the isomorphism is easily computable. Lastly, givena proof/oracle � we can construct in polynomial-time a clique of size pN in G, where p is theprobability that W accepts G with oracle access to �.Proof: On input a graph G on N nodes, the veri�er W works with proofs of length �N2�� jE(G)j.The proof � is indexed by the edges in G (i.e., non-edges in G). For clarity of the proof we assumethat the binary value �(fu; vg) is either u or v. This is merely a matter of encoding (i.e., consider a1-1 mapping of the standard set of binary values, f0; 1g, to the set fu; vg). On input G and accessto oracle �, the veri�er W acts as follows:Picks uniformly a vertex u in the vertex set of G.For every fu; vg 2 E(G), the veri�er W queries the oracle at fu; vg and rejects if �(fu; vg) 6= u.If the veri�er did not reject by now (i.e., all queries were answered by u), it accepts.Properties of W . Clearly, W tosses log2N coins. Also, once W picks a vertex u, the only patternit may accepts is (u; u; : : : ; u). Thus the free-bit complexity of W is 0. To analyze the probabilitythat W accepts the input G, when given the best oracle access, we �rst prove the following:Claim. The graphs GW (G) and G are isomorphic.Proof. The proof is straightforward. One needs �rst to choose an encoding of accepting transcriptsof the computation of W on input G. We choose to use the \full transcript" in which the randomcoins as well as the entire sequence of queries and answers is speci�ed. Thus, a generic acceptingtranscript has the form Tu def= (u; (fu; v1g; u); :::; (fu; vdg; u))where u is the random vertex selected by the veri�er and fv1; :::; vdg the set of non-neighbors of u.We stress that Tu is the only accepting transcript in which the veri�er has selected the vertex u.Also, for each vertex u, the transcript Tu is accepting. Thus, we may consider the 1-1 mapping, �,that maps Tu to u. We claim that � is an isomorphism between GW (G) and G.Suppose that Tu and Tv are adjacent in GG(W ). Then, by de�nition of the FGLSS graph, thesetranscripts are consistent. It follows that the same query can not appear in both (accepting)transcripts (otherwise it would have been given conicting answers). By de�nition ofW we concludethat (u; v) is not a non-edge; namely, (�(Tu); �(Tv)) = (u; v) 2 E(G). Suppose, on the other hand,that (u; v) 2 E(G). It follows that the query fu; vg does not appear in either Tu or Tv. Since noother query may appear in both transcript, we conclude that the transcripts are consistent andthus Tu and Tv are adjacent in GG(W ). 2By Theorem 4.1.1 it now follows that the probability that W accepts on input G, given the bestoracle, is MaxClique(GW (G))=N which by the above equals MaxClique(G)=N . Furthermore, given aproof � which makes W accept G with probability p, the accepting random strings of W constitutea clique of size pN in GW (G). These accepting random strings can be found in polynomial-timeand they encode vertices of G (which form a clique in G).



mrBellare, Goldreich, Sudan 87We now generalize the above construction to get veri�ers which indicate the existence of largecliques in layered graphs. An (L;M;N)-layered graph is an N -vertex graph in which the verticesare arranged in L layers so that there are no edges between vertices in the same layer and there areat mostM vertices in each layer. We use a convention by which, whenever a layered graph is givento some algorithm, a partition into layers is given along with it (i.e., is implicit in the encoding ofthe graph).Theorem 4.1.3 (Clique veri�er for layered graphs): There exists a veri�er, denoted W , of loga-rithmic randomness-complexity and logarithmic query-length that, on input an (L;M;N)-layeredgraph G has free-bit complexity log2M , average free-bit complexity log2(N=L) and satis�esACC [W (G) ] = MaxClique(G)=L :Furthermore, GW (G) is isomorphic to G where the isomorphism is easily computable. Lastly, givena proof/oracle � we can construct in polynomial-time a clique of size pL in G, where p is theprobability that W accepts G with oracle access to �.Proof: On input a (L;M;N)-layered graph G, the veri�er W works with proofs consisting of twoparts. The �rst part assigns every layer (i.e., every integer i 2 [L]) a vertex in the layer (i.e., againwe use a redundant encoding by which the answers are vertex names rather then an index between1 and the number of vertices in the layer). The second part assigns pairs of non-adjacent (in G)vertices, a binary value, which again is represented as one of the two vertices. On input G andaccess to oracle �, the veri�er W acts as follows:Picks uniformly a layer i in f1; :::; Lg.Queries � at i obtaining as answer a vertex u. If u is not in the ith layer of G then the veri�errejects. (Otherwise, it continues as follows.)For every fu; vg 2 E(G), the veri�er W queries the oracle at fu; vg and rejects if �(fu; vg) 6= u.(Actually, it is not needed to query the oracle on pairs of vertices belonging to the same layer.)If the veri�er did not reject by now (i.e., all queries were answered by u), it accepts.Properties of W . Here W tosses log2L coins. Once the �rst query of W is answered, specifying avertex u, the only pattern it may accept in the remaining queries is (u; u; : : : ; u). Thus, the free-bit complexity of W is log2M , accounting for the �rst query which may be answered arbitrarilyin f1; :::; mg, where m � M is the number of vertices in the chosen layer. The average free-bitcomplexity is log2(N=L) (as N=L is the average number of vertices in a layer of the graph G).Again, we can prove that GW (G) = G and the theorem follows.Claim. The graphs GW (G) and G are isomorphic.Proof. Here, the accepting transcripts of W , on input G, correspond to a choice of a layer, i, and avertex in the ith layer (since once a vertex is speci�ed by the �rst answer there is only one acceptingway to answer the other queries). Thus, a generic accepting transcript has the formTu def= (i; (i; u); (fu; v1g; u); :::; (fu; vdg; u)where i is the layer selected by the veri�er, u is a vertex in the ith layer of G and fv1; :::; vdg the setof non-neighbors of u. Again, Tu is the only accepting transcript in which the veri�er has selectedthe vertex u, and for each vertex u, the transcript Tu is accepting. Again, we consider the 1-1mapping, �, that maps Tu to u, and show that it is an isomorphism between GW (G) and G.



mrBellare, Goldreich, Sudan 88Suppose that Tu and Tv are adjacent in GG(W ). Then, by de�nition of the FGLSS graph, thesetranscripts are consistent. We �rst note that u and v cannot appear in the same layer ofG (otherwisethe �rst query in the transcript would yield conicting answers). Again, the same two-vertex querycan not appear in both (accepting) transcripts, and we conclude that (�(Tu); �(Tv)) = (u; v) 2E(G). Suppose, on the other hand, that (u; v) 2 E(G). Clearly, u and v belong to di�erent layersand as before the query (u; v) does not appear in either Tu or Tv. Since no other two-vertex querymay appear in both transcripts, we conclude that the transcripts are consistent and thus Tu andTv are adjacent in GG(W ). 2The theorem follows as before.Remark. The clique veri�er W is adaptive: the answer to its �rst query determines (all) the otherqueries. We wonder if it is possible to construct a non-adaptive clique veri�er with properties asclaimed in the theorem.4.1.2 Main ConsequencesWe are interested in problems exhibiting a gap in Max-Clique size between positive and negativeinstances. Recall that MaxClique(G) = MaxClique(G)=N is the fraction of nodes in a maximumclique of N -node graph G. Also recall the Gap-Cliquec;s promise problem:De�nition 4.1.4 For any 0 � s(�) � c(�) � 1 we let the promise problem Gap-Cliquec;s be the pair(A;B), where{(1) A is the set of all graphs G with MaxClique(G) � c(N), and(2) B is the set of all graphs G with MaxClique(G) � s(N).The gap of this problem is de�ned to be c=s.As a direct consequence of Theorem 4.1.2, we getCorollary 4.1.5 For all functions c; s: Z+ ! [0; 1] we have Gap-Cliquec;s 2 FPCPc;s[log; 0; poly].The above corollary transforms the gap in the promise problem into a gap in a pcp system. However,the accepting probabilities in this pcp system are very low (also on yes-instances). Below, we useTheorem 4.1.3 to obtain pcp systems with perfect (resp., almost-perfect) completeness for thispromise problem. We start by presenting two randomized reductions of the promise problem to alayer version. Alternative methods are presented in Section 5.2 (cf., Theorem 5.2.6).Proposition 4.1.6 (Layering the clique promise problem):(1) (Obtaining a perfect layering): There exists a polynomial-time randomized transformation,T , of graphs into layered graphs so that, on input a graph G, integers C and L, outputs asubgraph H = T (G;C; L) of G in L layers such that if MaxClique(G) � C thenPr [MaxClique(H) < L ] < L � 2� C2LFurthermore, with probability 1� L � 2�N=3L, no layer of H contains more than 2 � NL nodes.(2) (Using logarithmic randomness): There exists a polynomial-time randomized transformation,T , of graphs into layered graphs so that, on input a graph G, integers C and L, outputs asubgraph H = T (G;C; L) of G in L layers such that if MaxClique(G) � C thenPr [MaxClique(H) � (1� �) �L ] < L�Cfor every � 2 [0; 1]. Furthermore, the transformation uses logarithmically many coins. Also,with probability 1� L�N , at most �L layers of H contains more than 2 � NL nodes.



mrBellare, Goldreich, Sudan 89Proof: The �rst transformation consists of assigning to each vertex of G a randomly chosen layerof H . Namely, we construct the graph H which is a subgraph of G by uniformly selecting for eachvertex v a layer l(v) 2 [L] and copying only the edges of G which connect vertices placed in di�erentlayers (of H). The construction can be carried out in random polynomial-time and we show that ifthe original graph has a clique of size C then with high probability the resulting graph has a cliqueof size L, provided L� C=2 log2 L.Claim 1. Suppose that G has a clique of size C denoted S. Then, the probability that all verticesin S were placed in less than L layers is at most L � 2� C2L .Proof. We start by bounding, for each i, the probability that no vertex of S is placed in the ithlayer. For each v 2 S, we introduce the 0-1 random variable �v so that �v = 1 if v is placed inthe ith layer (i.e., l(v) = i) and �v = 0 otherwise. Let t def= C=L. Then, E[Pv2S �v] = t. Using amultiplicative Cherno� bound [MoRa], we getPr [ 8v 2 S : l(v) 6= i ] = Pr"Xv2S �v = 0 #< 2� t2Call the ith layer bad if no vertex of S is placed in it. By the above, the probability that thereexists a bad layer is smaller than L � 2�t=2, and the claim follows. 2It is left to bound the probability that a particular layer contains more than twice the expectednumber of vertices. Using again a multiplicative Cherno� bound, this probability is at most 2�N=3Land the �rst part of the proposition follows.The second transformation consists of selecting randomly a Universal2 Hashing function (a.k.a.,pairwise independent hash function) mapping the vertices of the graph G into the layer-set [L].Namely, suppose that the function h was chosen, then we construct the graphH which is a subgraphof G by placing a vertex v (of G) in layer h(v) of H , and copying only the edges of G which connectvertices placed in di�erent layers (of H). The construction can be carried out in polynomial-timeusing only logarithmic randomness (for the selection of the hashing function). We show that if theoriginal graph has a clique of size C then with high probability the resulting graph has a clique ofsize almost L, provided L� C.Claim 2. Suppose that G has a clique of size C denoted S. Then, the probability that all verticesin S were placed in less than (1� �) � L layers is at most L�C .Proof. Again, we bound, for each i, the probability that no vertex of S is placed in the ith layer.For each v 2 S, we introduce the 0-1 random variable �v so that �v = 1 if h(v) = i and �v = 0otherwise. Let t def= C=L and � def= Pv2S �v. Then, E[�] = t (which is greater than 1, otherwise theclaim holds vacuously). Using the pairwise independence of h and Chebyshev's inequality, we getPr [ 8v 2 S : h(v) 6= i ] = Pr [ � = 0 ]� Var[Pv2S �v]t2< C=Lt2 = 1tCall the ith layer bad if no vertex of S is placed in it. By the above, the expected number of badlayers is smaller than L � 1t , so by Markov inequality the probability that more than �L layers arebad is at most 1=�t. The claim follows. 2



mrBellare, Goldreich, Sudan 90Again, it is left to bound the probability that a particular layer contains more than M def= 2N=L.Using Chebyshev's inequality again, this probability is at most L=N . Thus, the expected numberof layers having more than M vertices is at most L2=N and it follows that the probability that �Llayers contain more thanM vertices each is at most L2=N�L = L�N . The second part of the propositionfollows.Combining Theorem 4.1.3 and Proposition 4.1.6, we obtainProposition 4.1.7 For any polynomial-time computable functions c; s; �: Z+ ! [0; 1] we have(1) (Randomized reduction to a pcp with perfect completeness):Gap-Cliquec;s �KR FPCP1;s0[log; f 0]where f 0(N) def= log2(1=c(N))+ log2 log2N + 2 and s0(N) def= 2 log2N � s(N)c(N) .(2) (A pcp with almost-perfect completeness):Gap-Cliquec;s 2 FPCP1�4�;s0[log; f 0]where f 0(N) def= 1 + log2(1=c(N)) + 2 log2(1=�(N)) and s0(N) def= 1�(N)2 � s(N)c(N) .Proof: For the second part, we construct a veri�er for the promise problem proceeds as follows.On input an N -vertex graph G, the veri�er computes C def= N � c(N), � def= �(N) and L def= �2C.It invokes the second transformation of Proposition 4.1.6, obtaining a (L;N;N)-layered graphH = T (G;C; L). (We stress that this transformation requires only logarithmically many cointosses.) Next, the veri�er modi�es H into H 0 by omitting (the minimum number of) vertices sothat no layer of H 0 has more than 2N=L vertices. Finally, the veri�er invokes the clique-veri�er Wof Theorem 4.1.3 on input H 0.The free-bit complexity of the veri�er constructed above is log2(2N=L) = 1 + log2(1=c(N)) +2 log2(1=�(N)). Suppose that G is a no-instance of the promise problem. Using MaxClique(H 0) �MaxClique(G) and Theorem 4.1.3, it follows that the constructed veri�er accepts G with probabilityat most MaxClique(H0)L � s(N)�2(N)�c(N) . Suppose, on the other hand, that G is a yes-instance of the promiseproblem. Then, with probability at least 1 � L�C = 1 � � we have MaxClique(H) � (1� �) � L, andwith probability at least 1� L�N > 1� � we have MaxClique(H 0) � MaxClique(H)� �L. Thus, withprobability at least 1 � 2�, we have MaxClique(H 0) � (1� 2�) � L. It follows that the constructedveri�er, when given oracle access to an appropriate proof, accepts G with probability at least 1�4�.For the �rst part, we de�ne a promise problem which refers to gaps in cliques of layered graphs.Speci�cally,De�nition. For any function ` : Z+ ! Z+ and s : Z+ ! [0; 1], we de�ne the promise problemGap�LG`;s be the pair (A;B), where{(1) A is the set of all (`(N); 2N`(N) ; N)-layered graphs G with MaxClique(G) = `(N), and(2) B is the set of all (`(N); 2N`(N) ; N)-layered graphs G with MaxClique(G) � s(N) � `(N).The gap of this problem is de�ned to be 1=s.Using the �rst transformation of Proposition 4.1.6, we obtain Gap-Cliquec;s �KR Gap�LG`;s0 , where`(N) = c(N)�N2 log2 N and s0(N) = s(N)�N`(N) = 2 log2N � s(N)c(n) . On the other hand, Theorem 4.1.3 asserts



mrBellare, Goldreich, Sudan 91that Gap�LG`;s0 2 FPCP1;s0[log; f 0], where f 0(N) def= log2(2N=`(N)). Observing that f 0(N) =1 + log2 2 log2 Nc(N) (which equals log2(1=c(N))+ log2 log2N + 2), the proposition follows.Each of the two parts of Proposition 4.1.7 shows that the well-known method of obtaining clique-approximation results from e�cient pcp systems (cf., [FGLSS, BeSc, Zu, FeKi, BeSu]) is \complete"in the sense that if clique-approximation can be shown NP-hard then this can be done via thismethod. The following is a more precise version of Theorem 1.4.1 in that the role of � > 0 is madeexplicit. The restriction that f be a constant is only for notational simplicity. (The issue is thatf in one case must be measured as a function of n = jxj and in the other case as a function ofN = kGk.)Theorem 4.1.8 Let f be a constant. Then the following statements are equivalent:(1) For all � > 0 it is the case that NP reduces to Gap-Cliquec;s with gap c(N)=s(N) = N1=(1+f+�).(2) For all � > 0 it is the case that NP reduces to FPCP[log; f + �].In both items the reduction is randomized. Furthermore the equivalence holds both for Karp andfor Cook reductions.Proof: The direction (2) ) (1) follows by �rst amplifying the gap of the veri�er for NP (cf.,Corollary 5.2.3) and then by applying the FGLSS-reduction [FGLSS] to the ampli�ed gap veri�er.Speci�cally, we �rst obtain NP �R FPCP1;2�t [(1 + �) � t; f � t], where t(n) =  log2 n (with theconstant  determined by the constant � > 0). The FGLSS-reduction now yields a graph of sizeN def= 2(1+�+f)�t(n) with gap 2�t(n) (which can be written as N 11+�+f ).For the reverse direction, we will use the �rst part of Proposition 4.1.7 and show that the resultingveri�er has a small amortized free bit complexity. Let Gap-Cliquec;s be NP-hard for some functionsc(N) and s(N) satisfying s(N) � 1=N and c(N)=s(N) � N 11+f+� . Thus, c(N) � N 11+f+� =N and1=c(N) � N f+�1+f+� .Let �(N) def= 2 log2N , f 0(N) def= log2(1=c(N))+ log2 �(N) and let s0(N) def= �(N) � s(N)c(N) . By invokingProposition 4.1.7 (Part 1) we �nd that Gap-Cliquec;s �R FPCP1;s0[log; f 0] and Gap-Cliquec;s �RFPCP[ log; f 0 ], for f 0 = f 0log(1=s0) , follows. It now remains to argue that for any � > 0, f 0 � f + �+�.Using the lower bounds on c(N) and c(N)=s(N), we obtain f 0(N) � f+�1+f+� log2N + log2 �(N)and log(1=s0(N)) � 11+f+� � log2N � log2 �(N). Selecting a su�ciently small �0 > 0 and usinglog2 �(N) < �0 � log2N , we getf 0 � f+�1+f+� logN + log2 �(N)11+f+� logN � log2 �(N)< f+�1+f+� + �011+f+� � �0< f + � + �01� �0 � (1 + 2(f + �))and the theorem follows.An alternative statement is provided by the following theorem. Here the second item (existence ofpcp systems with certain parameters) is weaker than in the previous theorem, but this allows the(1)) (2) direction to be proven via a deterministic reduction (instead of the randomized reduction



mrBellare, Goldreich, Sudan 92used in the analogous proof above). Interestingly, the FGLSS-reduction used to establish the otherdirection is insensitive to the gap location and in particular to the fact that we no longer use proofsystems of perfect completeness. Recall that FPCP1�o(1)[ �; f ] is the class of problems having aproof system with almost-perfect completeness (i.e., c = 1�o(1)) and amortized free-bit complexityf .Theorem 4.1.9 Let f be a constant. Then the following statements are equivalent:(1) For all � > 0 it is the case that NP reduces to Gap-Cliquec;s with gap c(N)=s(N) = N1=(1+f+�).(2) For all � > 0 it is the case that NP reduces to FPCP1�o(1)[ log; f + � ].In both items the reduction is randomized and the equivalence holds both for Karp and for Cook re-ductions. Furthermore, if item (1) holds with respect to deterministic reductions so does item (2). Itfollows that in case item (1) holds with a deterministic Karp reduction then NP � FPCP1�o(1)[ log;f + � ].Proof: The direction (2)) (1) follows essentially as in the proof of the previous theorem. Speci�-cally, item (2) asserts that, for some function m, NP �R FPCPc;2�m�c[log; m �f ], for c(n) = 1�o(1)(but we are not going to use the bound on c). Using Proposition 5.2.1 and Proposition 5.2.2 (Part2), we �rst obtain NP �R FPCPc0;2�t�c0 [(1+�)�t; f �t], where c0(n) = c(n)t(n)=m(n) and t(n) =  log2 n(with the constant  determined by the constant � > 0). The FGLSS-reduction now yields a graphof size N def= 2(1+�+f)�t(n) with gap 2�t(n) as in the analogous proof above. (The gap is in a di�erentlocation but this does not matter.)For the reverse direction, we will use the second part of Proposition 4.1.7 and show that the resultingveri�er has a small amortized free bit complexity. Let Gap-Cliquec;s be NP-hard for some functionsc(N) and s(N) satisfying s(N) � 1=N and c(N)=s(N)� N 11+f+� . As in the analogous proof above,this implies that 1=c(N) � N f+�1+f+� .Let � be a slowly decreasing function s.t. �(N) = o(1) but log2(1=�(N)) = o(logN). Let f 0(N) def=log2(1=c(N))+2 log2(1=�(N)) and let s0(N) def= 1�(N)2 � s(N)c(N) . By invoking Proposition 4.1.7 (Part 2)we get Gap-Cliquec;s 2 FPCP1��;s0[log; f 0]. Since �(N) = o(1), we conclude that Gap-Cliquec;s 2FPCP1�o(1)[ log; f 0 ] for f 0 = f 0log2(1=s0) . It now remains to argue that for any � > 0, f 0 � f + �+ �.We use the lower bound on c(N) and c(N)=s(N), we obtain f 0(N) � f+�1+f+� log2N � 2 log2 �(N)and log2(1=s0(N)) = 2 log2 �(N) + 11+f� log2N . Selecting a su�ciently small �0 > 0 and usinglog2(1=�(N)) < �0 � log2N , we getf 0 � f+�1+f+� log2N + 2 log2(1=�(N))11+f+� log2N � 2 log2(1=�(N))< f+�1+f+� + �011+f+� � �0< f + �+ �01� �0 � (1 + 2(f + �))and the theorem follows.



mrBellare, Goldreich, Sudan 934.1.3 More ConsequencesThe equivalence between clique and fpcp described above turns out be a useful tool in the studyof the hardness of the clique and chromatic number problems. Here we describe some applications.The �rst application is a non-technical one which simply allows us to rephrase the many knownreductions from the Max Clique problem to the Chromatic number problem in a simpler and moreconvenient way. The remaining applications use the fact that the equivalence between fpcp andMax Clique allows us to easily shift gaps, in the Max Clique problem, from one place to another.Loosely speaking, these applications use the fact that the complexity of the promise promblemGap-Cliquec;s remains unchanged when changing the parameters c and s so the log2 c(N)log2 s(N) remainsinvariant. We stress that the ratio c(N)s(N) does not remain invariant.Rephrasing known reductions from Max Clique to Chromatic Number Starting withthe work of Lund and Yannakakis [LuYa], there have been several works on showing the hardnessof approximating the Chromatic number, which reduce the Max Clique problem to the Chromaticnumber problem. Yet none of these results could be stated cleanly in terms of a reduction fromMax Clique to Chromatic Number without loss of e�ciency - i.e., the theorems could not be statedas saying \If approximating Max Clique to within a factor of N� is NP-hard, then approximatingChromatic Number to within a factor of Nh(�) is NP-hard." The reason for the lack of such astatement is that these reductions use the structure of the graph produced by applying an FGLSS-reduction to a FPCP result, and are hence really reductions from FPCP to Chromatic Numberrather than reductions from Max Clique to Chromatic Number. However now we know that FPCPand Max Clique are equivalent, so we can go back and rephrase the old statements. Thus resultsof [LuYa, KLS, BeSu] can be summarised as:For every  > 0, if approximating Max Clique to within N� is NP-hard then approxi-mating Chromatic Number to within Nh(�)� is also NP-hard, where:(1) h(�) = minf16 ; �5�4�g [LuYa].(2) h(�) = minf 111 ; �5+�g [KLS].(3) h(�) = minf14 ; �3�2�g [BeSu].(4) h(�) = minf13 ; �2��g [Fu].(Our discussion of Furer's results [Fu] reects only the best current understanding we have of them,since it is on-going work.) We note that it is an open problem whether one can get a reduction inwhich h(�) ! 1 as � ! 1. We also note that Furer's reduction is randomized while the rest aredeterministic.Reductions among Max Clique Problems Next we present an invariance of the Gap Cliqueproblem with respect to shifting of the gaps. The following result has also been independentlyobserved by Feige [Fei], where he uses a randomized graph product to show the result. Ourdescription uses the properties of fpcp and its equivalence to clique approximation.Theorem 4.1.10 Let k; �1; �2 be real numbers such that k � 1 and 0 � �1 < �2 � 1. Then thefollowing hold:(1) Gap-CliqueN��2 ;N�k�2 �KD Gap-CliqueN��1 ;N�k�1 . (Deterministic reduction.)(2) Gap-CliqueN��1 ;N�k�1 �KR Gap-Clique 12 �N��2 ;2�N�k�2 .



mrBellare, Goldreich, Sudan 94Proof: Part (1) is proved via a well-known graph theoretic trick. Let G be an instance ofGap-CliqueN��2 ;N�k�2 with N nodes. We take the graph-product of G with a complete graph onm nodes, to get a graph H on M = mN nodes. (By a graph-product of two graphs G1(V1; E1)and G2(V2; E2) we mean a graph with vertex set V1 � V2 where veritces (u1; u2) and (v1; v2) areconnected i� (ui; vi) 2 Ei for both i = 1; 2.) We choose m so that if G has a clique of size N1��2,then H has a clique of size M1��1. Speci�cally, setting m = N �2��1�1 , the requirement is satis�ed(as a clique of size N1��2 in G yields a clique of size m �N1��2 = N �2��1�1 +1��2 =M �1�2 � �2(1��1)�1 in H .)Under this choice of m we will show that if G has no cliques of size N1�k�2 then H has no cliquesof size M1�k�1. This will complete the proof of part (1).Suppose H has a clique of size M1��1. Then, by construction, G must have a clique of sizeM1��1m = N1��1m�1= N1��1� �2��1�1 ��1and the claim follows.For part (2) we use the equivalence between FPCP and gaps in MaxClique and apply ampli�citationproperties of FPCP. Let c(N) = N��1 and s(N) = N�k�1. Then, using Corollary 4.1.5 (for line 1),Proposition 5.2.1 (for line 2) and Part (2) of Proposition 5.2.2 (for line 3), we getGap-CliqueN��1 ;N�k�1 2 FPCPc;s[log2N; 0; N2]� FPCPct;st[t � log2N; 0; N2] (for any integer constant t � 1.)�KR FPCP12 �ct;2�st[log2(N2=st); 0; N2]The choice of the integer t will be determined later.Now, we go back to the clique-gap promised problem. Applying the FGLSS-reduction to the pcpclass FPCP12 �ct;2�st[log2(N2=st); 0; N2] we obtain an instance of Gap-Clique 12N��1t;2N�k�1t on an M -vertex graph, where M = N2st = N2+k�1t. To clarify the last assertion and the rest of the proof, weintroduce the notation Gap-Clique�(N);�(N)(N) which makes explicit the size parameter to whichthe promise problem refers. Thus, letting  def= t2+tk�1 , we have obtainedGap-CliqueN��1 ;N�k�1 (N) �KR Gap-Clique 12M��1 ;2M�k��1(M)(with M polynomial in N). Now, part (2) follows by setting t so that  = t2+tk�1 � �2�1 andt = d 2�2(1�k�2)�1 e will do. (Actually, we get Gap-CliqueN��1 ;N�k�1 (N) �KR Gap-Clique 12M��02 ;2M�k�02 (M),for �02 � �2, but this can be corrected by invoking item (1).)The following theorem, was �rst shown by Blum [Bl], using the technique of randomized graphproducts. It essentially uses the gap-shifting idea to show that a seemingly very weak approximatorto the clique (say, N1��-approximation algorithm for some � > 0), can be used to obtain a verygood approximator to the clique number in graphs which are guaranteed to have very large cliques.In particular, using such an algorithm, if a graph has a clique of size Nk , then a clique of size Nk 1�can be found in such a graph in polynomial time. As observed by Blum, this can be translatedinto signi�cantly better algorithms for approximate coloring of a three colorable graph than knowncurrently (see Item (1) in Corollary 4.1.12 below). Here we derive the theorem using FPCP and



mrBellare, Goldreich, Sudan 95the gap-shifting techniques. The parameters are generalized so as to be able to conclude, say, thateven if we have a N2plog2 N -approximation (for Max Clique), then we can obtain non-trivially goodalgorithms for 3-coloring (see Item (2) in Corollary 4.1.12).Theorem 4.1.11 Let � 2 [0; 1], � 2 [0; 1=2) and k > 1. De�ne � : Z+ ! R+, c 2 R+ andg : Z+ ! R+ so that �(N) = �log�2 Nc = 2log2 kand log2 g(N) =  c� log2 k� !1=(1��) log�=(1��)2 N:Then there is a randomized poly(N2+c log2 g(N))-time reduction of instances of Gap-Clique1=k;1=g toM -vertex instances of Gap-Clique 12M��(M) ;2M�1+�(M) .Remark: Observe that g(N) = N o(1). Also, for � = 0 we have �(N) = � and g(N) = k 1� . Thus, thetheorem states that given a 14M1�2� approximator for clique one can one can solve Gap-Clique1=k;1=k0in polynomial-time, where k0 = k1=�.Proof: As usual we �rst reduce Gap-Clique to FPCP and then amplify.Gap-Clique1=k;1=g 2 FPCP1=k;1=g[log2N; 0; N2]� FPCP(1=k)t;(1=g)t [t log2N; 0; N2] (for any function t : Z+ ! Z+.)�KR FPCP12 (1=k)t;2(1=g)t[log2N2gt; 0; N2]We now show that by setting t = c log2N and using the FGLSS-reduction, the above reduces inpoly(M)-time to Gap-Clique 12M��;2M��+1 in an M vertex graph, where M = N2g(N)t.In case the graph is a no-instance the size of the clique is most 2(1=g(N))t �M = 2N2. In the casethe graph is a yes-instance then the clique size is at least 12(1=k)t �M . Thus it su�ces to show that2N2 � 2M �(M) and 2kt � 2M �(M), respectively. Taking logs in both cases it su�ces to show that2 log2N � �(M) log2M (4.1)t log2 k � �(M) log2M (4.2)We �rst lower bound the right hand side of both equations.�(M) log2M = � log1��2 M� � log1��2 (g(N)t)� �t1�� log1��2 g(N)= � � (c log2N)1�� � �c� log2 k� log�2 N�= c log2N log2 kInequality (4.1) now follows from the fact that and c log2 k = 2. Inequality (4.2) follows from thefact that t = c log2N .



mrBellare, Goldreich, Sudan 96The following result was derived as a corollary by Blum [Bl] and shows the application of the abovetheorem to coloring graphs with low-chromatic number with relatively small number of colors. Wewarn the reader that the corollary does not follow directly from the above theorem; this is becauseit uses a Levin-reduction1 from the search version of chromatic number to the search version ofthe clique problem. However, it is possible to de�ne search versions of all the gap problems aboveappropriately and verify that all the reductions work for the search problems as well (i.e., they arein fact Levin-reductions). Thus the following can be derived as a corollary to the above.Corollary 4.1.12 Let k <1.(1) For � > 0, given an N1�� approximator to the clique, one can color any k-colorable graph onM nodes with O(k1=� logM) colors in polynomial time.(2) For �(N) = !((logN)�1=2), given an N1��(N) approximator to the clique, one can color anyk-colorable graph on M nodes with M o(1)-colors in time MO(logM).4.2 On the Limitations of Some Common ApproachesIn this section we provide lower bounds on the free-bit complexity of two tasks which are centralto all existing (\low-complexity") probabilistically checkable proofs. Speci�cally, we consider thetask of checking that a string (given by oracle access) is \close" to a valid codeword and the task ofchecking that one oracle is an encoding of a projection of a string encoded by a second oracle. Here astring is considered close to the code if its distance from some codeword is less than half the distanceof the code. Loosely speaking, we show that each of these tasks has amortized free-bit complexityof at least one (and this is tight by the codes and tests presented in Section 3.13). Furthermore,we show that the amortized free-bit complexity of performing both tasks (with respect to the samegiven oracles) is at least two (and also this is tight by Section 3.13). We consider these boundsas an indication that one will have to depart signi�cantly from the known paradigms in order toobtain lower (than two) amortized free-bit complexity for NP.4.2.1 The tasksOur de�nitions of the various tasks/tests are quite minimal and do not su�ce for the applications.However, as we are proving lower bounds this only makes our results stronger.Loosely speaking, the �rst task consists of testing that an oracle encodes a valid codeword, oris \close" to a valid codeword, with respect to an error-correcting code of non-trivial distance (i.e.,distance greater than 1). The condition regarding the distance of the code is essential since thetask is easy with respect to the identity map (which is a code of distance 1). We remark thattesting \closeness" to codewords with respect to codes of large distance is essential in all knownpcp constructions [BFLS, FGLSS, ArSa, ALMSS, BGLR, FeKi, BeSu].The absolute distance between two words w; u 2 f0; 1gn, denoted �(w; u), is the number of bitson which w and u disagree. We say that the code E : f0; 1g� 7! f0; 1g� has absolute distance d iffor every m and every x 6= y 2 f0; 1gm the absolute distance between E(x) and E(y) is at leastd(m). The absolute distance between a word w and a code E, denoted �E(w), is de�ned as theminimum absolute distance between w and a codeword of E.De�nition 4.2.1 (codeword test): Let E : f0; 1gm! f0; 1gn be a code of absolute distance d > 1.A codeword test (with respect to E) is an oracle machine, T , such that TE(a)(R) accepts for all1A Levin-reduction is a polynomial-time many-to-one reduction which is augmented by corresponding polynomial-time witness transformations.



mrBellare, Goldreich, Sudan 97a;R. The error probability of T is de�ned as the maximum accepting probability of T over oraclesA of absolute distance at least bd=2c from the code E; namely,maxA2f0;1gn s.t. �E(A)�bd=2c �PrR �TA(R) accepts�	(Nothing is required with respect to non-codewords which are \close" to the code.)We do not know if our lower bounds apply to a more relaxed de�nition in which the codeword testis required to reject only strings which are at distance d or more from the code; namely, when theerror probability of T is de�ned as maxA2f0;1gn s.t. �E(A)�d �PrR �TA(R) accepts�	We propose the determination of the amortized free-bit complexity of such a relaxed codeword testas an open problem. The relevance of this problem was discussed in the introduction.The second task is de�ned with respect to a \projection function" � and a pair of codes, E1and E2. Loosely speaking, the task consists of checking if the string E1-encoded by the �rst oracleis mapped by � to the string that is E2-encoded by the second oracle.De�nition 4.2.2 (projection test): Let E1: f0; 1gm ! f0; 1gn and E2: f0; 1gk ! f0; 1gn0 be twocodes and let � : f0; 1gm ! f0; 1gk be a function. A projection test (with respect to the above)is a two-oracle machine, T , such that TE1(a);E2(�(a))(R) accepts for all a;R. The error probabilityof T is de�ned as the maximum accepting probability of T over oracles pairs (E1(a); E2(b)) whereb 6= �(a); namely, maxa;b s.t. �(a)6=bnPrR hTE1(a);E2(b)(R) acceptsio(Nothing is required with respect to non-codewords.)Finally, we consider a test T which combines the two tests above; namely, T takes two oraclesA and B and performs a codeword test on A and a projection test on the pair (A;B).De�nition 4.2.3 (combined test): Let E1: f0; 1gm ! f0; 1gn be a code of absolute distance d > 1and E2: f0; 1gk! f0; 1gn0 be two codes and let � : f0; 1gm! f0; 1gk be a function. A combined testfor (E1; E2; �) is a two-oracle machine T such that TE1(a);E2(�(a))(R) accepts on all a;R. The errorprobability of T is de�ned as the maximum accepting probability of T over oracles pairs (A;B)where either �E1(A) � bd=2c or A = E1(a), B = E2(b) but �(a) 6= b; namely,max(A;B)2S �PrR �TA;B(R) accepts�	 :where S def= f(A;B) : (�E1(A) � bd=2c) or (9a; b s.t. A = E1(a) and B = E2(b) and �(a) 6= b)g.(Nothing is required with respect to non-codeword pairs, (A;B), which are \close" to some pair(E1(a); E2(b)) with �(a) 6= b.)



mrBellare, Goldreich, Sudan 98Conventions and NotationsThe pattern of test T on access to oracle A (resp., oracles A and B) when using coin-sequence Rconsists of (R and) the sequence of queries and answers made by T . Namely, this pattern, denotedpatternT (A;R)g (resp., patternT (A;B;R)g), is de�ned as the sequence (R; q1; a1; :::; qt; at) where qiis the ith query made by T on coin-sequence R and after receiving the answers a1; :::; ai�1. Weinclude the queries in the pattern for sake of clarity (but they can be easily reconstructed fromthe coin-sequence and the answers). In case T uses two oracles, we may assume that the queriesspecify to which oracle they are addressed. For simplicity, we assume in the rest of this subsectionthat the test has access to one oracle, denoted A.The set AccT (R) is de�ned to be the set of accepting patterns of T on coin-sequence R. Clearly,AccT (R) = fpatternT (A;R) : TA(R) acceptsgRecall that T is said to have free-bit complexity f if for each possible coin-sequence R it holdsthat jAccT (R)j � 2f . We say that T has average free-bit complexity fav if ER [jAccT (R)j] � 2fav ,when the expectation is taken uniformly over all possible coin-sequences. The amortized free-bitcomplexity of a test is de�ned as favlog2(1=�) , where fav is the average free-bit complexity of the testand � is its error probability.4.2.2 Lower Bound for the Codeword TestProposition 4.2.4 For any code of absolute distance greater than 1, the Codeword Test hasamortized free-bit complexity of at least 1� o(1).The amortization in the above proposition is to be understood as taking place on a �xed numberof free-bits whereas the length of the oracle grows. Actually, we can allow both the oracle-lengthand the free-bit count to grow, provided that the logarithm of the number of codewords growsfaster than the free-bit complexity. Alternatively, we can consider a �xed oracle length and a �xbound on the number of free-bits. Actually, this is done in the following technical lemma fromwhich the above proposition follows.Lemma 4.2.5 Let E : f0; 1gm 7! f0; 1gn be a code of absolute distance d > 1, and let T bea codeword test with respect to E having average free-bit complexity fav. Then, T has errorprobability at least 1F � 1M , where F = 2fav and M = 2m. Furthermore, T has error probability atleast 2� 2fav .Proof: Fix an arbitrary coin-sequence R, and let FR denote the cardinality of the set AccT (R).Let a1; a2 be selected independently and uniformly in f0; 1gm, and consider the codewords E(a1)and E(a2). With probability 1M we have a1 = a2 and otherwise �(E(a1); E(a2)) � d. From a1and a2, we construct an oracle A(a1; a2) as follows: If a1 = a2, then A = E(a1). Otherwise, weconstruct A(a1; a2) so that it agrees with the value of the bits of both E(ai)'s whenever they arethe same and is at distance dd=2e from E(a1). This can be done as follows: let S be the set ofpositions on which E(a1) and E2(a2) disagree and let S 0 be a subset of S of cardinality dd=2e. ThenA(a1; a2) equals E(a1) on all positions not in S 0 (and equals E(a2) on the positions in S 0).We claim that, when a1 6= a2, the oracle A def= A(a1; a2) is at distance at least bd=2c from the code(i.e., �E(A) � bd=2c). This can be proved as follows: Consider any a 2 f0; 1gm and observe thatby the triangle inequality�(A;E(a))� �(E(a1); E(a))��(E(a1); A) � d� dd=2e = bd=2c



mrBellare, Goldreich, Sudan 99We now claim that Pra1 ;a2 hTA(a1;a2)(R) acceptsi � 1FRwhere the probability is taken uniformly over all possible choices of a1; a2 2 f0; 1gm. The keyobservation is that if patternT (E(a1);R) equals patternT (E(a2);R), then patternT (A(a1; a2);R) willbe equal to patternT (E(a1);R) (since no query of T (R) falls in the set S { de�ned above). Thus,since TE(a1)(R) accepts, TA(a1;a2)(R) must accept too. This suggests to lower bound the proba-bility that TA(a1;a2)(R) accepts by the probability that patternT (E(a1);R) = patternT (E(a2);R).Consider an enumeration, �1; :::; �FR, of the patterns in AccT (R) and denote by pi the probabilitythat patternT (E(a);R) equals the ith pattern in this enumeration, when a is uniformly selectedin f0; 1gm (i.e., pi def= Pra [patternT (E(a);R) = �i]). Thus, when a1 and a2 are picked at random,the probability that patternT (E(a1);R) = patternT (E(a2);R) is PFRi=1 p2i . Subject to the conditionPi pi = 1, the quantity PFRi=1 p2i is lower bounded by 1FR (with an equality occurring when the pi'sare equal).The following observations now bound the error of T :Pra1;a2 hTA(a1;a2)(R) accepts and a1 6= a2i � Pra1;a2 hTA(a1 ;a2)(R) acceptsi� Pra1;a2 [a1 = a2]� 1FR � 1MAll the above holds for any coin-sequence R. Now, we let R be uniformly chosen and getPrR;a1;a2 hTA(a1;a2)(R) accepts and a1 6= a2i � ER � 1FR �� 1M� 1F � 1M(The last inequality follows by Jensen's inequality.) Thus there must exist oracles a1 and a2 witha1 6= a2 such that PrR hTA(a1;a2)(R) acceptsi � 1F � 1MBut the oracle A(a1; a2) above satis�es �E(A(a1; a2)) � bd=2c implying that the error of T is atleast 1F � 1M .For the \furthermore" part observe that if FR = 1 for some coin-sequence R then patternT (E(a1);R)= patternT (E(a2);R), for every two a1; a2 2 f0; 1gm. It follows that, for every a1 6= a2, given accessto the oracle A(a1; a2) and using coin-sequence R, the test T accepts (and is wrong in doing so).Thus, for every a1 6= a2, PrR hTA(a1;a2)(R) acceptsi � PrR [FR = 1]and the Furthermore Claim follows by using Markov's Inequality (i.e., PrR [FR > 1] � ER [FR � 1]).Proof of Proposition 4.2.4: Let T be a test for the code E : f0; 1g� ! f0; 1g� so that Emaps m-bit strings into n(m)-bit strings. Suppose that T has average free-bit complexity f(m)and error �(m), as a function of m (the length of strings encoded by the oracle). We �rst assume



mrBellare, Goldreich, Sudan 100that f(m) � 1. Using Lemma 4.2.4 (and letting �(m) def= 2f(m)�m), we lower bound the amortizedfree-bit complexity of T as followsf(m)log2(1=�(m)) � f(m)� log2( 12f(m) � 12m )= f(m)f(m)� log2(1� �(m))> f(m)f(m) + �(m)> 1� �(m)(For the last inequality, we have assumed f(m) � 1.) Thus, for this case, the proposition followsby our convention that the number of codewords (denoted 2m) grows faster than exponential inthe free-bit complexity f(m) (i.e., �(m) = 2f(m)2m ! 0 with n ! 1). Finally, we need to addressthe case in which f(m) � 1 does not hold. We consider two sub-cases. In the �rst sub-case, weassume that f(m) ! 0 for some subsequence of the m's. For these m's the Furthermore-part ofLemma 4.2.4 guarantees that �(m) � 2 � 2f(m). Setting g(m) def= 2f(m) � 1, we lower bound theamortized free-bit complexity by f(m)log2(1=�(m)) � log2(1 + g(m))� log2(1� g(m))! g(m)g(m)For the other sub-case, we have f(m) � t, for some constant t > 0. Applying T for t times we geta test T 0 with average free-bit complexity t � f(m) � 1 and error �0(m) = �(m)t, which maintainsthe amortized free-bit complexity of T (since f(m)� log2 �(m) = t�f(m)� log2 �0(m) ). Applying the above analysisto T 0, the proposition follows.4.2.3 Lower Bound for the Projection TestA projection function is a function � : f0; 1g� 7! f0; 1g� having the property that for every m thereexists a k so that � maps f0; 1gm onto f0; 1gk.Proposition 4.2.6 For any pair of codes used in the two oracles and any projection function, theProjection Test has amortized free-bit complexity of at least 1� o(1).Again, the proposition is proved by the following technical lemma. Actually, the lemma refers toany function � : f0; 1gm 7! f0; 1gk and its conclusion depends on the cardinality of the range of �(which in case of a projection function equals 2k). Abusing notations we let �(S) def= f�(a) : a2Sg.Lemma 4.2.7 Let E1 : f0; 1gm 7! f0; 1gn, E2 : f0; 1gk 7! f0; 1gn0 and � : f0; 1gm 7! f0; 1gkbe as in De�nition 4.2.2, and T be a projection test with respect to them having average free-bitcomplexity fav. Then, T has error probability at least 1F � 1K , where K = j�(f0; 1gm)j and F = 2fav .Furthermore, if K > 1 then T has error probability at least 2� 2fav .



mrBellare, Goldreich, Sudan 101Proof: Fixing an arbitrary coin-sequence R, let FR def= jfAccT (R)gj. We consider the behavior ofthe test T when given oracle access to a pair of randomly and independently selected codewords.Speci�cally, let S � f0; 1gm be a set of K strings such that for every b 2 �(f0; 1gm) there exists ana 2 S satisfying �(a) = b. We consider the behavior of T when given access to the oracles E1(a)and E2(�(a0)), where a and a0 are independently and uniformly selected in S. With probability1K , we have �(a) = �(a0). On the other hand we claim that, given access to such pair of randomoracles, T accepts with probability at least 1FR . Once the claim is proven, the lemma follows (as inthe proof of the previous lemma).Consider the set of all FR possible accepting patterns of T on access to oracles, E1(a) and E2(�(a)),where a 2 S. Each such pattern consists of a pair (�; �), where � (resp., �) denotes the transcriptof the test's interaction with E1(a) (resp., E2(�(a))). Enumerating all possible FR patterns, wedenote by pi the probability that the ith pattern occurs, when T is given access to the oracle-pair(E1(a); E2(�(a)) where a is uniformly selected in S. Namely,pi def= Pra2S [patternT (E1(a); E2(�(a));R) = (�i; �i)]where (�i; �i) is the ith accepting pattern for T (R). Clearly,Pra;a02S [patternT (E1(a); E2(�(a));R) = patternT (E1(a0); E2(�(a0));R) = (�i; �i)] = p2i (4.3)We now claim that the probability that a pair of independently chosen random oracles (i.e.,(E1(a); E2(b)) selected by uniformly selecting a; a0 2 S and setting b = �(a0)) leads to the ithpattern is at least p2i ; namely,Pra;a02S [patternT (E1(a); E2(�(a0));R) = (�i; �i)] � p2i (4.4)Eq. (4.4) is proven by a cut-and-paste argument: Suppose p def= patternT (E1(a); E2(�(a));R) equalsp0 def= patternT (E1(a0); E2(�(a0));R) and consider a computation of TE1(a);E2(�(a0))(R). Proceedingby induction, and assuming that the �rst t queries are answered as in p, we conclude that the t+1stquery (in our \mixed" computation) is identical to the t + 1st query in p = p0. If this query isdirected to the �st oracle then it is answered by E1(a) (as in p) and otherwise it is answered byE2(�(a0)) (as in p0). In both cases the answer matches the t+1st answer in p = p0. We conclude thatwhenever p = p0, the computation of TE1(a);E2(�(a0))(R) encounters the same pattern (p). Thus, theprobability that the computation of TE1(a);E2(�(a0))(R) encounters the ith pattern is lower boundedby the expression in Eq. (4.3), and Eq. (4.4) follows. (We remark that for non-adaptive tests, theprobability that the ith pattern is encountered equals PFRi=1 p0ip00i , where p0i (resp., p00i ) is the sum ofall pj 's satisfying �j = �i (resp., �j = �i). Actually, the same holds for any test which selects itsqueries for each oracle independently of answers obtained from the other oracle.)Using Eq. (4.4), we getPra;a02S [patternT (E1(a); E2(�(a0));R) 2 AccT (R)] � FRXi=1 p2i� 1FRand the main part of the lemma follows. Again, the furthermore part follows by observing forFR = 1, patternT (E1(a); E2(�(a));R) = patternT (E1(a0); E2(�(a0));R), for every two a; a0 2 f0; 1gm.Again, this implies that, for every a1 6= a2, given access to the oracle-pair (E1(a); E2(�(a0))) andusing coin-sequence R, the test T (wrongly) accepts.



mrBellare, Goldreich, Sudan 1024.2.4 Lower Bound for the Combined TestProposition 4.2.8 For any pair of codes used in the two oracles, so that the �rst code has absolutedistance greater than 1, and for any projection function, the Combined Test has amortized free-bitcomplexity of at least 2� o(1).Again, the proposition is proved by the following technical lemma. Loosely speaking, the lemmaasserts that a combined test of free-bit complexity 2f must have error probability at least 18 � 2�f .The lower bound extends to the case where 2f is a bound on the average free-bit complexity; theerror probability in this case can be lower bounded by 364 � 2�f { see details below. It follows thatthe amortized free-bit complexity of such a test must be at least 2ff+5 � 2 (for large f 's). Therestriction to large f 's does not really weaken the result. Suppose on the contrary that there existsa test with amortized free-bit complexity fam. Then, for any su�cient large t, we can obtain a testwith free-bit complexity 2f def= t � fam and error 2�t. By the above t�famt � 2ff+5 � 2 (as f is nowlarge).Lemma 4.2.9 Let E1 : f0; 1gm 7! f0; 1gn be a code of absolute distance greater than 1, E2 :f0; 1gk 7! f0; 1gn0, and � : f0; 1gm 7! f0; 1gk be a projection function. Suppose that T is acombined codeword and projection test with respect to the above having free-bit complexity 2f .Then, T has error probability at least 18F � 12K� 14M , where K = 2k, F = 2f , andM is the minimum,over all b 2 f0; 1gk, of the number of a 2 f0; 1gm projected by � to b (i.e., M def= minb2f0;1gkfjfa :�(a)=bgjg). Furthermore, if 2f < 1 and maxfM;Kg > 1 then T has error probability 1.Proof: The \furthermore" part follows immediately by any of the furthermore parts of Lemma 4.2.5or Lemma 4.2.7 (as 22f must be an integer and so 2f < 1 implies f = 0). The proof of the main partof the lemma uses both strategies employed in the proofs of Lemmas 4.2.5 and 4.2.7. We considertwo cases. The �rst case is that for some E2(b), half of the possible (coin-sequences) R's have atmost F accepting patterns with respect to the coin-sequence R and second oracle B = E2(b). Inthis case we employ the strategy used in the proof of Lemma 4.2.5, restricted to oracles constructedby combining two uniformly selected codewords E1(ai)'s satisfying �(ai) = b. The second case isthat for every b 2 f0; 1gk, for half of the possible (coin-sequences) R's, the number of acceptingpatterns with respect to the coin-sequence R and second oracle B = E2(b) is at least F . In thiscase we show that many possible B's must �t into fewer than F2F accepting patterns and we mayemploy the strategy used in the proof of Lemma 4.2.7. Details follow.In the sequel � 2 [0; 1] is a constant to be determined later. (In the above motivating discussionwe have used � = 12 but a better bound follows by letting � be larger.)Case 1: there exists b 2 f0; 1gk so that for at least (1� �) fraction of the possible (coin-sequences)R's, hereafter called good, the number of accepting patterns with respect to the coin-sequence Rand second oracle (�xed to) B = E2(b) is at most F .Fixing this b, we consider M possible a's satisfying �(a) = b. Employing the argument ofLemma 4.2.5, we get that for each of these good R's, a random oracle A (constructed using twouniformly chosen a's as above) is wrongly accepted with probability at least 1F � 1M . By an averag-ing argument, it follows that there exists a pair of oracles (A;B) on which T errs with probabilityat least (1� �) � � 1F � 1M � (4.5)



mrBellare, Goldreich, Sudan 103Case 2: for every b 2 f0; 1gk, for at least a � fraction of the possible (coin-sequences) R's, thenumber of accepting patterns with respect to the coin-sequence R and second oracle B = E2(b) isat least F .Let  < � be a parameter to be determined later. By a counting argument, for at least a ��1�fraction of the possible R's, hereafter called good, there exists a set, denoted �R, of at least  � 2kpossible b 2 f0; 1gk so that there are at least F accepting patterns which are consistent with coin-sequence R and second oracle �xed to B = E2(b). (Namely, let g denote the fraction of good R's.Then g + (1� g) �  � � and g � ��1� follows.)Let S � f0; 1gm be a set of 2k strings, de�ned as in the proof of Lemma 4.2.7, so that � maps S ontof0; 1gk. Fixing a good coin-sequence R, we adapt the strategy used in the proof of Lemma 4.2.7as follows. We consider a set SR � S of j�Rj strings so that � maps SR onto �R, and enumeratethe accepting patterns which occur when the test, using coins R, is given access to a oracle-pair(E1(a); E2(�(a))), where a is uniformly chosen in SR. We �rst claim that there are at most F suchpatterns. Namely,Claim: For any good R, jfpatternT (E1(a); E2(�(a));R) : a 2 SRgj � F .Proof: By de�nition of �R, for each b 2 �R, there are at least F accepting patterns consistent withthe coin-sequence R and the second oracle E2(b) (and out of them only one �ts the �rst oracle E1(a)where a 2 SR and �(a) = b). By a cut-and-paste argument, if (R; �; �) and (R; �0; �) are acceptingpatterns for second-oracle E2(b) and if (R; �; �) is an accepting pattern for second-oracle E2(b0)then (R; �0; �) is also an accepting pattern for second-oracle E2(b0). It follows that the acceptingpatterns of two E2(b)'s either collide or do not intersect. Thus, the number of accepting patternsfor the various (E1(a); E2(�(a)))'s, where a 2 SR, is at most F2F = F and the claim follows. 2Now we consider what happens if one selects independently and uniformly a; a0 2 S. Followingthe proof of Lemma 4.2.7, with probability 1K , we have �(a) = �(a0) (and otherwise �(a) 6= �(a0)).On the other hand, given access to such pair of random oracles, the test accepts with probabilityat least 2 � 1F . (The 2 factor is due to the probability that a; a0 2 SR, whereas the 1F factorcorresponds to the analysis which supposes that a and a0 are uniformly selected in SR).The above analysis holds for any good coin-sequence R. Using the lower bound on the fraction ofgood R's, it follows that for a ��1� fraction of the R's, the probability that the test errs, on coin-sequence R when given access to a random pair of oracles (selected as above), is at least 2F � 1K .By an averaging argument, there exists a pair of oracles for which the test errs with probability� � 1�  � �2F � 1K� (4.6)It is left to select � and  so to maximize the minimum among the expressions in Equations (4.5)and (4.6). (But why bother?) Setting � = 34 and  = 12 we lower bound these expressions by14F � 14M and 18F � 12K , respectively, and the (current statement of the) lemma follows.To prove a bound for the case of average free-bit complexity F 2, we �rst apply Markov's Inequalityand conclude that all but an � fraction of the coin-sequences have at most G2 def= F2� acceptingpatterns (in which this �xed coin-sequence appears). (We can use any 0<�<1.) We then consideronly those coin sequences (and apply the same argument as above to each of them). The averagingargument at the end of the above proof then yields that there exists an oracle-pair on which T errson at least a 18G � 12K � 14M fraction of these coin-sequences. It follows that this oracle makes T err



mrBellare, Goldreich, Sudan 104with probability at least (1� �) � ( 18G � 12K � 14M ) (which equals (1 � �) � (p�8F � 12K � 14M )). Using� = 14 , we get a lower bound of 364F � 38K � 316M .



C h a p t e r 5PCP: Properties and Transformations
5.1 The Complexity of PCP and FPCPIn this section we present several results regarding the complexity of languages acceptable byprobabilistically checkable proofs having, respectively, small query complexity, small amortized-query complexity and small free-bit complexity. Thus, in the current section, notations such asPCPc;s[r; q] stand for classes of languages. The results can be extended to classes of promiseproblems having such probabilistically checkable proofs.5.1.1 Query complexity and amortized query complexityIn this subsection, MIPc;s[r; p] denotes the class of languages accepted by a (one-round) p-proverinteractive proof system in which r is the randomness complexity, c is a lower bound on theprobability of accepting yes-instances and s is an upper bound on the probability of acceptingno-instances. The corresponding class for probabilistically checkable proofs is PCPc;s[r; q], where qdenotes the number of queries. In both classes only binary queries are allowed (indeed this is lessstandard for MIP). The �rst part of the following lemma is folklore and is stated here for sake ofcompleteness.Lemma 5.1.1 For all admissible functions c; s; r; p.(1) MIPc;s[r; p]� PCPc;s[r; p].(2) MIPc;s[r; p]� MIPc;2s[r; p� 1].Proof: Part (1) follows from the de�nition of PCP and MIP. Part (2) is shown as follows. Let Vbe an (r; p)-restricted MIP veri�er. We de�ne V 0 { an (r; p� 1)-restricted veri�er who on input xbehaves as follows:� V 0 tosses coins c for V .� V 0 refers the �rst p � 1 queries of V to the corresponding p � 1 provers obtaining answers(bits) a1; : : : ; ap�1, respectively.� V 0 accepts if and only if there exists ap 2 f0; 1g such that V would accept answers a1; : : : ; apon input x and random string c. 105



mrBellare, Goldreich, Sudan 106Suppose that provers P1; : : : ; Pp convince V to accept x with probability �. Then, the proversP1; : : : ; Pp�1 convince V 0 to accept x with probability at least � (because if V (x) accepts the tran-script (c; a1; :::; ap) then V 0(x) will accept the transcript (c; a1; :::; ap�1)). This justi�es the bound onthe completeness probability of V 0. Suppose, on the other hand, that provers P1; : : : ; Pp�1 cause V 0to accept x with probability �. Consider a uniformly selected strategy for another prover, denotedPp (i.e., choose a random response for every question). Then, the probability that provers P1; : : : ; Ppcause V to accept input x is at least 12 � � (because if V 0(x) accepts the transcript (c; a1; :::; ap�1)then there exists a value ap 2 f0; 1g so that V 0(x) will accept the transcript (c; a1; :::; ap) and withprobability one half Pp answer equals this ap). This justi�es the bound on the soundness probabilityof V 0.The following proposition explores the limitations of probabilistically checkable proof systems whichuse logarithmic randomness and upto three queries. Some of the qualitative assertions are well-known; for example, when considering perfect completeness, 3 queries are the minimum needed(and su�cient [ALMSS]) to get above P.Proposition 5.1.2 (PCP systems with logarithmic randomness and at most 3 queries):(1) (PCP with 1 query is weak): For all admissible functions s; c : Z+ ! [0; 1], so that s is strictlysmaller than c, PCPc;s[log; 1] = P.(2) (One-sided error pcp with 2 queries is weak): For all admissible functions s : Z+ ! [0; 1]strictly less than 1, PCP1;s[log; 2] = P.(3) (Two-sided error pcp with 2 queries is not weak): On the other hand, there exists 0 < s < c < 1so that PCPc;s[log; 2] = NP. Furthermore, this holds for c > 0:9 and s < 9596c.(4) (One-sided error pcp with 3 queries is not weak): PCP1;0:9[log; 3] = NP.(5) (One-sided error pcp with 3 queries is not very strong): 8s < 18 , PCP1;s[log; 3] = P. Further-more, 8s � 0:299, naPCP1;s[log; 3] = P, where naPCP is a restriction of PCP in which theveri�er is required to be non-adaptive.Proof of Proposition 5.1.2, Part (1): Part (1) is obvious since an oracle � maximizing theacceptance probability can be constructed by scanning all possible random pads and setting �(q)so that it \satis�es" the majority of random-pads for which the veri�er makes query q.Proof of Proposition 5.1.2, Part (2): The folklore proof commonly deals only with the non-adaptive case. In general, the veri�er V , demonstrating that L 2 PCP1;s[log; 2], may be adaptive.We assume, without loss of generality, that V always makes at least one query. Thus, after makingthe �rst query, V decides whether to accept, reject or make an additional query and accept only aspeci�c answer for it. Thus, the computation of V on input x, random pad c and access to a genericoracle can be captured by two Horn clauses, each corresponding to a di�erent answer-value for the�rst query. Speci�cally, suppose that V queries the oracle at location i and upon receiving value� accepts i� location j have value � . Then, we write the Horn clause ��i ! ��j . (In case V alwaysaccepts (resp., rejects) after obtaining value � from oracle location i, we write the clause ��i ! T(resp., ��i ! F).) In addition, for every i, we write the Horn clauses �0i ! (:�1i ) and (:�0i )! �1i .Thus, the computation of V , on input x and access to a generic oracle, can be captured by aHorn formula, denoted �x, in which Horn clauses correspond to the various (polynomially many)possible (random-pad,�rst-answer) pairs. Furthermore, �x can be constructed in polynomial-timegiven x (and V ). Using a (polynomial-time) decision procedure for satis�ability of Horn Formulae,we are done. (Alternatively, we can use the linear-time decision procedure for 2-SAT due to Evenet. al. [EIS].)



mrBellare, Goldreich, Sudan 107Proof of Proposition 5.1.2, Part (4): To see that PCP1;s[log; poly] � NP, for every s < 1,consider a non-deterministic machine which tries to guess an oracle which makes the veri�er (of theabove system) always accept. The other direction (of Part (4)) is shown in Theorem 3.11.3.Proof of Proposition 5.1.2, Part (3): To see that PCPc;s[log; poly] � NP, for every s <c, consider a non-deterministic machine which tries to guess an oracle which makes the veri�eraccept with probability at least c. The NP � PCPc;s[log; 2] result follows from the hardness ofapproximating Max2SAT. Speci�cally, suppose that the following promise problem is NP-hard (viaKarp reductions): given a 2CNF formula decide whether there exists a truth assignment whichsatis�es at least a c fraction of the clauses or any truth assignment satis�es at most a s fractionof its clauses, where 0 < s < c < 1 are �xed constants. Then we can present a PCPc;s[log; 2]system for any L 2 NP. On input x, the veri�er in this system, performs the reduction (of L tothe promise problem) obtaining a 2CNF formula �x, next it uniformly selects a clause of �x andqueries the oracle for the values of the variables in this clause (accepting accordingly). Using theresult in Section 3.8, we can set c > 0:9 and s < 9596 � c.Remark: It may be possible to increase the ratio c=s by implementing the inner veri�er used toestablish the NP-Hardness of Max2SAT using arbitrary 2-literal clauses, rather than 2CNF clauses.Proof of Proposition 5.1.2, Part (5): The result for general veri�ers follows from Lemma 5.1.4(below). The rest of the proof is devoted to the non-adaptive case. Let L 2 naPCP1;s[log; 3], andlet V be a (non-adaptive) veri�er demonstrating this fact. Without loss of generality, we mayassume that V always makes 3 di�erent queries. As a mental experiment we de�ne, for every setQ � f0; 1g�, a \veri�er" VQ who on input x acts as follows:� VQ uniformly selects a random pad c for V .� Let q1; q2 and q3 be the three queries of V , on input x and randomness c. (The hypothesisthat V is non-adaptive is crucial for the de�nition of q2 and q3.)� If all three (desired) queries are in Q then VQ accepts (without making any query!).� Otherwise (i.e., not all qj 's are in Q), then VQ makes only the queries which lie in Q. Specif-ically, for every j such that qj 2 Q, the veri�er VQ makes query qj , obtaining an answerdenoted aj.� VQ accepts x if and only if there exists a triple (b1; b2; b3) so that� bj = aj for each qj 2 Q; and� V accepts the input x on randomness c and oracle answers (b1; b2; b3).It is clear that for every set Q, the veri�er VQ uses logarithmic randomness and makes at most twoqueries. At this point we don't consider the issue of implementing VQ. The probability that VQaccepts x (given access to oracle �) is greater or equal to the probability that V accepts x (givenaccess to oracle �). Thus, if V can be led (by an appropriate oracle) to always accept the input x,so can VQ. We now show that, for every x 62 L, provided some condition (speci�ed below) on Qholds, VQ accepts x with probability strictly less than 1.Claim. Fix any x 62 L and any set Q. For i = 0; 1; 2; 3, let pxi (Q) denote the probability (taken overV 's coin tosses) that V , on input x, generates i queries in the set Q. (Since V is non-adaptive this



mrBellare, Goldreich, Sudan 108is well de�ned.) Suppose that px(Q) def= 2Xi=0 123�i � pxi (Q) > sThen, given access to any oracle, VQ accepts x with probability strictly less than 1.that VQ, when given oracle access to �, always accepts input x 62 L (i.e., accepts with probability1). We will show that there exists a proof �0 such that V , when given access to oracle �0, acceptsinput x 62 L with probability px(Q) > s, contradicting the soundness of V .We start by considering a random oracle, denoted �, de�ned as follows. For every q 2 Q, we set�(q) def= �(q). For every q 62 Q, we let �(q) be uniformly and independently distributed in f0; 1g, Wenow lower bound the accepting probability of V when given access to �, using the hypothesis thatVQ always accepts. Let c be a random-pad for V and suppose that V using random pad c makesm > 0 queries outside Q. Then, using the random-pad c, the veri�er VQ accepts while refrainingfrom making m queries. It follows that V , using random pad c and given oracle access to �, acceptswith probability at least 2�m, where the probability is taken over the choice of �. Since VQ, givenaccess to �, always accepts x it follows that V , on access to a random �, accepts x with probabilityat least P3m=1 px3�m(Q) � 12m = px(Q). It follows that there exists an oracle �0 so that, given accessto �0, the veri�er V accepts x with probability at least px(Q). Since x 62 L we conclude, using thesoundness of V , that px(Q) � s in contradiction to the hypothesis of the claim. 2Next we present a polynomial-time algorithm that, given x 2 f0; 1g�, e�ciently constructs a set Qwith high px(Q). Note that there are only polynomially many queries to consider for membershipin Q (speci�cally these appearing in all possible computations of V on input x). We �rst considera randomized construction of a set Q, in which each such query is included in Q with probability qindependently of all other queries, where q is a �xed parameter. Now, the expected value of px(Q)equals P2i=0 123�i � qxi , where qxi is the probability that V on input x makes i queries which hit therandom set Q (the probability is taken over V 's coin tosses and the random choice of Q). Clearly,qxi = �3i�qi(1� q)3�i. Thus, the expected value of px(Q) equalsp(q) def= 2Xi=0 123�i �  3i!qi(1� q)3�i = 32(1� q)q2 + 34(1� q)2q + 18(1� q)3Using the method of conditional probabilities [ASE], given x, we can construct in (deterministic)polynomial-time a set Q satisfying px(Q) � p(q). In the construction we use the fact that, given apartial speci�cation of a set Q, we can compute the expected value of px(Q) where the expectationis taken over all random extension of Q. (Speci�cally, this is done by considering all random padsfor V and considering for each such pad the number of queries which are yet unspeci�ed. Eachsuch unspeci�ed query is in Q with probability q.) Thus, we obtain a polynomial-time veri�er Vqwhich uses logarithmically many coins and two queries. Furthermore, Vq accepts any x 2 L withprobability 1 and, provided p(q) > s, accepts x 62 L with probability strictly less than 1. Weconclude that if p(q) > s then, for some s0 < 1, L 2 PCP1;s0 [log; 2] = P (where the equality is dueto Part (2)).To conclude the proof we need to select q so to maximize p(q). Numerical experiments show thatthere exists q so that p(q) > 0:299 and PCP1;0:299[log; 3] � PCP1;s0[log; 2] = P follows (for somes0 < 1). This completes the proof of Part (5).The (stronger) bound obtained in Lemma 5.1.2.5, let alone that it is restricted to the non-adaptivecase, is weaker than what can be proven for MIP proof systems (see next corollary). This contrast



mrBellare, Goldreich, Sudan 109may perhaps provide a testing ground to separate PCP from MIP, a question raised by [BGLR].The following corollary is obtained by combining Lemma 5.1.1 and Proposition 5.1.2.2.Corollary 5.1.3 For s < 1=2, MIP1;s[coins = log; provers = 3] = P.A general result which relates the query complexity of a probabilistically checkable proof systemand the ratio between the acceptance probabilities of yes-instances and no-instances, follows {Lemma 5.1.4 For all admissible functions c; s; q; r; l such that cs > 2q,PCPc;s[r; q]� RTIME�poly�n; 1c� 2qs��Furthermore, PCPc;s[r; q] � PSPACE, and if r and q are both logarithmically bounded thenPCPc;s[r; q] = P.Proof: Let L 2 PCPc;s[r; q] and V be a veri�er demonstrating this fact. Observe that for x 2 L, theprobability that V accepts x, given access to a random oracle, is at least c2q . On the other hand, forx 62 L, the probability that V accepts x, given access to any oracle, is at most s < c2q . Thus, we candecide if x is in L by simulating the execution of V with access to a random oracle and estimatingthe acceptance probability, over V 's random choices and all possible oracles. In particular, we canestimate this probability upto an � def= s � c2q additive term, with very high probability, by takingpoly(1=�) samples. Alternatively, we can compute this probability in polynomial-space. Finally, incase r and q are both logarithmically bounded, we can (exactly) compute the probability that Vaccepts x, given access to a random oracle. To this end we loop through all possible random-padsfor V and for each pad consider all possibilities of setting the oracle bits examined by V . Thus, fors < c2q , we get a deterministic polynomial-time decision procedure.The last assertion in the above lemma (i.e., PCPc;s[log; q] = P for cs > 2q). cannot be strengthenby omitting the (logarithmic) bound on q since NP = PCP1;0[0; poly]. On the other hand, recallingthe de�nition of PCP we immediately getCorollary 5.1.5 Let � : Z+ ! [0; 1] be an admissible function strictly greater than 0. Then, forevery admissible function c : Z+ ! [0; 1],PCPc[ logn; 1� � ] = PIn particular, this holds for c = 1.Proof: L 2 PCPc[ log; 1� � ] implies that for some logarithmically bounded function m, we haveL 2 PCPc;2�m�c[log; (1� �) �m] and the corollary follows.The above results are focused on pcp systems with logarithmic randomness. However, proofsystems with unrestricted randomness (as considered in the next proposition) may also provide someindication to the e�ect of very low query complexity. The results we obtain are somewhat analogousto those of Proposition 5.1.2. Recall that PCP1; 12 [poly; poly] equals NEXPT (Non-deterministicexponential time) [BFL]. Thus, the power of pcp systems with polynomial randomness has to becompared against NEXPT.Proposition 5.1.6 (general PCP systems with at most 3 queries):



mrBellare, Goldreich, Sudan 110(1) (PCP with 1 query is relatively very weak): For all admissible functions s; c : Z+ ! [0; 1], sothat c(n)� s(n) is non-negligible1 PCPc;s[poly; 1] � AMwhere AM is the class of languages having one-round Arthur-Merlin proof systems (cf., [Bab]).(2) (One-sided error pcp with 2 queries is relatively weak): For all admissible functions s : Z+ ![0; 1] strictly less than 1, PCP1;s[poly; 2] � PSPACE.(3) (Two-sided error pcp with 2 queries is not weak): On the other hand, there exists 0 < s < c < 1so that PCPc;s[poly; 2] = NEXPT.(4) (One-sided error pcp with 3 queries is not weak): PCP1;0:9[poly; 3] = NEXPT.(5) (One-sided error pcp with 3 queries is not very strong): 8s < 18 , PCP1;s[poly; 3] = PSPACE.Furthermore, 8s � 0:299, naPCP1;s[poly; 3] = PSPACE.The �rst part of the proposition may be hard to improve since, as indicated in Proposition 5.1.7Part (6), Graph Non-Isomorphism is in PCP1;12 [poly; 1].Proof of Proposition 5.1.6, Part (1): We �rst observe that a 1-query pcp system is actually aone-round interactive proof system (cf., [GMR]). (The completeness and soundness bounds are asin the pcp system.) Using well-known transformations we obtain the claimed result. Speci�cally,we �rst reduce the error of the interactive proof by parallel repetition, next transform it intoan Arthur-Merlin interactive proof [GS], and �nally transform it into an Arthur-Merlin interactiveproof of perfect completeness [FGMSZ]. We stress that all the transformations maintain the numberof rounds upto a constant and that the constant-round Arthur-Merlin hierarchy collapses to one-round [Bab].Proof of Proposition 5.1.6, Parts (3) and (4): For these parts we observe that the proofsystems used in the corresponding items of the proof of Proposition 5.1.2, do \scale-up". Speci�cally,it is easy to see that the outer veri�er used for all proof systems in this paper does scale-up, yieldinga canonical outer veri�er of randomness complexity O(log(T (n)) fo any language in Ntime(T (n)),provided n < T (n) < 2poly(n). Furthermore, all inner-veri�ers used in the paper operate on constantsized oracles and so the composed veri�er maintains the time and randomness complexities of theouter veri�er. In particular, the veri�er used for establishing Theorem 3.11.3 can be scaled-up toyield Part (4). The same holds for the veri�er used for establishing Part (3) of Proposition 5.1.2.(Note that although the exposition of the proof in Proposition 5.1.2 is in terms of reducing NPto Max2SAT, what actually happens is that the veri�er used to establish the NP-hardness ofMax2SAT (cf., Section 3.8) is implemented by a veri�er which makes only two queries (out of aconstant number of possibilities).)Proof of Proposition 5.1.6, Part (2): Following the strategy of the proof of the analogouspart in Proposition 5.1.2, we obtain a polynomial-space reduction of L 2 PCP1;s[poly; 2] to theset of satis�able 2-Horn formulae (i.e., Horn formulae in which each clause has at most 2 literals).Namely, on input x, the reduction uses space poly(jxj) and produces a Horn formula �x (of sizeexponential in jxj) so that x 2 L i� �x is satis�able. Using a poly-logarithmic decision procedurefor satis�ability of 2-Horn formulae2, we can decide if �x is satis�able using poly(jxj)-space.1A function f : Z+ ! Z+ is called non-negligible if there exists a positive polynomial p so that 8n : f(n) > 1p(n) .2For example, consider the following procedure. Given a 2-Horn formula, we construct a directed graph in whichthe vertices are the literals of the formula and there is an directed edge from literal x to literal y if the formula



mrBellare, Goldreich, Sudan 111Proof of Proposition 5.1.6, Part (5): The result for non-adaptive veri�ers follows fromPart (2)by using the same strategy as in the analogous proof in Proposition 5.1.2. The result for generalveri�ers follows by the Furthermore-part of Lemma 5.1.4 (i.e., PCPc;s[poly; q] = PSPACE forcs > 2q).5.1.2 Free-bit complexityThe class FPCPc;s[r; f ] is de�ned analogously to the class PCPc;s[r; q], except that we considerthe free-bit complexity (denoted f) instead of the query complexity (denoted q). The followingproposition demonstrates the limitations of probabilistically checkable proof systems with free-bitcomplexity bounded by 1. We do not believe that similar limitations hold for amortized free-bit complexity.3 The �rst three items refer to proof systems with logarithmic randomness. Thevery �rst item shows that proof systems with two-sided error (non-perfect completeness) havingamortized free-bit complexity zero (and logarithmic randomness) su�ce for NP . The third itemasserts that the second item cannot be strengthened neither with respect to increasing the free-bit complexity nor with respect to referring to two-sided error. However, proof systems withunrestricted randomness (as considered in the other items) may also provide some indication tothe e�ect of very low free-bit complexity. The last item can be viewed as (weak) evidence that theresult in the fourth item cannot be \drastically improved" (e.g., to yield FPCP1;s[poly; 0] � BPP).Proposition 5.1.7 (PCP systems with low free-bit complexity): Let s : Z+ ! [0; 1] be an admis-sible function strictly smaller than 1. Then,(1) (PCP with logarithmic randomness and 0 free-bit):There exists s < 0:885 so that NP � FPCP14 ; s4 [log; 0]. Thus, NP = FPCP14 [ log; 0 ].(2) (Limitations of PCP with logarithmic randomness and 1 free-bit):FPCP1;s[log; 1] = P. Also, FPCP1;1�(1=poly)[coins = poly ; free = 1 ; pen = poly] � BPP.(3) (\Tightness" of Item 2): There exists s < 0:885 so thatNP � FPCP1;s[log; 2];NP � FPCP1; 1+s2 [log; f ] where f = log2 3 (i.e., 2f = 3);NP � FPCP12 ; s2 [log; 1].(4) (General pcp with 0 free-bit): FPCP1;s[poly; 0] � coNP.(5) (general pcp with 1 free-bit): FPCP1;s[poly; 1] � PSPACE.(6) (Examples for pcp with 0 free-bit): Graph Non-Isomorphism, GNI, has a PCP system withperfect completeness and soundness bound 12 , in which the veri�er makes a single query andthis query is free. Namely,GNI 2 FPCP1; 12 [coins = poly ; free = 0 ; query = 1]The same holds for QNR (\Quadratic Non-Residuosity" (cf., [GMR])) the set of integer pairs(x;N) so that x is a non-residue modulo N .contains the clause x! y. One can easily verify that the formula is not satis�ed i� there exists a variable for whichevery truth assignment yields a contradiction (i.e., \forcing paths" to contradicting values { cf., [EIS]). Thus, anon-deterministic logspace machine can guess this variable and check that both possible truth assignments (to it)yield contradictions. The latter checking reduces to guessing the variable for which a conicting assignment is impliedand verifying the conict via s-t directed connectivity. Since the latter task is in NL, we are done. (Actually, 2SATis complete for coNL; see [JLL].)3The conjecture is stated for systems with perfect completeness. For systems with two-sided error probability, weknow that they can recognize NP languages using zero free-bits { see below.



mrBellare, Goldreich, Sudan 112Proof of Proposition 5.1.7, Part (4): Here we consider proofs with zero free-bits. LetL 2 PCP1;s[poly; 0] and V be a veri�er demonstrating this fact. By de�nition, for every possiblesequence of coin tosses for V , there exists at most one accepting con�guration (of oracle answersto the queries made by V ). Furthermore, by de�nition, this accepting con�guration (if it exists)can be generated in polynomial time, from the coin-sequence. Following is a non-deterministicprocedure that accepts L. It starts by guessing two sequences of coin tosses for V , generating thecorresponding accepting con�gurations and checking whether they are consistent. Clearly, if x 2 Lthen for all possible pairs of coin-sequences these con�gurations exist and are consistent (since anoracle which always makes V accept x does exist). On the other hand, if all pairs of coin-sequencesyield accepting and mutually consistent con�gurations then an oracle which always makes V acceptx emerges.Proof of Proposition 5.1.7, Parts (2) and (5): Here we consider proofs with free-bit com-plexity 1. Thus, for each possible sequence of coin tosses, there exist at most two acceptingcon�gurations (which again can be e�ciently found given the coin-sequence). We refer to thesetwo possible accepting con�guration as to the 1-con�guration and the 2-con�guration of the coin-sequence. In case a speci�c coin-sequence has less than two accepting con�gurations, we introducedummy con�gurations so that now each coin-sequence has two associated con�gurations. Given aninput x to such a pcp system, we consider the following 2CNF formula representing all possiblecomputations of the veri�er with a generic oracle. For each possible sequence of coin tosses, c, weintroduce a pair of Boolean variables, �1c and �2c , representing which of the two associated con�g-urations is encountered (e.g., �1c = T means that the 1-con�guration is encountered). To enforcethat a single con�guration is encountered we introduce the clauses (�1c _�2c) and ((:�1c)_(:�2c)). Inaddition, in case the �-con�guration of c is not accepting (but rather a dummy con�guration) weintroduce the clause (:��c ) thus \disallowing" a computation in which it is encountered. Finally,for each pair of coin-sequences we introduce clauses disallowing inconsistencies. Namely, supposethat the �-con�guration of c is inconsistent with the � -con�guration of c0, then we introduce theclause ((:��c ) _ (:��c0)), which is logically equivalent to :(��c ^ ��c0). The resulting 2CNF formula,�x, is satis�able if and only if there exists an oracle which causes V to accept x with probability 1.Thus, given x, we need to test if �x is satis�able. We consider two cases.(1) In case V uses logarithmically many coins, the 2CNF formula �x can be generated from xin polynomial-time. Using a polynomial-time decision procedure for satis�ability of 2CNFformulae, we conclude that FPCP1;s[log; 1] = P. Using Proposition 5.2.2, we can randomlyreduce FPCP1;1�(1=poly)[poly; free = 1; pen = poly] to FPCP1;1�(1=poly)[log; free = 1], andFPCP1;1�(1=poly)[poly; free = 1; pen = poly] � BPP follows. This establishes Part (2).(2) In general (V may make polynomially many coin tosses), the 2CNF formula �x may haveexponential (in jxj) length and yet can be generated from x in polynomial-space. Using apoly-logarithmic-space decision procedure for satis�ability of 2CNF formulae4, we can decideif �x is satis�able using poly(jxj)-space. Part (5) (i.e., FPCP1;s[poly; 1] � PSPACE) follows.Proof of Proposition 5.1.7, Parts (3) and (1): The �rst claim of Part 3 is justi�ed byTheorem 3.10.4. Applying Proposition 5.2.9 to this veri�er (which indeed satis�es the condition ofthis proposition), yields the second claim of Part 3. Applying Proposition 5.2.8 to the same veri�er4For example, note that 2CNF formulae can be written in Horn form and use the procedure described in the proofof Proposition 5.1.6 Part (2).



mrBellare, Goldreich, Sudan 113(with k = 1 < f = 2), the third claim of Part 3 follows. Finally, applying Proposition 5.2.8 withk = f = 2, Part 1 follows.Proof of Proposition 5.1.7, Part (6): We merely note that the interactive proof presentedin [GMW] for Graph Non-Isomorphism5 constitute a 1-query pcp system with perfect completenessand soundness bound 12 . Furthermore, the query made by the verify has a unique acceptable answerand thus the free-bit complexity of this system is zero. The same holds for the interactive proofpresented in [GMR] for Quadratic Non-Residuosity QNR, which is actually the inspiration to theproof in [GMW].5.1.3 Query complexity versus free-bit complexityThe following proposition quanti�es the intuition that not all queries are \free" (i.e., that the free-bit complexity is lower than the query complexity). Furthermore, as a corollary we obtain that theamortized (average) free-bit complexity is at least 1 unit less than the amortized query complexity.Proposition 5.1.8 For admissible functions c; s; r; q such that r(n); q(n) = O(logn).PCPc;s[r; q]� PCPc;s[ coins = r ; freeav = q � log2(1=s) ]Furthermore, for every admissible function t, PCPc;s[r; q] � FPCPc;(2t+1)s[r; q� t]:Proof: Let L 2 PCPc;s[r; q] and let V be the veri�er demonstrating this. Fix an input x 2 �n,and let r = r(n); q = q(n); s = s(n) For a random string R 2 f0; 1gr, let F xR denote the number ofaccepting patterns of V , i.e., F xR = jpatternV (x;R)j. We �rst claim that if ER [F xR] > 2q � s, thenx 2 L. This is true since a random oracle � is accepted with probability ER [F xR � 2�q] and in casethe claim does not hold we reach contradiction to the soundness condition (i.e., x 62 L is acceptedwith probability strictly larger than s).We now construct a veri�er, denoted V 0, witnessing L 2 FPCPavc;s[r; q� log2(1=s)]: On input x, theveri�er �rst computes ER [F xR] (by scanning all possible R's and generating all accepting patternsfor each of them). If ER [F xR]) > 2q � s, then V 0 accepts x (without querying the oracle). Otherwise(i.e., if ER [F xR]) � 2q � s), then V 0 simulates V and accepts if V accepts. It follows that the averagefree-bit complexity of V 0 on input x equals the corresponding quantify for V , provided the latteris at most q � log2(1=s), and equals zero otherwise. The �rst part of the proposition follows.To establish the second part, for some t = t(n), we construct a veri�er V 00 which, on input x,proceeds as follows. First, V 00 computes q def= ER [F xR] and accepts if q > s2q (just as V 0). In caseq � s2q, the new veri�er proceeds di�erently: it randonly selects R as V does and computes F xR.If F xR > 2q�t then V 00 accepts and otherwise it invokes V on input x and coins R. Clearly, thisguarantees that the free-bit complexity of V 00 is at most q � t. To analyze the soundness of V 00,note that when ER [F xR] � s2q, it follows that PrR [F xR > 2q�t] � 2ts (Markov Inequality). Thus,the soundness error of V 00 is at most s+ 2ts and the second part follows.By computing the amortized average free bit complexity of the class of languages in the right handside of the containment above, we obtain the following consequence.5On input a pair of graphs, G0 and G1, the veri�er uniformly selects i 2 f0; 1g and generates a random isomorphiccopy of Gi, denoted H. This graph H is the single query made by the veri�er, which accepts if and only if the answerequals i.



mrBellare, Goldreich, Sudan 114Corollary 5.1.9 For admissible functions c; r; q with r(n); q(n) = O(logn),PCPc[ r; q ] � FPCPavc [ r; q � 1 ]:where FPCPav� [ �; f ] denotes a class analogous to FPCP�[ �; f ] in which average free-bit complexityis measured instead of (worst-case) free-bit complexity.The above corollary clinches the argument that the amortized query complexity is incapable ofcapturing tha approximability of the clique function. Previously we had argued thus based on theassumption that the clique number may be hard to approximate to within N 12 (i.e., establishingsuch a clique NP-hardness would require showing that NP � PCP[ log; 1�� ], for every � > 0, whichis impossible6 as we've shown that PCP[ log; 1 � � ] � P). Now, we can remove this assumptionalso. Suppose that, for some g (e.g., g = 32), MaxClique is NP-hard to approximate to within aN1=(1+g) factor, but it can be approximated to within a N1=(1+g��) factor in polynomial-time, forevery � > 0 (actually, we can handle any � � 1). Furthermore, supposed that the hardness resultis demonstrated by showing that NP � PCP[ log; g � � ], for every � > 0. Then, using the abovecorollary, we get NP � FPCPav[ log; g�1� � ], for every � > 0. and an NP-hardness result of cliqueapproximation7 upto aN1=(1+(g�1��)+�) = N1=g follows, in contradiction to our hypothesis that suchapproximations could be achieved in polynomial time. To summarize, attempts to establish thefactor N1=g for which it is NP-hard to approximate MaxClique via amortized query complexity willalways fall at least one unit away from the truth; whereas amortized free-bit complexity will yieldthe right answer.5.2 Transformations of FPCP SystemsWe present several useful transformations which can be applied to pcp systems. These fall to twocategories:(1) Transformations which ampli�es the (completeness versus soundness) gap of the proof system,while preserving (or almost preserving) its amortized free-bit complexity.(2) Transformations which move the gap location (or, equivalently, the completeness parameter).The gap itself is almost preserved but the moving it changes the free-bit complexity (andthus the amortized free bit complexity is not preserved). Speci�cally, moving the gap `up'requires increasing the free-bit complexity, whereas moving the gap `down' allows to decreasethe free-bit complexity.All these transformations are analogous to transformations which can be applied to graphs withrespect to the max-clique problem. In view of the relation between FPCP and the clique promiseproblem (shown in Section 4.1), this analogy is hardly surprising.In this section, we use a more extensive FPCP notation which refers to promise problems(rather than to languages) and introduce an additional parameter { the proof length. Speci�cally,FPCPc;s[r; f; l] refers to randomness complexity r, free-bit complexity f and proof-length l.5.2.1 Gap ampli�cation maintaining amortized free-bit complexityWe start by stating the simple fact that the ratio between the completeness and soundness bounds(also referred to as gap) is ampli�ed (i.e., raise to the power k) when one repeats the pcp system (ktimes). Note, however, that if the original system is not perfectly complete then the completenessbound in the resulting system gets decreased.6The entire discussion assumes P 6= NP. The discussion is anyhow mute otherwise.7 Here we use the observation that the FGLSS-reduction works also for amortized average free-bit complexity.



mrBellare, Goldreich, Sudan 115Proposition 5.2.1 (simple gap ampli�cation): For all c; s : Z+ ! [0; 1] and k : Z+ ! Z+,FPCPc;s[r; f; l]� FPCPck;sk [kr; kf; l]:Proof: Let (Y;N) 2 FPCPc;s[r; f; l] and let V be a veri�er witnessing this with query complexityq : Z+ ! Z+. Given k : Z+ ! Z+, we de�ne a veri�er V (k) as follows: On input x 2 f0; 1gn, letr = r(n); k = k(n); f = f(n); l = l(n) and q = q(n).� V (k) picks k random strings c(1); : : : ; c(k) uniformly and independently in f0; 1gr.� For i = 1 to k, veri�er V (k) simulates the actions of V on input x and random string c(i).Veri�er V (k) accepts if V accepts on each of these k instances.Clearly, V (k) tosses kr coins and examines the l-bit long oracle in at most kq bits, where at mostkf of these are free. For every x, if the probability that V accepts x, given access to oracle�, is p then the probability that V (k) accepts x, given access to � is exactly pk. Thus, (Y;N) 2FPCPck;sk [kr; kf; l], and oracles can be transformed (by identity) from one pcp system to the other.Next, we show that in some sense the randomness-complexity of a proof system need not behigher than logarithmic in the length of the proofs/oracles employed. Speci�cally, we show how torandomly reduce languages proven by the �rst kind of systems into languages proven by the secondkind. Thus, whenever one is interested in the computational complexity of languages proven viapcp systems, one may assume that the system is of the second type. Recall that �KR denotes arandomized Karp reduction.Proposition 5.2.2 (reducing randomness): There exists a constant  > 0 so that(1) (for perfect completeness): For every two admissible functions s; � : Z+ ! [0; 1],FPCP1;s[r; f; l] �KR FPCP1;s0[r0; f; l]where s0 = (1 + �) � s and r0 =  + log2(l=�2s).(2) (for two-sided error): For every four admissible functions c; s; �1; �2 : Z+ ! [0; 1],FPCPc;s[r; f; l] �KR FPCPc0;s0 [r0; f; l]where c0 = 1� (1 + �1) � (1� c) � c� �1, s0 = (1 + �2) � sand r0 =  +maxf� log2(�21(1� c)) ; log2(l)� log2(�22s)g.Proof: The proof is reminiscent of Adleman's proof that RP � P= poly [Ad]. Suppose we are givena pcp system for which we want to reduce the randomness complexity. The idea is that it su�cesto choose the random pad for the veri�er out of a relatively small set of possibilities (instead thanfrom all 2r possibilities). Furthermore, most small sets (i.e., sets of size linear in l) are good forthis purpose. This suggest randomly mapping an input x for the original pcp system into an input(x;R) for the new system, where R is a random set of m = O(l) possible random-pads for theoriginal system. The new veri�er will select a random-pad uniformly in R, thus using only log2 jRjrandom coins, and run the original veri�er using this random-pad. Details follow.We start with the simpler case stated in Part (1). Let (Y;N) 2 FPCP1;s[r; f; l] and V be a veri�erdemonstrating this fact. The random reduction maps x 2 f0; 1gn to (x;R), where R is a uniformlychosen m-multi-subset of f0; 1gr for l def= l(n), r def= r(n), s def= s(n), � def= �(n) and m def= l�2s . (The



mrBellare, Goldreich, Sudan 116constant  is chosen to make the Cherno� bound, used below, hold.) On input (x;R), the newveri�er V 0 uniformly selects c 2 R and invokes V with input x and random-pad c. Clearly, thecomplexities of V 0 are as claimed above. Also, assuming that V always accepts x, when given accessto an oracle � then, for every possible pair (x;R) to which x is mapped, V 0 always accepts (x;R)when given access to the oracle �. It remains to upper bound, for each x 62 L and most R's, theprobability that V 0 accepts (x;R) when given access to an arbitrary oracle.Fixing any x 62 L and any oracle �, we bound the probability that V 0, give access to �, accepts(x;R) for most R's. A set R is called bad for x with respect to � if for more than a s0 fraction of thec 2 R the veri�er V accepts x when given access to � and random-pad c. Let R = (r(1); :::; r(m)) bea uniformly selected multi-set. For every i 2 [m] (a possible random choice of V 0), we de�ne a 0-1random variable �i so that it is 1 i� V on random-pad r(i) and access to oracle � accepts the inputx. Clearly, the �i's are mutually independent and each equals 1 with probability � � s. Using amultiplicative Cherno� Bound (cf. [MoRa, Theorem 4.3]), the probability that a random R is bad(for x w.r.t. �) is bounded byPr" mXi=1 �i � (1 + �) �ms # < 2�
(�2�ms)Thus, by the choice of m, the probability that a random R is bad for x, with respect to any �xedoracle, is smaller than 12 �2�l. Since they are only 2l relevant oracles, the �rst part of the propositionfollows.For the second part of the proposition, we repeat the same argument, except that now we need totake care of the completeness bound in the resulting pcp system. This is done similarly to the waywe dealt with the soundness bound, except that we do not need to consider all possible oracles {it su�ces to consider the best oracle for any x 2 Y . When applying the multiplicative Cherno�bound it is important to note that, since we are interested in the rejection-event, the relevantexpectation is m � (1� c) (and not m � c). Thus, as long as m � 2�21(1�c) , at least 34 of the possiblesets R cause V 0 to accept x 2 Y with probability at least 1� (1 + �1) � (1� c) = c� (1� c)�1. Thesecond part of the proposition follows. Combining Propositions 5.2.1 and 5.2.2, we obtain the arandomized reduction of pcp systems which yields the e�ect of Proposition 5.2.1 at much lower (andin fact minimal) cost in the randomness complexity of the resulting pcp system. This reductionis analogous to the well-known transformation of Berman and Schnitger [BeSc]. The reduction (ineither forms), plays a central role in deriving clique approximation results via the FGLSS method:applying the FGLSS-reduction to proof systems obtained via the second item (below), one derivesgraphs of size N def= 2(1+�+f)�t with clique-gap 2t (which can be rewritten as N1=(1+f+�)).Corollary 5.2.3 (probabilistic gap ampli�cation at minimal randomness cost):(1) (Combining the two propositions): For every admissible k : Z+ ! Z+,FPCP1; 12 [r; f; l] �KR FPCP1;2�k+1 [r + log2 q + O(1) + k; kf; l]where q is the query complexity of the �rst proof system.(2) (using amortized free-bit complexity): For every � > 0 there exists a constant c so thatFPCP[ log; f ] �KR FPCP1;2�t[(1 + �) � t; f � t; l]where t(n) = c log2 n.



mrBellare, Goldreich, Sudan 117Proof: Suppose that (Y;N) 2 FPCP1;1=2[r; f; l]. Clearly, l � 2r � q, where q(n) = poly(n) is thequery complexity of the veri�er. Then, applying Proposition 5.2.1, we get (Y;N) 2 FPCP1;1=2k[kr;kf; 2r � q]. Applying Part (1) of Proposition 5.2.2, we obtain (Y;N) �KR FPCP1; 12k�1 [r0; kf ], wherer0 = O(1) + log2(2rq=2�k) = O(1) + r + k + log2 q. The �rst part of the corollary follows.Suppose now that a language L has a proof system as in the hypothesis of the second part. Then,there exists a logarithmically bounded function m so that L 2 FPCP1;1=2m[r;mf; l], where r(n) �� � log2 n and l(n) � n� for some constants � and �. Invoking a similar argument (to the above), weget L �KR FPCP1; 12km�1 [r0; k �mf ], where r0(n) = O(1)+km+(�+�) � log2 n. Now, setting k(n) sothat k(n)�m(n) � �+�� �log2 n, the corollary follows. An alternative gap ampli�cation procedurewhich does not employ randomized reductions is presented below. This transformation increasesthe randomness complexity of the pcp system more than the randomized reduction presented above(speci�cally, by a factor of 2). The transformation is used to obtain in-approximability results underthe assumption P 6= NP (rather than under NP 6� BPP). It is stated here only for the one-sidederror case:Proposition 5.2.4 (deterministic gap ampli�cation at low randomness cost): For every �; s > 0and every admissible function k :Z+!Z+FPCP1;s[r; f; l]� FPCP1;sk [O(r) + (2 + �)k; (1 + �)kf; l]:Actually, the constant in the O-notation is minf1; 2+(4=�)log2(1=s)g.The use of random walks on expander graphs for error reduction was suggested by Ajtai, Komolosand Szemeredi [AKS] (cf., [CW]). The use of random walks on expander graphs for gap ampli�-cation in the context of pcp originates in [ArSa]. The value of the constant multiplier of k in therandomness complexity of the resulting pcp system, depends on the expander graph used. Speci�-cally, using a degree d expander graph with second eigenvalue � yields a factor of log2 d1+log2 � . Thus, itis essential to use Ramanujan graphs [LPS] in order to obtain the claimed constant 2(1 + �).Proof of Proposition 5.2.4: For simplicity assume s = 1=2. The idea is to use a \pseudorandom"sequence generated by a random walk on an expander graph in order to get error reduction atmoderate randomness cost. Speci�cally, we will use a Ramanujan expander graph of constantdegree d and second eigenvalue � � 2pd (cf., [LPS]). The constant d will be determined so thatd > 24+ 8� (and d < 26+ 8� ). It is well-known by now, that a random walk of length t in an expanderavoids a set of density � with probability at most (�+ �d )t (cf., [AKS, Kah]). Thus, as a preparationstep, we reduce the error probability of the pcp system top def= �d = 2pd (5.1)This is done using the trivial reduction of Proposition 5.2.1. We derive a proof system with errorprobability p, randomness complexityr0 def= r � log2(1=p) = r � log2(pd=2) = O(r) (5.2)and free-bit complexity f 0 def= f � log2(1=p) = f � log2(pd=2) (5.3)(In case we start with soundness error s, where s > p, the multiplier will be log1=s(1=p) insteadof log2(1=p).) Now we are ready to apply the expander walk technique. Using an expander walk



mrBellare, Goldreich, Sudan 118of length t, we transform the proof system into one in which the randomness complexity is r0 +(t � 1) � log2 d, the free-bit complexity is tf 0 = tf � log2(pd=2) and the error probability is atmost (2p)t = (4=pd)t = 2�k, where k def= t � log2(pd=4). Using log2 d > 8� + 4, we can bound therandomness complexity by r0 + t log2 d = r0 + log2 d12 � (log2 d)� 2 � k< r0 + (2 + �) � kand the free-bit complexity bytf � log2(pd=2) = 12 � (log2 d)� 112 � (log2 d)� 2 � kf< (1 + �) � kfThe proposition follows.Using Proposition 5.2.4, we obtain the following corollary which is used in deriving clique in-approximability results under the P 6= NP assumption, via the FGLSS method: applying theFGLSS-reduction to proof systems obtained via this corollary, one derives graphs of size N def=2(2+�+f)�t with clique-gap 2t (which can be rewritten as N1=(2+f+�)).Corollary 5.2.5 For every � > 0 there exists a constant c so thatFPCP[ log; f ] � FPCP1;2�t[(2 + �) � t; (1 + �)f � t; l]where t(n) = c log2 n.5.2.2 Trading-o� gap location and free-bit complexityThe following transformation is analogous to the randomized layering procedure for the cliquepromise problem (i.e., Proposition 4.1.6). The transformation increases the acceptance probabilitybounds at the expense of increasing the free-bit complexity.Proposition 5.2.6 (increasing acceptance probabilities):(1) (using a randomized reduction which preserves the randomness of the proof system): For alladmissible functions c; s : Z+ ! [0; 1], and r; f;m : Z+ ! Z+,FPCPc;s[r; f ] �KR FPCPc0;s0 [r; f + log2m]where c0 = 1� 4(1� c)m and s02 = m � s.Note that if c0 > 1� 2�r then c0 = 1.(2) (inclusion which moderately increases the randomness of the proof system): For all admissiblefunctions c; s : Z+ ! [0; 1], and r; f;m : Z+ ! Z+,FPCPc;s[r; f ] � FPCPc0;s0 [r0; f + log2m]� where if m � 1=c then r0 = 2 �maxfr; logmg, c0 = m2 � c and s0 = m � s;� and otherwise (i.e., for m > 1=c), r0 = O(maxfr; logmg + mc), c0 = 1 � 2��(mc) ands0 = m � s.



mrBellare, Goldreich, Sudan 119Proof: Suppose we are given a pcp system for which we want to increase the acceptance probabilitybound in the completeness condition. The idea is to allow the new veri�er to select m random-pads for the original veri�er and query the oracle as to which pad to use. A straightforwardimplementation of this idea will increase the randomness complexity of the veri�er too much.Instead, we use two alternative implementations, which yield the two parts of the proposition. Inboth implementations the free-bit complexity increases by log2m and the soundness bound increasesby a factor of m.The �rst implementation employs a technique introduced by Lautemann (in the context of BPP)[Lau]. Using a randomized reduction, we supply the new veri�er with a sequence of m possible\shifts" that it may e�ect. The new veri�er selects one random-pad for the original veri�er andgenerates m shifts of this pad. Now, the new veri�er queries the oracle as to which of these shiftsit should use as a random-pad for the original veri�er. Details follow.We �rst present a random reduction mapping x 2 f0; 1gn to (x; S), where S is a uniformly chosenm-multi-subset of f0; 1gr, for r def= r(n). On input (x; S), the new veri�er V 0 uniformly selectsc 2 f0; 1gr and queries the oracle on (x; c) receiving an answer i 2 [m]. Intuitively, V 0 asks whichshift of the random-pad to use. Finally, V 0 invokes V with input x and random-pad c� si, wheresi is the ith string in S. Clearly, the complexities of V 0 are as claimed above. Also, assuming thatV accepts x with probability �, we get that, for every S, veri�er V 0 accepts (x; S) with probabilityat most m � �. On the other hand suppose that, when given access to oracle �, veri�er V acceptsx with probability �. It follows that there exists a set R of �2r random-pads for V so that if Vuses c 2 R (and queries oracle �) then it accepts x. Fixing any c 2 f0; 1gr, we ask what is theprobability, for a uniformly chosen S = fsi : i�mg, that there exists an i 2 [m] so that c� si 2 R.Clearly, the answer is 1 � (1 � �)m. Thus, by Markov Inequality, with probability at least 34 , auniformly chosen S = fsig has the property that for at least 1� 4 � (1� �)m of the c's (in f0; 1gr)there exists an i 2 [m] so that c� si 2 R. Part (1) of the proposition follows.To prove Part (2) of the proposition, we use an alternative implementation of the above idea, whichconsists of letting the new veri�er V 0 generate a \pseudorandom" sequence of possible random-padsby itself. V 0 will then query the oracle as to which random-pad to use, in the simulation of V ,and complete its computation by invoking V with the speci�ed random-pad. To generate the\pseudorandom" sequence we use the sampling procedure of [BGG]. Speci�cally, for m � 1=c thismerely amounts to generating a pairwise independent sequence of uniformly distributed strings inf0; 1gr, which can be done using randomness maxf2r; 2 log2mg. Otherwise (i.e., for m > 1=c) theconstruction of [BGG] amounts to generating �(cm) such related sequences, where the sequencesare related via a random walk on a constant degree expander. Part (2) follows.The following corollary exempli�es the usage of the above proposition. In case c(n) = n��and r(n) = O(logn), the gap is preserved (upto a logarithmic factor) and the free-bit complexityincreases by a log2 1=c additive term. Thus, the corollary provides an alternative way of deriv-ing the reverse-FGLSS transformation (say, Proposition 4.1.7) from the simple clique veri�er ofTheorem 4.1.2. Speci�cally, one may apply the following corollary to the simple clique veri�erof Theorem 4.1.2, instead of combining the layered-graph veri�er8 (of Theorem 4.1.3), and thegraph-layering process of Proposition 4.1.6.Corollary 5.2.7 For all admissible r; f : Z+ ! Z+, so that 8n : r(n) � 2,FPCPc;s[r; f ] �KR FPCP1;rc �s[r; f + log2 r + log2(1=c)]8which generalizes the simple clique veri�er



mrBellare, Goldreich, Sudan 120We conclude with another transformation which is reminiscent to an assertion made in Sec-tion 4.1. The following transformation has an opposite e�ect than the previous one, reducing thefree-bit complexity at the expense of lowering the bounds on acceptance probability. The transfor-mation can be e�ected provided each possible random-pad in the original pcp system has enoughfree bits.Proposition 5.2.8 (decreasing acceptance probabilities): For all admissible functions c; s : Z+ ![0; 1], and r; f; k : Z+ ! Z+ so that k � f , if L 2 FPCPc;s[r; f ] then L 2 FPCP c2k ; s2k [r + k; f � k].Furthermore, the average free-bit complexity of the resulting system is maxf0; fav � kg, where favis the average free-bit complexity of the original system.Proof: Let V be a veri�er satisfying the condition of the proposition. We construct a new ver-i�er V 0 that on input x 2 f0; 1gn, setting r = r(n), k = k(n) and f = f(n), acts as follows.Veri�er V 0 uniformly selects a random-pad c 2 f0; 1gr for V , and generates all possible acceptingcon�gurations with respect to V (x) and random-pad c. In case there are less than 2k acceptingcon�gurations we add dummy con�gurations to reach the 2k count. We now partition the set ofresulting con�gurations (which are accepting and possibly also dummy) into 2k parts of about thesame size (i.e., some parts may have one con�guration more than others). Actually, if we onlycare about average free-bit complexity then any partition of the accepting con�gurations into 2knon-empty parts will do. The new veri�er, V 0, uniformly selects i 2 [2k] thus specifying one ofthese parts, denoted Ai. Next, V 0 invokes V with random-pad c and accepts if and only if theoracle's answers form an accepting con�guration which is in Ai (i.e., resides in the selected portionof the accepting con�gurations). (We stress that in case c has less than 2k accepting con�gurationsand the selected Ai does not contain any accepting con�guration then V 0 rejects on coins (i; c).)Clearly, the randomness complexity of the new veri�er is r + k.To analyze the other parameters of V 0, we �x any x 2 f0; 1gn. For sake of simplicity, we �rst assumethat the number of accepting con�gurations of V for any random-pad is a power of 2. Then thenumber of accepting con�gurations of V 0 for any random-pad (c; i) 2 f0; 1gr � [2k] is 2m�k, where2m is the number of accepting con�gurations of V on random-pad c. Thus, the free-bit complexityof V 0 is f � k. Finally, we relate the acceptance probability of V 0 to that of V . This is done byreformulating the execution of V 0 with oracle � as consisting of two steps. First V 0 invokes V withaccess to �. If V reaches a rejecting con�guration then V 0 rejects as well; otherwise (i.e., when Vreaches an accepting con�guration), V accepts with probability 2�k (corresponding to uniformlyselecting i 2 [2k]). It follows that on input x and access to oracle �, the veri�er V 0 accepts withprobability �2k , where � denotes the probability that V accepts input x when given access to oracle�.In general, our simplifying assumption that the number of accepting con�gurations of V is a powerof 2, may not hold and the analysis becomes slightly more cumbersome. Firstly, the number ofaccepting con�gurations of V 0 for a random-pad (c; i) is either dM=2ke or bM=2kc, where M is thenumber of accepting con�gurations of V on random-pad c. Thus, in the worse-case the numberof accepting con�gurations for V 0 (on random-pad (c; i)) is dM=2ke and it follows that the free-bit complexity of V 0 is log2d2f=2ke = f � k. Furthermore, the expected number of acceptingcon�gurations (for a �xed c and uniformly chosen i 2 [2k]) is exactly M=2k (even if M < 2k) andso the free-bit complexity of V 0 equals fav � k. Finally, observe that the argument regarding theacceptance probabilities remains unchanged (and actually it does not depend on the partition ofthe accepting con�gurations into 2k non-empty parts). The proposition follows.We conclude with a transformation which reduces the free-bit complexity. Unlike Proposition 5.2.8,the following does not decrease the completeness parameters. Furthermore, the transformation



mrBellare, Goldreich, Sudan 121increases the soundness parameter and does not preserve the gap (between the completeness andsoundness parameters).Proposition 5.2.9 (decreasing free-bit complexity): Let c; s : Z+ ! [0; 1] be admissible functionsand r; f; k : Z+ ! Z+. Suppose L 2 FPCPc;s[r; f ] with a veri�er for which the �rst k oracle-answersfor each random-pad allow at most 2f�k accepting con�gurations. Then L 2 FPCPc0;s0[r + k; f 0],where c0 = 1� 1�c2k , s0 = 1� 1�s2k , and f 0 = log2(2f�k + 2k � 1).The above can be further generalized; yet the current paper only utilizes the special case in whichc = 1 (speci�cally, in the proof of Part 3.2 in Proposition 5.1.7, we use f = 2 and k = 1 obtainingf 0 = log2 3 and c0 = 1 and s0 = 1+s2 ).Proof: The proof is similar to the proof of Proposition 5.2.8. Again, we consider a veri�er Vas guaranteed by the hypothesis and let Ai be the set of (at most 2f�k) accepting con�gurationswhich are consistent with the ith possibility of k oracle-answers to the �rst k queries. Denote theith possibility by �i (i.e., all con�gurations in Ai start with �i). We construct a new veri�er, V 0,which uniformly selects a random-pad c for V and i 2 [2k] (specifying a part Ai as above). Theveri�er V 0 makes the �rst k queries of V and if the answers di�er from �i then V 0 halts and accepts.Otherwise, V 0 continues the emulation of V and accepts i� V accepts.Clearly, V 0 uses r+k coin-tosses. The accepting con�gurations of v0 on random-pad (c; i) are thosein Ai as well as the \truncated V con�gurations" �j , for j 6= i. Thus, there are 2f�k + 2k � 1accepting con�gurations. Suppose V �(x) accepts with probability p, then V 0 accepts input x withoracle access to � with probability (1� 2�k) + 2�k � p = 1� 1�p2k . The proposition follows.
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