
Free Bits, PCPs and Non-Approximability|Towards Tight Results(3rd Version)Mihir Bellare1 Oded Goldreich2 Madhu Sudan3December 31, 1995In honor of Shimon Even's 60th birthday.
1 Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA92093, USA. e-mail: mihir@cs.ucsd.edu.2 Department of Applied Mathematics, Weizmann Institute of Sciences, Rehovot, Israel. e-mail:oded@wisdom.weizmann.ac.il. Partially supported by grant No. 92-00226 from the US{Israel BinationalScience Foundation (BSF), Jerusalem, Israel.3 IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA. e-mail:madhu@watson.ibm.com.

AbstractThis paper continues the investigation of the connection between proof systems and approxima-tion. The emphasis is on proving tight non-approximability results via consideration of measureslike the \free bit complexity" and the \amortized free bit complexity" of proof systems.The �rst part of the paper presents a collection of new proof systems based on a new error-correcting code called the long code, and means to test it. We provide a proof system which hasamortized free bit complexity of 2+ �, implying that approximating Max Clique within N 13��, andapproximating the Chromatic Number within N 15��, are hard assuming NP 6= coRP, for any � > 0.We also derive the �rst explicit and reasonable constant hardness factors for Min Vertex Cover,Max-2-SAT, and Max Cut, and improve the hardness factor for Max-3-SAT. We note that ournon-approximability factors for Max-SNP problems are appreciably close to the values known to beachievable by polynomial time algorithms. Finally we note a general approach to the derivation ofstrong non-approximability results under which the problem reduces to the construction of certain\gadgets."The increasing strength of non-approximability results via the proof checking connection moti-vates us to ask how far this can go, and whether proofs are inherent in any way. This is addressedin the second part of the paper. Recall that [FGLSS] showed how to translate proof systems for NPinto NP-hardness of approximation results for Max Clique. We begin with a result of a novel naturewhich essentially reverses this connection, showing how any NP-hardness of approximation resultyields a proof system for NP. Roughly our result says that for any constant f if Max Clique is NP-hard to approximate within N1=(1+f) then NP is in the class FPCP[log; f] of languages possessingproofs of logarithmic randomness and amortized free bit complexity f . This indicates that proofsare inherent to obtaining non-approximability results. But it does more: it provides a tight relationindicating that to get large hardness factors we must minimize the amortized free bit complexity.The third part of our paper initiates a systematic investigation of the properties of PCP andFPCP as a function of the various parameters: randomness, query complexity, free bit complexity,amortized free bit complexity, proof size, etc. We are particularly interested in \triviality" resultswhich indicate which combinations of parameters are not powerful enough to capture NP. We alsodistill the role of randomized reductions in this area, and provide a variety of useful transformationsbetween proof checking complexity classes.

Table of Contents
1 Introduction 51.1 Overview of main results : 61.1.1 New proof systems and non-approximability results : : : : : : : : : : : : : : : 61.1.2 Proofs and approximation: Potential and limitations : : : : : : : : : : : : : : 61.1.3 PCP and FPCP: Properties and transforms : : : : : : : : : : : : : : : : : : : 71.1.4 Conceptual contributions : 71.1.5 Previous version, current version and future versions : : : : : : : : : : : : : : 71.2 Some background and de�nitions : 81.3 New proof systems and non-approximability results : : : : : : : : : : : : : : : : : : : 101.3.1 New proof systems : 101.3.2 New non-approximability results : 111.3.3 Techniques : 121.4 Proofs and approximation: Potential and limits : 121.4.1 Reversing the connection: Making proofs from gaps : : : : : : : : : : : : : : 121.4.2 A lower bounds on amortized free-bits : 131.5 Properties and transforms of PCP and FPCP : 141.5.1 Triviality results : 141.5.2 Other results : 151.5.3 Transformations between proof systems : 161.6 History : 161.7 Related work : 181.8 Directions for further research : 181.9 Acknowledgments : 192 Notation and De�nitions 202.1 General notation and de�nitions : 202.2 Proof systems : 201

2 Bellare, Goldreich, Sudan2.3 Randomized reductions : 222.4 History : 233 New proof systems and non-approximability results 253.1 Overview and guidemap : 253.2 Preliminaries : 263.3 Evaluation operators and the long code : 283.4 Recursive veri�cation of proofs : 303.4.1 Outer veri�ers : 303.4.2 Inner veri�ers : 313.4.3 Composition of veri�ers : 323.4.4 Constant-prover proofs in PCP | perspective : : : : : : : : : : : : : : : : : 343.5 The atomic tests : 353.5.1 Atomic linearity test : 373.5.2 Atomic respect of monomial basis test : 383.5.3 Atomic projection test : 423.5.4 Atomic circuit test : 433.6 The MAX SNP veri�er : 433.6.1 The inner veri�er : 433.6.2 Main application: the MaxSNP veri�er : 463.6.3 Another application: minimizing soundness error in 3-query pcp : : : : : : : 483.7 Satis�ability problems: Max-3-SAT and Max-2-SAT : : : : : : : : : : : : : : : : : : 483.7.1 De�nitions : 483.7.2 Previous work : 493.7.3 New Results : 503.7.4 Gadgets and the Hardness of MaxSAT : 503.7.5 Maximum Satis�able Linear Constraints (Parity Clauses) : : : : : : : : : : : 553.8 Max-CUT : 563.8.1 De�nitions : 563.8.2 Previous work : 563.8.3 New Result : 563.8.4 Gadgets and the hardness of Max-CUT : 573.9 Free bits and vertex cover : 603.9.1 Minimizing the error achievable with two free bits : : : : : : : : : : : : : : : 613.9.2 Hardness of vertex cover : 653.9.3 On using the MaxSNP veri�er to establish Min VC hardness : : : : : : : : : 663.10 Minimizing the number of queries : 673.10.1 The PCP inner veri�er : 683.10.2 The new proof system : 723.11 The iterated tests : 723.11.1 Linearity and randomness : 723.11.2 Iterated projection test : 73

Free Bits in PCP 33.11.3 Technical claim : 743.11.4 Iterated linearity test : 743.11.5 Iterated RMB test : 753.11.6 Putting some things together : 763.12 Amortized free bits, Max Clique, and Coloring : 763.12.1 De�nitions : 763.12.2 Sources of our improvements : 773.12.3 Construction and results : 773.12.4 Previous work : 793.13 The coding theory bound : 813.14 On the optimality of some choices in our analysis : 824 Proofs and approximation: Potential and limitations 864.1 The reverse connection and its consequences : 864.1.1 The Clique-Gap Veri�er : 864.1.2 Main Consequences : 894.1.3 More Consequences : 944.2 On the Limitations of Some Common Approaches : : : : : : : : : : : : : : : : : : : 974.2.1 The tasks : 974.2.2 Lower Bound for the Codeword Test : 994.2.3 Lower Bound for the Projection Test : 1014.2.4 Lower Bound for the Combined Test : 1035 PCP: Properties and Transformations 1065.1 The Complexity of PCP and FPCP : 1065.1.1 Query complexity and amortized query complexity : : : : : : : : : : : : : : : 1065.1.2 Free-bit complexity : 1125.1.3 Query complexity versus free-bit complexity : : : : : : : : : : : : : : : : : : : 1145.2 Transformations of FPCP Systems : 1155.2.1 Gap ampli�cation maintaining amortized free-bit complexity : : : : : : : : : 1155.2.2 Trading-o� gap location and free-bit complexity : : : : : : : : : : : : : : : : 119

List of Figures
1.1 New PCP Systems for NP, all with logarithmic randomness. : : : : : : : : : : : : : : 101.2 Approximation factors attainable by polynomial-time algorithms (Approx) versusfactors we show are hard to achieve (Non-Approx). : : : : : : : : : : : : : : : : : : : 113.1 Constant prover PCPs achieving error which is a �xed, but arbitrarily small, constant�. We indicate the number of provers, the randomness and answer sizes, and whetheror not the system is canonical. The notation ?? means \don't know and don't carebecause stronger things have become available." In all cases the randomness andanswer sizes hide factors which depend on �. : 353.2 The atomic tests and their passing probabilities. : 363.3 The Max-SNP inner veri�er VSNPinner : 443.4 Non-approximability results for Max-3-SAT indicating the factor shown hard andthe assumption under which this was done. : 493.5 The Max-E3-SAT Gadgets : 523.6 The Max-2-SAT Gadgets : 533.7 The Enhanced RMB test and its passing probability. : : : : : : : : : : : : : : : : : : 613.8 The two free-bit inner veri�er V2inner : 623.9 Worst case (q) and average (qav) number of queries needed to get 1=2 soundness withlogarithmic randomness; that is, results of the form of Eq. (3.14). : : : : : : : : : : : 683.10 The PCP inner veri�er VPCPinner : 693.11 The iterated tests and their passing probabilities. : 753.12 The free inner veri�er Vmrfree-in : 773.13 Some Milestones in the project of proving non-approximability of the Clique number:Approximation Factor (in terms of the graph size N) which is infeasible to achieveunder an indicated Assumption. In stating results from [BGLR] on, we ignore N �terms in which � > 0 can be arbitrary small. : 804

C h a p t e r 1Introduction
In the Max Clique problem we are given a graph G and must �nd the value of MaxClique(G) =maxf jSj : S is a clique in G g. It is an example of an NP-optimization problem, of which othersare to �nd the chromatic number of a graph; to �nd the size of the smallest vertex cover; etc. Theseproblems arise in a large and varied number of settings, and e�cient solutions are much desired.Unfortunately, many important NP-optimization problems (those mentioned above in particular)are NP-hard to solve. So algorithm designers seek e�cient (polynomial time) approximation algo-rithms.An approximation algorithm A delivers a number that is supposed to be close to optimal. Thequality of the algorithm is measured in terms of what factor of optimal is the delivered number.For example, a factor �(�) � 1 approximation for Max Clique is one which given G outputs a valuev satisfying MaxClique(G)=�(N)� v � MaxClique(G) where N is the number of nodes in G.The search for e�cient approximation algorithms achieving good factors has met with variedsuccess. In some cases, good approximation algorithms were found. But many important problems,including Max Clique, Chromatic Number and Min Vertex Cover, escaped e�orts to be approx-imated at all (in the case of the �rst two problems) or reasonably well (in the case of the last).Algorithm designers want to know whether this is due to some inherent intractability, or only tothe lack of cleverness in algorithm design.Some early non-approximability results were able to indicate, in some cases, that very good ap-proximation (ie. achieving factors very close to optimal) can be NP-hard. But the real breakthroughcame more recently, when a connection was established between proof checking and approximation,yielding a strong non-approximability result for Max Clique. This connection has, over the last fewyears, been broadened and deepened: more and more problems have fallen to this approach, andmeanwhile the factors that one can indicate hard to approximate increase. Indeed, in some cases,even tight results seem in sight.We will now provide a high level overview of our main contributions. Then we will providesome de�nitions and state precise theorems.The above, and most of the following discussion has omitted, for explanatory simplicity, thehistorical story that accompanies the technical advances. In Section 1.6 we provide a history of themain
ow of works and ideas in the area. More detailed credits and historical discussions on speci�ctopics can be found in the text relating to the topic in question, and pointers to these discussionsare also given in Section 1.6. 5

6 Bellare, Goldreich, Sudan1.1 Overview of main resultsThis paper continues and expands the research in non-approximability via proof systems, with afocus on the obtaining of tight results. Here we brie
y summarize our contributions. Later we willstate the results more precisely.1.1.1 New proof systems and non-approximability resultsOur �rst set of results continues previous work by building new and more e�cient proof systemsand thus improving (increasing) factors shown non-approximable for a wide variety of optimizationproblems.We obtain improved non-approximability results for Max Clique, Chromatic Number, andMax-3-SAT. We also obtain the �rst reasonable and explicit constant factor non-approximabilityresult for the Min Vertex Cover problem, Max Cut, and Max-2-SAT. Several of these results arestrong enough to indicate that the gap between factors that are attainable by polynomial timealgorithms, and those we can indicate are not, is now quite narrow. See Figure 1.2.The technical foundation of these results is a new code, call the long code, and a collection ofassociated tests. The tests are used to construct proof systems for NP. Key to the improvementsin non-approximability factors (for some of the above problems) is the focus on certain measures ofproof checking complexity such as \free-bits" and \amortized free-bits." In the latter domain themain result is a proof system for NP using two amortized free-bits, and directly yielding a N1=3non-approximability factor for Max Clique.We emphasize a general framework for the derivation of strong non-approximability results forMax-SNP problems which results from our tests and proof systems: obtaining a non-approximabilityresult for a particular problem is reduced to the construction of appropriate \gadgets" to \repre-sent" two simple functions: boolean XOR and boolean AND.1.1.2 Proofs and approximation: Potential and limitationsAs the above indicates, non-approximability results are getting steadily stronger, especially for MaxClique. How far can they go? And, in minimizing amortized free-bits, are we on the right track?Are there other ways? The next set of results provides answers to these kinds of questions.A reverse connectionWe focus on the Max Clique problem. We present a result which indicates that proof checkingis necessary to getting non-approximability results. Furthermore, it indicates that not just proofchecking, but the minimization of the amortized free-bit complexity is necessary.Roughly, we show that if, for some f > 0, Max Clique is NP-hard to approximate withinN1=(1+f)then NP has proof systems of (logarithmic randomness and) amortized free-bit complexity f . Thisresult can be viewed as \inverting," in a strong way, the FGLSS-connection.So our current e�orts (recall that we have the amortized free-bit complexity down to two,yielding a N1=3 hardness for Max Clique) are in the right direction. To prove that, say Max Cliqueis hard to approximate within pN , our reverse connection says we must construct proof systemswith amortized free-bit complexity one.

Free Bits in PCP 7A lower bound on amortized free-bitsNow that we know we must minimize amortized free-bits, we ask ourselves how low we can takethem. Our approach here is to look at current techniques and assess their limitations. We stress thatthis approach makes various assumptions about methods, and is intended to show that signi�cantlynovel techniques are required to go further. But it does not suggest an inherent limitation. Indeed,if we believe Max Clique is hard to approximate within N1�o(1) then our reverse connection saysproof systems with arbitrarily small constant amortized free-bit complexity exist; we are just sayingthey may be hard to �nd.1.1.3 PCP and FPCP: Properties and transformsProbabilistic proofs involve a vast arena of complexity parameters: query complexity, free-bitcomplexity, amortized free-bit complexity, randomness, and proof sizes to name a few. Somemight, at �rst glance, seem less \natural" than others; yet all are important in applications. Abetter understanding of the basic properties and relations between these parameters would helpmove us forward.We initiate, accordingly, a systematic investigation of the properties of pcp complexity classesas a function of the parameter values. Besides providing new results we take the opportunity tostate and prove a few folklore ones.We focus in particular on \triviality" results. These are results which say that certain pa-rameter combinations yield classes probably not capable of capturing NP. For example, the classof languages recognizable with error 1=2 and logarithmic randomness using one (non-amortized!)free-bit is in P| so don't expect to prove NP using just one free-bit. (But nothing rules this outwhen amortization is considered).We also investigate transformations: to reduce the randomness, error or other complexities atvarious costs.1.1.4 Conceptual contributionsThe reverse connection does more than guide our choice of parameters. It provides a new conceptualtool because it enables us to re
ect, in the language of proof systems, theorems, properties andtransformations of graphs, and vice versa. This turns out to be very useful and revealing. It alsoleads, in some cases to new results derived by turning graphs into proof systems via our connection,and then back to graphs via the FGLSS connection, in the process gaining some property. As anexample we show how all known hardness results for chromatic number can be viewed (with almostno loss in e�ciency) as reductions from Max Clique | even though these were essentially hardnessresults based on proof checking. Other examples demonstrating the usefulness of the equivalencemay be found in Section 4.1.3. We believe that exploring and exploiting further this duality is afruitful avenue to pursue.A second (and related) conceptual contribution of this work is to distill and formalize the role ofrandomized reductions. These transforms provide an elegant and concise way of stating connectionsbetween proofs and approximability, or just between di�erent kinds of proof systems, and make iteasier to manipulate the many connections that exist to derive new results.1.1.5 Previous version, current version and future versionsThis is a third version of our work. Both previous versions, dated May and August 1995, re-spectively, are available from ECCC, the Electronic Colloquium on Computational Complexity,

8 Bellare, Goldreich, Sudanhttp://www.eccc.uni-trier.de/eccc/.The second version improves over the �rst one in the analysis of the MAX-SNP veri�er andconsequently in the hardness factors achieved via this veri�er (i.e., for Max-3-SAT, Max-2-SAT,and Max-CUT). In addition, a new transformation of pcp systems is presented (Proposition 5.2.9)resolving an open problem mentioned in the �rst version (i.e., showing a pcp system for NP withperfect completeness, logarithmic randomness, soundness error s < 0:943 < 1 and free-bit com-plexity log2 3 < 2). Finally, some minor
aws in the original expositions were removed (e.g., seeDe�nition 3.3.1 and \double folding").The current version presents improvements for many of the results of Chapter 3. In particular,we get hardness factors of 27/26, 74/73, 66/65 and 16/15 for Max3SAT, Max2SAT, MaxCUTand MinVC, respectively.1 In addition, we obtain NP = PCP1;0:5[log; 11] = FPCP1;0:5[log; 6] andNP = PCP1;0:851[log; 3] = FPCP1;0:794[log; 2].2 A key ingredient in obtaining all these improvementsis a new (adaptive!) RMB test, replacing the previous RMB test.1.2 Some background and de�nitionsIn the next sections we will state more precisely the results and theorems corresponding to theabove discussion. In order to do this we have to recall some minimal number of de�nitions andbackground. Here we will be informal and as brief as possible; formal de�nitions can be found inChapter 2.Proof systems and parameters. A probabilistic proof system is described by a probabilistic,polynomial time veri�er V . It takes an input x of length n and tosses coins R. It has oracle accessto a poly(n) length string � describing the proof: to access a bit it writes a O(logn) bit addressand is returned the corresponding bit of the proof. Following its computation it will either acceptor reject its input x. The accepting probability, denoted ACC [V (x)], is the maximum, over all �, ofthe probability (over R) that V accepts x on coins R and proof string �. While the task is typicallylanguage recognition, we will, more generally, consider promise problems (A;B) consisting of a setA of \positive" instances and a set B of \negative" instances [ESY]. (Languages are a special caseof promise problems; a language L is represented by the promise problem (L; L).)Of interest in the applications are various parameters of the system. The completeness proba-bility c = c(n) and the soundness probability s = s(n) are de�ned in the usual ways. In case c = 1we say that the system has perfect completeness. The gap is g = c=s. The query complexity isthe maximum (over all coin tosses and proof strings) of the number of bits of the proof that areexamined by the veri�er. The free-bit complexity, roughly speaking, is the logarithm of numberof possible accepting con�gurations of V on coins R and input x. (For example a veri�er whichmakes 3 queries and accepts i� the parity of the answers is odd has 4 accepting con�guration andthus free-bit complexity 2.)Either the query or the free-bit complexity may be considered in amortized form: e.g. the amor-tized free-bit complexity is the free-bit complexity (of a proof system with perfect completeness)divided by the logarithm of the gap. (That is, the number of free-bits needed per factor of 2 increasein the gap.) Also, either the query or free-bit complexity may be considered on the average, theaverage being over the random string of the veri�er.We use the notation PCPc;s[r; q] to denote the class of promise problems recognized by veri�erstossing r coins, having query complexity q, and achieving completeness probability c and soundness1 The corresponding factors in Version 2 were 38/37, 94/93, 82/81 and 27/26.2 Improving over NP = PCP1;0:5[log; 19] = FPCP1;0:5 [log; 11] and NP = PCP1;0:8999 [log; 3] =FPCP1;0:884464 [log; 2], respectively, obtained in Version 2.

Free Bits in PCP 9probability s. FPCPc;s[r; f] is de�ned analogously with f being the free-bit complexity. PCP[r; q]is de�ned analogously with q being the amortized query complexity, and FPCP[r; f] is de�nedanalogously with f the amortized free-bit complexity.Max Clique approximation. Although we look at many optimization problems there is aparticular focus on Max Clique. Recall the best known polynomial time approximation algorithmfor Max Clique achieves a factor of only N1�o(1) [BoHa], scarcely better than the trivial factor ofN . (Throughout the paper, when discussing the Max Clique problem, N denotes the number ofvertices in the graph.) There is not even a heuristic algorithm that is conjectured to do better.(The Lov�asz Theta function had been conjectured to approximate the Max Clique size within pNbut this conjecture was disproved by Feige [Fei].)The question of whether one can do even slightly better is of interest. Namely, can one presentan N1�� factor approximation algorithm for Max Clique for some � < 1? An additional motivationfor searching for such \weak" approximation algorithms was suggested by Blum. He showed thata polynomial-time N1��-factor approximation algorithm for Max Clique implies a polynomial timealgorithm to color a three colorable graph with O(logN) colors [Bl], which is much better thancurrently known [KMS].But perhaps N1�o(1) is the best possible. Resolving the approximation complexity of this basicproblem seems, in any case, to be worth some e�ort.Gaps in clique size. Hardness of approximation (say of Max Clique) is typically shown via theconstruction of promise problems with gaps in max clique size. Speci�cally, let Gap-Cliquec;s be thepromise problem (A;B) de�ned as follows:A is the set of all graphsGwithMaxClique(G)=N � c(N),and B is the set of all graphs G with MaxClique(G)=N � s(N). The gap is de�ned as c=s. Now, ahardness result will typically specify a value of the gap g(N) = c(N)=s(N) for which Gap-Cliquec;sis NP-hard under a (randomized) Karp reduction. This means that there is no polynomial timealgorithm to approximate the Max Clique size of an N node graph within g(N) unless NP hasrandomized polynomial time algorithms.Gap problems can be similarly de�ned for all the other optimization problems we consider.From now on, we discuss approximation in terms of these gap problems.The connection: Making gaps from proofs. We need to recall something about the mannerin which proof systems are translated into (NP-hard) gap problems. We will refer to the FGLSS-reduction, which we recall is a reduction of a promise problem (A;B), or rather a pcp system for(A;B), which maps an input x 2 A [B to a graph Gx so that MaxClique(Gx) re
ects ACC [V (x)].For the best results one typically uses a randomized form of this reduction due to [BeSc, Zu] andit is this that we will assume henceforth.A NP-hard gap problem is obtained roughly as follows. First, one exhibits an appropriateproof system for NP. Then one applies the FGLSS reduction. The factor indicated hard dependson the proof system parameters. A key factor in getting better results has been the distilling ofappropriate pcp-parameters. The sequence of works [FGLSS, ArSa, ALMSS, BGLR, FeKi, BeSu]lead us through a sequence of parameters: query complexity, free-bit complexity and, �nally, for thebest known results, amortized free-bit complexity. The connection in terms of amortized free-bitscan be stated as follows: if NP reduces to FPCP[log; f] then NP also reduces to Gap-Cliquec;s, withgap c(N)=s(N) = N1=(1+f). (In both cases the reduction is via randomized Karp reductions, andterms of � > 0 which can be arbitrarily small are ignored.) In particular if NP � FPCP[log; f] thenapproximating the max clique size of an N vertex graph within N1=(1+f) in polynomial time is notpossible unless NP has e�cient randomized polynomial time algorithms.

10 Bellare, Goldreich, Sudan1.3 New proof systems and non-approximability resultsThis section describes the proof systems that we construct and the non-approximability results thatwe derive from them. All proof systems are based on the long code and its checking machinery. Forsome of the non-approximability results we introduce new reductions or improve currently knownreductions.1.3.1 New proof systemsThe following theorem summarizes the new proof systems that we obtain. Some are motivatedby applications, others purely as interesting items in proof theory. Following the theorem is thediscussion and motivation.Theorem 1.3.1 We provide the following new proof systems for NP|(1) For every � > 0 it is the case that NP � FPCP[log; 2 + �].(2) NP � PCP1;1=2[log; 11].(3) NP � FPCP1;s[log; 2] for s = 0:794.(4) NP � PCP1;s[log; 3] for any s > 0:85.The search for proof systems of low amortized free-bit complexity is motivated of course by theFGLSS reduction. Bellare and Sudan [BeSu] have shown that NP � FPCP[log; 3 + �] for every� > 0. The �rst result above improves upon this, presenting a new proof system with amortizedfree-bit complexity 2 + �.The question of how low one can get the (worst-case and average) query complexity requiredto attain soundness error 1=2 was investigated a lot in earlier works because they were applyingthe result to obtain Max Clique hardness results. We now know we can do better with amortizedfree-bit complexity. Nevertheless, the original question is still one to which we are curious to knowthe answer.Minimizing the soundness error obtainable using only two (non-amortized!) free-bits is impor-tant for a more pragmatic reason. It enables us to get the �rst explicit and reasonably strongconstant non-approximability result for the Min Vertex Cover problem. This application is dis-cussed below.Finally, what soundness one can achieve using only three query bits is a natural question giventhe Max 3SAT gap results. Indeed, if there is an NP-hard Max 3SAT gap problem with certaingap then one can easily get a three query proof system with the same gap. But in fact one can dobetter as indicated above.focus error queries free-bits previous related result3 queries 0:85 3 2 error 7273 via MaxSAT [BeSu]2 free-bits 0.794 O(1) 2error 1/2 12 11 7 32 queries (24 on average) [FeKi]amortized free-bits O(2�m) 23m 2m 3m free-bits [BeSu]Figure 1.1: New PCP Systems for NP, all with logarithmic randomness.

Free Bits in PCP 11Problem Approx Non-ApproxFactor Due to New Factor Previous Factor AssumptionMax-3-SAT 1:258 [Ya, GoWi2, SSTW] 1:038 1 + 172 [BeSu] P 6= NPMax-E3-SAT 1 + 17 folklore 1 + 126 unspeci�ed [ALMSS] P 6= NPMax-2-SAT 1:075 [GoWi2, FeGo] 1:013 1 + 1504 (implied [BeSu]) P 6= NPMax-CUT 1:139 [GoWi2] 1:015 unspeci�ed [ALMSS] P 6= NPMin-VC 2� o(1) [BaEv, MoSp] 1 + 115 unspeci�ed [ALMSS] P 6= NPMax-Clique N1�o(1) [BoHa] N 14 [BeSu] NP 6� coR~PN 13 N 15 coRP 6= NPN 14 N 16 [BeSu] P 6= NPChromatic N1�o(1) [BoHa] N 110 [BeSu] NP 6� coR~PNumber N 15 N 113 coRP 6= NPN 17 N 114 [BeSu] P 6= NPFigure 1.2: Approximation factors attainable by polynomial-time algorithms (Approx) versus fac-tors we show are hard to achieve (Non-Approx).In Figure 1.1 we present a table which depicts the parameters of our new proof systems andcompares them to previous related result. The last row in the table corresponds to the proof systemused to establish Part (1) of Theorem 1.3.1.1.3.2 New non-approximability resultsAgain we �rst state the theorem and then discuss it. But the best thing to do is look at Figure 1.2.Theorem 1.3.2 The following indicate factors not achievable in polynomial time for the indicatedproblems, and the assumption under which the result is shown. Here � > 0 is an arbitrary constantand N is, for the �rst two results, the number of vertices in the graph{(1) A factor of N 13�� for Max Clique assuming NP 6� coRP.(2) A factor of N 15�� for Chromatic Number assuming NP 6� coRP.(3) A factor of 16=15 for Min Vertex Cover assuming P 6= NP.(4) A factor of 27=26 for Max-3-SAT and Max Exact 3SAT assuming P 6= NP.(5) A factor of 66=65 for Max-CUT assuming P 6= NP.(6) A factor of 74=73 for Max-2-SAT assuming P 6= NP.The conclusion for Max Clique follows, of course, from the FGLSS-reduction and Part (1) ofTheorem 1.3.1. The conclusion for the Chromatic Number follows from a recent reduction ofFurer [Fu], which in turn builds on reductions in [LuYa, KLS, BeSu].The improvements for the Max-SNP problems are perhaps more signi�cant than the Max Cliqueone: for the �rst time, we see hardness results for Max-SNP problems which are comparable to thefactors achieved by known polynomial time approximation algorithms.

12 Bellare, Goldreich, SudanWe are obtaining the �rst explicit and reasonable non-approximability factor for Max-2-SAT,Max-CUTand minimum Vertex Cover. Recall that the latter is approximable within 2-o(1) [BaEv,MoSp]. Our results for Max-CUTand Max-2-SAT show that it is not possible to �nd a solutionwith value which is only 1% away from being optimal. This may be contrasted with the recentresults of [GoWi2, FeGo] which shows that solutions which are within 14% and 7.5%, respectively,of the optimum are obtainable in polynomial time. Thus even though, we do not know if the\pcp approach" allows to get the best possible non-approximability results for these problems, wefeel that the current results are not ridiculously far from the known upper bounds. Consider, forexample, the ratio u�1l�1 , where u and l are the currently known upper and lower bounds, respectively.Then, the ratios for the above mentioned Max-SNP problems are 3.7 for Max Exact 3SAT, 5.5 forMax-2-SAT, 6.8 for Max-3-SAT, 9 for Max-CUT, and 15 for MinVC (Minimum Vertex Cover).In Figure 1.2 we present a table which depicts, for each problem we have considered, the bestknown factor achievable by a polynomial time algorithm, our lower bound, and the best previouslower bound. We ignore, as usual, terms of N � where � > 0 is an arbitrary positive constant.1.3.3 TechniquesAs in all recent constructions of e�cient pcp's our construction also relies on the use of recursiveconstruction of veri�ers, introduced by Arora and Safra [ArSa]. We have the advantage of beingable to use, at the outer level, the veri�er of Raz [Raz] which appeared only recently and was notavailable to previous works. The inner level veri�er relies on the use of a \good" encoding scheme.Since [ALMSS], constructions of this veri�er have used the Hadamard Code for this purpose. Inthis paper we change this aspect of the protocol and use instead a much more redundant codewhich we call the long code. This code encodes an n-bit string as a 22n bit string which consistsof the value of every boolean function on the n-bit string. It is easy to see such codes have largeHamming distance. What is important is that this code is also easily \testable" and \correctable".This is shown in Section 3, where we show how this code translates into the theorem describedabove.A second aspect of the improved hardness result is the fact that we use direct reductions fromveri�ers to the problems of interest. This follows and extends [BGLR], prior to which results hadused \generic" reductions, which did not take advantage of the nature of the tests performed bythe veri�er. In particular, in our case it turns out that the veri�er only performs two kinds oftests | (1) verify that a+ b+ c = 0 (mod 2); and (2) verify that a = bc, where a; b; b0; b1; c areall elements of GF(2) = f0; 1g. By constructing local gadgets (i.e., one gadget per random cointoss sequence) to verify each of the veri�er's tests, we achieve better non-approximability resultsthan using more general reductions. In particular our work seems to suggest that optimizing forgadgets which \check" the two conditions listed above will lead to reasonably good lower boundsfor many Max-SNP problems.1.4 Proofs and approximation: Potential and limitsNext we describe the results concerned with exploring the limitations of proof theoretic techniquesin approximation.1.4.1 Reversing the connection: Making proofs from gapsThe FGLSS Reduction Lemma indicates that one route to good non-approximability results forMax Clique is to show NP � FPCP[log; f] for values of f which are as small as possible. Our

Free Bits in PCP 13reverse connection says that, in fact, this is the only way to proceed. Namely, we \invert" theabove FGLSS-reduction. The following states an equivalence: (2))(1) is just the FGLSS-reduction;(1))(2) is our reversed connection. The following statement ignores terms of � > 0 which can bearbitrarily small. The proof and a more precise statement are in Section 4.1.Theorem 1.4.1 Let f be a constant. Then the following statements are equivalent:(1) NP reduces to Gap-Cliquec;s with gap c(N)=s(N) = N1=(1+f).(2) NP reduces to FPCP[log; f].In both cases the reduction is randomized. Furthermore the statement holds both for Karp and forCook reductions. Also, if (1) holds with a deterministic Karp reduction then NP � FPCP0[log; f],where FPCP0 is de�ned as being the amortized free-bit complexity of proof systems with almost-perfect completeness (i.e., c = 1� o(1)).In other words any method of proving NP-hardness of Max Clique approximation to a factor ofN1=(1+f) implies that NP has proof systems of amortized free-bit complexity f .We stress both the \qualitative" and the \quantitative" aspects of this result. Qualitatively,it provides an answer to the following kind of a question: \What do proofs have to do withapproximating clique size, and can we not prove non-approximability results without using proofchecking?" The result indicates that proofs are inherent, and explains, perhaps, why hardnessresults avoiding the proof connection have not appeared.However, at this stage it is the quantitative aspect that interests us more. It says that to gettighter results on Max Clique hardness, we must construct proof systems to minimize the amortizedfree-bit complexity. Thus our work with the long code was in the right direction. A question iswhether the amortized free-bit bound of 2 can be improved.1.4.2 A lower bounds on amortized free-bitsThe following text has appeared in the previous version of our work [BGS]:We show that, under the framework used within this and previous papers on thissubject, amortized free-bit complexity of 2 seems to be a natural barrier: any proofsystem in this framework must use 2 � � amortized free-bits, where � > 0 as usualcan be arbitrarily small. The result, including a de�nition of what we mean by the\framework," is in Section 4.2. Loosely speaking, it considers proof systems which,among other things, probe two oracles in order to check that one oracle is \close" toa codeword (i.e., a codeword test) and the second oracle encodes a projection of theinformation encoded in the �rst oracle (i.e., a projection test). We also prove a lowerbound of 1 � � on the amortized free-bit complexity of performing only the codewordtest (resp., only the projection test). Our lower bound refers to a codeword test that isrequired to reject oracles which are at distance at least d=2 from the code, where d is thedistance of the code. All three lower bounds are tight (by proof systems presented inthis paper). A more relaxed de�nition of a codeword test only requires the test to rejectoracles at distance more that (1� �) � d from the code.3 We do not know whether ourlower bound (on the amortized free-bit complexity) holds also for the relaxed codewordtest.All known constructions (of reasonably e�cient pcp systems) fall into the frameworkdiscussed above (i.e., perform both a codeword test and a projection test). Furthermore,3 In contrast to the original de�nition, passing a relaxed codeword test does not guarantee unique decoding.However, as we see in Section 3.4, this does not matter.

14 Bellare, Goldreich, Sudana pcp system of amortized free-bit complexity 2 + � (cf. Theorem 1.3.1 Part 1) can beconstructed both by using the relaxed and non-relaxed forms of the codeword test.Thus improving on the amortized free-bit count of 2 + � requires either departure fromthe abovementioned framework or the construction of a relaxed codeword test withamortized free-bit complexity signi�cantly lower than 1. In the latter case (i.e., whenremaining in the above framework), such a construction is necessary but not su�cientin order to obtain a pcp system for NP with free-bit complexity lower than 2 (since oneneeds to perform the projection test also in case the oracles are close but not equal tocodewords). Furthermore, in such a case the lower bound of 1 on the free-bit complexityof the projection test still holds.Meanwhile, Hastad [Has] has constructed a pcp system of amortized free-bit complexity 1+�, 8� > 0.Hastad's construction builds on the framework presented in the current work but introduces a(di�erent type of a) relaxed codeword test which is conducted within amortized free-bit complexity�. Thus, we currently consider our lower bound (of 1 � �) on the amortized free-bit complexityof the projection test to be the most important result of Section 4.2. The projection test seemsinherent to the way pcp systems are currently constructed. We conclude that improving overHastad's result (i.e., amortized free-bit complexity of 1+ �) would require some signi�cant changesin the design of pcp veri�ers. It follows from our reverse connection that proving a larger thanN1=2 non-approximability factor for Max Clique would also require signi�cant new techniques.We stress that these lower bounds point out limitations of techniques, not limitations of results.We are not saying there is any reason to disbelieve-believe the existence of, say, of a pcp veri�er withamortized free-bit complexity of � > 0 for all NP languages, where � > 0 is an arbitrary constant.Indeed, if we believe Max Clique is hard to approximate within N1�o(1) then such veri�ers exist!We are just saying they may be hard to �nd.1.5 Properties and transforms of PCP and FPCPThe results mentioned in the �rst two subsections can be found in Section 5.1; whereas the resultsin the last subsection are from Section 5.2.1.5.1 Triviality resultsWe begin our investigation of the roles of various parameters with triviality results. These resultsare directed at seeing what kinds of parameter combinations we can expect are too weak to recognizeNP.Perhaps the �rst thing to ask is whether, instead of amortized free-bit complexity, we couldwork with any of the simpler measures. After all FPCP[log; f] contains each of the following classes:(1) PCP1;1=2[log; f]; (2) PCP[log; f]; (3) FPCP1;1=2[log; f]. Thus it would su�ce to minimize thequery complexity to get error 1=2; or the amortized query complexity; or the free-bit complexityto get error 1=2. However it turns out these complexities will not enable us to reach our target(of reducing the complexity to almost zero and thus proving that clique is hard to approximate towithin a N1�� factor, for every � > 0). This is because of the following (where the �rst result isfolklore and included here only for completeness).Theorem 1.5.1 The following classes are all contained in P{(1) PCP1;1=2[log; 2](2) PCP[log; 1]

Free Bits in PCP 15(3) FPCP1;1=2[log; 1].Thus we cannot expect to construct pcp systems for NP with query complexity 2; amortized querycomplexity 1; or free-bit complexity 1. However it is a feature of amortized free-bit complexitythat so far it seems entirely possible that NP reduces to FPCP[log; f] with f an arbitrarily smallconstant. Indeed, if we believe (conjecture) that Max Clique is hard to approximate with N1�� forany � > 0 then such proof systems must exist, by virtue of Theorem 1.4.1 above. In fact, even if wedo not believe that Max Clique is hard to approximate with N1�� for any � > 0, it turns out thatthe amortized free bit parameter will be too weak to capture the hardness of the clique function. Infact if Max Clique is hard to approximate to within N�, then the best hardness result obtainablefrom the amortized query bit parameter would be of the form N �2�� . This is shown by invokingCorollary 5.1.9 which shows that the amortized query complexity parameter is always one largerthan the amortized average free bit parameter (and we know that the amortized free bit parametercaptures the hardness of Max Clique tightly).1.5.2 Other resultsWe have already mentioned above (cf., Theorem 1.5.1) that strict limitations on various queryparameters make PCP very weak. Actually, for every s < 1, PCP1;s[log; 2] and FPCP1;s[log; 1]collapse to P. This means that pcp systems with perfect completeness are very weak when restrictedto either two queries or to free-bit complexity one. However, pcp systems with completeness errorand the very same query (resp., free-bit) bounds are not so weak. In particular, it is well knownthat NP = PCPc;s[log; 2] for some 0 < s < c < 1 (e.g., by using the NP-hardness of approximatingMax2SAT). We show that NP = FPCPc;s[log; 1] for some 0 < s < c < 1 (speci�cally, c = 12 ands = 0:885 � c). Furthermore, for some smaller 0 < s < c < 1, the following holdsNP = FPCPc;s[log; 0] (1.1)(speci�cally, with c = 14 and s = 0:885 � c). We �nd the last assertion quite intriguing. It seems toindicate that one needs to be very careful when making conjectures regarding free-bit complexity.Furthermore, one has to be very careful also when making conjectures regarding amortized free-bit complexity; for example, the result P = PCP[log; 1] holds also when one allows non-perfectcompleteness (in the de�nition of PCP[�; �]) as long as the gap is greater than 2q per q queries, butan analogous result cannot hold for two-sided error amortized free-bit complexity (i.e., FPCP[�; �]).Trying to understand the power of pcp systems with low free-bit complexity, we have waivedthe bound on the randomness complexity. Recall that in this case pcp systems are able to recognizenon-deterministic exponential time (i.e., NEXPT = PCP1;1=2[poly; poly]) [BFL]. Thus, it may beof interest to indicate that for every s < 1,FPCP1;s[poly; 0] � coNP (1.2)FPCP1;s[poly; 1] � PSPACE (1.3)It seems that FPCP1;1=2[log; 0] is not contained in BPP, since Quadratic Non-Residuosity andGraph Non-Isomorphism belong to the former class. (Speci�cally, the interactive proofs of [GMR]and [GMW] can be viewed as a pcp system with polynomial randomness, query complexity 1 andfree-bit complexity 0.) Thus, it seems that also the obvious observation PCP1;s[poly; 1] � AM (forevery s < 1, where AM stands for one round Arthur-Merlin games), would be hard to improveupon.

16 Bellare, Goldreich, Sudan1.5.3 Transformations between proof systemsWe provide various useful transformation of pcp systems. These transformations are analogous totransformations which can be applied to graphs with respect to the max-clique problem. In viewof the relation (mentioned above), between FPCP and the clique promise problem, this analogy ishardly surprising.One type of transformations amplify the gap (i.e., the ratio between completeness and soundnessbounds) of the proof system while preserving its amortized free-bit complexity and incurring arelatively small additional cost in the randomness complexity. Speci�cally, using a randomizedreduction we can transform FPCP1; 12 [log; f] into FPCP1;2�k[log+k; k � f]. (This transformation isanalogous to the well-known transformation of Berman and Schnitger [BeSc].) Alternatively, using aknown deterministic ampli�cation method based on [AKS, LPS] one can transform FPCP1; 12 [log; f]into FPCP1;2�k[log+2k; k � f] (ignoring multiplicative factors of 1 + � for arbitrarily small � > 0).(To the best of our knowledge this transformation has never appeared with a full proof.) Bothalternatives are important ingredients in transforming pcp results into clique in-approximabilityresults via the FGLSS method.A second type of transformations are ones which move the location of the gap (or, equivalently,the completeness parameter). The gap itself is preserved by the transformation but moving itis related to changing the free-bit complexity (and thus the amortized free-bit complexity is notpreserved). Moving the gap `up' requires increasing the free-bit complexity, whereas moving the gap`down' allows to decrease the free-bit complexity. For example, we randomly reduce FPCPc;s[log; f]to FPCP1;s�log[log; f+log(1=c)+log log]. On the other hand, for every k � f , we (deterministically)reduce FPCPc;s[log; f] into FPCP c2k ; s2k [log; f � k], provided that the original system has at least2k accepting con�gurations per each possible sequence of coin-tosses. (This condition is satis�ed inmany natural pcp systems, even for k = f .)1.6 HistoryEarly work in non-approximability includes that of Garey and Johnson [GJ1] showing that it isNP-hard to approximate the chromatic factor within a factor less than two. The indication ofhigher factors, and results for other problems, had to wait for the interactive proof approach.Interactive proofs were introduced by Goldwasser, Micali and Racko� [GMR] and Babai [Bab].Ben-Or, Goldwasser, Kilian and Wigderson [BGKW] extended these ideas to de�ne a notion ofmulti-prover interactive proofs. Fortnow, Rompel and Sipser [FRS] showed that the class, MIP, oflanguages possessing multi-prover interactive proofs equals the class of languages which have (usingtodays terms) probabilistically checkable proofs (of unrestricted, and thus polynomial, randomnessand query complexity).First indication to the power of interactive proof systems was given in [GMW], where it wasshown that interactive proofs exist for Graph Non-Isomorphism (whereas this language is not knownto be in NP). However, the real breakthrough came with the result of Lund, Fortnow, Karlo� andNisan [LFKN] who used algebraic methods for showing that all coNP languages (and actually, alllanguages in P#P) have interactive proof systems. These techniques were used by Shamir [Sh] toshow that IP = PSPACE.A central result which enabled the approximation connection is that of Babai, Fortnow andLund [BFL] who showed that the class MIP equals the class NEXP (i.e., languages recognizablein non-deterministic exponential time). The latter result has been \scaled-down" to the NP-levelby two independent groups of researchers. Babai, Fortnow, Lund and Szegedy [BFLS] showedthat if the input is encoded using a special error-correcting code (for which encoding and decoding

Free Bits in PCP 17can be performed in polynomial-time) then NP has transparent proof systems (i.e., it is possibleto verify the correctness of the proof in poly-logarithmic time). Feige, Goldwasser, Lov�asz, Safraand Szegedy [FGLSS] showed that NP has probabilistically checkable proofs of poly-logarithmicrandomness and query complexity; namely, NP � PCP1;1=2[r; q], where r(n) = q(n) = O(logn �log log n).The breakthrough connection to approximation was made by Feige, Goldwasser, Lov�asz, Safraand Szegedy [FGLSS]. They have shown that NP � PCP1;s[r; q] implies that approximating themaximum clique in a 2r(n)+q(n)-vertices graph to within a 1=s(n) factor is infeasible (i.e., not doablein polynomial-time), provided that NP is not in Dtime(2O(r+q)). (Here n is the length of the inputx to the pcp veri�er.) Combined with the above-mentioned results, they have obtained the �rst ina sequence of strong non-approximability results for Max Clique: a non-approximability factor of2log1�� N , 8� > 0, assuming NP did not have quasi-polynomial time algorithms.After the work of [FGLSS] the �eld took o� in two major directions. One was to extend theinteractive proof approach to apply also to other optimization problems. Direct reductions fromproofs were used to show hardness of quadratic programming [BeRo, FeLo], Max-3-SAT [ALMSS],set cover [LuYa], and other problems [Be]. Also, reductions from Max Clique lead to hardnessresults for the chromatic number [LuYa] and other problems [Zu], while previous reductions fromMax-3-SAT lead to hardness results for all of Max-SNP [PaYa].The other direction was to increase factors and reduce assumptions for problems already shownhard to some factor under some assumption, by improving the e�ciency of the underlying proofsystems and/or the e�ciency of the reductions.The �rst stage of this enterprise started with the work of Arora and Safra [ArSa] which, show-ing that NP � PCP1;1=2[log; o(log)], provided the �rst strong NP-hardness result for Max Clique(speci�cally, a hardness factor of 2plogN). This work has introduced the idea of recursive proofchecking which turned out to play a fundamental role in all subsequent developments. Interest-ingly, the idea of encoding inputs in an error-correcting form (as suggested in [BFLS]) is essentialto make \recursion" work. Arora, Lund, Motwani, Sudan and Szegedy [ALMSS], have reduced thequery complexity of pcp systems for NP to a constant, while preserving the logarithmic randomnesscomplexity; namely, they have shown that NP = PCP1;1=2[log; O(1)]. This immediately implied theNP-hardness of approximating Max Clique within N �, for some � > 0. Furthermore, it also impliedthat Max-3-Sat is NP-hard to approximate to within some constant factor [ALMSS] and so is theentire class Max-SNP [PaYa].Attempts to improve the constant in the exponent of the Max Clique hardness factor, and alsoimprove the constant values of the hardness factors in the Max-SNP hardness results, begin withBellare, Goldwasser, Lund and Russell [BGLR]. They presented new proof systems minimizingquery complexity and exploited a slightly improved version of the FGLSS-reduction due to [BeSc,Zu] to get a N1=30 hardness of approximation factor for Max Clique. Feige and Kilian [FeKi],however, observed that one should work with free-bits, and noted that the free-bit complexity of thesystem of [BGLR] was 14, yielding a N1=15 hardness factor. Bellare and Sudan then suggested thenotion of amortized free-bits and built new proof systems achieving amortized free-bit complexitythree, and in particular a N1=4 hardness for Max Clique assuming NP 6� coReP.Detailed histories for speci�c topics are given in the sections addressing this topic. In particularsee Section 2.4 for history of PCP and its growing list of parameters; Section 3.4 for a perspectiveof the role of constant prover proofs; Section 3.10 for previous work in query complexity minimiza-tion; Section 3.7 for previous work, both on approximation algorithms and hardness results, forMax-3-SAT and Max-2-SAT; Section 3.12 for previous work on Max Clique and history of variouschromatic number reductions.

18 Bellare, Goldreich, Sudan1.7 Related workFollowing the presentation of our results, Arora has also investigated the limitations of proof check-ing techniques in proving non-approximability results [Ar]. Like in our free-bit lower bound result,he tries to assess the limitations of current techniques by making some assumptions about thesetechniques and then showing a lower bound. His focus is on the reductions, which he assumes are\code like." In this setting he can show that one should not expect to prove non-approximability ofMax Clique within N1=2. (The assumptions made by us and by Arora do not seem to be comparable:neither implies the other.)1.8 Directions for further researchFollowing the publication of an early version of this work and building on its techniques, Has-tad [Has] has constructed pcp systems for NP with amortized free-bit complexity 1 + �, 8� > 0.This has resolved our previous challenge of reducing the amortized free-bit complexity to below 2,but left open the more di�cult challenge of reducing the amortized free-bit complexity to below 1.Section 4.2 demonstrates that this cannot be done by using the current paradigms for constructingpcp systems, and speci�cally while using a Projection Test. We conjecture that, for every � > 0,NP � FPCP[log; �] and challenge the reader to prove or refute this conjecture.Two questions of a de-randomization
avor follow. As stated above, we know that FPCP[log; f]is randomly reducible to FPCP1;2�k [log+k; k � f]. On the other hand, the former class is containedin (i.e., is deterministically reduced to) the class FPCP1;2�k [log+(2 + �)k; (1 + �)k � f], for arbi-trarily small � > 0. Can one obtain the best of both worlds; namely, a deterministic reduction ofFPCP[log; f] to, say, FPCP1;2�k [log+(1+�)k; (1+�)k �f], for arbitrarily small � > 0. An a�rmativeanswer will allow to infer from NP � FPCP[log; f] that approximating Max Clique to within anN 11+f+� factor is NP-hard (rather than infeasible under the assumption that NP is not containedin BPP).One ingredient of our method for reversing the FGLSS-reduction is the randomized reduction ofthe class FPCPc;s[log; f] to the class FPCP1; logc �s[log; f+log(1=c)+log log]. (This statement followsthe exposition in Section 5.2. An alternative exposition, making use of a randomized graph-layeringprocess, is given in Section 4.1.) Anyhow, randomness plays an essential role in obtaining a pcpsystem with perfect completeness.4 The question is whether the class FPCPc;s[log; f] is containedin the class FPCP1; logc �s[log; f + log(1=c) + log log] (rather than being randomly reducible to it).Our NP-hardness (of approximation) results for MaxSNP make use of problem-dependent gad-gets which implement two simple tests (i.e., testing that x + y = z and testing that x = yz, forvariables/oracle-answers x; y; y0; y1 and z). For example, when proving Max3SAT we construct3CNF formulae, over these and auxiliary variables, so that the formula is satis�ed if and only if thebasic variables satisfy the test. Speci�cally, the formula for each test has 4 clauses (and no auxiliaryvariables). In general, what matters is the relation between the number of clauses satis�ed by thebest assignment extending values which satisfy the test and the number of clauses satis�ed by thebest assignment extending values which do not satisfy the test. Let �i (resp., �i � �i < �i) denotethe �rst (resp., second) number, for the ith test, and let �i = �i�i . Then, the non-approximabilityfactor has the form 1c1�1+c2�2 , where c1 and c2 depend on the proof system. Thus, constructing3CNF (resp., 2CNF) formulae for which the ratios �i are small is a key ingredient in getting betternon-approximability results. Currently, for 3CNF we have �1 = �2 = 4, whereas for 2CNF we have4This makes our results more elegant, but actually { as indicated in Section 4.1, we could have settled for \almostperfect" completeness which su�ces for presenting an inverse of the \FGLSS-reduction".

Free Bits in PCP 19�1 = �2 = 11. De�ning analogous quantities for Max Cut, we currently have �1 = 9 and �2 = 11.(For MinVC we could obtain �1 = 6 and �2 = 7, but used an alternative method instead { seeSection 3.9). We suggest the construction of better gadgets as an open problem.Regarding (non-amortized) free-bits, we know that NP � FPCP1;0:7936[log; 2] and on the otherhand that FPCP1;s[log; 1] � P, for every s < 1. As motivation to the following questions we notethat the �rst result was used to establish the NP-hardness of approximating Min Vertex Cover uptoa 1615 factor. In general, NP � FPCP1;s[log; f] implies that approximating Min Vertex Cover up toa 2f�s2f�1 factor is NP-hard. We ask whether(1) NP � FPCP1;s[log; 2] for every s > 0 (this would imply a hardness factor of 43 � �, 8� > 0).(2) NP � FPCP1;s[log; log2 3] for every s > 0 (this would imply a hardness factor of 32� �, 8� > 0).Note that obtaining a result for s < 2�f , where f is the free bit complexity, would imply amortizedfree-bit complexity lower than 1. Thus, it may be easier to try to obtain soundness bounds of s � 14and s � 13 , respectively (yielding non-approximation factors of 54 and 43 , resp.).1.9 AcknowledgmentsWe thank Viggo Kann, Marcos Kiwi and Luca Trevisan for carefully reading the previous versionof our work and pointing out several
aws and improvements. We also wish to thank Uri Feige forhelpful discussions.

C h a p t e r 2Notation and De�nitions
2.1 General notation and de�nitionsFor integer n let [n] = f1; : : : ; ng. A graph always means an undirected graph with no self-loops,unless otherwise indicated. We let kGk denote the number of vertices in graph G = (V;E).A probabilistic machine K has one or more inputs x1; x2; : : : and tosses some random coins R,usually of some length r(�) which is a function of the (lengths of the) inputs. We let K(x1; x2; : : : ;R)denote the output of K when it uses the particular sequence of coin tosses given by R. Typicallywe are interested in the probability space associated to a random choice of R.A function is admissible if it is polynomially bounded and polynomial time computable. Wewill ask that all functions measuring complexity (e.g. the query complexity q = q(n)) be admissible.In de�ning complexity classes we will consider promise problems rather than languages.1 Fol-lowing Even et. al. [ESY], a promise problem is a pair of disjoint sets (A;B), the �rst being the setof \positive" instances and the second the set of \negative" instances. A language L is identi�edwith (L; L). (We refer the reader to [ESY] for issues in promise problems.)2.2 Proof systemsA veri�er is a probabilistic machine V taking one or more inputs and also allowed access to one ormore oracles. Let x denote the sequence of all inputs to V and let n denote its length. During thecourse of its computation on coins R and input x it makes queries of its oracles. Its �nal decisionto accept or reject is a function DECV (x; a;R) of x;R and the sequence a of all the bits obtainedfrom the oracle in the computation. Contrary to standard terminology, acceptance in this paperwill correspond to outputting 0 and rejection to outputting 1.Oracles are formally functions, with the context specifying for each the domain and range;sometimes, however, we may write strings, to be interpreted as functions in the natural way. Let� denote the sequence (tuple) of all proof oracles supplied to the veri�er V . Now for veri�er Vexamining the proofs � and having input x, we letACC [V �(x)] = PrR [V �(x;R) = 0]1This convention is adopted since approximation problems are easily casted as promise problems.20

Free Bits in PCP 21denote the probability that V accepts in this particular case. We then letACC [V (x)] = max� ACC [V �(x)]denote the maximum accepting probability, over all possible choices of proof sequences �; thedomain from which the proofs are chosen depending, as mentioned above, on the context.Let patternV (x;R) be the set of all sequences a such that DECV (x; a;R) = 0. (That is, allsequences of oracle answers leading to acceptance). A generator for V is a poly(n)-time computablefunction G such that patternV (x;R) = G(x;R) for all x;R. (That is, it can e�ciently generate theset of accepted patterns.)We are interested in a host of parameters which capture various complexity measures of theproof checking process. They are all functions of the length n of the input x given to the veri�er V .In the following � denotes the concatenation of all the proof strings given to the veri�er. Also recallwe are interested in proof systems for promise problems (A;B) rather than just for languages.coins = Number of coins tossed by veri�er. Typically denoted rp
en = Length of the proof provided to the veri�er. Typically denoted l.c = Completeness probability. Namely minf ACC [V (x)] : x 2 A and jxj = n g.s = Soundness probability. Namely maxf ACC [V (x)] : x 2 B and jxj = n g.g = Gap. Namely c=s.Now we move to various measures of the \information" conveyed by the oracle to the veri�er.For simplicity we consider here only oracles which return a single bit; that is, they correspond to\written" proofs.query = The query complexity on input x is the maximum, over all possible cointosses R of V , of the number of bits of � accessed by V on input x. Thequery complexity of the system q = q(n) is the maximum of this over allinputs x 2 A [B of length n.queryav = The average query bit complexity on input x is the average, over R, of thenumber of bits of the proof � accessed by V on input x and coins R. Theaverage query complexity of the system is the maximum of this over allx 2 A [B of length n. Typically denoted qav.query = V is said to have amortized query bit complexity �q if q= lg(g) � �q where qis the query bit complexity and g is the gap, and, furthermore, q is at mostlogarithmic in n.free = The free bit complexity of V is f if there is a generator G such thatjG(x;R)j � 2f for all R and all x 2 A [B of length n.freeav = The average free bit complexity of V is fav if there is a generator G suchthat ER [jG(x;R)j]� 2fav for all x 2 A [B of length n.free = V is said to have amortized free bit complexity �f if f= lg(g) � �f where f isthe free bit complexity and g is the gap.Notice that amortized query complexity is restricted to be at most logarithmic. We don't need toexplicitly make this restriction for the amortized free bit complexity: it is a consequence of thee�cient generation condition.

22 Bellare, Goldreich, SudanIn case the completeness parameter equals 1 (i.e., c = 1), we say that the system is of perfectcompleteness. In case the completeness parameter, c, satis�es c(n) = 1 � o(1), we say that thesystem is of almost-perfect completeness.The consideration of all these parameters give rise to a potentially vast number of di�erentcomplexity classes. We will use a generic notation in which the parameter values are speci�edby name, except that, optionally, the completeness and soundness can, if they appear, do so assubscripts. Thus for example we have things like:PCPc;s[coins = r ; query = q ; p
en = 2r ; free = f : : :] :However most often we'll work with the following abbreviations:PCPc;s[r; q] def= PCPc;s[coins = r ; query = q]PCPc[r; q] def= PCPc;�[coins = r ; query = q]FPCPc;s[r; f] def= PCPc;s[coins = r ; free = f]FPCPc;s[r; f; l] def= PCPc;s[coins = r ; free = f ; p
en = l]FPCPc[r; f] def= PCPc;�[coins = r ; free = f] :We stress that in the de�nitions of the amortized classes, PCPc[r; q] and FPCPc[r; f], we referto the completeness parameter c (but not to the soundness parameter). In case c = 1, we mayomit this parameter and shorthand the amortized classes of perfect completeness by PCP[r; q] andFPCP[r; f], respectively. Namely, PCP[r; q] def= PCP1[r; q]FPCP[r; f] def= FPCP1[r; f]2.3 Randomized reductionsWe will consider reductions between promise problems. A (randomized) Karp reduction from(A1; B1) to (A2; B2) is a probabilistic, polynomial time function T which takes two arguments: aninput x and a security parameter k, the latter written in unary. The transformation is required tohave the property thatx 2 A1 =) Pr � T (x; 1k) 2 A2 � def= p1(x; k) � 1� 2�kx 2 B1 =) Pr � T (x; 1k) 2 B2 � def= p2(x; k) � 1� 2�k :The probability is over the coin tosses of T . We say the reduction has perfect completeness if p1 = 1and perfect soundness if p2 = 1. (In the special case of deterministic transformations it must bethat p1 = p2 = 1.) We write (A1; B1) �KR (A2; B2) if there is a randomized Karp reduction from(A1; B1) to (A2; B2). If the reduction is deterministic we omit the subscript of \R," or, sometimes,for emphasis, replace it by a subscript of \D."An example is the randomized FGLSS transformation [FGLSS, BeSc, Zu]. Here (A1; B1) is typ-ically an NP-complete language L, and (A2; B2) is Gap-Cliquec;s for some c; s which are determinedby the transformation. This transformation has perfect soundness, while, on the other hand, it ispossible to get p1 = 1� 2�poly(n).

Free Bits in PCP 23Similarly one can de�ne (randomized) Cook reductions. The notation for reductions is �CR .Let C be a complexity class (e.g. NP). We say that C reduces to (A2; B2) if for every (A1; B1)in C it is the case that (A1; B1) reduces to (A2; B2). An example is to say that NP reduces toGap-Cliquec;s. We say that C1 reduces to C2, where C1 and C2 are complexity classes, if for every(A1; B1) in C1 there is an (A2; B2) in C2 such that (A1; B1) reduces to (A2; B2). An example is tosay that NP reduces to FPCP[log; f]. The notation of �KR or �CR extends to these cases as well.Notice that our de�nition of reducibility ensures that this relation is transitive.For simplicity we sometimes view a reduction T as a function only of x, and write T (x). Insuch a case it is to be understood that the security parameters has been set to some convenientvalue, such as k = 2.2.4 HistoryThe model underlying what are now known as \probabilistically checkable proofs" is the \oracle"model of Fortnow, Rompel and Sipser [FRS], introduced as an equivalent (with respect to languagerecognition power) version of the multi-prover model of Ben-Or, Goldwasser, Kilian and Wigderson[BGKW]. Interestingly, as shown by [BFLS, FGLSS], this framework can be applied in a meaningfulmanner also to languages in NP. These works provide the veri�er V with a \written" proof, modeledas an oracle to which V provides the \address" of a bit position in the proof string and is returnedthe corresponding bit of the proof. Babai et. al. [BFLS] suggested a model in which the instancesare encoded in a special (polynomial-time computable and decodable) error-correcting code andthe veri�er works in polylogarithmic time. Here we follow the model of Feige et. al. [FGLSS]where the veri�er is probabilistic polynomial-time (as usual) and one considers �ner complexitymeasures such as the query and randomness complexity. The reduction of [FGLSS] identi�ed theparameters of query complexity (number of binary queries), randomness complexity and error. Theclass PCP1;1=2[r; q] was made explicit by [ArSa].The parameterization was expanded by [BGLR] to explicitly consider the answer size (the oracleis now allowed to return more than one bit at a time) and query size{ their notation included�ve parameters: randomness, number of queries, size of each query, size of each answer, anderror probability. They also similarly parameterized (single round) multi-prover proofs, drawingattention to the analogue with pcp. This served to focus attention on the roles of various parameters,both in reductions and in constructions. Also they introduced the consideration of average querycomplexity, the �rst in a sequence of parameter changes towards doing better for clique.Free bits are implicit in [FeKi] and formalized in [BeSu]. Amortized free bits are introduced in[BeSu] but formalized a little better here.Proof sizes were considered in [BFLS, PoSp]. We consider them here for a di�erent reason{they play an important role in that the randomized FGLSS reduction [BeSc, Zu] depends actuallyon this rather than the randomness.To deal with the now huge array of parameters we have generalized the notation of [BGLR] toallow speci�cation of parameters by name.We've followed the common tradition regarding the names of polynomial-time reductions: many-to-one reductions are called Karp-reductions whereas (polynomial-time) Turing reductions arecalled Cook-reductions. This terminology is somewhat unfair towards Levin whose work on NP-completeness [Lev] was independent of those of Cook [Co] and Karp [Ka]. Actually, the reductionsconsidered by Levin are more restricted as they also e�ciently transform the corresponding NP-witnesses (this is an artifact of Levin's desire to treat search problems rather than decision problem).In fact, such reductions (not surprisingly termed Levin-reductions) are essential for results such as

24 Bellare, Goldreich, SudanCorollary 4.1.12. (Yet, this is the only example in the current paper.)

C h a p t e r 3New proof systems andnon-approximability results
This chapter presents some new proof systems minimizing complexity under various measures.These proof systems are then used to derive the best known in-approximability results forMax-3-SAT,Max-E3-SAT (Max Exact 3SAT), Max-2-SAT, Max Cut, Min Vertex Cover (Min VC), Max Clique,and Chromatic number. This is a long chapter and it will help to begin with some indication ofwhat we will be doing.3.1 Overview and guidemapThe starting point for all our proof systems is a two-prover proof system achieving arbitrarily smallbut �xed constant error with logarithmic randomness and constant answer size, as provided byRaz [Raz]. This proof system has the property that the answer of the second prover is supposedto be a predetermined function of the answer of the �rst prover. Thus, veri�cation in it amountsto checking that the �rst answer satis�es some predicate and that the second answer equals thevalue obtained from the �rst answer. Following the \proof composition" paradigm of Arora andSafra [ArSa], we will \encode" the answers of the two provers under a suitable code and then,\recursively", check these encodings. As usual, we will check both that these encodings are validand that they correspond to answer which would have been accepted by the original veri�er.Our main technical contribution is a new code, called the long code, and means to check it. Thelong code of an n-bit information word a is the sequence of 22n bits consisting of the values of allpossible boolean functions at a. The long code is certainly a disaster in terms of coding theory,but it has big advantages in the context of proof veri�cation, arising from the fact that it carriesenormous amounts of data about a. The di�culty will be to check that a prover claiming to writethe long code of some string a is really doing so.The long code is described in Section 3.3. In Section 3.5 we provide what we call the \atomic"tests for this code. These tests and their analysis are instrumental to all that follows. Section 3.4is also instrumental to all that follows. This section sets up the framework for recursive proofchecking which is used in all the later proof systems.The atomic tests are exploited in Section 3.6, introducing a veri�er which queries the proof at 3locations and performs one of two simple checks on the answers obtained. These simple checks are25

26 Bellare, Goldreich, Sudanimplemented by gadgets of the MaxSNP problem at hand, yielding the non-approximability results.Section 3.7 presents gadgets which are CNF formulae of the corresponding type and Section 3.8presents Max-CUT gadgets. The non-approximability results for Max-3-SAT, Max-E3-SAT, Max-2-SATand Max-CUT follow. The veri�er of Section 3.6 bene�ts from another novel idea which is re-ferred to as folding (see Section 3.2). We stress that folding contributes to the improved resultsfor Max-3-SAT, Max-E3-SAT, Max-2-SAT and Max-CUT, but not to the results regarding MaxClique (and Chromatic Number).A reasonable non-approximability result for Min-VC (minimum Vertex Cover) can be obtainedby the above procedure, but a better result is obtained by constructing a di�erent veri�er which usesexactly two-free bits. The computation of this veri�er is then reduced to the vertex cover problem(by means of the FGLSS reduction). The latter approach is presented in Section 3.9 where we tryto minimizing the soundness error attainable using exactly two free-bits.In Section 3.10 we minimize the number of bits queried in a PCP to attain soundness error1=2 | the result is not of direct applicability, but it is intruiging to know how low this number cango. We then turn toMax Clique (and Chromatic Number). In Section 3.11 we provide the \iterated"tests (in which the atomic tests are sequentially invoked many times). These iterations will berelated to one another (pairwise independent to be more speci�c) leading to a proof system inwhich the number of amortized free-bits used is two. We then draw the implications for Max Clique(and Chromatic Number). A reader interested only in the (amortized) free-bit and Max Cliqueresults can proceed directly from Section 3.5 to Section 3.11 and Section 3.12.The improvement in the complexities of the proof systems is the main source of our improvednon-approximability results. In addition we also use (for the Max-SAT and Max-CUT problems)a recent improvement in the analysis of linearity testing [BCHKS] and introduce special (problemspeci�c) gadgets which represent the various tests.Credits and histories pertaining to each topic are discussed alongside the topic. Thus eachsubsection contains the historical material relevant to it.3.2 PreliminariesIn this chapter, � = f0; 1g will be identi�ed with the �nite �eld of two elements, the �eld operationsbeing addition and multiplication modulo two. If X and Y are sets then Map(X; Y) denotes theset of all maps of X to Y . For any m we regard �m as a vector space over �, so that strings andvectors are identi�ed.Linearity. Let G;H be groups. A map f : G ! H is linear if f(x + y) = f(x) + f(y) for allx; y 2 G. Let Lin(G;H) denote the set of all linear maps of G to H .Distance. The distance between functions f1; f2 de�ned over a common �nite domain D isDist(f1; f2) = PrxR D [f1(x) 6= f2(x)] :Functions f1; f2 are �-close if Dist(f1; f2) < �. If f maps a group G to a group H we denote byDist(f;Lin) the minimum, over all g 2 Lin(G;H), of Dist(f; g). (Note the notation does not specifyG;H which will be evident from the context). We are mostly concerned with the case of G beinga vector space V over � and H being �. Notice that in this case we have Dist(f;Lin) � 1=2 forall f : V ! �.Boolean Functions. Let l be an integer. We let Fl def= Map(�l;�) be the set of all maps of �lto �. We regard Fl as a vector space (of dimension 2l) over �. Addition and multiplication of

Free Bits in PCP 27functions are de�ned in the natural way.We let Lm � Fm be the set Lin(�m;�) of linear functions of �m to �, and let L�m = Lm � f0gbe the non-zero linear functions.Let g 2 Fm and ~f = (f1; : : : ; fm) 2 Fml . Then g � ~f denotes the function in Fl which assignsthe value g(f1(x); : : : ; fm(x)) to x 2 �l.If a 2 �m then a(i) denotes its i-th bit. Similarly, if f is any function with range �m then f (i)denotes the i-th bit of its output.The Monomial Basis. For each S � [l] we let �S 2 Fl be the monomial corresponding to S,de�ned for x 2 �l by �S(x) = Q i2S x(i) :The empty monomial, namely �;, is de�ned to be the constant-one function (i.e., �;(x) = �1, forall x 2 �l). The functions f�SgS�[l] form a basis for the vector space Fl which we call the monomialbasis. This means that for each f 2 Fl, there exists a unique vector C(f) = (Cf(S))S�[l] 2 �2lsuch that f = PS�[l] Cf(S) � �S : (3.1)The expression of Equation (3.1) is called the monomial series for f , and the members of C(f)are called the coe�cients of f with respect to the monomial basis. We note that C: Fl ! �2l is abijection.Folding. Fix � to be some canonical, polynomial time computable total order (re
exive, anti-symmetric, transitive) on the set Fl. Given functions A: Fl ! � and h 2 Fl n f0g (i.e., h is not theconstant function 0) and bit b 2 �, the (h; b)-folding of A is the function A(h;b): Fl ! � given byA(h;b)(f) = 8<: A(f) if f � h + fA(f + h)� b otherwise.(Notice that the above is well-de�ned for any h 6= 0.) For sake of technical simplicity (see De�ni-tion 3.4.3), we de�ne the (0; 0)-folding of A to be A itself; namely, A(0;0)(f) = A(f), for every f 2 Fl.As shown below, the (h; b)-folding of a function A is forced to satisfy A(h;b)(f + h) = A(h;b)(f) + b,for every f 2 Fl (whereas A itself may not necessarily satisfy these equalities). Before proving this,let us generalize the notion of folding to folding over several, speci�cally two, functions h1; h2 2 Fl(and bits b1; b2 2 �).De�nition 3.2.1 (folding): Let f; h1; h2 2 Fl. The (h1; h2)-span of f , denoted spanh1;h2(f), isde�ned as the set ff + �1h1+ �2h2 : �1; �2 2 �g. Let A: Fl ! �, h1 6= h2 2 Fl n f0g and b1; b2 2 �.The folding of A over (h1; b1) and (h2; b2), denoted A(h1;b1);(h2;b2), is de�ned for every f 2 Fl byA(h1;b1);(h2;b2)(f) = A(f + �1h1 + �2h2)� �1b1 � �2b2where �1; �2 2 � so that the function f + �1h1 + �2h2 is the smallest function (according to �) inspanh1 ;h2(f).The de�nition extends naturally to the the following two case. In case (h1; b1) = (h2; b2), foldingover the two (identical) pairs is de�ned as folding over one pair. In case h1 � 0 and b1 = 0, foldingover both (h1; b1) and (h2; b2) is de�ned as folding over (h2; b2). Note that folding over two pairs isinvariant under the order between the pairs; namely, A(h1 ;b1);(h2;b2) � A(h2;b2);(h1;b1). Finally, observethat a function A: Fl ! � that is folded over two functions (i.e., over both (h1; b1) and (h2; b2)) isfolded over each of them (i.e., over each (hi; bi)).

28 Bellare, Goldreich, SudanProposition 3.2.2 (folding forces equalities): Let A: Fl ! �, h1; h2 2 Fl and b1; b2 2 � (withbi = 0 in case hi � 0). Then, for every f 2 Fl,A(h1;b1);(h2;b2)(f + h1) = A(h1;b1);(h2;b2)(f) + b1Proof: By de�nition, A(h1 ;b1);(h2 ;b2)(f) = A(f + �1h1 + �2h2) � �1b1 � �2b2, where the functionf + �1h1 + �2h2 is the smallest function in spanh1;h2(f). Since spanh1 ;h2(f + h1) = spanh1;h2(f),we have A(h1;b1);(h2 ;b2)(f + h1) = A(f + �1h1 + �2h2)� (�1 � 1)b1� �2b2. The claim follows.It may be instructive to hint that the veri�ers constructed below make virtual access to foldedfunctions rather to the function themselves. Virtual access to a folding of A is implemented byactual accessing A itself according to the de�nition of folding (e.g., say one wants to access A(h;0) atf then one determines whether f � h+f or not and accesses either A(f) or A(f+h), accordingly).One bene�t of folding in our context is illustrated by Proposition 3.3.3; in case a (h; b)-foldedfunction is close to a codeword (in the long code), we infer that the codeword encodes a string asatisfying h(a) = b. We will see that folding (the long code) over (h; 0) allows us to get rid of astandard ingredient in proof veri�cation; the so-called \circuit test".In the sequel, we will use folding over the pairs (h; 0) and (�1; 1), where h 2 Fl is an arbitraryfunction (typically not identically zero) and �1 is the constant-one function. Folding over (�1; 1)allows us to simplify the \codeword" test (w.r.t. the long-code).3.3 Evaluation operators and the long codeLet a 2 �l. We de�ne the map Ea: Fl ! � by Ea(f) = f(a) for all f 2 Fl. We say that a mapA: Fl ! � is an evaluation operator if there exists some a 2 �l such that A = Ea. We now providea useful characterization of evaluation operators. First we need a de�nition.De�nition 3.3.1 (respecting the monomial basis): A map A: Fl ! � is said to respect the mono-mial basis if A(�;) = 1 and 8 S; T � [l] : A(�S) �A(�T) = A(�S[T) :Proposition 3.3.2 (characterization of the evaluation operator): A map ~A: Fl ! � is an evalua-tion operator if and only if it is linear and respects the monomial basis.Proof: Let a 2 �l. It is easy to see that Ea is linear: Ea(f+g) = (f+g)(a) = f(a)+g(a) = Ea(f)+Ea(g). It is also easy to see Ea respects the monomial basis. Firstly we have Ea(�;) = �;(a) = 1.Next, for every S; T � [l],Ea(�S) �Ea(�T) = �S(a) � �T (a) = Q i2S a(i) � Q i2T a(i) :However x2 = x for any x 2 � soQ i2S a(i) � Q i2T a(i) = Yi2S[T a(i) = �S[T (a) = Ea(�S[T)Now we turn to the converse. Let ~A: Fl ! � be linear and respecting the monomial basis. Fori = 1; : : : ; l, let ai def= ~A(�fig), and let a def= a1 : : : al. We claim that ~A = Ea. The proof is as follows.We �rst claim that 8 S � [l] : ~A(�S) = �S(a) : (3.2)

Free Bits in PCP 29Since ~A respects the monomial basis we have ~A(�;) = 1 which in turn equals �;(a), provingEq. (3.2) for S = ;. To establish Eq. (3.2) for S = fi1; : : : ; itg 6= ;, we write~A(�S) = ~A ��fi1g[���[fitg� = Q tj=1 ~A(�fijg) = Q tj=1 aij = �S(a) :where the second equality is due to the fact that ~A respects the monomial basis. This establishesEq. (3.2). Now for any f 2 Fl we can use the linearity of ~A to see that~A(f) = ~A (PS Cf(S) � �S)) = PS Cf(S) � ~A(�S) = PS Cf(S) � �S(a) = f(a) = Ea(f) :Thus ~A = Ea.The long code E: �l ! Map(Fl;�) is de�ned for any a 2 �l by E(a) = Ea. Thus, formally, acodeword is a map of Fl to �. Intuitively, think of the codeword E(a) as the 22l bit string whichin position f 2 Fl stores the bit f(a). It is thus an extremely \redundant" code, encoding an l-bitstring by the values, at a, of all functions in Fl. In some sense E is the longest possible code: E isthe longest code which is not repetitive (i.e., does not have two positions which are identical in allcodewords).We let Dist(A;Eval) = mina2�l Dist(A;Ea) be the distance from A to a closest codewordof E. It is convenient to de�ne E�1(A) 2 �l as the lexicographically least a 2 �l such thatDist(A;Ea) = Dist(A;Eval). Notice that if Dist(A;Eval) < 1=4 then there is exactly one a 2 �lsuch that Dist(A;Ea) = Dist(A;Eval), and so E�1(A) is this a. The following is useful in relatingfolding to the long code.Proposition 3.3.3 (folding and the evaluation operator): Let A: Fl ! �, h 2 Fl, b 2 � anda 2 �l. Suppose that for any f 2 Fl it is the case that A(f+h) = A(f)+b. Then Dist(A;Ea) < 1=2implies h(a) = b. Consequently, if Dist(A(h;b);(h0;b0); Ea) < 1=2 then h(a) = b, provided b = 0 ifh � 0.Proof: By the hypothesis, we have A(h + f) = A(f) + b, for every f 2 Fl. Suppose thatDist(A;Ea) < 1=2. Then, noting that Ea is linear and applying Corollary 3.5.2 (below), we getEa(h) = b. Using the de�nition of the Evaluator operator (i.e., Ea(h) = h(a)) we have h(a) = b.The consequence for A(h;b);(h0;b0) follows since by Proposition 3.2.2 we have A(h;b);(h0 ;b0)(f + h) =A(h;b);(h0;b0)(f) + b for any f 2 Fl.The long code is certainly a disaster in terms of coding theory, but it has a big advantage in thecontext of proof veri�cation. Consider, for example, the so-called \circuit test" (i.e., testing thatthe answer of the �rst prover satis�es some predetermined predicate/circuit). In this context oneneeds to check that the codeword corresponds to a string which satis�es a predetermined predicate(i.e., the codeword encodes some w 2 f0; 1gn which satis�es h(w) = 0, for some predeterminedpredicate h). The point is that the value of this predicate appears explicitly in the codeword itself,and furthermore it can be easily \self-corrected" by probing the codeword for the values of thefunctions f and f + h, for a uniformly selected function f : f0; 1gn ! f0; 1g (as all these valuesappear explicitly in the codeword). Actually, the process of verifying, via self-correction, that thevalue under h is zero can be incorporated into the task of checking the validity of the codeword; thisis done by the notion of \(h; 0)-folding" (see above). The fact that we can avoid testing whetherthe codeword encodes a string which satis�es a given function (or that this testing does not costus anything) is the key to the complexity improvements in our proof systems (over previous proofsystems in which a \circuit test" was taking place).

30 Bellare, Goldreich, Sudan3.4 Recursive veri�cation of proofsThis section speci�es the basic structure of proof construction, and in particular provides thede�nitions of the notions of inner and outer veri�ers which will be used throughout. It is useful tounderstand these things before proceeding to the tests.Overview. The constructions of e�cient proofs that follow will exploit the notion of recursiveveri�er construction due to Arora and Safra [ArSa]. We will use just one level of recursion. We�rst de�ne a notion of a canonical outer veri�er whose intent is to capture two-prover one-roundproof systems [BGKW] having certain special properties; these veri�ers will be our starting point.We then de�ne a canonical inner veri�er. Recursion is captured by an appropriate de�nition of acomposed veri�er whose attributes we relate to those of the original veri�ers in Theorem 3.4.5.The speci�c outer veri�er we will use is one obtained by a recent work of Raz [Raz]. We willconstruct various inner veri�ers based on the long code and the tests in Section 3.5 and Section 3.11.Theorem 3.4.5 will be used ubiquitously to combine the two.For a better understanding of the role of constant-prover proof systems in this context, and anexplanation of what the use of [Raz] buys as opposed to the use of other systems, we have providedat the end of this subsection an explanatory history.3.4.1 Outer veri�ersAs mentioned above, outer veri�ers will model certain special kinds of two-prover, one-round proofsystems. We think of the veri�er as provided with a pair of proof oracles �; �1, and allowed onequery to each. The desired properties concern the complexity of the system and a certain behaviorin the checking of the proof, as we now describe.Let r1; s; s1: Z+ ! Z+ and let l and l1 be positive integers. An (l; l1)-canonical outer veri�er Voutertakes as input x 2 �n, and has oracle access to a pair of proofs ��: [s(n)]! �l and ��1: [s1(n)]! �l1 .He does the following.Picks a random string R1 of length r1(n).Computes, as a function of x and R1, queries q 2 [s(n)] and q1 2 [s1(n)], and a (circuitcomputing a) function �: �l ! �l1 (which is determined by x and R1). Determines, based onx and q, a function h: �l ! � (and computes an appropriate representation of it).(We stress that h does not depend on R1, only on q and x).Lets a = ��(q) and a1 = ��1(q1).If h(a) 6= 0 then rejects.If �(a) 6= a1 then rejects.Otherwise accepts.We call s; s1 the proof sizes for Vouter and r1 the randomness of Vouter.Recall that by the conventions in Section 2, ACC [V ��;��1outer(x)] denotes the probability, over thechoice of R1, that Vouter accepts, and ACC [Vouter(x)] denotes the maximum of ACC [V ��;��1outer(x)] overall possible proofs ��; ��1.De�nition 3.4.1 (soundness of outer veri�er): An outer veri�er Vouter is �-good for a language Lif(1) If x 2 L then ACC [Vouter(x)] = 1.(2) If x 62 L then ACC [Vouter(x)] � �.

Free Bits in PCP 31Employing the FRS-method [FRS] to any PCP(log,O(1))-system for NP (e.g., [ALMSS]) one getsa canonical veri�er which is �-good for some � < 1. Using the Parallel Repetition Theorem of Raz,we obtain our starting point {Lemma 3.4.2 (construction of outer veri�ers [Raz]): Let L 2 NP. Then for every � > 0 thereexist positive integers l; l1 and c such that there exists an (l; l1)-canonical outer veri�er which is�-good for L and uses randomness r(n) = c log2 n.Actually, Raz's Theorem [Raz] enables one to assert that l; l1 and c are O(log ��1); but we will notneed this fact. Also, the function � determined by this veri�er is always a projection, but we don'tuse this fact either.3.4.2 Inner veri�ersWe now describe the form of a typical inner veri�er. It may be illustrative to remember that theinner veri�er will perform a combination of the atomic linear test, the atomic respect of monomialbasis test and the atomic projection test. It turns out that the inner veri�ers never need to perform a\circuit test" (i.e., test that h(a) = 0). This is achieved by use of the folding mechanism introducedin Section 3.2, and we refer the reader there for the notation \A(h;b)" that is used below.Let r2; l; l1 2 Z+. A (l; l1)-canonical inner veri�er Vinner takes as inputs functions �: �l ! �l1and h 2 Fl. (It may also take additional inputs, depending on the context). It has oracle access toa pair of functions A: Fl ! � and A1: Fl1 ! �, and uses r2 random bits. The parameters �1; �2 > 0in the following should be thought as extremely small: in our constructions, they are essentially 0(see comment below).De�nition 3.4.3 (soundness of inner veri�er): An inner veri�er Vinner is (�; �1; �2)-good if for all�; h as above{(1) Suppose a 2 �l is such that h(a) = 0. Let a1 = �(a) 2 �l1 . Then ACC [V Ea;Ea1inner (�; h)] = 1.(2) Suppose A;A1 are such that ACC [V A;A1inner (�; h)] � �. Then there exists a 2 �l such that:(2.1) Dist(A(h;0);(�1;1); Ea) < 1=2� �1.(2.2) Dist(A1; E�(a)) < 1=2� �2.We stress that although the inner veri�er has access to the oracle A (and the hypothesis in condition(2) of De�nition 3.4.3 refers to its computations with oracle A), the conclusion in condition (2.1)refers to A folded over both (h; 0) and (�1; 1), where �1 is the constant-one function. (Typically,but not necessarily, the veri�er satisfying De�nition 3.4.3 accesses the virtual oracle A(h;0);(�1;1)by actual access to A according to the de�nition of folding.) Furthermore, by Proposition 3.3.3,condition (2.1) implies that h(a) = 0. (Thus, there is no need to explicitly require h(a) = 0 in orderto make Theorem 3.4.5 work.) We comment that the upper bounds in conditions (2.1) and (2.2)are chosen to be the largest ones which still allow us to prove Theorem 3.4.5 (below). Clearly, thecomplexity of the inner veri�er decreases as these bounds increase. This is the reason for setting�1 and �2 to be extremely small. We stress that this optimization is important for the MaxSNPresults but not for the Max Clique result. In the latter case, we can use �i's greater than 14 whichsimpli�es a little the analysis of the composition of veri�ers (below).A tedious remark: The above de�nition allows h to be identically zero (although this case neveroccurs in our constructions nor in any other reasonable application). This is the reason that wehad to de�ne folding over (0,0) as well. An alternative approach would have been to require h 6� 0and assert that this is the case with respect to the outer veri�er of Lemma 3.4.2.

32 Bellare, Goldreich, Sudan3.4.3 Composition of veri�ersWe now describe the canonical composition of a canonical outer veri�er with a canonical innerveri�er.Let Vouter be a (l; l1)-canonical outer veri�er with randomness r1 and proof sizes s; s1. Let Vinnerbe a (l; l1)-canonical inner veri�er with randomness r2. Their composed veri�er hVouter; Vinneri takesas input x 2 �n and has oracle access to proofs �: [s(n)]� Fl ! � and �1: [s1(n)]� Fl1 ! �. Weask that it does the following {Picks random strings for both Vouter and Vinner; namely, picks a random string R1 of lengthr1(n) and a random string R2 of length r2(n).Computes queries q and q1 and functions � and h as Vouter would compute them given x;R1Outputs V A;A1inner (�; h;R2) where A(�) = �(q; �) and A1(�) = �1(q1; �).The randomness complexity of the composed veri�er is r1 + r2 whereas its query and free-bitcomplexities equal those of Vinner.We show how the composite veri�er hVouter; Vinneri inherits the goodness of the Vouter and Vinner.To do so we need the following Lemma. It is the counterpart of a claim in [BGLR, Lemma 3.5]and will be used in the same way. The lemma can be derived from a coding theory bound which isslight extension of bounds in [MaSl, Ch. 7] and is provided in Section 3.13.Lemma 3.4.4 Suppose 0 � � � 1=2 and A: Fl ! �. Then��f a 2 �l : Dist(A;Ea) � 1=2� � g�� � 14�2 :Furthermore, for � > 1=4 the above set contains at most one string.Proof: We know that Ea is linear for any a (cf. Proposition 3.3.2). So it su�ces to upper boundthe size of the set A = fX 2 Lin(Fl;�) : Dist(A;X) � 1=2� � g :This set has the same size asB = fX � A : X 2 Lin(Fl;�) and Dist(A;X)� 1=2� � g :Let n = 22l and identify Map(Fl;�) with �n in the natural way. Let w(�) denote the Hammingweight. Now note that Z = X � A 2 B implies w(Z)=n = Dist(X;A) � 1=2 � �. Furthermore ifZ1 = X1 � A and Z2 = X2 � A are in B then Dist(Z1; Z2) = Dist(X1; X2) and the latter is 1=2if X1 6= X2, since X1; X2 are linear. So we can apply Lemma 3.13.1 (with � = � and � = 0) toupper bound the size of B as desired. Finally, when � > 1=4 the triangle inequality implies that wecannot have a1 6= a2 so that Dist(A;Eai) � 1=2� � < 1=4 for both i = 1; 2.In some applications of the following theorem, �1; �2 > 0 will �rst be chosen to be so small thatthey may e�ectively be thought of as 0. (This is done in order to lower the complexities of theinner veri�ers.) Once the �i's are �xed, � will be chosen to be so much smaller (than the �i's) that�=(16�21�22) may be thought of as e�ectively 0. The latter explains why we are interested in outerveri�ers which achieve a constant, but arbitrarily small, error �. For completeness we provide aproof, following the ideas of [ArSa, ALMSS, BGLR].Theorem 3.4.5 (the composition theorem): Let Vouter be a (l; l1)-canonical outer veri�er. Supposeit is �-good for L. Let Vinner be an (l; l1)-canonical inner veri�er that is (�; �1; �2)-good. LetV = hVouter; Vinneri be the composed veri�er, and let x 2 ��. Then |

Free Bits in PCP 33(1) If x 2 L then ACC [V (x)] = 1(2) If x 62 L then ACC [V (x)] � �+ �16�21�22 .For �1; �2 > 1=4 the upper bound in (2) can be improved to �+ �.(The latter case (i.e., �1; �2 > 1=4) su�ces for the Max Clique results.)Proof: Let n = jxj, and let s; s1 denote the proof sizes of Vouter.Suppose x 2 L. By De�nition 3.4.1 there exist proofs ��: [s(n)] ! �l and ��1: [s1(n)] ! �l1 suchthat ACC [V ��;��1outer(x)] = 1. Let �: [s(n)] � Fl ! � be de�ned by �(q; f) = E��(q)(f). (In otherwords, replace the l bit string ��(q) with its 22l bit encoding under the long code, and let the newproof provide access to the bits in this encoding). Similarly let �1: [s1(n)]�Fl1 ! � be de�ned by�1(q1; f1) = E��1(q1)(f1). Now one can check that the item (1) properties in De�nitions 3.4.1 and 3.4.3(of the outer and inner veri�er, respectively) imply that ACC [V �;�1(x)] = 1.Now suppose x 62 L. Let �: [s(n)]� Fl ! � and �1: [s1(n)]� Fl1 ! � be proof strings for V . Wewill show that ACC [V �;�1(x)] � � + �=(16�21�22). Since �; �1 were arbitrary, this will complete theproof.We set N1 = b1=(4�21)c and N2 = b1=(4�22)c (with N1 = 1 if �1 > 1=4 and N2 = 1 if �2 > 1=4).The idea to show ACC [V �;�1(x)] � �+N1N2 � � is as follows. We will �rst de�ne a collection of N1proofs ��1; : : : ; ��N1 and a collection of N2 proofs ��11 ; : : : ; ��N21 so that each pair (��i; ��j1) is a pair oforacles for the outer veri�er. Next we will partition the random strings R1 of the outer veri�er intotwo categories, depending on the performance of the inner veri�er on the inputs (i.e., the functions�; h and the oracles A;A1) induced by R1. On the \bad" random strings of the outer veri�er, theinner veri�er will accept with probability at most �; on the \good" ones, we will use the soundnessof the inner veri�er to infer that that the outer veri�er accepts under some oracle pair (��i; ��j1), fori 2 [N1] and j 2 [N2]. The soundness of the outer veri�er will be used to bound the probability ofsuch acceptances. Let us now proceed to the actual proof.We now turn to the actual analysis. We de�ne N1 proofs ��1; : : : ; ��N1: [s(n)] ! �l as follows. Fixq 2 [s(n)] and let A = �(q; �). Let Bq = fa 2 �l : Dist(A(h;0);(�1;1); Ea) < 1=2��1g. (Notice that forthis set to be well-de�ned we use the fact that h is well-de�ned given q.) Note that jBq j � N1 byLemma 3.4.4. Order the elements of Bq in some canonical way, adding dummy elements to bringthe number to exactly N1, so that they can be written as a1(q); : : : ; aN1(q). Now set ��i(q) = ai(q)for i = 1; : : : ; N1. In a similar fashion we de�ne ��j1(q1) = aj1(q1) for j = 1; : : : ; N2, where eachaj1 = aj1(q1) satis�es Dist(�1(q1; �); Eaj1) � 1=2� �2.Let R1 be a random string of Vouter. We say that R1 is good ifACC [V �(q;�);�1(q1;�)inner (�; h)] � � ;where q; q1; �; h are the queries and functions speci�ed by R1. If R1 is not good we say it is bad .The claim that follows says that if R1 is good then there is some choice of the above de�ned proofswhich leads the outer veri�er to accept on coins R1.Claim. Suppose R1 is good. Then there is an i 2 [N1] and a j 2 [N2] such that V ��i;��j1outer (x;R1) = 0.Proof. Let q; q1; �; h be the queries and functions speci�ed by R1. Let A = �(q; �) and A1 = �1(q1; �)(be the oracles accessed by the inner veri�er). Since R1 is good we have ACC [V A;A1inner (�; h)] � �. Soby Item (2) of De�nition 3.4.3 there exists a 2 �l such that Dist(A(h;0);(�1;1); Ea) < 1=2 � �1 andDist(A1; E�(a)) < 1=2� �2. Let a1 = �(a). Since Dist(A(h;0);(�1;1); Ea) � 1=2� �1 it must be the casethat a 2 Bq , and hence there exists i 2 [N1] such that a = ��i(q). Similarly Dist(A1; E�(a)) < 1=2��

34 Bellare, Goldreich, Sudanimplies that there is some j 2 [N] such that a1 = ��j1(q1). By Proposition 3.3.3 we have h(a) = 0,and we have �(a) = a1 by (the above) de�nition. Now, by de�nition of the (execution of the)canonical outer veri�er, V ��i;��j1outer (x;R1) = 0 holds. 2By conditioning we have ACC [V �;�1(x)] � � + � where� = PrR1 [R1 is good]� = PrR1;R2 [V �;�1(x;R1R2) = 0 j R1 is bad] :The de�nition of badness implies � � �. On the other hand we can use the Claim to see that� � PrR1 �9i 2 [N1] , j 2 [N2] : V ��i;��j1outer (x;R1) = 0�� PN1i=1PN2j=1PrR1 �V ��i;��j1outer (x;R1) = 0�� N1N2 � � ;the last by the soundness of Vouter (i.e., Item (2) of De�nition 3.4.1). Using the bound on N1 andN2, the proof is concluded.3.4.4 Constant-prover proofs in PCP | perspectiveConstant-prover proofs have been instrumental in the derivation of non-approximability results inseveral ways. One of these is that they are a good starting point for reductions| examples ofsuch are reductions of two-prover proofs to quadratic programming [BeRo, FeLo] and set cover[LuYa]. However, it is a di�erent aspect of constant prover proofs that is of more direct concernto us. This aspect is the use of constant-prover proof systems as the penultimate step of therecursion, and begins with [ALMSS]. It is instrumental in getting PCP systems with only a constantnumber of queries. Their construction requires that these proof systems have low complexity: errorwhich is any constant, and randomness and answer sizes that are preferably logarithmic. Thenumber of provers and the randomness and query complexity determine the quality of many non-approximability results (e.g., poly-logarithmic rather than logarithmic complexities translate intonon-approximability results using assumptions about quasi-polynomial time classes rather thanpolynomial time ones). The available constant-prover proof systems appear in Figure 3.1 and arediscussed below.The two-prover proofs of Lapidot-Shamir and Feige-Lov�asz [LaSh, FeLo] had poly-logarithmicrandomness and answer sizes, so [ALMSS] used a modi�cation of these, in the process increasingthe number of provers to a constant much larger than two. The later constructions of few-proverproofs of [BGLR, Ta, FeKi] lead to better non-approximability results.Bellare and Sudan [BeSu] identi�ed some extra features of constant prover proofs whose pres-ence they showed could be exploited to further increase the non-approximability factors. Thesefeatures are captured in their de�nition of canonical veri�ers. But the proof systems of [FeKi] thathad worked above no longer su�ced| they are not canonical. So instead [BeSu] used (a slightmodi�cation of) the proofs of [LaSh, FeLo], thereby incurring poly-logarithmic randomness and an-swer sizes, so that the assumptions in their non-approximability results pertain to quasi-polynomialtime classes. (Alternatively they modify the [FeKi] system to a canonical three-prover one, but thenincur a decrease in the non-approximability factors due to having more provers).

Free Bits in PCP 35Due to Provers Coins Answer size Canonical? Can be made canonical?[LaSh, FeLo] 2 polylog polylog No Yes [BeSu][ALMSS] poly(��1) log polylog No ??[BGLR] 4 log polyloglog No ??[Ta] 3 log O(1) No ??[FeKi] 2 log O(1) No At cost of one more prover[BeSu][Raz] 2 log O(1) Yes (NA)Figure 3.1: Constant prover PCPs achieving error which is a �xed, but arbitrarily small, constant�. We indicate the number of provers, the randomness and answer sizes, and whether or not thesystem is canonical. The notation ?? means \don't know and don't care because stronger thingshave become available." In all cases the randomness and answer sizes hide factors which dependon �.Our outer veri�ers ask for almost the same canonicity properties. (The only di�erence is thatthey have required � to be a projection function, whereas we can deal with an arbitrary function.But we don't take advantage of this fact.) In addition we need answer sizes of O(log logn) asopposed to the O(logn) of previous methods, for reasons explained below. This means that even the(modi�ed) [LaSh, FeLo] type proofs won't su�ce for us. We could use the three-prover modi�cationof [FeKi] but the cost would wipe out our gain. Luckily this discussion is moot since we can usethe recent result of Raz [Raz] to provide us with a canonical two-prover proof having logarithmicrandomness, constant answer size, and any constant error. This makes an ideal starting point. Tosimplify the de�nitions above we insisted on constant answer size and two provers from the start.The inner veri�ers used in all previous works are based on the use of the Hadamard codeconstructions of [ALMSS]. (The improvements mentioned above are obtained by checking thissame code in more e�cient ways). We instead use a new code, namely the long code, as the basisof our inner veri�ers. Note the codewords (in the long code) have length double exponential in themessage, explaining our need for O(log logn) answer sizes in the outer veri�er. We also incorporateinto the de�nitions the new idea of folding which we will see means we don't need a circuit test (ahint towards this fact is already present in the de�nition of a good inner veri�er).3.5 The atomic testsMotivation. Our constructions of proofs systems will use the outer veri�er of Lemma 3.4.2,composed via Theorem 3.4.5 with inner veri�ers to be constructed. The brunt of our constructionsis the construction of appropriate inner veri�ers. The inner veri�er will have oracle access to afunction A: Fl ! � and a function A1: Fl1 ! �. In all our applications, A is supposed to be afolding of an encoding of the answer a of the �rst prover (in a two-prover proof system) and A1 issupposed to be the encoding of the answer a1 of the second prover. The veri�er will perform varioustests to determine whether these claims are true. The subject of this subsection is the design ofthese tests.The atomic tests we provide here will be used directly in the proof systems for showing non-

36 Bellare, Goldreich, SudanThe Atomic Tests. Here A: Fl ! � and A1: Fl1 ! � are the objects being tested.The tests also take additional inputs or parameters: below f; f1; f2; f3 2 Fl; g 2 Fml1 ; and�: �l ! �l1 .LinTest(A; f1; f2) (Linearity Test)If A(f1) +A(f2) = A(f1 + f2) then output 0 else output 1.MBTest(A; f1; f2; f3) (Respecting-Monomial-Basis Test)If A(f1) = 0 then check if A(f1 � f2 + f3) = A(f3)Otherwise (i.e. A(f1) = 1) then check if A(f1 � f2 + f2 + f3) = A(f3)Output 0 if the relevant check succeeded, else output 1.ProjTest�(A;A1; f; g) (Projection Test)If A1(g) = A(g � � + f)�A(f) then output 0, else output 1.The Passing Probabilities. These are the probabilities we are interested in:LinPass(A) = Prf1;f2 R Fl [LinTest(A; f1; f2) = 0]MBPass(A) = Prf1;f2;f3 R Fl [MBTest(A; f1; f2; f3) = 0]ProjPass�(A;A1) = Prf R Fl ; g R Fl1 [ProjTest�(A;A1; f; g) = 0]Figure 3.2: The atomic tests and their passing probabilities.approximability of Max-3-SAT, Max-2-SAT and Max-CUT. Furthermore, they are also the basis ofiterated tests which will lead to proof systems of amortized free-bit complexity � 2, which in turnare used for the Max Clique and Chromatic Number results. We remark that for the applicationsto the above-mentioned Max-SNP problems it is important to have the best possible analysis ofour atomic tests, and what follows strives to this end. We stress that the exposition and analysisof these tests, in this subsection, is independent of the usage of the codes in our proof systems.Testing for a codeword. The �rst task that concerns us is to design a test which, with highprobability, passes if and only if A is close to an evaluation operator (i.e., a valid codeword). Theidea is to exploit the characterization of Proposition 3.3.2. Thus we will perform (on A) a linearitytest, and then a \respect of monomial basis" test. Linearity testing is well understood, and we willuse the test of [BLR], with the analyses of [BLR, BGLR, BCHKS]. The main novelty is the respectof monomial basis test.Circuit and projection. Having established that A is close to some evaluation operator Ea, wenow want to test two things. The �rst is that h(a) = 0 for some predetermined function h. Thistest which would normally be implemented by \self-correction" (i.e., evaluating h(a) by uniformlyselecting f 2 Fl and computing A(f + h) �A(f)) is not needed here, since in our applications we

Free Bits in PCP 37will use an (h; 0)-folding of A instead of A. Thus, it is left to test that the two oracles are consistentin the sense that A1 is not too far from an evaluation operator which corresponds to �(a) for somepredetermined function �.Self-correction. The following self-correction lemma is due to [BLR] and will be used through-out.Lemma 3.5.1 (Self Correction Lemma [BLR]): Let A; ~A: Fl ! � with ~A linear, and letx = Dist(A; ~A). Then for every f 2 Fl:Prh R Fl hA(f + h)� A(h) = ~A(f)i � 1� 2x :Proof:PrhR Fl hA(f + h)�A(h) = ~A(f)i � PrhR Fl hA(f + h) = ~A(f + h) and A(h) = ~A(f)i� 1� �PrhR Fl hA(f + h) 6= ~A(f + h)i+ PrhR Fl hA(h) 6= ~A(h)i�= 1� 2xCorollary 3.5.2 Let A; ~A: Fl ! � with ~A linear, and suppose x def= Dist(A; ~A) < 1=2. Supposealso that A(f + h) = A(h) + �, for some f 2 Fl, � 2 � and every h 2 Fl. Then ~A(f) = �.Proof: By the hypothesis, we have A(f + h)� A(f) = � for all h's. Thus, we can writePrhR Fl hA(f + h)� A(f) = ~A(f)i = Prh R Fl h� = ~A(f)i :But the right hand side (and hence the left) is either 0 or 1. However, by Lemma 3.5.1 the lefthand side is bounded below by 1� 2x > 0 and so the corollary follows.Convention. All our tests output a bit, with 0 standing for accept and 1 for reject.3.5.1 Atomic linearity testThe atomic linearity test shown in Figure 3.2 is the one of Blum, Luby and Rubinfeld [BLR].We want to lower bound the probability 1 � LinPass(A) that the test rejects when its inputsf1; f2 are chosen at random, as a function of x = Dist(A;Lin). The following lemma, due toBellare et. al. [BCHKS], gives the best known lower bound today. Detailed description of thehistory of developments in this area follows.Lemma 3.5.3 [BCHKS] Let A: Fl ! � and let x = Dist(A;Lin). Then 1�LinPass(A) � �lin(x),where the function �lin: [0; 1=2]! [0; 1] is de�ned as follows:�lin(x) def= 8>>><>>>: 3x� 6x2 0 � x � 5=1645=128 5=16 � x � 45=128x 45=128 � x � 1=2:

38 Bellare, Goldreich, SudanThe above lower bound is composed of three di�erent bounds with \phase transitions" at x = 516and x = 45128. It was shown in [BCHKS] (see below) that this combined lower bound is close to thebest one possible.History. The general problem of linearity testing as introduced and studied by Blum et. al. [BLR]is stated as follows: given a function A: G! H , where G;H are groups, obtain a lower bound on�A as a function of xA, where�A = Pra;bR G [A(a) +A(b) 6= A(a+ b)]xA = Dist(A;Lin) :Blum et. al. showed that �A � 29xA, for every A. Their analysis was used in the proof system andMax-3-SAT non-approximability result of [ALMSS]. Interest in the tightness of the analysis fromthe point of view of improving the Max-3-SAT non-approximability began with [BGLR]. Theyshowed that �A � 3xA � 6x2A, for every A. This establishes the �rst segment of the lower boundquoted above (i.e., of the function �lin). Also, it is possible to use [BLR] to show that �A � 2=9when xA � 1=4. Putting these together implies a two segment lower bound with phase transitionat the largest root of the equation 3x � 6x2 = 29 (i.e., at 14 + p3336). This lower bound was used inthe Max-3-SAT analyses of [BGLR] and [BeSu].However, for our applications (i.e., linearity testing over Fl as in Lemma 3.5.3), the case ofinterest is when the underlying groups are G = GF(2)n and H = GF(2) (since Fl may be identi�edwith GF(2)n for n = 2l). The work of [BCHKS] focused on this case and improved the bound on�A for the case xA � 14 where A: GF(2)n! GF(2). Speci�cally, they showed that �A � 45=128 forxA � 14 which establishes the second segment of �lin . They also showed that �A � xA, for everyA: GF(2)n ! GF(2). Combining the three lower bounds, they have derived the three-segmentlower bound stated in Lemma 3.5.3.The optimality of the above analysis has been demonstrated as well in [BCHKS]. Essentially1,for every x � 5=16 there are functions A: GF(2)n ! GF(2) witnessing �A = �lin(xA) with xA = x.In particular, for x = 5=16 (and n � 4), there is a function A with 1=4 < xA < 1=2 and �A =45=128 = �lin(xA). For the interval (516 ; 12], no tight results are known. Instead, [BCHKS] reportsof computer constructed examples of functions A: GF(2)n ! GF(2) with xA in every interval[k100; k+1100], for k = 32; 33; :::; 49, and �A < �lin(xA) + 120 . Furthermore, they showed that there existsuch functions with both xA and �A arbitrarily close to 12 .3.5.2 Atomic respect of monomial basis testHaving determined that A is close to linear, the atomic respect of monomial basis test makes surethat the linear function close to A respects the monomial basis. Let us denote the latter function(i.e., the linear function closest to A) by ~A. Recalling De�nition 3.3.1 we need to establish twothings: namely, that ~A(�;) = 1 and that ~A(�S) � ~A(�T) = ~A(�S[T), for every S; T � [l]. Recall thatwe do not have access to ~A but rather to A; still, the Self-Correction Lemma provides an obviousavenue to bypass the di�culty provided Dist(A; ~A) < 1=4. This would have yielded a solution butquite a wasteful one (alas su�cient for the Max Clique and Chromatic Number results). Instead,we adopt the following more e�cient procedure.Firstly, by considering only oracles folded over (�1; 1), we need not check that ~A(�;) = 1.(This follows by combining Corollary 3.5.2 and the fact that the (�1; 1)-folded oracle A satis�esA(f + �1) = A(f) + 1, for all f 2 Fl.) Secondly, we test that ~A(�S) � ~A(�T) = ~A(�S[T), for1Actually, the statement holds only for x's which are integral multiple of 2�n

Free Bits in PCP 39every S; T � [l], by taking random linear combinations of the S's and T 's to be tested. Suchlinear combinations are nothing but uniformly selected functions in Fl. Namely, we wish to test~A(f) � ~A(g) = ~A(f � g), where f and g are uniformly selected in Fl. Since A is close to ~A, we caninspect A(f) (resp., A(g)) rather than ~A(f) (resp., ~A(g)) with little harm. However, f � g is notuniformly distributed (when f and g are uniformly selected in Fl) and thus Self-Correction will beapplied here. The resulting test isA(f1) �A(f2) = A(f1 � f2 + f3)� A(f3) (3.3)This test was analyzed in the previous version of this work [BGS]; speci�cally, this test was shownto reject a folded oracle A with ~A (the linear function closest to A) which does not respect themonomial basis with probability at least (1 � 2x) � (38 � x + x22) = 38 � 74x + 52x2 � x3, wherex = Dist(A; ~A). Here we present an adaptive version of the above test, which performs even better.We observe that if A(f1) = 0 then there is no need to fetch A(f2) (since the l.h.s. of Eq. (3.3) is zeroregardless of A(f2)). Thus, we merely test whether A(f1 � f2 + f3)�A(f3) = 0. But what shouldbe done if A(f1) = 1? In this case we may replace f1 by f1+�1 (yielding A(f1+�1) = A(f1)+1 = 0)and test whether A((f1+�1) �f2+f3)�A(f3) = 0. The resulting test is depicted in Figure 3.2. Toanalyze the performance of this test, we need some technical lemmas. The reader may skip theirproofs, in �rst reading, and proceed below to their usage (in Lemma 3.5.7).Technical lemmas. First we recall the following lemma of [BGLR] which provides an improvedanalysis of Freivalds's matrix multiplication test in the special case when the matrices are symmetricwith common diagonal.Lemma 3.5.4 (symmetric matrix multiplication test [BGLR]): LetM1;M2 be N -by-N symmetricmatrices over � which agree on their diagonals. Suppose that M1 6=M2. ThenPrx;y R �N [xM1y 6= xM2y] � 38 :Furthermore, Prx R �N [xM1 6= xM2] � 3=4 .Proof: Let M def= M1 �M2. The probability that a uniformly selected combination of the rows ofM yields an all-zero vector is 2�r, where r is the rank of M . Since M is symmetric, not identicallyzero and has a zero diagonal, it must have rank at least 2. Thus, Prx R �N [xM 6= 0N] � 3=4 andthe lemma follows.Suppose that A is actually linear. In that case, the following lemma provides a condition underwhich A respects the monomial basis. We start with a de�nition.De�nition 3.5.5 (RMB detector): Let A: Fl ! � and f 2 Fl. We say that f is a detector for A ifPrg R Fl [A(f 0 � g) 6= 0] � 1=2 :where f 0 = f if A(f) = 0 and f 0 = f + �1 otherwise.The number of detectors is clearly related to the rejection probability of the RMB test. Supposethat A (or rather ~A) is linear. Clearly, if A respects the monomial basis then it has no detectors.On the other hand, the following lemma asserts that if A does not respect the monomial basis thenit has many detectors.

40 Bellare, Goldreich, SudanLemma 3.5.6 (RMB test for linear functions): Suppose ~A: Fl ! � is linear, ~A(�;) = 1 and~A does not respect the monomial basis. Then at least a 3=4 fraction of the functions in Fl aredetectors for ~A.Proof: Let N = 2l. We de�ne a pair of N -by-N matrices whose rows and columns are indexed bythe subsets of [l]. Speci�cally, for S; T � [l], we setM1[S; T] = ~A(�S) � ~A(�T)M2[S; T] = ~A(�S[T) :Clearly, both M1 and M2 are symmetric, and they agree on the diagonal. Using ~A(�;) = 1 wehave, for every T � [l], M1[;; T] = ~A(�;) � ~A(�T) = 1 � ~A(�T) =M2[;; T] (3.4)By the hypothesis that ~A does not respects the monomial basis it follows that M1 6=M2. Our aimis to relate the inequality of the above matrices to the existence of detectors for ~A. We �rst expressthe condition ~A(fg) = ~A(f) � ~A(g) in terms of these matrices.Recall that C:Fl ! �2l is the transformation which to any f 2 Fl associates the vector (Cf(S))S�[l]whose entries are the coe�cients of f in its monomial series. Using the linearity of ~A we note that~A(f) � ~A(g) = ~A (PS Cf(S) � �S) � ~A (PT Cg(T) � �T)= hPS Cf(S) � ~A(�S)i � hPT Cg(T) � ~A(�T)i= PS;T Cf(S) � ~A(�S) � ~A(�T) � Cg(T)= C(f)M1C(g) :For the next step we �rst need the following.Fact. Let f; g 2 Fl and U � [l]. Then Cfg(U) =PS[T=U Cf(S) �Cg(T).Using this fact (and the linearity of ~A) we have:~A(fg) = ~A (PU Cfg(U) � �U)= PU Cfg(U) � ~A(�U)= PU PS[T=U Cf(S) � Cg(T) � ~A(�U)= PS;T Cf(S) � Cg(T) � ~A(�S[T)= C(f)M2C(g) :Since ~A is linear and ~A(�1) = 1 (as �1 = �;), we can rephrase the condition A(f 0 � g) 6= 0, wheref 0 = f if ~A(f) = 0 and f 0 = f + �1 otherwise, as A(f 0 � g) 6= A(f 0) �A(g). Thus, for every f (settingf 0 as above), we conclude thatA(f 0 � g) 6= A(f 0) �A(g) if and only if C(f 0)M2C(g) 6= C(f 0)M1C(g) :A key observation is that C(f) and C(f 0) are identical in all entries except, possibly, for the entrycorresponding to ; (i.e., Cf(S) = Cf 0(S) for all S 6= ;). On the other hand, by Eq. (3.4), we haveM1[;; �] =M2[;; �]. Thus,A(f 0 � g) 6= A(f 0) �A(g) if and only if C(f)M2C(g) 6= C(f)M1C(g) :

Free Bits in PCP 41Now we note that C is a bijection, so that if h is uniformly distributed in Fl then C(h) is uniformlydistributed in �2l. Fixing any f 2 Fl and setting f 0 as above, we have, for x = C(f),Prg R Fl h ~A(f 0) � ~A(g) = ~A(f 0g)i = Prg R Fl [C(f)M1C(g) = C(f)M2C(g)]= Pry R �2l [xM1y = xM2y] :where the latter probability is 1=2 if xM1 6= xM2 and zero otherwise. Invoking Lemma 3.5.4 weconclude that the �rst case, which coincides with f being a detector for ~A, holds for at least 3=4fraction of the f 2 Fl. The lemma follows.Lemma 3.5.6 suggests that if we knew A was linear we could test that it respects the monomialbasis by picking f; g at random and testing whether A(f 0g) = 0, where f 0 = f if A(f) = 0 andf 0 = f +�1 otherwise. The lemma asserts that in case A is linear and does not respect the monomialbasis we will have Prf;g R Fl [A(f 0g) 6= 0] � 34 � 12where 3=4 is a lower bound on the probability that f is a detector for A and Prg R Fl [A(f 0g) 6= 0] � 12for any detector f (by de�nition). However, we only know that A is close to linear. Still we canperform an approximation of the above test via self-correction of the value A(f 0g). This, indeed,is our test as indicated in Figure 3.2.The RMB test. We are interested in lower bounding the probability 1�MBPass(A) that the testrejects when f1; f2; f3 are chosen at random, as a function of the distance of A to a linear function ~A,given that ~A does not respect the monomial basis. We assume that A satis�es A(f +�1) = A(f)+1(for all f 2 Fl), as is the case in all our applications (since we use veri�ers which access a (�1; 1)-folded function). The �rst item of the following lemma is in spirit of previous analysis of analogoustests. The second item is somewhat unusual and will be used only in our construction of veri�ersof free-bit complexity 2 (cf., Section 3.9).Lemma 3.5.7 (RMB test { �nal analysis): Let A; ~A: Fl ! � with ~A linear but not respecting themonomial basis and let x = Dist(A; ~A). Suppose that the function A satis�es A(f +�1) = A(f)+1,for all f 2 Fl. Then1. 1�MBPass(A) � �RMB(x) def= 38 � (1� 2x).2. Prf1 ;f3 R Fl [9f2 2 Fl s.t. MBTest(A; f1; f2; f3) = 1] � 2 � �RMB(x).In particular, the lemma holds for A(h;0);(�1;1), where A: Fl ! � is arbitrary and h 2 Fl. We willconsider the linear function closest to A(h;0);(�1;1), denoted ~A, and the case in which ~A does notrespect the monomial basis. (In this case Dist(A(h;0);(�1;1); ~A)) = Dist(A(h;0);(�1;1);Lin) � 1=2.)Proof: As a preparation to using Lemma 3.5.6, we �rst show that ~A(�1) = 1. For x < 1=2 this isjusti�ed by Corollary 3.5.2 (using the hypothesis A(f + �1) = A(f) + 1, 8f 2 Fl). Otherwise (i.e.,in case x � 1=2) the claimed lower bound (i.e., 38 � (1� 2x) � 0) holds vacuously.Using Lemma 3.5.6 and Lemma 3.5.1 we lower bound the rejection probability of the test as follows:1�MBPass(A) � Prf1 R Fl hf1 is a detector for ~Ai� minf is a ~A-detectornPrf2 ;f3 R Fl [MBTest(A; f; f2; f3) = 1]o

42 Bellare, Goldreich, Sudan� 34 � minf is a ~A-detectornPrf2;f3 R Fl [A(f 0f2 + f3) 6= A(f3)]o� 34 � minf is a ~A-detectornPrf2;f3 R Fl h0 6= ~A(f 0f2) = A(f 0f2 + f3)� A(f3)io� 34 � 12 � minf 0 and g s.t. ~A(f 0g) 6= 0nPrf3 R Fl h ~A(f 0 � g) = A(f 0 � g + f3)�A(f3)io� 38 � (1� 2x)where the second inequality uses Lemma 3.5.6, the fourth inequality follows by the de�nition of a de-tector for ~A (by which Prg R Fl h ~A(f 0g) 6= 0i � 1=2), and the last inequality follows by Lemma 3.5.1.This concludes the proof of Part (1). Part (2) is proven analogously with the exception that wedon't lose a factor of two in the fourth inequality (since here f2 is not selected at random but ratherset existentially).Remark: An RMB test for arbitrary A's (rather than ones satisfying A(f +�1) = A(f)+1, 8f 2 Fl)can be derived by augmenting the above test with a test of A(f + �1) = A(f) + 1 for uniformlychosen f 2 Fl. The analysis of the augmented part is as in the circuit test (below).3.5.3 Atomic projection testThe �nal test checks that the second function A1 is not too far from the evaluation operator Ea1where a1 = �(a) is a function of the string a whose evaluation operator is close to A. Here, unlikeprevious works (for instance [BeSu]), � may be an arbitrary mapping from �l to �l1 rather thanbeing a projection (i.e., satisfying �(x) = x(i1) : : : x(il1) for some sequence 1 � i1 < � � �< il1 � l andall x 2 �l). Thus, the name \projection test" is adopted for historical reasons.Lemma 3.5.8 Let A: Fl ! � and let �: �l ! �l1 be a function. Let a 2 �l and let x =Dist(A;Ea). Let a1 = �(a) 2 �l1 . Then 1� ProjPass�(A;A1) � Dist(A1; Ea1) � (1� 2x).Proof: We lower bound the rejection probability as follows:Prf R Fl ; g R Fl1 [A1(g) 6= A(g � � + f)�A(f)]� Prf R Fl ; g R Fl1 [A1(g) 6= Ea(g � �) and A(g � � + f)� A(f) = Ea(g � �)]� Prg R Fl1 [A1(g) 6= Ea(g � �)] � (1� 2x) :Here we used Lemma 3.5.1 in the last step. Now we note that Ea(g � �) = Ea1(g). Hence the �rstterm in the above product is justPrg R Fl1 [A1(g) 6= Ea1(g)] = Dist(A1; Ea1) :This concludes the proof.

Free Bits in PCP 433.5.4 Atomic circuit testFor sake of elegancy, we present also a Circuit Test, denoted CircTesth(A; f). The test consists ofchecking whether A(h + f) = A(f) and it outputs 0 if equality holds and 1 otherwise. Assumingthat A is close to some evaluation operator Ea, the atomic circuit test (above) uses self-correction[BLR] to test that a given function h has value 0 at a. As explained above, this test is not neededsince all our proof systems will use a (h; 0)-folding (of A) and thus will impose h(a) = 0. Theanalysis lower bounds the rejection probability, as a function of the distance of A from linear, giventhat h(a) = 1.Lemma 3.5.9 Let A: Fl ! � and let a 2 �l. Let h 2 Fl and x = Dist(A;Ea). If h(a) = 1 then1�CircPassh(A) � 1� 2x, whereCircPassh(A) def= Prf R Fl [CircTesth(A; f) = 0]Proof: Follows directly from Lemma 3.5.1.3.6 The MAX SNP veri�erIn this section we present a simple veri�er which performs one of two simple checks, each dependingon only three queries. This veri�er will be the basis for the non-approximability results regardingMax-3-SAT, Max-2-SAT and MaxCUT (presented in Section 3.7 and Section 3.8, respectively).3.6.1 The inner veri�erFigure 3.3 describes an inner veri�er. Our veri�er is adaptive; that is, some of its queries are deter-mine as a function of answers to previous queries. (The adaptivity is not obvious from Figure 3.3;it is rather `hidden' in the RMB Test | see Section 3.5.2). We remark that this is the �rst timethat one takes advantage on adaptivity in the construction of veri�ers.The inner veri�er takes the usual length parameters l; l1 as well as additional (probability)parameters p1; p2 and p3 such that p1 + p2 + p3 = 1. It performs just one test: with probabilityp1 the linearity test; with probability p2 the respect of monomial basis test; and with probabilityp3 the projection test. Formally, this is achieved by picking p at random and making cases basedon its value.2 To improve the results, we perform the tests on a folding of A over both (h; 0) and(�1; 1) (i.e., on A(h;0);(�1;1)). We stress that A(h;0);(�1;1) is a virtual oracle which is implemented bythe veri�er which accesses the actual oracle A (on points determined by the de�nition of folding).We now examine the goodness of VSNPinner. Recall the de�nitions of �lin(x) (speci�cally, note that�lin(x) � x) and �RMB(x) = 38(1� 2x), for all x.Informally, the following lemma considers all the possible strategies of a \dishonest" prover andindicates the probability (denoted 1��) with which the veri�er detects an error (when run againstsuch strategies). The three cases correspond to the events that(1) the function A(h;0);(�1;1) may be very far from being linear;2 For simplicity p is depicted as being chosen as a random real number between 0 and 1. Of course we cannotquite do this. But we will see later that the values of p1; p2; p3 in our �nal veri�ers are appropriate constants. So infact an appropriate choice of p can be made using O(1) randomness, which is what we will implicitly assume.

44 Bellare, Goldreich, Sudan(2) the function A(h;0);(�1;1) is x-close to linear, for some x < 12 � �1, but is not x-close to a validcodeword (i.e., to a linear function which respect the monomial basis); and(3) the function A(h;0);(�1;1) is x-close to linear but the encoding of �(E�1(A(h;0);(�1;1))) is very farfrom the function A1.Lemma 3.6.1 (soundness of VSNPinner): Suppose �1; �2 > 0 and l; l1 2 Z+. Suppose p1; p2; p3 2[0; 1] satisfy p1 + p2 + p3 = 1. Then the (l; l1)-canonical inner veri�er VSNPinner is (�; �1; �2)-good,where 1� � = min(T1; T2; T3) and(1) T1 def= p1 � (12 � �1)(2) T2 def= min x�1=2��1 [p1 � �lin(x) + p2 � �RMB(x)](3) T3 def= min x�1=2��1 [p1 � �lin(x) + p3 � (12 � �2)(1� 2x)].Proof: We consider an arbitrary pair of oracles, (A;A1), and the behavior of VSNPinner when givenaccess to this pair of oracles. Our analysis is broken up into cases depending on (A;A1); speci�cally,the �rst case-partition depends on the distance of A(h;0);(�1;1) (i.e., the folding of A) from linearfunctions. We show that, in each case, either the veri�er rejects with probability bounded belowby one of the three quantities (above) or the oracle pair is such that rejection is not required.Let x = Dist(A(h;0);(�1;1);Lin).The Max-SNP inner veri�er. Given functions h 2 Fl and �: �l ! �l1 , the veri�er hasaccess to oracles for A: Fl ! � and A1: Fl1 ! �. In addition it takes three [0; 1] valuedparameters p1; p2 and p3 such that p1 + p2 + p3 = 1.Pick p R [0; 1].Case: p � p1 :Pick f1; f2 R Fl.LinTest(A(h;0);(�1;1); f1; f2).Case: p1 < p � p1 + p2 :Pick f1; f2; f3 R Fl.MBTest(A(h;0);(�1;1); f1; f2; f3).Case: p1 + p2 < p :Pick f R Fl and g R Fl1 .ProjTest�(A(h;0);(�1;1); A1; f; g).Remark: access toA(h;0);(�1;1)(f) is implemented by accessing either A(f), A(f+h), A(f+�1)or A(f + h+ �1). Figure 3.3: The Max-SNP inner veri�er VSNPinner

Free Bits in PCP 45Case 1: x � 12 � �1Lemma 3.5.3 implies that 1� LinPass(A(h;0);(�1;1)) � �lin(x) � x � 12 � �1. (The second inequalityfollows from the fact that �lin(x) � x for all x.) Since VSNPinner performs the atomic linearity testwith probability p1 we have1� ACC [V A;A1SNPinner(�; h)] � p1 � (12 � �1) � 1� � (3.5)Case 2: x � 12 � �1Lemma 3.5.3 implies that 1 � LinPass(A(h;0);(�1;1)) � �lin(x) and so the probability that VSNPinnerperforms the linearity test and rejects is at least p1 � �lin(x). Now let ~A be a linear function suchthat Dist(A(h;0);(�1;1); ~A) = x. We consider the following sub-cases.Case 2.1: ~A does not respect the monomial basisIn this case Part (1) of Lemma 3.5.7 implies that 1 �MBPass(A(h;0);(�1;1)) � �RMB(x). So theprobability that VSNPinner performs the atomic respect of monomial basis test and rejects is at leastp2 ��RMB(x). Since the event that the veri�er performs a linearity test and the event that it performsa respect of monomial basis test are mutually exclusive, we can add the probabilities of rejectionand thus get 1� ACC [V A;A1SNPinner(�; h)] � p1 � �lin(x) + p2 � �RMB(x) � 1� � (3.6)Case 2.2: ~A respects the monomial basisBy Proposition 3.3.2, ~A is an evaluation operator. So there exists a 2 �l such that ~A = Ea. SoDist(A(h;0);(�1;1); Ea) = x. Let a1 = �(a). The proof splits into two further sub-cases.Case 2.2.1: d def= Dist(A1; Ea1) � 12 � �2By Lemma 3.5.8 we have 1�ProjPass�(A(h;0);(�1;1); A1) � d � (1�2x) � (1=2��2) � (1�2x). So theprobability that VSNPinner performs the projection test and rejects is at least p3 � (1=2+ �2)(1� 2x).Thus, adding probabilities as in Case (2.1), we get1� ACC [V A;A1SNPinner(�; h)] � p1 � �lin(x) + p3 � (1=2� �2)(1� 2x) � 1� � (3.7)Case 2.2.2: Else{In this case, we have x = Dist(A(h;0);(�1;1); Ea) � 1=2 � �1 and Dist(A1; Ea1) < 1=2� �2. Thus thefunctions A(h;0);(�1;1) and A1 satisfy conditions (2.1) and (2.2) in De�nition 3.4.3.Observe that the only case which does not yield 1 � ACC [V A;A1PCPinner(�; h)] � 1 � � is Case (2.2.2).However, Case (2.2.2) satis�es conditions (2.1) and (2.2) of De�nition 3.4.3. Thus, VPCPinner satis�escondition (2) of De�nition 3.4.3. Clearly, VPCPinner also satis�es condition (1) of De�nition 3.4.3,and thus the lemma follows.The upper bound on the soundness error of VSNPinner, provided by Lemma 3.6.1, is somewhatcomplicated to grasp. Fortunately, using �RMB(x) = 38(1� 2x) and �lin(x) � x, for all x � 1=2, wecan simplify the expression as follows.Claim 3.6.2 Let T1, T2 and T3 be as in Lemma 3.6.1, � = max(�1; �2) > 0 and p1; p2; p3 2 [0; 1]satisfy p1 + p2 + p3 = 1. Then, T2 � minf12p1; 38p2g, T3 � minf12p1; 12p3g � �, andminfT1; T2; T3g � minf12p1; 38p2; 12p3g � �

46 Bellare, Goldreich, SudanInterestingly, this lower bound is tight (see Claim 3.14.1).Proof: Clearly, T1 = (12 � �1)p1 � 12p1 � �. To analyze T2, let h(x) def= p1 � �lin(x) + p2 � �RMB(x).Fact 1: minx�1=2fh(x)g = minf38p2; 12p1g = minfh(0); h(1=2)g.proof: by considering two cases and using �lin(x) � x and g(x) = 38 � 34x.case 1: p1 � 34p2 h(x) � p1x+ 38p2 � 34p2x = 38p2 + (p1 � 34p2) � x � 38p2case 2: p1 � 34p2 h(x) � p1x+ 38p2 � 34p2x = 12p1 + (34p2 � p1) � (12 � x) � 12p1The fact follows by observing that h(0) = 38p2 and h(1=2) = 12p1. 2Thus, we have T2 = min x�1=2��1 [h(x)] � minf12p1; 38p2g. The term T3 is analyzed similarly, by(re-)de�ning h(x) def= p1 � �lin(x) + p3 � (1� 2x)=2, and using the following fact.Fact 2: minx�1=2fh(x)g = minf12p3; 12p1g = minfh(0); h(1=2)g.proof: by considering two cases and using �lin(x) � x.case 1: p1 � p3 h(x) � p1x+ 12p3 � p3x = 12p3 + (p1 � p3) � x � 12p3case 2: p1 � p3 h(x) � p1x+ 12p3 � p3x = 12p1 + (p3 � p1) � (12 � x) � 12p1The fact follows by observing that h(0) = 12p3 and h(1=2) = 12p1. 2Thus, we have T3 � min x�1=2��2 [h(x)]� � � minf12p1; 12p3g � �. The claim follows.3.6.2 Main application: the MaxSNP veri�erWe are now ready to state the main result of this section. It is a simple veri�er for NP whichachieves soundness error approaching 85% while performing one of two very simple tests.Proposition 3.6.3 (The MaxSNP Veri�er): For any
 > 0 and for any language L 2 NP, thereexists a veri�er VSNP for L such that� VSNP uses logarithmic randomness and is perfectly complete;� VSNP has soundness error 1720 +
; and� on access to an oracle � (and according to the outcome of the veri�er's coin tosses), theveri�er VSNP performs one of the following actions:(1) Parity check: VSNP makes three queries q1; q2 and q3, and rejects if �(q1)� �(q2) 6= �(q3).

Free Bits in PCP 47(2) RMB check: VSNP makes three out of four determined queries q1; q2; q3 and q4, and rejectsif either (�(q1) = 0)^ (�(q2) 6= �(q4)) or (�(q1) = 1) ^ (�(q3) 6= �(q4)).That is, the veri�er inspect �(q1) and consequently checks either �(q2) = �(q4) or �(q3) =�(q4).Furthermore, the probability (over its coin tosses) that VSNP performs a parity check is 35 (andthe probability that VSNP performs a RMB check is 25).Proof: Set �1 = �2 =
=2 and � =
2 � (16�21�22) =
52 > 0. Now, let l and l1 be integers such that theouter veri�er, Vouter, guaranteed by Lemma 3.4.2 is (l; l1)-canonical and �-good for L. Consider the(l; l1)-canonical inner veri�er VSNPinner, working with the parameters p1, p2 and p3 set to minimizeits error. Obviously this calls for setting 12p1 = 38p2 = 12p3, which yieldsp1 = 310 ; p2 = 410 ; p3 = 310 (3.8)Let VSNP be the veri�er obtained by composing Vouter with VSNPinner.We start by analyzing the soundness error of VSNP. By Lemma 3.6.1 and Claim 3.6.2, we knowthat the inner veri�er VSNPinner, with pi's as in Eq. (3.8), is (�; �1; �2)-good, for� � 1� 12 � p3 + �1= 1� 320 + 12 �
Invoking Theorem 3.4.5, we upper bound the soundness error of VSNP by 1� 320+ 12 �
+ �16�21�22 whichby the setting of � yields the claimed bound.It is left to observe that the projection test, performed by VSNPinner, amounts to a Parity Check onanswers taken from two di�erent oracles (which can actually be viewed as one oracle). It is clearthat VSNP uses logarithmic randomness, has perfect completeness, and performs the Parity Checkswith probability p1 + p3 = 35 and an RMB check with probability p2 = 25 .A tedious remark: The probability that veri�er VSNP, of the above proposition, makes two identicalqueries is negligible. Speci�cally, it can be made smaller than
 (mentioned in the proposition).Thus, we can ignore this case3 in the next two sections and assume, without loss of generality, thatall queries are distinct.In the following sections we use the veri�er of Proposition 3.6.3 to obtain hardness results for variousvariants of MaxSAT as well as for Max-CUT. The hardness results are obtained by constructing aninstance of the given problem which represent the veri�er's computation on input x. The primaryaspect of the reduction is the construction of gadgets which re
ect the result of the veri�er'scomputation (i.e., accept/reject) after performing one of the two types of checks, i.e., parity check orRMB check. We de�ne a performance measure of a gadget and then relate the �nal hardness resultachieved to the performance measure obtained by the gadgets used. Given that the performanceof the various gadgets might be di�erent for the di�erent checks, one might suspect that it mighthave been a better idea to �rst construct the gadgets and then to optimize the soundness of VSNPkeeping in mind the relative performance measures of the two kinds of gadgets being employed.Surprisingly enough it turns out (see Claim 3.14.2) that the optimization is not a function of the3 Formally, suppose that when it occurs the veri�er performs some standard check on �xed di�erent queries. Thismodi�cation increases the soundness error by at most
 which tends to zero anyhow.

48 Bellare, Goldreich, Sudanperformance of the gadgets and indeed the choice of parameters p1; p2 and p3 as in Equation (3.8)is optimal for the following reductions.Sources of our improvements. The explicit statement of a generic veri�er for deriving MaxSNP hardness results is a novelty of our paper. Thus, a quantitative comparison to previous worksis not readily available. Certainly, we improve over these works thanks to the use of the new longcode based inner veri�er, the atomic tests and their analysis in Section 3.5, the new idea of folding,and the improved analysis of linearity testing due to [BCHKS].3.6.3 Another application: minimizing soundness error in 3-query pcpAs a direct corollary to Proposition 3.6.3, we obtainTheorem 3.6.4 For any s > 0:85, NP � PCP1;s[log; 3].Furthermore, the free-bit complexity of the veri�er is 2.3.7 Satis�ability problems: Max-3-SAT and Max-2-SATIn this section we mainly deal with DNF formulae, however the last subsection deals formulaeconsisting of a conjunction of parity (rather than or) clauses.3.7.1 De�nitionsA formula is a set of clauses (i.e., or-clauses) over some set of literals. We consider various classesof formulae. In particular, 3-SAT formulae (at most three literals in each clause), E3-SAT formulae(exactly three di�erent literals in each clause) and 2-SAT formulae (at most two literals in eachclause). We use the generic notation X-SAT to stand for some unspeci�ed class; thus the abovecorrespond to X 2 f3;E3; 2g.Let ' be a formula. We let j'j denote the number of clauses in '. We let MaxSAT(') denotethe maximum number of clauses in S that are simultaneously satis�able. (That is, the maximum,over all assignments to the variables, of the number of clauses satis�ed). We also let MaxSAT(') =MaxSAT(')=j'j denote the maximum fraction of simultaneously satis�able clauses. Max-X-SAT isthe problem, given a X-SAT instance ', of �nding MaxSAT(').An approximation algorithm A for Max-X-SAT achieves a ratio, or factor, of � 2 [1;1] if(1=�) �MaxSAT(') � A(') � MaxSAT(') for all X-SAT instances '.Remark. As this de�nition indicates, we adopt the convention that the approximation factor is anumber at least 1. Sometimes Max-SNP approximation is discussed in terms of factors at most 1(e.g. [GoWi2, FeGo]) but obviously the two are equivalent via an inversion of the factor.We are interested in promise versions of Max-X-SAT which exhibit a gap in the MaxSAT(�)value between yes and no instances.De�nition 3.7.1 (MaxSAT promise problems): For any 0 � s � c � 1 we let the promise problemGap-X-SATc;s be the pair (A;B), where{(1) A is the set of all X-SAT instances ' satisfying MaxSAT(') � c, and(2) B is the set of all X-SAT instances ' satisfying MaxSAT(') � s.The gap of this problem is de�ned to be c=s.Our goal is to �nd such promise problems having gap as large as possible while being NP-hard.This will imply that the Max-X-SAT problem is hard to approximate within a factor equal to thereciprocal of the gap, unless P = NP.

Free Bits in PCP 49Due to Assuming Factor Technique[ALMSS] P 6= NP some constant NP � PCP1;1=2[log; O(1)]; Reduction of this toMax-3-SAT.[BGLR] eP 6= NeP 94=93 Framework; better analyses; uses proof systems of[LaSh, FeLo].[BGLR] P 6= NP 113=112 New four-prover proof systems.[FeKi] P 6= NP 94=93 New two-prover proof systems.[BeSu] eP 6= NeP 66=65 Canonicity and some optimizations.[BeSu] P 6= NP 73=72 Canonicity and some optimizations.This paper P 6= NP 27=26 Long code and new proof systems.Figure 3.4: Non-approximability results for Max-3-SAT indicating the factor shown hard and theassumption under which this was done.3.7.2 Previous workApproximation algorithms. Max-3-SAT is the canonical Max-SNP complete problem [PaYa].A polynomial-time algorithm due to Yannakakis [Ya] approximates it to within a factor of 4=3 <1:334 (see Goemans and Williamson [GoWi1] for an alternate algorithm). Currently the bestknown polynomial-time algorithm for Max-3-SAT achieves a factor of 1:258 (and is due to Sorkinet. al. [SSTW] which in turn build on Goemans and Williamson [GoWi2]). For Max-E3-SAT, whichis also Max-SNP complete, a very simple algorithm achieves an approximation of 8=7 � 1:143 (where7=8 is the expected fraction of clauses satis�ed by a uniformly chosen assignment).Max-2-SAT is also Max-SNP complete [GJS, PaYa]. This problem is particularly interestingbecause it has been the focus of recent improvements in the approximation factor attainable inpolynomial-time. Speci�cally, Goemans and Williamson [GoWi2] exhibited a polynomial timealgorithm achieving an approximation factor of 10:878 � 1:139, and consequently Feige and Goemans[FeGo] exhibited an algorithm achieving 10:931 � 1:074.Non-approximability. Non-approximability results for Max-SNP problems begin with [ALMSS]who proved that there exists a constant � > 0 such that Gap-3-SAT1;1�� is NP-hard. They didthis by providing a reduction from a given NP language L to the promise problem in question,constructed by encoding as a 3-SAT instance the computation of a PCP1;1=2[log; O(1)] veri�er foran NP-complete language, the variables in the instance corresponding to bits in the proof string.The basic paradigm of their reduction has been maintained in later improvements.Figure 3.4 depicts the progress. Improvements (in the constant value of the non-approximabilityfactor) begin with [BGLR]. They used Hadamard code based inner veri�ers following [ALMSS].They also introduced a framework for better analysis, and improved some previous analyses; weexploit in particular their better analyses of linearity testing (cf. Section 3.5) and of Freivalds'smatrix multiplication test (cf. Lemma 3.5.4). The improvement of Feige and Kilian [FeKi] wasobtained via new proof systems; that of [BeSu] by use of the canonicity property of constant proverproofs and some optimizations. (See Section 3.4 for a discussion of the role of constant-proverproofs in this context).Garey, Johnson and Stockmeyer [GJS] had provided, as early as 1976, a reduction of Max-3-SAT

50 Bellare, Goldreich, Sudanto Max-2-SAT which showed that if the former is non-approximable within (k + 1)=k then thelatter is non-approximable within (7k + 1)=(7k). With the best previous non-approximabilityfactor for Max-3-SAT (namely 66=65) we would only get a 456=455 factor non-approximability forMax-2-SAT. In fact, even using our new Max-3-SAT result we would only get only a hardnessfactor of 185=184.3.7.3 New ResultsA consequence of the following theorem is that, assuming P 6= NP there is no polynomial timealgorithm to approximate: (1) Max-3-SAT within a factor of 1:038; (2) Max-E3-SAT within afactor of 1:038; (3) Max-2-SAT within a factor of 1:013.Theorem 3.7.2 (MaxSAT non-approximability results): The following promise problems are NP-hard {(1) Gap-3-SATc;s with c = 1 and s = 26=27.(2) Gap-E3-SATc;s with c = 1 and s = 26=27.(3) Gap-2-SATc;s for some 0 < s < c < 1 satisfying c > 0:9 and c=s = 74=73.Actually, items (1) and (2) hold for any s > 1� 380 whereas item (3) holds as long as cs < 1 + 3217.Item (1) is implied by item (2) so we will prove only the latter. The value of c for item (3) can bedetermined from our proof.Sources of our improvements. The principal part of our improvement for Max-3-SAT comesfrom the use of the Max SNP veri�er of the previous section. The latter veri�er bene�ts from theuse of the new long code based inner veri�ers and the atomic tests and their analysis in Section 3.5.We also gain by using the new idea of folding and the improved analysis, due to [BCHKS], ofthe linearity test. Our Max-2-SAT result is based on the above as well as a new reduction whichdirectly encodes the computation of the veri�er in 2-SAT instances. Finally, for both Max-3-SATand Max-2-SAT, an important feature of the optimization is explicit 3-SAT and 2-SAT expressionsfor the di�erent tests which use as few clauses as possible. The expressions used for Max-3-SATare in fact of E3-SAT form thus yielding the result for Max-E3-SAT.3.7.4 Gadgets and the Hardness of MaxSATWe need to implement two types of checks: the Parity Check (checking that a+b = c for a, b and cobtained from the oracle) and the RMB-Check (checking that ba = c for a, b0; b1 and c obtained fromthe oracle). Accordingly a Parity Check (PC) gadget, PC(a; b; c; x1; x2; : : : ; xn), is a set of clausesover three distinguished variables a; b; c and n auxiliary variables x1; : : : ; xn. It is an (�; �)-PC gadgetif the following is true: If a+b = c thenMaxSAT(PC(a; b; c; x1; x2; : : : ; xn)) = �; else it is at most ���. Similarly a Respect-Monomial-Basis Check (RMBC) gadget, RMBC(a; b0; b1; c; x1; : : : ; xn), is aset of clauses over four distinguished variables a; b0; b1; c and n auxiliary variables x1; : : : ; xn. It is an(�; �)-RMBC gadget if the following is true: If ba = c thenMaxSAT(RMBC(a; b0; b1; c; x1; x2; : : : ; xn)) =�; else it is at most �� �. We stress that in both cases the maximum number of clauses which aresimultaneously satis�ed is at most �. A gadget is said to be a X-SAT gadget if, as a formula, it isa X-SAT formula.The following lemma describes how a gadget of the above form can be used to obtain thehardness of MaxSAT.Lemma 3.7.3 (MaxSAT implementation of a veri�er): Let V be a veri�er for L of logarithmicrandomness, with perfect completeness and soundness s, such that V performs either a single Parity

Free Bits in PCP 51Check (with probability q) or a single RMB check (with probability 1� q). Furthermore, supposethat in either case, the veri�er never makes two identical queries. If there exists an (�1; �)-Parity-Check X-SAT gadget containing m1 clauses and an (�2; �)-RMBC X-SAT gadget containing m2clauses then L reduces to Gap-X-SATc0;s0 forc0 = �1q + �2(1� q)m1q +m2(1� q)s0 = �1q + �2(1� q)� (1� s)�m1q +m2(1� q)In particular c0s0 � 1 + (1�s)��1q+�2(1�q)�(1�s)� .Remark: In the above lemma, we have assumed that both the PC and RMBC gadgets have thesame second parameter �. This assumption is not really a restriction since we can transform a pairof a (�1; �1)-PC gadget and (�2; �2)-RMBC gadget into a pair of a (�1�2; �1�2)-PC gadget and a(�2�1; �1�2)-RMBC gadget, thereby achieving this feature. (Actually, what really matters are thefractions �i=�.)Proof: Let PC(a; b; c; x1; : : : ; xn1) denote the Parity Check gadget and let RMBC(a; b; c; d; x1; : : : ; xn2)denote the RMBC gadget. We encode V 's computation on input x by a CNF formula 'x. Cor-responding to every bit �[q] of the proof (oracle) accessed by the veri�er V we create a variabley[q]. In addition we create some auxiliary variables yAux[R; i] for each random string R used by theveri�er V and i going from 1 to max(n1; n2). For each such R we will construct a formula 'R whichencodes the computation of the veri�er when its coins are R. The union of all these formulae willbe our 'x.On random string R if the veri�er performs a parity check on bits �[q1]; �[q2] and �[q3], then'R consists of the clauses PC(y[q1]; y[q2]; y[q3]; yAux[R; 1]; : : : ; yAux[R; n1]). On the other hand ifthe veri�er performs a RMB check on bits �[q1]; �[q2]; �[q3]; �[q4], then 'R consists of the clausesRMBC(y[q1]; y[q2]; y[q3]; y[q4]; yAux[R; 1]; : : : ; yAux[R; n2]).Let N denote the number of possible random strings used by V . Observe that the number of clausesin 'x equals m1 � qN +m2 � (1� q)N . We now analyze the value of MaxSAT('x).If x 2 L then there exists an oracle � such that V �(x) always accepts. Consider the assignmenty[q] = �[q] (i.e., y[q] is true i� �[q] = 1). Then for every R, there exists an assignment to thevariables yAux[R; i]'s such that the number of clauses of 'R that are satis�ed by this assignment is�1 if R corresponds to a Parity Check and �2 if R corresponds to a RMB-check. Since qN of thegadgets are PC-gadgets and (1� q)N of the gadgets are RMBC-gadgets, we have MaxSAT('x) �qN�1 + (1� q)N�2, and the expression for c0 follows.Now consider the case when x 62 L. We claim that if there exists an assignment which satis�esqN�1+(1�q)N�2� (1�s)N� clauses of 'x, then there exists an oracle � such that V �(x) acceptswith probability at least s. Since we know this can not happen we conclude that MaxSAT('x) <qN�1 + (1� q)N�2� (1� s)N� = s0j'xj.To prove the claim, we convert any assignment to the variables y's into an oracle � in the nat-ural way, i.e., �[q] = 1 i� y[q] is true. Now by the property of the gadgets if a PC gadgetPC(y[q1]; y[q2]; y[q3]; yAux[R; 1]; : : :) has more than �1�� clauses satis�ed then �[q1]��[q2] = �[q3].In turn this implies that the veri�er V accepts � on random string R. A similar argument can bemade about the random strings R which correspond to RMB checks. We also use the propertythat a PC (resp., RMB) gadget cannot have more than �1 (resp., �2) satis�ed clauses, even if the

52 Bellare, Goldreich, Sudanclaim it checks does hold. Thus, if an assignment satis�es qN � (�1��)+ (1� q)N � (�2��)+ sN�clauses, then there must exist sN random strings R on which V accepts. This proves the claimand the lemma follows.Figure 3.5 describes gadgets which will be used for our Max-E3-SAT construction: notice they areexact-3-SAT gadgets. We have a (4; 1)-PC gadget PC3 consisting of 4 clauses and a (4; 1)-RMBgadget RMBC3 consisting of 4 clauses in which all the clauses have exactly three variables. Bothgadgets have no auxiliary variables. The PC3(a; b; c) gadget is merely the canonical 3CNF of theexpression a + b+ c = 0. The �rst two clauses in the RMBC3(a; b; b0; c) gadget are the canonical3CNF of the expression (a = 0)) (b = c), whereas the latter two clauses are the canonical 3CNF ofthe expression (a = 1)) (b0 = c). Figure 3.6 similarly describes 2-SAT gadgets for our Max-2-SATconstruction. We have a (11; 1)-PC gadget PC2 consisting of 12 clauses, and a (11; 1)-RMB gadgetRMBC2 consisting of 12 clauses. Each gadget has four auxiliary variables. The auxiliary variablex�� in the PC2 gadget is supposed to be the indicator of the event ((a = �)^(b = �)). Thus, a+b = callows to satisfy 11 clauses by appropriately setting the indicator variables (e.g., if a = b = c = 0then setting x00 = 1 and the other x�� 's to 0 satis�es all clauses except the last one). The RMBC2gadget is composed of two parts; the �rst six clauses handle the expression (a = 0)) (b = c),whereas the latter six clauses are for the expression (a = 1)) (b0 = c).Lemma 3.7.4 (SAT gadgets): The following gadgets existE3-SAT gadgets: a (4; 1)-PC gadget of 4 clauses and a (4; 1)-RMB gadget of 4 clauses.2-SAT gadgets: a (11; 1)-PC gadget of 12 clauses and a (11; 1)-RMB gadget of 12 clauses.Remark: a ratio of 4 between the number of clauses and the second parameter (i.e., �) is minimal forboth E3-SAT gadgets. More generally, we claim that for E3-SAT, an (�; �)-gadget with m clausesfor a test which holds with probability 1=2 (for a random assignment to the distinguished variables)must satisfy m � 4�. Note that both the Parity test and the RMB test satisfy the condition of theclaim. The claim is proven by considering the expected number of clauses satis�ed by a randomassignment to all variables of a gadget. We may assume, without loss of generality, that no clause isa tautology and thus no clause may contain di�erent literals of the same variable. Thus, each clausecontains three literals belonging to three di�erent variables and is satis�ed with probability 7=8. Itfollows that the expected number of unsatis�ed clauses under a random assignment which does notsatisfy the test is at most m=4. Therefore there exists an assignment to the distinguished variableswhich does not satisfy the test and yet the auxiliary variables can be set to satisfy at least 34m ofthe clauses of the gadget. Thus, � � m=4 and if one wants to derive results for Gap-E3-SAT1;s0The Max-E3-SAT Gadgets.PC3(a; b; c) =f(a _ b _ c); (a _ b _ c); (a _ b _ c); (a _ b _ c)gRMBC3(a; b; b0; c) =f(a _ b _ c); (a _ b _ c); (a _ b0 _ c); (a _ b0 _ c); gFigure 3.5: The Max-E3-SAT Gadgets

Free Bits in PCP 53then � � 4� follows. Many questions arise. In particular, can one get below the �=� = 4 ratiofor 3-SAT (or even for E3-SAT when giving away the requirement that � equals the number ofclauses). What about 2-SAT? In general, it will be interesting to �nd the best possible gadgets (interms of lowest �=� ratio) for both tests and all formula classes and to prove that these gadgetsare really the best possible.Proof of Lemma 3.7.4: We use the gadgets presented in Figure 3.5 and Figure 3.6. The claimregarding E3-SAT follows from the motivating discussion above (i.e., by which these gadgets aremerely the canonical 3CNF expressions for the corresponding conditions). Thus, the E3-SATgadgets are satis�able if and only if the corresponding condition (i.e., parity or RMB) holds, andthe �rst part of the lemma follows.We now turn to the 2-SAT gadgets in Figure 3.6, starting with the PC-gadget PC2(a; b; c; x00; x01;x10; x11).We �rst claim that if a+ b = c then we can satisfy 11 clauses. This is done by setting each x��to 1 if and only if both a = � and b = � . Clearly, this assignment satis�es the three clausesin which the variable xab appears (the �rst two by a and b and the last by xba). Out of theother 9 clauses, 6 (i.e., those in which an auxiliary variable appears negated) are satis�ed bythe 0-assignment to the other 3 auxiliary variables, and 2 (i.e., of the 3 in which an auxiliaryvariable appears unnegated) are satis�ed by the variable c.We next claim that no assignment for which a + b = c can satisfy all 12 clauses. Let a = �,b = � and c = �+ � be an arbitrary partial assignment and consider the three clauses in whichthe variable x� � appears. To satisfy any of the �rst two clauses we must have x� � = 0 but thiscannot satisfy the third clause unless c 6= � + � , in contradiction to our hypothesis.Finally, we show that no assignment for which a+ c 6= c can satisfy more than 10 clauses. Leta = �, b = � and c = 1 + � + � be an arbitrary partial assignment and consider the threeclauses in which the variable x�� appears. To satisfy the �rst clause we must have x�� = 0The MAX 2SAT Gadgets.PC2(a; b; c; x00; x01; x10; x11) =f(x00 _ a); (x00 _ b); (x00 _ c);(x01 _ a); (x01 _ b); (x01 _ c);(x10 _ a); (x10 _ b); (x10 _ c);(x11 _ a); (x11 _ b); (x11 _ c)gRMBC2(a; b; b0; c; x00; x11; y00; y11) =f(x00 _ b); (x00 _ c); (a_ x00);(x11 _ b); (x11 _ c); (a_ x11);(y00 _ b0); (y00 _ c); (a_ y00);(y11 _ b0); (y11 _ c); (a_ y11)g:Figure 3.6: The Max-2-SAT Gadgets

54 Bellare, Goldreich, Sudanbut this cannot satisfy the third clause unless c = � + � , in contradiction to our hypothesis.Applying the same analysis to the clauses in which the variable x�� appears, the claim follows.Finally, we consider the RMB-gadget RMB2(a; b; b0; c; x00; x11; y00; y11). This gadget is the conjunc-tion of two analogous 2CNF formulae, each consisting of six clauses. We �rst consider the �rst sixclauses and the expression (a = 0)) (b = c).Suppose a = 1. Then, regardless of the values of b and c, we can satisfy all six clauses bysetting x00 = x11 = 0.Suppose a = 0 and b = c = �, for � 2 f0; 1g. Then, we can satisfy �ve out of the six clausesby setting x�� = 1 and x� � = 0. On the other hand, it is not possible to satisfy all six clauses,since this requires setting x00 = x11 = 1 (to satisfy the 3rd and 6th clauses), which in turnrequires setting both b and b to 1.Suppose a = 0 and b 6= c. In this case we claim that no truth assignment can satisfy more than4 clauses. The claim is proven by contradiction. We already know that no truth assignmentcan satisfy all clauses. Suppose that some truth assignment satis�es �ve (or more) clauses.Then, for some � 2 f0; 1g, we must satisfy all clauses in which the variable x�� appears. Thisrequires setting x�� = 1 (to satisfy the 3rd or/and the 6th clause), which in turn forces us toset b and c to � (to satisfy the other two clauses), in contradiction to the case hypothesis.The last six clauses are analyzed analogously. We conclude that if the RMB condition holds thenwe can satisfy 6 + 5 = 11 clauses and that we can satisfy at most 11 clauses. Furthermore, in casethe RMB condition does not hold we can satisfy at most 4 + 6 = 10 clauses. The lemma follows.Proof of Theorem 3.7.2: The theorem follows by applying Lemma 3.7.3 to the veri�er ofProposition 3.6.3 and the gadgets of Lemma 3.7.4. Details follows.Recall that by the remark following the proof of Proposition 3.6.3, we may assume that the veri�erdoes not make two identical queries. Applying Lemma 3.7.3 to the veri�er of Proposition 3.6.3 weobtain a reduction of any language in NP to Gap-X-SATc0;s0 for values of c0 and s0 determined as afunction of the gadget parameters, the probability parameter q and the soundness s of the veri�erof Proposition 3.6.3. Speci�cally, we observe that for E3-SAT we have c0 = 1 (since �i = mi fori = 1; 2), whereas for 2-SAT we have 0:9 < c0 < 1 (since �imi = 1112 for i = 1; 2). In both cases, � = 1and the expression for c0=s0 is given by1 + 1� sq�1 + (1� q)�2 � (1� s) (3.9)where s and q are determined by Proposition 3.6.3; that is (for every
 > 0)s = 1� 320 +
 (3.10)q = 35 (3.11)Substituting Eq. (3.10) and (3.11) in Eq. (3.9), and letting
 ! 0, we getc0s0 ! 1 + 312�1 + 8�2 � 3 :The bounds for E3-SAT and 2-SAT now follow by using the �i's values of Lemma 3.7.4. In partic-ular, for E3-SAT we get s0 ! 77=80 and for 2-SAT we get c0s0 ! 1 + 3217 .

Free Bits in PCP 55We conclude this subsection by presenting a variant of Lemma 3.7.3. This variant refers only to3SAT formulii, but makes no restrictions on the veri�er in the PCP system.Lemma 3.7.5 (Max3SAT implementation of a generic veri�er): Let L 2 PCP1;1��[log; 3], forsome 0 < � < 1. Then, L reduces to Gap-3-SAT1;1��4 .Proof: Let V be a veri�er as guaranteed by the hypothesis. Building on Lemma 3.7.3, it su�ces toshow that the computation of V on any possible random-tape can be captured by a 3CNF formulawith at most 4 clauses. As a warm-up consider the special case in which V is non-adaptive. Incase the canonical CNF has at most 4 clauses we are done. Otherwise, we let the �rst variable beindetermined and consider all 4 possible assignments to the other two variables. The formula maybe indetermined in which case we introduce a single 3-clause or identically false (resp., true) inwhich case we introduce a single 2-clause (resp., no clause at all).The general case, in which V is adaptive, is handled analogously. We consider the depth-3 branchingprogram which describes the acceptance of V on a speci�c random tape. In case this tree has atmost 4 rejecting leaves (i.e., marked false) writing corresponding 3CNF clauses (which state thatthese paths are not followed) we are done. Otherwise, we consider the 4 depth-1 subtrees. For eachsuch subtree we do the following. In case both leaves are marked false we write a 2CNF clause(which states that this subtree is not reached at all). In case a single leaf is marked false we writeone 3CNF clause (as above), and if no leaf is marked false we write nothing.3.7.5 Maximum Satis�able Linear Constraints (Parity Clauses)Analogously to the MaxSAT problems considered above, we consider parity/linear clauses ratherthan disjunctive clauses. In other words, we are given a system of linear equations over GF(2), andneed to determine the maximum number of equations which may be simultaneously satis�ed.The maximization problem is known to be Max-SNP complete (see [BrNa] or [Pet]). Here weprovide a stronger bound via a direct reduction from the MaxSNP veri�er. Before continuing, weremark that the problem of maximizing the number of satis�able equations should not be confusedwith the \complementary" problem of minimizing the number of violated constraints, investigatedby Arora et. al. [ABSS]. Also the case of maximum satis�able linear constraints over larger �elds(of size q) has been considered by Amaldi and Kann [AmKa], who show that this problem is hardto approximate to within a factor of q� for some universal � > 0.Theorem 3.7.6 Let GapParityc;s be de�ned analogously to the above. Then, for c = 6=7 andcs < 8=7, GapParityc;s is NP-hard.Proof: The theorem follows by constructing appropriate gadgets. A PC-gadget is straightforwardhere and so we have a (1; 1)-PC gadget. We conclude by presenting a (3; 2)-RMB gadget consistingof 4 equations. Speci�cally, for RMB(a; b0; b1; c) we present the equations b0+ c = 0, a+ b0+ c = 0,b1 + c = 0 and a+ b1 + c = 1.We claim that these 4 equations are indeed a (3; 2)-gadget for ba = c. First observe that if a = 0and b0 = c (resp., if a = 1 and b1 = c) then the �rst (resp., last) two equations hold. On the otherhand, if a = 0 and b0 6= c (resp., if a = 1 and b1 6= c) then the �rst (resp., last) two equations areboth violated. Finally, if a = 0 (resp., if a = 1) then, regardless of the values of b0; b1; c, exactlyone of the last (resp., �rst) two equations hold. Thus, the claim holds. Observe that we can thinkof the RMB gadget as a (1:5; 1)-gadget with 2 clauses (or, equivalently, think of the parity gadgetas a (2; 2)-gadget with 2 clauses).

56 Bellare, Goldreich, SudanProceeding as in the proof of Theorem 3.7.2, we obtain a hardness for GapParityc0;s0 , wherec0s0 ! 1 + 312�1 + 8�2 � 3 = 1 + 312 + 12� 3 = 87and c0 = 3�1+2�23m1+2m2 = 67 .3.8 Max-CUT3.8.1 De�nitionsA cut in a graph G = (V;E) is a partition of the vertex set into sets S and S. Given an assignmentof weights w : E ! R+, the weight of a cut (S; S) is the sum of the weights of the edges with oneendpoint in S and the other in S. We let MaxCUT(G;w) denote the maximum weight of any cutin G for a weight assignment w. Let MaxCUT(G;w) denote the quantity MaxCUT(G;w)=Pew(e).Max CUT is the problem whose instances are the pairs (G;w), where G is a graph and w aweight assignment on it, and one has to �nd MaxCUT(G;w). An approximation algorithm A forMax-CUTachieves a ratio of � 2 [1;1) if MaxCUT(G;w)=� � A(G;w) � MaxCUT(G;w) for allinstances (G;w). As usual, we capture the approximation problem by a promise problem {De�nition 3.8.1 (MaxCUT promise problem): For any 0 � s � c � 1, we let the promise problemGap-Cutc;s be the pair (A;B), where:(1) A is the set of Max-CUTinstances satisfying MaxCUT(G;w) � c.(2) B is the set of Max-CUTinstances satisfying MaxCUT(G;w)� s.The gap of this problem is de�ned to be c=s.3.8.2 Previous workIn 1976, Sahni and Gonzales [SaGo] gave a simple 2-approximation algorithm for this problem.Recently, in a breakthrough result, Goemans and Williamson [GoWi2] gave a new algorithm whichachieves a ratio of 10:878 = 1:139 for this problem. On the other hand, [PaYa] give an approximationpreserving reduction from Max-3-SAT to Max-CUT. Combined with [ALMSS] this shows thatthere exists a constant � > 1 such that approximating Max-CUTwithin a factor of � is NP-hard.No explicit bounds were given since and even using the best known hardness results for MAX3SAT, one suspects that the bound for Max-CUTwould not be very large, since the reduction usesconstructions of constant degree expanders etc.3.8.3 New ResultWe get the �rst explicit lower bounds on the constant upto which approximating the Max-CUTproblemis NP-hard. We show in the following theorem that the Max-CUTproblem is NP-hard to approxi-mate to within a factor of 1:012. The following theorem presents a non-approximability result fora weighted graph. We stress that it holds even when the weights are given in unary.Theorem 3.8.2 (Max-CUTnon-approximability result): Gap-Cutc;s is NP-hard for some c; s sat-isfying c > 0:6 and c=s > 66=65.

Free Bits in PCP 57Actually, the theorem holds for any c=s < 1 + 3193 . A weaker result can be obtained for simplegraphs without weights or parallel edges. In particular, one may reduce the Max-CUTproblem forgraphs with parallel edges to Max-CUTfor simple graphs, by replacing every edge by a path of 3edges. This causes a loss of a factor of 3 in the hardness factor; that is, we would get a hardnessfactor of 194=193 for the Max-CUTproblem restricted to simple graphs. A better reduction whichpreserves the non-approximation ratio has been recently suggested by Crescenzi et. al. [CST].3.8.4 Gadgets and the hardness of Max-CUTGadgets will be used to express the veri�er's computation in terms of cuts in graphs. A paritycheck gadget PC-CUT(a; b; c; T ;x1; : : : ; xn) is a weighted graph on n + 4 vertices. Of these threevertices a; b; c correspond to oracle queries made by the veri�er. The vertex T will be a specialvertex mapping cuts to truth values so that a vertex corresponding to an oracle query is consideredset to 1 if it resides in the T -side of the cut (i.e., a is considered set to 1 by a cut (S; S) i� eithera; T 2 S or a; T 2 S). The gadget is an (�; �)-PC gadget ifMaxCUT(PC-CUT(a; b; c; T ;x1; : : : ; xn))is exactly � when restricted to cuts which induce a+b = c (i.e., either 0 or 2 of the vertices fa; b; cglie on the same side of the cut as T), and is at most � � � when restricted to cuts for whicha + b 6= c. Similarly a weighted graph RMBC-CUT(a; b0; b1; c; T ; x1; : : : ; xn) is an (�; �)-RMBCgadget if it satis�es the property that MaxCUT(RMBC-CUT(a; b0; b1; c; T ; x1; : : : ; xn)) is exactly �when restricted to cuts satisfying ba = c and is at most � � � otherwise. The following lemma(similar to Lemma 3.7.3) shows how to use the above forms of gadgets to derive a reduction fromNP to Gap-Cut.Lemma 3.8.3 (MaxCUT implementation of a veri�er): Let V be a veri�er for L of logarithmicrandomness, with perfect completeness and soundness s, such that V performs either a single ParityCheck (with probability q) or a single RMB check (with probability 1� q). Furthermore, supposethat in either case, the veri�er never makes two identical queries. If there exists an (�1; �)-PCgadget consisting of edges of total weight w1 and an (�2; �)-RMBC gadget consisting of edges oftotal weight w2 then L reduces to Gap-Cutc0;s0 for c0 = �1q+�2(1�q)w1q+w2(1�q) and s0 = �1q+�2(1�q)�(1�s)�w1q+w2(1�q) . Inparticular c0=s0 � 1 + (1�s)��1q+�2(1�q)�(1�s)� .Proof: Let PC-CUT(a; b; c; T; x1; : : : ; xn1) denote the Parity Check gadget and RMBC-CUT(a; b;c; d; T; x1; : : : ; xn2) denote the RMBC gadget.We create a graph Gx and weight function wx which encodes the actions of the veri�er V on inputx. The vertices of Gx are as follows:(1) For every bit �[q] of the proof queried by the veri�er V , the graph Gx has a vertex v�[q] .(2) For every random string R tossed by the veri�er V , we create vertices vR;i, for i going from 1to maxfn1; n2g.(3) There will be one special vertex T .The edges of Gx are de�ned by the various gadgets. We stress that the same edge may appear indi�erent gadgets (and its weight in these gadgets may be di�erent). The graph Gx is de�ned bytaking all these edges and thus it is a graph (or multi-graph) with parallel edges and weights. Thenatural conversion of Gx into a graph with no parallel edges replaces the parallel edges between twovertices with a single edge whose weight is the sum of the weights of the original edges. Alternatively,since the weights are constants which do not depend on x, we can transform Gx into a unweightedgraph with parallel edges.

58 Bellare, Goldreich, SudanSuppose that on random string R the veri�er V queries the oracle for bits �[q1], �[q2] and �[q3],and then does a parity check on these three bits. Then corresponding to this random string we addthe weighted edges of the graph GR to the graph Gx where GR = PC-CUT(v�[q1]; v�[q2]; v�[q3]; T ;vR;1; : : : ; vR;n1). Alternatively, if the veri�er V performs a respect of monomial basis test on the bits�[q1], �[q2], �[q3] and �[q4], then we add the weighted edges of the graph GR = RMBC-CUT(v�[q1];v�[q2]; v�[q3]; v�[q4]; T ; vR;1; : : : ; vR;n2).Let N denote the number of possible random strings used by V . Observe that the total weight ofthe edges of Gx is w1qN + w2(1� q)N . We now analyze the value of MaxCUT(Gx).If x 2 L then there exists an oracle � such that V �(x) always accepts. We de�ne a cut (S; �S) in Gxin the following way: We place T 2 S and for every query q we place v�[q] 2 S i� �[q] = 1. Thenfor each R, there exists an placement of the vertices vR;i so that the size of the cut induced in GRis �1 if R corresponds to V performing a Parity Check and �2 if R corresponds to V performingan RMB check. The weight of the so obtained cut is �1qN + �2(1� q)N .Now consider x 62 L. We claim that if there exists a cut (S; �S) such that the weight of thecut is greater than qN�1 + (1 � q)N�2 � (1 � s)N�, then there exists an oracle �, such thatV �(x) accepts with probability at least s. Since we know this can not happen we conclude thatMaxCUT(Gx) < qN�1 + (1 � q)N�2 � (1 � s)N�. To prove the claim, we convert any cut in Gxinto an oracle � where �[q] = 1 i� T and v�[q] lie on the same side of the cut. Now by the propertyof the gadgets if a graph GR = PC-CUT(y[q1]; y[q2]; y[q3]; T ; x1; : : : ; xn1) contributes more than aweight of �1 � � to the cut, then V accepts � on random string R. (Similarly if the graph GR isan RMBC-gadget and contributes more than �2� � to the cut then V accepts � on random stringR.) Recall that no gadget can contribute more than the corresponding � to any cut. Thus if thetotal weight of the cut is more than (�1� �)qN + (�2� �)(1� q)N + sN � �, then V accepts on atleast sN random strings. This proves the claim and the lemma follows.We now turn to the construction of cut-gadgets. Our �rst gadget, denoted PC-CUT(a; b; c; T ;Aux),is a complete graph de�ned on �ve vertices fa; b; c; T;Auxg. The weight function, w, assign theedge fu; vg weight wu � wv, where wa = wb = wc = wT = 1 and wAux = 2. The following claimshows how PC-CUT(a; b; c; T ;Aux) functions as a parity check gadget.Claim 3.8.4 (MaxCUT PC-gadget): PC-CUT(a; b; c; T ;Aux) is a (9; 1)-parity check gadget con-sisting of edges of total weight 14.Proof: Recall that the edges in the graph are of two types: (1) edges to Aux having weight 2;and (2) other edges having weight 1. Thus, the total weight of the edges is 4 � 2 + 6 � 1 = 14. Theweight function is decomposed as a product of vertices \weights" and so we can express the weightof a cut (S; S) by the corresponding product (Pu2S wu) � (Pv2S wv). It turns out that the weightof a cut is maximized when the weight of the vertices on both sides are equal and speci�cally equal62 = 3. Thus, the maximum cut has weight 32 = 9. Furthermore, a max-cut must have Aux andexactly one of the other vertices on one side. On the other hand, all other cuts (i.e., in which thevertex weights are not split evenly) have weight at most 8. Using the above characterization of amax-cut we conclude that the max-cut may have one of the two forms:(1) Aux resides in the same side with T : since a; b and c are on the other side, the inducedassignment is a = b = c = 0 which satis�es the parity condition.(2) Aux resides in the same side with x 2 fa; b; cg: this induces x = 0 and an assignment of 1 tothe other two variables and thus the parity condition is satis�ed again.

Free Bits in PCP 59Thus a max-cut corresponds to an assignment which satis�es the parity condition and each suchassignment (can be extended to) corresponds to a max-cut. The claim follows.The second gadget, denoted RMBC-CUT(a; b0; b1; c; T ;Aux1;Aux2;Aux3; a0), is composed of twographs denoted G1 and G2, respectively. To motivate the construction we �rst observe that thecondition ba = c (i.e., (a = 0)) (b0 = c) and (a = 1)) (b1 = c)) is equivalent to the conjuction of(b0 = b1)) (b0 = c) and (b0 6= b1)) (a+b0+c = 0). The graph G1(b0; b1; c;Aux1) will take care ofthe �rst implication. It consists of the vertex set fb0; b1; c;Aux1g, the unit-weight edges fb0;Aux1gand fb1;Aux1g, and a weight 2 edge fc;Aux1g. The graph G2(a; b0; b1; c; T ;Aux2;Aux3; a0),taking care of the second implication, consists of two subgraphs PC-CUT(a; b0; c; T ;Aux2) andPC-CUT(a; b1; c; T ;Aux3; a0), where the latter is supposed to \check" a+ b1 + c = 1. Speci�cally,PC-CUT(a; b; c; T ;Aux; a0) consists of the graph PC-CUT(a0; b; c; T ;Aux) and a unit-weight edgefa; a0g. The following claim shows exactly how good this gadget is in \verifying" that ba = c.Claim 3.8.5 (MaxCUTRMB-gadget): RMBC-CUT(a; b0; b1; c; T ;Aux1;Aux2;Aux3; a0) is a (22; 2)-RMBC gadget consisting of edges of total weight 33.Proof: Clearly, the total edge weight is 4+14+(14+1) = 33. We analyze the performance of eachof the two sub-gadgets, G1 and G2, considering three cases. Recall that each of two sub-gadgetscorresponds to a condition of the form E) E 0, where both E and E 0 are linear conditions ontwo/three variables. The �rst case corresponds to both E and E 0 being satis�ed (i.e., \good case"),the second case (called \neutral") corresponds to E not being satis�ed, whereas the third case(called \bad") corresponds to E being satis�ed and E 0 being violated. We start with G1.Fact 1: Consider the set of all cuts in G1(b0; b1; c;Aux).(1) Good Case (b0 = b1 = c): If b0; b1 and c are all in same side of the cut then we can place Auxso that the cut has weight 4. On the other hand, there is no cut with weight more than 4.(2) Neutral Case (b0 6= b1): If b0 and b1 are on opposite sides of the cut, we can always place Auxso that the weight of the cut is 3. On the other hand, 3 is the maximum cut-weight for suchcuts.(3) Bad Case (b0 = b1 6= c): If b0 and b1 are the same side of the cut and c is on the opposite sidethen, no matter where Aux is placed, the cut-weight is 2.proof: The lower bounds for Items (1) and (2) are proven by placing Aux on the opposite side toc. The upper bounds for Items (1) and (2) are obvious (since 4 is the total edge weight in G1 andsince placing b0 and b1 on opposite sides does not allow placing Aux opposite to both of them).Item (3) is obvious as in each of the two cases we get a cut of weight 2. 2Fact 2: Consider the set of all cuts in G2(a; b0; b1; c; T ;Aux;Aux0; a0).(1) Good Case (b0 6= b1 and a+ b0 + c = 0): If b0 and b1 are on opposite sides and a+ b0 + c = 0then we can place Aux;Aux0 so that the cut has weight 19. On the other hand, there is nocut with weight more than 19.(2) Neutral Case (b0 = b1): If b0 and b1 are on the same side of the cut, we can place Aux;Aux0so that the weight of the cut is 18. On the other hand, 18 is the maximum cut-weight for suchcuts.(3) Bad Case (b0 6= b1 and a + b0 + c 6= 0): If b0 and b1 are on opposite sides and a + b0 + c 6= 0then 17 is the maximum cut-weight for such cuts.proof: Recall thatG2(a; b0; b1; c; T ;Aux; scAux0; a0) consists of the subgraphs PC-CUT(a; b0; c; T ;Aux)and PC-CUT(a0; b1; c; T ;Aux0), and the edge fa; a0g.

60 Bellare, Goldreich, SudanItem (1) follows by Claim 3.8.4 (where for the lower bound we place a0 opposite to a and usea0 + b1 = a+ b0).The upper bound of Item (2) follows fromClaim 3.8.4 by �rst observing that if both a+b0+c = 0and a0 + b1 + c = 0 then a = a0 (since in this case b0 = b1). Thus, either we obtain maximumweight of 9 in both PC gadgets (and lose the edge fa; a0g) or we do not obtain the weight 9 inboth PC gadgets { either way the bound follows.The lower bound of Item (2) follows by �rst observing that when we place a0 opposite to a,either a+ b0+ c = 0 or a0 + b1+ c = 0 holds. Extending the argument of Claim 3.8.4, we nextobserve that if the parity condition is not satis�ed we can still place the auxiliary vertex toobtain a cut of weight 8. Thus, we obtain a cut of weight 1 + 8 + 9 = 18 as claimed.Item (3) follows from Claim 3.8.4 by �rst observing that if b0 6= b1 and a + b0 + c 6= 0 thena + b1 + c = 0. Thus, PC-CUT(a; b0; c; T ;Aux) contributes at most weight 8 to the cut (useClaim 3.8.4) whereas either a = a0 or PC-CUT(a0; b1; c; T ;Aux0) also contributes at most 8. Asabove, in the former case (i.e., a = a0) the edge fa; a0g is not in the cut. Thus in either casesthe maximum cut weight is 17 (obtained by either 2 � 8 + 1 or 8 + 9).This concludes the proof of Fact 2. 2The Claim now follows by combining the two facts. First recall that the RMB condition is equivalentto the conjunction of (b0 = b1)) (b0 = c) and (b0 6= b1)) (a+ b0 + c = 0). If the RMB conditionholds then we obtain the Good Case weight from one sub-gadget, say Gi, and the Neutral Caseweight from the other (i.e., G3�i). (The value of i 2 f1; 2g depends on whether b0 = b1 or not.)Thus, the total weight equals 22 (obtained by either 4 + 18 or 3 + 19). If the RMB condition doesnot hold then we obtain the Bad Case weight from one sub-gadget and the Neutral Case weightfrom the other. Thus, the total weight equals 20 (obtained by either 2 + 18 or 3 + 17). The claimfollows.Proof of Theorem 3.8.2: The theorem follows by combining Proposition 3.6.3, Lemma 3.8.3,Claim 3.8.4 and Claim 3.8.5 (when regarding the RMB gadget as a (11; 1)-gadget rather than a(22; 2)-gadget). Details follows.As in the proof of Theorem 3.7.2, when applying Lemma 3.8.3 to the veri�er in Proposition 3.6.3,we obtain the same expression for the gap, c0=s0, for which NP �KD Gap-Cutc0;s0 ; namely,c0s0 ! 1 + (1� s)�q � �1 + (1� q) � �2 � (1� s)�= 1 + 312�1 + 8�2 � 3 :Substituting �1 = 9 and �2 = 11, the above simpli�es to 1 + 3193 > 6665 and the bound on c0s0 follows.As for c0, it equals 3�1+2�23m1+2m2 > 0:6.3.9 Free bits and vertex coverIt is known that approximating the minimum vertex cover of a graph to within a 1 + � factor ishard, for some � > 0 [PaYa, ALMSS]. However, we do not know of any previous attempt to providea lower bound for �. An initial attempt may use VC-gadgets that implement the various tests inVSNPinner, analogously to the way it was done in the previous sections for the Max SAT versions and

Free Bits in PCP 61The Enhanced RMB Test. Again, A: Fl ! � is the object being tested, and the testtake additional inputs or parameters f1; f2 2 Fl.EMBTest(A; f1; f2) (Enhanced Monomial-Basis Test)For every f 2 Fl, invoke MBTest(A; f1; f; f2).Output 0 if all invocations answered with 0, else output 1.The Passing Probability:EMBPass(A) = Prf1;f2 R Fl [EMBTest(A; f1; f2) = 0]Figure 3.7: The Enhanced RMB test and its passing probability.Max Cut. This yields a lower bound of � > 143 > 0:023. However, a stronger result is obtained viafree-bit complexity. Speci�cally, we apply the FGLSS-reduction to a proof system (for NP) in whichthe free-bit complexity is the lowest one possible: which, by the results of Section 5.1, is 2 free-bits.Consequently, the clique size, in case the original input is in the language, is at least one fourth(1/4) of the size of the graph which means that translating clique-approximation factors to VC-approximation factors yields only a loss of one third. Since the FGLSS-transformation translatesthe completeness/soundness ratio to the gap-factor for approximating clique, our �rst goal is toconstruct for NP a proof system which uses two free-bits and has soundness error as low as possible.We remark that the proof system of subsection 3.10 uses 7 free-bits and achieves soundness errorless than 1=2. The reader may observe that, following the above approach, it is not worthwhile touse the proof system of subsection 3.10 or any proof systems which achieves a soundness error of1=2 at the cost of 5 free-bits or more.3.9.1 Minimizing the error achievable with two free bitsThe pcp system of Proposition 3.6.3 had free-bit complexity 2 (and query-complexity 3). However,a smaller soundness error can be achieved if we make more queries. Our starting point is Part (2)of Lemma 3.5.7 which suggests an RMB-test with twice bigger detection probability still using 2free-bits (alas 2l+2 rather than 3 queries). Speci�cally, we consider an enhanced RMB test which oninput f1; f2 2 Fl, goes over all f 2 Fl invoking the Atomic RMB test with input functions f1; f; f2.The enhanced RMB Test, denoted EMBtest, is depicted in Figure 3.7. Further improvement isobtained by \packing" together the Linearity Test and the Enhanced RMB Test (in contrast toVSNPinner in which these tests were performed exclusively). Both tests make three queries of whichtwo are common, and the answers to these queries determine the answer to the third query (whichis di�erent in the two tests). The resulting inner veri�er, denoted V2inner, is depicted in Figure 3.8.As VSNPinner, the veri�er V2inner works with functions/oracles A that are folded twice | once across(h; 0) and once across (�1; 1).The following corollary is immediate from Part (2) of Lemma 3.5.7.

62 Bellare, Goldreich, SudanCorollary 3.9.1 (analysis of the Enhanced Monomial-Basis Test): Let A; ~A: Fl ! � with Asatisfying A(f + �1) = A(f) + 1 for all f and ~A linear but not respecting the monomial basis. Letx = Dist(A; ~A). Then 1�EMBPass(A) � 34 � (1� 2x)The following lemma is analogous to Lemma 3.6.1. Loosely speaking, it considers three possiblestrategies of a \dishonest" prover and indicates the probability with which the veri�er detects anerror.Lemma 3.9.2 (soundness of V2inner): Let �1; �2 > 0, 0 � p � 1 and l; l1 2 Z+. Then the (l; l1)-canonical inner veri�er V2inner (with parameter p) is (�; �1; �2)-good, where 1� � = min(T1; T2; T3)and(1) T1 def= (12 � �1) � p(2) T2 def= p �min x�1=2��1 [max(�lin(x) ; 34 � (1� 2x))](3) T3 def= min x�1=2��1 [p � �lin(x) + (1� p) � (12 � �2)(1� 2x)].Proof: The analysis is broken up into several cases as in the proof of Lemma 3.6.1. Let x =Dist(A(h;0);(�1;1);Lin).Case 1: x � 1=2� �1Lemma 3.5.3 implies that 1� LinPass(A(h;0);(�1;1)) � �lin(x) � x � 1=2� �1. Since V2inner performsthe atomic linearity test with probability p, we have in this case1� ACC [V A;A12inner(�; h)]� p � (1=2� �1)The two free-bit inner veri�er. Given functions h 2 Fl and �: �l ! �l1 , the veri�erhas access to oracles for A: Fl ! � and A1: Fl1 ! �. In addition it takes a parameterp 2 [0; 1].Pick q R [0; 1].Case: q � p :Pick f1; f2 R Fl.LinTest(A(h;0);(�1;1); f1; f2).EMBTest(A(h;0);(�1;1); f1; f2).Case: q > p :Pick f R Fl and g R Fl1 .ProjTest�(A(h;0);(�1;1); A1; f; g).Remark: access to A(h;0);(�1;1)(f) is implemented by accessing either A(f) or A(f + h) orA(f + �1) or A(f + h+ �1).Figure 3.8: The two free-bit inner veri�er V2inner

Free Bits in PCP 63Case 2: x < 1=2� �1Again, Lemma 3.5.3 implies that 1� LinPass(A(h;0);(�1;1)) � �lin(x) and1� ACC [V A;A12inner(�; h)] � p � �lin(x)follows. Now let ~A be a linear function such that Dist(A(h;0);(�1;1); ~A) = x. We consider the followingsub-cases.Case 2.1: ~A does not respect the monomial basisIn this case Corolary 3.9.1 implies that 1� EMBPass(A(h;0);(�1;1)) � 34(1� 2x). So the probabilitythat V2inner rejects is at least p� 34(1�2x). Combining the two lower bounds on 1�ACC [V A;A12inner(�; h)],we get 1� ACC [V A;A12inner(�; h)] � p �max(�lin(x); 34(1� 2x))Case 2.2: ~A respects the monomial basisBy Proposition 3.3.2, ~A is an evaluation operator. So there exists a 2 �l such that ~A = Ea. SoDist(A(h;0);(�1;1); Ea) = x. Let a1 = �(a). The proof splits into two further sub-cases.Case 2.2.1: d def= Dist(A1; Ea1) � 1=2� �2By Lemma 3.5.8 we have 1�ProjPass�(A(h;0);(�1;1); A1) � d � (1�2x) � (1=2��2) � (1�2x). So theprobability that V2inner performs the projection test and rejects is at least (1�p) �(1=2��2)(1�2x).To this we add the probability of the exclusively disjoint event in which the veri�er performs theLinearity Test and rejects, obtaining1� ACC [V A;A12inner(�; h)] � p � �lin(x) + (1� p) � (1=2� �2)(1� 2x)Case 2.2.2: Else {In this case, we have x = Dist(A(h;0);(�1;1); Ea) < 1=2 � �1 and Dist(A1; Ea1) < 1=2� �2. Thus thefunctions A(h;0);(�1;1) and A1 satisfy conditions (2.1) and (2.2) in De�nition 3.4.3.Similarly to the proof of Lemma 3.6.1, we infer that the lower bound on 1 � � is as claimed andthe lemma follows.We now simplify the soundness bound of the lemma. The proof of the �rst item uses the fact that�lin(x) � 45=128 for all x � 1=4. The second item uses the fact that �lin(x) � x for all x � 1=2.Claim 3.9.3 :(1) min x�1=2��1 [max(�lin(x) ; 34(1� 2x))] � 45128.(2) min x�1=2��1 [p � �lin(x) + (1� p) � (12 � x)] � 12 �min(p ; 1� p).(3) Let T1; T2 and T3 be as in Lemma 3.9.2. Thenmin(T1; T2; T3) � min� 45128 � p ; 12 � (1� p)��max(�1; �2)Interestingly, the lower bound provided by Item (3) is tight (see Claim 3.14.3). Optimization callsfor setting 45128 �p = 12 �(1�p), which yields p = 64109 and a soundness bound of 1� 45128p+max(�1; �2) =1� 45218 +max(�1; �2).

64 Bellare, Goldreich, SudanProof: Towards proving Part (1) we consider two cases.Case 1.1: x � 1=4. In this case, by de�nition of �lin , we havemax(�lin(x) ; 34(1� 2x)) � �lin(x) � 45128Case 1.2: x � 1=4. In this case we havemax(�lin(x) ; 34(1� 2x)) � 34(1� 2x) � 38 > 45128This establishes Part (1). Towards proving Part (2) we consider two di�erent cases.Case 2.1: p � (1� p). In this casep � �lin(x) + (1� p) � (12 � x) � p � x+ p � (12 � x) = p2Case 2.2: p � (1� p). In this casep � �lin(x) + (1� p) � (12 � x) � (1� p) � x + (1� p) � (12 � x) = 1� p2This establishes Part (2). To prove Part (3) use Parts (1) and (2) to lower bound T2 and T3,respectively, and getmin(T1; T2; T3) � min�(12 � �1) � p ; 45128 � p ; 12 �min(p ; 1� p)� �2�� min� 45128 � p ; 12 � (1� p)��max(�1; �2)The claim follows.Composing the above inner veri�er with an adequate outer veri�er, we getTheorem 3.9.4 NP � FPCP1;s[log; 2] for any s > 173218 � 0:79357798.Furthermore, the veri�er has constant query complexity.Proof: Let � = s�173218 , �1 = �2 = �=3 and � = �3 �16�21�22 = 16�5243 . Now, let l and l1 be integers such thatthe outer veri�er, Vouter, guaranteed by Lemma 3.4.2, is (l; l1)-canonical and �-good for L 2 NP.Consider the (l; l1)-canonical inner veri�er V2inner working with parameter p = 64=109. UsingLemma 3.9.2 and Claim3.9.3, we conclude that V2inner is (�; �; �)-good for � = 1� 45218 +max(�1; �2).Composing Vouter and V2inner we obtain a veri�er, V2free, which by Theorem 3.4.5 has soundness errorbounded above by 173218+max(�1; �2)+ �16�21�22 = s, as required. Furthermore, V2free uses logarithmicallymany coins. We claim that V2free has query complexity 2l + 2 and free-bit complexity 2. The claimis obvious in case V2inner performs the Projection test. Otherwise, V2inner performs a Linearity Testwith parameters f1 and f2 and an enhanced RMB Tests with the same parameters. Clearly, theanswers on f1 and f2 determine the acceptable (by Linearity Test) answer on f1 + f2. The keyobservation is that the former two answers also determine all 2l acceptable answers in the enhancedRMB test (i.e., for every f 2 Fl, the answer on f 01 � f + f2 should equal the answer on f2, wheref 01 = f1 if the answer on f1 is zero and f 01 = f1 + �1 otherwise).

Free Bits in PCP 65By repeating the above proof system three times, we obtainCorollary 3.9.5 NP � FPCP1;1=2[log; 6].Furthermore, the veri�er has constant query complexity.Proof: There exists � > 0 such that �173218 + ��3 � 12 .3.9.2 Hardness of vertex coverPreliminaries. A vertex cover of a graph G = (V;E) is a set V 0 � V such that V 0 \ fu; vg 6= ;for every fu; vg 2 E. We let MinVC(G) denote the size of a smallest vertex cover in G, and welet MinVC(G) = MinVC(G)=jV j. Min-VC is the problem whose instances are graphs G and onehas to �nd MinVC(G). An approximation algorithm A for Min-VC achieves a ratio, or factor, of� 2 [1;1) if MinVC(G) � A(G) � � �MinVC(G) for all graphs G. (Here we have adopted theconvention by which for minimization problems the approximation factor is at least 1.) Again, wecapture the approximation problem by a promise problem, but this time the parameter c referringto yes-instances is lower than the parameter s referring to no-instances.De�nition 3.9.6 For any 0 � c � s � 1 we let the promise problem Gap-VCc;s be the pair (A;B),where {(1) A is the set of all graphs G satisfying MinVC(G) � c, and(2) B is the set of all graphs G satisfying MinVC(G) � s.The gap of this problem is de�ned to be s=c.Known upper and lower bounds. There is a simple polynomial time algorithm to approximateMin-VC in unweighted graphs within a factor of 2. The algorithm, due to F. Gavril (cf. [GJ2]),consists of taking all vertices which appear in a maximal matching of the graph. For weightedgraphs, Bar-Yehuda and Even [BaEv1] and Hochbaum [Hoc], gave algorithms achieving the sameapproximation factor. The best known algorithm today achieves a factor only slightly better,namely 2� (log log jV j)=(2 log jV j) [BaEv, MoSp].Evidence to the hardness of approximating Min-VC was given by Bar-Yehuda and Moran whoshowed that, for every k � 2 and � > 0, a 1 + 1k � � approximator for (�nding) a minimum vertexcover would yield an algorithm for coloring (k+1)-colorable graphs using only logarithmically manycolors [BaMo]. The version of Min-VC in which one restricts attention to graphs of degree boundedby a constant B, is Max-SNP complete for suitably large B [PaYa]. In particular they providea reduction from Max-3-SAT. Combined with [ALMSS] this implies the existence of a constant� > 0 such that approximating Min-VC within a factor of 1+ � is hard unless P = NP. No explicitvalue of � has been stated until now. Indeed, the value that could be derived, even using the bestexisting non-approximability results for Max-3-SAT, will be very small, because of the cost of thereduction of [PaYa], which �rst reduces Max-3-SAT to its bounded version using expanders, andthen reduces this to Min-VC-B.Going from Free bits to VC.Rather than reduce fromMax-3-SAT, we will �rst use Theorem 3.9.4to get gaps in Clique size. Then we apply the standard reduction.Proposition 3.9.7 FPCPc;s[log; f] �KD Gap-VCc0;s0 for c0 = 1� 2�fc and s0c0 = 1 + c�s2f�c .Proof: The FGLSS reduction says that FPCPc;s[log; f] �KD Gap-Cliquec00;s00 where c00 = 2�f � c ands00 = 2�f � s. (See Section 3.12 for de�nition of Gap-Clique.) Now we apply the standard Karp

66 Bellare, Goldreich, Sudanreduction (of MaxClique to Min VC) which maps a graph G to its complement G, noting thatMinVC(G) = 1 �MaxClique(G). Thus Gap-Cliquec00;s00 �KD Gap-VC1�c00;1�s00 , where c0 = 1 � c00 =1� 2�fc. Finally, 1� s001� c00 = 1� s2�f1� c2�f = 1 + c� s2f � cThis completes the proof.Our results. We obtain the �rst explicit and reasonable constant factor non-approximabilityresult for Min-VC. A consequence of the following theorem is that, assuming P 6= NP there is nopolynomial time algorithm to approximate Min-VC within a factor of 1:0688.Theorem 3.9.8 Gap-VCc;s is NP-complete for some c; s satisfying s=c � 1:0688 > 16=15. More-over c = 3=4.Proof: Follows immediately from Proposition 3.9.7 and Theorem 3.9.4. Namely, for any s >173=218, NP � FPCP1;s[log; 2] �KD Gap-VCc0;s0 for c0 = 1� 2�2 = 34 and s0c0 = 1 + 1�s22�1 = 1 + 1�s3 .Thus, s0c0 = 1 + 15218 � �3 > 1:068807� �3 , where � def= s � 173218 .We remark that a special case of Proposition 3.9.7 in which the statement is restricted to f = 0would have su�ces for proving the above theorem. The reason being that we could have appliedProposition 5.2.8 to Theorem 3.9.4 and obtain NP � FPCP1=4;s=4[log; 0], for s = 0:7936, whichby the special case of Proposition 3.9.7 is reducible to Gap-VCc0;s0 with c0 = 1 � 14 = 34 ands0c0 = 1 + (1=4)�(s=4)1�(1=4) = 1 + 1�s3 (as above). Interestingly, the special case of Proposition 3.9.7 canbe \reversed": namely, Gap-VCc0;s0 is reducible to FPCPc;s[log; 0] with c = 1 � c0, s = 1 � s0 andsc = 1�s01�c0 (which reverses s0c0 = 1�s1�c = 1 + c�s1�c). The key fact in proving this \reverse reduction" isCorollary 4.1.5 which asserts that Gap-Cliquec;s �KD FPCPc;s[log; 0]. However, we do not know ifit is possible to \reverse" the other step in the alternative proof; namely, whether FPCPc;s[log; 0]is reducible to FPCP4c;4s[log; 2] (our reverse transformation is weaker { see Proposition 5.2.6).3.9.3 On using the MaxSNP veri�er to establish Min VC hardnessAlthough our current VC-gadgets yield a hardness result which is inferior to what has been pre-sented above, it may be the case that improved results can be obtained by a better implementationof the MaxSNP veri�er. As in Sections 3.7 and 3.8, we �rst de�ne problem-speci�c gadgets andestablish a reduction of pcp systems to the promised problem at hand. The gadgets will be graphswith distinguished vertices corresponding to the two literals of each variable appearing in thetest/check. Covers will induce truth assignments in the standard manner (i.e., a literal is set to 1i� the corresponding vertex is in the cover). (Covers which contain none or both literals of the samevariable are de�ned to set the variable to a special symbol ? which does not satisfy any equality.)Speci�cally, a Parity Check gadget PC-VC(a; b; c; a; b; c; x1; : : : ; xn) is a graph on 6 + n verticeswhere a; b; c correspond to oracle queries made by the veri�er. The gadget is an (�; �)-PC gadget ifMinVC(PC-VC(a; b; c; a; b; c; x1; : : : ; xn)) is exactly � when restricted to covers which induce a+b = c(i.e., either 0 or 2 of the vertices fa; b; cg are in the cover), and is at least �+ � when restricted tocovers for which a+b 6= c. Similarly a graph RMBC-VC(a; b0; b1; c; a; b0; b1; c; x1; : : : ; xn) is an (�; �)-RMBC gadget if it satis�es the property that MinVC(RMBC-VC(a; b; c; d; a; b0; b1; c; x1; : : : ; xn)) isexactly � when restricted to covers satisfying ba = c and is at least � + � otherwise. We stressthat covers of minimal size must contain exactly one of the two vertices corresponding to the dis-tinguished pair of literals. The following lemma (similar to Lemmas 3.7.3 and 3.8.3) shows how touse the above forms of gadgets to derive a reduction from NP to Gap-VC.

Free Bits in PCP 67Lemma 3.9.9 (MinVC implementation of a veri�er): Let V be a veri�er for L of logarithmicrandomness, with perfect completeness and soundness s, such that V performs either a single ParityCheck (with probability q) or a single RMB check (with probability 1� q). Furthermore, supposethat in either case, the veri�er never makes two identical queries. If there exists an (�1; �)-PC gadgetconsisting of n1 vertices and an (�2; �)-RMBC gadget consisting of n2 vertices then L reduces toGap-VCc0 ;s0 for c0 = �1q+�2(1�q)n1q+n2(1�q) and s0 = �1q+�2(1�q)+(1�s)�n1q+n2(1�q) . In particular s0=c0 � 1 + (1�s)��1q+�2(1�q) .Proof: The reduction is analogous to the other two reductions presented above. Namely, for eachpossible random string R we introduce a graph GR which is a copy of the corresponding gadget.All vertices and edges in these copies are distinct.4 In addition, for each variable v (correspondingto an oracle location) we join by edges each occurrence of v with each occurrence of v. Namely, ifv is a query under both random strings R and R0, then we join by an edge the vertex labeled v inGR and the vertex labeled v in GR0 .Letting N denote the number of possible random strings, we observe that the number of verticesin the resulting graph is n1 � qN + n2 � (1 � q)N . Also, if x 2 L then the resulting graph has acover with �1 � qN +�2 � (1� q)N vertices (i.e., just use the cover corresponding to the oracle whichalways makes the prover accept). On the other hand, we claim that if x 62 L then the resultinggraph, denoted Gx, does not have a cover of size smaller than �1qN + �2(1 � q)N + (1 � s)N�.Once the claim is proven the bound on s0 follows.Fixing an arbitrary cover of Gx, we �rst de�ne an oracle, �, by setting �(v) = 1 if all copies of vare in the cover and �(v) = 0 otherwise. Using the edges joining all occurrences of v and v, weconclude that in the latter case all copies of v are in the cover. Now, each copy of the PC-gadget(resp., RMB-gadget) having �1 (resp., �2) vertices in the cover corresponds to a random stringwhich makes the veri�er accept the oracle �. Using the soundness of the veri�er, we conclude thatat least (1� s)N of the gadgets correspond to random strings on which the veri�er rejects � andthe claim follows.Hardness results for MinVC can be derived by combining Proposition 3.6.3 and Lemma 3.9.9.Namely, the existence of a (�1; 1)-PC gadget with n1 vertices and a (�2; 1)-RMB gadget with n2vertices implies NP-hardness of Gap-VCc0;s0 withs0c0 ! 1 + 312�1 + 8�2 (3.12)c0 = 12�1 + 8�212n1 + 8n2 (3.13)We know how to construct a (6; 1)-PC gadget with 10 vertices and a (7; 1)-RMB gadget with 12vertices. This yields a gap of 1 + 3128 < 4342 . In order to beat the current hardness gap of 1:0688(established by the reduction from 2 free-bit pcp) one would need to construct gadgets with �i's(of weighted average) below 2.2 (i.e., 35�1 + 25�2 < 2:2). So it seems that this approach (i.e., ofusing the MaxSNP veri�er to establish MinVC hardness) o�ers little hope for progress.3.10 Minimizing the number of queriesThe problem we consider here is to minimize the values of q (and qav) for which we can constructPCPs for NP using q queries in the worst case (and qav on the average) to achieve a soundness4 This is in contrast to the MaxCUT implementation where the same non-auxiliary vertices were used in allgadgets.

68 Bellare, Goldreich, SudanDue to q qav[ALMSS] some constant some constant[BGLR] 36 29[FeKi] 32 24This paper 11 10.9Figure 3.9: Worst case (q) and average (qav) number of queries needed to get 1=2 soundness withlogarithmic randomness; that is, results of the form of Eq. (3.14).error of 1=2. We allow only logarithmic randomness. In other words we want results of the form:NP = PCP1;1=2[coins = log ; query = q ; queryav = qav] : (3.14)Later in this paper we will return to this question by looking at lower bounds.Previous work. It was shown by [ALMSS] that there are constants q; qav for which (3.14) isachieved. Reductions in the values of these numbers obtained since then are depicted in Figure 3.9.The interest of [BGLR] in these numbers was to improve non-approximability factors for MaxClique. But we now know that free-bits are a better measure towards this end [FeKi, BeSu]. Yetwe remain interested in query bits for their own sake. Indeed, the number of bits queried remainsa most natural measure, and it is an intruiging question as to how many bits of a proof you needto look at to detect an error with a given probability.Sources of our improvements. The principal part of our improvement comes from the use ofthe new long code based inner veri�er, the atomic tests and their analysis in Section 3.5, and thenew idea of folding. By repeating the proof system of Theorem 3.6.4 �ve times, we obtain thatEq. (3.14) holds for q = 15. (Four repetitions yielding q = 12 do not su�ce.) A straightforwardimplementation of the recycling technique of [BGLR] yields q = 12 and qav = 11:74 for whichEq. (3.14) is achieved. Using a more careful implementation of this technique, we reduce the querycomplexity by an additional bit.3.10.1 The PCP inner veri�erOur result is based on the construction of the (l; l1)-canonical inner veri�er VPCPinner depicted inFigure 3.10. In addition to its standard inputs h; � it takes parameters p1; p2; p3 � 0 so thatp1 + p2 + p3 = 1. The inner veri�er VPCPinner combines the atomic tests in three di�erent ways.(1) Some tests are performed independently (i.e., the main steps in Figure 3.10);(2) Some tests are performed while re-using some queries (i.e., the tests in Step (2) re-use f3);(3) Some tests are performed in a mutual exclusive manner (i.e., the tests in Step (3));As in previous sections, the tests are executed on the function A(h;0);(�1;1) to which the veri�er hasan e�ective oracle access given his access to A. By inspection it is clear that the total number ofaccesses to the oracles forA and A1 is 3+5+3 = 11 (whereas the free-bit complexity is 2+3+2 = 7).We now examine the goodness of VPCPinner. Recall the de�nitions of the functions �lin(x) (fromLemma 3.5.3) and �RMB(x) = 38(1� 2x) (from Lemma 3.5.7).

Free Bits in PCP 69Lemma 3.10.1 (soundness of VPCPinner): For any 0 < �1; �2 < 0:1 and any l; l1; p1; p2 and p3,satisfy p1+ p2+ p3 = 1 and 5p1 = 2p2, the (l; l1)-canonical inner veri�er VPCPinner is (�; �1; �2)-good,where 1� � is the minimum of the following three quantities(1) 12 + p110 � �1;(2) [1�min(1+q6 ; 2�q8)]3 + p31�p3 , where q def= p11�p3 ;(3) min(12 + p320 � �2 ; 1� (0:55218507+ �2) � (1� 45128p1))Furthermore, if p1 > 10�1, p3 > 20�2 and p3 � 0:01 then 1� � > 12 .Proof: We split the analysis into several cases based on the value of x = Dist(A(h;0);(�1;1);Lin).Case 1: x � 12 � �1Lemma 3.5.3 implies that LinPass(A(h;0);(�1;1)) � 1� �lin(x) � 1� x � 12 + �1. Thus, in this caseACC [V A;A1PCPinner(�; h)] � �1 def= (1� p1) � �12 + �1�+ p1 � �12 + �1�2 < 12 + �1 � p110(The last inequality is due to �1 < 0:1.) Using p1 > 10�1 we get �1 < 1=2.The PCP inner veri�er. This (l; l1)-canonical inner veri�er is given functions h 2 Fland �: �l ! �l1 , and has access to oracles for A: Fl ! � and A1: Fl1 ! �. In addition ittakes three non-negative parameters p1; p2 and p3 which sum-up to 1.Pick functions f1; : : : ; f8 R Fl and g1; g2 R Fl1 .Step 1: Linearity TestLinTest(A(h;0);(�1;1); f1; f2).Step 2: Combined RMB and Projection TestMBTest(A(h;0);(�1;1); f3; f4; f5).ProjTest�(A(h;0);(�1;1); A1; f3; g1).Step 3: Invoking VSNPinner with parameters p1; p2; p3.Pick p R [0; 1].Case p � p1 : LinTest(A(h;0);(�1;1); f6; f7).Case p1 < p � p1 + p2 : MBTest(A(h;0);(�1;1); f6; f7; f8).Case p1 + p2 < p : ProjTest�(A(h;0);(�1;1); A1; f6; g2).Accept i� all the above tests accept.Remark: access toA(h;0);(�1;1)(f) is implemented by accessing either A(f), A(f+h), A(f+�1)or A(f + h+ �1). Figure 3.10: The PCP inner veri�er VPCPinner

70 Bellare, Goldreich, SudanCase 2: x < 12 � �1Let ~A: Fl ! � be a linear function such that Dist(A(h;0);(�1;1); ~A) = x. The proof splits into twosubcases.Case 2.1: ~A does not respect the monomial basisIn this case, by Lemmas 3.5.3 and 3.5.7 we haveACC [V A;A1PCPinner(�; h)] � (1� �lin(x)) � (1� �RMB(x)) � (1� p1�lin(x)� p2�RMB(x))< (1� �lin(x)) � (1� �RMB(x))��1� p1p1 + p2 � �lin(x)� p2p1 + p2 � �RMB(x) + p31� p3�< � � � � [q�+ (1� q)�] + p31� p3where q def= p1p1+p2 , � = 1��lin(x) and � = 1��RMB(x). Using p �x+(1� p) � y � xp � y1�p, we showthat � � � � [q�+ (1� q)�] � [1+q3 �+ 2�q3 �]3. Speci�cally,�1 + q3 �+ 2� q3 ��3 = �23 � (12�+ 12�) + 13 � (q�+ (1� q)�)�3� �12� + 12��23 �3 � (q�+ (1� q)�) 13 �3= �12 � � + 12 � ��2 � (q�+ (1� q)�)� � � � � (q�+ (1� q)�)Combining the above with Claim 3.6.2 (i.e., the bound on T2), we obtain (for every x < 1=2)ACC [V A;A1PCPinner(�; h)] < �1� 1 + q3 � �lin(x)� 2� q3 � �RMB(x)�3 + p31� p3� �1�min(1 + q6 ; 2� q8)�3 + p31� p3Observe that min(1+q6 ; 2�q8) is maximized at q = 2=7 where its value is 3=14. Indeed this value of qis consistent with p1 = 27 � (p1 + p2) and so, in this case, we getACC [V A;A1PCPinner(�; h)] � �2 def= �1114�3 + p31� p3 < 0:48505832+ p31� p3Using p3 � 0:01 we get �2 < 1=2.Case 2.2: ~A respects the monomial basisBy Proposition 3.3.2, ~A is an evaluation operator. So there exists a 2 �l such that ~A = Ea. SoDist(A(h;0);(�1;1); Ea) = x. Let a1 = �(a). The proof splits into two further sub-cases.Case 2.2.1: d def= Dist(A1; Ea1) � 1=2� �2

Free Bits in PCP 71By Lemma 3.5.8 we have ProjPass�(A(h;0);(�1;1); A1) � 1 � d � (1 � 2x) < 12 + x + �2. Letting�PRJ(x) def= 12 � x� �2, we get in this caseACC [V A;A1PCPinner(�; h)] � �3 def= (1� �lin(x)) � (1� �PRJ(x)) � (1� p1�lin(x)� p3�PRJ(x))We upper bound �3 by considering three sub-cases (corresponding to the segments of �lin).Case 2.2.1.1: x � 1=4. In this case we use �lin(x) � 3x(1� 2x) and obtain�3 < (1� �lin(x)) � (1� �PRJ(x)) � (1� p3�PRJ(x))< (1� 3x(1� 2x)) � (12 + x+ �2) � (1� p310)< 12 � �1� x+ 12x3� � �1� p310�+ �2� 12 � �1� p310�+ �2where the last inequality uses the fact that the function x � 12x3 is non-negative in the interval[0; 1=4]. Using p3 > 20�2 we obtain �3 < 1=2.Case 2.2.1.2: x � 1=4 and x � 45=125. In this case we use �lin(x) � 45=128 = �lin(45=128) and�PRJ(x) � �PRJ(45=128) and obtain�3 < (1� �lin(x)) � (1� �PRJ(x)) � (1� p1�lin(x))� (1� �lin(45=128)) � (1� �PRJ(45=128)) � (1� p1�lin(45=128))< 83128 � �109128 + �2� � �1� p1 45128�< (0:55218507+ �2) � �1� p1 45128�Using �2 < p310 < 0:001 and p1 � 27 � 0:99 > 0:28, we obtain �3 < 0:5532 � 0:902 < 0:499.Case 2.2.1.3: x � 45=128. In this case we use �lin(x) � x � 45=128 and obtain�3 < (1� �lin(x)) � (1� �PRJ(x)) � (1� p1�lin(x))< (1� x) � (12 + x+ �2) � (1� p1 45128)The latter expression decreases in the interval [45128 ; 12] and is hence maximized at x = 45=128. Thuswe obtain the same expression as in Case 2.2.1.2, and the bound on �3 follows identically.We conclude that in Case (2.2.1) we have�3 < max �12 � p320 + �2 ; (0:55218507+ �2) � (1� p1 45128)�Case 2.2.2: Else (d < 1=2� �2)In this case, we have x = Dist(A(h;0);(�1;1); Ea) � 1=2 � �1 and Dist(A1; Ea1) < 1=2 � �2. Thusthe functions A(h;0);(�1;1) and A1 satisfy the properties required in conditions (2.1) and (2.2) ofDe�nition 3.4.3.

72 Bellare, Goldreich, SudanLet � def= maxf�1; �2; �3g. We conclude that the only case which allows ACC [V A;A1PCPinner(�; h)] > � isCase (2.2.2) which also satis�es conditions (2.1) and (2.2) of De�nition 3.4.3. Thus, VPCPinner satis-�es condition (2) of De�nition 3.4.3. Clearly, VPCPinner also satis�es condition (1) of De�nition 3.4.3,and thus the lemma follows.3.10.2 The new proof systemCombining the above inner veri�er with an adequate outer veri�er, we obtain a pcp system for NPwith query complexity 11.Theorem 3.10.2 : NP = PCP1;1=2[coins = log ; query = 11 ; queryav = 10:89].Furthermore, the free-bit complexity of the proof system is 7.Proof: We consider a canonical (l; l1)-inner veri�er VPCPinner with parameters p3 = 0:001, p1 =27 � 0:999 and p2 = 57 � 0:999. By Lemma 3.10.1, VPCPinner is (�; �1; �2)-good for �1 = �2 = 0:00001and � = 0:49999 > max(0:499; 0:5 � p310 + �2). We now choose an appropriate outer veri�er.Let � = 16 � (0:5 � �)�21�22 . Lemma 3.4.2 provides us with l and l1 such that an �-good (l; l1)-canonical outer veri�er Vouter with randomness O(logn) exists. Let V = hVouter; VPCPinneri bethe composition of Vouter and VPCPinner according to the de�nitions in Section 3.4. This veri�erhas randomness O(logn). Apply Theorem 3.4.5 to see that V has completeness parameter 1 andsoundness parameter �+ �=(16�21�22) = 1=2. The query (and free-bit) complexity of V is the sameas that of VPCPinner above (i.e., 11 and 7, respectively).To obtain the bound on the average query complexity, we observe that we can a�ord not to performthe RMB test with some small probability. Speci�cally, Case (2.1) in the proof of Lemma 3.10.1,which is the only case where the RMB test is used, yields error of 0:48505832+ p31�p3 . Thus, if wemodify VPCPinner so that, whenever the RMB test is invoked it is performed only with probability0:973, we get that Case (2.1) detects violation with probability at least (1�0:48505832�0:0010011)�0:973 > 0:50006. Consequently, the modi�ed inner veri�er errs with probability bounded away from1=2 and so does the composed veri�er. The modi�cation decreases the average query complexityby (1 � 0:973) � (2 + p2 � 3) > 0:027 � 4:12 > 0:11. (The reduction is both from Step (2) and thesecond case in Step (3).) The theorem follows.3.11 The iterated testsThe iterated tests will be used in our two free-bits proof system. We will be running each ofthe atomic tests many times, but, to keep the free-bit count low, these will not be independentrepetitions. Rather, following [BeSu], we will run about 2O(m) copies of each test in a way which ispairwise, or \almost" pairwise independent, to lower the error probability to O(2�m). This will bedone using 2m free-bits. Speci�cally, we will select uniformly m functions in Fl (and m functionsin Fl1) and invoke the atomic tests with functions resulting from all possible linear combinationsof the selected functions.3.11.1 Linearity and randomnessWe begin with some observations relating probabilistic to linear independence. Note that Lmis a sub-vector-space of Fm, and in particular a vector space over � in its own right. So we

Free Bits in PCP 73can discuss the linear independence of functions in Lm. We say that ~L = (L1; : : : ; Lk) 2 Lkmis linearly independent if L1; : : : ; Lk are linearly independent. Furthermore we say that ~L1 =(L1;1; : : : ; L1;k) and ~L2 = (L2;1; : : : ; L2;k) are mutually linearly independent if the 2k functionsL1;1; L2;1; : : : ; L1;k; L2;k are linearly independent.Lemma 3.11.1 For ~L = (L1; : : : ; Lk) 2 Lkm let J~L: Fml ! Fkl be de�ned by J~L(~f) = (L1 �~f; : : : ; Lk � ~f), for ~f = (f1; :::; fm). Fix ~L and consider the probability space de�ned by havingf1; :::; fm be uniformly and independently distributed over Fl. Regard the J~L's as random variablesover the above probability space.(1) If ~L is linearly independent then J~L is uniformly distributed in Fkl .(2) If ~L1; ~L2 are mutually linearly independent then J~L1 and J~L2 are independently distributed.The analysis of the Iterated Projection test (see Figure 3.11) can be done relatively straightfor-wardly, given the above, because the invoked projection test uses a single linear combination ratherthan several such combinations (as in the other iterated tests). Thus we begin with the iteratedprojection tests. The analysis of the other iterated tests, where the atomic tests are invoked ontwo/three linear combinations, require slightly more care. The corresponding lemmas could havebeen proven using the notion of \weak pairwise independence" introduced in [BeSu]. However, wepresent here an alternative approach.3.11.2 Iterated projection testThe iterated projection test described in Figure 3.11 takes as input a vector ~f 2 Fml and also alinear function L 2 Lm. Note that f = L � ~f is in Fl. The test is just the atomic projection test onthis input. The following lemma says that if the passing probability ProjPassmA (), representing2m invocations of the atomic projection test, is even slightly signi�cant and if A is close to Ea, thenA1 is close to the encoding of the projection of a.Lemma 3.11.2 There is a constant c3 such that the following is true. Let �: �l ! �l1 be a func-tion. Let a 2 �l be such that Dist(Ea; A) � 1=4, and let a1 = �(a) 2 �l1 . If ProjPassm� (A;A1) �c3 � 2�m then Dist(Ea1; A1) � 0:1.Proof: The proof is similar to that of [BeSu, Lemma 3.5]. Let �1 = Dist(A1; Ea1) and assume it isat least 0:1. We show that there is a constant c3 such that ProjPassmh (A) < c3 � 2�m.Let N = jL�mj = 2m � 1. For L 2 L�m let XL: Fml �Fml1 ! � be de�ned byXL(~f;~g) def= ProjTestm� (A;A1; ~f;~g; L) = ProjTest�(A;A1;L � ~f; L � ~g) :Regard it as a random variable over the uniform distribution on Fml � Fml1 . Let X = PL2L�m XL.It su�ces to show that Pr [X = 0] � O(1=N).Lemma 3.11.1 implies that fXLgL2L�m are pairwise independent, identically distributed randomvariables. Let L 2 L�m and let p = E[XL]. Again using Lemma 3.11.1 we havep = Pr~f R Fml ; ~g R Fml1 hProjTest�(A;A1;L � ~f ; L � ~g) = 1i= Prf R Fl ; g R Fl1 [ProjTest�(A;A1; f; g) = 1] :But by Lemma 3.5.8, p is at least �1(1� 2�) � 0:05, since � def= Dist(Ea; A) � 1=4. We can concludeby applying Chebyshev's inequality. Namely,Pr [X = 0] � Pr [jX �Npj � Np] � Np(Np)2 � 20N

74 Bellare, Goldreich, Sudanas desired.3.11.3 Technical claimFor analyzing the other two tests we will use the following simple claim.Claim 3.11.3 Let k � 1 and N = 2m. Then Lkm contains a subset S of cardinality N22k such thatevery ~L1 6= ~L2 2 S are mutually linearly independent.Proof: Let ~L 2 Lkm be linearly independent. Then, the probability that L chosen uniformly in Lmis linearly independent of ~L is 1 � 2kN . Thus, the probability that a uniformly chosen ~L0 2 Lkm ismutually linearly independent of ~L is greater than 1 �Pi=1 k 2k+i�1N > 1 � 22kN . Now, consider agraph with vertex set Lkm and edges connecting pairs of mutually linearly independent sequences(i.e., ~L1 and ~L2 are connected if and only they are mutually linearly independent). This graph hasNk vertices and every vertex which is linearly independent has degree greater than (1� 22kN) �Nk.Clearly this graph has a clique of size N22k (e.g., consider a greedy algorithm which pick a vertexof maximal degree among all vertices connected to the previously selected vertices). Noting that aclique corresponds to a set of mutually linear independent sequences, we are done.3.11.4 Iterated linearity testThe iterated linearity test described in Figure 3.11 takes as input a vector ~f 2 Fml and also linearfunctions L1; L2 2 Lm. Note that f1 = L1 � ~f and f2 = L2 � ~f are in Fl. The test is just theatomic linearity test on these inputs. The following lemma says that if the passing probability iseven slightly signi�cant, then A is almost linear.Lemma 3.11.4 There is a constant c1 such that if LinPassm(A) � c1�2�m then Dist(A;Lin) � 0:1.Proof: Assume that � def= Dist(A;Lin) � 0:1. We show that there is a constant c1 such thatLinPassm(A) < c1 � 2�m. Let N = 2m. For ~L = (L1; L2) 2 L2m let X~L: Fml ! � be de�ned byX~L(~f) def= LinTestm(A; ~f; L1; L2) = LinTest(A;L1 � ~f; L2 � ~f) :Regard it as a random variable over the uniform distribution on Fml . Let S � L2m be a set asguaranteed by Claim 3.11.3 and X = P~L2S X~L. It su�ces to show that Pr [X = 0] � O(1=N).(Thus our analysis of LinPassm(A) is based only on a small fraction of all possible invocationsof the iterated linear test; yet, this small fraction corresponds to a su�ciently large number ofinvocations.)Using Lemma 3.11.1, it follows that the random variables fX~Lg~L2S are pairwise independent andthat for every ~L 2 Sp def= Pr~f R Fml hX~L(~f) = 1i = Prf1 ;f2 R Fl [LinTest(A; f1; f2) = 1] :By Lemma 3.5.3, p � �lin(�) and so p � 3� � 6�2 if � � 1=4 and p � 45=128 otherwise. In eithercase, we get p > 0:2. Now by Chebyshev's inequality we havePr [X = 0] � Pr [jX �N 0pj � N 0p] � O(1=N 0)where N 0 def= jSj = 2m=16. The lemma follows.

Free Bits in PCP 75The Iterated Tests. Here A: Fl ! � and A1: Fl1 ! � are the objects being tested. Thetests also take additional inputs or parameters: below ~f 2 Fml ; ~g 2 Fml1 ; L; L1; L2; L3 2 Lm;and �: �l ! �l1 . The tests are speci�ed in terms of the atomic tests of Figure 3.2.LinTestm(A; ~f; L1; L2) = LinTest(A;L1 � ~f; L2 � ~f).MBTestm(A; ~f; L1; L2; L3) =MBTest(A;L1 � ~f; L2 � ~f; L3 � ~f).ProjTestm� (A;A1; ~f;~g; L) = ProjTest�(A;A1;L � ~f; L � ~g).The Passing Probabilities. These are the probabilities we are interested in:LinPassm(A) = Pr~f R Fml h 8 L1; L2 2 Lm : LinTestm(A; ~f; L1; L2) = 0iMBPassm(A) = Pr~f R Fml h 8 L1; L2; L3 2 Lm : MBTestm(A; ~f; L1; L2; L3) = 0iProjPassm� (A;A1) = Pr~f R Fml ; ~g R Fml1 h 8 L 2 Lm : ProjTestm� (A;A1; ~f;~g; L) = 0iFigure 3.11: The iterated tests and their passing probabilities.3.11.5 Iterated RMB testThe iterated respect of monomial basis test in Figure 3.11 takes an input ~f and also three linearfunctions L1; L2; L3 2 Lm. For simplicity of exposition, we assume that A is folded over (�1; 1).(This assumption is justi�ed by our usage of the test { see next subsection.) If the probabil-ity MBPassm(A) is signi�cant, we can conclude that the linear function close to A respects themonomial basis.Lemma 3.11.5 There is a constant c2 such that the following is true. Let A: Fl ! � so thatA(f + �1) = A(f) + 1, for every f 2 Fl. Let � � 0:1 so that A is �-close to a linear function ~A andsuppose that MBPassm(A) � c2 � 2�m. Then ~A respects the monomial basis.Proof: Assume that ~A is linear but does not respect the monomial basis. We will show that thereis a constant c2 such that MBPassm(A) < c2 � 2�m.Let N = 2m. For ~L = (L1; L2; L3) 2 L3m let X~L: Fml ! � be de�ned byX~L(~f) def= MBTestm(A; ~f; L1; L2; L3) = MBTest(A;L1 � ~f; L2 � ~f; L3 � ~f) :Regard it as a random variable over the uniform distribution on Fml . Again, let S � L3m be a setas guaranteed by Claim 3.11.3 and X =P~L2S X~L. It su�ces to show that Pr [X = 0] � O(1=N).

76 Bellare, Goldreich, SudanUsing Lemma 3.11.1, it follows that the random variables fX~Lg~L2S are pairwise independent andthat for every ~L 2 Sp def= Pr~f R Fml hX~L(~f) = 1i = Prf1;f2;f3 R Fl [MBTest(A; f1; f2; f3) = 1] :By Lemma 3.5.7, p � 3=8 � 7�=4 + 5�2=2 � �3. Using � � 0:1, it follows that p > 0:2. UsingChebyshev's inequality we are done.Remark. For general A's (which are not folded over (�1; 1)) a similar result can be proven byaugmenting the iterated RMB test so that on input A, ~f and ~L = (L1; L2; L3) it also checks ifA((L1 � ~f) + �1) = A(L1 � ~f) + 1.3.11.6 Putting some things togetherThe last two lemmas above allow us to conclude that if A(h;0);(�1;1) passes the �rst two tests withany signi�cant probability then A(h;0);(�1;1) is close to some evaluation operator Ea so that h(a) = 0.Thus, again, there is no need for a \circuit test".Corollary 3.11.6 There is a constant c such that the following is true. Let A: Fl ! �, andsuppose LinPassm(A(h;0);(�1;1)) � c �2�m andMBPassm(A(h;0);(�1;1)) � c �2�m. Then there is a stringa 2 �l such that Dist(Ea; A(h;0);(�1;1)) � 0:1 and h(a) = 0.Proof: Let c be the larger of the constants from Lemmas 3.11.4 and 3.11.5. By the �rst lemmathere is a linear ~A such that Dist(A(h;0);(�1;1); ~A) < 0:1. Now the second lemma implies that ~Arespects the monomial basis (using the fact that A(h;0);(�1;1)(f+�1) = A(h;0);(�1;1)(f)+1 for all f 's). SoProposition 3.3.2 says ~A is an evaluation function. Finally, by Proposition 3.3.3, we have h(a) = 0.3.12 Amortized free bits, Max Clique, and Coloring3.12.1 De�nitionsA clique in a graph G = (V;E) is a subset S of the vertices such that any pair of vertices in S isconnected by an edge. We let MaxClique(G) = maxf jSj : S is a clique in Gg denote the maximumclique size, and we let MaxClique(G) = MaxClique(G)=N be the ratio of the Max Clique size to thenumber of nodes N = kGk in the graph. Max Clique is the problem whose instance is a graph Gand one has to �nd MaxClique(G). An approximation algorithm A for Max Clique achieves a ratioof � 2 [1;1) if MaxClique(G)=� � A(G) � MaxClique(G) for all graphs G. Here � is a function ofthe number N of nodes in G.The chromatic number of G is the smallest number of colors with which the nodes of G canbe colored so that no two adjacent vertices have the same color. It is denoted ChromNum(G),and as usual ChromNum(G) = ChromNum(G)=N . Coloring is the problem, given G, of �nd-ing ChromNum(G). An approximation algorithm A for coloring achieves a ratio of � 2 [1;1)if ChromNum(G) � A(G) � � � ChromNum(G) for all graphs G.Promise problems Gap-Cliquec;s and Gap-ChromNumc;s corresponding to the approximation arede�ned analogously to our previous de�nitions for other problems. Here c; s are functions of Nsuch that 0 � s(N) � c(N) � 1.

Free Bits in PCP 773.12.2 Sources of our improvementsWe adopt the basic framework of the construction of proof systems with low free-bit complexityas presented in [BeSu]. Our improvement comes from the use of the new long code instead of theHadamard code as a basis for the construction of inner veri�ers. This allows us to save one bitin the amortized free-bit complexity. The reason being that the long code contains explicitly allfunctions of the encoded string whereas the Hadamard code contains only linear combinations of thebits of the string. Typically, we need to check that the veri�er accepts a string and this conditionis unlikely to be expressed by a linear combination of the bits of the string. Thus, one needs tokeep also the linear combinations of all two-bit products and using these extra combinations (viaself-correcting) increases the amortized free-bit by one. Instead, as seen above, the long code allowsus to directly handle any function. The fact that we take linear combinations of these functionsshould not confuse the reader; these are linear combinations of random functions rather than beinglinear combinations of random linear functions (as in [BeSu]).3.12.3 Construction and resultsOur construction of a proof systems with amortized free-bit complexity of two bits is obtained bycomposing the (l; l1)-canonical outer veri�er of Lemma 3.4.2 with a (l; l1)-canonical inner veri�er,denoted Vfree-in, which is depicted in Figure 3.12. The inner veri�er Vfree-in consists of invokingthe three iterated tests of Figure 3.11. In addition, Vfree-in also applies the linearity test to theoracle A1. This is not done in order to improve the rejection probability of Vfree-in (in case theoracles A and A1 are far from being �ne), but rather in order to decrease the number of acceptingcon�gurations (and consequently the free-bit complexity). We also remark that Vfree-in invokes theiterated tests while providing them with access to a double folding of A (i.e., A(h;0);(�1;1)) ratherthan to A itself. This eliminates the need for checking that A encodes a string which evaluates tozero under h and simpli�es the iterated RMB test (see remark at the end of subsection 3.11.5).However, unlike in previous subsections, these simpli�cations do not buy us anything signi�cantThe free inner veri�er. Given functions h 2 Fl and �: �l ! �l1 , the veri�er has accessto oracles for A: Fl ! � and A1: Fl1 ! �. It also takes an integer parameter m.Random choices: ~f R Fml ; ~g R Fml18 L1; L2 2 Lm : LinTestm(A(h;0);(�1;1); ~f; L1; L2)8 L1; L2; L3 2 Lm : MBTestm(A(h;0);(�1;1); ~f; L1; L2; L3)8L 2 Lm : ProjTestm� (A(h;0);(�1;1); A1; ~f;~g; L)8 L1; L2 2 Lm : LinTestm(A1;~g; L1; L2)Remark: access toA(h;0);(�1;1)(f) is implemented by accessing either A(f), A(f+h), A(f+�1)or A(f + h+ �1). Figure 3.12: The free inner veri�er Vfree-in

78 Bellare, Goldreich, Sudan(here), since the additional testing could have been done without any additional cost in free-bits.Lemma 3.12.1 There exists a constant c such that the following is true. Let l; l1; m be integers.Then the (l; l1)-canonical inner veri�er Vfree-in with parameterm is (�; �1; �2)-good, where � = c�2�mand �i = 0:4, for i = 1; 2.Proof: Here the analysis can be less careful than in analogous statements such as in Lemmas 3.6.1and 3.9.2. Using Corollary 3.11.6, with respect to the oracle A(h;0);(�1;1), we conclude that if A(h;0);(�1;1)passed both the iterated Linearity and RMB Tests with probability at least c�2�m then there exists astring a 2 �l such that Dist(Ea; A(h;0);(�1;1)) � 0:1 = 12��1 < 1=4 and h(a) = 0. Using Lemma 3.11.2,we conclude that if (A(h;0);(�1;1); A1) passed the iterated Projection Test, with probability at leastc3 �2�m, then Dist(E�(a); A1) < 0:1 = 12��2. Setting � = c0 �2�m, where c0 = maxfc; c3g, we concludethat Vfree-in satis�es condition (2) of De�nition 3.4.3. Clearly, Vfree-in also satis�es condition (1)and the lemma follows.Proposition 3.12.2 Let l; l1; m be integers. Then the (l; l1)-canonical inner veri�er Vfree-in withparameter m uses 2m free-bits.Proof: We consider only accepting computations of Vfree-in. We start by observing that all oraclevalues obtained from A, during the iterated Linearity Test (on A(h;0);(�1;1)), are determined by thevalues of A in locations f 01; f 02; :::; f 0m, where each f 0i is either fi or fi + h. Likewise, all oraclevalues obtained from A, during the iterated RMB Test, are determined by the values of A in theselocations f 01; f 02; :::; f 0m. Finally, all oracle values obtained from A, during the iterated ProjectionTest, are determined by the values of A1 in locations L � ~g (for all L's) and the values of A in thelocations f 01; f 02; :::; f 0m.Now we use the fact that Vfree-in applies an iterated Linearity Test to the oracle A1. It follows thatall oracle values obtained from A1, in accepting computations of Vfree-in, are determined by thevalues of A1 in locations g1; g2; :::; gm.We conclude that, in accepting computations of Vfree-in, all values obtained from the oracles aredetermined by 2m bits (i.e., A(f 01); :::; A(f 0m) and A1(g1); :::; A1(gm)).Composing the canonical outer veri�er of Lemma 3.4.2 and the canonical inner veri�er Vfree-in, weget the followingTheorem 3.12.3 There is a constant c such that the following is true. Let L 2 NP and m aninteger. Then L 2 PCP1;s[coins = log ; free = 2m] with s = c � 2�m.Proof: Given an NP language L and an integer m, we use Lemma 3.4.2 to construct a 2�m-goodouter veri�er, denoted Vouter, for L. Recall that this outer veri�er uses logarithmic randomness(actually the randomness depends linearity on m which is a constant). Next, compose Vouter withthe inner veri�er Vfree-in, where Vfree-in uses m as its integer parameter. The composed veri�er hasfree-bit complexity 2m (as inherited from Vfree-in by Proposition 3.12.2). By Theorem 3.4.5 thesoundness error of the composed veri�er is at most (c + 1) � 2�m, where c � 2�m is the soundnesserror of Vfree-in (due to Lemma 3.12.1). The theorem follows.By selecting m to be su�ciently large (i.e., m = (2+ �) log2 c=�, where c is the constant above), wegetTheorem 3.12.4 For any � > 0 it is the case that NP � FPCP[log; 2 + �].

Free Bits in PCP 79Using the FGLSS-transformation, we getTheorem 3.12.5 For any � > 0(1) NP �KR Gap-Cliquec;s for s(N) = N � and c(N) = N1=3.(2) NP �KD Gap-Cliquec;s for s(N) = N � and c(N) = N1=4.Proof: For Part (1) we use Corollary 5.2.3 (below), with r = O(logn) and k = r� . We get that NPis randomly reducible to a pcp system with randomness r+ k +O(1), free-bit complexity (2 + �)kand error probability 2�k. The FGLSS-graph corresponding to the resulting pcp system has sizeN = 2(r+k+O(1))+(2+�)k and a gap in clique size of factor 2k, which can be rewritten as N1=(1+2+2�).The clique size in case of input not in the language is 2r which can be rewritten as N �. Substituting� for �=2, the claim of Part (1) follows. For Part (2) we use Corollary 5.2.5, and get a pcp systemfor NP with randomness r+ (2+ �)k, free-bit complexity (2+ �)k and error probability 2�k. Usingthe FGLSS-construction on this system, the claim of Part (2) follows.Combining the above with a recent reduction of Furer [Fu], which in turn improved the reductionsof [LuYa, KLS, BeSu], we getTheorem 3.12.6 For any � > 0(1) NP �KR Gap-ChromNumc;s for s(N)=c(N) = N1=5��.(2) Gap-ChromNumc;s is NP-complete for s(N)=c(N) = N1=7��.3.12.4 Previous workMax Clique. Prior to 1991, no non-approximability results on Max Clique were known. In1991 the connection to proofs was made by Feige et. al. [FGLSS]. The FGLSS reduction saysthat PCP1;e[coins = r ; query = q] Karp reduces to Gap-Cliquec;s via a reduction running in timepoly(2r+q), and with the gap c=s being a function of (r; q and) the error e. In applying it one workswith PCP classes containing NP. One obtains a result saying Max Clique has no polynomial timeapproximation algorithm achieving a certain factor, under an assumption about the deterministictime complexity of NP (the time complexity depends on r; q and the factor on these, but, mostimportantly, on the error e). In particular, these authors were able to \scale-down" the proof systemof [BFL] to indicate strong non-approximability factors of 2log� N for some � > 0, assuming NP isnot in quasi-polynomial deterministic time. They also initiated work on improving the factors andassumptions via better proof systems. The best result in their paper is indicated in Figure 3.13.Arora and Safra [ArSa] reduced the randomness complexity of a PCP veri�er for NP to loga-rithmic | they showed NP = PCP1;1=2[coins = log ; query = plogN]. They also observed thatrandom bits can be recycled for error-reduction via the standard techniques [AKS, CW, ImZu]. Theconsequence was the �rst NP-hardness result for Max Clique approximation. The correspondingfactor was 2plogN .Arora et. al. showed that NP = PCP1;1=2[coins = log ; query = O(1)], which implied that thereexists an � > 0 for which approximating Max Clique within N � was NP-complete. The number ofqueries was unspeci�ed, but indicated to be � 104, so � � 10�4. Later work has focused on reducingthe constant value of � in the exponent.5In later work a slightly tighter form of the FGLSS reduction due to [BeSc, Zu] has been used.It says that PCP1;1=2[coins = r ; queryav = qav] reduces, via a randomized Karp reduction, to5 The value � = 10�4 means that the size N of the graph must be at least 21000, which is more than the numberof particles in the universe, before the factor N � exceeds 2!

80 Bellare, Goldreich, SudanDue to Factor Assumption[FGLSS] 2log1�� N for any � > 0 NP 6� eP[ArSa] 2plogN P 6= NP[ALMSS] N � for some � > 0 P 6= NP[BGLR] N1=25 NP 6� coReP[BGLR] N1=30 NP 6= coRP[FeKi] N1=15 NP 6= coRP[BeSu] N1=4 NP 6� coReP[BeSu] N1=6 P 6= NPThis paper N1=4 P 6= NPThis paper N1=3 NP 6= coRPFigure 3.13: Some Milestones in the project of proving non-approximability of the Clique number:Approximation Factor (in terms of the graph size N) which is infeasible to achieve under anindicated Assumption. In stating results from [BGLR] on, we ignore N � terms in which � > 0 canbe arbitrary small.Gap-Cliquec;s for some c; s satisfying c(N)=s(N) = N1=(1+qav), and with the running time of thereduction being poly(2r). (We assume qav = O(1) for simplicity.) (We omit factors of N � where� > 0 can be arbitrarily small, here and in the following.) Thus the hardness factor was tied tothe (average) number of queries required to get soundness error 1=2. Meanwhile the assumptioninvolved the probabilistic, rather than deterministic time complexity of NP{ it would be NP 6� coRePif r = polylog(n) and NP 6= coRP if r = log(n).New proof systems of [BGLR] were able to obtain signi�cantly smaller query complexity: theyshowed NP � PCP1;1=2[coins = polylog ; query = 24] and NP � PCP1;1=2[coins = log ; query = 29].This leads to their hardness results shown in Figure 3.13. However, signi�cantly reducing the(average) number of bits queried seemed hard.However, as observed by Feige and Kilian, the performance of the FGLSS reduction actuallydepends on the free-bit complexity which may be signi�cantly smaller than the query complexity[FeKi]. Namely, the factor in the above mentioned reduction is N1=(1+f) where f is the free-bitcomplexity. They observed that the proof system of [BGLR] has free-bit complexity 14, yielding aN1=15 hardness of approximation factor.The notion of amortized free-bits was introduced in [BeSu]. They observed that the performanceof the reduction depended in fact on this quantity, and that the factor was N1=(1+ �f) where �f is theamortized free bit complexity. They then showed that NP � FPCP[polylog; 3]. This lead to a N1=4hardness factor assuming NP 6= coReP.Chromatic Number. The �rst hardness result for the chromatic number is due to Garey andJohnson [GJ1]. They showed that if P 6= NP then there is no polynomial time algorithm that canachieve a factor less than 2. This remained the best result until the connection to proofs, and theabove mentioned results, emerged.Now hardness results for the chromatic number are obtained via reduction from Max Clique. A

Free Bits in PCP 81N � factor hardness for Max Clique translates into a N � factor hardness for the Chromatic number6,with � a function of �. To discuss the quality of reductions, let us, following [BeSu], de�ne an (a; b)-reduction to be one that achieves � = 1a�b+(b=�) = �b+(a�b)� .The �rst reduction, namely that of Lund and Yannakakis [LuYa], was a (1; 5)-reduction. Viathe Max Clique hardness results of [ArSa, ALMSS] this implies the chromatic number is hard toapproximate within N � for some � > 0. But, again, � is very, very small. Improvements to � are afunction both of improvements to � and the values a; b for which (a; b)-reductions are available.A subsequent reduction of Khanna, Linial and Safra [KLS] is simpler but in fact slightly lesse�cient, being a (6; 5)-reduction. However a more e�cient reduction is given by [BeSu]{ theypresent a (1; 3)-reduction. Our N1=3 hardness for Clique would yield, via this, a N1=7 hardness forthe chromatic number. But more recently an even more e�cient reduction has become available,namely that of Furer [Fu]. It is a (1; 2)-reduction, and thereby we get our N1=5 hardness.Randomized and de-randomized error reduction. As mentioned above, randomized and de-randomized error reduction techniques play an important role in obtaining the best Clique hardnessresults via the FGLSS method. Typically, one �rst reduces the error so that its logarithm relatesto the query (or free-bit) complexity and so that the initial randomness cost can be ignored (aslong as it were logarithmic). (Otherwise, one would have needed to construct proof systems whichminimize also this parameter; i.e., the constant factor in the logarithmic randomness complexity.)The randomized error reduction method originates in the work of Berman and Schnitger [BeSc]were it is applied to the Clique Gap promise problem. An alternative description is given byZuckerman [Zu]. Another alternative description, carried out in the proof system, is presented inSection 5.2.The de-randomized error reduction method consists of applying general, de-randomized, error-reduction techniques to the proof system setting. The best method knows as the \Expander Walk"technique is due to Ajtai, Komlos and Szemeredi [AKS] (see also [CW, ImZu]). It is easy to see thatthis applies in the pcp context. (The usage of these methods in the pcp context begins with [ArSa].)It turns out that the (constant) parameters of the expander, speci�cally the ratio � def= log2 dlog2 � , whered is the degree of the expander and � is the second eigenvalue (of its adjacency matrix), play animportant role here. In particular, ��1 determines how much we lose with respect to the randomizederror reduction (e.g., NP 2 FPCP[log; f] translates to a hardness factor of N 11+f under NP 6� BPPand to a hardness factor of N 1�+f under NP 6= P). Thus the Ramanujan Expander of Lubotzky,Phillips and Sarnak [LPS] play an important role yielding � � 2 (cf. Proposition 5.2.4), which isthe best possible.3.13 The coding theory boundWe provide here the coding theory bound used in the proof of Lemma 3.4.4. It is a slight extensionof bounds in [MaSl, Ch. 17] which consider only vectors of weight exactly w rather than at mostw. For sake of completeness, we include a proof of this bound. In discussing binary vectors, theweight is the number of ones in the vector and the distance between two vectors is the number ofplaces in which they disagree.6Actually all the reductions presented here, make assumptions regarding the structure of the graph and hence donot directly yield the hardness results stated here. However, as a consequence of some results from this paper, we areable to remove the assumptions made by the earlier papers and hence present those results in a simpler form. SeeSection 4.1.3 for details.

82 Bellare, Goldreich, SudanLemma 3.13.1 Let B = B(n; d; w) be the maximum number of binary vectors of length n, eachwith weight at most w, and any two being distance at least d apart. Then B � (1�2�)=(4�2�2�),provided �2 > �=2, where � = (1=2)� (w=n) and � = (1=2)� (d=n).Proof: Consider an arbitrary sequence, v1; :::; vM, of n-vectors which are at mutual distance atleast n=2. Let us denote by vi;j the jth entry in the ith vector, by wi the weight of the ith vector,and by w the average value of the wi's. De�neS def= MXi=1 MXj=1 nXk=1 vi;kvj;kThen, on one hand S = MXi=1 nXk=1 v2i;k + X1�i 6=j�M nXk=1 vi;kvj;k� Xi wi + X1�i 6=j�M wi + wj � d2= Mw +M(M � 1) � (w � (d=2))where the inequality follows from observing that, for i 6= j,wi + wj = 2jfk : vi;k=vj;k=1gj+ jfk : vi;k 6= vj;kgj� 2 nXk=1 vi;kvj;k + dOn the other hand S = Pnk=1 jfi : vi;k = 1gj2. This allows to lower bound S by the minimum ofPk x2k subject to Pk xk =Mw. The minimum is obtained when all xk's are equal and yieldsS � n ��Mwn �2Confronting the two bounds, we getM � w2n �M � w � (M � 1) � (d=2)which yields (w2n � w + d2)M � d2 . Letting � = (1=2)� (w=n) and using �2 � �2 > �=2, we getM � 1� 2�4�2 � 2�and the lemma follows by observing that the bound maximizes when � = �.3.14 On the optimality of some choices in our analysisIn this section we demonstrate the optimality of several of the choices made in the analysis inprevious sections.

Free Bits in PCP 83Choice of the probability parameters for VSNPinner. We start by proving that the choiceof probabilities for VSNPinner (i.e., requiring the pi's to satisfy Eq. (3.8)) is optimal for minimizingthe soundness upper bound provided by Lemma 3.6.1. Actually, we show that no matter how oneselects these probabilities, the expression given in Lemma 3.6.1 is at least 0:85 (i.e., the upperbound provided by Claim 3.6.2).Claim 3.14.1 For any choice of the parameters p1; p2; p3 > 0 so that p1 + p2 + p3 � 1 one of thefollowing three expressions, 12 � p1, min x�1=2 [p1 ��lin(x)+ p2 ��RMB(x)] and min x�1=2 [p1 ��lin(x)+p3 � 12(1 � 2x)], is at most 0:15. Furthermore, the minimum of the above expressions is boundedabove by min(12 � p1; 38 � p2; 12 � p3)Proof: The furthermore clause follows by setting x = 0. This expression is maximized at12 � p1 = 38 � p2 = 12 � p3which yields p1 = p3 = 0:3 and p2 = 0:4, as in Eq. (3.8). Indeed, at this optimum the value is 0:15.We remark that the setting of x represents plausible existence of oracles for which the proof ofLemma 3.6.1 provides the soundness bounds appearing in the claim. Speci�cally, Case (1) corre-sponds to having a �rst oracle, A, which is far away (i.e., at distance � 1=2) from being linear.Case (2) corresponds to having A linear but not respecting the monomial basis (and thus at dis-tance 1=2 from the long code). Finally, Case (3) corresponds to having A = Ea (i.e., a codewordfor a) and A1 be at distance 1=2 from E�(a).Evaluating VSNPinner independently of the gadgets. Lemmas 3.7.3 and 3.8.3 (as well asLemma 3.9.9) provide hardness results for a factor 1�s�1�q+�2�(1�q) , where s and q depend on theveri�er being used whereas �1 and �2 depend on the gadgets. Speci�cally, s is the soundnesserror for a veri�er (based on VSNPinner) which performs a parity check with probability q and anRMB check with probability 1� q. Our approach was to select the probabilities for VSNPinner so tominimize s and this in turn determines q = 1 � p2. A natural question is whether it is not betterto allow greater error, s, so to obtain a smaller value for 1� q. This is natural since �1 is likely tobe smaller than �2 (e.g., in SAT gadgets, a Parity Check for a+ b0+ c = 0 is obtained as a specialcase of the RMB check for a; b0; b1; c, when setting b0 6= b1).Claim 3.14.2 Let a1<�2, p1; p2; p3>0 s.t. p1+p2+p3 = 1 and let s(p1; p2; p3) def= min(12p1; 38p2; 12p3)be the soundness upper bound provided by Lemma 3.6.1 (and Claim 3.14.1). Then 1�s(p1;p2;p3)�1�(1�p2)+�2�p2is maximized at pi's satisfying Eq. (3.8) (i.e., p1 = p3 = 0:3 and p2 = 0:4).Proof: Let p�1 = p�3 = 0:3 and p�2 = 0:4 be as in Eq. (3.8) and factor(p1; p2; p3) be the hardnessfactor obtained by implementing VSNPinner by corresponding gadgets; that isfactor(p1; p2; p3) def= 1� s(p1; p2; p3)�1 + (�2 � �1) � p2We consider two cases.

84 Bellare, Goldreich, SudanCase 1: p2 � p�2. In this case either p1 < p�1 or p3 < p�3. Without loss of generality we assume thatp1 < p�1. Using Claims 3.6.2 (in the equality) and Claim 3.14.1 (in the inequality), we getfactor(p�1; p�2; p�3) = 12 � p�1�1 + (�2 � �1) � p�2factor(p1; p2; p3) � 12 � p1�1 + (�2 � �1) � p2and factor(p�1; p�2; p�3) > factor(p1; p2; p3) follows easily.Case 2: p2 < p�2. By Claim 3.6.2,factor(p�1; p�2; p�3) = 38 � p�2�1 + (�2 � �1) � p�2= 3=8(�1=p�2) + (�2 � �1)On the other hand, using Claim 3.14.1, we getfactor(p1; p2; p3) � 38 � p2�1 + (�2 � �1) � p2= 3=8(�1=p2) + (�2 � �1)Observing that for p2 < p�2 we have (�1=p2) + (�2 � �1) > (�1=p�2) + (�2 � �1), we obtain factor(p�1; p�2; p�3) >factor(p1; p2; p3) here too.Analysis of V2inner. We now show that the choice of the probability parameter for V2inner (i.e., thesetting p) is optimal for minimizing the soundness upper bound provided by Lemma 3.9.2. Actually,we show that no matter how one selects this parameter, the expression given in Lemma 3.9.2 is atleast 173=218 (i.e., the upper bound provided by Theorem 3.9.4).Claim 3.14.3 For any choice of the parameter p 2 [0; 1] one of the following three expressions,12 � p, p �min x�1=2��1 [max(�lin(x) ; 34(1� 2x))], and min x�1=2��1 [p ��lin(x) + (1� p) � (12 � x)], is atmost 45=218. Furthermore, the minimum of the above expressions is bounded above bymin � 45128 � p ; 12 � (1� p)�Proof: Observe that T1 def= minx�1=2��1 �max(�lin(x) ; 34(1� 2x))�� max��lin(45=128); 34(1� 2 � 45128)�= 45128

Free Bits in PCP 85and that T2 def= minx�1=2��1 � p � �lin(x) + (1� p) � (12 � x) �� min45=128�x�1=2��1 � p � �lin(x) + (1� p) � (12 � x) �= min45=128�x�1=2��1 � p � x+ (1� p) � (12 � x) �= 12 � (1� p)The Furthermore clause follows by observing that min[p2 ; p � T1 ; T2] � min[45128 � p ; 12 � (1 � p)].The latter expression is maximized at 45128 � p = 12 � (1� p) which yields p = 64=109 (as in the proofof Theorem 3.9.4). Indeed, at this optimum the value is 45128 � 64109 = 45218.

C h a p t e r 4Proofs and approximation: Potentialand limitations
We have seen in the last chapter that non-approximability results are getting steadily stronger,particularly for Max Clique. How far can they go? This chapter is about answering this kind ofquestion.The �rst Section describes our \reverse connection" indicating the necessity of proof checkingtechniques to the derivation of non-approximability results for Max Clique, and pointing to amor-tized free bits as the crucial parameter. The second Section focuses on lower bounds on amortizedfree bits which will indicate that our two free bit result of the last section is tight in the light ofcurrent techniques. The two together indicate that one needs new techniques to prove better thana N1=3 hardness for Max Clique.4.1 The reverse connection and its consequencesFeige et al. [FGLSS] describe a procedure which takes a veri�er V , and an input x and constructsa graph, which we denote GV (x), whose vertices correspond to possible accepting transcripts in V 'scomputation and edges corresponding to consistent/non-con
icting computations. They then showthe following connection between the maximum (over all possible oracles) acceptance probabilityof the veri�er and the clique size in the graph. Recall that ACC [V (x)] = max� PrR [V �(x;R) = 0]is the maximum accepting probability. Also recall that MaxClique(G) is the maximum clique size.Theorem 4.1.1 ([FGLSS]) If, on input x, a veri�er V tosses r coins then the following relationshipholds: ACC [V (x)] = MaxClique(GV (x))2r :In this section we essentially show an inverse of their construction.4.1.1 The Clique-Gap Veri�erWe stress that by the term graph we mean an undirected simple graph (i.e., no self-loops or paralleledges). 86

Free Bits in PCP 87Theorem 4.1.2 (Clique veri�er of ordinary graphs): There exists a veri�er, denoted W , of log-arithmic randomness-complexity, logarithmic query-length and zero free-bit complexity, that, oninput an N -node graph G, satis�esACC [W (G)] = MaxClique(G)N :Furthermore, GW (G) is isomorphic to G where the isomorphism is easily computable. Lastly, givena proof/oracle � we can construct in polynomial-time a clique of size pN in G, where p is theprobability that W accepts G with oracle access to �.Proof: On input a graph G on N nodes, the veri�er W works with proofs of length �N2�� jE(G)j.The proof � is indexed by the edges in G (i.e., non-edges in G). For clarity of the proof we assumethat the binary value �(fu; vg) is either u or v. This is merely a matter of encoding (i.e., consider a1-1 mapping of the standard set of binary values, f0; 1g, to the set fu; vg). On input G and accessto oracle �, the veri�er W acts as follows:Picks uniformly a vertex u in the vertex set of G.For every fu; vg 2 E(G), the veri�er W queries the oracle at fu; vg and rejects if �(fu; vg) 6= u.If the veri�er did not reject by now (i.e., all queries were answered by u), it accepts.Properties of W . Clearly, W tosses log2N coins. Also, once W picks a vertex u, the only patternit may accepts is (u; u; : : : ; u). Thus the free-bit complexity of W is 0. To analyze the probabilitythat W accepts the input G, when given the best oracle access, we �rst prove the following:Claim. The graphs GW (G) and G are isomorphic.Proof. The proof is straightforward. One needs �rst to choose an encoding of accepting transcriptsof the computation of W on input G. We choose to use the \full transcript" in which the randomcoins as well as the entire sequence of queries and answers is speci�ed. Thus, a generic acceptingtranscript has the form Tu def= (u; (fu; v1g; u); :::; (fu; vdg; u))where u is the random vertex selected by the veri�er and fv1; :::; vdg the set of non-neighbors of u.We stress that Tu is the only accepting transcript in which the veri�er has selected the vertex u.Also, for each vertex u, the transcript Tu is accepting. Thus, we may consider the 1-1 mapping, �,that maps Tu to u. We claim that � is an isomorphism between GW (G) and G.Suppose that Tu and Tv are adjacent in GG(W). Then, by de�nition of the FGLSS graph, thesetranscripts are consistent. It follows that the same query can not appear in both (accepting)transcripts (otherwise it would have been given con
icting answers). By de�nition ofW we concludethat (u; v) is not a non-edge; namely, (�(Tu); �(Tv)) = (u; v) 2 E(G). Suppose, on the other hand,that (u; v) 2 E(G). It follows that the query fu; vg does not appear in either Tu or Tv. Since noother query may appear in both transcript, we conclude that the transcripts are consistent andthus Tu and Tv are adjacent in GG(W). 2By Theorem 4.1.1 it now follows that the probability that W accepts on input G, given the bestoracle, is MaxClique(GW (G))=N which by the above equals MaxClique(G)=N . Furthermore, given aproof � which makes W accept G with probability p, the accepting random strings of W constitutea clique of size pN in GW (G). These accepting random strings can be found in polynomial-timeand they encode vertices of G (which form a clique in G).

88 Bellare, Goldreich, SudanWe now generalize the above construction to get veri�ers which indicate the existence of largecliques in layered graphs. An (L;M;N)-layered graph is an N -vertex graph in which the verticesare arranged in L layers so that there are no edges between vertices in the same layer and there areat mostM vertices in each layer. We use a convention by which, whenever a layered graph is givento some algorithm, a partition into layers is given along with it (i.e., is implicit in the encoding ofthe graph).Theorem 4.1.3 (Clique veri�er for layered graphs): There exists a veri�er, denoted W , of loga-rithmic randomness-complexity and logarithmic query-length that, on input an (L;M;N)-layeredgraph G has free-bit complexity log2M , average free-bit complexity log2(N=L) and satis�esACC [W (G)] = MaxClique(G)=L :Furthermore, GW (G) is isomorphic to G where the isomorphism is easily computable. Lastly, givena proof/oracle � we can construct in polynomial-time a clique of size pL in G, where p is theprobability that W accepts G with oracle access to �.Proof: On input a (L;M;N)-layered graph G, the veri�er W works with proofs consisting of twoparts. The �rst part assigns every layer (i.e., every integer i 2 [L]) a vertex in the layer (i.e., againwe use a redundant encoding by which the answers are vertex names rather then an index between1 and the number of vertices in the layer). The second part assigns pairs of non-adjacent (in G)vertices, a binary value, which again is represented as one of the two vertices. On input G andaccess to oracle �, the veri�er W acts as follows:Picks uniformly a layer i in f1; :::; Lg.Queries � at i obtaining as answer a vertex u. If u is not in the ith layer of G then the veri�errejects. (Otherwise, it continues as follows.)For every fu; vg 2 E(G), the veri�er W queries the oracle at fu; vg and rejects if �(fu; vg) 6= u.(Actually, it is not needed to query the oracle on pairs of vertices belonging to the same layer.)If the veri�er did not reject by now (i.e., all queries were answered by u), it accepts.Properties of W . Here W tosses log2L coins. Once the �rst query of W is answered, specifying avertex u, the only pattern it may accept in the remaining queries is (u; u; : : : ; u). Thus, the free-bit complexity of W is log2M , accounting for the �rst query which may be answered arbitrarilyin f1; :::; mg, where m � M is the number of vertices in the chosen layer. The average free-bitcomplexity is log2(N=L) (as N=L is the average number of vertices in a layer of the graph G).Again, we can prove that GW (G) = G and the theorem follows.Proof. Here, the accepting transcripts of W , on input G, correspond to a choice of a layer, i, and avertex in the ith layer (since once a vertex is speci�ed by the �rst answer there is only one acceptingway to answer the other queries). Thus, a generic accepting transcript has the formTu def= (i; (i; u); (fu; v1g; u); :::; (fu; vdg; u)where i is the layer selected by the veri�er, u is a vertex in the ith layer of G and fv1; :::; vdg the setof non-neighbors of u. Again, Tu is the only accepting transcript in which the veri�er has selectedthe vertex u, and for each vertex u, the transcript Tu is accepting. Again, we consider the 1-1mapping, �, that maps Tu to u, and show that it is an isomorphism between GW (G) and G.Suppose that Tu and Tv are adjacent in GG(W). Then, by de�nition of the FGLSS graph, thesetranscripts are consistent. We �rst note that u and v cannot appear in the same layer ofG (otherwise

Free Bits in PCP 89the �rst query in the transcript would yield con
icting answers). Again, the same two-vertex querycan not appear in both (accepting) transcripts, and we conclude that (�(Tu); �(Tv)) = (u; v) 2E(G). Suppose, on the other hand, that (u; v) 2 E(G). Clearly, u and v belong to di�erent layersand as before the query (u; v) does not appear in either Tu or Tv. Since no other two-vertex querymay appear in both transcripts, we conclude that the transcripts are consistent and thus Tu andTv are adjacent in GG(W). 2The theorem follows as before.Remark. The clique veri�er W is adaptive: the answer to its �rst query determines (all) the otherqueries. We wonder if it is possible to construct a non-adaptive clique veri�er with properties asclaimed in the theorem.4.1.2 Main ConsequencesWe are interested in problems exhibiting a gap in Max-Clique size between positive and negativeinstances. Recall that MaxClique(G) = MaxClique(G)=N is the fraction of nodes in a maximumclique of N -node graph G. Also recall the Gap-Cliquec;s promise problem:De�nition 4.1.4 For any 0 � s(�) � c(�) � 1 we let the promise problem Gap-Cliquec;s be the pair(A;B), where{(1) A is the set of all graphs G with MaxClique(G) � c(N), and(2) B is the set of all graphs G with MaxClique(G) � s(N).The gap of this problem is de�ned to be c=s.As a direct consequence of Theorem 4.1.2, we getCorollary 4.1.5 For all functions c; s: Z+ ! [0; 1] we have Gap-Cliquec;s 2 FPCPc;s[log; 0; poly].The above corollary transforms the gap in the promise problem into a gap in a pcp system. However,the accepting probabilities in this pcp system are very low (also on yes-instances). Below, we useTheorem 4.1.3 to obtain pcp systems with perfect (resp., almost-perfect) completeness for thispromise problem. We start by presenting two randomized reductions of the promise problem to alayer version. Alternative methods are presented in Section 5.2 (cf., Theorem 5.2.6).Proposition 4.1.6 (Layering the clique promise problem):(1) (Obtaining a perfect layering): There exists a polynomial-time randomized transformation,T , of graphs into layered graphs so that, on input a graph G, integers C and L, outputs asubgraph H = T (G;C; L) of G in L layers such that if MaxClique(G) � C thenPr [MaxClique(H) < L] < L � 2� C2LFurthermore, with probability 1� L � 2�N=3L, no layer of H contains more than 2 � NL nodes.(2) (Using logarithmic randomness): There exists a polynomial-time randomized transformation,T , of graphs into layered graphs so that, on input a graph G, integers C and L, outputs asubgraph H = T (G;C; L) of G in L layers such that if MaxClique(G) � C thenPr [MaxClique(H) � (1� �) �L] < L�Cfor every � 2 [0; 1]. Furthermore, the transformation uses logarithmically many coins. Also,with probability 1� L�N , at most �L layers of H contains more than 2 � NL nodes.

90 Bellare, Goldreich, SudanProof: The �rst transformation consists of assigning to each vertex of G a randomly chosen layerof H . Namely, we construct the graph H which is a subgraph of G by uniformly selecting for eachvertex v a layer l(v) 2 [L] and copying only the edges of G which connect vertices placed in di�erentlayers (of H). The construction can be carried out in random polynomial-time and we show that ifthe original graph has a clique of size C then with high probability the resulting graph has a cliqueof size L, provided L� C=2 log2 L.Claim 1. Suppose that G has a clique of size C denoted S. Then, the probability that all verticesin S were placed in less than L layers is at most L � 2� C2L .Proof. We start by bounding, for each i, the probability that no vertex of S is placed in the ithlayer. For each v 2 S, we introduce the 0-1 random variable �v so that �v = 1 if v is placed inthe ith layer (i.e., l(v) = i) and �v = 0 otherwise. Let t def= C=L. Then, E[Pv2S �v] = t. Using amultiplicative Cherno� bound [MoRa], we getPr [8v 2 S : l(v) 6= i] = Pr"Xv2S �v = 0 #< 2� t2Call the ith layer bad if no vertex of S is placed in it. By the above, the probability that thereexists a bad layer is smaller than L � 2�t=2, and the claim follows. 2It is left to bound the probability that a particular layer contains more than twice the expectednumber of vertices. Using again a multiplicative Cherno� bound, this probability is at most 2�N=3Land the �rst part of the proposition follows.The second transformation consists of selecting randomly a Universal2 Hashing function (a.k.a.,pairwise independent hash function) mapping the vertices of the graph G into the layer-set [L].Namely, suppose that the function h was chosen, then we construct the graphH which is a subgraphof G by placing a vertex v (of G) in layer h(v) of H , and copying only the edges of G which connectvertices placed in di�erent layers (of H). The construction can be carried out in polynomial-timeusing only logarithmic randomness (for the selection of the hashing function). We show that if theoriginal graph has a clique of size C then with high probability the resulting graph has a clique ofsize almost L, provided L� C.Claim 2. Suppose that G has a clique of size C denoted S. Then, the probability that all verticesin S were placed in less than (1� �) � L layers is at most L�C .Proof. Again, we bound, for each i, the probability that no vertex of S is placed in the ith layer.For each v 2 S, we introduce the 0-1 random variable �v so that �v = 1 if h(v) = i and �v = 0otherwise. Let t def= C=L and � def= Pv2S �v. Then, E[�] = t (which is greater than 1, otherwise theclaim holds vacuously). Using the pairwise independence of h and Chebyshev's inequality, we getPr [8v 2 S : h(v) 6= i] = Pr [� = 0]� Var[Pv2S �v]t2< C=Lt2 = 1tCall the ith layer bad if no vertex of S is placed in it. By the above, the expected number of badlayers is smaller than L � 1t , so by Markov inequality the probability that more than �L layers arebad is at most 1=�t. The claim follows. 2

Free Bits in PCP 91Again, it is left to bound the probability that a particular layer contains more than M def= 2N=L.Using Chebyshev's inequality again, this probability is at most L=N . Thus, the expected numberof layers having more than M vertices is at most L2=N and it follows that the probability that �Llayers contain more thanM vertices each is at most L2=N�L = L�N . The second part of the propositionfollows.Combining Theorem 4.1.3 and Proposition 4.1.6, we obtainProposition 4.1.7 For any polynomial-time computable functions c; s; �: Z+ ! [0; 1] we have(1) (Randomized reduction to a pcp with perfect completeness):Gap-Cliquec;s �KR FPCP1;s0[log; f 0]where f 0(N) def= log2(1=c(N))+ log2 log2N + 2 and s0(N) def= 2 log2N � s(N)c(N) .(2) (A pcp with almost-perfect completeness):Gap-Cliquec;s 2 FPCP1�4�;s0[log; f 0]where f 0(N) def= 1 + log2(1=c(N)) + 2 log2(1=�(N)) and s0(N) def= 1�(N)2 � s(N)c(N) .Proof: For the second part, we construct a veri�er for the promise problem proceeds as follows.On input an N -vertex graph G, the veri�er computes C def= N � c(N), � def= �(N) and L def= �2C.It invokes the second transformation of Proposition 4.1.6, obtaining a (L;N;N)-layered graphH = T (G;C; L). (We stress that this transformation requires only logarithmically many cointosses.) Next, the veri�er modi�es H into H 0 by omitting (the minimum number of) vertices sothat no layer of H 0 has more than 2N=L vertices. Finally, the veri�er invokes the clique-veri�er Wof Theorem 4.1.3 on input H 0.The free-bit complexity of the veri�er constructed above is log2(2N=L) = 1 + log2(1=c(N)) +2 log2(1=�(N)). Suppose that G is a no-instance of the promise problem. Using MaxClique(H 0) �MaxClique(G) and Theorem 4.1.3, it follows that the constructed veri�er accepts G with probabilityat most MaxClique(H0)L � s(N)�2(N)�c(N) . Suppose, on the other hand, that G is a yes-instance of the promiseproblem. Then, with probability at least 1 � L�C = 1 � � we have MaxClique(H) � (1� �) � L, andwith probability at least 1� L�N > 1� � we have MaxClique(H 0) � MaxClique(H)� �L. Thus, withprobability at least 1 � 2�, we have MaxClique(H 0) � (1� 2�) � L. It follows that the constructedveri�er, when given oracle access to an appropriate proof, accepts G with probability at least 1�4�.For the �rst part, we de�ne a promise problem which refers to gaps in cliques of layered graphs.Speci�cally,De�nition. For any function ` : Z+ ! Z+ and s : Z+ ! [0; 1], we de�ne the promise problemGap�LG`;s be the pair (A;B), where{(1) A is the set of all (`(N); 2N`(N) ; N)-layered graphs G with MaxClique(G) = `(N), and(2) B is the set of all (`(N); 2N`(N) ; N)-layered graphs G with MaxClique(G) � s(N) � `(N).The gap of this problem is de�ned to be 1=s.Using the �rst transformation of Proposition 4.1.6, we obtain Gap-Cliquec;s �KR Gap�LG`;s0 , where`(N) = c(N)�N2 log2 N and s0(N) = s(N)�N`(N) = 2 log2N � s(N)c(n) . On the other hand, Theorem 4.1.3 asserts

92 Bellare, Goldreich, Sudanthat Gap�LG`;s0 2 FPCP1;s0[log; f 0], where f 0(N) def= log2(2N=`(N)). Observing that f 0(N) =1 + log2 2 log2 Nc(N) (which equals log2(1=c(N))+ log2 log2N + 2), the proposition follows.Each of the two parts of Proposition 4.1.7 shows that the well-known method of obtaining clique-approximation results from e�cient pcp systems (cf., [FGLSS, BeSc, Zu, FeKi, BeSu]) is \complete"in the sense that if clique-approximation can be shown NP-hard then this can be done via thismethod. The following is a more precise version of Theorem 1.4.1 in that the role of � > 0 is madeexplicit. The restriction that f be a constant is only for notational simplicity. (The issue is thatf in one case must be measured as a function of n = jxj and in the other case as a function ofN = kGk.)Theorem 4.1.8 Let f be a constant. Then the following statements are equivalent:(1) For all � > 0 it is the case that NP reduces to Gap-Cliquec;s with gap c(N)=s(N) = N1=(1+f+�).(2) For all � > 0 it is the case that NP reduces to FPCP[log; f + �].In both items the reduction is randomized. Furthermore the equivalence holds both for Karp andfor Cook reductions.Proof: The direction (2)) (1) follows by �rst amplifying the gap of the veri�er for NP (cf.,Corollary 5.2.3) and then by applying the FGLSS-reduction [FGLSS] to the ampli�ed gap veri�er.Speci�cally, we �rst obtain NP �R FPCP1;2�t [(1 + �) � t; f � t], where t(n) =
 log2 n (with theconstant
 determined by the constant � > 0). The FGLSS-reduction now yields a graph of sizeN def= 2(1+�+f)�t(n) with gap 2�t(n) (which can be written as N 11+�+f).For the reverse direction, we will use the �rst part of Proposition 4.1.7 and show that the resultingveri�er has a small amortized free bit complexity. Let Gap-Cliquec;s be NP-hard for some functionsc(N) and s(N) satisfying s(N) � 1=N and c(N)=s(N) � N 11+f+� . Thus, c(N) � N 11+f+� =N and1=c(N) � N f+�1+f+� .Let �(N) def= 2 log2N , f 0(N) def= log2(1=c(N))+ log2 �(N) and let s0(N) def= �(N) � s(N)c(N) . By invokingProposition 4.1.7 (Part 1) we �nd that Gap-Cliquec;s �R FPCP1;s0[log; f 0] and Gap-Cliquec;s �RFPCP[log; f 0], for f 0 = f 0log(1=s0) , follows. It now remains to argue that for any � > 0, f 0 � f + �+�.Using the lower bounds on c(N) and c(N)=s(N), we obtain f 0(N) � f+�1+f+� log2N + log2 �(N)and log(1=s0(N)) � 11+f+� � log2N � log2 �(N). Selecting a su�ciently small �0 > 0 and usinglog2 �(N) < �0 � log2N , we getf 0 � f+�1+f+� logN + log2 �(N)11+f+� logN � log2 �(N)< f+�1+f+� + �011+f+� � �0< f + � + �01� �0 � (1 + 2(f + �))and the theorem follows.An alternative statement is provided by the following theorem. Here the second item (existence ofpcp systems with certain parameters) is weaker than in the previous theorem, but this allows the(1)) (2) direction to be proven via a deterministic reduction (instead of the randomized reduction

Free Bits in PCP 93used in the analogous proof above). Interestingly, the FGLSS-reduction used to establish the otherdirection is insensitive to the gap location and in particular to the fact that we no longer use proofsystems of perfect completeness. Recall that FPCP1�o(1)[�; f] is the class of problems having aproof system with almost-perfect completeness (i.e., c = 1�o(1)) and amortized free-bit complexityf .Theorem 4.1.9 Let f be a constant. Then the following statements are equivalent:(1) For all � > 0 it is the case that NP reduces to Gap-Cliquec;s with gap c(N)=s(N) = N1=(1+f+�).(2) For all � > 0 it is the case that NP reduces to FPCP1�o(1)[log; f + �].In both items the reduction is randomized and the equivalence holds both for Karp and for Cook re-ductions. Furthermore, if item (1) holds with respect to deterministic reductions so does item (2). Itfollows that in case item (1) holds with a deterministic Karp reduction then NP � FPCP1�o(1)[log;f + �].Proof: The direction (2)) (1) follows essentially as in the proof of the previous theorem. Speci�-cally, item (2) asserts that, for some function m, NP �R FPCPc;2�m�c[log; m �f], for c(n) = 1�o(1)(but we are not going to use the bound on c). Using Proposition 5.2.1 and Proposition 5.2.2 (Part2), we �rst obtain NP �R FPCPc0;2�t�c0 [(1+�)�t; f �t], where c0(n) = c(n)t(n)=m(n) and t(n) =
 log2 n(with the constant
 determined by the constant � > 0). The FGLSS-reduction now yields a graphof size N def= 2(1+�+f)�t(n) with gap 2�t(n) as in the analogous proof above. (The gap is in a di�erentlocation but this does not matter.)For the reverse direction, we will use the second part of Proposition 4.1.7 and show that the resultingveri�er has a small amortized free bit complexity. Let Gap-Cliquec;s be NP-hard for some functionsc(N) and s(N) satisfying s(N) � 1=N and c(N)=s(N)� N 11+f+� . As in the analogous proof above,this implies that 1=c(N) � N f+�1+f+� .Let � be a slowly decreasing function s.t. �(N) = o(1) but log2(1=�(N)) = o(logN). Let f 0(N) def=log2(1=c(N))+2 log2(1=�(N)) and let s0(N) def= 1�(N)2 � s(N)c(N) . By invoking Proposition 4.1.7 (Part 2)we get Gap-Cliquec;s 2 FPCP1��;s0[log; f 0]. Since �(N) = o(1), we conclude that Gap-Cliquec;s 2FPCP1�o(1)[log; f 0] for f 0 = f 0log2(1=s0) . It now remains to argue that for any � > 0, f 0 � f + �+ �.We use the lower bound on c(N) and c(N)=s(N), we obtain f 0(N) � f+�1+f+� log2N � 2 log2 �(N)and log2(1=s0(N)) = 2 log2 �(N) + 11+f� log2N . Selecting a su�ciently small �0 > 0 and usinglog2(1=�(N)) < �0 � log2N , we getf 0 � f+�1+f+� log2N + 2 log2(1=�(N))11+f+� log2N � 2 log2(1=�(N))< f+�1+f+� + �011+f+� � �0< f + �+ �01� �0 � (1 + 2(f + �))and the theorem follows.

94 Bellare, Goldreich, Sudan4.1.3 More ConsequencesThe equivalence between clique and fpcp described above turns out be a useful tool in the studyof the hardness of the clique and chromatic number problems. Here we describe some applications.The �rst application is a non-technical one which simply allows us to rephrase the many knownreductions from the Max Clique problem to the Chromatic number problem in a simpler and moreconvenient way. The remaining applications use the fact that the equivalence between fpcp and MaxClique allows us to easily shift gaps, in the Max Clique problem, from one place to another. Looselyspeaking, these applications use the fact that the complexity of the promise problem Gap-Cliquec;sremains unchanged when changing the parameters c and s so the log2 c(N)log2 s(N) remains invariant. Westress that the ratio c(N)s(N) does not remain invariant.Rephrasing known reductions from Max Clique to Chromatic Number Starting withthe work of Lund and Yannakakis [LuYa], there have been several works on showing the hardnessof approximating the Chromatic number, which reduce the Max Clique problem to the Chromaticnumber problem. Yet none of these results could be stated cleanly in terms of a reduction fromMax Clique to Chromatic Number without loss of e�ciency - i.e., the theorems could not be statedas saying \If approximating Max Clique to within a factor of N� is NP-hard, then approximatingChromatic Number to within a factor of Nh(�) is NP-hard." The reason for the lack of such astatement is that these reductions use the structure of the graph produced by applying an FGLSS-reduction to a FPCP result, and are hence really reductions from FPCP to Chromatic Numberrather than reductions from Max Clique to Chromatic Number. However now we know that FPCPand Max Clique are equivalent, so we can go back and rephrase the old statements. Thus resultsof [LuYa, KLS, BeSu] can be summarized as:For every
 > 0, if approximating Max Clique to within N� is NP-hard then approxi-mating Chromatic Number to within Nh(�)�
 is also NP-hard, where:(1) h(�) = minf16 ; �5�4�g [LuYa].(2) h(�) = minf 111 ; �5+�g [KLS].(3) h(�) = minf14 ; �3�2�g [BeSu].(4) h(�) = minf13 ; �2��g [Fu].(Our discussion of Furer's results [Fu] re
ects only the best current understanding we have of them,since it is on-going work.) We note that it is an open problem whether one can get a reduction inwhich h(�) ! 1 as � ! 1. We also note that Furer's reduction is randomized while the rest aredeterministic.Reductions among Max Clique Problems Next we present an invariance of the Gap Cliqueproblem with respect to shifting of the gaps. The following result has also been independentlyobserved by Feige [Fei], where he uses a randomized graph product to show the result. Ourdescription uses the properties of fpcp and its equivalence to clique approximation.Theorem 4.1.10 Let k; �1; �2 be real numbers such that k � 1 and 0 � �1 < �2 � 1. Then thefollowing hold:(1) Gap-CliqueN��2 ;N�k�2 �KD Gap-CliqueN��1 ;N�k�1 . (Deterministic reduction.)(2) Gap-CliqueN��1 ;N�k�1 �KR Gap-Clique 12 �N��2 ;2�N�k�2 .

Free Bits in PCP 95Proof: Part (1) is proved via a well-known graph theoretic trick. Let G be an instance ofGap-CliqueN��2 ;N�k�2 with N nodes. We take the graph-product of G with a complete graph onm nodes, to get a graph H on M = mN nodes. (By a graph-product of two graphs G1(V1; E1)and G2(V2; E2) we mean a graph with vertex set V1 � V2 where vertices (u1; u2) and (v1; v2) areconnected i� (ui; vi) 2 Ei for both i = 1; 2.) We choose m so that if G has a clique of size N1��2,then H has a clique of size M1��1. Speci�cally, setting m = N �2��1�1 , the requirement is satis�ed(as a clique of size N1��2 in G yields a clique of size m �N1��2 = N �2��1�1 +1��2 =M �1�2 � �2(1��1)�1 in H .)Under this choice of m we will show that if G has no cliques of size N1�k�2 then H has no cliquesof size M1�k�1. This will complete the proof of part (1).Suppose H has a clique of size M1��1. Then, by construction, G must have a clique of sizeM1��1m = N1��1m�1= N1��1� �2��1�1 ��1and the claim follows.For part (2) we use the equivalence between FPCP and gaps in MaxClique and apply ampli�cationproperties of FPCP. Let c(N) = N��1 and s(N) = N�k�1. Then, using Corollary 4.1.5 (for line 1),Proposition 5.2.1 (for line 2) and Part (2) of Proposition 5.2.2 (for line 3), we getGap-CliqueN��1 ;N�k�1 2 FPCPc;s[log2N; 0; N2]� FPCPct;st[t � log2N; 0; N2] (for any integer constant t � 1.)�KR FPCP12 �ct;2�st[log2(N2=st); 0; N2]The choice of the integer t will be determined later.Now, we go back to the clique-gap promised problem. Applying the FGLSS-reduction to the pcpclass FPCP12 �ct;2�st[log2(N2=st); 0; N2] we obtain an instance of Gap-Clique 12N��1t;2N�k�1t on an M -vertex graph, where M = N2st = N2+k�1t. To clarify the last assertion and the rest of the proof, weintroduce the notation Gap-Clique�(N);�(N)(N) which makes explicit the size parameter to whichthe promise problem refers. Thus, letting
 def= t2+tk�1 , we have obtainedGap-CliqueN��1 ;N�k�1 (N) �KR Gap-Clique 12M�
�1 ;2M�k�
�1(M)(with M polynomial in N). Now, part (2) follows by setting t so that
 = t2+tk�1 � �2�1 andt = d 2�2(1�k�2)�1 e will do. (Actually, we get Gap-CliqueN��1 ;N�k�1 (N) �KR Gap-Clique 12M��02 ;2M�k�02 (M),for �02 � �2, but this can be corrected by invoking item (1).)The following theorem, was �rst shown by Blum [Bl], using the technique of randomized graphproducts. It essentially uses the gap-shifting idea to show that a seemingly very weak approximatorto the clique (say, N1��-approximation algorithm for some � > 0), can be used to obtain a verygood approximator to the clique number in graphs which are guaranteed to have very large cliques.In particular, using such an algorithm, if a graph has a clique of size Nk , then a clique of size Nk 1�can be found in such a graph in polynomial time. As observed by Blum, this can be translatedinto signi�cantly better algorithms for approximate coloring of a three colorable graph than knowncurrently (see Item (1) in Corollary 4.1.12 below). Here we derive the theorem using FPCP and

96 Bellare, Goldreich, Sudanthe gap-shifting techniques. The parameters are generalized so as to be able to conclude, say, thateven if we have a N2plog2 N -approximation (for Max Clique), then we can obtain non-trivially goodalgorithms for 3-coloring (see Item (2) in Corollary 4.1.12).Theorem 4.1.11 Let � 2 [0; 1], � 2 [0; 1=2) and k > 1. De�ne � : Z+ ! R+, c 2 R+ andg : Z+ ! R+ so that �(N) = �log�2 Nc = 2log2 kand log2 g(N) = c� log2 k� !1=(1��) log�=(1��)2 N:Then there is a randomized poly(N2+c log2 g(N))-time reduction of instances of Gap-Clique1=k;1=g toM -vertex instances of Gap-Clique 12M��(M) ;2M�1+�(M) .Remark: Observe that g(N) = N o(1). Also, for � = 0 we have �(N) = � and g(N) = k 1� . Thus, thetheorem states that given a 14M1�2� approximator for clique one can one can solve Gap-Clique1=k;1=k0in polynomial-time, where k0 = k1=�.Proof: As usual we �rst reduce Gap-Clique to FPCP and then amplify.Gap-Clique1=k;1=g 2 FPCP1=k;1=g[log2N; 0; N2]� FPCP(1=k)t;(1=g)t [t log2N; 0; N2] (for any function t : Z+ ! Z+.)�KR FPCP12 (1=k)t;2(1=g)t[log2N2gt; 0; N2]We now show that by setting t = c log2N and using the FGLSS-reduction, the above reduces inpoly(M)-time to Gap-Clique 12M��;2M��+1 in an M vertex graph, where M = N2g(N)t.In case the graph is a no-instance the size of the clique is most 2(1=g(N))t �M = 2N2. In the casethe graph is a yes-instance then the clique size is at least 12(1=k)t �M . Thus it su�ces to show that2N2 � 2M �(M) and 2kt � 2M �(M), respectively. Taking logs in both cases it su�ces to show that2 log2N � �(M) log2M (4.1)t log2 k � �(M) log2M (4.2)We �rst lower bound the right hand side of both equations.�(M) log2M = � log1��2 M� � log1��2 (g(N)t)� �t1�� log1��2 g(N)= � � (c log2N)1�� � �c� log2 k� log�2 N�= c log2N log2 kInequality (4.1) now follows from the fact that and c log2 k = 2. Inequality (4.2) follows from thefact that t = c log2N .

Free Bits in PCP 97The following result was derived as a corollary by Blum [Bl] and shows the application of the abovetheorem to coloring graphs with low-chromatic number with relatively small number of colors. Wewarn the reader that the corollary does not follow directly from the above theorem; this is becauseit uses a Levin-reduction1 from the search version of chromatic number to the search version ofthe clique problem. However, it is possible to de�ne search versions of all the gap problems aboveappropriately and verify that all the reductions work for the search problems as well (i.e., they arein fact Levin-reductions). Thus the following can be derived as a corollary to the above.Corollary 4.1.12 Let k <1.(1) For � > 0, given an N1�� approximator to the clique, one can color any k-colorable graph onM nodes with O(k1=� logM) colors in polynomial time.(2) For �(N) = !((logN)�1=2), given an N1��(N) approximator to the clique, one can color anyk-colorable graph on M nodes with M o(1)-colors in time MO(logM).4.2 On the Limitations of Some Common ApproachesIn this section we provide lower bounds on the free-bit complexity of two tasks which are centralto all existing (\low-complexity") probabilistically checkable proofs. Speci�cally, we consider thetask of checking that a string (given by oracle access) is \close" to a valid codeword and the task ofchecking that one oracle is an encoding of a projection of a string encoded by a second oracle. Here astring is considered close to the code if its distance from some codeword is less than half the distanceof the code. Loosely speaking, we show that each of these tasks has amortized free-bit complexityof at least one (and this is tight by the codes and tests presented in Section 3.12). Furthermore,we show that the amortized free-bit complexity of performing both tasks (with respect to the samegiven oracles) is at least two (and also this is tight by Section 3.12).We consider the lower bound on the complexity of the projection test to be more robust sinceavoiding such a test (which is in essence a \consistency" test) requires departing signi�cantly fromthe known paradigms of constructing pcp systems. On the other hand, the lower bound on thecomplexity of the codeword test relies on the particular interpretation of `closeness' used above(i.e., being at distance less than half the distance of the code). This requirement is not essentialas can be seen in Section 3.4, where we show that also relaxed codeword tests, in which closenessmeans approximately the distance of the code, su�ce. Furthermore, as shown by Hastad in [Has],pcp systems of amortized free-bit complexity 1 (for NP) can be constructed by using a relaxed formof the codeword test, In a sense the lower bound on the complexity of the codeword test (and ofthe combined test) justify Hastad's relaxation of the requirements from the codeword test.4.2.1 The tasksOur de�nitions of the various tasks/tests are quite minimal and do not su�ce for the applications.However, as we are proving lower bounds this only makes our results stronger.Loosely speaking, the �rst task consists of testing that an oracle encodes a valid codeword, oris \close" to a valid codeword, with respect to an error-correcting code of non-trivial distance (i.e.,distance greater than 1). The condition regarding the distance of the code is essential since thetask is easy with respect to the identity map (which is a code of distance 1). We remark that1A Levin-reduction is a polynomial-time many-to-one reduction which is augmented by corresponding polynomial-time witness transformations.

98 Bellare, Goldreich, Sudantesting \closeness" to codewords with respect to codes of large distance is essential in all knownpcp constructions [BFLS, FGLSS, ArSa, ALMSS, BGLR, FeKi, BeSu].The absolute distance between two words w; u 2 f0; 1gn, denoted �(w; u), is the number of bitson which w and u disagree. We say that the code E : f0; 1g� 7! f0; 1g� has absolute distance d iffor every m and every x 6= y 2 f0; 1gm the absolute distance between E(x) and E(y) is at leastd(m). The absolute distance between a word w and a code E, denoted �E(w), is de�ned as theminimum absolute distance between w and a codeword of E.De�nition 4.2.1 (codeword test): Let E : f0; 1gm! f0; 1gn be a code of absolute distance d > 1.A codeword test (with respect to E) is an oracle machine, T , such that TE(a)(R) accepts for alla;R. The error probability of T is de�ned as the maximum accepting probability of T over oraclesA of absolute distance at least bd=2c from the code E; namely,maxA2f0;1gn s.t. �E(A)�bd=2c �PrR �TA(R) accepts�	(Nothing is required with respect to non-codewords which are \close" to the code.)We do not know if our lower bounds apply to a more relaxed de�nition in which the codeword testis required to reject only strings which are at distance d or more from the code; namely, when theerror probability of T is de�ned as maxA2f0;1gn s.t. �E(A)�d �PrR �TA(R) accepts�	We propose the determination of the amortized free-bit complexity of such a relaxed codeword testas an open problem. The relevance of this problem was discussed in the introduction.The second task is de�ned with respect to a \projection function" � and a pair of codes, E1and E2. Loosely speaking, the task consists of checking if the string E1-encoded by the �rst oracleis mapped by � to the string that is E2-encoded by the second oracle.De�nition 4.2.2 (projection test): Let E1: f0; 1gm ! f0; 1gn and E2: f0; 1gk ! f0; 1gn0 be twocodes and let � : f0; 1gm ! f0; 1gk be a function. A projection test (with respect to the above)is a two-oracle machine, T , such that TE1(a);E2(�(a))(R) accepts for all a;R. The error probabilityof T is de�ned as the maximum accepting probability of T over oracles pairs (E1(a); E2(b)) whereb 6= �(a); namely, maxa;b s.t. �(a)6=bnPrR hTE1(a);E2(b)(R) acceptsio(Nothing is required with respect to non-codewords.)Finally, we consider a test T which combines the two tests above; namely, T takes two oraclesA and B and performs a codeword test on A and a projection test on the pair (A;B).De�nition 4.2.3 (combined test): Let E1: f0; 1gm ! f0; 1gn be a code of absolute distance d > 1and E2: f0; 1gk! f0; 1gn0 be two codes and let � : f0; 1gm! f0; 1gk be a function. A combined testfor (E1; E2; �) is a two-oracle machine T such that TE1(a);E2(�(a))(R) accepts on all a;R. The errorprobability of T is de�ned as the maximum accepting probability of T over oracles pairs (A;B)where either �E1(A) � bd=2c or A = E1(a), B = E2(b) but �(a) 6= b; namely,max(A;B)2S �PrR �TA;B(R) accepts�	 :where S def= f(A;B) : (�E1(A) � bd=2c) or (9a; b s.t. A = E1(a) and B = E2(b) and �(a) 6= b)g.(Nothing is required with respect to non-codeword pairs, (A;B), which are \close" to some pair(E1(a); E2(b)) with �(a) 6= b.)

Free Bits in PCP 99Conventions and NotationsThe pattern of test T on access to oracle A (resp., oracles A and B) when using coin-sequence Rconsists of (R and) the sequence of queries and answers made by T . Namely, this pattern, denotedpatternT (A;R)g (resp., patternT (A;B;R)g), is de�ned as the sequence (R; q1; a1; :::; qt; at) where qiis the ith query made by T on coin-sequence R and after receiving the answers a1; :::; ai�1. Weinclude the queries in the pattern for sake of clarity (but they can be easily reconstructed fromthe coin-sequence and the answers). In case T uses two oracles, we may assume that the queriesspecify to which oracle they are addressed. For simplicity, we assume in the rest of this subsectionthat the test has access to one oracle, denoted A.The set AccT (R) is de�ned to be the set of accepting patterns of T on coin-sequence R. Clearly,AccT (R) = fpatternT (A;R) : TA(R) acceptsgRecall that T is said to have free-bit complexity f if for each possible coin-sequence R it holdsthat jAccT (R)j � 2f . We say that T has average free-bit complexity fav if ER [jAccT (R)j] � 2fav ,when the expectation is taken uniformly over all possible coin-sequences. The amortized free-bitcomplexity of a test is de�ned as favlog2(1=�) , where fav is the average free-bit complexity of the testand � is its error probability.4.2.2 Lower Bound for the Codeword TestProposition 4.2.4 For any code of absolute distance greater than 1, the Codeword Test hasamortized free-bit complexity of at least 1� o(1).The amortization in the above proposition is to be understood as taking place on a �xed numberof free-bits whereas the length of the oracle grows. Actually, we can allow both the oracle-lengthand the free-bit count to grow, provided that the logarithm of the number of codewords growsfaster than the free-bit complexity. Alternatively, we can consider a �xed oracle length and a �xbound on the number of free-bits. Actually, this is done in the following technical lemma fromwhich the above proposition follows.Lemma 4.2.5 Let E : f0; 1gm 7! f0; 1gn be a code of absolute distance d > 1, and let T bea codeword test with respect to E having average free-bit complexity fav. Then, T has errorprobability at least 1F � 1M , where F = 2fav and M = 2m. Furthermore, T has error probability atleast 2� 2fav .Proof: Fix an arbitrary coin-sequence R, and let FR denote the cardinality of the set AccT (R).Let a1; a2 be selected independently and uniformly in f0; 1gm, and consider the codewords E(a1)and E(a2). With probability 1M we have a1 = a2 and otherwise �(E(a1); E(a2)) � d. From a1and a2, we construct an oracle A(a1; a2) as follows: If a1 = a2, then A = E(a1). Otherwise, weconstruct A(a1; a2) so that it agrees with the value of the bits of both E(ai)'s whenever they arethe same and is at distance dd=2e from E(a1). This can be done as follows: let S be the set ofpositions on which E(a1) and E2(a2) disagree and let S 0 be a subset of S of cardinality dd=2e. ThenA(a1; a2) equals E(a1) on all positions not in S 0 (and equals E(a2) on the positions in S 0).We claim that, when a1 6= a2, the oracle A def= A(a1; a2) is at distance at least bd=2c from the code(i.e., �E(A) � bd=2c). This can be proved as follows: Consider any a 2 f0; 1gm and observe thatby the triangle inequality�(A;E(a))� �(E(a1); E(a))��(E(a1); A) � d� dd=2e = bd=2c

100 Bellare, Goldreich, SudanWe now claim that Pra1 ;a2 hTA(a1;a2)(R) acceptsi � 1FRwhere the probability is taken uniformly over all possible choices of a1; a2 2 f0; 1gm. The keyobservation is that if patternT (E(a1);R) equals patternT (E(a2);R), then patternT (A(a1; a2);R) willbe equal to patternT (E(a1);R) (since no query of T (R) falls in the set S { de�ned above). Thus,since TE(a1)(R) accepts, TA(a1;a2)(R) must accept too. This suggests to lower bound the proba-bility that TA(a1;a2)(R) accepts by the probability that patternT (E(a1);R) = patternT (E(a2);R).Consider an enumeration, �1; :::; �FR, of the patterns in AccT (R) and denote by pi the probabilitythat patternT (E(a);R) equals the ith pattern in this enumeration, when a is uniformly selectedin f0; 1gm (i.e., pi def= Pra [patternT (E(a);R) = �i]). Thus, when a1 and a2 are picked at random,the probability that patternT (E(a1);R) = patternT (E(a2);R) is PFRi=1 p2i . Subject to the conditionPi pi = 1, the quantity PFRi=1 p2i is lower bounded by 1FR (with an equality occurring when the pi'sare equal).The following observations now bound the error of T :Pra1;a2 hTA(a1;a2)(R) accepts and a1 6= a2i � Pra1;a2 hTA(a1 ;a2)(R) acceptsi� Pra1;a2 [a1 = a2]� 1FR � 1MAll the above holds for any coin-sequence R. Now, we let R be uniformly chosen and getPrR;a1;a2 hTA(a1;a2)(R) accepts and a1 6= a2i � ER � 1FR �� 1M� 1F � 1M(The last inequality follows by Jensen's inequality.) Thus there must exist oracles a1 and a2 witha1 6= a2 such that PrR hTA(a1;a2)(R) acceptsi � 1F � 1MBut the oracle A(a1; a2) above satis�es �E(A(a1; a2)) � bd=2c implying that the error of T is atleast 1F � 1M .For the \furthermore" part observe that if FR = 1 for some coin-sequence R then patternT (E(a1);R)= patternT (E(a2);R), for every two a1; a2 2 f0; 1gm. It follows that, for every a1 6= a2, given accessto the oracle A(a1; a2) and using coin-sequence R, the test T accepts (and is wrong in doing so).Thus, for every a1 6= a2, PrR hTA(a1;a2)(R) acceptsi � PrR [FR = 1]and the Furthermore Claim follows by using Markov's Inequality (i.e., PrR [FR > 1] � ER [FR � 1]).Proof of Proposition 4.2.4: Let T be a test for the code E : f0; 1g� ! f0; 1g� so that Emaps m-bit strings into n(m)-bit strings. Suppose that T has average free-bit complexity f(m)and error �(m), as a function of m (the length of strings encoded by the oracle). We �rst assume

Free Bits in PCP 101that f(m) � 1. Using Lemma 4.2.4 (and letting �(m) def= 2f(m)�m), we lower bound the amortizedfree-bit complexity of T as followsf(m)log2(1=�(m)) � f(m)� log2(12f(m) � 12m)= f(m)f(m)� log2(1� �(m))> f(m)f(m) + �(m)> 1� �(m)(For the last inequality, we have assumed f(m) � 1.) Thus, for this case, the proposition followsby our convention that the number of codewords (denoted 2m) grows faster than exponential inthe free-bit complexity f(m) (i.e., �(m) = 2f(m)2m ! 0 with n ! 1). Finally, we need to addressthe case in which f(m) � 1 does not hold. We consider two sub-cases. In the �rst sub-case, weassume that f(m) ! 0 for some subsequence of the m's. For these m's the Furthermore-part ofLemma 4.2.4 guarantees that �(m) � 2 � 2f(m). Setting g(m) def= 2f(m) � 1, we lower bound theamortized free-bit complexity by f(m)log2(1=�(m)) � log2(1 + g(m))� log2(1� g(m))! g(m)g(m)For the other sub-case, we have f(m) � t, for some constant t > 0. Applying T for t times we geta test T 0 with average free-bit complexity t � f(m) � 1 and error �0(m) = �(m)t, which maintainsthe amortized free-bit complexity of T (since f(m)� log2 �(m) = t�f(m)� log2 �0(m)). Applying the above analysisto T 0, the proposition follows.4.2.3 Lower Bound for the Projection TestA projection function is a function � : f0; 1g� 7! f0; 1g� having the property that for every m thereexists a k so that � maps f0; 1gm onto f0; 1gk.Proposition 4.2.6 For any pair of codes used in the two oracles and any projection function, theProjection Test has amortized free-bit complexity of at least 1� o(1).Again, the proposition is proved by the following technical lemma. Actually, the lemma refers toany function � : f0; 1gm 7! f0; 1gk and its conclusion depends on the cardinality of the range of �(which in case of a projection function equals 2k). Abusing notations we let �(S) def= f�(a) : a2Sg.Lemma 4.2.7 Let E1 : f0; 1gm 7! f0; 1gn, E2 : f0; 1gk 7! f0; 1gn0 and � : f0; 1gm 7! f0; 1gkbe as in De�nition 4.2.2, and T be a projection test with respect to them having average free-bitcomplexity fav. Then, T has error probability at least 1F � 1K , where K = j�(f0; 1gm)j and F = 2fav .Furthermore, if K > 1 then T has error probability at least 2� 2fav .

102 Bellare, Goldreich, SudanProof: Fixing an arbitrary coin-sequence R, let FR def= jfAccT (R)gj. We consider the behavior ofthe test T when given oracle access to a pair of randomly and independently selected codewords.Speci�cally, let S � f0; 1gm be a set of K strings such that for every b 2 �(f0; 1gm) there exists ana 2 S satisfying �(a) = b. We consider the behavior of T when given access to the oracles E1(a)and E2(�(a0)), where a and a0 are independently and uniformly selected in S. With probability1K , we have �(a) = �(a0). On the other hand we claim that, given access to such pair of randomoracles, T accepts with probability at least 1FR . Once the claim is proven, the lemma follows (as inthe proof of the previous lemma).Consider the set of all FR possible accepting patterns of T on access to oracles, E1(a) and E2(�(a)),where a 2 S. Each such pattern consists of a pair (�; �), where � (resp., �) denotes the transcriptof the test's interaction with E1(a) (resp., E2(�(a))). Enumerating all possible FR patterns, wedenote by pi the probability that the ith pattern occurs, when T is given access to the oracle-pair(E1(a); E2(�(a)) where a is uniformly selected in S. Namely,pi def= Pra2S [patternT (E1(a); E2(�(a));R) = (�i; �i)]where (�i; �i) is the ith accepting pattern for T (R). Clearly,Pra;a02S [patternT (E1(a); E2(�(a));R) = patternT (E1(a0); E2(�(a0));R) = (�i; �i)] = p2i (4.3)We now claim that the probability that a pair of independently chosen random oracles (i.e.,(E1(a); E2(b)) selected by uniformly selecting a; a0 2 S and setting b = �(a0)) leads to the ithpattern is at least p2i ; namely,Pra;a02S [patternT (E1(a); E2(�(a0));R) = (�i; �i)] � p2i (4.4)Eq. (4.4) is proven by a cut-and-paste argument: Suppose p def= patternT (E1(a); E2(�(a));R) equalsp0 def= patternT (E1(a0); E2(�(a0));R) and consider a computation of TE1(a);E2(�(a0))(R). Proceedingby induction, and assuming that the �rst t queries are answered as in p, we conclude that the t+1stquery (in our \mixed" computation) is identical to the t + 1st query in p = p0. If this query isdirected to the �st oracle then it is answered by E1(a) (as in p) and otherwise it is answered byE2(�(a0)) (as in p0). In both cases the answer matches the t+1st answer in p = p0. We conclude thatwhenever p = p0, the computation of TE1(a);E2(�(a0))(R) encounters the same pattern (p). Thus, theprobability that the computation of TE1(a);E2(�(a0))(R) encounters the ith pattern is lower boundedby the expression in Eq. (4.3), and Eq. (4.4) follows. (We remark that for non-adaptive tests, theprobability that the ith pattern is encountered equals PFRi=1 p0ip00i , where p0i (resp., p00i) is the sum ofall pj 's satisfying �j = �i (resp., �j = �i). Actually, the same holds for any test which selects itsqueries for each oracle independently of answers obtained from the other oracle.)Using Eq. (4.4), we getPra;a02S [patternT (E1(a); E2(�(a0));R) 2 AccT (R)] � FRXi=1 p2i� 1FRand the main part of the lemma follows. Again, the furthermore part follows by observing forFR = 1, patternT (E1(a); E2(�(a));R) = patternT (E1(a0); E2(�(a0));R), for every two a; a0 2 f0; 1gm.Again, this implies that, for every a1 6= a2, given access to the oracle-pair (E1(a); E2(�(a0))) andusing coin-sequence R, the test T (wrongly) accepts.

Free Bits in PCP 1034.2.4 Lower Bound for the Combined TestProposition 4.2.8 For any pair of codes used in the two oracles, so that the �rst code has absolutedistance greater than 1, and for any projection function, the Combined Test has amortized free-bitcomplexity of at least 2� o(1).Again, the proposition is proved by the following technical lemma. Loosely speaking, the lemmaasserts that a combined test of free-bit complexity 2f must have error probability at least 18 � 2�f .The lower bound extends to the case where 2f is a bound on the average free-bit complexity; theerror probability in this case can be lower bounded by 364 � 2�f { see details below. It follows thatthe amortized free-bit complexity of such a test must be at least 2ff+5 � 2 (for large f 's). Therestriction to large f 's does not really weaken the result. Suppose on the contrary that there existsa test with amortized free-bit complexity fam. Then, for any su�cient large t, we can obtain a testwith free-bit complexity 2f def= t � fam and error 2�t. By the above t�famt � 2ff+5 � 2 (as f is nowlarge).Lemma 4.2.9 Let E1 : f0; 1gm 7! f0; 1gn be a code of absolute distance greater than 1, E2 :f0; 1gk 7! f0; 1gn0, and � : f0; 1gm 7! f0; 1gk be a projection function. Suppose that T is acombined codeword and projection test with respect to the above having free-bit complexity 2f .Then, T has error probability at least 18F � 12K� 14M , where K = 2k, F = 2f , andM is the minimum,over all b 2 f0; 1gk, of the number of a 2 f0; 1gm projected by � to b (i.e., M def= minb2f0;1gkfjfa :�(a)=bgjg). Furthermore, if 2f < 1 and maxfM;Kg > 1 then T has error probability 1.Proof: The \furthermore" part follows immediately by any of the furthermore parts of Lemma 4.2.5or Lemma 4.2.7 (as 22f must be an integer and so 2f < 1 implies f = 0). The proof of the main partof the lemma uses both strategies employed in the proofs of Lemmas 4.2.5 and 4.2.7. We considertwo cases. The �rst case is that for some E2(b), half of the possible (coin-sequences) R's have atmost F accepting patterns with respect to the coin-sequence R and second oracle B = E2(b). Inthis case we employ the strategy used in the proof of Lemma 4.2.5, restricted to oracles constructedby combining two uniformly selected codewords E1(ai)'s satisfying �(ai) = b. The second case isthat for every b 2 f0; 1gk, for half of the possible (coin-sequences) R's, the number of acceptingpatterns with respect to the coin-sequence R and second oracle B = E2(b) is at least F . In thiscase we show that many possible B's must �t into fewer than F2F accepting patterns and we mayemploy the strategy used in the proof of Lemma 4.2.7. Details follow.In the sequel � 2 [0; 1] is a constant to be determined later. (In the above motivating discussionwe have used � = 12 but a better bound follows by letting � be larger.)Case 1: there exists b 2 f0; 1gk so that for at least (1� �) fraction of the possible (coin-sequences)R's, hereafter called good, the number of accepting patterns with respect to the coin-sequence Rand second oracle (�xed to) B = E2(b) is at most F .Fixing this b, we consider M possible a's satisfying �(a) = b. Employing the argument ofLemma 4.2.5, we get that for each of these good R's, a random oracle A (constructed using twouniformly chosen a's as above) is wrongly accepted with probability at least 1F � 1M . By an averag-ing argument, it follows that there exists a pair of oracles (A;B) on which T errs with probabilityat least (1� �) � � 1F � 1M � (4.5)

104 Bellare, Goldreich, SudanCase 2: for every b 2 f0; 1gk, for at least a � fraction of the possible (coin-sequences) R's, thenumber of accepting patterns with respect to the coin-sequence R and second oracle B = E2(b) isat least F .Let
 < � be a parameter to be determined later. By a counting argument, for at least a ��
1�
fraction of the possible R's, hereafter called good, there exists a set, denoted �R, of at least
 � 2kpossible b 2 f0; 1gk so that there are at least F accepting patterns which are consistent with coin-sequence R and second oracle �xed to B = E2(b). (Namely, let g denote the fraction of good R's.Then g + (1� g) �
 � � and g � ��
1�
 follows.)Let S � f0; 1gm be a set of 2k strings, de�ned as in the proof of Lemma 4.2.7, so that � maps S ontof0; 1gk. Fixing a good coin-sequence R, we adapt the strategy used in the proof of Lemma 4.2.7as follows. We consider a set SR � S of j�Rj strings so that � maps SR onto �R, and enumeratethe accepting patterns which occur when the test, using coins R, is given access to a oracle-pair(E1(a); E2(�(a))), where a is uniformly chosen in SR. We �rst claim that there are at most F suchpatterns. Namely,Claim: For any good R, jfpatternT (E1(a); E2(�(a));R) : a 2 SRgj � F .Proof: By de�nition of �R, for each b 2 �R, there are at least F accepting patterns consistent withthe coin-sequence R and the second oracle E2(b) (and out of them only one �ts the �rst oracle E1(a)where a 2 SR and �(a) = b). By a cut-and-paste argument, if (R; �; �) and (R; �0; �) are acceptingpatterns for second-oracle E2(b) and if (R; �; �) is an accepting pattern for second-oracle E2(b0)then (R; �0; �) is also an accepting pattern for second-oracle E2(b0). It follows that the acceptingpatterns of two E2(b)'s either collide or do not intersect. Thus, the number of accepting patternsfor the various (E1(a); E2(�(a)))'s, where a 2 SR, is at most F2F = F and the claim follows. 2Now we consider what happens if one selects independently and uniformly a; a0 2 S. Followingthe proof of Lemma 4.2.7, with probability 1K , we have �(a) = �(a0) (and otherwise �(a) 6= �(a0)).On the other hand, given access to such pair of random oracles, the test accepts with probabilityat least
2 � 1F . (The
2 factor is due to the probability that a; a0 2 SR, whereas the 1F factorcorresponds to the analysis which supposes that a and a0 are uniformly selected in SR).The above analysis holds for any good coin-sequence R. Using the lower bound on the fraction ofgood R's, it follows that for a ��
1�
 fraction of the R's, the probability that the test errs, on coin-sequence R when given access to a random pair of oracles (selected as above), is at least
2F � 1K .By an averaging argument, there exists a pair of oracles for which the test errs with probability� �
1�
 � �
2F � 1K� (4.6)It is left to select � and
 so to maximize the minimum among the expressions in Equations (4.5)and (4.6). (But why bother?) Setting � = 34 and
 = 12 we lower bound these expressions by14F � 14M and 18F � 12K , respectively, and the (current statement of the) lemma follows.To prove a bound for the case of average free-bit complexity F 2, we �rst apply Markov's Inequalityand conclude that all but an � fraction of the coin-sequences have at most G2 def= F2� acceptingpatterns (in which this �xed coin-sequence appears). (We can use any 0<�<1.) We then consideronly those coin sequences (and apply the same argument as above to each of them). The averagingargument at the end of the above proof then yields that there exists an oracle-pair on which T errson at least a 18G � 12K � 14M fraction of these coin-sequences. It follows that this oracle makes T err

Free Bits in PCP 105with probability at least (1� �) � (18G � 12K � 14M) (which equals (1 � �) � (p�8F � 12K � 14M)). Using� = 14 , we get a lower bound of 364F � 38K � 316M .

C h a p t e r 5PCP: Properties and Transformations
5.1 The Complexity of PCP and FPCPIn this section we present several results regarding the complexity of languages acceptable byprobabilistically checkable proofs having, respectively, small query complexity, small amortized-query complexity and small free-bit complexity. Thus, in the current section, notations such asPCPc;s[r; q] stand for classes of languages. The results can be extended to classes of promiseproblems having such probabilistically checkable proofs.5.1.1 Query complexity and amortized query complexityIn this subsection, MIPc;s[r; p] denotes the class of languages accepted by a (one-round) p-proverinteractive proof system in which r is the randomness complexity, c is a lower bound on theprobability of accepting yes-instances and s is an upper bound on the probability of acceptingno-instances. The corresponding class for probabilistically checkable proofs is PCPc;s[r; q], where qdenotes the number of queries. In both classes only binary queries are allowed (indeed this is lessstandard for MIP). The �rst part of the following lemma is folklore and is stated here for sake ofcompleteness.Lemma 5.1.1 For all admissible functions c; s; r; p.(1) MIPc;s[r; p]� PCPc;s[r; p].(2) MIPc;s[r; p]� MIPc;2s[r; p� 1].Proof: Part (1) follows from the de�nition of PCP and MIP. Part (2) is shown as follows. Let Vbe an (r; p)-restricted MIP veri�er. We de�ne V 0 { an (r; p� 1)-restricted veri�er who on input xbehaves as follows:� V 0 tosses coins c for V .� V 0 refers the �rst p � 1 queries of V to the corresponding p � 1 provers obtaining answers(bits) a1; : : : ; ap�1, respectively.� V 0 accepts if and only if there exists ap 2 f0; 1g such that V would accept answers a1; : : : ; apon input x and random string c. 106

Free Bits in PCP 107Suppose that provers P1; : : : ; Pp convince V to accept x with probability �. Then, the proversP1; : : : ; Pp�1 convince V 0 to accept x with probability at least � (because if V (x) accepts the tran-script (c; a1; :::; ap) then V 0(x) will accept the transcript (c; a1; :::; ap�1)). This justi�es the bound onthe completeness probability of V 0. Suppose, on the other hand, that provers P1; : : : ; Pp�1 cause V 0to accept x with probability �. Consider a uniformly selected strategy for another prover, denotedPp (i.e., choose a random response for every question). Then, the probability that provers P1; : : : ; Ppcause V to accept input x is at least 12 � � (because if V 0(x) accepts the transcript (c; a1; :::; ap�1)then there exists a value ap 2 f0; 1g so that V 0(x) will accept the transcript (c; a1; :::; ap) and withprobability one half Pp answer equals this ap). This justi�es the bound on the soundness probabilityof V 0.The following proposition explores the limitations of probabilistically checkable proof systems whichuse logarithmic randomness and upto three queries. Some of the qualitative assertions are well-known; for example, when considering perfect completeness, 3 queries are the minimum needed(and su�cient [ALMSS]) to get above P.Proposition 5.1.2 (PCP systems with logarithmic randomness and at most 3 queries):(1) (PCP with 1 query is weak): For all admissible functions s; c : Z+ ! [0; 1], so that s is strictlysmaller than c, PCPc;s[log; 1] = P.(2) (One-sided error pcp with 2 queries is weak): For all admissible functions s : Z+ ! [0; 1]strictly less than 1, PCP1;s[log; 2] = P.(3) (Two-sided error pcp with 2 queries is not weak): On the other hand, there exists 0 < s < c < 1so that PCPc;s[log; 2] = NP. Furthermore, this holds for c > 0:9 and s < 7374c.(4) (One-sided error pcp with 3 queries is not weak): PCP1;0:85��[log; 3] = NP, 8� > 0.(5) (One-sided error pcp with 3 queries is not very strong): 8s < 0:18, PCP1;s[log; 3] = P. Fur-thermore, 8s � 0:299, naPCP1;s[log; 3] = P, where naPCP is a restriction of PCP in whichthe veri�er is required to be non-adaptive.Proof of Proposition 5.1.2, Part (1): Part (1) is obvious since an oracle � maximizing theacceptance probability can be constructed by scanning all possible random pads and setting �(q)so that it \satis�es" the majority of random-pads for which the veri�er makes query q.Proof of Proposition 5.1.2, Part (2): The folklore proof commonly deals only with the non-adaptive case. In general, the veri�er V , demonstrating that L 2 PCP1;s[log; 2], may be adaptive.We assume, without loss of generality, that V always makes at least one query. Thus, after makingthe �rst query, V decides whether to accept, reject or make an additional query and accept only aspeci�c answer for it. Thus, the computation of V on input x, random pad c and access to a genericoracle can be captured by two Horn clauses, each corresponding to a di�erent answer-value for the�rst query. Speci�cally, suppose that V queries the oracle at location i and upon receiving value� accepts i� location j have value � . Then, we write the Horn clause ��i ! ��j . (In case V alwaysaccepts (resp., rejects) after obtaining value � from oracle location i, we write the clause ��i ! T(resp., ��i ! F).) In addition, for every i, we write the Horn clauses �0i ! (:�1i) and (:�0i)! �1i .Thus, the computation of V , on input x and access to a generic oracle, can be captured by aHorn formula, denoted �x, in which Horn clauses correspond to the various (polynomially many)possible (random-pad,�rst-answer) pairs. Furthermore, �x can be constructed in polynomial-timegiven x (and V). Using a (polynomial-time) decision procedure for satis�ability of Horn Formulae,we are done. (Alternatively, we can use the linear-time decision procedure for 2-SAT due to Evenet. al. [EIS].)

108 Bellare, Goldreich, SudanProof of Proposition 5.1.2, Part (4): To see that PCP1;s[log; poly] � NP, for every s < 1,consider a non-deterministic machine which tries to guess an oracle which makes the veri�er (of theabove system) always accept. The other direction (of Part (4)) is shown in Theorem 3.6.4.Proof of Proposition 5.1.2, Part (3): To see that PCPc;s[log; poly] � NP, for every s <c, consider a non-deterministic machine which tries to guess an oracle which makes the veri�eraccept with probability at least c. The NP � PCPc;s[log; 2] result follows from the hardness ofapproximating Max2SAT. Speci�cally, suppose that the following promise problem is NP-hard (viaKarp reductions): given a 2CNF formula decide whether there exists a truth assignment whichsatis�es at least a c fraction of the clauses or any truth assignment satis�es at most a s fractionof its clauses, where 0 < s < c < 1 are �xed constants. Then we can present a PCPc;s[log; 2]system for any L 2 NP. On input x, the veri�er in this system, performs the reduction (of L tothe promise problem) obtaining a 2CNF formula �x, next it uniformly selects a clause of �x andqueries the oracle for the values of the variables in this clause (accepting accordingly). Using theresult in Section 3.7, we can set c > 0:9 and s < 7374 � c.Remark: It may be possible to increase the ratio c=s by implementing the inner veri�er used toestablish the NP-Hardness of Max2SAT using arbitrary 2-literal clauses, rather than 2CNF clauses.Proof of Proposition 5.1.2, Part (5): The result for general veri�ers follows from Lemma 3.7.5and the fact that MaxSAT can be approximated to within a 0:795 = 0:75+ 0:184 factor in polynomial-time (cf., [SSTW]). The rest of the proof is devoted to the non-adaptive case. Let L 2 naPCP1;s[log; 3],and let V be a (non-adaptive) veri�er demonstrating this fact. Without loss of generality, we mayassume that V always makes 3 di�erent queries. As a mental experiment we de�ne, for every setQ � f0; 1g�, a \veri�er" VQ who on input x acts as follows:� VQ uniformly selects a random pad c for V .� Let q1; q2 and q3 be the three queries of V , on input x and randomness c. (The hypothesisthat V is non-adaptive is crucial for the de�nition of q2 and q3.)� If all three (desired) queries are in Q then VQ accepts (without making any query!).� Otherwise (i.e., not all qj 's are in Q), then VQ makes only the queries which lie in Q. Specif-ically, for every j such that qj 2 Q, the veri�er VQ makes query qj , obtaining an answerdenoted aj.� VQ accepts x if and only if there exists a triple (b1; b2; b3) so that� bj = aj for each qj 2 Q; and� V accepts the input x on randomness c and oracle answers (b1; b2; b3).It is clear that for every set Q, the veri�er VQ uses logarithmic randomness and makes at most twoqueries. At this point we don't consider the issue of implementing VQ. The probability that VQaccepts x (given access to oracle �) is greater or equal to the probability that V accepts x (givenaccess to oracle �). Thus, if V can be led (by an appropriate oracle) to always accept the input x,so can VQ. We now show that, for every x 62 L, provided some condition (speci�ed below) on Qholds, VQ accepts x with probability strictly less than 1.Claim. Fix any x 62 L and any set Q. For i = 0; 1; 2; 3, let pxi (Q) denote the probability (taken overV 's coin tosses) that V , on input x, generates i queries in the set Q. (Since V is non-adaptive this

Free Bits in PCP 109is well de�ned.) Suppose that px(Q) def= 2Xi=0 123�i � pxi (Q) > sThen, given access to any oracle, VQ accepts x with probability strictly less than 1.that VQ, when given oracle access to �, always accepts input x 62 L (i.e., accepts with probability1). We will show that there exists a proof �0 such that V , when given access to oracle �0, acceptsinput x 62 L with probability px(Q) > s, contradicting the soundness of V .We start by considering a random oracle, denoted �, de�ned as follows. For every q 2 Q, we set�(q) def= �(q). For every q 62 Q, we let �(q) be uniformly and independently distributed in f0; 1g, Wenow lower bound the accepting probability of V when given access to �, using the hypothesis thatVQ always accepts. Let c be a random-pad for V and suppose that V using random pad c makesm > 0 queries outside Q. Then, using the random-pad c, the veri�er VQ accepts while refrainingfrom making m queries. It follows that V , using random pad c and given oracle access to �, acceptswith probability at least 2�m, where the probability is taken over the choice of �. Since VQ, givenaccess to �, always accepts x it follows that V , on access to a random �, accepts x with probabilityat least P3m=1 px3�m(Q) � 12m = px(Q). It follows that there exists an oracle �0 so that, given accessto �0, the veri�er V accepts x with probability at least px(Q). Since x 62 L we conclude, using thesoundness of V , that px(Q) � s in contradiction to the hypothesis of the claim. 2Next we present a polynomial-time algorithm that, given x 2 f0; 1g�, e�ciently constructs a set Qwith high px(Q). Note that there are only polynomially many queries to consider for membershipin Q (speci�cally these appearing in all possible computations of V on input x). We �rst considera randomized construction of a set Q, in which each such query is included in Q with probability qindependently of all other queries, where q is a �xed parameter. Now, the expected value of px(Q)equals P2i=0 123�i � qxi , where qxi is the probability that V on input x makes i queries which hit therandom set Q (the probability is taken over V 's coin tosses and the random choice of Q). Clearly,qxi = �3i�qi(1� q)3�i. Thus, the expected value of px(Q) equalsp(q) def= 2Xi=0 123�i � 3i!qi(1� q)3�i = 32(1� q)q2 + 34(1� q)2q + 18(1� q)3Using the method of conditional probabilities [ASE], given x, we can construct in (deterministic)polynomial-time a set Q satisfying px(Q) � p(q). In the construction we use the fact that, given apartial speci�cation of a set Q, we can compute the expected value of px(Q) where the expectationis taken over all random extension of Q. (Speci�cally, this is done by considering all random padsfor V and considering for each such pad the number of queries which are yet unspeci�ed. Eachsuch unspeci�ed query is in Q with probability q.) Thus, we obtain a polynomial-time veri�er Vqwhich uses logarithmically many coins and two queries. Furthermore, Vq accepts any x 2 L withprobability 1 and, provided p(q) > s, accepts x 62 L with probability strictly less than 1. Weconclude that if p(q) > s then, for some s0 < 1, L 2 PCP1;s0 [log; 2] = P (where the equality is dueto Part (2)).To conclude the proof we need to select q so to maximize p(q). Numerical experiments show thatthere exists q so that p(q) > 0:299 and PCP1;0:299[log; 3] � PCP1;s0[log; 2] = P follows (for somes0 < 1). This completes the proof of Part (5).The (stronger) bound obtained in Lemma 5.1.2.5, let alone that it is restricted to the non-adaptivecase, is weaker than what can be proven for MIP proof systems (see next corollary). This contrast

110 Bellare, Goldreich, Sudanmay perhaps provide a testing ground to separate PCP from MIP, a question raised by [BGLR].The following corollary is obtained by combining Lemma 5.1.1 and Proposition 5.1.2.2.Corollary 5.1.3 For s < 1=2, MIP1;s[coins = log; provers = 3] = P.A general result which relates the query complexity of a probabilistically checkable proof systemand the ratio between the acceptance probabilities of yes-instances and no-instances, follows {Lemma 5.1.4 For all admissible functions c; s; q; r; l such that cs > 2q,PCPc;s[r; q]� RTIME�poly�n; 1c� 2qs��Furthermore, PCPc;s[r; q] � PSPACE, and if r and q are both logarithmically bounded thenPCPc;s[r; q] = P.Proof: Let L 2 PCPc;s[r; q] and V be a veri�er demonstrating this fact. Observe that for x 2 L, theprobability that V accepts x, given access to a random oracle, is at least c2q . On the other hand, forx 62 L, the probability that V accepts x, given access to any oracle, is at most s < c2q . Thus, we candecide if x is in L by simulating the execution of V with access to a random oracle and estimatingthe acceptance probability, over V 's random choices and all possible oracles. In particular, we canestimate this probability upto an � def= s � c2q additive term, with very high probability, by takingpoly(1=�) samples. Alternatively, we can compute this probability in polynomial-space. Finally, incase r and q are both logarithmically bounded, we can (exactly) compute the probability that Vaccepts x, given access to a random oracle. To this end we loop through all possible random-padsfor V and for each pad consider all possibilities of setting the oracle bits examined by V . Thus, fors < c2q , we get a deterministic polynomial-time decision procedure.The last assertion in the above lemma (i.e., PCPc;s[log; q] = P for cs > 2q). cannot be strengthenby omitting the (logarithmic) bound on q since NP = PCP1;0[0; poly]. On the other hand, recallingthe de�nition of PCP we immediately getCorollary 5.1.5 Let � : Z+ ! [0; 1] be an admissible function strictly greater than 0. Then, forevery admissible function c : Z+ ! [0; 1],PCPc[logn; 1� �] = PIn particular, this holds for c = 1.Proof: L 2 PCPc[log; 1� �] implies that for some logarithmically bounded function m, we haveL 2 PCPc;2�m�c[log; (1� �) �m] and the corollary follows.The above results are focused on pcp systems with logarithmic randomness. However, proofsystems with unrestricted randomness (as considered in the next proposition) may also provide someindication to the e�ect of very low query complexity. The results we obtain are somewhat analogousto those of Proposition 5.1.2. Recall that PCP1; 12 [poly; poly] equals NEXPT (Non-deterministicexponential time) [BFL]. Thus, the power of pcp systems with polynomial randomness has to becompared against NEXPT.Proposition 5.1.6 (general PCP systems with at most 3 queries):

Free Bits in PCP 111(1) (PCP with 1 query is relatively very weak): For all admissible functions s; c : Z+ ! [0; 1], sothat c(n)� s(n) is non-negligible1 PCPc;s[poly; 1] � AMwhere AM is the class of languages having one-round Arthur-Merlin proof systems (cf., [Bab]).(2) (One-sided error pcp with 2 queries is relatively weak): For all admissible functions s : Z+ ![0; 1] strictly less than 1, PCP1;s[poly; 2] � PSPACE.(3) (Two-sided error pcp with 2 queries is not weak): On the other hand, there exists 0 < s < c < 1so that PCPc;s[poly; 2] = NEXPT.(4) (One-sided error pcp with 3 queries is not weak): PCP1;0:85��[poly; 3] = NEXPT, 8� > 0.(5) (One-sided error pcp with 3 queries is not very strong): 8s < 18 , PCP1;s[poly; 3] = PSPACE.Furthermore, 8s � 0:299, naPCP1;s[poly; 3] = PSPACE.The �rst part of the proposition may be hard to improve since, as indicated in Proposition 5.1.7Part (6), Graph Non-Isomorphism is in PCP1;12 [poly; 1].Proof of Proposition 5.1.6, Part (1): We �rst observe that a 1-query pcp system is actually aone-round interactive proof system (cf., [GMR]). (The completeness and soundness bounds are asin the pcp system.) Using well-known transformations we obtain the claimed result. Speci�cally,we �rst reduce the error of the interactive proof by parallel repetition, next transform it intoan Arthur-Merlin interactive proof [GS], and �nally transform it into an Arthur-Merlin interactiveproof of perfect completeness [FGMSZ]. We stress that all the transformations maintain the numberof rounds upto a constant and that the constant-round Arthur-Merlin hierarchy collapses to one-round [Bab].Proof of Proposition 5.1.6, Parts (3) and (4): For these parts we observe that the proofsystems used in the corresponding items of the proof of Proposition 5.1.2, do \scale-up". Speci�cally,it is easy to see that the outer veri�er used for all proof systems in this paper does scale-up, yieldinga canonical outer veri�er of randomness complexity O(log(T (n)) fo any language in Ntime(T (n)),provided n < T (n) < 2poly(n). Furthermore, all inner-veri�ers used in the paper operate on constantsized oracles and so the composed veri�er maintains the time and randomness complexities of theouter veri�er. In particular, the veri�er used for establishing Theorem 3.6.4 can be scaled-up toyield Part (4). The same holds for the veri�er used for establishing Part (3) of Proposition 5.1.2.(Note that although the exposition of the proof in Proposition 5.1.2 is in terms of reducing NPto Max2SAT, what actually happens is that the veri�er used to establish the NP-hardness ofMax2SAT (cf., Section 3.7) is implemented by a veri�er which makes only two queries (out of aconstant number of possibilities).)Proof of Proposition 5.1.6, Part (2): Following the strategy of the proof of the analogouspart in Proposition 5.1.2, we obtain a polynomial-space reduction of L 2 PCP1;s[poly; 2] to theset of satis�able 2-Horn formulae (i.e., Horn formulae in which each clause has at most 2 literals).Namely, on input x, the reduction uses space poly(jxj) and produces a Horn formula �x (of sizeexponential in jxj) so that x 2 L i� �x is satis�able. Using a poly-logarithmic decision procedurefor satis�ability of 2-Horn formulae2, we can decide if �x is satis�able using poly(jxj)-space.1A function f : Z+ ! Z+ is called non-negligible if there exists a positive polynomial p so that 8n : f(n) > 1p(n) .2For example, consider the following procedure. Given a 2-Horn formula, we construct a directed graph in whichthe vertices are the literals of the formula and there is an directed edge from literal x to literal y if the formula

112 Bellare, Goldreich, SudanProof of Proposition 5.1.6, Part (5): The result for non-adaptive veri�ers follows fromPart (2)by using the same strategy as in the analogous proof in Proposition 5.1.2. The result for generalveri�ers follows by the Furthermore-part of Lemma 5.1.4 (i.e., PCPc;s[poly; q] = PSPACE forcs > 2q).5.1.2 Free-bit complexityThe class FPCPc;s[r; f] is de�ned analogously to the class PCPc;s[r; q], except that we considerthe free-bit complexity (denoted f) instead of the query complexity (denoted q). The followingproposition demonstrates the limitations of probabilistically checkable proof systems with free-bitcomplexity bounded by 1. We do not believe that similar limitations hold for amortized free-bit complexity.3 The �rst three items refer to proof systems with logarithmic randomness. Thevery �rst item shows that proof systems with two-sided error (non-perfect completeness) havingamortized free-bit complexity zero (and logarithmic randomness) su�ce for NP . The third itemasserts that the second item cannot be strengthened neither with respect to increasing the free-bit complexity nor with respect to referring to two-sided error. However, proof systems withunrestricted randomness (as considered in the other items) may also provide some indication tothe e�ect of very low free-bit complexity. The last item can be viewed as (weak) evidence that theresult in the fourth item cannot be \drastically improved" (e.g., to yield FPCP1;s[poly; 0] � BPP).Proposition 5.1.7 (PCP systems with low free-bit complexity): Let s : Z+ ! [0; 1] be an admis-sible function strictly smaller than 1. Then,(1) (PCP with logarithmic randomness and 0 free-bit):There exists s < 0:794 so that NP � FPCP14 ; s4 [log; 0]. Thus, NP = FPCP14 [log; 0].(2) (Limitations of PCP with logarithmic randomness and 1 free-bit):FPCP1;s[log; 1] = P. Also, FPCP1;1�(1=poly)[coins = poly ; free = 1 ; p
en = poly] � BPP.(3) (\Tightness" of Item 2): There exists s < 0:794 so thatNP � FPCP1;s[log; 2];NP � FPCP1; 1+s2 [log; f] where f = log2 3 (i.e., 2f = 3);NP � FPCP12 ; s2 [log; 1].(4) (General pcp with 0 free-bit): FPCP1;s[poly; 0] � coNP.(5) (general pcp with 1 free-bit): FPCP1;s[poly; 1] � PSPACE.(6) (Examples for pcp with 0 free-bit): Graph Non-Isomorphism, GNI, has a PCP system withperfect completeness and soundness bound 12 , in which the veri�er makes a single query andthis query is free. Namely,GNI 2 FPCP1; 12 [coins = poly ; free = 0 ; query = 1]The same holds for QNR (\Quadratic Non-Residuosity" (cf., [GMR])) the set of integer pairs(x;N) so that x is a non-residue modulo N .contains the clause x! y. One can easily verify that the formula is not satis�ed i� there exists a variable for whichevery truth assignment yields a contradiction (i.e., \forcing paths" to contradicting values { cf., [EIS]). Thus, anon-deterministic logspace machine can guess this variable and check that both possible truth assignments (to it)yield contradictions. The latter checking reduces to guessing the variable for which a con
icting assignment is impliedand verifying the con
ict via s-t directed connectivity. Since the latter task is in NL, we are done. (Actually, 2SATis complete for coNL; see [JLL].)3The conjecture is stated for systems with perfect completeness. For systems with two-sided error probability, weknow that they can recognize NP languages using zero free-bits { see below.

Free Bits in PCP 113Proof of Proposition 5.1.7, Part (4): Here we consider proofs with zero free-bits. LetL 2 PCP1;s[poly; 0] and V be a veri�er demonstrating this fact. By de�nition, for every possiblesequence of coin tosses for V , there exists at most one accepting con�guration (of oracle answersto the queries made by V). Furthermore, by de�nition, this accepting con�guration (if it exists)can be generated in polynomial time, from the coin-sequence. Following is a non-deterministicprocedure that accepts L. It starts by guessing two sequences of coin tosses for V , generating thecorresponding accepting con�gurations and checking whether they are consistent. Clearly, if x 2 Lthen for all possible pairs of coin-sequences these con�gurations exist and are consistent (since anoracle which always makes V accept x does exist). On the other hand, if all pairs of coin-sequencesyield accepting and mutually consistent con�gurations then an oracle which always makes V acceptx emerges.Proof of Proposition 5.1.7, Parts (2) and (5): Here we consider proofs with free-bit com-plexity 1. Thus, for each possible sequence of coin tosses, there exist at most two acceptingcon�gurations (which again can be e�ciently found given the coin-sequence). We refer to thesetwo possible accepting con�guration as to the 1-con�guration and the 2-con�guration of the coin-sequence. In case a speci�c coin-sequence has less than two accepting con�gurations, we introducedummy con�gurations so that now each coin-sequence has two associated con�gurations. Given aninput x to such a pcp system, we consider the following 2CNF formula representing all possiblecomputations of the veri�er with a generic oracle. For each possible sequence of coin tosses, c, weintroduce a pair of Boolean variables, �1c and �2c , representing which of the two associated con�g-urations is encountered (e.g., �1c = T means that the 1-con�guration is encountered). To enforcethat a single con�guration is encountered we introduce the clauses (�1c _�2c) and ((:�1c)_(:�2c)). Inaddition, in case the �-con�guration of c is not accepting (but rather a dummy con�guration) weintroduce the clause (:��c) thus \disallowing" a computation in which it is encountered. Finally,for each pair of coin-sequences we introduce clauses disallowing inconsistencies. Namely, supposethat the �-con�guration of c is inconsistent with the � -con�guration of c0, then we introduce theclause ((:��c) _ (:��c0)), which is logically equivalent to :(��c ^ ��c0). The resulting 2CNF formula,�x, is satis�able if and only if there exists an oracle which causes V to accept x with probability 1.Thus, given x, we need to test if �x is satis�able. We consider two cases.(1) In case V uses logarithmically many coins, the 2CNF formula �x can be generated from xin polynomial-time. Using a polynomial-time decision procedure for satis�ability of 2CNFformulae, we conclude that FPCP1;s[log; 1] = P. Using Proposition 5.2.2, we can randomlyreduce FPCP1;1�(1=poly)[poly; free = 1; p
en = poly] to FPCP1;1�(1=poly)[log; free = 1], andFPCP1;1�(1=poly)[poly; free = 1; p
en = poly] � BPP follows. This establishes Part (2).(2) In general (V may make polynomially many coin tosses), the 2CNF formula �x may haveexponential (in jxj) length and yet can be generated from x in polynomial-space. Using apoly-logarithmic-space decision procedure for satis�ability of 2CNF formulae4, we can decideif �x is satis�able using poly(jxj)-space. Part (5) (i.e., FPCP1;s[poly; 1] � PSPACE) follows.Proof of Proposition 5.1.7, Parts (3) and (1): The �rst claim of Part 3 is justi�ed byTheorem 3.9.4. Applying Proposition 5.2.9 to this veri�er (which indeed satis�es the condition ofthis proposition), yields the second claim of Part 3. Applying Proposition 5.2.8 to the same veri�er4For example, note that 2CNF formulae can be written in Horn form and use the procedure described in the proofof Proposition 5.1.6 Part (2).

114 Bellare, Goldreich, Sudan(with k = 1 < f = 2), the third claim of Part 3 follows. Finally, applying Proposition 5.2.8 withk = f = 2, Part 1 follows.Proof of Proposition 5.1.7, Part (6): We merely note that the interactive proof presentedin [GMW] for Graph Non-Isomorphism5 constitute a 1-query pcp system with perfect completenessand soundness bound 12 . Furthermore, the query made by the verify has a unique acceptable answerand thus the free-bit complexity of this system is zero. The same holds for the interactive proofpresented in [GMR] for Quadratic Non-Residuosity QNR, which is actually the inspiration to theproof in [GMW].5.1.3 Query complexity versus free-bit complexityThe following proposition quanti�es the intuition that not all queries are \free" (i.e., that the free-bit complexity is lower than the query complexity). Furthermore, as a corollary we obtain that theamortized (average) free-bit complexity is at least 1 unit less than the amortized query complexity.Proposition 5.1.8 For admissible functions c; s; r; q such that r(n); q(n) = O(logn).PCPc;s[r; q]� PCPc;s[coins = r ; freeav = q � log2(1=s)]Furthermore, for every admissible function t, PCPc;s[r; q] � FPCPc;(2t+1)s[r; q� t]:Proof: Let L 2 PCPc;s[r; q] and let V be the veri�er demonstrating this. Fix an input x 2 �n,and let r = r(n); q = q(n); s = s(n) For a random string R 2 f0; 1gr, let F xR denote the number ofaccepting patterns of V , i.e., F xR = jpatternV (x;R)j. We �rst claim that if ER [F xR] > 2q � s, thenx 2 L. This is true since a random oracle � is accepted with probability ER [F xR � 2�q] and in casethe claim does not hold we reach contradiction to the soundness condition (i.e., x 62 L is acceptedwith probability strictly larger than s).We now construct a veri�er, denoted V 0, witnessing L 2 FPCPavc;s[r; q� log2(1=s)]: On input x, theveri�er �rst computes ER [F xR] (by scanning all possible R's and generating all accepting patternsfor each of them). If ER [F xR]) > 2q � s, then V 0 accepts x (without querying the oracle). Otherwise(i.e., if ER [F xR]) � 2q � s), then V 0 simulates V and accepts if V accepts. It follows that the averagefree-bit complexity of V 0 on input x equals the corresponding quantify for V , provided the latteris at most q � log2(1=s), and equals zero otherwise. The �rst part of the proposition follows.To establish the second part, for some t = t(n), we construct a veri�er V 00 which, on input x,proceeds as follows. First, V 00 computes q def= ER [F xR] and accepts if q > s2q (just as V 0). In caseq � s2q, the new veri�er proceeds di�erently: it randomly selects R as V does and computes F xR.If F xR > 2q�t then V 00 accepts and otherwise it invokes V on input x and coins R. Clearly, thisguarantees that the free-bit complexity of V 00 is at most q � t. To analyze the soundness of V 00,note that when ER [F xR] � s2q, it follows that PrR [F xR > 2q�t] � 2ts (Markov Inequality). Thus,the soundness error of V 00 is at most s+ 2ts and the second part follows.By computing the amortized average free bit complexity of the class of languages in the right handside of the containment above, we obtain the following consequence.5On input a pair of graphs, G0 and G1, the veri�er uniformly selects i 2 f0; 1g and generates a random isomorphiccopy of Gi, denoted H. This graph H is the single query made by the veri�er, which accepts if and only if the answerequals i.

Free Bits in PCP 115Corollary 5.1.9 For admissible functions c; r; q with r(n); q(n) = O(logn),PCPc[r; q] � FPCPavc [r; q � 1]:where FPCPav� [�; f] denotes a class analogous to FPCP�[�; f] in which average free-bit complexityis measured instead of (worst-case) free-bit complexity.The above corollary clinches the argument that the amortized query complexity is incapable ofcapturing the approximability of the clique function. Previously we had argued thus based on theassumption that the clique number may be hard to approximate to within N 12 (i.e., establishingsuch a clique NP-hardness would require showing that NP � PCP[log; 1��], for every � > 0, whichis impossible6 as we've shown that PCP[log; 1 � �] � P). Now, we can remove this assumptionalso. Suppose that, for some g (e.g., g = 32), MaxClique is NP-hard to approximate to within aN1=(1+g) factor, but it can be approximated to within a N1=(1+g��) factor in polynomial-time, forevery � > 0 (actually, we can handle any � � 1). Furthermore, supposed that the hardness resultis demonstrated by showing that NP � PCP[log; g � �], for every � > 0. Then, using the abovecorollary, we get NP � FPCPav[log; g�1� �], for every � > 0. and an NP-hardness result of cliqueapproximation7 upto aN1=(1+(g�1��)+�) = N1=g follows, in contradiction to our hypothesis that suchapproximations could be achieved in polynomial time. To summarize, attempts to establish thefactor N1=g for which it is NP-hard to approximate MaxClique via amortized query complexity willalways fall at least one unit away from the truth; whereas amortized free-bit complexity will yieldthe right answer.5.2 Transformations of FPCP SystemsWe present several useful transformations which can be applied to pcp systems. These fall to twocategories:(1) Transformations which ampli�es the (completeness versus soundness) gap of the proof system,while preserving (or almost preserving) its amortized free-bit complexity.(2) Transformations which move the gap location (or, equivalently, the completeness parameter).The gap itself is almost preserved but the moving it changes the free-bit complexity (andthus the amortized free bit complexity is not preserved). Speci�cally, moving the gap `up'requires increasing the free-bit complexity, whereas moving the gap `down' allows to decreasethe free-bit complexity.All these transformations are analogous to transformations which can be applied to graphs withrespect to the max-clique problem. In view of the relation between FPCP and the clique promiseproblem (shown in Section 4.1), this analogy is hardly surprising.In this section, we use a more extensive FPCP notation which refers to promise problems(rather than to languages) and introduce an additional parameter { the proof length. Speci�cally,FPCPc;s[r; f; l] refers to randomness complexity r, free-bit complexity f and proof-length l.5.2.1 Gap ampli�cation maintaining amortized free-bit complexityWe start by stating the simple fact that the ratio between the completeness and soundness bounds(also referred to as gap) is ampli�ed (i.e., raise to the power k) when one repeats the pcp system (ktimes). Note, however, that if the original system is not perfectly complete then the completenessbound in the resulting system gets decreased.6The entire discussion assumes P 6= NP. The discussion is anyhow mute otherwise.7 Here we use the observation that the FGLSS-reduction works also for amortized average free-bit complexity.

116 Bellare, Goldreich, SudanProposition 5.2.1 (simple gap ampli�cation): For all c; s : Z+ ! [0; 1] and k : Z+ ! Z+,FPCPc;s[r; f; l]� FPCPck;sk [kr; kf; l]:Proof: Let (Y;N) 2 FPCPc;s[r; f; l] and let V be a veri�er witnessing this with query complexityq : Z+ ! Z+. Given k : Z+ ! Z+, we de�ne a veri�er V (k) as follows: On input x 2 f0; 1gn, letr = r(n); k = k(n); f = f(n); l = l(n) and q = q(n).� V (k) picks k random strings c(1); : : : ; c(k) uniformly and independently in f0; 1gr.� For i = 1 to k, veri�er V (k) simulates the actions of V on input x and random string c(i).Veri�er V (k) accepts if V accepts on each of these k instances.Clearly, V (k) tosses kr coins and examines the l-bit long oracle in at most kq bits, where at mostkf of these are free. For every x, if the probability that V accepts x, given access to oracle�, is p then the probability that V (k) accepts x, given access to � is exactly pk. Thus, (Y;N) 2FPCPck;sk [kr; kf; l], and oracles can be transformed (by identity) from one pcp system to the other.Next, we show that in some sense the randomness-complexity of a proof system need not behigher than logarithmic in the length of the proofs/oracles employed. Speci�cally, we show how torandomly reduce languages proven by the �rst kind of systems into languages proven by the secondkind. Thus, whenever one is interested in the computational complexity of languages proven viapcp systems, one may assume that the system is of the second type. Recall that �KR denotes arandomized Karp reduction.Proposition 5.2.2 (reducing randomness): There exists a constant
 > 0 so that(1) (for perfect completeness): For every two admissible functions s; � : Z+ ! [0; 1],FPCP1;s[r; f; l] �KR FPCP1;s0[r0; f; l]where s0 = (1 + �) � s and r0 =
 + log2(l=�2s).(2) (for two-sided error): For every four admissible functions c; s; �1; �2 : Z+ ! [0; 1],FPCPc;s[r; f; l] �KR FPCPc0;s0 [r0; f; l]where c0 = 1� (1 + �1) � (1� c) � c� �1, s0 = (1 + �2) � sand r0 =
 +maxf� log2(�21(1� c)) ; log2(l)� log2(�22s)g.Proof: The proof is reminiscent of Adleman's proof that RP � P= poly [Ad]. Suppose we are givena pcp system for which we want to reduce the randomness complexity. The idea is that it su�cesto choose the random pad for the veri�er out of a relatively small set of possibilities (instead thanfrom all 2r possibilities). Furthermore, most small sets (i.e., sets of size linear in l) are good forthis purpose. This suggest randomly mapping an input x for the original pcp system into an input(x;R) for the new system, where R is a random set of m = O(l) possible random-pads for theoriginal system. The new veri�er will select a random-pad uniformly in R, thus using only log2 jRjrandom coins, and run the original veri�er using this random-pad. Details follow.We start with the simpler case stated in Part (1). Let (Y;N) 2 FPCP1;s[r; f; l] and V be a veri�erdemonstrating this fact. The random reduction maps x 2 f0; 1gn to (x;R), where R is a uniformlychosen m-multi-subset of f0; 1gr for l def= l(n), r def= r(n), s def= s(n), � def= �(n) and m def=
l�2s . (The

Free Bits in PCP 117constant
 is chosen to make the Cherno� bound, used below, hold.) On input (x;R), the newveri�er V 0 uniformly selects c 2 R and invokes V with input x and random-pad c. Clearly, thecomplexities of V 0 are as claimed above. Also, assuming that V always accepts x, when given accessto an oracle � then, for every possible pair (x;R) to which x is mapped, V 0 always accepts (x;R)when given access to the oracle �. It remains to upper bound, for each x 62 L and most R's, theprobability that V 0 accepts (x;R) when given access to an arbitrary oracle.Fixing any x 62 L and any oracle �, we bound the probability that V 0, give access to �, accepts(x;R) for most R's. A set R is called bad for x with respect to � if for more than a s0 fraction of thec 2 R the veri�er V accepts x when given access to � and random-pad c. Let R = (r(1); :::; r(m)) bea uniformly selected multi-set. For every i 2 [m] (a possible random choice of V 0), we de�ne a 0-1random variable �i so that it is 1 i� V on random-pad r(i) and access to oracle � accepts the inputx. Clearly, the �i's are mutually independent and each equals 1 with probability � � s. Using amultiplicative Cherno� Bound (cf. [MoRa, Theorem 4.3]), the probability that a random R is bad(for x w.r.t. �) is bounded byPr" mXi=1 �i � (1 + �) �ms # < 2�
(�2�ms)Thus, by the choice of m, the probability that a random R is bad for x, with respect to any �xedoracle, is smaller than 12 �2�l. Since they are only 2l relevant oracles, the �rst part of the propositionfollows.For the second part of the proposition, we repeat the same argument, except that now we need totake care of the completeness bound in the resulting pcp system. This is done similarly to the waywe dealt with the soundness bound, except that we do not need to consider all possible oracles {it su�ces to consider the best oracle for any x 2 Y . When applying the multiplicative Cherno�bound it is important to note that, since we are interested in the rejection-event, the relevantexpectation is m � (1� c) (and not m � c). Thus, as long as m � 2
�21(1�c) , at least 34 of the possiblesets R cause V 0 to accept x 2 Y with probability at least 1� (1 + �1) � (1� c) = c� (1� c)�1. Thesecond part of the proposition follows. Combining Propositions 5.2.1 and 5.2.2, we obtain the arandomized reduction of pcp systems which yields the e�ect of Proposition 5.2.1 at much lower (andin fact minimal) cost in the randomness complexity of the resulting pcp system. This reductionis analogous to the well-known transformation of Berman and Schnitger [BeSc]. The reduction (ineither forms), plays a central role in deriving clique approximation results via the FGLSS method:applying the FGLSS-reduction to proof systems obtained via the second item (below), one derivesgraphs of size N def= 2(1+�+f)�t with clique-gap 2t (which can be rewritten as N1=(1+f+�)).Corollary 5.2.3 (probabilistic gap ampli�cation at minimal randomness cost):(1) (Combining the two propositions): For every admissible k : Z+ ! Z+,FPCP1; 12 [r; f; l] �KR FPCP1;2�k+1 [r + log2 q + O(1) + k; kf; l]where q is the query complexity of the �rst proof system.(2) (using amortized free-bit complexity): For every � > 0 there exists a constant c so thatFPCP[log; f] �KR FPCP1;2�t[(1 + �) � t; f � t; l]where t(n) = c log2 n.

118 Bellare, Goldreich, SudanProof: Suppose that (Y;N) 2 FPCP1;1=2[r; f; l]. Clearly, l � 2r � q, where q(n) = poly(n) is thequery complexity of the veri�er. Then, applying Proposition 5.2.1, we get (Y;N) 2 FPCP1;1=2k[kr;kf; 2r � q]. Applying Part (1) of Proposition 5.2.2, we obtain (Y;N) �KR FPCP1; 12k�1 [r0; kf], wherer0 = O(1) + log2(2rq=2�k) = O(1) + r + k + log2 q. The �rst part of the corollary follows.Suppose now that a language L has a proof system as in the hypothesis of the second part. Then,there exists a logarithmically bounded function m so that L 2 FPCP1;1=2m[r;mf; l], where r(n) �� � log2 n and l(n) � n� for some constants � and �. Invoking a similar argument (to the above), weget L �KR FPCP1; 12km�1 [r0; k �mf], where r0(n) = O(1)+km+(�+�) � log2 n. Now, setting k(n) sothat k(n)�m(n) � �+�� �log2 n, the corollary follows. An alternative gap ampli�cation procedurewhich does not employ randomized reductions is presented below. This transformation increasesthe randomness complexity of the pcp system more than the randomized reduction presented above(speci�cally, by a factor of 2). The transformation is used to obtain in-approximability results underthe assumption P 6= NP (rather than under NP 6� BPP). It is stated here only for the one-sidederror case:Proposition 5.2.4 (deterministic gap ampli�cation at low randomness cost): For every �; s > 0and every admissible function k :Z+!Z+FPCP1;s[r; f; l]� FPCP1;sk [O(r) + (2 + �)k; (1 + �)kf; l]:Actually, the constant in the O-notation is minf1; 2+(4=�)log2(1=s)g.The use of random walks on expander graphs for error reduction was suggested by Ajtai, Komlos andSzemeredi [AKS] (cf., [CW]). The use of random walks on expander graphs for gap ampli�cation inthe context of pcp originates in [ArSa]. The value of the constant multiplier of k in the randomnesscomplexity of the resulting pcp system, depends on the expander graph used. Speci�cally, using adegree d expander graph with second eigenvalue � yields a factor of log2 d1+log2 � . Thus, it is essentialto use Ramanujan graphs [LPS] in order to obtain the claimed constant 2(1 + �).Proof of Proposition 5.2.4: For simplicity assume s = 1=2. The idea is to use a \pseudorandom"sequence generated by a random walk on an expander graph in order to get error reduction atmoderate randomness cost. Speci�cally, we will use a Ramanujan expander graph of constantdegree d and second eigenvalue � � 2pd (cf., [LPS]). The constant d will be determined so thatd > 24+ 8� (and d < 26+ 8�). It is well-known by now, that a random walk of length t in an expanderavoids a set of density � with probability at most (�+ �d)t (cf., [AKS, Kah]). Thus, as a preparationstep, we reduce the error probability of the pcp system top def= �d = 2pd (5.1)This is done using the trivial reduction of Proposition 5.2.1. We derive a proof system with errorprobability p, randomness complexityr0 def= r � log2(1=p) = r � log2(pd=2) = O(r) (5.2)and free-bit complexity f 0 def= f � log2(1=p) = f � log2(pd=2) (5.3)(In case we start with soundness error s, where s > p, the multiplier will be log1=s(1=p) insteadof log2(1=p).) Now we are ready to apply the expander walk technique. Using an expander walk

Free Bits in PCP 119of length t, we transform the proof system into one in which the randomness complexity is r0 +(t � 1) � log2 d, the free-bit complexity is tf 0 = tf � log2(pd=2) and the error probability is atmost (2p)t = (4=pd)t = 2�k, where k def= t � log2(pd=4). Using log2 d > 8� + 4, we can bound therandomness complexity by r0 + t log2 d = r0 + log2 d12 � (log2 d)� 2 � k< r0 + (2 + �) � kand the free-bit complexity bytf � log2(pd=2) = 12 � (log2 d)� 112 � (log2 d)� 2 � kf< (1 + �) � kfThe proposition follows.Using Proposition 5.2.4, we obtain the following corollary which is used in deriving clique in-approximability results under the P 6= NP assumption, via the FGLSS method: applying theFGLSS-reduction to proof systems obtained via this corollary, one derives graphs of size N def=2(2+�+f)�t with clique-gap 2t (which can be rewritten as N1=(2+f+�)).Corollary 5.2.5 For every � > 0 there exists a constant c so thatFPCP[log; f] � FPCP1;2�t[(2 + �) � t; (1 + �)f � t; l]where t(n) = c log2 n.5.2.2 Trading-o� gap location and free-bit complexityThe following transformation is analogous to the randomized layering procedure for the cliquepromise problem (i.e., Proposition 4.1.6). The transformation increases the acceptance probabilitybounds at the expense of increasing the free-bit complexity.Proposition 5.2.6 (increasing acceptance probabilities):(1) (using a randomized reduction which preserves the randomness of the proof system): For alladmissible functions c; s : Z+ ! [0; 1], and r; f;m : Z+ ! Z+,FPCPc;s[r; f] �KR FPCPc0;s0 [r; f + log2m]where c0 = 1� 4(1� c)m and s02 = m � s.Note that if c0 > 1� 2�r then c0 = 1.(2) (inclusion which moderately increases the randomness of the proof system): For all admissiblefunctions c; s : Z+ ! [0; 1], and r; f;m : Z+ ! Z+,FPCPc;s[r; f] � FPCPc0;s0 [r0; f + log2m]� where if m � 1=c then r0 = 2 �maxfr; logmg, c0 = m2 � c and s0 = m � s;� and otherwise (i.e., for m > 1=c), r0 = O(maxfr; logmg + mc), c0 = 1 � 2��(mc) ands0 = m � s.

120 Bellare, Goldreich, SudanProof: Suppose we are given a pcp system for which we want to increase the acceptance probabilitybound in the completeness condition. The idea is to allow the new veri�er to select m random-pads for the original veri�er and query the oracle as to which pad to use. A straightforwardimplementation of this idea will increase the randomness complexity of the veri�er too much.Instead, we use two alternative implementations, which yield the two parts of the proposition. Inboth implementations the free-bit complexity increases by log2m and the soundness bound increasesby a factor of m.The �rst implementation employs a technique introduced by Lautemann (in the context of BPP)[Lau]. Using a randomized reduction, we supply the new veri�er with a sequence of m possible\shifts" that it may e�ect. The new veri�er selects one random-pad for the original veri�er andgenerates m shifts of this pad. Now, the new veri�er queries the oracle as to which of these shiftsit should use as a random-pad for the original veri�er. Details follow.We �rst present a random reduction mapping x 2 f0; 1gn to (x; S), where S is a uniformly chosenm-multi-subset of f0; 1gr, for r def= r(n). On input (x; S), the new veri�er V 0 uniformly selectsc 2 f0; 1gr and queries the oracle on (x; c) receiving an answer i 2 [m]. Intuitively, V 0 asks whichshift of the random-pad to use. Finally, V 0 invokes V with input x and random-pad c� si, wheresi is the ith string in S. Clearly, the complexities of V 0 are as claimed above. Also, assuming thatV accepts x with probability �, we get that, for every S, veri�er V 0 accepts (x; S) with probabilityat most m � �. On the other hand suppose that, when given access to oracle �, veri�er V acceptsx with probability �. It follows that there exists a set R of �2r random-pads for V so that if Vuses c 2 R (and queries oracle �) then it accepts x. Fixing any c 2 f0; 1gr, we ask what is theprobability, for a uniformly chosen S = fsi : i�mg, that there exists an i 2 [m] so that c� si 2 R.Clearly, the answer is 1 � (1 � �)m. Thus, by Markov Inequality, with probability at least 34 , auniformly chosen S = fsig has the property that for at least 1� 4 � (1� �)m of the c's (in f0; 1gr)there exists an i 2 [m] so that c� si 2 R. Part (1) of the proposition follows.To prove Part (2) of the proposition, we use an alternative implementation of the above idea, whichconsists of letting the new veri�er V 0 generate a \pseudorandom" sequence of possible random-padsby itself. V 0 will then query the oracle as to which random-pad to use, in the simulation of V ,and complete its computation by invoking V with the speci�ed random-pad. To generate the\pseudorandom" sequence we use the sampling procedure of [BGG]. Speci�cally, for m � 1=c thismerely amounts to generating a pairwise independent sequence of uniformly distributed strings inf0; 1gr, which can be done using randomness maxf2r; 2 log2mg. Otherwise (i.e., for m > 1=c) theconstruction of [BGG] amounts to generating �(cm) such related sequences, where the sequencesare related via a random walk on a constant degree expander. Part (2) follows.The following corollary exempli�es the usage of the above proposition. In case c(n) = n��and r(n) = O(logn), the gap is preserved (upto a logarithmic factor) and the free-bit complexityincreases by a log2 1=c additive term. Thus, the corollary provides an alternative way of deriv-ing the reverse-FGLSS transformation (say, Proposition 4.1.7) from the simple clique veri�er ofTheorem 4.1.2. Speci�cally, one may apply the following corollary to the simple clique veri�erof Theorem 4.1.2, instead of combining the layered-graph veri�er8 (of Theorem 4.1.3), and thegraph-layering process of Proposition 4.1.6.Corollary 5.2.7 For all admissible r; f : Z+ ! Z+, so that 8n : r(n) � 2,FPCPc;s[r; f] �KR FPCP1;rc �s[r; f + log2 r + log2(1=c)]8which generalizes the simple clique veri�er

Free Bits in PCP 121We conclude with another transformation which is reminiscent to an assertion made in Sec-tion 4.1. The following transformation has an opposite e�ect than the previous one, reducing thefree-bit complexity at the expense of lowering the bounds on acceptance probability. The transfor-mation can be e�ected provided each possible random-pad in the original pcp system has enoughfree bits.Proposition 5.2.8 (decreasing acceptance probabilities): For all admissible functions c; s : Z+ ![0; 1], and r; f; k : Z+ ! Z+ so that k � f , if L 2 FPCPc;s[r; f] then L 2 FPCP c2k ; s2k [r + k; f � k].Furthermore, the average free-bit complexity of the resulting system is maxf0; fav � kg, where favis the average free-bit complexity of the original system.Proof: Let V be a veri�er satisfying the condition of the proposition. We construct a new ver-i�er V 0 that on input x 2 f0; 1gn, setting r = r(n), k = k(n) and f = f(n), acts as follows.Veri�er V 0 uniformly selects a random-pad c 2 f0; 1gr for V , and generates all possible acceptingcon�gurations with respect to V (x) and random-pad c. In case there are less than 2k acceptingcon�gurations we add dummy con�gurations to reach the 2k count. We now partition the set ofresulting con�gurations (which are accepting and possibly also dummy) into 2k parts of about thesame size (i.e., some parts may have one con�guration more than others). Actually, if we onlycare about average free-bit complexity then any partition of the accepting con�gurations into 2knon-empty parts will do. The new veri�er, V 0, uniformly selects i 2 [2k] thus specifying one ofthese parts, denoted Ai. Next, V 0 invokes V with random-pad c and accepts if and only if theoracle's answers form an accepting con�guration which is in Ai (i.e., resides in the selected portionof the accepting con�gurations). (We stress that in case c has less than 2k accepting con�gurationsand the selected Ai does not contain any accepting con�guration then V 0 rejects on coins (i; c).)Clearly, the randomness complexity of the new veri�er is r + k.To analyze the other parameters of V 0, we �x any x 2 f0; 1gn. For sake of simplicity, we �rst assumethat the number of accepting con�gurations of V for any random-pad is a power of 2. Then thenumber of accepting con�gurations of V 0 for any random-pad (c; i) 2 f0; 1gr � [2k] is 2m�k, where2m is the number of accepting con�gurations of V on random-pad c. Thus, the free-bit complexityof V 0 is f � k. Finally, we relate the acceptance probability of V 0 to that of V . This is done byreformulating the execution of V 0 with oracle � as consisting of two steps. First V 0 invokes V withaccess to �. If V reaches a rejecting con�guration then V 0 rejects as well; otherwise (i.e., when Vreaches an accepting con�guration), V accepts with probability 2�k (corresponding to uniformlyselecting i 2 [2k]). It follows that on input x and access to oracle �, the veri�er V 0 accepts withprobability �2k , where � denotes the probability that V accepts input x when given access to oracle�.In general, our simplifying assumption that the number of accepting con�gurations of V is a powerof 2, may not hold and the analysis becomes slightly more cumbersome. Firstly, the number ofaccepting con�gurations of V 0 for a random-pad (c; i) is either dM=2ke or bM=2kc, where M is thenumber of accepting con�gurations of V on random-pad c. Thus, in the worse-case the numberof accepting con�gurations for V 0 (on random-pad (c; i)) is dM=2ke and it follows that the free-bit complexity of V 0 is log2d2f=2ke = f � k. Furthermore, the expected number of acceptingcon�gurations (for a �xed c and uniformly chosen i 2 [2k]) is exactly M=2k (even if M < 2k) andso the free-bit complexity of V 0 equals fav � k. Finally, observe that the argument regarding theacceptance probabilities remains unchanged (and actually it does not depend on the partition ofthe accepting con�gurations into 2k non-empty parts). The proposition follows.We conclude with a transformation which reduces the free-bit complexity. Unlike Proposition 5.2.8,the following does not decrease the completeness parameters. Furthermore, the transformation

122 Bellare, Goldreich, Sudanincreases the soundness parameter and does not preserve the gap (between the completeness andsoundness parameters).Proposition 5.2.9 (decreasing free-bit complexity): Let c; s : Z+ ! [0; 1] be admissible functionsand r; f; k : Z+ ! Z+. Suppose L 2 FPCPc;s[r; f] with a veri�er for which the �rst k oracle-answersfor each random-pad allow at most 2f�k accepting con�gurations. Then L 2 FPCPc0;s0[r + k; f 0],where c0 = 1� 1�c2k , s0 = 1� 1�s2k , and f 0 = log2(2f�k + 2k � 1).The above can be further generalized; yet the current paper only utilizes the special case in whichc = 1 (speci�cally, in the proof of Part 3.2 in Proposition 5.1.7, we use f = 2 and k = 1 obtainingf 0 = log2 3 and c0 = 1 and s0 = 1+s2).Proof: The proof is similar to the proof of Proposition 5.2.8. Again, we consider a veri�er Vas guaranteed by the hypothesis and let Ai be the set of (at most 2f�k) accepting con�gurationswhich are consistent with the ith possibility of k oracle-answers to the �rst k queries. Denote theith possibility by �i (i.e., all con�gurations in Ai start with �i). We construct a new veri�er, V 0,which uniformly selects a random-pad c for V and i 2 [2k] (specifying a part Ai as above). Theveri�er V 0 makes the �rst k queries of V and if the answers di�er from �i then V 0 halts and accepts.Otherwise, V 0 continues the emulation of V and accepts i� V accepts.Clearly, V 0 uses r+k coin-tosses. The accepting con�gurations of v0 on random-pad (c; i) are thosein Ai as well as the \truncated V con�gurations" �j , for j 6= i. Thus, there are 2f�k + 2k � 1accepting con�gurations. Suppose V �(x) accepts with probability p, then V 0 accepts input x withoracle access to � with probability (1� 2�k) + 2�k � p = 1� 1�p2k . The proposition follows.

Bibliography
[Ad] L. Adleman. Two theorems on random polynomial time. Proceedings of the NineteenthAnnual Symposium on the Foundations of Computer Science, IEEE, 1978.[AKS] M. Ajtai, J. Komlos and E. Szemeredi. Deterministic Simulation in Logspace.Proceedings of the Nineteenth Annual Symposium on the Theory of Computing, ACM,1987.[ASE] N. Alon, J. Spencer and P. Erdos. The Probabilistic Method. John Wiley andSons, 1992.[AmKa] E. Amaldi and V. Kann. The complexity and approximability of �nding maximumfeasible subsystems of linear relations. Theoretical Computer Science, vol. 147, pages181{210, 1995.[Ar] S. Arora. Reductions, Codes, PCPs and Inapproximability. Manuscript, May 1995.[ABSS] S. Arora, L. Babai, J. Stern and Z. Sweedyk. The hardness of approximateoptima in lattices, codes and linear equations. FOCS, 1993.[ALMSS] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof veri�cationand intractability of approximation problems. Proceedings of the Thirty Third AnnualSymposium on the Foundations of Computer Science, IEEE, 1992.[ArSa] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP.Proceedings of the Thirty Third Annual Symposium on the Foundations of ComputerScience, IEEE, 1992.[Bab] L. Babai. Trading Group Theory for Randomness. Proceedings of the Seventeenth An-nual Symposium on the Theory of Computing, ACM, 1985.[BFL] L. Babai, L. Fortnow and C. Lund. Non-deterministic Exponential time has two-prover interactive protocols. Proceedings of the Thirty First Annual Symposium on theFoundations of Computer Science, IEEE, 1990.123

124 Bellare, Goldreich, Sudan[BFLS] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in poly-logarithmic time. Proceedings of the Twenty Third Annual Symposium on the Theoryof Computing, ACM, 1991.[BaEv1] R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the weightedvertex cover problem. In Jour. of Algorithms Vol. 2, 1981, pages 198{201.[BaEv] R. Bar-Yehuda and S. Even. A local ratio theorem for approximating the weightedvertex cover problem. In Analysis and Design of Algorithms for Combinatorial ProblemsVol. 25 of Annals of Discrete Math, Elsevier, 1985.[BaMo] R. Bar-Yehuda and S. Moran. On approximation problems related to the indepen-dent set and vertex cover problems. Discrete Applied Mathematics Vol. 9, 1984, pages1{10.[Be] M. Bellare. Interactive proofs and approximation: reductions from two provers in oneround. Proceedings of the Second Israel Symposium on Theory and Computing Systems,1993.[BCHKS] M. Bellare, D. Coppersmith, J. H�astad, M. Kiwi and M. Sudan. Linearitytesting in characteristic two. Manuscript, November 1994.[BGG] M. Bellare, O. Goldreich and S. Goldwasser. Randomness in interactive proofs.Proceedings of the Thirty First Annual Symposium on the Foundations of ComputerScience, IEEE, 1990.[BGS] M. Bellare,O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability | TowardsTight Results (Version 2). August 1995. TR95-024 of ECCC, the Electronic Colloquiumon Computational Complexity, http://www.eccc.uni-trier.de/eccc/.[BGLR] M. Bellare, S. Goldwasser, C. Lund and A. Russell. E�cient probabilisticallycheckable proofs and applications to approximation. Proceedings of the Twenty FifthAnnual Symposium on the Theory of Computing, ACM, 1993. (See also Errata sheetin Proceedings of the Twenty Sixth Annual Symposium on the Theory of Computing,ACM, 1994).[BeRo] M. Bellare and P. Rogaway. The complexity of approximating a quadratic program.Complexity of Numerical Optimization, ed. P. M. Pardalos, World Scienti�c, 1993.[BeSu] M. Bellare and M. Sudan. Improved non-approximability results. Proceedings ofthe Twenty Sixth Annual Symposium on the Theory of Computing, ACM, 1994.[BGKW] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover inter-active proofs: How to remove intractability assumptions. Proceedings of the TwentiethAnnual Symposium on the Theory of Computing, ACM, 1988.[BeSc] P. Berman and G. Schnitger. On the complexity of approximating the independentset problem. Information and Computation 96, 77{94 (1992).[Bl] A. Blum. Algorithms for approximate graph coloring. Ph. D Thesis, Dept. of ComputerScience, MIT, 1991.

Free Bits in PCP 125[BLR] M. Blum, M. Luby and R. Rubinfeld. Self-testing/correcting with applications tonumerical problems. Journal of Computer and System Sciences Vol. 47, pp. 549{595,1993.[BrNa] J. Bruck and M. Naor. The hardness of decoding with preprocessing. IEEE Trans-actions on Information Theory, Vol. 36, No. 2, pp. 381{385, 1990.[BoHa] R. Boppana and M. Hald�orsson. Approximating maximum independent sets byexcluding subgraphs. BIT, Vol. 32, No. 2, 1992.[CrKa] P. Crescenzi and V. Kann, A compendium of NP optimization problems. TechnicalReport, Dipartimento di Scienze dell'Informazione, Universit�a di Roma \La Sapienza",SI/RR-95/02, 1995. The list is updated continuously. The latest version is available byanonymous ftp from nada.kth.se as Theory/Viggo-Kann/compendium.ps.Z.[CST] P. Crescenzi, R. Silvestri and L. Trevisan. To Weight or not to Weight: Whereis the Question? Manuscript, October 1995.[CW] A. Cohen and A. Wigderson. Dispersers, deterministic ampli�cation, and weak ran-dom sources. Proceedings of the Thirtieth Annual Symposium on the Foundations ofComputer Science, IEEE, 1989.[Co] S. A. Cook. The Complexity of Theorem-Proving Procedures. Proceedings of the ThirdAnnual Symposium on the Theory of Computing, ACM, 1971.[EIS] S. Even, A. Itai and A. Shamir. On the complexity of timetable and multicommodity
ow problems. SIAM J. on Computing Vol. 5, 691{703, 1976.[ESY] S. Even, A. Selman and Y. Yacobi. The complexity of promise problems with ap-plications to public-key cryptography. Information and Control Vol. 2, 159{173, 1984.[Fei] U. Feige. Randomized graph products, chromatic numbers, and the Lov�asz theta func-tion. Proceedings of the Twenty Seventh Annual Symposium on the Theory of Comput-ing, ACM, 1995.[FeGo] U. Feige and M. Goemans.Approximating the value of two prover proof systems, withapplication to Max-2SAT and Max-DICUT. Proceedings of the Third Israel Symposiumon Theory and Computing Systems, IEEE, 1995.[FGLSS] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximatingclique is almost NP-complete. Proceedings of the Thirty Second Annual Symposium onthe Foundations of Computer Science, IEEE, 1991.[FeKi] U. Feige and J. Kilian. Two prover protocols { Low error at a�ordable rates. Pro-ceedings of the Twenty Sixth Annual Symposium on the Theory of Computing, ACM,1994.[FeLo] U. Feige and L. Lov�asz. Two-prover one round proof systems: Their power andtheir problems. Proceedings of the Twenty Fourth Annual Symposium on the Theory ofComputing, ACM, 1992.[FRS] L. Fortnow, J. Rompel and M. Sipser. On the power of multiprover interactiveprotocols. Proceedings of the 3rd Structures, IEEE, 1988.

126 Bellare, Goldreich, Sudan[Fu] M. Furer. Improved hardness results for approximating the chromatic number.Manuscript, 1994.[FGMSZ] M. Furer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Complete-ness and Soundness in Interactive Proof Systems. Advances in Computing Research: aresearch annual, Vol. 5 (Randomness and Computation, S. Micali, ed.), pp. 429{442,1989.[GJ1] M. Garey and D. Johnson. The complexity of near optimal graph coloring. Journalof the ACM Vol. 23, No. 1, 43{49, 1976.[GJ2] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory ofNP-Completeness. W. H. Freeman and Company, 1979.[GJS] M. Garey, D. Johnson and L. Stockmeyer. Some simpli�ed NP-complete graphproblems. Theoretical Computer Science 1, pp. 237{267, 1976.[GoWi1] M. Goemans and D. Williamson. New 3/4-approximation algorithm for MAX SAT.Proceedings of the 3rd Mathematical Programming Society Conference on Integer Pro-gramming and Combinatorial Optimization, 1993.[GoWi2] M. Goemans and D. Williamson. :878 approximation algorithms for Max-CUT andMax-2SAT. Proceedings of the Twenty Sixth Annual Symposium on the Theory of Com-puting, ACM, 1994.[GMW] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but theirvalidity and a methodology of cryptographic protocol design. Proceedings of the TwentySeventh Annual Symposium on the Foundations of Computer Science, IEEE, 1986.[GMR] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interac-tive proofs. SIAM J. Computing Vol 18, No. 1, 186{208, 1989.[GS] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive ProofSystems.Proceedings of the Eighteenth Annual Symposium on the Theory of Computing,ACM, 1986.[Has] J. H�astad. private communication, September 1995.[Hoc] D. Hochbaum. E�cient algorithms for the stable set, vertex cover and set packingproblems. Discrete Applied Mathematics, Vol 6, pages 243{254, 1983.[ImZu] R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. Proceedings ofthe Thirtieth Annual Symposium on the Foundations of Computer Science, IEEE, 1989.[JLL] N.D. Jones, Y.E. Lien and W.T. Laaser. New problems complete for non-deterministic log space. Math. Systems Theory Vol. 10, 1976, pages 1{17.[Kah] N. Kahale. On the second eigenvalue and linear expansion of regular graphs. Proceed-ings of the Thirty Third Annual Symposium on the Foundations of Computer Science,IEEE, 1992.

Free Bits in PCP 127[KKLP] V. Kann, S. Khanna, J. Lagergren and A. Panconesi.On the hardness of approx-imating MAX k-CUT and its dual. Technical Report of the Department of NumericalAnalysis and Computing Science, Royal Institute of Technology, Stockholm, TRITA-NA-P9505, 1995.[KMS] D. Karger, R. Motwani and M. Sudan.Approximate graph coloring by semide�niteprogramming. Proceedings of the Thirty Fifth Annual Symposium on the Foundationsof Computer Science, IEEE, 1994.[Ka] R. Karp. Reducibility among combinatorial problems. Complexity of Computer Com-putations, Miller and Thatcher (eds.), Plenum Press, New York (1972).[KLS] S. Khanna, N. Linial and S. Safra. On the hardness of approximating the chro-matic number. Proceedings of the Second Israel Symposium on Theory and ComputingSystems, 1993.[LaSh] D. Lapidot and A. Shamir. Fully Parallelized Multi-prover protocols for NEXP-time.Proceedings of the Thirty Second Annual Symposium on the Foundations of ComputerScience, IEEE, 1991.[Lau] C. Lautemann. BPP and the Polynomial Hierarchy. Information Processing Letters,Vol. 17 (4), pages 215{217, 1983.[Lev] L.A. Levin. Universal'ny��e pereborny��e zadachi (universal search problems : in russian).Problemy Peredachi Informatsii, 9 (3), pages 265{266, 1973.[LPS] A. Lubotzky, R. Phillips and P. Sarnak. Explicit Expanders and the Ramanu-jan Conjectures. Proceedings of the Eighteenth Annual Symposium on the Theory ofComputing, ACM, 1986.[LuYa] C. Lund and M. Yannakakis. On the hardness of approximating minimization prob-lems. Journal of the ACM, vol. 41, pages 960{981, 1994.[LFKN] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for In-teractive Proof Systems. Proceedings of the Thirty First Annual Symposium on theFoundations of Computer Science, IEEE, 1990.[MaSl] F. MacWilliams and N. Sloane. The Theory of Error-Correcting Codes. North-Holland, 1981.[MoRa] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge UniversityPress, 1995.[MoSp] Monien and Speckenmeyer. Some further approximation algorithms for the vertexcover problem. Proceedings of CAAP 83 , Lecure Notes in Computer Science Vol. 159,Springer-Verlag, 1983.[PaYa] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complex-ity classes. Journal of Computer and System Sciences 43, pp. 425{440, 1991.[Pet] E. Petrank. The Hardness of Approximations: Gap Location. TR{754, Departmentof Computer Science, Technion { Israel Institute of Technology, 1992.

128 Bellare, Goldreich, Sudan[PoSp] A. Polishchuk and D. Spielman. Nearly-linear size holographic proofs. Proceedingsof the Twenty Sixth Annual Symposium on the Theory of Computing, ACM, 1994.[Raz] R. Raz. A parallel repetition theorem. Proceedings of the Twenty Seventh AnnualSymposium on the Theory of Computing, ACM, 1995.[SaGo] S. Sahni and T. Gonzales. P-complete approximation problems. J. of the ACM,23:555{565, 1976.[Ta] G. Tardos.Multi-prover encoding schemes and three prover proof systems. Proceedingsof the Ninth Annual Conference on Structure in Complexity Theory , IEEE, 1994.[Sh] A. Shamir. IP=PSPACE. Proceedings of the Thirty First Annual Symposium on theFoundations of Computer Science, IEEE, 1990.[SSTW] G. Sorkin, M. Sudan, L. Trevisan and D. Williamson. In preparation. 1995.[Ya] M. Yannakakis, On the approximation of maximum satis�ability. Journal of Algo-rithms, vol. 17, pages 475{502, 1994.[Zu] D. Zuckerman. NP-Complete Problems have a version that is hard to Approximate.Proceedings of the Eighth Annual Conference on Structure in Complexity Theory , IEEE,1993.

