
Texts in Computational Complexity:Proving that Undirected Connectivity is in L(with a long appendix on expander graphs)Oded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.December 15, 2005Preface. This text consists of two parts. The main part (i.e., Section 1) provides a presentationof Reingold's log-space algorithm for testing connectivity of (undirected) graphs. This algorithmrelies heavily on the notion of expander graphs and on a speci�c construct that was developedin their stuty. The second part (i.e., Section 2) provides an overview of expander graphs, whichextends beyond the very minimum needed in Section 1. Speci�cally, Section 1 only relies on thealgebraic de�nition of expanders (presented in x2.1.1) and on the zig-zag product (de�ned in x2.2.2).PreliminariesWe will use and/or refer to the following two composition lemmas.Lemma 1 (naive composition): Let f1 : f0; 1g� ! f0; 1g� and f2 : f0; 1g� � f0; 1g� ! f0; 1g� becomputable in space s1 and s2, respectively.1 Then f de�ned by f(x) def= f2(x; f1(x)) is computablein space s such that s(n) = max(s1(n); s2(n+ `(n))) + `(n) +O(1) ;where `(n) = maxx2f0;1gnfjf1(x)jg.Lemma 1 is useful when ` is relatively small, but in many cases ` � max(s1; s2). In these cases,the following composition lemma is more useful.Lemma 2 (emulative composition): Let f1; f2; s1; s2; ` and f be as in Lemma 1. Then f is com-putable in space s such thats(n) = s1(n) + s2(n+ `(n)) +O(log(n+ `(n))) :1 Main text: Reingold's log-space algorithmExploring a graph (e.g., towards determining its connectivity) is one of the most basic and ubiq-uitous computational tasks regarding graphs. The standard graph exploration algorithms (e.g.,1Here (and throughout the chapter) we assume, for simplicity, that all complexity bounds are monotonicallynon-decreasing. 1

BFS and DFS) require temporary storage that is linear in the number of vertices. In contrast, thealgorithm presented in this section uses temporary storage that is only logarithmic in the numberof vertices. In addition to demonstrating the power of log-space computation, this algorithm (orrather its actual implementation) provides a taste of the type of issues arising in the design ofsophisticated log-space algorithms.The intuitive task of \exploring a graph" is captured by the task of deciding whether a givengraph is connected. In addition to the intrinsic interest in this natural computational problem,we note that related versions of the problem seem harder. For example, determining directedconnectivity (in directed graphs) captures the essence of the class NL. In view of this situation,we emphasize the fact that the computational problem considered here refers to undirected graphsby calling it undirected connectivity.Theorem 3 Deciding undirected connectivity (UCONN) is in LThe algorithm is based on the fact that UCONN is easy in the special case that the graph consists ofa collection of constant degree expanders (see Section 2). In particular, if the graph has constantdegree and logarithmic diameter then it can be explored using a logarithmic amount of space (whichis used for determining a generic path from a �xed starting vertex).2However, the input graph does not necessarily consist of a collection of constant degree ex-panders. The main idea is then to transform the input graph into one that does satisfy the afore-mentioned condition, while preserving the number of connected components of the graph. Needlessto say, the key point is performing such a transformation in logarithmic space. The rest of thissection is devoted to the description of such a transformation. We �rst present the basic approachand next turn to the highly non-trivial implementation details.We �rst note that it is easy to transform the input graph G0 = (V0; E0) into a constant-degreegraph G1 that preserves the number of connected components in G0. Speci�cally, each vertexv 2 V having degree d(v) (in G0) is represented by a cycle Cv of d(v) vertices (in G1), and eachedge fu; vg 2 E0 is replaced by an edge having one end-point on the cycle Cv and the other end-point on the cycle Cu such that each vertex in G1 has degree three (i.e., has two cycle edges and asingle intra-cycle edge). This transformation can be performed using logarithmic space, and thus(relying on Lemma 2) we assume throughout the rest of the proof that the input graph has degreethree. Our goal is to transform this graph into a collection of expanders, while maintaining thenumber of connected components. In fact, we shall describe the transformation while pretendingthat the graph is connected, while noting that otherwise the transformation acts separately on eachconnected component.A couple of technicalities. For a constant integer d > 2 determined so as to satisfy someadditional condition, we may assume that the input graph is actually d2-regular (albeit is not nec-essarily simple). Furthermore, we shall assume that this graph is not bipartite. Both assumptionscan be justi�ed by augmenting the aforementioned construction of a 3-regular graph by addingd2 � 3 self-loops to each vertex.Prerequisites: Needless to say, the aforementioned transformation refers to the notion of anexpander graph (as de�ned in x2.1.1). The transformation also relies on the zig-zag product de�nedin x2.2.2.2For further details, see Exercise 14. 2

1.1 The basic approachRecall that our goal is to transform G1 into an expander. The transformation is gradual and con-sists of logarithmically many iterations, where in each iteration an adequate expansion parameterdoubles while the graph becomes a constant factor larger and maintains the degree bound. The(expansion) parameter of interest is the gap between the relative second eigenvalue of the graphand 1 (see x2.1.1). A constant value of this parameter indicates that the graph is an expander.Initially, this parameter is lower-bounded by 1=O(n2), where n is the size of the graph, and afterlogarithmically many iterations this parameter is lower-bounded by a constant (and the currentgraph is an expander).The crux of the aforementioned gradual transformation is the transformation that takes placein each single iteration. This transformation combines the standard graph powering (to a constantpower c) and the zig-zag product presented in x2.2.2. Speci�cally, for adequate positive integers dand c, we start with the d2-regular graph G1 = (V1; E1), and go through a logarithmic number ofiterations letting Gi+1 = Gciz G for i = 1; :::; t � 1, where G is a �xed d-regular graph with d2cvertices. That is, in each iteration, we raise the current graph (i.e., Gi) to the power c and combinethe resulting graph with the �xed graph G using the zig-zag product. Thus, Gi is a d2-regular graphwith d(i�1)�2c � jV1j vertices, where this invariant is preserved by de�nition of the zig-zag product.The analysis of the improvement in the expansion parameter, denoted �2(�) def= 1� �2(�), relieson Eq. (7). Recall that Eq. (7) implies that if �2(G) < 1=2 then 1 � �2(G0z G) > (1 � �2(G0))=3.Thus, the �xed graph G is selected such that �2(G) < 1=2, which requires a su�ciently largeconstant d. Thus, we have�2(Gi+1) = 1� �2(Gciz G) > 1� �2(Gci)3 = 1� �2(Gi)c3whereas, for su�ciently large constant c, it holds that 1� �2(Gi)c > max(6 � (1� �2(Gi)); 1=2). Itfollows that that �2(Gi+1) > max(2�2(Gi); 1=6). Thus, setting t = O(log jV1j) and using �2(G1) =1� �2(G1) =
(jV1j�2), we obtain �2(Gt) > 1=6 as desired.One detail of crucial importance is the ability to transform G1 into Gt via a log-space com-putation. Indeed, the transformation of Gi to Gi+1 can be performed in logarithmic space (seeExercise 15), but we need to compose a logarithmic number of such transformations. Unfortu-nately, the standard composition lemmas for space-bounded algorithms involve overhead that wecannot a�ord.3 Still, taking a closer look at the transformation of Gi to Gi+1, one may note thatit is highly structured and in some sense it can be implemented in constant space and supports astronger composition result that incurs only a constant amount of storage per iteration. The result-ing implementation (of the iterative transformation of G1 to Gt) and the underlying formalism willbe the subject of Section 1.2. (An alternative implementation, provided in [11], can be obtainedby unraveling the composition.)1.2 The actual implementationThe space-e�cient implementation of the iterative transformation outlined in Section 1.1 is basedon the observation that we do not need to explicitly construct the various graphs but merely provide\oracle access" to them. This observation is crucial when applied to the intermediate graphs; rather3Needless to say, we cannot a�ord the naive composition (of Lemma 1), since it causes an overhead linear in thesize of the intermediate output. As for the emulative composition (of Lemma 2), it sums up the space complexitiesof the composed algorithms (not to mention adding another logarithmic term), which would result in a log-squaredbound on the space complexity. 3

than constructing Gi+1, when given Gi as input, we show how to provide oracle access to Gi+1(i.e., answer \neighborhood queries" regarding Gi+1) when given oracle access to Gi (i.e., an oraclethat answers neighborhood queries regarding Gi). That is, we view Gi and Gi+1 (or rather theirincidence lists) as functions (to be evaluated) rather than as strings (to be printed), and show howto reduce the task of �nding neighbors in Gi+1 (i.e., evaluating the \incidence function" at a givenvertex) to the task of �nding neighbors in Gi.A clarifying discussion. Note that here we are referring to oracle machines that access a �niteoracle, which represents a �nite variable object (which in turn is an instance of some computationalproblem), rather than following the convention by which the oracle represents a �xed computationalproblem. Still the mechanism (and/or operations) of these two types of oracle machines is the same:They both get an input (which here is a \query" regarding a variable object rather than an instanceof a �xed computational problem), and produce an output (which here is the answer to the queryrather than a \solution" for the given instance). Analogously, these machines make queries (whichhere are queries regarding another variable object rather than queries regarding another �xedcomputational problem), and obtain corresponding answers.As usual, queries are made via a special write-only device and the answers are read from a cor-responding read-only device, where the use of these devices is not charged in the space complexity.With these conventions in place, we claim that neighborhoods in the d2-regular graph Gi+1 can becomputed by a constant-space oracle machine that is given oracle access to the d2-regular graphGi. That is, letting gi : Vi� [d2]! Vi� [d2] (resp., gi+1 : Vi+1� [d2]! Vi+1� [d2]) denote the edgerotation function4 of Gi (resp., Gi+1), we have:Claim 4 There exists a constant-space oracle machine that evaluates gi+1 when given oracle accessto gi, where the state of the machine is counted in the space complexity.Proof Sketch: We �rst show that the two basic operation that underly the de�nition of Gi+1 (i.e.,powering and zig-zag product with a constant graph) can be performed in constant-space.The edge rotation function of the square of a graph can be evaluated at (v; hj1; j2i), using aconstant amount of space, by evaluating the edge rotation function of the original graph twice.First, by making the query (v; j1) we obtain the edge rotation of (v; j1), denoted (u; k1), and next,making the query (u; j2), we obtain (w; k2) and output (w; hk2; k1i). We stress that we only use thetemporary storage to record k1, whereas u is directly copied from the oracle answer device to theoracle query device. Accounting also for a constant number of states needed for the various stagesof the foregoing activity, we conclude that graph squaring can be performed in constant-space. Theargument extends to the task of raising the graph to any constant power.Turning to the zig-zag product (of G0 with a �xed G), we note that the corresponding edgerotation function can be evaluated in constant-space (given oracle access to the edge rotationfunction of G0). This follows directly from Eq. (5), noting that the latter calls for a single evaluationof the edge rotation function of G0 and two simple modi�cations that only depend on the constant-size graph G. Again, using the fact that it su�ces to copy vertex names from the input (or oracleanswer device) to the oracle query device (or output), we conclude that the aforementioned activitycan be performed using constant space.The argument extends to a sequential composition of a constant number of operations of theaforementioned type (i.e., graph squaring and zig-zag product with a constant graph).4Recall that the edge rotation function of a graph maps the pair (v; j) to the pair (u; k) if vertex u is the jthneighbor of vertex v and v is the kth neighbor of u (see x2.2.2).4

Recursive composition. Using Claim 4, we wish to obtain a log-space oracle machine thatevaluates gt by making oracle calls to g1, where t = O(log jV1j). Such an oracle machine will yielda log-space transformation of G1 to Gt (by evaluating gt at all possible values). It is tempting tohope that an adequate composition lemma, when applied to Claim 4, will yield the desired log-space oracle machine (reducing the evaluation of gt to g1). This is indeed the case, except that theadequate composition lemma is still to be developed (as we do next).We �rst note that applying a naive composition (as in Lemma 1) amounts to an additiveoverhead of O(log jV1j) per each composition. But we cannot a�ord more than an amortized constantadditive overhead per composition. Applying the emulative composition (as in Lemma 2) amountsin multiplicative overhead, which is certainly una�ordable. The composition developed next is avariant of the naive composition, which is bene�cial in the context of recursive calls. The basicidea is deviating from the paradigm that allocates separate input/output and query devices to eachlevel in the recursion, and combining all these devices in a single (\global") device which will beused by all levels of the recursion. That is, rather than following the \structured programming"methodology of using (locally) designated space for passing information to the subroutine, we usethe \bad programming" methodology of passing information through global variables. As usual,this notion is formulated by referring to the model of multi-tape Turing machine, but it can beformulated in any other reasonable model of computation.De�nition 5 (global-tape oracle machines): A global-tape oracle machine is de�ned as an oraclemachine, except that the input, output and oracle tapes are replaced by a single global tape. Inaddition, the machine has a constant number of work tapes, called the local tapes. The machineobtains its input from the global tape, writes each query on this very tape, obtains the correspondinganswer from this tape, and writes its �nal output on this tape. The space complexity of such amachine is stated when referring separately to the use of the global tape and to the use of the localtapes.Clearly, any ordinary oracle machine can be converted into an equivalent global-tape oracle machine.The resulting machine uses a global tape of length at most n+ `+m, where n denotes the lengthof the input, ` denote the length of the longest query or oracle answer, and m denotes the length ofthe output. However, combining the di�erent tapes into one global tape seems to require holdingseparate pointers for each of the original tapes, which means that the local tape has to be usedto store corresponding counters (in addition to the original work-tape). A key observation is thatthese counters can be avoided in the case that the original machine can be described as a sequenceof transformations (of the input into the �rst query, and of the ith answer to the i+1st query or theoutput), while maintaining auxiliary information on the work-tape. Indeed, the machine presentedin the proof of Claim 4 has this form, and thus can be implemented by a global-tape oracle machinethat uses a global-tape not longer than its input and a local-tape of constant length.Claim 6 (Claim 4, revisited): There exists a global-tape oracle machine that evaluates gi+1 whengiven oracle access to gi, while using global tape of length log2(d2jVi+1j) and a local tape of constantlength.Proof Sketch: Following the proof of Claim 4, we merely indicate the exact use of the two tapes.For example, recall that the edge rotation function of the square of Gi is evaluated at (v; hj1; j2i)by evaluating the edge rotation function of the original graph �rst at (v; j1) and then at (u; j2),where (u; k1) = gi(v; j1). This means the global-tape machine �rst reads (v; hj1; j2i) from the globaltape and replaces it by the query (v; j1), while storing j2 on the local tape. Thus, the machine5

merely deletes a constant number of bits from the global tape (and leaves its pre�x intact). Afterinvoking the oracle, the machine copies k1 from the global tape (which currently holds (u; k1)) toits local tape, and copies j2 from its local tape to the global tape (such that it contains (u; j2)).After invoking the oracle for the second time, the global tape contains (w; k2) = gi(u; j2), and themachine merely modi�es it to (w; hk2; k1i), which is the desired output.Similarly, the edge rotation function of the zig-zag product of G0 with a �xed G is evaluated at(hu; ii; h�; �i) by querying G0 at (u;E�(i)) and outputting (hv;E�(j0)i; h�; �i), where (v; j0) denotesthe oracle answer (see Eq. (5)). This means that the global-tape oracle machine �rst copies �; �from the global-tape to the local-tape, transforms the contents of the global tape from (hu; ii; h�; �i)to (u;E�(i)), and makes an analogous transformation after the oracle is invoked.Composing global-tape oracle machines. In the proof of Claim 6, we implicitly used sequen-tial composition of computations conducted by global-tape oracle machines.5 In general, whensequentially composing such computations the global-tape and local-tape usage are the maximumamong all composed computations; that is, the current formalism o�ers a tight bound on naivecomposition (as opposed to Lemma 1). Furthermore, global-tape oracle machines are bene�cial inthe context of recursive composition, as indicated by Lemma 7 (which relies on this model in acrucial way). The key observation is that all levels in the recursive composition may re-use thesame global storage, and only the local storage gets added. Consequently we have the followingcomposition lemma, where n denotes the length of the input to f1 (and t may depend on n).Lemma 7 (recursive composition in the global-tape model): Suppose that, for every i = 1; :::; t�1,there exists a global-tape oracle machine that computes fi by making oracle calls to fi+1 while usinga global-tape of length L(n) and a local-tape of length li(n), which also accounts for the machine'sstate. Then f1 can be computed by a standard oracle machine that makes calls to ft and uses spaceL(n) +Pt�1i=1 O(li(n)).We shall apply this lemma with fi = gt+1�i, using the bounds L(n) = O(n) and li(n) = O(1) (asguaranteed by Claim 6).Proof Sketch: We compute f1 by allocating space for the emulation of the global-tape and thelocal-tapes of each level in the recursion. We emulate the recursive computation by capitalizingon the fact that all recursive levels use the same global-tape (for making queries and receivinganswers). In the actual recursion, each level may use the global-tape arbitrarily as long as whenit returns control to the invoking machine the global-tape contains the right answer. Thus, theemulation may do the same, and emulate each recursive call by using the space allocated for theglobal-tape as well as the space designated for the local-tape of this level.Conclusion. Combining Claim 6 and Lemma 7, we conclude that the evaluation of gO(log jV1j)can be reduced to the evaluation of g1 in space O(log jV1j). Recalling that G1 can be constructedin log-space (based on the input graph G0), we infer that G0 = GO(log jV1j) can be constructedin log-space. Theorem 3 follows by recalling that G0 (which has constant degree and logarithmicdiameter) can be tested for connectivity in log-space (see Exercise 14). Using a similar argument,we can test whether a given pair of vertices are connected in the input graph (see Exercise 16).5A similar composition took place in the proof of Claim 4, but here we assert a stronger feature of this speci�ccomputation. 6

2 Appendix: Expander GraphsThis appendix is more elaborate than necessary for the main text. The latter merely relies on thealgebraic de�nition of expanders (as in x2.1.1) and on the zig-zag product de�ned in x2.2.2. Still,we believe that the reader may not mind having the wider perspective provided below.Loosely speaking, expander graphs are graphs of small degree that exhibit various propertiesof cliques. In particular, we refer to properties such as the relative sizes of cuts in the graph, andthe rate at which a random walk converges to the uniform distribution (relative to the logarithmof the graph size to the base of its degree).Some technicalities. Typical presentation of expander graphs refer to one of several variants.For example, in some sources, expanders are de�ned as bipartite graphs, whereas in others theyare very far from being bipartite. We shall follow the latter convention. Furthermore, at times weimplicitly consider an augmentation of these graphs where self-loops are added to each vertex. Forsimplicity, we also allow parallel edges.We often talk of expander graphs while we actually mean an in�nite collection of graphs suchthat each graph in this collection satis�es the same property (which is informally attributed tothe collection). For example, when talking of a d-regular expander (graph) we actually refer to anin�nite collection of graphs such that each of these graphs is d-regular. Typically, such a collection(or family) contains a single N -vertex graph for every N 2 S, where S is an in�nite subset of N .Throughout this section, we denote such a collection by fGNgN2S , with the understanding thatGN is a graph with N vertices and S is an in�nite set of natural numbers.2.1 De�nitions and PropertiesWe consider two de�nitions of expander graphs, two di�erent notions of explicit constructions, andtwo useful properties of expanders.2.1.1 Two Mathematical De�nitionsWe start with two di�erent de�nitions of expander graphs. These de�nitions are qualitativelyequivalent and even quantitatively related. We start with the algebraic de�nition, and later presentthe combinatorial de�nition.The algebraic de�nition (spectral gap). Identifying graphs with their adjacency matrix, weconsider the eigenvalues (and eigenvectors) of a graph (or rather of its adjacency matrix). Any d-regular graphG = (V;E) has the uniform vector as an eigenvector corresponding to the eigenvalue d,and if G is connected and not bipartite then all other eigenvalues are strictly smaller than d. Thesecond eigenvalue, denoted �2(G) < d, of such a graph G is thus a tight upper-bound on the absolutevalue of all the other eigenvalues. Using the connection to the combinatorial de�nition, it followsthat �2(G) < d �
(1=jV j2) holds (for every connected non-bipartite d-regular graph G). Thealgebraic de�nition of expanders refers to an in�nite family of d-regular graphs and requires theexistence of a constant eigenvalue bound that holds for all the graphs in the family.De�nition 8 An in�nite family of d-regular graphs, fGNgN2S, where S � N , satis�es the eigen-value bound � if for every N 2 S it holds that �2(GN) � �.
7

In such a case we say that the family has spectral gap d� �. It will be often convenient to considerrelative (or normalized) versions of these quantities, obtained by division by d. This technicalde�nition is the one typically used in complexity theoretic applications, since it directly impliesvarious \mixing properties" (see x2.1.3).The combinatorial de�nition (expansion). This algebraic de�nition is related to the combi-natorial de�nition of expansion. Loosely speaking, expansion requires that any (not too big) setof vertices of the graph has a relatively large set of neighbors. Speci�cally, a graph G = (V;E) isc-expanding if, for every set S � V of cardinality at most jV j=2, it holds that�G(S) def= fv : 9u2S s.t. (u; v)2Eg (1)has cardinality at least (1+c)�jSj. Equivalently (assuming the existence of self-loops on all vertices),we may require that j�G(S) n Sj � c � jSj. Clearly, every connected graph G = (V;E) is (1=jV j)-expanding. The combinatorial de�nition of expanders refers to an in�nite family of d-regular graphsand requires the existence of a constant expansion bound that holds for all the graphs in the family.De�nition 9 An in�nite family of d-regular graphs, fGNgN2S is c-expanding if for every N 2 Sit holds that GN is c-expanding.The two de�nitions of expander graphs are related (see [3, Sec. 9.2]).Theorem 10 Let G be a non-bipartite d-regular graph.1. The graph G is c-expanding for c � (d� �2(G))=2d.2. If G is c-expanding then d� �2(G) � c2=(4 + 2c2).Thus, any non-zero bound on combinatorial expansion of a family of d-regular graphs yields a non-zero bound on its spectral gap, and vice versa. Note, however, that the back-and-forth translationbetween these de�nitions is not tight. Our applications refer to the algebraic de�nition, and theloss incurred in Theorem 10 is immaterial for them.Ampli�cation. The quality of expander graphs improves by raising them to any power t > 1(i.e., raising their adjacency matrix to the tth power), which corresponds to considering graphs inwhich t-paths are replaced by edges. Using the algebraic de�nition, we have �2(Gt) = �2(G)t,but indeed the degree also gets raised to the power t. Still, the ratio �2(Gt)=dt deceases witht. An analogous phenomenon occurs also under the combinatorial de�nition, provided that somesuitable modi�cations are applied. For example, if G = (V;E) is c-expanding (i.e., for everyS � V it holds that j�G(S)j � min((1 + c) � jSj; jV j=2)), then for every S � V it holds thatj�Gt(S)j � min((1 + c)t � jSj; jV j=2).The optimal eigenvalue bound. For every d-regular graph G = (V;E), it holds that �2(G) �2G � pd� 1, where G = 1 � O(1= logd jV j). Thus, 2pd� 1 is a lower-bound on the eigenvaluebound of any in�nite family of d-regular graphs.
8

2.1.2 Two levels of explicitnessA mild level of explicit constructions refer to the complexity of constructing the entire graph. Anin�nite family of graphs fGNgN2S is said to be explicitly constructible if there exists a polynomial-time algorithm that, on input 1N (where N 2 S), outputs the list of the edges in the N -vertexgraph GN .The aforementioned level of explicitness su�ces when the application requires holding the entiregraph and/or runs in time that is lower-bounded by the size of the graph. In contrast, otherapplications only refer to a huge virtual graph (which is much bigger than their running time),and only require the computation of the neighborhood relations in such a graph. In this case, thefollowing stronger level of explicitness is relevant.A strongly explicit construction of an in�nite family of (d-regular) graphs fGNgN2S is a polynomial-time algorithm that on input N (in binary), a vertex v in the N -vertex graph GN and an indexi (i 2 f1; :::; dg), returns the ith neighbor of v. That is, the neighbor is determined in time thatis polylogarithmic in the size of the graph. Needless to say, the strong level of explicitness impliesthe basic level.An additional requirement, which is often forgotten but is very important, refers to the \tractabil-ity" of the set S. Speci�cally, we require the existence of an e�cient algorithm that given any n 2 N�nds an s2S such that n � s < 2n. Corresponding to the foregoing de�nitions, e�cient may meaneither running in time poly(n) or running in time poly(log n). The requirement that n � s < 2nsu�ces in most applications, but in some cases a smaller interval (e.g., n � s < n+pn) is required,whereas in others a larger interval (e.g., n � s < poly(n)) su�ces.Greater exibility. In continuation to the foregoing paragraph, we comment that expanders canbe combined in order to obtain expanders for a wider range of sizes. For example, two d-regularc-expanding graphs, G1 = (V1; E1) and G2 = (V2; E2) where jV1j � jV2j and c � 1, can be combinedinto a (d+1)-regular c=2-expanding graph on jV1j+jV2j vertices by connecting the two graphs with aperfect matching of V1 and jV1j of the vertices of V2 (and adding self-loops to the remaining verticesof V2). More generally, the d-regular c-expanding graphs, G1 = (V1; E1) through Gt = (Vt; Et),where N def= Pt�1i=1 jVij � jV2j, yield a (d + 1)-regular c=2-expanding graph on Pti=1 jVij vertices byusing a perfect matching of [t�1i=1Vi and N of the vertices of V2.2.1.3 Two propertiesThe following two properties provide a quantitative interpretation to the statement that expandersapproximate the complete graph. The deviation from the latter is represented by an error termthat is linear in �=d.The mixing lemma. The following lemma is folklore and has appeared in many papers. Looselyspeaking, the lemma asserts that expander graphs (for which d � �) have the property that thefraction of edges between two large sets of vertices approximately equals the product of the densitiesof these sets. This property is called mixing.Lemma 11 (Expander Mixing Lemma): For every d-regular graph G = (V;E) and for every twosubsets A;B � V it holds that���� j(A�B) \E2jjE2j � jAjjV j � jBjjV j ���� � �2(G)pjAj � jBjd � jV j � �2(G)d9

where E2 denotes the set of directed edges that correspond to the undirected edges of G (i.e., E2 =f(u; v) : fu; vg2Eg and jE2j = djV j).Proof: Let N def= jV j and � def= �2(G). For any subset of the vertices S � V , we denote its densityin V by �(S) def= jSj=N . Hence, the claim of the lemma is restated as���� j(A�B) \E2jd �N � �(A) � �(B)���� � �p�(A) � �(B)d :We proceed by providing bounds on the value of j(A � B) \ E2j. To this end we let a denote theN -dimensional Boolean vector having 1 in the ith component if and only if i 2 A. The vector bis de�ned similarly. Denoting the adjacency matrix of the graph G by M = (mi;j), we note thatj(A�B)\E2j equals a>Mb (because (i; j) 2 (A�B)\E2 if and only if it holds that i 2 A, j 2 Band mi;j = 1). We consider the orthogonal eigenvector basis, e1; :::; eN , where e1 = (1; :::; 1)> andei>ei = N for each i, and write each vector as a linear combination of the vectors in the basis.Speci�cally, we denote by ai the coe�cient of a in the direction of ei; that is, ai = (a>ei)=N anda = Pi aiei. Note that a1 = (a>(1; :::; 1)>)=N = �(A) and PNi=1 a2i = (a>a)=N = �(A). Similarlyfor b. It now follows that j(A�B) \E2j = a>M b1e1 + NXi=2 biei!= �(B) � d � jAj+ NXi=2 bi�ia>eiwhere �i denotes the ith eigenvalue of M (and indeed �1 = d). Thus,j(A�B) \EjdN = �(B)�(A) + NXi=2 �iaibid2 "�(B)�(A) � �d � NXi=2 aibi#Using PNi=1 a2i = �(A) and PNi=1 b2i = �(B), and applying Cauchy-Schwartz Inequality, we boundPNi=2 aibi by p�(A)�(B). The lemma follows.The random walk lemma. Loosely speaking, the �rst part of the following lemma asserts that,as far as remaining trapped in some subset of the vertex set is concerned, a random walk on anexpander approximates a random walk on the complete graph.Lemma 12 (Expander Random Walk Lemma): Let G = ([N]; E) be a d-regular graph, and con-sider walks on G that start from a uniformly chosen vertex and take `� 1 additional random steps,where in each such step we uniformly selects one out of the d edges incident at the current vertexand traverses it.1. Let W be a subset of [N] and � def= jW j=N . Then the probability that such a random walkstays in W is at most � � ��+ (1� �) � �2(G)d �`�1: (2)10

2. For any W0; :::;W`�1 � [N], the probability that a random walk of length ` intersects W0 �W1 � � � � �W`�1 is at most p�0 � `�1Yi=1q�i + (�=d)2; (3)where �i def= jWij=N .The basic principle underlying Lemma 12 was discovered by Ajtai, Komlos, and Szemer�edi [2], whoproved a bound as in Eq. (3). The better analysis yielding Part 1 is due to Kahale [6, Cor. 6.1].More general bounds that refer to the probability of staying in W for a number of times thatapproximates jW j=N are given in [5], which actually considers an even more general problem (i.e.,obtaining Cherno�-type bounds for random variables that are generated by a walk on a MarkovChain).Proof of Equation (3): The basic idea is to view the random walk as the evolution of acorresponding probability vector under suitable transformations. The transformations correspondto taking a random step in G and to passing through a \sieve" that keeps only the entries thatcorrespond to the current set Wi. The key observation is that the �rst transformation shrinksthe component that is orthogonal to the uniform distribution, whereas the second transformationshrinks the component that is in the direction of the uniform distribution. Details follow.Let A be a matrix representing the random walk on G (i.e., A is the adjacency matrix ofG divided by d). Let �̂ denote the absolute value of the second largest eigenvalue of A (i.e.,�̂ def= �2(G)=d), and note that u = (N�1; :::; N�1)> (which represents the uniform distribution) isthe eigenvector of A that is associated with the largest eigenvalue (which is 1). Let Pi be a 0-1matrix that has 1-entries only on its diagonal, and furthermore entry (j; j) is set to 1 if and only ifj 2 Wi. Then, the probability that a random walk of length ` intersects W0 �W1 � � � � �W`�1 isthe sum of the entries of the vectorv def= P`�1A � � �P2AP1AP0u: (4)We are interested in upper-bounding kvk1, and use kvk1 � pN � kvk, where kzk1 and kzk denotethe L1-norm and L2-norm of z, respectively (e.g., kuk1 = 1 and kuk = N�1=2). The key observationis that the linear transformation PiA shrinks every vector.Main Claim. For every z, it holds that kPiAzk � (�i + �̂2)1=2 � kzk.Proof. Intuitively, A shrinks the component of z that is orthogonal to u, whereas Pi shrinks thecomponent of z that is in the direction of u. Speci�cally, we decompose z = z1 + z2 such thatz1 is the projection of z on u and z2 is the component orthogonal to u. Then, using the triangleinequality and other obvious facts (i.e., kPiAz1k = kPiz1k and kPiAz2k � kAz2k), we havekPiAz1 + PiAz2k � kPiAz1k+ kPiAz2k� kPiz1k+ kAz2k� p�i � kz1k+ �̂ � kz2kwhere the last inequality uses the fact that Pi shrinks any uniform vector by eliminating 1� �i ofits elements, whereas A shrinks the length of any eigenvector except u by a factor of at least �̂.Using the Cauchy-Schwartz inequality6, we getkPiAzk � q�i + �̂2 �qkz1k2 + kz2k26That is, we get p�ikz1k + �̂kz2k � p�i + �̂2 � pkz1k2 + kz2k2, by using Pni=1 ai � bi � �Pni=1 ai2�1=2 ��Pni=1 bi2�1=2. 11

= q�i + �̂2 � kzkwhere the equality is due to the fact that z1 is orthogonal to z2.Recalling Eq. (4) and using the Main Claim (and kvk1 � pN � kvk), we getkvk1 � pN � kP`�1A � � �P2AP1AP0uk� pN � `�1Yi=1q�i + �̂2! � kP0uk:Finally, using kP0uk = p�0N � (1=N)2 = �0=pN , we establish Eq. (3).Rapid mixing. A property related to Lemma 12 is that a random walk starting at any vertexconverges to the uniform distribution on the expander vertices after a logarithmic number of steps.Using notation as in the proof of Eq. (3), we claim that for every starting distribution s (includingone that assigns all weight to a single vertex), it holds that kA`s�uk1 � pN ��̂`, which is meaningfulfor any ` > 0:5 � log1=�̂N . The claim is proved by recalling that kA`s � uk1 � pN � kA`s � ukand using the fact that s� u is orthogonal to u (because the former is a zero-sum vector). Thus,kA`s� uk � �̂`ks� uk and using ks� uk < 1 the claim follows.2.2 ConstructionsMany explicit constructions of expanders were given, starting in [8] and culminating in the optimalconstruction of [7] where � = 2pd� 1. Most of these constructions are quite simple (see, e.g.,x2.2.1), but their analysis is based on non-elementary results from various branches of mathematics.In contrast, the construction of Reingold, Vadhan, and Wigderson [12], presented in x2.2.2, is basedon an iterative process, and its analysis is based on a relatively simple algebraic fact regarding theeigenvalues of matrices.Before turning to these explicit constructions we note that it is relatively easy to prove the exis-tence of 3-regular expanders, by using the probabilistic method and referring to the combinatorialde�nition of expansion.77As a warm-up, one may establish the existence of d-regular expanders, for some constant d. In particular,towards dealing with the case of d = 3, consider a random graph G on the vertex set V = f0; :::; n � 1g constructedby augmenting the �xed edge set ffi; i+1 mod ng : i = 0; :::; n� 1g with d� 2 uniformly (and independently) chosenperfect matchings of the vertices of F def= f0; :::; (n=2) � 1g to the vertices of L def= fn=2; :::; n � 1g. Noting thatj(�G(S \F)\F)j � jS \F j � 1 (and similarly for L), and assuming without loss of generality that jS \F j � jS \Lj,we focus on upper-bounding the probability that, for some " > 0, there exists a set S � V of size at most n=2 suchthat j(�G(S \ F) \ L) n �G(S \ L)j < "jSj. Fixing such a set S, the corresponding probability is upper-bounded bypd�2S , where pS def= �(n=2)�`"jSj � � �`+"jSjjS\F j�� n=2jS\F j�where ` = j�G(S \ L) \ Lj. Indeed, we may focus on the case that jS \ F j � ` + "jSj (because in the other casepS = 0), and observe that for su�ciently small " > 0 it holds that pS < � njSj��2=5. This su�ces if d � 5. Todeal with the case d = 3, we reduce the analysis of the expansion of sets S to the case that the set S consists ofrelatively long arithmetic sequences that use an increment of either 1 or 2, where relatively long means longer thansome su�ciently large constant t = 1=p". (Note that if S contains more that 2p" � jSj elements in relatively shortarithmetic sequences then j�G(S)j > 2p"jSj=2t, and prove expansion factor at least "0 = 4p" for the rest.) Thereduction allows the application of the union bound, while considering only 2jSj=t �� njSj=t� possible sets S (rather than� njSj� such sets). 12

2.2.1 The Margulis{Gabber{Galil ExpanderFor every natural number m, consider the graph with vertex set Zm � Zm and edge set in whichevery hx; yi 2 Zm � Zm is connected to the vertices hx� y; yi, hx� (y + 1); yi, hx; y � xi, andhx; y � (x+ 1)i, where the arithmetic is modulo m. This yields an extremely simple and explicit8-regular graph with second eigenvalue that is bounded by a constant � < 8 that is independent ofm. Thus we get:Theorem 13 For some constant � < 8 there exists a strongly explicit construction of a familyof (8; �)-expanders for fm2 : m2Ng. Furthermore, the neighbors of a vertex can be computed inlogarithmic-space.8An appealing property of Theorem 13 is that, for every n 2 N , it directly yields expanders withvertex set f0; 1gn. This is obvious in case n is even, but can be easily achieved also for odd n (e.g.,use two copies of the graph for n� 1, and connect the two copies by the obvious perfect matching).Theorem 13 is due to Gabber and Galil [4], building on the basic approach suggested by Mar-gulis [8]. It was later shown that � = 5p2 < 7:1. Recall, however, that the optimal constructionof [7] achieves � = 2pd� 1 but there are restrictions on d (i.e., d� 1 should be a prime congruentto 1 modulo 4) and on the graph sizes (i.e., the set S) for which this construction works.2.2.2 The Iterated Zig-Zag ConstructionThe starting point of the construction is a very good expander G of constant size, which may befound by an exhaustive search. The construction of a large expander graph proceeds in iterations,where in the ith iteration the current graph Gi and the �xed graph G are combined, resulting ina larger graph Gi+1. The combination step guarantees that the expansion property of Gi+1 is atleast as good as the expansion of Gi, while Gi+1 maintains the degree of Gi and is a constant timeslarger than Gi. The process is initiated with G1 = G2 and terminates when we obtain a graph Gtof approximately the desired size (which requires a logarithmic number of iterations).The Zig-Zag product. The heart of the combination step is a new type of \graph product"called Zig-Zag product. This operation is applicable to any pair of graphs G = ([D]; E) andG0 = ([N]; E0), provided that G0 (which is typically larger than G) is D-regular. For simplicity, weassume that G is d-regular (where typically d � D). The Zig-Zag product of G0 and G, denotedG0z G, is de�ned as a graph with vertex set [N]�[D] and an edge set that includes an edge betweenhu; ii 2 [N]� [D] and hv; ji if and only if (i; k); (`; j) 2 E and the kth edge incident at u equals the`th edge incident at v. (See Figure 1, where vertex hu; 3i is connected in G0z G to hv; 2i, using theG-edges (3; 2) and (5; 2).)It will be convenient to represent graphs like G0 by their edge rotation function, denoted R0 :[N]� [D]! [N]� [D], such that R0(u; i) = (v; j) if (u; v) is the ith edge incident at u as well as thejth edge incident at v. For simplicity, we assume that G is edge-colorable with d colors, which inturn yields a natural edge rotation function (i.e., R(i; �) = (j; �) if the edge (i; j) is colored �). Wewill denote by E�(i) the vertex reached from i 2 [D] by following the edge colored � (i.e., E�(i) = ji� R(i; �) = (j; �)). The Zig-Zag product of G0 and G, denoted G0z G, is then de�ned as a graphwith the vertex set [N]� [D] and the edge rotation function(hu; ii; h�; �i) 7! (hv; ji; h�; �i) if R0(u;E�(i)) = (v;E�(j)). (5)8In fact, under a suitable encoding of the vertices and for m that is a power of two, the neighbors can be computedby a on-line algorithm that uses a constant amount of space.13

1

2

35

6
1

2

35

6

4

4

u v

In this example G0 is 6-regular and G is a 3-regular graph having sixvertices. In the graph G0 (not shown), the 2nd edge of vertex u isincident at v, as its 5th edge. The wide 3-segment line shows one ofthe corresponding edges of G0z G.Figure 1: Detail of the zig-zag product of G0 and G.That is, edges are labeled by pairs over [d], and the h�; �ith edge out of vertex hu; ii 2 [N] � [D]is incident at the vertex hv; ji (as its h�; �ith edge) if R(u;E�(i)) = (v;E�(j)). (That is, based onh�; �i, we take a G-step from hu; ii to hu;E�(i)i, then viewing hu;E�(i)i � (u;E�(i)) as an edge ofG0 we rotate it to (v; j0) def= R0(u;E�(i)), and take a G-step from hv; j0i to hv;E�(j0)i, while de�ningj = E�(j0) and using j0 = E�(E�(j0)) = E�(j).)Clearly, the graph G0z G is d2-regular and has D � N vertices. The key fact, proved in [12],is that the relative eigenvalue of the zig-zag product is upper-bounded by the sum of the relativeeigenvalues of the two graphs (i.e., �2(G0z G) � �2(G0) + �2(G), where �2(�) denotes the relativeeigenvalue of the relevant graph).The iterated construction. The iterated expander construction uses the aforementioned zig-zag product as well as graph squaring. Speci�cally, the construction starts with the d2-regulargraph G1 = G2 = ([D]; E2), where D = d4 and �2(G) < 1=4, and proceeds in iterations such thatGi+1 = G2iz G for i = 1; 2; :::; t � 1. That is, in each iteration, the current graph is �rst squaredand then composed with the �xed graph G via the zig-zag product. This process maintains thefollowing two invariants:1. The graph Gi is d2-regular and has Di vertices.(The degree bound follows from the fact that a zig-zag product with the d-regular graphalways yields a d2-regular graph.)2. The relative eigenvalue of Gi is smaller than one half.(Here we use the fact that �2(G2i�1z G) � �2(G2i�1)+�2(G), which in turn equals �2(Gi�1)2+�2(G) < (1=2)2 + (1=4). Note that graph squaring is used to reduce the relative eigenvalueof Gi before increasing it by zig-zag product with G.)14

To ensure that we can construct Gi, we should show that we can actually construct the edge rotationfunction that correspond to its edge set. This boils down to showing that, given the edge rotationfunction of Gi�1, we can compute the edge rotation function of G2i�1 as well as of its zig-zag productwith G. Note that this computation amounts to two recursive calls to computations regarding Gi�1(and two computations that correspond to the constant graph G). But since the recursion depth islogarithmic in the size of the �nal graph, the time spend in the recursive computation is polynomialin the size of the �nal graph. This su�ces for the minimal notion of explicitness, but not for thestronger one.The strongly explicit version. To achieve a strongly explicit construction, we slightly modifythe iterative construction. Rather than letting Gi+1 = G2iz G, we let Gi+1 = (Gi � Gi)2z G,where G0 �G0 denotes the tensor product of G0 with itself; that is, if G0 = (V 0; E0) then G0 �G0 =(V 0 � V 0; E00), where E00 = f(hu1; u2i; hv1; v2i) : (u1; v1); (u2; v2)2E0gwith an edge rotation functionR00(hu1; u2i; hi1; i2i) = (hv1; v2i; hj1; j2i)where R0(u1; i1) = (v1; j1) and R0(u2; i2) = (v2; j2). (We still use G1 = G2.) Using the fact thattensor product preserves the relative eigenvalue and using a d-regular G = ([D]; E) with D = d8, wenote that the modi�ed Gi = (Gi�1 �Gi�1)2z G is a d2-regular graph with (D2i�1�1)2 �D = D2i�1vertices, and �2(Gi) < 1=2 (because �2((Gi�1�Gi�1)2z G) � �2(Gi�1)2+�2(G)). Computing theneighbor of a vertex in Gi boils down to a constant number of such computations regarding Gi�1,but due to the tensor product operation the depth of the recursion is only double-logarithmic inthe size of the �nal graph (and hence logarithmic in the length of the description of vertices in it).Digest. In the �rst construction, the zig-zag product was used both in order to increase the sizeof the graph and to reduce its degree. However, as indicated by the second construction (where thetensor product of graphs is the main vehicle for increasing the size of the graph), the primary e�ectof the zig-zag product is to reduce the degree, and the increase in the size of the graph is merely aside-e�ect (which is actually undesired in Section 1). In both cases, graph squaring is used in orderto compensate for the modest increase in the relative eigenvalue caused by the zig-zag product. Inretrospect, the second construction is the \correct" one, because it decouples three di�erent e�ects,and uses a natural operation to obtain each of them: Increasing the size of the graph is obtainedby tensor product of graphs (which in turn increases the degree), a degree reduction is obtained bythe zig-zag product (which in turn increases the relative eigenvalue), and graph squaring is used inorder to reduce the relative eigenvalue.Stronger bound regarding the e�ect of the zig-zag product. In the foregoing descriptionwe relied on the fact, proved in [12], that the relative eigenvalue of the zig-zag product is upper-bounded by the sum of the relative eigenvalues of the two graphs. Actually, a stronger upper-boundis proved in [12]: For g(x; y) = (1� y2) � x=2, it holds that�2(G0z G) � g(�2(G0); �2(G)) +qg(�2(G0); �2(G))2 + �2(G)2 (6)� 2g(�2(G0); �2(G)) + �2(G)= (1� �2(G)2) � �2(G0) + �2(G):15

Thus, we get �2(G0z G) � �2(G0) + �2(G). Furthermore, Eq. (6) yields a non-trivial bound forany �2(G0); �2(G) < 1, even in case �2(G0) is very close to 1 (as in Reingold's constriction [11]; seeproof of Theorem 3). Speci�cally, Eq. (6) is upper-bounded byg(�2(G0); �2(G)) +s�1� �2(G)22 �2 + �2(G)2= (1� �2(G)2) � �2(G0)2 + 1 + �2(G)22= 1� (1� �2(G)2) � (1� �2(G0))2 (7)Thus, 1 � �2(G0z G) � (1 � �2(G)2) � (1 � �2(G0))=2. In particular, if �2(G) < 1=p3 then 1 ��2(G0z G) > (1� �2(G0))=3. This fact plays an important role in the proof of Theorem 3).NotesBefore turning to the actual credit, we mention that some people tend to be discouraged by theimpression that \decades of research have failed to answer any of the famous open problems ofcomplexity theory." In addition to the fact that substantial progress towards the understanding ofmany fundamental issues has been achieved, people tend to forget that some famous open problemswere actually resolved. The current text is indeed a superb example.For more than two decades, undirected connectivity was one of the most appealing examplesof the computational power of randomness. Recall that the classical (deterministic) linear-timealgorithms (e.g., BFS and DFS) require an extensive use of (extra) memory (i.e., space linear inthe size of the graph). On the other hand, it was known (since 1979, see [1]) that, with highprobability, a random walk of polynomial length visits all vertices (in the corresponding connectedcomponent). Thus, the randomized algorithm requires a minimal amount of auxiliary memory (i.e.,logarithmic in the size of the graph).In the early 1990's, this algorithm (as well as the entire class BPL), was derandomized inpolynomial-time and poly-logarithmic space (see [9, 10]), but despite more than a decade of researchattempts, a signi�cant gap remained between the space complexity of randomized and deterministicpolynomial-time algorithms for this natural and ubiquitous problem. This gap was closed byReingold [11], who established Theorem 3 in 2004. Our presentation follows his ideas, but thespeci�c formulation in Section 1.2 is new.Exercise 14 (UCONN in constant degree graphs of logarithmic diameter) Present a log-space algorithm for deciding the following promise problem, which is parameterized by constantsc and d. The input graph satis�es the promise if each vertex has degree at most d and every pairof vertices that reside in the same connected component are connected by a path of length at mostc log2 n, where n denotes the number of vertices in the input graph. The task is to decide whetherthe input graph is connected.Guideline: For every pair of vertices in the graph, we check whether these vertices are connected in thegraph. (Alternatively, we may just check whether each vertex is connected to the �rst vertex.) Relying onthe promise, it su�ces to inspect all paths of length at most ` def= c log2 n, and these paths can be enumeratedusing ` � dlog2 de bits of storage. 16

Exercise 15 (warm-up towards Section 1.2) In continuation to Section 1.1, present a log-space transformation of Gi to Gi+1.Guideline: Given the graph Gi as input, we may construct Gi+1 by �rst constructing G0 = Gci and thenconstructing G0z G. To construct G0, we scan all vertices of Gi (holding the current vertex in temporarystorage), and for each such vertex construct its neighborhood in G0 (by using O(c) space for enumerating allpossible neighbors). Similarly, we can construct the vertex neighborhoods in G0z G (by storing the currentvertex name and using a constant amount of space for indicating incident edges in G).Exercise 16 (st-UCONN) In continuation to Section 1, prove that the following computationalproblem is in L: Given an undirected graph G = (V;E) and two designated vertices, s and t,determine whether there is a path from s to t in G.Guideline: Note that the transformation described in Section 1 can be easily extended such that it mapvertices in G0 to vertices in GO(log jV j) while preserving the connectivity relation (i.e., u and v are connectedin G0 if and only if their images under the map are connected in GO(log jV j)).Exercise 17 (�nding paths in undirected graphs) In continuation to Exercise 16, present alog-space algorithm that given an undirected graph G = (V;E) and two designated vertices, s andt, �nds a path from s to t in G (in case such a path exists).Guideline: In continuation to Exercise 16, we may �nds and store a logarithmic path in GO(log jV j) thatconnects a representative of s and a representative of t. Focusing on the task of �nding a path in G0 thatcorresponds to an edge in GO(log jV j), we note that such a path can be found by using the reduction underlyingthe combination of Claim 6 and Lemma 7. (Again, a direct description appears in [11].)References[1] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lov�asz and C. Racko�. Random walks, universaltraversal sequences, and the complexity of maze problems. In 20th IEEE Symposium onFoundations of Computer Science, pages 218{223, 1979.[2] M. Ajtai, J. Komlos, E. Szemer�edi. Deterministic Simulation in LogSpace. In 19th ACMSymposium on the Theory of Computing, pages 132{140, 1987.[3] N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons, Inc., 1992.[4] O. Gaber and Z. Galil. Explicit Constructions of Linear Size Superconcentrators. Journal ofComputer and System Science, Vol. 22, pages 407{420, 1981.[5] D. Gillman. A cherno� bound for randomwalks on expander graphs. In 34th IEEE Symposiumon Foundations of Computer Science, pages 680{691, 1993.[6] N. Kahale, Eigenvalues and Expansion of Regular Graphs. Journal of the ACM, Vol. 42 (5),pages 1091{1106, September 1995.[7] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan Graphs. Combinatorica, Vol. 8, pages261{277, 1988.[8] G.A. Margulis. Explicit Construction of Concentrators. (In Russian.) Prob. Per. Infor.,Vol. 9 (4), pages 71{80, 1973. English translation in Problems of Infor. Trans., pages 325{332, 1975. 17

[9] N. Nisan. Pseudorandom Generators for Space Bounded Computation. Combinatorica,Vol. 12 (4), pages 449{461, 1992.[10] N. Nisan. RL � SC. Journal of Computational Complexity, Vol. 4, pages 1-11, 1994.[11] O. Reingold. Undirected ST-Connectivity in Log-Space. In 37th ACM Symposium on theTheory of Computing, pages 376{385, 2005.[12] O. Reingold, S. Vadhan, and A. Wigderson. Entropy Waves, the Zig-Zag Graph Product,and New Constant-Degree Expanders and Extractors. Annals of Mathematics, Vol. 155 (1),pages 157{187, 2001. Preliminary version in 41st FOCS, pages 3{13, 2000.

18

