
Texts in Computational Complexity:A Brief OverviewOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.November 12, 2005A brief overview of Complexity TheoryThe following brief overview is intended as a teaser for students in an introductory course onComplexity Theory. Out of the tough came forth sweetness1Judges, 14:14Complexity Theory is concerned with the study of the intrinsic complexity of computational tasks.Its \�nal" goals include the determination of the complexity of any well-de�ned task. Additional\�nal" goals include obtaining an understanding of the relations between various computationalphenomena (e.g., relating one fact regarding computational complexity to another). Indeed, wemay say that the former type of goals is concerned with absolute answers regarding speci�c com-putational phenomena, whereas the latter type is concerned with questions regarding the relationbetween computational phenomena.Interestingly, the current success of Complexity Theory in coping with the latter type of goalshas been more signi�cant. In fact, the failure to resolve questions of the \absolute" type, led to theourishing of methods for coping with questions of the \relative" type. Putting aside for a momentthe frustration caused by the failure, we must admit that there is something fascinating in thesuccess: in some sense, establishing relations between phenomena is more revealing than makingstatements about each phenomenon. Indeed, the �rst example that comes to mind is the theoryof NP-completeness. Let us consider this theory, for a moment, from the perspective of these twotypes of goals.Complexity theory has failed to determine the intrinsic complexity of tasks such as �nding asatisfying assignment to a given (satis�able) propositional formula or �nding a 3-coloring of a given(3-colorable) graph. But it has established that these two seemingly di�erent computational tasksare in some sense the same (or, more precisely, are computationally equivalent). The author �ndsthis success amazing and exciting, and hopes that the reader shares his feeling. The same feeling ofwonder and excitement is generated by many of the other discoveries of Complexity theory. Indeed,the reader is invited to join a fast tour of some of the other questions and answers that make upthe �eld of Complexity theory.1The quote is commonly used to mean that bene�t arose out of misfortune.1



We will indeed start with the \P versus NP Question". Our daily experience is that it is harderto solve a problem than it is to check the correctness of a solution (e.g., think of either a puzzleor a research problem). Is this experience merely a coincidence or does it represent a fundamentalfact of life (or a property of the world)? Could you imagine a world in which solving any problemis not signi�cantly harder than checking a solution to it? Would the term \solving a problem" notlose its meaning in such a hypothetical (and impossible in our opinion) world? The denial of theplausibility of such a hypothetical world (in which \solving" is not harder than \checking") is what\P di�erent from NP" actually means, where P represents tasks that are e�ciently solvable andNP represents tasks for which solutions can be e�ciently checked.The mathematically (or theoretically) inclined reader may also consider the task of provingtheorems versus the task of verifying the validity of proofs. Indeed, �nding proofs is a specialtype of the aforementioned task of \solving a problem" (and verifying the validity of proofs is acorresponding case of checking correctness). Again, \P di�erent from NP" means that there aretheorems that are harder to prove than to be convinced of their correctness when presented witha proof. This means that the notion of a proof is meaningful (i.e., that proofs do help when tryingto be convinced of the correctness of assertions). Here NP represents sets of assertions that can bee�ciently veri�ed with the help of adequate proofs, and P represents sets of assertions that can bee�ciently veri�ed from scratch (i.e., without proofs).In light of the foregoing discussion it is clear that the P-versus-NP Question is a fundamentalscienti�c question of far-reaching consequences. The fact that this question seems beyond our cur-rent reach led to the development of the theory of NP-completeness. Loosely speaking, this theoryidenti�es a set of computational problems that are as hard as NP. That is, the fate of the P-versus-NP Question lies with each of these problems: if any of these problems is easy to solve then soare all problems in NP. Thus, showing that a problem is NP-complete provides evidence to its in-tractability (assuming, of course, \P di�erent than NP"). Indeed, demonstrating NP-completenessof computational tasks is a central tool in indicating hardness of natural computational problems,and it has been used extensively both in computer science and in other disciplines. NP-completenessindicates not only the conjectured intractability of a problem but rather also its \richness" in thesense that the problem is rich enough to \encode" any other problem in NP. The use of the term\encoding" is justi�ed by the exact meaning of NP-completeness, which in turn is based on estab-lishing relations between di�erent computational problems (without referring to their \absolute"complexity).The foregoing discussion of the P-versus-NP Question also hints to the importance of repre-sentation, a phenomenon that is central to complexity theory. In general, complexity theory isconcerned with problems the solutions of which are implicit in the problem's statement. That is,the problem contains all necessary information, and one merely needs to process this informationin order to supply the answer.2 Thus, complexity theory is concerned with manipulation of in-formation, and its transformation from one representation (in which the information is given) toanother representation (which is the one desired). Indeed, a solution to a computational problemis merely a di�erent representation of the information given; that is, a representation in which theanswer is explicit rather than implicit. For example, the answer to the question of whether or nota given Boolean formula is satis�able is implicit in the formula itself (but the task is to make theanswer explicit). Thus, complexity theory clari�es a central issue regarding representation; that is,the distinction between what is explicit and what is implicit in a representation. Furthermore, it2In contrast, in other disciplines, solving a problem may require gathering information that is not available inthe problem's statement. This information may either be available from auxiliary (past) records or be obtained byconducting new experiments. 2



even suggests a quanti�cation of the level of non-explicitness.In general, complexity theory provides new viewpoints on various phenomena that were consid-ered also by past thinkers. Examples include the aforementioned concepts of proofs and represen-tation as well as concepts like randomness, knowledge, interaction, secrecy and learning. We nextdiscuss some of these concepts and the perspective o�ered by complexity theory.The concept of randomness has puzzled thinkers for ages. Their perspective can be describedas ontological: they asked \what is randomness" and wondered whether it exist at all (or is theworld deterministic). The perspective of complexity theory is behavioristic: it is based on de�ningobjects as equivalent if they cannot be told apart by any e�cient procedure. That is, a coin toss is(de�ned to be) \random" (even if one believes that the universe is deterministic) if it is infeasibleto predict the coin's outcome. Likewise, a string (or a distribution of strings) is \random" if itis infeasible to distinguish it from the uniform distribution (regardless of whether or not one cangenerate the latter). Interestingly, randomness (or rather pseudorandomness) de�ned this way ise�ciently expandable; that is, under a reasonable complexity assumption (to be discussed next),short pseudorandom strings can be deterministically expanded into long pseudorandom strings.Indeed, it turns out that randomness is intimately related to intractability. Firstly, note that thevery de�nition of pseudorandomness refers to intractability (i.e., the infeasibility of distinguishinga pseudorandomness object from a uniformly distributed object). Secondly, as hinted above, acomplexity assumption that refers to the existence of functions that are easy to evaluate buthard to invert (called one-way functions) imply the existence of deterministic programs (calledpseudorandom generators) that stretch short random seeds into long pseudorandom sequences. Infact, it turns out that the existence of pseudorandom generators is equivalent to the existence ofone-way functions.Complexity theory o�ers its own perspective on the concept of knowledge (and distinguishesit from information). It views knowledge as the result of a hard computation. Thus, whatevercan be e�ciently done by anyone is not considered knowledge. In particular, the result of an easycomputation applied to publicly available information is not considered knowledge. In contrast,the value of a hard to compute function applied to publicly available information is knowledge,and if somebody provides you with such a value then it has provided you with knowledge. Thisdiscussion is related to the notion of zero-knowledge interactions, which are interactions in which noknowledge is gained. Such interactions may still be useful, because they may assert the correctnessof speci�c data that was provided beforehand.The foregoing paragraph has explicitly referred to interaction. It has pointed one possiblemotivation for interaction: gaining knowledge. It turns out that interaction may help in a varietyof other contexts. For example, it may be easier to verify an assertion when allowed to interact witha prover rather than when reading a proof. Put di�erently, interaction with some teacher may bemore bene�cial than reading any book. We comment that the added power of such interactive proofsis rooted in their being randomized (i.e., the veri�cation procedure is randomized), because if theveri�er's questions can be determined beforehand then the prover may just provide the transcriptof the interaction as a traditional written proof.Another concept related to knowledge is that of secrecy: knowledge is something that one partyhas while another party does not have (and cannot feasibly obtain by itself) { thus, in some senseknowledge is a secret. In general, complexity theory is related to Cryptography, where the latteris broadly de�ned as the study of systems that are easy to use but hard to abuse. Typically, suchsystems involve secrets, randomness and interaction as well as a complexity gap between the easeof proper usage and the infeasibility of causing the system to deviate from its prescribed behavior.Thus, much of Cryptography is based on complexity theoretic assumptions and its results are3



typically transformations of relatively simple computational primitives (e.g., one-way functions)into more complex cryptographic applications (e.g., a secure encryption scheme).We have already mentioned the context of learning when referring to learning from a teacherversus learning from a book. Recall that complexity theory provides evidence to the advantage ofthe former. This is in the context of gaining knowledge about publicly available information. Incontrast, computational learning theory is concerned with learning objects that are only partiallyavailable to the learner (i.e., learning a function based on its value at a few random locations oreven at locations chosen by the learner). Complexity theory sheds light on the intrinsic limitationsof learning (in this sense).Complexity theory deals with a variety of computational tasks. We have already mentioned twofundamental types of tasks: searching for solutions (or \�nding solutions") and making decisions(e.g., regarding the validity of assertion). We have also hinted that in some cases these two typesof tasks can be related. Now we consider two additional types of tasks: counting the number ofsolutions and generating random solutions. Clearly, both the latter tasks are at least as hard as�nding arbitrary solutions to the corresponding problem, but it turns out that for some naturalproblems they are not signi�cantly harder. Speci�cally, under some natural conditions on theproblem, approximately counting the number of solutions and generating an approximately randomsolution is not signi�cantly harder than �nding an arbitrary solution.Having mentioned the notion of approximation, we note that the study of the complexity of�nding approximate solutions has also received a lot of attention. One type of approximationproblems refers to an objective function de�ned on the set of potential solutions. Rather than�nding a solution that attains the optimal value, the approximation task consists of �nding asolution that attains an \almost optimal" value, where the notion of \almost optimal" may beunderstood in di�erent ways giving rise to di�erent levels of approximation. Interestingly, in manycases even a very relaxed level of approximation is as di�cult to achieve as the original (exact)search problem (i.e., �nding an approximate solution is as hard as �nding an optimal solution).Surprisingly, these hardness of approximation results are related to the study of probabilisticallycheckable proofs, which are proofs that allow for ultra-fast probabilistic veri�cation. Amazingly,every proof can be e�ciently transformed into one that allows for probabilistic veri�cation based onprobing a constant number of bits (in the alleged proof). Turning back to approximation problems,we note that in other cases a reasonable level of approximation is easier to achieve than solving theoriginal (exact) search problem.Approximation is a natural relaxation of various computational problems. Another naturalrelaxation is the study of average-case complexity, where the \average" is taken over some \simple"distributions (representing a model of the problem's instances that may occur in practice). Westress that, although it was not stated explicitly, the entire discussion so far has referred to \worst-case" analysis of algorithms. We mention that worst-case complexity is a more robust notion thanaverage-case complexity. For starters, one avoids the controversial question of what are the instancesthat are \important in practice" and correspondingly the selection of the class of distributions forwhich average-case analysis is to be conducted. Nevertheless, a relatively robust theory of average-case complexity has been suggested, albeit it is far less developed than the theory of worst-casecomplexity.In view of the central role of randomness in complexity theory (as evident, say, in the study ofpseudorandomness, probabilistic proof systems, and cryptography), one may wonder as to whetherthe randomness needed for the various applications can be obtained in real-life. One speci�c ques-tion, which received a lot of attention, is the possibility of \purifying" randomness (or \extractinggood randomness from bad sources"). That is, can we use \defected" sources of randomness in order4



to implement almost perfect sources of randomness. The answer depends, of course, on the modelof such defected sources. This study turned out to be related to complexity theory, where the mosttight connection is between some type of randomness extractors and some type of pseudorandomgenerators.So far we have focused on the time complexity of computational tasks, while relying on thenatural association of e�ciency with time. However, time is not the only resource one shouldcare about. Another important resource is space: the amount of (temporary) memory consumedby the computation. The study of space complexity has uncovered several fascinating phenomena,which seem to indicate a fundamental di�erence between space complexity and time complexity. Forexample, in the context of space complexity, verifying proofs of validity of assertions (of any speci�ctype) has the same complexity as verifying proofs of invalidity for the same type of assertions.In case the reader feels dizzy, it is no wonder. We took an ultra-fast air-tour of some mountaintops, and dizziness is to be expected. Needless to say, the rest of the course will be in a totallydi�erent style. We will climb some of these mountains by foot, step by step, and will stop to lookaround and reect.Absolute Results (a.k.a. Lower-Bounds). As stated up-front, absolute results are not knownfor many of the \big questions" of complexity theory (most notably the P-versus-NP Question).However, several highly non-trivial absolute results have been proved. For example, it was shownthat using negation can speed-up the computation of monotone functions (which do not requirenegation for their mere computation). In addition, many promising techniques were introduced andemployed with the aim of providing a low-level analysis of the progress of computation. However,the focus of this course is elsewhere.

5


