On Teaching the Basics of Complexity Theory
(In Memory of Shimon Even [1935-2004])

Oded Goldreich
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, ISRAEL.
Email: oded.goldreich@weizmann.ac.il

February 19, 2005

Abstract

We outline a conceptual framework for teaching the basic notions and results of complexity
theory. Our focus is on using definitions and on organizing the presentation in a way that
reflects the fundamental nature of the material. We do not attempt to provide a self-contained
presentation of the material itself, but rather outline our (non-innovative) suggestions regarding
how this material should be presented in class.

We discuss the P-vs-NP Question, the general notion of a reduction, and the theory of NP-
completeness. In particular, we suggest to present the P-vs-NP Question both in terms of search
problems and in terms of decision problems (where NP is viewed as a class of proof systems). As
for the theory of NP-completeness, we suggest to highlight the mere existence of NP-complete
sets.

Introduction

Nothing (professional) was closer to Shimon Even’s heart than good teaching. One central aspect
of good teaching is putting things in the right perspective; that is, a perspective that clarifies the
motivation for the various definitions and results.

It is easy to provide a good perspective on the basic notions and results of complexity theory,
because these are of fundamental nature and of great intuitive appeal. Unfortunately, often this is
not the way this material is taught. The annoying (and quite amazing) consequences are students
that have only a vague understanding of the meaning of these fundamental notions and results.

The source of trouble and eliminating it

In my opinion, it all boils down to taking the time to explicitly discuss the meaning of definitions
and results. A related issue is using the “right” definitions (i.e., those that reflect better the
fundamental nature of the notion being defined) and teaching things in the (conceptually) “right”
order. Two concrete examples follow.

Typically, NP is defined as the class of languages recognized by non-deterministic polynomial-
time machines. Even bright students may have a hard time figuring out (by themselves) why one
should care about such a class. On the other hand, when defining NP as the class of assertions
that have easily verifiable proofs, each student is likely to understand its fundamental nature.
Furthermore, the message becomes even more clear when discussing the search version analogue.

Similarly, one typically takes the students throughout the detailed proof of Cook’s Theorem
before communicating to them the striking message (i.e., that “universal” problems exist at all,
let alone that many natural problems like SAT are universal). Furthermore, in some cases, this
message is not communicated explicitly at all.

Concrete suggestions

The rest of this article provides concrete suggestions for teaching the basics of complexity theory.
The two most important suggestions were already mentioned above:

1. The teacher should communicate the fundamental nature of the P-vs-NP Question while
referring to definitions that (clearly) reflect this nature.

2. The teacher should communicate the striking significance of the mere existence of NP-
complete problems (let alone natural ones) before exhausting the students with complicated
reductions.

In addition, I suggest to set the stage for the course (or series of lectures) by providing a “definition”
of complexity theory. I would say that this is a central field of Theoretical Computer Science,
concerned with the study of the intrinsic complexity of computational tasks, where this study tend
to aim at gemerality: It focuses on natural computational resources, and the effect of limiting these
resources on the class of problems that can be solved. Put in other words, Complexity Theory aims
at understanding the nature of efficient computation.

Finally, until we reach the day in which every student can be assumed to have understood
the meaning of the P-vs-NP Question and of NP-completeness, I suggest not to assume such an
understanding when teaching an advanced complexity theory course. Instead, I suggest to start
with a fast discussion of this basic material, making sure that the students understand its conceptual

meaning.! In fact, this article is based on my notes for three lectures (covering the basic material)
which were given in a graduate course on complexity theory.

Organization

The rest of this article focuses on material that is typically taught in a basic course on computability
(and complexity), and is probably well-known to the reader. Thus, my focus is not on the material
itself, but rather on how it should be presented in class.

In addition, I mention some topics that are typically not covered in a basic course on computabil-
ity (and complexity). These topics include self-reducibility (of search problems), the existence of
NP-sets that are neither in P nor NP-complete, the effect of having coNP-sets that are NP-complete,
and the existence of optimal search algorithms for NP-relations.

Contents

1 P versus NP 3
1.1 The search version: finding versus checking 3
1.2 The decision version: proving versus verifying 4
1.3 Equivalence of the two formulations 5

2 Reductions and Self-reducibility 5
2.1 The general notion of a reduction Lo oL 5
2.2 Self-reducibility of search problems 6

3 NP-completeness 7
3.1 Definitions L e e e e 8
3.2 The existence of NP-complete problems 8
3.3 CSAT and SAT L e 9
3.4 NP sets that are neither in P nor NP-complete 9

4 Three additional topics 10
4.1 The class coNP and NP-completeness 10
4.2 Optimal search algorithms for NP-relations 11
4.3 Promise Problems 12

Historical Notes 14

!Needless to say, the rest of the course should also clarity the conceptual meaning of the material being taught.

1 P versus NP

Most students have heard of P and NP before, but we suspect that many have not obtained a
good explanation of what the P vs NP Question actually represents. This unfortunate situation is
due to using the standard technical definition of NP (which refers to non-deterministic polynomial-
time) rather than more cumbersome definitions that clearly capture the fundamental nature of NP.
Below, we take the alternative approach. In fact, we present two fundamental formulations of the
P vs NP Question, one in terms of search problems and the other in terms of decision problems.

Efficient computation. The teacher should discuss the association of efficiency with polynomial-
time, stressing that this association merely provides a convenient way of addressing fundamental
issues. In particular, polynomials are merely a “closed” set of moderately growing functions, where
“closure” means closure under addition, multiplication and functional composition. These closure
properties guarantee the closure of the class of efficient algorithm under natural composition of
algorithms.

1.1 The search version: finding versus checking

In the eyes of non-expets, search problems are more natural than decision problems: typically,
people seeks solutions more than they stop to wonder whether or not solutions exist. Thus, we
recommend to start by discussing the fundamental implication of the P-vs-NP Question on search
problems. Admittingly, the cost is more cumbersome formulations, but it is more than worth-
while. Furthermore, the equivalence to the decision problem formulation gives rise to conceptually
appealing exercises.

We focus on polynomially-bounded relations, where a relation R C {0,1}* x{0,1}* is polynomially-
bounded if there exists a polynomial p such that for every (z,y) € R it holds that |y| < p(|x|). For
such a relation it makes sense to ask whether, given an “instance” x, one can efficiently find a
“solution” y such that (z,y) € R. The polynomial bound on the length of the solution (i.e., y)
guarantees that the intrinsic complexity of outputting a solution may not be due to the length (or
mere typing) of the required solution.

The class P as a natural class of search problems. With each polynomially-bounded relation
R, we associate the following search problem: given x find y such that (x,y) € R or state that
no such y exists. The class P corresponds to the class of search problems that are solvable in
polynomial-time; that is, a relation R (or rather the search problem of R) is polynomial-time solvable
if there exists a polynomial-time algorithm that given z find y such that (z,y) € R or state that
no such y exists.

The class NP as another natural class of search problems. A polynomially-bounded rela-
tion R is called an NP-relation if, given an alleged instance-solution pair, one can efficiently check
whether or not the pair is valid; that is, there exists a polynomial-time algorithm that given « and y
determines whether or not (z,y) € R. It is reasonable to focus on search problems for NP-relations,
because the ability to efficiently recognize a valid solution seems to be a natural prerequisite for
a discussion regarding the complexity of finding such solutions. (Indeed, one can introduce (un-
natural) non-NP-relations for which the search problem is solvable in polynomial-time; still the
restriction to NP-relations is very natural.)

The P versus NP question in terms of search problems: Is it the case that the search
problem of any NP-relation can be solved in polynomial-time? In other words, if it is easy to check
whether or not a given solution for a given instance is correct then is it also easy to find a solution
to a given instance?

If P = NP then this would mean that if solutions to given instances can be efficiently verified
for correctness then they can also be efficiently found (when given only the instance). This would
mean that all reasonable search problems (i.e., all NP-relations) are easy to solve. Needless to say,
such a situation would contradict the intuitive feeling that some reasonable search problems are
hard to solve. On the other hand, if P # NP then there exist reasonable search problems (i.e.,
some NP-relations) that are hard to solve. This conforms with our basic intuition by which some
reasonable problems are easy to solve whereas others are hard to solve.

1.2 The decision version: proving versus verifying

We suggest to start by asserting the natural stature of decision problems (beyond their role in the
study of search problems). After all, some people do care about the truth, and so determining
whether a given object has some claimed property is an appealing problem. The P-vs-NP Question
refers to the complexity of answering such questions for a wide and natural class of properties
associated with the class N'P. The latter class refers to properties that have efficient proof systems
allowing for the verification of the claim that a given object has a predetermined property (i.e., is
a member of a predetermined set).

For an NP-relation R, we denote the set of instances having a solution by Lg; that is, Lr = {z :
Jy (x,y) € R}. Such a set is called an NP-set, and A'P denotes the class of all NP-sets. Intuitively,
an NP-set is a set of valid statements (i.e., statements of membership of a given = in Lg) that
can be efficiently verified when given adequate proofs (i.e., a corresponding NP-witness y such that
(z,y) € R). This leads to viewing NP-sets as proof systems.

NP-proof systems. Proof systems are defined in terms of their verification procedures. Here
we focus on the natural class of efficient verification procedures, where efficiency is represented by
polynomial-time computations. (We should either require that the time is polynomial in terms of
the statement or confine ourselves to “short proofs” — that is, proofs of length that is bounded by a
polynomial in the length of the statement.) NP-relations correspond to proof systems with efficient
verification procedures. Specifically, the NP-relation R corresponds to the (proof system with a)
verification procedure that checks whether or not the alleged statement-proof pair is in R. This
proof system satisfies the natural completeness and soundness conditions: every true statement (i.e.,
x € Lg) has a valid proof (i.e., an NP-witness y such that (z,y) € R), whereas false statements
(i.e., z &€ Lg) have no valid proofs (i.e., (x,y) € R for all y’s).

The P versus NP question in terms of decision problems: Is it the case that NP-proofs
are useless? That is, is it the case that for every efficiently verifiable proof system one can easily
determine the validity of assertions (without being given suitable proofs). If that were the case,
then proofs would be meaningless, because they would have no fundamental advantage over directly
determining the validity of the assertion. Denoting by P the class of sets that can be decided
efficiently (i.e., by a polynomial-time algorithm), the conjecture P # NP asserts that proofs are
useful: there exists NP-sets that cannot be decided by a polynomial-time algorithm, and so for these
sets obtaining a proof of membership (for some instances) is useful (because we cannot efficiently
determine membership by ourselves).

1.3 Equivalence of the two formulations

We strongly recommend proving in class that P # NP in terms of search problems if and only
if P # NP in terms of decision problems. That is, the search problem of every NP-relation is
solvable in polynomial time if and only if membership in any NP-set can be decided in polynomial
time.? This justifies the focus on the latter (simpler) formulation.

We also suggest to mention that NP is sometimes defined as the class of sets that can be
decided by a fictitious device called a non-deterministic polynomial-time machine (and that this
is the source of the notation NP). The reason that this class of fictitious devices is important is
because it captures (indirectly) the definition of NP-proofs. We suggest to prove that indeed the
definition of NP in terms of non-deterministic polynomial-time machine equals our definition of
NP (in terms of the class of sets having NP-proofs).

2 Reductions and Self-reducibility

We assume that all students have heard of reductions, but again we fear that most have obtained
a conceptually-poor view of their nature. We present first the general notion of (polynomial-
time) reductions among computational problems, and view the notion of a Karp-reduction as an
important special case that suffices (and is more convenient) in many cases.

2.1 The general notion of a reduction

Reductions are procedures that use “functionally specified” subroutines. That is, the functionality
of the subroutine is specified, but its operation remains unspecified and its running-time is counted
at unit cost. Analogously to algorithms, which are modeled by Turing machines, reductions can be
modeled as oracle (Turing) machines. A reduction solves one computational problem (which may be
either a search or decision problem) by using oracle (or subroutine) calls to another computational
problem (which again may be either a search or decision problem). We focus on efficient (i.e.,
polynomial-time) reductions, which are often called Cook reductions.

The key property of reductions is that they translate efficient procedures for the subroutine into
efficient procedures for the invoking machine. That is, if one problem is Cook-reducible to another
problem and the latter is polynomial-time solvable then so is the former.

The most popular case is of reducing decision problems to decision problems, but we will also
consider reducing search problems to search problems or reducing search problems to decision
problems. (Indeed, a good exercise is to show that the search problem of ant NP-relation can be
reduced to deciding membership in some NP-set (see Footnote 2).)

A Karp-reduction is a special case of a reduction (from a decision problem to a decision problem).
Specifically, for decision problems L and L', we say that L is Karp-reducible to L’ if there is a
reduction of L to L' that operates as follows: On input « (an instance for L), the reduction computes
x', makes query z’ to the oracle L' (i.e., invokes the subroutine for L' on input '), and answers
whatever the latter returns. This Karp-reduction is often represented by the polynomial-time

2Suppose that equality holds for the search version. Let L be an NP-set and R be the corresponding withness
relation. Then Rp is a NP-relation, and by the hypothesis its search problem is solvable in polynomial time. This
yields a polynomial-time decision procedure for L; i.e., given z try to find y such that (z,y) € Rz (and output “yes”
iff such a y was found). Suppose, on the other hand, that NP = P (as classes of sets), and let R be an NP-relation.

Then the set Sg = {(z,y") : Fy" s.t. (z,y'y"") € R} is in NP and hence in P. This yields a polynomial-time algorithm
for solving the search problem of R, by extending a prefix of a potential solution bit-by-bit (while using the decision
procedure to determine whether or not the current prefix is valid).

computable mapping of x to z'; that is, a polynomial-time computable f is called a Karp-reduction
of L to L' if for every x it holds that = € L iff f(z) € L'.

Indeed, a Karp-reduction is a syntactically restricted notion of a reduction. This restricted case
suffices for many cases (e.g., most importantly for the theory of NP-completeness (when developed
for decision problems)), but not in case we want to reduce a search problem to a decision problem.
Furthermore, whereas each decision problem is reducible to its complement, some decision problems
are not Karp-reducible to their complement (e.g., the trivial decision problem).? Likewise, each
decision problem in P is reducible to any computational problem by a reduction that does not use
the subroutine at all, whereas such a trivial reduction is disallowed by the syntax of Karp-reductions.
(Nevertheless, a popular exercise of dubious nature is to show that any decision problem in P is
Karp-reducible to any non-trivial decision problem.)

We comment that Karp-reductions may (and should) be augmented in order to handle reduc-
tions of search problems to search problems. Such an augmented Karp-reduction of the search
problem of R to the search problem of R’ operates as follows: On input z (an instance for R), the
reduction computes z’, makes query z’ to the oracle R’ (i.e., invokes the subroutine for searching
R’ on input z') obtaining 3’ such that (z',y') € R', and uses y' to compute a solution y to z (i.e.,
(z,y) € R). Thus, such a reduction can be represented by two polynomial-time computable map-
pings, f and g, such that (z, g(x,y’)) € R for any y’ that solves f(z) (i.e., v satisfies (f(z),y') € R).
(Indeed, in general, unlike in the case of decision problems, the reduction cannot just return g’ as
an answer to x.)

We say that two problems are computationally equivalent if they are reducible to one another.
This means that the two problems are essentially as hard (or as easy).

2.2 Self-reducibility of search problems

We suggest to introduce the notion of self-reducibility for several reasons. Most importantly, it
further justifies the focus on decision problems (see discussion following Proposition 1). In addition,
it illustrates the general notion of a reduction, and asserts its relevance beyond the theory of NP-
completeness.

The search problem of R is called self-reducible if it can be reduced to the decision problem of
Lr ={z: 3y (z,y) € R}. Note that the decision problem of Lp is always reducible to the search
problem for R (e.g., invoke the search subroutine and answer YES if and only if it returns some
string (rather than the “no solution” symbol)).

We will see that all NP-relations that correspond to NP-complete sets are self-reducible, mostly
via “natural reductions”. We start with SAT, the set of satisfiable Boolean formulae (in CNF).
Let Rgar be the set of pairs (¢, 7) such that 7 is a satisfying assignment to the formulae ¢. Note
that Rgar is an NP-relation (i.e., it is polynomially-bounded and easy to decide (by evaluating a
Boolean expression)).

Proposition 1 (Rgar is self-reducible): The search problem of Rgar is reducible to SAT.

Thus, the search problem of Rgar is computationally equivalent to deciding membership in SAT.
Hence, in studying the complexity of SAT, we also address the complexity of the search problem of
Rgar. This justifies the relevance of decision problems to search problems in a stronger sense than
established in Section 1.3: The study of decision problems determines not only the complexity of
the class of “NP-search” problems but rather determines the complexity of each individual search
problem that is self-reducible.

3We call a decision problem trivial if it refers to either the empty set or the set of all strings.

Proof: Given a formula ¢, we use a subroutine for SAT in order to find a satisfying assignment
to ¢ (in case such an assignment exists). First, we query SAT on ¢ itself, and return “no solution”
if the answer we get is ‘false’. Otherwise, we let 7, initiated to the empty string, denote a prefix
of a satisfying assignment of ¢. We proceed in iterations, where in each iteration we extend 7 by
one bit. This is done as follows: First we derive a formula, denoted ¢', by setting the first |7| + 1
variables of ¢ according to the values 70. Next we query SAT on ¢’ (which means that we ask
whether or not 70 is a prefix of a satisfying assignment of ¢). If the answer is positive then we set
7 — 70 else we set 7 < 71 (because if 7 is a prefix of a satisfying assignment of ¢ and 70 is not a
prefix of a satisfying assignment of ¢ then 71 must be a prefix of a satisfying assignment of ¢).

A key point is that each formula ¢’ (which contains Boolean variables as well as constants) can
be simplified to contain no constants (in order to fit the canonical definition of SAT, which disallows
Boolean constants). That is, after replacing some variables by constants, we should simplify clauses
according to the straightforward boolean rules (e.g., a false literal can be omitted from a clause
and a true literal appearing in a clause yields omitting the entire clause). Wi

Advanced comment: A reduction analogous to the one used in the proof of Proposition 1 can
be presented also for other NP-search problems (and not only for NP-complete ones).* Consider,
for example, the problem 3-Colorability and prefices of a 3-colorability of the input graph. Note,
however, that in this case the process of getting rid of constants (representing partial solutions)
is more involved. Details are left as an exercise. In general, if you don’t see a “natural” self-
reducibility process for some NP-complete relation, you should know that a self-reduction process
does exist (alas it maybe not be a natural one).

Theorem 2 The serach problem of the NP-relation of any NP-complete set is self-reducible.

Proof: Let R be an NP-relation of the NP-complete set L. In order to reduce the search problem
of R to deciding Lg, we compose the following three reductions:

1. The search problem of R is reducible to the search problem of Rgar (by the NP-completeness
of the latter).

2. The search problem of Rgp is reducible to SAT (by Proposition 1).

3. The decision problem SAT is reducible to the decision problem Lg (by the NP-completeness
of the latter).

The theorem follows. I

3 NP-completeness

Some (or most) students heard of NP-completeness before, but we suspect that many have missed
important conceptual points. Specifically, we stress that the mere existence of NP-complete sets
(regardless of whether this is SAT or some other set) is amazing.

*We assume that the students have heard of NP-completeness. If this assumption does not hold for your class,
then the presentation of the following material should be postponed (to Section 3.1 or to an even later stage).

3.1 Definitions

The standard definition is that a set is NP-complete if it is in NP and every set in A/P is reducible
to it via a Karp-reduction. Indeed, there is no reason to insist on Karp-reductions (rather than
using arbitrary reductions), except that the restricted notion suffices for all positive results and is
easier to work with.

We will also refer to the search version of NP-completeness. We say that a binary relation is
NP-complete if it is an NP-relation and every NP-relation is reducible to it.

We stress that the mere fact that we have defined something (i.e., NP-completeness) does not
mean that this thing exists (i.e., that there exist objects that satisfy the property). It is indeed
remarkable that NP-complete problems do exist. Such problems are “universal” in the sense that
solving them allows to solve any other (reasonable) problem.

3.2 The existence of NP-complete problems

We suggest not to confuse the mere existence of NP-complete problems, which is remarkable by
itself, with the even more remarkable existence of “natural” NP-complete problems. We believe
that the following proof allows to deliver this message as well as to focus on the essence of NP-
completeness, rather than on more complicated technical details.

Theorem 3 There exist NP-complete relations and sets.

Proof: The proof (as well as any other NP-completeness proof) is based on the observation that
some NP-relations (resp., NP-sets) are “rich enough” to encode all NP-relations (resp., NP-sets).
This is most obvious for the “generic” NP-relation, denoted Ry (and defined below), which is used
to derive the simplest proof of the current theorem.

The relation Ry consists of pairs ((M,x, 1), y) such that M is a description of a (deterministic)
Turing machine that accepts the pair (x,y) within ¢ steps, where |y| < t. (Instead of requiring
that |y| < ¢, one may require that M is canonical in the sense that it reads its entire input before

halting.) It is easy to see that Ry is an NP-relation, and thus Ly e {X :3y (X,y) € Ry} is an
NP-set. Indeed, Ry is recognizable by a universal Turing machine, which on input ((M,z,1%),y)
emulates (¢ steps of) the computation of M on (z,y), and U indeed stands for universal (machine).

We now turn to showing that any NP-relation is reducible to Ry. As a warm-up, let us first show
that any NP-set is Karp-reducible to Ly. Let R be an NP-relation, and Lr = {z : Jy (z,y) € R}
be the corresponding NP-set. Let pr be a polynomial bounding the length of solutions in R (i.e.,
ly| < pr(|z|) for every (z,y) € R), let Mp be a polynomial-time machine deciding membership
(of alleged (x,y) pairs) in R, and let ¢ be a polynomial bounding its running-time. Then, the
Karp-reduction maps an instance « (for L) to the instance (Mg, z, 142(#/+Pr(y))y,

Note that this mapping can be computed in polynomial-time, and that x € L if and only if
(Mg, z,1te(ztra(yD))y € L,

To reduce the search problem of R to the search problem of Ry, we use essentially the same
reduction. On input an instance z (for R), we make the query (Mg,z, 1'R(I+PR(WD)Y to the
search problem of Ry and return whatever the latter returns. Note that if x € Lpr then the
answer will be “no solution”, whereas for every x and y it holds that (x,y) € R if and only if
(Mg, x, 1ta(eltre(sD)y oy e Ry, A

Advanced comment. Note that the role of 1’ in the definition of Ry is to make Ry an NP-

relation. In contrast, consider the relation Ry et {((M,z),y) : M(zy) = 1} (which corresponds

to the halting problem). Indeed, the search problem of any relation (an in particular of any NP-
relation) is Karp-reducible to the search problem of Ry, but the latter is not solvable at all (i.e.,
there exists no algorithm that halts on every input and on input X outputs y such that (z,y) € Ry
iff such a y exists).

3.3 CSAT and SAT

We suggest to establish the NP-completeness of SAT by a reduction from the circuit satisfaction
problem (CSAT), after establishing the NP-completeness of the latter. Doing so allows to decouple
two technical issues in the proof of the NP-completeness of SAT: the emulation of Turing machines
by circuits, and the encoding of circuits by formulae with auxiliary variables. Following is a rough
outline, which focuses on the decision version.

CSAT. Define Boolean circuits (directed acyclic graphs with internal vertices labeled by Boolean
operations of arity either 2 or 1). Prove the NP-completeness of the circuit satisfaction problem
(CSAT). The proof boils down to encoding possible computations of a Turing machine by a corre-
sponding layered circuit, where each layer represents an instanteneous configuration of the machine,
and the relation between consecutive configurations is captured by (“uniform”) local gadgets in the
circuit.

The above reduction is called “generic” because it (explicitly) refers to any (generic) NP-set.
However, the common practice is to establish NP-completeness by a reduction from some NP-
complete set (i.e., a set already shown to be NP-complete). This practice is based on the fact that
if an NP-complete problem II is reducible to some problem II' in NP then II’ is NP-complete. The
proof of this fact boils down to asserting the transitivity of reductions.

SAT. Next, define Boolean formulae, which may be viewed as Boolean circuits with a tree struc-
ture. Prove the NP-completeness of the formula satisfaction problem (SAT), even when the formula
is given in a nice form (i.e., CNF). The proof is by a reduction from CSAT, which in turn boils
down to introducing auxiliary variables in order to cut the computation of a deep circuit into a
conjunction of related computations of shallow (i.e., depth-2) circuits (which may be presented as
CNFs). The aforementioned auxiliary variables hold the possible values of the internal nodes of
the circuit.

3SAT. Note that the formulae resulting from the latter reduction are in conjunctive normal form
(CNF) with each clause referring to three variables (i.e., two corresponding to the input wires of
the node/gate and one to its output wire). Alternatively, show that SAT (for CNF formula) can
be reduced to 3SAT (i.e., satisfiability of 3CNF formula).

In order to establish the NP-completeness of the search version of the aforementioned problems
we need to present a polynomial-time mapping of solutions for the target problem (e.g., SAT) to
solutions for the origin problem (e.g., CSAT). Note that such a mapping is typically given explicitly
when establishing the validity of the Karp-reduction.

3.4 NP sets that are neither in P nor NP-complete

Many (to say the least) other NP-sets have been shown to be NP-complete. Things reach a situation
in which people seem to expect any NP-set to be either NP-complete or in P. This naive view is
wrong:

Theorem 4 Assuming NP # P, there exist NP-sets that are neither NP-complete nor in P.

We mention that some natural problems (e.g., factoring) are conjecture to be neither solvable in
polynomial-time nor NP-hard, where a problem II is NP-hard if any NP-set is reducible to solving
IT. See discussion following Theorem 5. We recommend to either state Theorem 4 without a proof
or merely provide the proof idea.

Proof idea. The proofis by modifying a set in NP\ P such that to fail all possible reductions (to
this set) and all possible polynomial-time decision procedures (for this set). Specifically, we start
with some L € NP\ P and derive L' C L (which is also in NP\ P) by making each reduction (say
of L) to L' fail by dropping finitely many elements from L (until the reduction fails), whereas all
possible polynomial-time fail to decide L’ (which differ from L only on a finite number of inputs).
We use the fact that any reduction (of some set in NP\ P) to a finite set (i.e., a finite subset of L)
must fail (and this failure is due to a finite set of queries), whereas any efficient decision procedure
for L (or L modified on finitely many inputs) must fail on some finite portion of all possible inputs
(of L). The process of modifying L into L' proceeds in iterations, alternatively failing a potential
reduction (by dropping sufficiently many strings from the rest of L) and failing a potential decision
procedure (by including sufficiently many strings from the rest of L). This can be done efficiently
because it is inessential to determine the optimal points of alternation (where sufficiently many
strings were dropped (resp., included) to fail a potential reduction (resp., decision procedure)).
Thus, L' is the intersection of L and some set in P, which implies that L' € NP\ P.

4 Three additional topics

The following topics are typically not mentioned in a basic course on complexity. Still, pending on
time constraint, we suggest to cover them at some minimal level.

4.1 The class coNP and NP-completeness

By prepending the name of a complexity class (of decision problems) with the prefix “co” we mean
the class of complement sets; that is,

coC ¥ {{0,1}*\L: L eC}

Specifically, coNP = {{0,1}* \ L : L € NP} is the class of sets that are complements of NP-
sets. That is, if R is an NP-relation and Lr = {z : Jy (z,y) € R} is the associated NP-set then
{0,1}*\ Lr = {z : Yy (z,y) & R} is the corresponding coNP-set.

It is widely believed that NP is not closed under complementation (i.e., NP # coNP). Indeed,
this conjecture implies P # NP (because P is closed under complementation). The conjecture
NP # coN'P means that some coNP-sets (e.g., the complements of NP-complete sets) do not have
NP-proof systems; that is, there is no NP-proof system for proving that a given formula is not
satisfiable.

If indeed NP # coN P then some (non-trivial) NP-sets cannot be Karp-reducible to coNP-sets.?
However, all NP-sets are reducible to coNP-sets (by a straightforward Cook-reduction that just

®Recall that the empty set cannot be Karp-reducible to {0, 1}*. Thus, the current assertion refers to (non-trivial)

NP-sets. Now, suppose that L Karp-reduces to L' € coN'P, which means that L <f {0,1}* \ L Karp-reduces to

L' {0,1}*\ L' € NP. Then L € NP by virtue of the NP-relation {(z,y) : (f(x),y) € R"}, where R" is the
witness relation of L. It follows that L € coN'P.

10

flips the answer), and so the non-existence of Karp-reduction does not seem to represent anything
really fundamental. In contrast, we mention that NP # coN P implies that some NP-sets cannot
be reduced to sets in the intersection NP N coNP (even under general (i.e., Cook) reductions).
Specifically,

Theorem 5 If NP NcoNP contains an NP-hard set then NP = coN'P.

Recall that a set is NP-hard if every NP-set is reducible to it (possibly via a general reduction).
Since NP N coNP is conjectured to be a proper superset of P, it follows (using the conjecture
NP # coN'P) that there are NP-sets that are neither in P nor NP-hard (i.e., specifically, the sets
in (WP NcoNP)\ P). Notable candidates are sets related to the integer factorization problem
(e.g., the set of pairs (N,s) such that s has a square root modulo N that is a quadratic residue
modulo N and the least significant bit of s equals 1).

Proof: Suppose that L € NP N coNP is NP-hard. Given any L' € coNP, we will show that
L' € NP. We will merely use the fact that L' reduces to L (which is in NP N coNP). Such a

reduction exists because L' is reducible L' %' {0,1}*\ L' (via a general reduction), whereas L' € N'P
and thus is reducible to L (which is NP-hard).

To show that L' € NP, we will present an NP-relation, R’, that characterizes L' (i.e., L' =
{z : Jy (x,y) € R'}). The relation R’ consists of pairs of the form (z, ((z1, 01, w1), ..., (2, 00, we)),
where on input z the reduction of L’ to L accepts after making the queries z1, ..., z¢, obtaining the
corresponding answers oy, ..., 0z, and for every ¢ it holds that if o; = 1 then w; is an NP-witness for
z; € L, whereas if o; = 0 then w; is an NP-witness for z; € {0,1}* \ L.

We stress that we use the fact that both L and T % {0,1}* \ L are NP-sets, and refer to the
corresponding NP-witnesses. Note that R’ is indeed an NP-relation: The length of solutions is
bounded by the running-time of the reduction (and the corresponding NP-witnesses). Membership
in R’ is decided by checking that the sequence of (z;, 0;)’s matches a possible query-answer sequence
in an accepting execution of the reduction® (ignoring the correctness of the answers), and that all
answers (i.e., 0;’s) are correct. The latter condition is easily verified by use of the corresponding
NP-witnesses. W

4.2 Optimal search algorithms for NP-relations

The title of this section sounds very promising, but our guess is that the students will be less excited
once they see the proof. We claim the existence of an optimal search algorithm for any NP-relation.
Furthermore, we will explicitly present such an algorithm, and prove that it is optimal in a very
strong sense: for any algorithm correctly solving the same search problem, it holds that up-to some
fixed additive polynomial term (which may be disregarded in case the NP-problem is not solvable
in polynomial-time), our algorithm is at most a constant factor slower than the other algorithm.
That is:

Theorem 6 For every NP-relation R there exists an algorithm A that satisfies the following:
1. A correctly solves the search problem of R.

2. There exists a polynomial p such that for every algorithm A’ that correctly solves the search
problem of R and for every x € Lg it holds that to(z) = O(ta(x) + p(|x|)), where t4 (resp.,
tar) denotes the number of steps taken by A (resp., A") on input x.

5That is, we need to verify that on input x, after obtaining the answers o1, ...,0;_1 to the first i — 1 queries, the
i*® query made by the reduction equals z;.

11

We stress that the optimality refers only to inputs that have a solution (i.e., x € Lg). Interestingly,
we establish the optimality of A without knowing what its (optimal) running-time is. We stress
that the hidden constant in the O-notation depends only on A’, but in the following proof the
dependence is exponential in the length of the description of algorithm A’ (and it is not known
whether a better dependence can be achieved).

Proof sketch: Fixing R, we let M be a polynomial-time algorithm that decides membership in
R, and let p be a polynomial bounding the running-time of M. We present the following algorithm
A that merely runs all possible search algorithms “in parallel” and checks the results provided by
each of them (using M), halting whenever it obtains a correct solution.

Since there are infinitely many possible algorithms, we should clarify what we mean by “running
them all in parallel”. What we mean is to run them at different rates such that the infinite sum
of rates converges to 1 (or any other constant). Viewed in different terms, for any unbounded (and
monotonely non-decreasing) function a : N — N, we proceed in iterations such that in the 4!
iteration we let each of the first a(i) algorithms run for at most 2° steps. In case some of these
algorithms halts with output y, algorithm A invokes M on input (x,y) and output y if and only if
M(z,y) = 1. We stress that the verification of a solution provided by a candidate algorithm is also
emulated at the expense of its step-count. (Put in other words, we augment each algorithm with a
canonical procedure (i.e., M) that checks the validity of the solution offered by the algorithm.)

(In case we want to guarantee that A also stops on = & Lg, we may let it run an exhaustive
search for a solution, in parallel to all searches, and halt with output L in case this exhaustive
search fails.)

Clearly, whenever A(z) outputs y (i.e., y # L) it must hold that (z,y) € R. Now suppose A’ is an
algorithm that solves R. Fixing A, for every z, let us denote by ¢'(x) the number of steps taken by A’
on input z, where t'(z) also accounts for the running time of M (x,-). Then, the ¢'(z)-step execution
of A’ on input x is “covered” by the i*' iteration of A, provided a(i) > 214l and i > log, t(z)),
where |A’| denotes the length of the description of A’. Let i(z) et max(o1(214'),log, ¢/ (x)), where
a~1(j) is the smallest integer i such that (i) > j. Then, the running time of A on input x, denoted
t(x), is at most

=
—~

(@)
a(j) -2 < a(i(x)) - 2@
1

J
Note that a(i(z)) > 241 and that for sufficiently large z it holds that o~'(2141) < log, #'(x),
which implies i(z) = log, t'(x). Using (say) a(j) = j, it follows that t(z) = (logt'(x)) - t'(x) for all
sufficiently large z, which almost establishes the theorem’ (while we don’t care about establishing
the theorem as stated, which requires a more sophisticated argument). i

4.3 Promise Problems

Promise problems are a natural generalization of decision problems (and search problems can be
generalized in a similar manner). In fact, in many cases, promise problems provide the more natural
formulation of a decision problem. Formally, promise problems refer to a three-way partition of the
set of all strings into yes-instances, no-instances and instances that violate the promise. Standard
decision problems are obtained as a special case by insisting that all inputs are allowed (i.e., the
promise is trivial), but intuitive formulations of decision problems reads like “given a planar graph,
determine whether or not ...” (i.e., the promise is that the input represents a planar graph).

"Note that we have assumed that oz_l(2|A") < log, t'(x), which implies that t(z) > 214l ' (x).

12

We comment that the aforementioned discrepency can be easily addressed in the case that
there exists an efficient algorithm for determining membership in the “promise set” (i.e., the set of
instances that satisfy the promise). In this case, the promise problem is computationally equivalent
to deciding membership in the set of yes-instances. However, in case the promise set is not tractable,
the terminology of promise problems is unavoidable. Examples include the notion of “unique
solutions” and the formulation of “gap problems” as capturing various approximation tasks.

13

Historical Notes

Many sources provide historical accounts of the developments that led to the formulation of the
P vs NP Problem and the development of the theory of NP-completeness. We thus refrain from
attempting to provide such an account.

One technical point that we mention is that the three “founding papers” of the theory of NP-
completeness (i.e., [1, 3, 5]) use the three different terms of reductions used above. Specifically,
Cook uses the general notion of polynomial-time reduction [1], often referred to as Cook-reductions.
The notion of Karp-reductions originates from Karp’s paper [3], whereas its augmentation to search
problems originates from Levin’s paper [5]. It is worth noting that unlike Cook and Karp’s works,
which treat decision problems, Levin’s work is stated in terms of search problems.

The existence of NP-sets that are neither in P nor NP-complete (i.e., Theorem 4) was proven
by Ladner [4], Theorem 5 was proven by Selman [6], and the existence of optimal search algorithms
for NP-relations (i.e., Theorem 6) was proven by Levin [5]. (Interestingly, the latter result was
proved in the same paper in which Levin discovered NP-completeness, independently of Cook and
Karp.) Promise problems were explicitly introduced by Even, Selman and Yacobi [2].

References

1] S.A. Cook. The Complexity of Theorem Proving Procedures. In %rd STOC, pages 151-158,
g g
1971.

[2] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Applications
to Public-Key Cryptography. Inform. and Control, Vol. 61, pages 159-173, 1984.

[3] R.M. Karp. Reducibility among Combinatorial Problems. In Complezity of Computer Com-
putations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, pages 85-103, 1972.

[4] R.E. Ladner. On the Structure of Polynomial Time Reducibility. Jour. of the ACM, 22, 1975,
pages 155—171.

[5] L.A. Levin. Universal Search Problems. Problemy Peredaci Informacii 9, pages 115-116, 1973.
Translated in problems of Information Transmission 9, pages 265-266.

[6] A. Selman. On the structure of NP. Notices Amer. Math. Soc., Vol 21 (6), page 310, 1974.

14

