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So far (in the course), our approach to computing devices was somewhat conservative: we
thought of them as executing a deterministic rule. A more liberal and quite realistic approach, which
is pursued in this chapter, considers computing devices that use a probabilistic rule. This relaxation
has an immediate impact on the notion of efficient computation, which is consequently associated
with probabilistic polynomial-time computations rather than with deterministic (polynomial-time)
ones. We stress that the association of efficient computation with probabilistic polynomial-time
computation makes sense provided that the failure probability of the latter is negligible (which
means that it may be safely ignored).

Focusing on probabilistic polynomial-time algorithms, we consider various types of failure of
such algorithms yielding complexity classes such as BPP, RP, and ZPP. The results presented
include BPP C P/poly and BPP C %,.

1 The general setting

Considering algorithms that utilize random choices, we extend our notion of efficient algorithms
from deterministic polynomial-time algorithms to probabilistic polynomial-time algorithms.

Rigorous models of probabilistic (or randomized) algorithms are defined by natural extensions of
the basic machine model. We will exemplify this approach by describing the model of probabilistic
Turing machines, but we stress that (again) the specific choice of the model is immaterial (as long
as it is “reasonable”). A probabilistic Turing machine is defined exactly as a non-deterministic
machine, but the definition of its computation is fundamentally different. Specifically, whereas the
definition of a non-deterministic machine refers to the question of whether or not there exists a
computation of the machine that (started on a specific input) reaches a certain configuration, in
case of probabilistic Turing machines we refer to the probability that this event occurs, when at
each step a choice is selected uniformly among the relevant possible choices available at this step.
That is, if the transition function of the machine maps the current state-symbol pair to several
possible triples, then the probabilistic machine randomly selects one of these triples (with equal
probability) and the next configuration is determined accordingly. These random choices may be
viewed as the internal coin tosses of the machine. (Indeed, as in the case of non-deterministic
machines, we may assume without loss of generality that the transition function of the machine
maps each state-symbol pair to exactly two possible triples.)

We stress the fundamental difference between the fictitious model of a non-deterministic machine
and the realistic model of a probabilistic machine. In the case of a non-deterministic machine we



consider the existence of an adequate sequence of choices (leading to a desired outcome), and ignore
the question of how these choices are actually made. In fact, the selection of such a sequence of
choices is merely a mental experiment. In contrast, in the case of a probabilistic machine, at each
step a choice is made uniformly (among a set of predetermined possibilities), and we consider the
probability of reaching a desired outcome.

In view of the foregoing, we consider the output distribution of such a probabilistic machine on
fixed inputs; that is, for a probabilistic machine M and string « € {0,1}*, we denote by M(x) the
output distribution of M when invoked on input x, where the probability is taken uniformly over
the machine’s internal coin tosses. Needless to say, we will consider the probability that M (x) is
a “correct” answer; that is, in the case of a search problem (resp., decision problem) we will be
interested in the probability that M (x) is a valid solution for the instance z (resp., represents the
correct decision regarding x).

The foregoing description views the internal coin tosses of the machine as taking place on-the-
fly; that is, these coin tosses are performed on-line by the machine itself. An alternative model is
one in which the sequence of coin tosses is provided by an external device, on a special “random
input” tape. In such a case, we view these coin tosses as performed off-line. Specifically, we denote
by M'(x,r) the (uniquely defined) output of the residual deterministic machine M’ when given
the (primary) input z and random input 7. Indeed, M’ is a deterministic machine that takes two
inputs (the first representing the actual input and the second representing the “random input”),

but we consider the random variable M (x) o M'(x,Uy|4))), where £(]z|) denotes the number of
coin tosses “expected” by M'(z,-).

These two perspectives on probabilistic algorithms are clearly related: The computation of an
on-line machine M is captured by the residual machine M’, which may be viewed as receiving a
sequence of coin tosses (obtained off-line), where the number of these coin tosses is determined
by the time-complexity of M. (Indeed, there is no harm in supplying more coin tosses than are
actually used by M.) For sake of clarity and future reference, we state the following definition.

Definition 1 (on-line and off-line formulations of probabilistic polynomial-time):

e We say that M 1is a on-line probabilistic polynomial-time machine if there exists a polynomaial
p such that when invoked on any input x € {0,1}*, machine M always halts within at most
p(|z|) steps (regardless of the outcome of its internal coin tosses). In such a case M(x) is a
random variable.

e We say that M’ is a off-line probabilistic polynomial-time machine if there exists a polynomial
p such that, for every x € {0,1}* and r € {0,1}?U2D) when invoked on the primary input
and the random-input sequence r, machine M' halts within at most p(|x|) steps. In such a
case, we will consider the random variable M'(x, Upy(jq|))-

Clearly, the on-line and off-line formulations are equivalent (i.e., given a on-line probabilistic
polynomial-time machine we can derive a functionally equivalent off-line (probabilistic polynomial-
time) machine, and vice versa). Thus, in the sequel, we will freely use whichever is more convenient.

Failure probability. A major aspect of randomized algorithms (probabilistic machines) is that
they may fail (see Exercise 12). That is, with some specified (“failure”) probability, these algorithms
may fail to produce the desired output. We discuss two aspects of this failure: its type and its
magnitude.



1. The type of failure is a qualitative notion. One aspect of this type is whether, in case of
failure, the algorithm produces a wrong answer or merely an indication that it failed to find
a correct answer. Another aspect is whether failure may occur on all instances or merely on
certain types of instances. Let us clarify these aspects by considering three natural types of
failure, giving rise to three different types of algorithms.

(a) The most liberal notion of failure is the one of two-sided error. This term originates from
the setting of decision problems, where it means that (in case of failure) the algorithm
may err in both directions (i.e., it may rule that a yes-instance is a no-instance, and
vice versa). In the case of search problems two-sided error means that, when failing, the
algorithm may output a wrong answer on any input. Furthermore, the algorithm may
falsely rule that the input has no solution and it may also output a wrong solution (both
in case the input has a solution and in case it has no solution).

(b) An intermediate notion of failure is the one of one-sided error. Again, the term originates
from the setting of decision problems, where it means that the algorithm may err only
in one direction (i.e., either on yes-instances or on no-instances). Indeed, there are two
natural cases depending on whether the algorithm errs on yes-instances (but not on no-
instances), or the other way around. Analogous cases occur also in the setting of search
problems. In one case the algorithm never outputs a wrong solution but may falsely rule
that the input has no solution. In the other case the indication that an input has no
solution is never wrong, but the algorithm may output a wrong solution.

(c) The most conservative notion of failure is the one of zero-sided error. In this case, the
algorithm’s failure amounts to indicating its failure to find an answer (by outputting a
special don’t know symbol). We stress that in this case the algorithm never provides a
wWrong answer.

Indeed, the forgoing discussion ignores the probability of failure, which is the subject of the
next item.

2. The magnitude of failure is a quantitative notion. It refer to the probability that the algorithm
fails, where the type of failure is fixed (e.g., as in the forgoing discussion).

When actually using a randomized algorithm we typically wish its failure probability to be
negligible, which intuitively means that the failure event is so rare that it can be ignored
in practice. Formally, we say that a quantity is negligible if, as a function of the relevant
parameter (e.g., the input length), this quantity vanishes faster than the reciprocal of any
positive polynomial.

For ease of presentation, we sometimes consider alternative upper-bounds on the probability
of failure. These bounds are selected in a way that allows (and in fact facilitates) “error
reduction” (i.e., converting a probabilistic polynomial-time algorithm that satisfies such an
upper-bound into one in which the failure probability is negligible). For example, in case of
two-sided error we need to be able to distinguish the correct answer from wrong answers by
sampling, and in the other types of failure “hitting” a correct answer suffices.

In the following three sections, we will discuss complexity classes corresponding to the aforemen-
tioned three types of failure. For sake of simplicity, the failure probability itself will be set to a
constant that allows error reduction.



Randomized reductions. Before turning to the more detailed discussion, we note that ran-
domized reductions play an important role in complexity theory. Such reductions can be defined
analogously to the standard Cook-Reductions (resp., Karp-reduction), and again a discussion of
the type and magnitude of the failure probability is in place. For clarity, we spell-out the two-sided
error versions.

e In analogy to the definition of Cook reductions, we say that a problem II is probabilistic
polynomial-time reducible to a problem II if there exists a probabilistic polynomial-time oracle
machine M such that, for every function f that solves II' and for every x, with probability
at least 1 — pu(|z]), the output M/ (z) is a correct solution to the instance x, where y is a
negligible function.

e In analogy to the definition of Karp reductions, we say that a decision problem S is re-
ducible to a decision problem S’ via a randomized Karp-reduction if there exists a probabilistic
polynomial-time algorithm A such that, for every z, it holds that Pr[xs (A(z)) = xs(x)] >
1 — u(|z]), where ys (resp., xs/) is the characteristic function of S (resp., S’) and p is a
negligible function.

These reductions preserve efficient solvability and are transitive: see Exercise 13.

2 Two-sided error: The complexity class BPP

In this section we consider the most liberal notion of probabilistic polynomial-time algorithms that
is still meaningful. We allow the algorithm to err on each input, but require the error probability
to be negligible. The latter requirement guarantees the usefulness of such algorithms, because in
reality we may ignore the negligible error probability.

Before focusing on the decision problem setting, let us say a few words on the search problem
setting. Following the previous paragraph, we say that a probabilistic (polynomial-time) algorithm

A solves the search problem of the relation R if for every = € Sg (i.e., R(z) < {y : (z,y) € R} # 0) it
holds that Pr[A(z) € R(z)] > 1 — p(|z|) and for every x € Sk it holds that Pr[A(z)=1] > 1— u(|z]),
where p is a negligible function. Note that we did not require that, when invoked on input = that
has a solution (i.e., R(x) # 0), the algorithm always outputs the same solution. That is, a stronger
requirement is that for every such x there exists y € R(z) such that Pr{A(x)=y] > 1 — u(|x|). The
latter version as well as quantitative relaxations of it allow for error-reduction (see Exercise 14),
discussed next.

Turning to decision problems, we consider probabilistic polynomial-time algorithms that err
with negligible probability. That is, we say that a probabilistic (polynomial-time) algorithm A
decides membership in S if for every z it holds that Pr[A(x) = xs(x)] > 1 — u(]z|), where xg is
the characteristic function of S (i.e., ys(z) =1 if z € S and xg(x) = 0 otherwise) and p is a neg-
ligible function. The class of decision problems that are solvable by probabilistic polynomial-time
algorithms is denoted BPP, standing for Bounded-error Probabilistic Polynomial-time. Actually,
the standard definition refers to machines that err with probability at most 1/3.

Definition 2 (the class BPP): A decision problem S is in BPP if there exists a probabilistic
polynomial-time algorithm A such that for every x € S it holds that Pr[A(z) = 1] > 2/3 and for
every x € S it holds that Pr[A(x) = 0] > 2/3.

The choice of the constant 2/3 is immaterial, and any other constant greater than 1/2 will do (and
yields the very same class). Similarly, the complementary constant 1/3 can be replaced by various



negligible functions (while preserving the class). Both facts are special cases of the robustness of
the class, which is established using the process of error reduction.

Error reduction (or confidence amplification). For ¢ : N — (0,0.5), let BPP. denote the
class of decision problems that can be solved in probabilistic polynomial-time with error probability
upper-bounded by ¢; that is, § € BPP, if there exists a probabilistic polynomial-time algorithm
A such that for every z it holds that Pr{A(z) # xs(z)] < &(|z|). By definition, BPP = BPP3.
However, a wide range of other classes also equal BPP. In particular, we mention two extreme
cases:

1. For every positive polynomial p and e(n) = (1/2) — (1/p(n)), the class BPP. equals BPP.
That is, any error that is (“noticeably”) bounded away from 1/2 (i.e., error (1/2)—(1/poly(n)))
can be reduced to an error of 1/3.

2. For every positive polynomial p and e(n) = 2P(") the class BPP, equals BPP. That is, an
error of 1/3 can be further reduced to an exponentially vanishing error.

Both facts are proved by invoking the weaker algorithm (i.e., the one having a larger error proba-
bility bound) for an adequate number of times, and ruling by majority. We stress that invoking a
randomized machine several times means that the random choices made in the various invocations
are independent of one another. The success probability of such a process is analyzed by applying
an adequate Law of Large Numbers (see Exercise 15).

2.1 On the power of randomization

A natural question arises: Did we gain anything in extending the definition of efficient computation
to wnclude also probabilistic polynomial-time ones?

This phrasing seems too generic. We certainly gained the ability to toss coins (and generate
various distributions). More concretely, randomized algorithms are essential in many settings (e.g.,
cryptography, probabilistic proof systems, and property testing) and seem essential in others (e.g.,
studies of the complexity of finding unique solutions and approximate counting). What we mean
to ask here is whether allowing randomization increases the power of polynomial-time algorithms
also in the restricted context of solving decision and search problems?

The question is whether BPP extends beyond P (where clearly P C BPP). It is commonly
conjectured that the answer is negative. Specifically, under some reasonable assumptions, it holds
that BPP = P. We note, however, that a polynomial slow-down occurs in the proof of the latter
result; that is, randomized algorithms that run in time #(-) are emulated by deterministic algorithms
that run in time poly(#(-)). Furthermore, for some concrete problems (most notably primality
testing (cf. Section 2.2)), the known probabilistic polynomial-time algorithm is significantly faster
(and conceptually simpler) than the known deterministic polynomial-time algorithm. Thus, we
believe that even in the context of decision problems, the notion of probabilistic polynomial-time
algorithms is advantageous. We note that the fundamental nature of BPP will hold even in the
(rather unlikely) case that it turns out that it offers no computational advantage (i.e., even if every
problem that can be decided in probabilistic polynomial-time can be decided by a deterministic
algorithm of essentially the same complexity).!

!Such a result would address a fundamental question regarding the power of randomness. By analogy, establishing
that ZP = PSPACE does not diminish the importance of any of these classes.



BPP is in the Polynomial-Time Hierarchy: While it may be that BPP = P, it is not known
whether or not BPP is contained in N'P. The source of trouble is the two-sided error probability
of BPP, which is incompatible with the absolute rejection of no-instances required in the definition
of NP (see Exercise 22). In view of this ignorance, it is interesting to note that BPP resides in the
second level of the Polynomial-Time Hierarchy (i.e., BPP C Y,). This is a corollary of Theorem 7.

Trivial derandomization. A straightforward way of eliminating randomness from an algorithm
is trying all possible outcomes of its internal coin tosses, collecting the relevant statistics and decid-
ing accordingly. This yields BPP C PSPACE C EXP, which is considered the trivial derandom-
ization of BPP. In later stages of this course, we will consider various non-trivial derandomizations
of BPP, which are known under various intractability assumptions. The interested reader, who may
be puzzled by the connection between derandomization and computational difficulty, is referred to
these later lectures.

Non-uniform derandomization. In many settings (and specifically in the context of solving
search and decision problems), the power of randomization is superseded by the power of non-
uniform advice. Intuitively, the non-uniform advice may specify a sequence of coin tosses that
is good for all (primary) inputs of a specific length. In the context of solving search and decision
problems, such an advice must be good for each of these inputs?, and thus its existence is guaranteed
only if the error probability is low enough (so as to support a union bound). The latter condition
can be guaranteed by error-reduction, and thus we get the following result.

Theorem 3 BPP is (strictly) contained in P/poly.

Proof: Recall that P/poly contains undecidable problems, which are certainly not in BPP. Thus,
we focus on showing that BPP C P/poly. By the discussion regarding error-reduction, for every
S € BPP there exists a (deterministic) polynomial-time algorithm A and a polynomial p such
that for every z it holds that Pr{A(z, Uy.))) # xs(v)] < 2-1#l. Using a union bound, it follows
that Pr ¢ 1ypem [Tz €{0,1}" s.t. A(z,r) # xs(2)] < 1. Thus, for every n € N, there exists a string
7 € {0,132 such that for every z € {0,1}™ it holds that A(z,7,) = xs(z). Using such a sequence
of 7,’s as advice, we obtain the desired non-uniform machine (establishing S € P/poly). I

2.2 A probabilistic polynomial-time primality test

Teaching note: Although primality has been recently shown to be in P, we believe that

the following example provides a nice illustration to the power of randomized algorithms.

We present a simple probabilistic polynomial-time algorithm for deciding whether or not a given
number is a prime. The only Number Theoretic facts that we use are:

Fact 1: For every prime p > 2, each quadratic residue mod p has exactly two square roots mod p
(and they sum-up to p).3

Fact 2: For every (odd and non-integer-power) composite number N, each quadratic residue mod N
has at least four square roots mod V.

In other contexts (e.g., one-way functions and pseudorandomness), it suffices to have an advice that is good on
the average, where the average is taken over all relevant (primary) inputs.
3That is, for every r € {1, ...,p — 1}, the equation > = s> (mod p) has two solutions modulo p (i.e., s and p — s).



Our algorithm uses as a black-box an algorithm, denoted sqrt, that given a prime p and a quadratic
residue mod p, denoted s, returns the smallest among the two modular square roots of s. There
is no guarantee as to what the output is in the case that the input is not of the aforementioned
form (and in particular in the case that p is not a prime). Thus, we actually present a probabilistic
polynomial-time reduction of testing primality to extracting square roots modulo a prime (which
is a search problem with a promise).

Construction 4 (the reduction): On input a natural number N > 2 do
1. If N is either even or an integer-power* then reject.
2. Uniformly select r € {1,..., N — 1}, and set s + r> mod N.

3. Let r' « sqrt(s,N). If ' = £r (mod N) then accept else reject.

Indeed, in the case that N is composite, the reduction invokes sqrt on an illegitimate input (i.e.,
it makes a query that violates the promise of the problem at the target of the reduction). In such
a case, there is not guarantee as to what sqrt answers, but actually a bluntly wrong answer only
plays in our favor. In general, we will show that if IV is composite, then the reduction rejects
with probability at least 1/2, regardless of how sqrt answers. We mention that there exists a
probabilistic polynomial-time algorithm for implementing sqrt (see Exercise 25).

Proposition 5 Construction 4 constitutes a probabilistic polynomial-time reduction of testing pri-
mality to extracting square roots module a prime. Furthermore, if the input s a prime then the
reduction always accepts, and otherwise it rejects with probability at least 1/2.

We stress that Proposition 5 refers to the reduction itself; that is, sqrt is viewed as a (“per-
fect”) oracle that, for every prime P and quadratic residue s (mod P), returns r < s/2 such that
r?2 = s (mod P). Combining Proposition 5 with a probabilistic polynomial-time algorithm that

computes sqrt with negligible error probability, we obtain that testing primality is in BPP.

Proof: By Fact 1, on input a prime number N, Construction 4 always accepts (because in this
case, for every r € {1,...,N — 1}, it holds that sqrt(r? mod N, N) = £r ). On the other hand,
suppose that N is an odd composite that is not an integer-power. Then, by Fact 2, each quadratic
residue s has at least four square roots, and each of these square roots is equally likely to be chosen
at Step 2 (in other words, s yields no information regarding which of its modular square roots was
selected in Step 2). Thus, for every such s, the probability that either sqrt(s, V) or N —sqrt(s, N)
equal the root chosen in Step 2 is at most 2/4. It follows that, on input a composite number, the
reduction rejects with probability at least 1/2. i

Reflection. Construction 4 illustrates an interesting aspect of randomized algorithms (or rather
reductions); that is, the ability to hide information from a subroutine. Specifically, Construction 4
generates a problem instance (NN, s) without disclosing any additional information. Furthermore,
a correct solution to this instance is likely to help the reduction; that is, a correct answer to
the instance (NN,s) provides probabilistic evidence regarding whether N is a prime, where the
probability space refers to the missing information (regarding how s was generated).

“This can be checked by scanning all possible powers e € {2, ...,log, N}, and (approximately) solving the equation
x® = N for each value of e (i.e., finding the smallest integer 7 such that ¢ > N). Such a solution can be found by
binary search.



Comment. Testing primality is actually in P, however, the deterministic algorithm demonstrat-
ing this fact is more complex (and its analysis is even more complicated).

3 One-sided error: The complexity classes RP and coRP

In this section we consider notions of probabilistic polynomial-time algorithms having one-sided
error. The notion of one-sided error refers to a natural partition of the set of instances; that is,
yes-instances versus no-instances in the case of decision problems, and instances having solution
versus instances having no solution in the case of search problems. We focus on decision problems,
and comment that an analogous treatment can be provided for search problems (see the second
paragraph of Section 2).

Definition 6 (the class RP)%: A decision problem S is in RP if there ewists a probabilistic
polynomial-time algorithm A such that for every x € S it holds that Pr[A(x) = 1] > 1/2 and
for every x ¢ S it holds that Pr[A(z)=0] = 1.

The choice of the constant 1/2 is immaterial, and any other constant greater than zero will do
(and yields the very same class). Similarly, this constant can be replaced by 1 — u(|z|) for various
negligible functions p (while preserving the class). Both facts are special cases of the robustness of
the class (see Exercise 16).

Observe that RP C NP (see Exercise 22) and that RP C BPP (by the aforementioned error-
reduction). Defining coRP = {{0,1}*\ S: S € RP}, note that coRP corresponds to the opposite
direction of one-sided error probability. That is, a decision problem S is in coRP if there exists a
probabilistic polynomial-time algorithm A such that for every x € S it holds that Pr[A(z)=1] =1
and for every x ¢ S it holds that Pr[A(x)=0] > 1/2.

Relating BPP to RP

A natural question regarding probabilistic polynomial-time algorithms refers to the relation between
two-sided and one-sided error probability. For example, is BPP contained in RP? Loosely speak-
ing, we show that BPP is reducible to coRP by one-sided error randomized Karp-reductions. Note
that BPP is trivially reducible to coRP by two-sided error randomized Karp-reductions whereas a
deterministic reduction of BPP to coRP would imply BPP = coRP = RP (see Exercise 19). The
actual statement refers to the promise problem versions of both classes, which are briefly defined
next.

First, we refer the reader to the general discussion of promise problems in [6]. We say that
the promise problem II = (Syes, Sno) is in (promise problem extension of) BPP if there ewists
a probabilistic polynomial-time algorithm A such that for every x € Syes it holds that Pr[A(z) =
1] > 2/3 and for every x € Sy, it holds that Pr[A(x) = 0] > 2/3. Similarly, II is in coRP if
for every x € Syes it holds that Pr{A(z) =1] = 1 and for every = € Sy, it holds that Pr[A(z) =
0] > 1/2. Probabilistic reductions among promise problems are defined by adapting the standrad
conventions; specifically, queries that violate the promise at the target of the reduction may be
answered arbitrarily.

®The initials RP stands for Random Polynomial-time, which fails to convey the restricted type of error allowed in
this class. The only nice feature of this notation is that it is reminiscent of NP, thus reflecting the fact that RP is a
randomized polynomial-time class contained in RP.



Theorem 7 Any problem in BPP s reducible by a one-sided error randomized Karp-reduction to
coRP, where coRP (and possibly also BPP) denotes the corresponding class of promise problems.
Specifically, the reduction always maps a no-instance to a no-instance.

It follows that BPP is reducible by a one-sided error randomized Cook-reduction to RP. Thus,
referring to classes of promise problems, we may write BPP C RPRP. In fact, since RPR? C
BPPBPP = BPP, we have BPP = RP®F. Theorem 7 may be paraphrased as saying that the
combination of the one-sided error probability of the reduction and the one-sided error probability
of coR'P can account for the two-sided error probability of BPP. We warn that this statement is not
a triviality like 14+ 1 = 2, and in particular we do not know whether it holds for classes of standard
decision problems (rather than for the classes of promise problems considered in Theorem 7).

Proof: Recall that we can easily reduce the error probability of BPP-algorithms, and derive
probabilistic polynomial-time algorithms of exponentially vanishing error probability. But this
does not eliminate the error (even on “one side”) altogether. In general, there seems to be no hope
to eliminate the error, unless we (either do something earth-shaking or) change the setting as done
when allowing a one-sided error randomized reduction to a problem in coRP. The latter setting
can be viewed as a two-move randomized game (i.e., a random move by the reduction followed by
a random move by the decision procedure of coRP), and it enables applying different quantifiers
to the two moves (i.e., allowing error in one direction in the first quantifier and error in the other
direction in the second quantifier). In the next paragraph, which is inessential to the actual proof,
we illustrate the potential power of this setting.

Teaching note: The following illustration represents an alternative way of proving
Theorem 7. This way seems conceptual simpler but it requires a starting point (or
rather an assumption) that is much harder to establish, where both comparisons are

with respect to the actual proof of Theorem 7 (which follows the illustration).

An illustration. Suppose that for some set S € BPP there exists a polynomial p’ and an off-line
BPP-algorithm A’ such that for every z it holds that Prre{oyl}gpr(‘z‘)[A’(x, r)#xs(x)] < 2~ @ (=D+1);
that is, the algorithm uses 2p(|z|) bits of randomness and has error probability smaller than
2-7'(|z]) /2. Note that such an algorithm cannot be obtained by standard error-reduction (see
Exercise 20). Anyhow (by applying a union bound), such a small error probability allows for
meaningful outcomes even if only half of the string r is random. Thus, for every x € S, it holds
that Prr,e{oyl}pr(‘z‘)[(‘v’r” € {0,1}p’(|x|))Al($,’F,T”) =1] > 1/2, whereas for every z ¢ S and every
€ {0,1}7'(=) it holds that Pro ey e [A"(z,7'r")=1] < 1/2. That is, the error on yes-instances
is “pushed” to the selection of r/, whereas the error on no-instances is pushed to the selection of .
This yields a one-sided error randomized Karp-reduction that maps x to (z,7"), where 7 is uniformly
selected in {0, 1}1”(‘:”‘), such that deciding S is reduced to the coRP problem (regarding pairs (z, 7))
that is decided by the (on-line) randomized algorithm A" defined by A”(z,r’) ot Al (2, " Upi(la)))-
For details, see Exercise 21. The actual proof, which avoids the aforementioned hypothesis, follows.
The actual starting point. Consider any BPP-problem with a characteristic function y (which, in
case of a promise problem, is a partial function, defined only over the promise). By standard error-
reduction, there exists a probabilistic polynomial-time algorithm A such that for every  on which
X is defined it holds that Pr[A(x) # x(z)] < p(]z|), where p is a negligible function. Looking at
the corresponding off-line algorithm A’ and denoting by p the polynomial that bounds the running
time of A, we have

PrrE{O,l}P(\z\)[A,(x7T)#X(x)] < [L(|$|) < 2p(|$|) (1)



for all sufficiently long 2’s on which y is defined. We show a randomized one-sided error Karp-
reduction of x to a promise problem in coRP.

The main idea. As in the illustrating paragraph, the basic idea is “pushing” the error probability
on yes-instances (of x) to the reduction, while pushing the error probability on no-instances to the
coRP-problem. Focusing on the case that y(x) = 1, this is achieved by augmenting the input z
with a random sequence of “modifiers” that act on the random-input of algorithm A such that
for a good choice of modifiers it holds that for every r € {0, 1}7’('73') there exists a modifier in this
sequence that when applied to r yields »' that satisfies A(x,r') = 1. Indeed, not all sequences of
modifiers are good, but a random sequence will be good with high probability and bad sequences
will be accounted for in the error probability of the reduction. On the other hand, using only
modifiers that are permutations guarantees that the error probability on no-instances only increase
by a factor that equals the number of modifiers we use, and this error probability will be accounted
for by the error probability of the coRP-problem. Details follow.

The aforementioned modifiers are implemented by shifts (of the set of all strings by fixed offsets).
Thus, we augment the input z with a random sequence of shifts, denoted s1, ..., s, € {0, 1}p(|9‘3|)7
such that for a good choice of (s1, ..., s,,) it holds that for every r € {0,1}2(#]) there exists an i € [m]
such that A'(z,r ® s;) = 1. We will show that, for any yes-instance x and a suitable choice of m,
with very high probability, a random sequence of shifts is good. Thus, for A”({x, $1,..., Sm),7) def
vt A(z, 7@ s;), it holds that, with very high probability over the choice of s1, ..., s, a yes-instance
x is mapped to an augmented input (x, s1, ..., $,,) that is accepted by A” with probability 1. On
the other hand, the acceptance probability of augmented no-instances (for any choice of shifts) only
increases by a factor of m. In further detailing the foregoing idea, we start by explicitly stating
the simple randomized mapping (to be used as a randomized Karp-reduction), and next define the
target promise problem.

The randomized mapping. On input z € {0,1}", we set m = p(|z|), uniformly select si, ..., s, €
{0,1}™, and output the pair (z,3), where § = (s1, ..., $;,). Note that this mapping, denoted M, is
easily computable by a probabilistic polynomial-time algorithm.

The promise problem. We define the following promise problem, denoted II = (Ilye,Ily,), having
instances of the form (x,3) such that [3] = p(|z])?%.

e The yes-instances are pairs (x,5), where 5§ = (s1, ..., 5,,) and m = p(|z|), such that for every
r € {0,1}"™ there exists an i satisfying A'(z,r @ s;) = 1.

e The no-instances are pairs (z,3), where again 5§ = (s, ..., $y,) and m = p(|z|), such that for
at least half of the possible r € {0,1}", for every i it holds that A'(xz,r @ s;) = 0.

To see that Il is indeed a coRP promise problem, we consider the following randomized algorithm.
On input (x,(s1,...,5m)), where m = p(|z|) = |s1| = --- = |s,,|, the algorithm uniformly selects
r € {0,1}™, and accepts if and only if A’'(x,r®s;) =1 for some i € {1,...,m}. Indeed, yes-instances
of II are accepted with probability 1, whereas no-instances of Il are rejected with probability at
least 1/2.

Analyzing the reduction: We claim that the randomized mapping M reduces x to II with one-sided
error. Specifically, we will prove two claims.

Claim 1: If z is a yes-instance (i.e., x(z) = 1) then Pr[M(x) € Ilyes] > 1/2.

Claim 2: If x is a no-instance (i.e., x(z) = 0) then Pr[M (z) € II,,,] = 1.
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We start with Claim 2, which is easier to establish. Recall that M(z) = («,(s1,...,$m)), where
S1, ...y Sy are uniformly and independently distributed in {0,1}". We note that (by Eq. (1) and
x(x) = 0), for every possible choice of s1, ..., s;,, € {0,1}" and every i € {1,...,m}, the fraction of r’s
that satisfy A'(z,7 @ s;) = 1 is at most ﬁ Thus, for every possible choice of sy, ..., s, € {0,1}™,
the fraction of r’s for which there exists an i such that A'(z,r @ s;) = 1 holds is at most 1/2.
Hence, the reduction M always maps the no-instance z (i.e., x(z) = 0) to a no-instance of II (i.e.,
an element of Il,,).

Turning to Claim 1 (which refers to x(z) = 1), we will show shortly that in this case, with very
high probability, the reduction M maps x to a yes-instance of II. We upper-bound the probability
that the reduction fails (in case x(z) = 1) as follows:

PriM(z) € Ilyes)] = Prg,..s.[3r€{0,1}" st. (Vi) A'(z,r ®s;) = 0]
< Z Pro, s [(Vi) A'(z,7 ® s;) = 0]
re{0,1}m
= > IIPra[A(zr®s) =0
re{o,1}m i=1

1 m
< 9mL =
()

where the last inequality is due to Eq. (1). It follows that if x(z) = 1 then Pr[M(z) € IlLyes] > 1/2.
Thus, the randomized mapping M reduces x to II, with one-sided error on yes-instances. Recalling
that IT € coRP, the theorem follows. [l

Corollaries. The traditional presentation uses the foregoing reduction for showing that BPP
is in the Polynomial-Time Hierarchy (where both classes refer to standard decision problems).

Specifically, to prove that BPP C X, define the polynomial-time computable predicate (z, 3, r) o
Vit (A (z,s; ®r) = 1), and observe that
x(x)=1 = 3sVr ¢(z,s,7) (2)
x(x)=0 = Vsar -¢(z,s,r) (3)

(where Eq. (3) is equivalent to =3s5Vr ¢(x,3,7)). Note that Claim 1 (in the proof of Theorem 7)
establishes that most sequences 5 satisfy Vr p(z,s,7), whereas Eq. (2) only requires the existence
of at least one such 5. Similarly, Claim 2 establishes that for every s most choices of r violate
o(x,3,r), whereas Eq. (3) only requires that for every 3§ there exists at least one such r. We
comment that the same proof idea yields a variety of similar statements (e.g., BPP C MA, where

MA is a randomized version of N'P).0

4 Zero-sided error: The complexity class ZPP

We now consider probabilistic polynomial-time algorithms that never err, but may fail to provide
an answer. Focusing on decision problems, the corresponding class is denoted ZPP (standing for

5Specifically, the class MA is defined by allowing the verification algorithm V in the definition of NP to be
probabilistic and err on no-instances; that is, for every # € S there exists y € {0, 1}p°lY(|I|) such that Pr[V(z,y) =
1] = 1, whereas for every = € S and every y it holds that Pr[V (z,y) =0] > 1/2. We note that MA can be viewed
as a hybrid of the two aforementioned pairs of conditions; specifically, each problem in M A satisfy the conjunction
of Eq. (2) and Claim 2. (Note that it makes no sense to require zero error on yes-instances, whereas the two-sided
error version is equivalent to MA; see Exercise 23.)
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Zero-error Probabilistic Polynomial-time). The standard definition of ZP7P is in terms of machines
that output L (indicating failure) with probability at most 1/2. That is, S € ZPP if there
exists a probabilistic polynomial-time algorithm A such that for every x € {0,1}* it holds that
PrlA(z) € {xs(x),L}] =1 and Pr[A(z) = xs(z)] > 1/2, where xs(z) =1 ifx € S and xs(z) =0
otherwise. Again, the choice of the constant (i.e., 1/2) is immaterial, and “error-reduction” can be
performed showing that algorithms that yield a meaningful answer with noticeable probability can
be amplified to algorithms that fail with negligible probability (see Exercise 17).

Theorem 8 ZPP =RP NcoRP.

Proof Sketch: The fact that ZPP C RP (as well as ZPP C coRP) follows by a trivial trans-
formation of the ZPP-algorithm; that is, replacing the failure indicator L by a “no” verdict (resp.,
“yes” verdict). Note that the choice of what to say in case the ZPP-algorithm fails is determined
by the type of error that we are allowed.

In order to prove that RP NcoRP C ZPP we combine the two algorithm guaranteed for a set
in RP NcoRP. The point is that we can trust the RP-algorithm (resp., coNP-algorithm) in the
case that it says “yes” (resp., “no”), but not in the case that it says “no” (resp., “yes”). Thus, we
invoke both algorithms, and output a definite answer only if we obtain an answer that we can trust
(which happen with high probability). Otherwise, we output L. O

Expected polynomial-time. In some sources ZPP is defined in terms of randomized algorithms
that run in expected polynomial-time and always output the correct answer. This definition is
equivalent to the one we used (see Exercise 18).

5 Randomized Log-Space

In this section we discuss probabilistic polynomial-time algorithms that are further restricted such
that they are allowed to use only a logarithmic amount of space.

5.1 Definitional issues

When defining space-bounded randomized algorithms, we face a problem analogous to the one
discussed in the context of non-deterministic space-bounded computation. Specifically, the on-line
and the off-line versions (formulated in Definition 1) are no longer equivalent, unless we restrict the
off-line machine to access its random-input tape in a uni-directional manner. The issue is that, in
the context of space-bounded computation (and unlike in the case that we only care about time-
bounds), the results of the internal coin tosses (in the on-line model) cannot be recorded for free.
Bearing in mind that, in the current context, we wish to model real algorithms (rather than present
a fictitious model that captures a fundamental phenomena as in the case of space complexity), it
is clear that using the on-line version is the natural choice.

An additional issue that arises is the need to explicitly bound the running-time of space-bounded
randomized algorithms. Recall that, without loss of generality, the number of steps taken by a
space-bounded non-deterministic machine is at most exponential in its space complexity, because
the shortest path between two configurations in the (directed) graph of possible configurations is
upper-bounded by its size (which in turn is exponential in the space-bound). This reasoning fails
in the case of randomized algorithms, because the shortest path between two configurations does
not bound the expected number of random steps required for going from the first configuration to
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the second one. In fact, as we shall shortly see, failing to upper-bound the running time of log-
space randomized algorithms seems to allow them too much power; that is, such (unrestricted) log-
space randomized algorithms can emulate non-deterministic log-space computations (in exponential
time). The emulation consists of repeatedly invoking the NL-machine, while using random choices
in the role of the non-deterministic moves. If the input is a yes-instance then, in each attempt, with
probability at least 27, we “hit” an accepting t-step (non-deterministic) computation, where ¢ is
polynomial in the input length. Thus, the randomized machine accepts such a yes-instance after
an expected number of 2! trials. To allow for the rejection of no-instances (rather than looping
infinitely in vain), we wish to implement a counter that counts till 2 (or so) and reject the input if
this number of trials have failed. We need to implement such a counter within space O(log t) rather
than ¢ (which is easy). In fact, it suffices to have a “randomized counter” that, with high probability,
counts to approximately 2°. The implementation of such a counter is left to Exercise 26, and using
it we may obtain a randomized algorithm that halts with high probability (on every input), always
rejects a no-instance, and accepts each yes-instance with probability at least 1/2.

In light of the foregoing discussion, when defining randomized log-space algorithms we explicitly
require that the algorithms halt in polynomial-time. Under this convention, the class RL relates
to N'L analogously to the relation of RP to N'P. That is, the probabilistic acceptance condition
in RL is as in the case of RP. The class BPL is defined similarly, when using a probabilistic
acceptance condition as in the case of BPP.

Definition 9 (the classes RL and BPL): We say that a randomized log-space algorithm is admis-
sible if it always halts in a polynomial number of steps.

e A decision problem S is in RL if there exists an admissible (on-line) randomized log-space
algorithm A such that for every x € S it holds that Pr[A(x) = 1] > 1/2 and for every x & S
it holds that Pr[A(z) = 0] = 1.

e A decision problem S is in BPL if there exists an admissible (on-line) randomized log-space
algorithm A such that for every x € S it holds that Pr[A(xz) = 1] > 2/3 and for every x ¢ S
it holds that Pr[A(z) = 0] > 2/3.

Clearly, RL C NL C P and BPL C P. Note that the classes RL and BPL remain unchanged
even if we allow the algorithms to run for erpected polynomial-time and have non-halting compu-
tations. Such algorithms can be easily transformed into admissible algorithms by truncating long
computations, while using a (standard) counter (which can be implemented in logarithmic-space).
Also note that error-reduction is applicable in the current setting (while essentially preserving both
the time and space bounds).

5.2 The accidental tourist sees it all

An appealing example of a randomized log-space algorithm is presented next. It refers to the
problem of deciding undirected connectivity, and demonstrated that this problem is in RL. (Recall
that this problem is actually in £, but the algorithm and its analysis were more complicated.) Recall
that Directed Connectivity is complete for N'£ (under log-space reductions). For sake of simplicity,
we consider the following version of undirected connectivity, which is equivalent under log-space
reductions to the version in which one needs to determine whether or not the input (undirected)
graph is connected. In the current version, the input consists of a triple (G,s,t), where G is an
undirected graph, s,t are two vertices in G, and the task is to determine whether or not s and t are
connected in G.
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Construction 10 On input (G, s,t), the randomized algorithm starts a poly(|G|)-long random
walk at verter s, and accepts the triplet iof and only if the walk passed through the vertex t. By a
random walk we mean that at each step the algorithm selects uniformly one of the neighbors of the
current vertex and moves to it.

Observe that the algorithm can be implemented in logarithmic space (because we only need to
store the current vertex as well as the number of steps taken so far). Obviously, if s and ¢ are not
connected in G then the algorithm always rejects (G, s,t). Proposition 11 implies that undirected
connectivity is indeed in RL.

Proposition 11 If s and t are connected in G = (V, E) then a random walk of length O(|V| - |E])
starting at s passes through t with probability at least 1/2.

In other words, a random walk starting at s visits all vertices of the connected component of s (i.e.,
it sees all that there is to see).

Proof Sketch: We will actually show that if G is connected then, with probability at least 1/2, a
random walk starting at s visits all the vertices of G. For any pair of vertices (u,v), let X, , be a
random variable representing the number of steps taken in a random walk starting at « until v is first
encountered. The reader may verify that for every edge {u,v} € E it holds that E[X,, ,] < 2|E]; see
Exercise 27. Next, we let cover(G) denote the expected number of steps in a random walk starting
at s and ending when the last of the vertices of V' is encountered. Our goal is to upper-bound
cover(G). Towards this end, we consider an arbitrary directed cyclic-tour C' that visits all vertices
in GG, and note that
cover(G) < Z EX.,] < |C]-2]E]|
(u,v)eC

In particular, selecting C' as a traversal of some spanning tree of G, we conclude that cover(G) <
4-|V]-|E|. Thus, with probability at least 1/2, a random walk of length 8 - |V| - |E| starting at s
visits all vertices of G. O

Notes

Making people take an unconventional step requires compelling reasons, and indeed the study of
randomized algorithms was motivated by a few compelling examples. Ironically, the appeal of the
two most famous examples (discussed next) has diminished due to subsequent finding, but the
fundamental questions that emerged remain fascinating regardless of the status of these and other
appealing examples (see Section 2.1).

The first example: primality testing. For more than two decades, primality testing was the
archetypical example of the usefulness of randomization in the context of efficient algorithms. The
celebrated algorithms of Solovay and Strassen [15] and of Rabin [11], proposed in the late 1970’s,
established that deciding primality is in coRP (i.e., these tests always recognize correctly prime
numbers, but they may err on composite inputs). (The approach of Construction 4, which only
establishes that deciding primality is in BPP, is commonly attributed to M. Blum.) In the late
1980’s, Adleman and Huang [1] proved that deciding primality is in RP (and thus in ZPP). In
the early 2000’s, Agrawal, Kayal, and Saxena [2] showed that deciding primality is actually in P.
One should note, however, that strong evidence to the fact that deciding primality is in P was
actually available from the start: we refer to Miller’s deterministic algorithm [9], which relies on
the Extended Riemann Hypothesis.
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The second example: undirected connectivity. Another celebrated example to the power of
randomization, specifically in the context of log-space computations, was provided by testing undi-
rected connectivity. The random-walk algorithm presented in Construction 10 is due to Aleliunas,
Karp, Lipton, Lovdsz, and Rackoff [3]. Recall that a deterministic log-space algorithm was found
twenty-five years later (see [12]).

Other randomized algorithms. Although randomized algorithms are more abundant in the
context of approximation problems (let alone in other computational settings (cf. Section 2.1)),
quite a few such algorithms are known also in the context of search and decision problems. We
mention the algorithms for finding perfect matchings and minimum cuts in graphs (see, e.g., [5,
Apdx. B.1] or [10, Sec. 12.4&10.2]), and note the prominent role of randomization in computational
number theory (see, e.g., [4] or [10, Chap. 14]). For a general textbook on randomized algorithms,
we refer the interested reader to [10].

On the general study of BPP. Turning to the general study of BPP, we note that our pre-
sentation of Theorem 7 follows the proof idea of Lautemann [8]. A different proof technique, which
yields a weaker result but found more applications (e.g., in the context of approximate counting
and interactive proof systems), was presented (independently) by Sipser [14].

On the role of promise problems. In addition to their use in the formulation of Theorem 7,
promise problems allow for establishing time hierarchy theorems for randomized computation. We
mention that such results are not known for the corresponding classes of standard decision problems.
The technical difficulty is that we do not know how to enumerate probabilistic machines that utilize
a non-trivial probabilistic decision rule.

On the feasibility of randomized computation. Different perspectives on this question are
offered by [5, Chap. 3]. Specifically, generating uniformly distributed bit sequences is not really
necessary for implementing randomized algorithms; it suffices to generate sequences that look as if
they are uniformly distributed. A less radical approach (see [13]) deals with the task of extracting
almost uniformly distributed bit sequences from sources of weak randomness. Needless to say, these
two approaches are complimentary and can be combined.

Exercises

Exercise 12 Show that if a search (resp., decision) problem can be solved by a probabilistic
polynomial-time algorithm having zero error probability, then the problem can be solve by a de-
terministic polynomial-time algorithm.

(Hint: replace the internal coin tosses by a fixed outcome.)

Exercise 13 (randomized reductions) In continuation to the definitions presented at the be-
ginning of the main text, prove the following:

1. If a problem II is probabilistic polynomial-time reducible to a problem that is solvable in
probabilistic polynomial-time then II is solvable in probabilistic polynomial-time, where by
solving we mean solving correctly except with negligible probability.
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Warning: Recall that in the case that I’ is a search problem, we required that on input z the
solver provides a correct solution with probability at least 1 — u(|z|), but we did not require
that it always returns the same solution.

(Hint: without loss of generality, the reduction does not make the same query twice.)
2. Prove that probabilistic polynomial-time reductions are transitive.

3. Prove that randomized Karp-reductions are transitive and that they yield a special case of
probabilistic polynomial-time reductions.

Define one-sided error and zero-sided error randomized (Karp and Cook) reductions, and consider
the foregoing items when applied to them. Note that the implications for the case of one-sided
error are somewhat subtle.

Exercise 14 (on the definition of probabilistically solving a search problem) In continu-
ation to the discussion at the beginning of Section 2, suppose that for some probabilistic polynomial-
time algorithm A and a positive polynomial p the following holds: for every x € S def {z: R(z) #
0} there exists y € R(x) such that Pr[A(z) = y] > 0.5 + (1/p(|z|)), whereas for every = ¢ Sg it
holds that Pr[A(z) = L] > 0.5+ (1/p(|z|)).

1. Show that there exists a probabilistic polynomial-time algorithm that solves the search prob-
lem of R with negligible error probability.

(Hint: See Exercise 15 for a related procedure.)

2. Reflect on the need to require that one (correct) solution occurs with probability greater
than 0.5 4+ (1/p(|z|)). Specifically, what can we do if it is only guaranteed that for every
x € Sg it holds that Pr[A(x) € R(x)] > 0.5 + (1/p(|z|)) (and for every x ¢ Sg it holds that
PriA(z) = L] > 0.5+ (1/p(|z])))?

Exercise 15 (error-reduction for BPP) For ¢ : N — [0,1], let BPP,. denote the class of de-
cision problems that can be solved in probabilistic polynomial-time with error probability upper-
bounded by €. Prove the following two claims:

1. For every positive polynomial p and e(n) = (1/2) — (1/p(n)), the class BPP. equals BPP.
2. For every positive polynomial p and e(n) = 272" the class BPP equals BPP..

Formulate a corresponding version for the setting of search problem. Specifically, for every input
that has a solution, consider the probability that a specific solution is output.

Guideline: Given an algorithm A for the syntactically weaker class, consider an algorithm A’ that on
input  invokes A on x for t(|z|) times, and rules by majority. For Part 1 set t(n) = O(p(n)?) and apply
Chebyshev’s Inequality. For Part 2 set t(n) = O(p(n)) and apply the Chernoff Bound.

Exercise 16 (error-reduction for RP) For p: N — [0, 1], we define the class of decision prob-
lem RP, such that it contains S if there exists a probabilistic polynomial-time algorithm A such
that for every z € S it holds that Pr[A(z) = 1] > p(|z|) and for every = ¢ S it holds that
Pr[A(x) = 0] = 1. Prove the following two claims:

1. For every positive polynomial p, the class R'Py/, equals RP.
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2. For every positive polynomial p, the class RP equals RP,, where p(n) =1 — 2-P(n),

(Hint: The one-sided error allows using an “or-rule” (rather than a “majority-rule”) for the decision.)

Exercise 17 (error-reduction for ZPP) For p : N — [0,1], we define the class of decision
problem ZPP, such that it contains S if there exists a probabilistic polynomial-time algorithm A
such that for every z it holds that Pr[A(x) = xs(z)] > p(|z|) and Pr[A(x) € {xs(x),L}] =1, where
xs(x) =1if z € S and yg(z) = 0 otherwise. Prove the following two claims:

1. For every positive polynomial p, the class ZPPy/, equals ZPP.

2. For every positive polynomial p, the class ZPP equals ZPP,, where p(n) =1 — 9-P(n),

Exercise 18 (an alternative definition of ZPP) We say that the decision problem S is solv-
able in expected probabilistic polynomial-time if there exists a randomized algorithm A and a poly-
nomial p such that for every x € {0,1}* it holds that Pr[A(z) = xs(z)] = 1 and the expected
number of steps taken by A(x) is at most p(|z|). Prove that S € ZPP if and only if S is solvable
in expected probabilistic polynomial-time.

Guideline: Repeatedly invoking a ZPP algorithm until it yields an output other than L, results in an ex-
pected probabilistic polynomial-time solver. On the other hand, truncating runs of an expected probabilistic
polynomial-time algorithm once they exceed twice the expected number of steps (and outputting L on such
runs), we obtain a ZPP algorithm.

Exercise 19 Let BPP and coRP be classes of promise problems (as in Theorem 7).

1. Prove that every problem in BPP is reducible to the set {1} € P by a two-sided error
randomized Karp-reduction.

(Hint: Such a reduction may effectively decide membership in any set in BPP.)

2. Prove that if a set S is Karp-reducible to RP (resp., coRP) via a deterministic reduction
then S € RP (resp., S € coRP).

Exercise 20 (randomness-efficient error-reductions) Note that standard error-reduction (see
Exercise 15) yields error probability é at the cost of increasing the randomness complexity by a
factor of O(log(1/6)). Using a randomness-efficient error-reductions, show that error probability 6
can be obtained at the cost of increasing the randomness complexity by a constant factor and an ad-
ditive term of 1.51log,(1/6). Note that this allows satisfying the hypothesis made in the illustrative
paragraph of the proof of Theorem 7.

Exercise 21 In continuation to the illustrative paragraph of the proof of Theorem 7, consider the
promise problem IT" = (II{,, IT},,) such that [T\, = {(x,7") : |[r'|=p(|z])/2A(Vr" € {0, 1D Al (2, ") =

1} and I, = {(z,7") : ¢ S}. Recall that for every x it holds that Pr,c g 1ypaen[A' (2, 7) # xs(2)] <
9—((p(l))/2)+1)

1. Show that mapping z to (z,7'), where ' is uniformly distributed in {0, 1}7(2)/2 constitutes
a one-sided error randomized Karp-reduction of S to II'.
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2. Show that IT' is in the promise problem class coRP.

Exercise 22 Prove that for every S € NP there exists a probabilistic polynomial-time algorithm
A such that for every x € S it holds that Pr[A(x) = 1] > 0 and for every = ¢ S it holds that
Pr[A(z) = 0] = 1. That is, A has error probability at most 1 — exp(—poly(|z|)) on yes-instances
but never errs on no-instances. Thus, NP may be fictitiously viewed as having a huge one-sided
error probability.

Exercise 23 (randomized versions of N'P) In continuation to Footnote 6, consider the follow-
ing two variants of MA (which we consider the main randomized version of N'P).

1. S € MAW if there exists a probabilistic polynomial-time algorithm V' such that for every
z € S there exists y € {0, 1}P°(#) such that Pr[V (z,y)=1] > 1/2, whereas for every z ¢ S
and every y it holds that Pr[V(z,y)=0] = 1.

2. S € MA® if there exists a probabilistic polynomial-time algorithm V such that for every
z € S there exists y € {0, 1}P°(#) such that Pr[V (z,y)=1] > 2/3, whereas for every = ¢ S
and every y it holds that Pr[V(x,y)=0] > 2/3.

Prove that MA®Y = AP whereas MA®2) = MA.

Guideline: For the first part, note that a sequence of internal coin tosses that makes V' accept (x,y) can be
incorporated into y itself (yielding a standard NP-witness). For the second part, apply the ideas underlying
the proof of Theorem 7.

Exercise 24 (time hierarchy theorems for promise problem versions of BPTIME) Fixing
a model of computation, let BPTIME(#) denote the class of promise problems that are solvable by
a randomized algorithm of time complexity ¢ that has a two-sided error probability at most 1/3.
(The common definition refers only to decision problems.) Formulate and prove results analogous
to those stated and proved for deterministic algorithms.

Guideline: Analogously to the proof of the deterministic time hierarchy, we construct a Boolean function
f by associating with each admissible machine M an input x s, and making sure that Pr[f(zar) # M'(z)] >
2/3, where M'(z) denotes the emulation of M (x) suspended after ¢ (|z|) steps. The key point is that f is a
partial function (corresponding to a promise problem) that is defined only for machines that have two-sided
error at most 1/3 (on every input). This allows for a randomized computation of f with two-sided error
probability at most 1/3 (on each input on which f is defined).

Exercise 25 (extracting square roots modulo a prime) Using the following guidelines, present
a probabilistic polynomial-time algorithm that, on input a prime P and a quadratic residue
s (mod P), returns r such that 7> = s (mod P).

1. Prove that if P =3 (mod 4) then s("+1)/* mod P is a square root of the quadratic residue
s (mod P).

2. Note that the procedure suggested in Item 1 relies on the ability to find an odd power e
such that s =1 (mod P). (In Item 1, we used e = (P — 1)/2, which is odd since P = 3
(mod 4).) Once such a power is found, we may output s(¢+1)/2 mod P.

Show that it suffices to find an odd power e together with a residue r and an even power ¢’
such that s7¢ =1 (mod P).
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3. Given a prime P =1 (mod 4), a quadratic residue s, and a quadratic non-residue r (equiv.,
r(P=1/2 = _1  (mod P)), show that e and €’ as in Item 2 can be efficiently found.”

4. Prove that, for a prime P, with probability 1/2 a uniformly chosen r € {1,..., P} satisfies
r(P=D/2 = _1  (mod P).

Note that randomization is used only in the last item, which in turn is used only for P = 1
(mod 4).

Exercise 26 (small-space randomized step-counter) A step-counter is an algorithm that runs
for a number of steps that is specified in its input. Actually, such an algorithm may run for a some-
what larger number of steps but halt after issuing a number of “signals” as specified in its input,
where these signals are defined as entering (and leaving) a designated state (of the algorithm). A
step-counter may be run in parallel to another procedure in order to suspend the execution after
a desired number of steps (of the other procedure) has elapsed. We note that there exists a simple
deterministic machine that, on input 7, halts after issuing n signals while using O(1) + log, n space
(and O(n) time). The goal of this exercise is presenting a (randomized) step-counter that allows
for many more signals while using the same amount of space. Specifically, present a (randomized)
algorithm that, on input n, uses O(1) 4 logy n space (and O(27) time) and halts after issuing an
expected number of 2" signals. Furthermore, prove that, with probability at least 1 — 27%*+1 this
step-counter halts after issuing a number of signals that is between 2% and 27+,

Guideline: Repeat the following experiment till reaching success. Each trial consists of uniformly selecting
n bits (i.e., tossing n unbiased coins), and is deemed successful if all bits turn out to equal the value 1 (i.e.,
all outcomes equal HEAD). Note that such a trial can be implemented by using space O(1) + log, n (mainly
for implementing a standard counter for determining the number of bits). Thus, each trial is successful with
probability 27", and the expected number of trials is 2.

Exercise 27 (analysis of random walks on arbitrary undirected graphs) In order to com-
plete the proof of Proposition 11, prove that if {u,v} is an edge of the graph G = (V, E) then
E[Xy ] < 2|E|. Recall that, for a fixed graph, X, , is a random variable representing the number
of steps taken in a random walk that starts at the vertex w until the vertex v is first encountered.

Guideline: Let Z,,(n) be a random variable counting the number of minimal paths from w to v that
appear along a random walk of length n, where the walk starts at the stationary vertex distribution (which
is well-defined assuming the graph is not bipartite, which in turn may be enforced by adding a self-loop).
On one hand, E[Xy,, + Xy o] = limp— o0 (n/E[Zy,0(n)]), due to the memoryless property of the walk. On the
other hand, letting xy (%) 11 if the edge {u,v} was traversed from v to u in the i*® step of such a random
walk and x. . (¢) 11 0 otherwise, we have Yo Xou(i) € Zyw(n) + 1 and E[xe,u(i)] = 1/2|E| (because, in
each step, each directed edge appears on the walk with equal probability). It follows that E[X, .| < 2|E|.

Exercise 28 (the class PP O BPP and its relation to #P) In contrast to BPP, which refers
to useful probabilistic polynomial-time algorithms, the class PP does not capture such algorithms
but is rather closely related to #P. A decision problem S is in PP if there exists a probabilistic

"Write (P — 1)/2 = (2§ + 1) - 2%, and note that siHD2'0 = (mod P). Assuming we have that if for some
i > 1 > 0 and j' it holds that s(IH12 (257120 = (mod P), show how to find i > i — 1 and j" such that
O R CAE S | (mod P). (Extra hint: O O L (mod P) and P20 =
(mod P).) Note that for 7 = 1 we obtain what we need.
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polynomial-time algorithm A such that, for every z, it holds that = € S if and only if Pr[A(x) =
1] > 1/2. Note that BPP C PP. Prove that PP is Cook-reducible to #P and vise versa.

Guideline: For S € PP (by virtue of the algorithm A), consider the relation R such that (z,r) € R
if and only if A accepts the input x when using the random-input r € {0, l}p(|””|), where p is a suitable
polynomial. Thus, z € S if and only if |R(z)| > 2P(*D~1 which in turn can de determined by querying the
counting function of R. To reduce f € #P to PP, consider the relation R € PC that is counted by f (i.e.,
f(z) = |R(z)|) and the decision problem Sy = {(z,v) : f(x) > v}. Let p be the polynomial specifying the
length of solutions for R (i.e., (z,y) € R implies |y| = p(|z|)), and consider the algorithm A’ that on input
(z, N') proceeds as follows: With probability 1/2, it uniformly selects y € {0, 1}?(2) and accepts if and only
if (z,y) € R, and otherwise (i.e., in the other case) it accepts with probability W Prove that
(x,N) € Sy if and only if Pr[A'(z) =1] > 1/2.
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