
Texts in Computational Complexity:On Error Correcting CodesOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.January 5, 2006In this section we highlight some issues and aspects of coding theory that are most relevant tothe current book. The interested reader is referred to [20] for a more comprehensive treatment ofthe computational aspects of coding theory. Structural aspects of coding theory, which are at thetraditional focus of that �eld, are covered in standard textbook such as [18].1 Getting startedLoosely speaking, an error correcting code is a mapping of strings to longer strings such that anytwo di�erent strings are mapped to a corresponding pair of strings that are far apart (and notmerely di�erent). Speci�cally, C : f0; 1gk ! f0; 1gn is a (binary) code of distance d if for everyx 6= y 2 f0; 1gk it holds that C(x) and C(y) di�er on at least d bit positions.It will be useful to extend this de�nition to sequences over an arbitrary alphabet �, and to usesome notations. Speci�cally, for x 2 �m, we denote the ith symbol of x by xi (i.e., x = x1 � � � xm),and consider codes over � (i.e., mappings of �-sequences to �-sequences). The mapping (code)C : �k ! �n has distance d if for every x 6= y 2 �k it holds that jfi : C(x)i 6= C(y)igj � d. Themembers of fC(x) : x 2 �kg are called codewords (and in some texts this set itself is called a code).In general, we de�ne a metric, called Hamming distance, over the set of n-long sequences over�. The Hamming distance between y and z, where y; z 2 �n, is de�ned as the number of locationson which they disagree (i.e., jfi : yi 6= zigj). The Hamming weight of such sequences is de�ned asthe number of non-zero elements (assuming that one element of � is viewed as zero). Typically,� is associated with an additive group, and in this case the distance between y and z equals theHamming weight of w = y � z, where wi = yi � zi (for every i).Asymptotics. We will actually consider in�nite families of codes; that is, fCk : �kk ! �n(k)k gk2S ,where S � N (and typically S = N). (N.B., we allow �k to depend on k.) We say that such afamily has distance d : N ! N if for every k 2 S it holds that Ck has distance d(k). Needless tosay, both n = n(k) (called the block-length) and d(k) depend on k, and the aim is to have a lineardependence (i.e., n(k) = O(k) and d(k) = 
(n(k))). In such a case, one talks of the relative rate ofthe code (i.e., the constant k=n(k)) and its relative distance (i.e., the constant d(k)=n(k)).In general, we will often refer to relative distances between sequences. For example, for y; z 2 �n,we say that y and z are "-close (resp., "-far) if jfi : yi 6= zigj � " � n (resp., jfi : yi 6= zigj � " � n).1



Computational problems. The most basic computational tasks associated with codes are en-coding and decoding (under noise). The de�nition of the encoding task is straightforward (i.e.,map x 2 �kk to Ck(x)), and an e�cient algorithm is required to compute each symbol in Ck(x) inpoly(k; j�kj)-time.1 When de�ning the decoding task we note that \minimum distance decoding"(i.e., given w 2 �n(k)k , �nd x such that Ck(x) is closest to y (in Hamming distance)) is just onenatural possibility. Two related variants, regarding a code of distance d, are:Unique decoding: Given w 2 �n(k)k that is at Hamming distance less than d(k)=2 from some code-word Ck(x), retrieve the corresponding decoding of Ck(x) (i.e., retrieve x).Needless to say, this task is well-de�ned because there cannot be two di�erent codewords thatare each at Hamming distance less than d(k)=2 from w.List decoding: Given w 2 �n(k)k and a parameter d0 � d(k)=2, output a list of all x 2 �kk that areat Hamming distance at most d0 from w.Typically, one considers the case that d0 < d(k). See Section 4 for discussion of upper-boundson the number of codewords that are within a certain distance from a generic sequence.Two additional computational tasks are considered in Section 3.Linear codes. Associating �k with some �nite �eld, we call a code Ck : �kk ! �n(k)k linear ifit satis�es Ck(x + y) = Ck(x) + Ck(y), where x and y (resp., Ck(x) and Ck(y)) are viewed ask-dimensional (resp., n(k)-dimensional) vectors over �k, and the arithmetic is of the correspond-ing vector space. A useful property of linear codes is that their distance equals the Hammingweight of the lightest codeword other than Ck(0k); that is, minx6=yfjfi : Ck(x)i 6= Ck(y)igjg equalsminx6=0kfjfi : Ck(x)i 6= 0gjg. Another useful property is that the code is fully speci�ed by a k-by-n(k) matrix, called the generating matrix, that consists of the codewords of some �xed basis of �kk.That is, the set of all codewords is obtained as the j�kjk di�erent linear combination of the rowsof the generating matrix.2 A few popular codesOur focus will on explicitly constructible codes; that is, (families of) codes of the form fCk : �kk !�n(k)k gk2S that are coupled with e�cient encoding and decoding algorithms. But before presentinga few such codes, let us consider a non-explicit construction.Proposition 1 (random linear codes): Let c > 1 and n; d : N ! N be such that for every k itholds that n(k) > c � k=(1 � H2(d(k)=n(k))) and d(k) < n(k)=2c, where H2(�) def= � log2(1=�) +(1 � �) log2(1=1 � �). Then, with high probability, a random linear transformation of f0; 1gk tof0; 1gn(k) constitutes a code of distance d(k).Thus, for every constant � 2 (0; 0:5) there exists a constant � > 0 and an in�nite family of codesfCk : f0; 1gk ! f0; 1gk=�gk2N of relative distance �. Speci�cally, � = c=(1 �H2(�)) will do.1This formulation is not the one common in coding theory, but it is the most natural one for our applications.On one hand, this formulation is applicable also to codes with super-polynomial block-length. On the other hand,this formulation does not support a discussion of practical algorithms that compute the codeword faster than bycomputing each of its bits separately. 2



Proof: We consider a uniformly selected k-by-n(k) generating matrix over GF(2), and upper-bound the probability that it yields a linear code of distance less than d(k). We use a unionbound on all possible 2k � 1 linear combinations of the rows of the generating matrix, where foreach such combination we compute the probability that it yields a vector of Hamming weight lessthan d(k). Observe that the result of each such linear combination is uniformly distributed overf0; 1gn(k), and thus has Hamming weight less than d(k) with probability Pd(k)�1i=0 �n(k)i � � 2�n(k) �2�(1�H2(d(k)=n(k)))�n(k)). Using (1�H2(d(k)=n(k))) � n(k) > c � k, the proposition follows.2.1 A mildly explicit version of Proposition 1Note that Proposition 1 yields a (deterministic) exp(k � n(k))-time algorithm that �nds a linearcode of distance d(k). The time bound can be improved to exp(k + n(k)), by observing that wemay choose the rows of the generating matrix one by one, making sure that all non-empty linearcombinations of the current rows have weight at least d(k). Note that the proof of Proposition 1can be adapted to assert that as long as we have less than k rows a random choice of the next rowwill do with high probability. Note that in the case that n(k) = O(k), this yields an algorithm thatruns in time that is polynomial in the size of the code (i.e., the number of codewords). Needlessto say, this mild level of explicitness is inadequate for most coding applications; however, it will beuseful to us in Section 2.5.2.2 The Hadamard CodeThe Hadamard code is the longest (non-repetitive) linear code over f0; 1g � GF(2). That is,x 2 f0; 1gk is mapped to the sequence of all n(k) = 2k possible linear combinations of its bits(i.e., bit locations in the codewords are associated with k-bit strings, and location � 2 f0; 1gk inthe codeword of x holds the value Pki=1 �ixi). It can be veri�ed that each non-zero codeword hasweight 2k�1, and thus this code has relative distance d(k)=n(k) = 1=2 (albeit its block-length n(k)is exponential in k).Turning to the computational aspects, we note that encoding is very easy. The proof of thefact that inner-product (mod 2) is a hardcore predicate [14] (see also [12, Thm. 2.5.2]), provides avery fast probabilistic algorithm for list decoding. An even faster algorithm for unique decoding isprovided in the warm-up discussions towards such a proof (see, e.g., [12, P. 67]).We note that the Hadamard code has played a key role in the proof of the PCP Theorem [2, 1];see [1].A propos long codes. We note that the longest (non-repetitive) binary code (called the Long-Code and introduced in [5]) is extensively used in the design of \advanced" PCP systems (see,e.g., [16, 17]). In this code, a k-bit long string x is mapped to the sequence of n(k) = 22k values,each corresponding to the evaluation of a di�erent Boolean function at x; that is, bit locationsin the codewords are associated with Boolean functions such that the location associated withf :f0; 1gk!f0; 1g in the codeword of x holds the value f(x).2.3 The Reed{Solomon CodeA Reed-Solomon code is de�ned for a non-binary alphabet, which is associated with a �nite �eldof n elements, denoted GF(n). For any k < n, we consider the mapping of univariate degree k � 1polynomials over GF(n) to their evaluation at all �eld elements. That is, p 2 GF(n)k (viewed as3



such a polynomial), is mapped to the sequence (p(�1); :::; p(�n)), where �1; :::; �n is a canonicalenumeration of the elements of GF(n).2The Reed-Solomon code o�ers in�nite families of codes with constant rate and constant relativedistance (e.g., by taking n(k) = 3k and d(k) = 2k), but the alphabet size grows with k (or ratherwith n(k) > k). E�cient algorithms for unique decoding and list decoding are known (see [19]and references therein). These computational tasks correspond to the extrapolation of polynomialsbased on a noisy version of their values at all possible evaluation points.2.4 The Reed{Muller CodeReed-Muller codes generalize Reed-Solomon codes by considering multi-variate polynomials ratherthan univariate polynomials. Consecutively, the alphabet may be any �nite �eld, and in particularthe two-element �eld GF(2). Reed-Muller codes (and variants of them) are extensively used incomplexity theory; for example, they underly the hardness ampli�cation of [21], and the basisPCP constructions of [3, 10, 2, 1]. The relevant property of these codes is that, under a suitablesetting of parameters that satis�es n(k) = poly(k), they allow super fast \codeword testing" and\self-correction" (see discussion in Section 3).For any prime power q and parameters m and r, we consider the set, denoted Pm;r, of allm-variate polynomials of total degree at most r. Each polynomial in Pm;r is represented by thek = logq jPm;rj coe�cients of all relevant monomials, where in the case that r < q it holds thatk = �m+rm �. We consider the code C : GF(q)k ! GF(q)n, where n = qm, mapping m-variatepolynomials of total degree at most r to their values at all qm evaluation points. That is, the m-variate polynomial p of total degree at most r is mapped to the sequence of values (p(�1); :::; p(�n)),where �1; :::; �n is a canonical enumeration of all the m-tuples of GF(q). The relative distance ofthis code is lower-bounded by (q � r)=q.In typical applications one sets r = �(m2 logm) and q = poly(r), which yields k > mmand n = poly(r)m = poly(mm). Thus we have n(k) = poly(k) but not n(k) = O(k). As weshall see in Section 3, the advantage (in comparison to the Reed-Solomon code) is that codewordtesting and self-correction can be performed at complexity related to q = poly(log n). Actually, inmost complexity applications, a variant in which only m-variate polynomials of individual degreer0 = r=m are used. In this case, an alternative presentation analogous to the one presented inFootnote 2 is preferred: The information is viewed as a function Hm ! GF(q), where H � GF(q)is of size r0 + 1, and is encoded by a m-variate polynomial of individual degree r0 evaluated at allpoints in GF(q)m.2.5 Binary codes of constant relative distance and constant rateRecall that we seek binary codes of constant relative distance and constant rate. Proposition 1asserts that such codes exists, but does not provide an explicit construction. The Hadamard code isexplicit but does not have a constant rate (to say the least (since n(k) = 2k)).3 The Reed-Solomoncode has constant relative distance and constant rate but uses a non-binary alphabet (which growsat least linearly with k). We achieve the desired construction by using the paradigm of concatenatedcodes [11], which is of independent interest. (Indeed, concatenated codes may be viewed as a simpleversion of the proof composition paradigm of [2].)2Alternatively, we may map (v1; :::; vk) 2 GF(n)k to (p(�1); :::; p(�n)), where p is the unique univariate polynomialof degree k�1 that satis�es p(�i) = vi for i = 1; :::; k. Note that this modi�cation amounts to a linear transformationof the generating matrix.3Binary Reed-Muller codes also fail to simultaneously provide constant relative distance and constant rate.4



Intuitively, concatenated codes are obtained by �rst encoding information, viewed as a sequenceover a large alphabet, by some code and next encoding each resulting symbol, which is viewed asa sequence of over a smaller alphabet, by a second code. Formally, consider �1 � �k22 and twocodes, C1 : �k11 ! �n11 and C2 : �k22 ! �n22 . Then, the concatenated code of C1 and C2, maps(x1; :::; xk1) 2 �k11 � �k1k22 to (C2(y1); :::; C2(yn1)), where (y1; :::; yn1)) = C1(x1; :::; xk1).Note that the resulting code C : �k1k22 ! �n1n22 has constant rate and constant relative distanceif both C1 and C2 have these properties. Encoding in the concatenated code is straightforward.To decode a corrupted codeword of C, we �rst apply the decoder of C2 to the n1 blocks (whichare each a n2-long sequence over �2), obtaining n1 sequences over �2, which are each interpretedas a symbol of �1. Next we apply the decoder of C1 to the resulting n1-long sequence (over�1), and �nally we interpret the resulting k1-long sequence (over �1) as a k1k2-long sequence over�2. The key observation is that if we are given a sequence that is "1"2-close to C(x1; :::; xk1) =(C2(y1); :::; C2(yn1)) then at least 1� "1 of the blocks are "2-close to the corresponding C2(yi).We are going to consider the concatenated code obtained by using the Reed-Solomon CodeC1 : GF(n1)k1 ! GF(n1)n1 as the large code, setting k2 = log2 n1, and using the mildly explicitversion of Proposition 1, C2 : f0; 1gk2 ! f0; 1gn2 as the small code. We use n1 = 3k1 andn2 = O(k2), and so the concatenated code is C : f0; 1gk ! f0; 1gn, where k = k1k2 and n =n1n2 = O(k). The key observation is that C2 can be constructed in exp(k2)-time, whereas hereexp(k2) = poly(k). Furthermore, both encoding and decoding with respect to C2 can be performedin time exp(k2) = poly(k). Thus, we get:Theorem 2 (an explicit good code): There exists constants �; � > 0 and an explicit family ofbinary codes of rate � and relative distance at least �.4 That is, there exists a polynomial-time(encoding) algorithm C such that jC(x)j = jxj=� (for every x) and a polynomial-time (decoding)algorithm D such that for every y that is �=2-close to some C(x) it holds that D(y) = x. Further-more, C is a linear code.The linearity of C is justi�ed by using a Reed-Solomon code over the extension �eld F = GF(2k2),and noting that this code induces a linear transformation over GF(2). Speci�cally, the value of apolynomial p over F at a point � 2 F can be obtained as a linear transformation of the coe�cientof p, when viewed as k2-dimensional vectors over GF(2).Relative distance approaching one half. Starting with a Reed-Solomon code of relative dis-tance �1, we obtain a concatenated code of relative distance �1=2. Note that, for any constant�1 < 1, there exists a Reed-Solomon code C1 : GF(n1)k1 ! GF(n1)n1 of relative distance �1 andconstant rate (i.e., 1� �1). Giving up on constant rate, we may start with a Reed-Solomon code ofblock-length n1(k1) = poly(k1) and distance n1(k1)�k1 over [n1(k1)], which yields a (concatenated)binary code of block length n(k) � n1(k)2 and distance approximately (n(k)� k � n1(k))=2. Thus,the relative distance is approximately (1=2) � (k=pn(k)).3 Two additional computational problemsIn this section we brie
y review relaxations of two traditional coding theoretic tasks. The purposeof these relaxations is enabling super-fast (randomized) algorithms that provide meaningful infor-mation. Speci�cally, these algorithms may run in sub-linear (e.g., poly-logarithmic) time, and thuscannot possibly solve the unrelaxed version of the problem.4The relative distance of the code may be actually larger than �. We set � such that we can guarantee e�cientdecoding of any input that is �=2-close to some codeword.5



Local testability. This task refers to testing whether a given word is a codeword (in a predeter-mine code), based on (randomly) inspecting few locations in the word. Needless to say, wecan only hope to make an approximately correct decision; that is, accept each codeword andreject with high probability each word that is far from the code. (Indeed, this task is withinthe framework of property testing.)Local decodability. Here the task is to recover a speci�ed bit in the plaintext by (randomly)inspecting few locations in a mildly corrupted codeword. This task is somewhat related tothe task of self-correction (i.e., recovering a speci�ed bit in the codeword itself, by inspectingfew locations in the mildly corrupted codeword).Note that the Hadamard code is both locally testable and locally decodable as well as self-correctable(based on a constant number of queries into the word); these facts were demonstrated and exten-sively used in [8, 1]. However, the Hadamard code has an exponential block-length (i.e., n(k) = 2k),and the question is whether one can achieve analogous results with respect to a shorter code (e.g.,n(k) = poly(k)). As hinted in Section 2.4, the answer is positive (when referring to performingthese operations in time that is poly-logarithmic in k):Theorem 3 For some constant � > 0 and polynomials n; q : N ! N , there exists an explicit familyof codes fCk : [q(k)]k ! [q(k)]n(k)gk2N of relative distance � that can be locally testable and locallydecodable in poly(log k)-time. That is, the following three conditions hold.1. Encoding: There exists a polynomial time algorithm that on input x 2 [q(k)]k returns Ck(x).2. Local Testing: There exists a probabilistic polynomial-time oracle machine T that given k (inbinary)5 and oracle access to w 2 [q(k)]n(k) distinguishes the case that w is a codeword fromthe case that w is �=2-far from any codeword. Speci�cally:(a) For every x 2 [q(k)]k it holds that Pr[TCk(x)(k)=1] = 1.(b) For every w 2 [q(k)]n(k) that is �=2-far from any codeword of Ck it holds that Pr[Tw(k)=1] � 1=2.As usual, the error probability can be reduced by repetitions.3. Local Decoding: There exists a probabilistic polynomial-time oracle machine D that given kand i 2 [k] (in binary) and oracle access to any w 2 [q(k)]n(k) that is �=2-close to Ck(x)returns xi; that is, Pr[Dw(k; i) = xi] � 2=3.Self correction holds too: there exists a probabilistic polynomial-time oracle machine M thatgiven k and i 2 [n(k)] (in binary) and oracle access to any w 2 [q(k)]n(k) that is �=2-far fromCk(x) returns Ck(x)i; that is, Pr[Dw(k; i) = Ck(x)i] � 2=3.We stress that both oracle machines work in time that is polynomial in the binary representationof k, which means that they run in time that is poly-logarithmic in k. The code asserted inTheorem 3 is a (small modi�cation of a) Reed-Muller code, for r = m2 logm < q(k) = poly(r)and [n(k)] � GF(q(k))m (see Section 2.4).6 The aforementioned oracle machines query the oracle5Thus, the running time of T is poly(jkj) = poly(log k).6The modi�cation is analogous to the one presented in Footnote 2: For a suitable choice of k points�1; :::; �kGF(q(k))m, we map v1; :::; vk to (p(�1); :::; p(�n)), where p is the unique m-variate polynomial of degreeat most r that satis�es p(�i) = vi for i = 1; :::; k. 6



w : [n(k)] ! GF(q(k)) at a non-constant number of locations. Speci�cally, self-correction forlocation i 2 GF(q(k))m is performed by selecting a random line (over GF(q(k))m) that passesthrough i, recovering the values assigned by w to all q(k) points on this line, and performingunivariate polynomial extrapolation (under mild noise). Local testability is easily reduced to self-correction, and local decodability is enabled by the aforementioned modi�cation.Constant number of queries. The local testing and decoding algorithms asserted in Theorem 3make a polylogarithmic number of queries into the oracle. In contrast, the Hadamard code supportsthese operation using a constant number of queries. Can this be obtained with much shorter code-words? For local testability the answer is de�nitely positive. One can obtain such locally testablecodes with length that is nearly linear (see [7, 9]). For local decodability based on q queries theshortest known code has codewords of length n(k) = exp(kO(log log q)=q log q); see [4]. We conjecturethat for every constant q there exists a constant cq > 0 such that n(k) � exp(kcq ) must hold (forlocal decodability based on q queries). In light of this conjecture, we advocate a relaxation of thelocal decodability task (e.g., the one studied in [6]).The interested reader is referred to [13], which includes more details on locally terstable anddecodable codes as well as a wider perspective. (Note, however, that this survey was written priorto [9], which resolves the main opend problem posed in [13].)4 A list decoding boundA necessary condition for the feasibility of the list decoding task is that the list of codewords thatare close to the given word is short. In this section we present an upper-bound on the length of suchlists, noting that this bound has found several applications in complexity theory (and speci�callyto studies related to the contents of this course). In contrast, we do not present far more famousbounds (which typically refer to the relation among the main parameters of codes (i.e., k; n andd)), because they seem irrelevant to the contents of this course.We start with a general statement that refers to any alphabet � � [q], and later specialize itto the case that q = 2. Especially in the general case, it is natural and convenient to considerthe agreement (rather than the distance) between sequences over [q]. Furthermore, it is natural tofocus on agreement rate of at least 1=q, and convenient to state the following result in terms of the\excessive agreement rate" (i.e., the excess beyond 1=q).7Lemma 4 (Part 2 of [15, Thm. 15]): Let C : [q]k ! [q]n be an arbitrary code of distance d �n � (n=q), and let 
c def= 1 � (d=n) � (1=q) � 0 denote the corresponding upper-bound on theexcessive agreement rate between codewords. Suppose that 
w 2 (0; 1) satis�es
w > s�1� 1q� � 
c: (1)Then, for any w 2 [q]n, the number of codewords that are at distance at most (1� ((1=q) + 
w)) � nfrom w (i.e., agree with w on at least ((1=q) + 
w) � n positions) is upper-bounded by(1� (1=q))2 � (1� (1=q)) � 
c
w2 � (1� (1=q)) � 
c : (2)7Indeed, we only consider codes with distance d � (1� 1=q) � n and words that are at distance at most d from thecode. Note that 1=q is a natural threshold for an upper-bound on the relative agreement between sequences over [q],because a random sequence is expected to agree with any �xed sequence on a 1=q fraction of the locations.7



In the binary case (i.e., q = 2), Eq. (1) requires 
w > p
c=2 and Eq. (2) yields the upper-bound(1 � 2
c)=(4
w2 � 2
c). In the case of the Hadamard code, we have 
c = 0, and so (for everyw 2 f0; 1gn and every 
w > 0) the number of codewords that are (0:5 � 
w)-close to w is atmost 1=(4
w2). In the general case (and speci�cally for q � 2) it is useful to simplify Eq. (1) by
w > minfp
c; (1=q) +p
c � (1=q)g and Eq. (2) by 1
w2�
c .References[1] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Veri�cation and In-tractability of Approximation Problems. Journal of the ACM, Vol. 45, pages 501{555, 1998.Preliminary version in 33rd FOCS, 1992.[2] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP.Journal of the ACM, Vol. 45, pages 70{122, 1998. Preliminary version in 33rd FOCS, 1992.[3] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in PolylogarithmicTime. In 23rd ACM Symposium on the Theory of Computing, pages 21{31, 1991.[4] A. Beimel, Y. Ishai, E. Kushilevitz, and J.F. Raymond. Breaking the O(n1=(2k�1)) barrier forinformation-theoretic private information retrieval. In 43rd IEEE Symposium on Foundationsof Computer Science, pages 261{270, 2002.[5] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability { TowardsTight Results. SIAM Journal on Computing, Vol. 27, No. 3, pages 804{915, 1998. Extendedabstract in 36th FOCS, 1995.[6] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of prox-imity, Shorter PCPs and Applications to Coding. In 36th ACM Symposium on the Theory ofComputing, pages 1{10, 2004.[7] E. Ben-Sasson and M. Sudan. Simple PCPs with Poly-log Rate and Query Complexity.ECCC, TR04-060, 2004.[8] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to NumericalProblems. Journal of Computer and System Science, Vol. 47, No. 3, pages 549{595, 1993.[9] I. Dinur. The PCP Theorem by Gap Ampli�cation. ECCC, TR05-046, 2005.[10] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximating Clique is almostNP-complete. Journal of the ACM, Vol. 43, pages 268{292, 1996. Preliminary version in 32ndFOCS, 1991.[11] G.D. Forney. Concatenated Codes. MIT Press, Cambridge, MA 1966.[12] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University Press, 2001.[13] O. Goldreich. Short Locally Testable Codes and Proofs (Survey). ECCC, TR05-014, 2005.[14] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st ACMSymposium on the Theory of Computing, pages 25{32, 1989.8



[15] O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials with queries: the highlynoisy case. SIAM J. Discrete Math., Vol. 13 (4), pages 535{570, 2000.[16] J. H�astad. Clique is hard to approximate within n1��. Acta Mathematica, Vol. 182, pages105{142, 1999. Preliminary versions in 28th STOC (1996) and 37th FOCS (1996).[17] J. H�astad. Getting optimal in-approximability results. In 29th ACM Symposium on theTheory of Computing, pages 1{10, 1997.[18] F. MacWilliams and N. Sloane. The theory of error-correcting codes. North-Holland, 1981.[19] M. Sudan. Decoding of Reed Solomon codes beyond the error-correction bound. Journal ofComplexity, Vol. 13 (1), pages 180{193, 1997.[20] M. Sudan. Algorithmic introduction to coding theory. Lecture notes, Available fromhttp://theory.csail.mit.edu/~madhu/FT01/, 2001.[21] , M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR Lemma.Journal of Computer and System Science, Vol. 62, No. 2, pages 236{266, 2001.

9


