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In this section we highlight some issues and aspects of coding theory that are most relevant to
the current book. The interested reader is referred to [20] for a more comprehensive treatment of
the computational aspects of coding theory. Structural aspects of coding theory, which are at the
traditional focus of that field, are covered in standard textbook such as [18].

1 Getting started

Loosely speaking, an error correcting code is a mapping of strings to longer strings such that any
two different strings are mapped to a corresponding pair of strings that are far apart (and not
merely different). Specifically, C : {0,1}¥ — {0,1}" is a (binary) code of distance d if for every
x #y € {0,1}* it holds that C(x) and C(y) differ on at least d bit positions.

It will be useful to extend this definition to sequences over an arbitrary alphabet X, and to use
some notations. Specifically, for z € ¥™, we denote the i*" symbol of z by z; (i.e., x = x1 - - x,),
and consider codes over ¥ (i.e., mappings of Y-sequences to Y-sequences). The mapping (code)
C : % — ¥" has distance d if for every = # y € X* it holds that |{i : C(x); # C(y);}| > d. The
members of {C(x) : x € ¥¥} are called codewords (and in some texts this set itself is called a code).

In general, we define a metric, called Hamming distance, over the set of n-long sequences over
3. The Hamming distance between y and z, where y, z € X", is defined as the number of locations
on which they disagree (i.e., |{i : y; # z;}|). The Hamming weight of such sequences is defined as
the number of non-zero elements (assuming that one element of ¥ is viewed as zero). Typically,
Y is associated with an additive group, and in this case the distance between y and z equals the
Hamming weight of w =y — 2z, where w; = y; — z; (for every 7).

Asymptotics. We will actually consider infinite families of codes; that is, {C : £F — EZ(k)}kes,
where S C N (and typically S = N). (N.B., we allow X to depend on k.) We say that such a
family has distance d : N — N if for every k£ € S it holds that Cj has distance d(k). Needless to
say, both n = n(k) (called the block-length) and d(k) depend on k, and the aim is to have a linear
dependence (i.e., n(k) = O(k) and d(k) = Q(n(k))). In such a case, one talks of the relative rate of
the code (i.e., the constant k/n(k)) and its relative distance (i.e., the constant d(k)/n(k)).

In general, we will often refer to relative distances between sequences. For example, for y, z € 3",
we say that y and z are e-close (resp., e-far) if |{i:y; # zi}| < e-n (vesp., [{i:y; # zi}| > €-n).



Computational problems. The most basic computational tasks associated with codes are en-
coding and decoding (under noise). The definition of the encoding task is straightforward (i.e.,
map = € XF to Ci(7)), and an efficient algorithm is required to compute each symbol in C () in
poly(k, |Zg|)-time.! When defining the decoding task we note that “minimum distance decoding”
(i.e., given w € EZUC), find = such that Cy(z) is closest to y (in Hamming distance)) is just one
natural possibility. Two related variants, regarding a code of distance d, are:

Unique decoding: Given w € EZ(k) that is at Hamming distance less than d(k)/2 from some code-

word Ci(z), retrieve the corresponding decoding of Ci(x) (i.e., retrieve x).

Needless to say, this task is well-defined because there cannot be two different codewords that
are each at Hamming distance less than d(k)/2 from w.

List decoding: Given w € EZ(k) and a parameter d’ > d(k)/2, output a list of all z € XF that are
at Hamming distance at most d’ from w.

Typically, one considers the case that d’ < d(k). See Section 4 for discussion of upper-bounds
on the number of codewords that are within a certain distance from a generic sequence.

Two additional computational tasks are considered in Section 3.

Linear codes. Associating Y, with some finite field, we call a code Cy : Eﬁ — Ez(k) linear if
it satisfies Cx(x + y) = Ck(z) + Ci(y), where x and y (resp., Cr(z) and Ci(y)) are viewed as
k-dimensional (resp., n(k)-dimensional) vectors over ¥y, and the arithmetic is of the correspond-
ing vector space. A useful property of linear codes is that their distance equals the Hamming
weight of the lightest codeword other than Cy(0F); that is, ming 2, {|{i : Cx(2); # Ck(y)i}|} equals
ming sor {[{7 : Ck(x); # 0}|}. Another useful property is that the code is fully specified by a k-by-
n(k) matrix, called the generating matrix, that consists of the codewords of some fixed basis of X¥.
That is, the set of all codewords is obtained as the |$;|* different linear combination of the rows
of the generating matrix.

2 A few popular codes

Our focus will on explicitly constructible codes; that is, (families of) codes of the form {Cj, : ©F —

Ez(k)}keg that are coupled with efficient encoding and decoding algorithms. But before presenting
a few such codes, let us consider a non-explicit construction.

Proposition 1 (random linear codes): Let ¢ > 1 and n,d : N — N be such that for every k it

holds that n(k) > c- k/(1 — Ha(d(k)/n(k))) and d(k) < n(k)/2c, where Ha(a) 2 alogy(1/a) +

(1 — «)logy(1/1 — o). Then, with high probability, a random linear transformation of {0,1}* to
{0,1}™%) constitutes a code of distance d(k).

Thus, for every constant 6 € (0,0.5) there exists a constant p > 0 and an infinite family of codes
{Cr : {0,1}F — {0,1}%/PY e of relative distance 6. Specifically, p = ¢/(1 — Hy(6)) will do.

!This formulation is not the one common in coding theory, but it is the most natural one for our applications.
On one hand, this formulation is applicable also to codes with super-polynomial block-length. On the other hand,
this formulation does not support a discussion of practical algorithms that compute the codeword faster than by
computing each of its bits separately.



Proof: We counsider a uniformly selected k-by-n(k) generating matrix over GF(2), and upper-
bound the probability that it yields a linear code of distance less than d(k). We use a union
bound on all possible 2¥ — 1 linear combinations of the rows of the generating matrix, where for
each such combination we compute the probability that it yields a vector of Hamming weight less
than d(k). Observe that the result of each such linear combination is uniformly distributed over
{0,1}™*) and thus has Hamming weight less than d(k) with probability Z;ig%)_l (" Z.k)) c9 k)
2~ (1= Hz(d(k)/n(k))n(k)  Using (1 — Hy(d(k)/n(k))) - n(k) > ¢ -k, the proposition follows. [l

2.1 A mildly explicit version of Proposition 1

Note that Proposition 1 yields a (deterministic) exp(k - n(k))-time algorithm that finds a linear
code of distance d(k). The time bound can be improved to exp(k + n(k)), by observing that we
may choose the rows of the generating matrix one by one, making sure that all non-empty linear
combinations of the current rows have weight at least d(k). Note that the proof of Proposition 1
can be adapted to assert that as long as we have less than k£ rows a random choice of the next row
will do with high probability. Note that in the case that n(k) = O(k), this yields an algorithm that
runs in time that is polynomial in the size of the code (i.e., the number of codewords). Needless
to say, this mild level of explicitness is inadequate for most coding applications; however, it will be
useful to us in Section 2.5.

2.2 The Hadamard Code

The Hadamard code is the longest (non-repetitive) linear code over {0,1} = GF(2). That is,
r € {0,1}* is mapped to the sequence of all n(k) = 2*¥ possible linear combinations of its bits
(i.e., bit locations in the codewords are associated with k-bit strings, and location o € {0,1}* in
the codeword of x holds the value Zle a;7;). It can be verified that each non-zero codeword has
weight 2¥~1 and thus this code has relative distance d(k)/n(k) = 1/2 (albeit its block-length n(k)
is exponential in k).

Turning to the computational aspects, we note that encoding is very easy. The proof of the
fact that inner-product (mod 2) is a hardcore predicate [14] (see also [12, Thm. 2.5.2]), provides a
very fast probabilistic algorithm for list decoding. An even faster algorithm for unique decoding is
provided in the warm-up discussions towards such a proof (see, e.g., [12, P. 67]).

We note that the Hadamard code has played a key role in the proof of the PCP Theorem [2, 1];
see [1].

A propos long codes. We note that the longest (non-repetitive) binary code (called the Long-
Code and introduced in [5]) is extensively used in the design of “advanced” PCP systems (see,
e.g., [16, 17]). In this code, a k-bit long string = is mapped to the sequence of n(k) = 22" values,
each corresponding to the evaluation of a different Boolean function at x; that is, bit locations

in the codewords are associated with Boolean functions such that the location associated with
f:{0,1}¥ —{0,1} in the codeword of = holds the value f(z).

2.3 The Reed—Solomon Code

A Reed-Solomon code is defined for a non-binary alphabet, which is associated with a finite field
of n elements, denoted GF(n). For any k < n, we consider the mapping of univariate degree k — 1
polynomials over GF(n) to their evaluation at all field elements. That is, p € GF(n)* (viewed as



such a polynomial), is mapped to the sequence (p(«y),...,p(ay,)), where aq, ..., a;, is a canonical
enumeration of the elements of GF(n).2

The Reed-Solomon code offers infinite families of codes with constant rate and constant relative
distance (e.g., by taking n(k) = 3k and d(k) = 2k), but the alphabet size grows with k (or rather
with n(k) > k). Efficient algorithms for unique decoding and list decoding are known (see [19]
and references therein). These computational tasks correspond to the extrapolation of polynomials
based on a noisy version of their values at all possible evaluation points.

2.4 The Reed—Muller Code

Reed-Muller codes generalize Reed-Solomon codes by considering multi-variate polynomials rather
than univariate polynomials. Consecutively, the alphabet may be any finite field, and in particular
the two-element field GF(2). Reed-Muller codes (and variants of them) are extensively used in
complexity theory; for example, they underly the hardness amplification of [21], and the basis
PCP constructions of [3, 10, 2, 1]. The relevant property of these codes is that, under a suitable
setting of parameters that satisfies n(k) = poly(k), they allow super fast “codeword testing” and
“self-correction” (see discussion in Section 3).

For any prime power ¢ and parameters m and r, we consider the set, denoted P, ,, of all
m-variate polynomials of total degree at most r. Each polynomial in P, , is represented by the
k = log, | Py, | coefficients of all relevant monomials, where in the case that r < g it holds that
k = (mrj;r). We consider the code C : GF(q)* — GF(q)", where n = ¢™, mapping m-variate
polynomials of total degree at most r to their values at all ¢" evaluation points. That is, the m-
variate polynomial p of total degree at most r is mapped to the sequence of values (p(ay), ..., p(ay)),
where @y, ..., @, is a canonical enumeration of all the m-tuples of GF(q). The relative distance of
this code is lower-bounded by (¢ —r)/q.

In typical applications one sets r = ©(m?logm) and ¢ = poly(r), which yields k¥ > m™
and n = poly(r)™ = poly(m™). Thus we have n(k) = poly(k) but not n(k) = O(k). As we
shall see in Section 3, the advantage (in comparison to the Reed-Solomon code) is that codeword
testing and self-correction can be performed at complexity related to ¢ = poly(logn). Actually, in
most complexity applications, a variant in which only m-variate polynomials of individual degree
r’ = r/m are used. In this case, an alternative presentation analogous to the one presented in
Footnote 2 is preferred: The information is viewed as a function H™ — GF(q), where H C GF(q)
is of size ' + 1, and is encoded by a m-variate polynomial of individual degree r’ evaluated at all
points in GF(g)™.

2.5 Binary codes of constant relative distance and constant rate

Recall that we seek binary codes of constant relative distance and constant rate. Proposition 1
asserts that such codes exists, but does not provide an explicit construction. The Hadamard code is
explicit but does not have a constant rate (to say the least (since n(k) = 2¥)).3 The Reed-Solomon
code has constant relative distance and constant rate but uses a non-binary alphabet (which grows
at least linearly with k). We achieve the desired construction by using the paradigm of concatenated
codes [11], which is of independent interest. (Indeed, concatenated codes may be viewed as a simple
version of the proof composition paradigm of [2].)

2 Alternatively, we may map (v1, ..., vx) € GE(n)* to (p(a1), ..., p(an)), where p is the unique univariate polynomial
of degree k —1 that satisfies p(a;) = v; for i = 1, ..., k. Note that this modification amounts to a linear transformation
of the generating matrix.

3Binary Reed-Muller codes also fail to simultaneously provide constant relative distance and constant rate.



Intuitively, concatenated codes are obtained by first encoding information, viewed as a sequence
over a large alphabet, by some code and next encoding each resulting symbol, which is viewed as
a sequence of over a smaller alphabet, by a second code. Formally, consider ¥; = E’;Z and two
codes, C1 : £ — $™ and Cy : ©5 — ¥72. Then, the concatenated code of C; and Cy, maps
(21, ..y gy ) € BN = BER2 46 (Cy(y1), ..., Co(yn,)), where (y1, ..., yn,)) = C1 (21, ..., Tp, ).

Note that the resulting code C' : E’;lk? — X5 has constant rate and constant relative distance
if both C; and C5 have these properties. Encoding in the concatenated code is straightforward.
To decode a corrupted codeword of C, we first apply the decoder of Cy to the ny blocks (which
are each a ng-long sequence over Xs), obtaining n; sequences over ¥y, which are each interpreted
as a symbol of ¥;. Next we apply the decoder of Cy to the resulting mni-long sequence (over
¥1), and finally we interpret the resulting ki-long sequence (over 1) as a kike-long sequence over
Y9. The key observation is that if we are given a sequence that is e;e9-close to C(zy,...,zk,) =
(Ca(y1), ---, C2(yn,)) then at least 1 — &1 of the blocks are es-close to the corresponding Ca(y;).

We are going to counsider the concatenated code obtained by using the Reed-Solomon Code
Cy : GF(n1)" — GF(n1)™ as the large code, setting ko = log, ny, and using the mildly explicit
version of Proposition 1, Cy : {0,1}¥2 — {0,1}"* as the small code. We use n; = 3k; and
ny = O(ks), and so the concatenated code is C : {0,1}* — {0,1}*, where k = kiko and n =
ning = O(k). The key observation is that Cy can be constructed in exp(kg)-time, whereas here
exp(kz) = poly(k). Furthermore, both encoding and decoding with respect to Cy can be performed
in time exp(ky) = poly(k). Thus, we get:

Theorem 2 (an explicit good code): There exists constants 6,p > 0 and an explicit family of
binary codes of rate p and relative distance at least 6.* That is, there exists a polynomial-time
(encoding) algorithm C such that |C(z)| = |z|/p (for every x) and a polynomial-time (decoding)
algorithm D such that for every y that is 6/2-close to some C(x) it holds that D(y) = x. Further-
more, C 1s a linear code.

The linearity of C is justified by using a Reed-Solomon code over the extension field F = GF(2*2),
and noting that this code induces a linear transformation over GF(2). Specifically, the value of a
polynomial p over F at a point o € F can be obtained as a linear transformation of the coefficient
of p, when viewed as kg-dimensional vectors over GF(2).

Relative distance approaching one half. Starting with a Reed-Solomon code of relative dis-
tance 61, we obtain a concatenated code of relative distance 6;/2. Note that, for any constant
61 < 1, there exists a Reed-Solomon code Cy : GF(ny)* — GF(ny)™ of relative distance §; and
constant rate (i.e., 1 — 7). Giving up on constant rate, we may start with a Reed-Solomon code of
block-length n (k1) = poly(k;) and distance ny (k1) —k; over [ng(k;)], which yields a (concatenated)
binary code of block length n(k) ~ n1(k)? and distance approximately (n(k) — k- n1(k))/2. Thus,
the relative distance is approximately (1/2) — (k/+/n(k)).

3 Two additional computational problems

In this section we briefly review relaxations of two traditional coding theoretic tasks. The purpose
of these relaxations is enabling super-fast (randomized) algorithms that provide meaningful infor-
mation. Specifically, these algorithms may run in sub-linear (e.g., poly-logarithmic) time, and thus
cannot possibly solve the unrelaxed version of the problem.

“The relative distance of the code may be actually larger than §. We set § such that we can guarantee efficient
decoding of any input that is §/2-close to some codeword.



Local testability. This task refers to testing whether a given word is a codeword (in a predeter-
mine code), based on (randomly) inspecting few locations in the word. Needless to say, we
can only hope to make an approximately correct decision; that is, accept each codeword and
reject with high probability each word that is far from the code. (Indeed, this task is within
the framework of property testing.)

Local decodability. Here the task is to recover a specified bit in the plaintext by (randomly)
inspecting few locations in a mildly corrupted codeword. This task is somewhat related to
the task of self-correction (i.e., recovering a specified bit in the codeword itself, by inspecting
few locations in the mildly corrupted codeword).

Note that the Hadamard code is both locally testable and locally decodable as well as self-correctable
(based on a constant number of queries into the word); these facts were demonstrated and exten-
sively used in [8, 1]. However, the Hadamard code has an exponential block-length (i.e., n(k) = 2%),
and the question is whether one can achieve analogous results with respect to a shorter code (e.g.,
n(k) = poly(k)). As hinted in Section 2.4, the answer is positive (when referring to performing
these operations in time that is poly-logarithmic in k):

Theorem 3 For some constant 6 > 0 and polynomials n,q: N — N, there exists an explicit family
of codes {Cy, : [q(k)]* — [q(k)]" ™) }ren of relative distance & that can be locally testable and locally
decodable in poly(log k)-time. That is, the following three conditions hold.

]k

1. Encoding: There exists a polynomial time algorithm that on input x € [q(k)]* returns Ci(z).

2. Local Testing: There exists a probabilistic polynomial-time oracle machine T that given k (in
binary)® and oracle access to w € [q(k)]"*) distinguishes the case that w is a codeword from
the case that w is 6/2-far from any codeword. Specifically:

(a) For every « € [q(k)]* it holds that Pr[T+(®)(k)=1] = 1.

(b) For every w € [q(k)]™*) that is §/2-far from any codeword of Cy, it holds that Pr[T™ (k)=
1] <1/2.

As usual, the error probability can be reduced by repetitions.

3. Local Decoding: There exists a probabilistic polynomial-time oracle machine D that given k
and i € [k] (in binary) and oracle access to any w € [q(k)]™*) that is 6/2-close to C(x)
returns x;; that is, Pr[D¥(k,i) = x;] > 2/3.

Self correction holds too: there exists a probabilistic polynomial-time oracle machine M that
given k and i € [n(k)] (in binary) and oracle access to any w € [q(k)]™*) that is §/2-far from
Cx(z) returns Cy(z);; that is, Pr[D"(k,i) = Ci(x);] > 2/3.

We stress that both oracle machines work in time that is polynomial in the binary representation
of k£, which means that they run in time that is poly-logarithmic in k. The code asserted in
Theorem 3 is a (small modification of a) Reed-Muller code, for r = m%logm < q(k) = poly(r)
and [n(k)] = GF(q(k))™ (see Section 2.4).5 The aforementioned oracle machines query the oracle

®Thus, the running time of T is poly(|k|) = poly(log k).

5The modification is analogous to the one presented in Footnote 2: For a suitable choice of k points
ai,...,arGF(¢(k))™, we map vi,...,vx to (p(a@1),...,p(@r)), where p is the unique m-variate polynomial of degree
at most r that satisfies p(a;) = v; for i =1, ..., k.



w : [n(k)] — GF(q(k)) at a non-constant number of locations. Specifically, self-correction for
location ¢ € GF(q(k))™ is performed by selecting a random line (over GF(g(k))™) that passes
through ¢, recovering the values assigned by w to all ¢(k) points on this line, and performing
univariate polynomial extrapolation (under mild noise). Local testability is easily reduced to self-
correction, and local decodability is enabled by the aforementioned modification.

Constant number of queries. The local testing and decoding algorithms asserted in Theorem 3
make a polylogarithmic number of queries into the oracle. In contrast, the Hadamard code supports
these operation using a constant number of queries. Can this be obtained with much shorter code-
words? For local testability the answer is definitely positive. One can obtain such locally testable
codes with length that is nearly linear (see [7, 9]). For local decodability based on ¢ queries the
shortest known code has codewords of length n(k) = exp(k@Uogloga)/alogq). see [4]. We conjecture
that for every constant ¢ there exists a constant ¢, > 0 such that n(k) > exp(k“) must hold (for
local decodability based on ¢ queries). In light of this conjecture, we advocate a relaxation of the
local decodability task (e.g., the one studied in [6]).

The interested reader is referred to [13], which includes more details on locally terstable and
decodable codes as well as a wider perspective. (Note, however, that this survey was written prior
to [9], which resolves the main opend problem posed in [13].)

4 A list decoding bound

A necessary condition for the feasibility of the list decoding task is that the list of codewords that
are close to the given word is short. In this section we present an upper-bound on the length of such
lists, noting that this bound has found several applications in complexity theory (and specifically
to studies related to the contents of this course). In contrast, we do not present far more famous
bounds (which typically refer to the relation among the main parameters of codes (i.e., k,n and
d)), because they seem irrelevant to the contents of this course.

We start with a general statement that refers to any alphabet ¥ = [g], and later specialize it
to the case that ¢ = 2. Especially in the general case, it is natural and convenient to consider
the agreement (rather than the distance) between sequences over [g]. Furthermore, it is natural to
focus on agreement rate of at least 1/¢, and convenient to state the following result in terms of the
“excessive agreement rate” (i.e., the excess beyond 1/q).”

Lemma 4 (Part 2 of [15, Thm. 15]): Let C : [q]* — [¢]" be an arbitrary code of distance d <

n — (n/q), and let 7. defy (d/n) — (1/q) > 0 denote the corresponding upper-bound on the

excessive agreement rate between codewords. Suppose that vy € (0,1) satisfies
1
Yu > 1- g “Ye (1)

Then, for any w € [¢q]™, the number of codewords that are at distance at most (1 — ((1/q) +v))-n
from w (i.e., agree with w on at least ((1/¢) + 7w) - n positions) is upper-bounded by

(1-(1/9)* = 1= (1/9) 7
ye? = (1= (1/9) - e
"Indeed, we only consider codes with distance d < (1 —1/g) -n and words that are at distance at most d from the

code. Note that 1/q is a natural threshold for an upper-bound on the relative agreement between sequences over [q],
because a random sequence is expected to agree with any fixed sequence on a 1/q¢ fraction of the locations.

(2)




In the binary case (i.e., ¢ = 2), Eq. (1) requires 74 > /7c/2 and Eq. (2) yields the upper-bound
(1 — 27¢)/ (492 — 279¢). In the case of the Hadamard code, we have 7. = 0, and so (for every
w € {0,1}" and every 7, > 0) the number of codewords that are (0.5 — 7y)-close to w is at
most 1/(47,2). In the general case (and specifically for ¢ > 2) it is useful to simplify Eq. (1) by

v > min{ /e, (1/9) + Ve = (1/¢)} and Eq. (2) by s>
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