
Texts in Computational Complexity:Probabilistic Proof SystemsOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.January 28, 2006 A proof is whatever convinces me.Shimon Even (1935{2004)Various types of probabilistic proof systems have played a central role in the development of com-puter science in the last couple of decades. In this text, we concentrate on three such proof systems:interactive proofs, zero-knowledge proofs, and probabilistic checkable proofs. These proof systemsshare a common (untraditional) feature { they carry a probability of error; yet, this probability isexplicitly bounded and can be reduced by successive application of the proof system. The gain inallowing this untraditional relaxation is substantial, as demonstrated by the three results mentionedin the summary.Summary: The association of e�cient procedures with deterministic polynomial-timeprocedures is the basis for viewing NP-proof systems as the canonical formulation ofproof systems (with e�cient veri�cation procedures). Allowing probabilistic veri�cationprocedures and, moreover, ruling by statistical evidence gives rise to various types ofprobabilistic proof systems. These probabilistic proof systems carry a probability oferror (which is explicitly bounded), but they o�er various advantages over the traditional(deterministic and errorless) proof systems.Randomized and interactive veri�cation procedures, giving rise to interactive proof sys-tems, seem much more powerful than their deterministic counterparts. In particular,such interactive proof systems exist for any set in PSPACE � coNP (e.g., for the setof unsatis�ed propositional formulae), whereas it is widely believed that some sets incoNP do not have NP-proof systems (i.e., NP 6= coNP). We stress that a \proof" inthis context is not a �xed and static object, but rather a randomized (and dynamic)process in which the veri�er interacts with the prover. Intuitively, one may think of thisinteraction as consisting of questions asked by the veri�er, to which the prover has toreply convincingly.Such randomized and interactive veri�cation procedures allow for the introduction ofzero-knowledge proofs, which are of great conceptual and practical interest (especially incryptography). Loosely speaking, zero-knowledge proofs are interactive proofs that yieldnothing (to the veri�er) beyond the fact that the assertion is indeed valid. For example,a zero-knowledge proof that a certain propositional formula is satis�able does not reveal1

a satisfying assignment to the formula nor any partial information regarding such anassignment (e.g., whether the �rst variable can assume the value true). Thus, zero-knowledge proofs exhibit an extreme contrast between being convinced of the validityof a statement and learning anything in addition (while receiving such a convincingproof). Under reasonable complexity assumptions (i.e., assuming the existence of one-way functions), every set in NP has a zero-knowledge proof system.NP-proofs can be e�ciently transformed into a (redundant) form that o�ers a trade-o� between the number of (randomly) examined locations in the resulting proof andthe con�dence in its validity. It particular, it is known that any set in NP has anNP-proof system that supports probabilistic veri�cation such that the error probabilitydecreases exponentially with the number of bits read from the alleged proof. Theseredundant NP-proofs are called probabilistically checkable proofs (or PCPs). In additionto their conceptually fascinating nature, PCPs have played a key role in the study ofthe complexity of approximation problems.ContentsIntroduction and Preliminaries 21 Interactive Proof Systems 41.1 De�nition : 51.2 The Power of Interactive Proofs : 71.2.1 A simple example : 71.2.2 The full power of interactive proofs : 81.3 Variants and �ner structure: an overview : 121.3.1 Arthur-Merlin games a.k.a public-coin proof systems : : : : : : : : : : : : : : 121.3.2 Interactive proof systems with two-sided error : : : : : : : : : : : : : : : : : : 131.3.3 A hierarchy of interactive proof systems : 131.3.4 Something completely di�erent : 141.4 On computationally bounded provers: an overview : : : : : : : : : : : : : : : : : : : 141.4.1 How powerful should the prover be? : 151.4.2 Computational-soundness : 162 Zero-Knowledge Proof Systems 162.1 De�nitional Issues : 172.1.1 A wider perspective: the simulation paradigm : : : : : : : : : : : : : : : : : : 172.1.2 The basic de�nitions : 182.2 The Power of Zero-Knowledge : 192.2.1 A simple example : 192.2.2 The full power of zero-knowledge proofs : 222.3 Proofs of Knowledge { a parenthetical subsection : 253 Probabilistically Checkable Proof Systems 263.1 De�nition : 273.2 The Power of Probabilistically Checkable Proofs : 283.2.1 Proving that NP � PCP(poly; O(1)) : 293.2.2 Overview of the �rst proof of the PCP Theorem : : : : : : : : : : : : : : : : 322

3.2.3 Overview of the second proof of the PCP Theorem : : : : : : : : : : : : : : : 353.3 PCP and Approximation : 383.4 More on PCP itself: an overview : 403.4.1 More on the PCP characterization of NP : 403.4.2 PCP with super-logarithmic randomness : 41Notes 41Exercises 44Bibliography 49Introduction and PreliminariesThe glory attached to the creativity involved in �nding proofs, makes us forget that it is the lessglori�ed procedure of veri�cation that gives proofs their value. Conceptually speaking, proofs aresecondary to the veri�cation procedure; whereas technically speaking, proof systems are de�ned interms of their veri�cation procedures.The notion of a veri�cation procedure presumes the notion of computation and furthermore thenotion of e�cient computation. This implicit stipulation is made explicit in the de�nition of NP, inwhich e�cient computation is associated with (deterministic) polynomial-time algorithms.1 Thus,NP provides the ultimate formulation of proof systems (with e�cient veri�cation procedures) aslong as one associates e�cient procedures with deterministic polynomial-time algorithms. However,we can gain a lot if we are willing to take a somewhat non-traditional step and allow probabilisticveri�cation procedures. In particular:� Interactive proof systems, which employ randomized and interactive veri�cation procedures,seem much more powerful than their deterministic counterparts.� Such interactive proof systems allow for the introduction of zero-knowledge proofs, which areof great theoretical and practical interest.� NP-proofs can be e�ciently transformed into a (redundant) form that o�ers a trade-o� be-tween the number of randomly examined locations in the alleged proof and the con�dence inits validity.In all these cases, explicit bounds are imposed on the computational complexity of the veri�cationprocedure, which in turn is personi�ed by the notion of a veri�er. Furthermore, in all these proofsystems, the veri�er is allowed to toss coins and rule by statistical evidence. Thus, all these proofsystems carry a probability of error; yet, this probability is explicitly bounded and, furthermore,can be reduced by successive application of the proof system.1Recall that the formulation of NP-proof systems explicitly restricts the length of proofs to be polynomial in thelength of the assertion. Thus, veri�cation is performed in a number of steps that is polynomial in the length of theassertion. We comment that deterministic proof systems that allow for longer proofs (but require that veri�cation ise�cient in terms of the length of the alleded proof) can be modeled as NP-proof systems by adequate padding (ofthe assertion).
3

One important convention. When presenting a proof system, we state all complexity boundsin terms of the length of the assertion to be proven (which is viewed as an input to the veri�er).Namely, when we say \polynomial-time" we mean time that is polynomial in the length of thisassertion. Actually, as will become evident, this is the natural choice in all the cases that weconsider. Note that this convention is consistent with the de�nition of NP-proof systems, becausepoly(j(x; y)j) = poly(jxj) for jyj = poly(jxj).Notational Conventions. Denote by poly the set of all integer functions bounded by a poly-nomial and by log the set of all integer functions bounded by a logarithmic function (i.e., f 2 logi� f(n) = O(log n)). All complexity measures mentioned in the subsequent exposition are assumedto be constructible in polynomial-time.Organization. In Section 1 we present the basic de�nitions and results regarding interactive proofsystems. The de�nition of an interactive proof systems is the starting point for a discussion of zero-knowledge proofs, which is provided in Section 2. Section 3, which presents the basic de�nitionsand results regarding probabilistically checkable proofs (PCP), can be read independently of theother sections.1 Interactive Proof SystemsIn light of the growing acceptability of randomized and distributed computations, it is only naturalto associate the notion of e�cient computation with probabilistic and interactive polynomial-timecomputations. This leads naturally to the notion of an interactive proof system in which theveri�cation procedure is interactive and randomized, rather than being non-interactive and deter-ministic. Thus, a \proof" in this context is not a �xed and static object, but rather a randomized(dynamic) process in which the veri�er interacts with the prover. Intuitively, one may think ofthis interaction as consisting of questions asked by the veri�er, to which the prover has to replyconvincingly. The foregoing discussion, as well as the de�nition provided in Section 1.1, makesexplicit reference to a prover, whereas a prover is only implicit in the traditional de�nitions ofproof systems (e.g., NP-proof systems). Before turning to the actual de�nition, we highlight andfurther discuss some of the foregoing issues.A static object versus an interactive process. Traditionally in mathematics, a \proof" isa �xed sequence consisting of statements that are either self-evident or are derived from previousstatements via self-evident rules. Actually, both conceptually and technically, it is more accurate tosubstitute the phrase \self-evident" by the phrase \commonly agreed" (because, at the last account,self-evidence is a matter of common agreement). In fact, in the formal study of proofs (i.e., logic),the commonly agreed statements are called axioms, whereas the commonly agreed rules are referredto as derivation rules. We highlight a key property of mathematics proofs: proofs are viewed as�xed (static) objects. In contrast, in other areas of human activity, the notion of a \proof" hasa much wider interpretation. In particular, a proof is not a �xed object but rather a process bywhich the validity of an assertion is established. For example, the cross-examination of a witnessin court is considered a proof in law, and failure to answer a rival's claim is considered a proof indaily discussions. The latter convention (by which failure to answer a claim is considered a proof)is common in philosophy, politics, and often even in Science. Furthermore, some technical \proofsby contradiction" take a similar attitude by emulating an imaginary debate with a potential genericskeptic. 4

We note that, in mathematics, proofs are often considered more fundamental than their conse-quence (i.e., the theorem). In contrast, in many daily situations, proofs are considered secondary(in importance) to their consequence.The aforementioned daily attitudes will be adequate in the current text, where proofs are theobject of study. We will be interested in modeling proofs that can be veri�ed by automated proce-dures, which are designed to check the validity of potential proofs and are oblivious of additionalfeatures such as beauty, insight, etc. Thus, we view proofs merely as a vehicle for the veri�cationof the validity of the claimed assertion. In fact, this attitude gets to an extreme in the case of zero-knowledge proofs, where we actually require that the proofs themselve be useless beyond beingconvincing of the validity of the claimed assertion. We note that the proof systems that we studyrefer to mundane theorems (e.g., asserting that a speci�c propositional formula is not satis�ableor that a party sent a message as instructed by a predetermined protocol). We stress that the(meta) theorems that we shall state regarding these proof systems will be proven in the traditionalmathematical sense.Prover and Veri�er. The notion of a prover is implicit in all discussions of proofs, be it inmathematics or in other situations: the prover is the (sometimes hidden or transcendental) entityproviding the proof. In contrast, the notion of a veri�er tends to be more explicit in such discussions,which typically emphasize the veri�cation process, or in other words the role of the veri�er. Bothin mathematics and in daily situations, proofs are de�ned in terms of the veri�cation procedure.The veri�cation procedure is considered to be relatively simple, and the burden is placed on theparty/person supplying the proof (i.e., the prover). The asymmetry between the complexity of theveri�cation task and the complexity of the theorem-proving task is captured by the de�nition ofNP-proof systems (i.e., veri�cation is required to be e�cient whereas P 6= NP implies that in somecases �nding adequate proofs is infeasible).We highlight the \distrustful attitude" towards the prover, which underlies any proof system.If the veri�er trusts the prover then no proof is needed. Hence, whenever discussing a proof systemone considers a setting in which the veri�er is not trusting the prover, and furthermore is skepticof anything that the prover says.Completeness and Soundness. Two fundamental properties of a proof system (i.e., of a veri�-cation procedure) are its soundness (or validity) and completeness. The soundness property assertsthat the veri�cation procedure cannot be \tricked" into accepting false statements. In other words,soundness captures the veri�er's ability to protect itself from being convinced of false statements(no matter what the prover does in order to fool it). On the other hand, completeness captures theability of some prover to convince the veri�er of true statements (belonging to some predeterminedset of true statements). Note that both properties are essential to the very notion of a proof system.We note that not every set of true statements has a \reasonable" proof system in which eachof these statements can be proven (while no false statement can be \proven"). This fundamentalfact is given a precise meaning in results such as G�odel's Incompleteness Theorem and Turing'stheorem regarding the undecidability of the Halting Problem. This section is devoted to the studyof a liberal notion of \reasonable proof systems".1.1 De�nitionLoosely speaking, an interactive proof is a game between a computationally bounded veri�er anda computationally unbounded prover whose goal is to convince the veri�er of the validity of some5

assertion. Speci�cally, the veri�er employs a probabilistic polynomial-time strategy. It is requiredthat if the assertion holds then the veri�er always accepts (i.e., when interacting with an appropriateprover strategy). On the other hand, if the assertion is false then the veri�er must reject withprobability at least 12 , no matter what strategy is being employed by the prover. (The errorprobability can be reduced by running such a proof system several times.)Formally, a strategy for a party describes the party's next move (i.e., its next message or its�nal decision) as a function of the common input (i.e., the aforementioned assertion), its internalcoin tosses, and all messages it has received so far. That is, we assume that each party recordsthe outcomes of its past coin tosses as well as all the messages it has received, and determines itsmoves based on these. Thus, an interaction between two parties, employing strategies A and Brespectively, is determined by the common input, denoted x, and the randomness of both parties,denoted rA and rB . Assuming that A takes the �rst move (and B takes the last one), the corre-sponding interaction transcript (on common input x and randomness rA and rB) is �1; �1; :::; �t; �t,where �i = A(x; rA; �1; :::; �i�1) and �i = B(x; rB ; �1; :::; �i). The corresponding �nal decision ofA is de�ned as A(x; rA; �1; :::; �t).We say that a party employs a probabilistic polynomial-time strategy if its next move can becomputed in a number of steps that is polynomial in the length of the common input. In particular,this means that, on input common input x, the strategy may only consider a polynomial in jxjmany messages, which are each of poly(jxj) length.2 Intuitively, if the other party exceeds an apriori (polynomial in jxj) bound on the total length of the messages that it is allowed to send, thenthe execution is suspended. Referring to the foregoing strategies, we say that A is a probabilisticpolynomial-time strategy if, for every i and rA; �1; :::; �i, the value of A(x; rA; �1; :::; �i) can becomputed in time polynomial in jxj. Again, in proper use, it must hold that jrAj; t and the j�ij'sare all polynomial in jxj.De�nition 1 (Interactive Proof systems { IP):3 An interactive proof system for a set S is a two-party game, between a veri�er executing a probabilistic polynomial-time strategy (denoted V) anda prover that executes a computationally unbounded strategy (denoted P), satisfying the followingtwo conditions:� Completeness: For every x 2 S, the veri�er V always accepts after interacting with the proverP on common input x.� Soundness: For every x 62 S and every strategy P �, the veri�er V rejects with probability atleast 12 after interacting with P � on common input x.We denote by IP the class of sets having interactive proof systems.The error probability (in the soundness condition) can be reduced by successive applications of theproof system. (This is easy to see in the case of sequential repetitions, but holds also for parallelrepetitions; see Exercise 24.) In particular, repeating the proving process for k times, reduces theprobability that the veri�er is fooled (i.e., accepts a false assertion) to 2�k, and we can a�ord doingso for any k = poly(jxj). Still, we have relaxed the requirements from the veri�cation procedureby allowing it to interact with the prover, toss coins and risk some (bounded) error probability.(Variants on the basic de�nition are discussed in Section 1.3.)2Needless to say, the number of internal coin tosses fed to a polynomial-time strategy must also be bounded by apolynomial in the length of x.3We follow the convention of specifying strategies for both the veri�er and the prover. An alternative presentationonly speci�es the veri�er's strategy, while rephrasing the completeness condition as follows: There exists a proverstrategy P so that, for every x 2 S, the veri�er V always accepts after interacting with P on common input x.6

The role of randomness. Randomness is essential to the power of interactive proofs; that is,if randomness is not allowed, then interactive proof systems collapse to NP-proof systems. Thereason being that, in case the veri�er is deterministic, the prover can predict the veri�er's part ofthe interaction. Thus, the prover can just supply its own answers to the veri�er's (predictable)questions, and the veri�er can just check that these answers are convincing. Actually we establishthat soundness error (and not merely randomized veri�cation) is essential to the power of interactiveproof systems (i.e., their ability to reach beyond NP-proofs).Proposition 2 Suppose that S has an interactive proof system (P; V) with no soundness error;that is, for every x 62 S and every potential strategy P �, the veri�er V rejects with probability oneafter interacting with P � on common input x. Then S 2 NP.Proof: We may assume, without loss of generality, that V is deterministic (by just �xing arbitrarilythe contents of its random-tape and noting that both (perfect) completeness and perfect (i.e.,errorless) soundness still hold). Since V is deterministic, the prover may predict each message sentby V , and thus a sequence of optimal prover's messages (i.e., a sequence of messages leading V toaccept x) can be (pre)determined (without interacting with V) based solely on the common inputx. (In contrast, in the case that V is randomized, its random coins may e�ect the messages thatit sends, which in turn may e�ect the optimal prover's responses.) Thus, x 2 S if and only if thereexists a sequence of (prover's) messages that make (the deterministic) V accept x. It follows thatS 2 NP .Indeed, the punch-line of the foregoing proof is that the prover gains nothing from interactingwith an easily predictable veri�er (i.e., a veri�er that determines its messages in deterministicpolynomial-time based on the common input and the prover's prior messages). The prover can justproduce the entire interaction by itself (and send it to the veri�er for veri�cation). The moral isis that there is no point to interact with a party whose moves are easily predictable. This moralrepresents the prover's point of view (regarding deterministic veri�ers). Certainly, from the veri�er'spoint of view it is bene�cial to interact with the prover, because the latter is computationallystronger (and thus its moves may not be easily predictable by the veri�er even in case they arepredictable in an information theoretic sense).1.2 The Power of Interactive ProofsWe have seen that randomness is essential to the power of interactive proof systems in the sensethat without randomness interactive proofs are not more powerful than NP-proofs. Indeed, thepower of interactive proof arises from the combination of randomization and interaction. We �rstdemonstrate this point by a simple proof system for a speci�c coNP-set that is not known to havean NP-proof system, and next prove the celebrated result IP = PSPACE , which suggests thatinteractive proofs are much stronger than NP-proofs.1.2.1 A simple exampleOne day on the Olympus, bright-eyed Athena claimed that Nectar poured out of the newsilver-coated jars tastes less good than Nectar poured out of the older gold-decoratedjars. Mighty Zeus, who was forced to introduce the new jars by the practically orientedHera, was annoyed at the claim. He ordered that Athena be served one hundred glassesof Nectar, each poured at random either from an old jar or from a new one, and that shetell the source of the drink in each glass. To everybody's surprise, wise Athena correctly7

identi�ed the source of each serving, to which the Father of the Gods responded \mychild, you are either right or extremely lucky." Since all gods knew that being luckywas not one of the attributes of Pallas-Athena, they all concluded that the impeccablegoddess was right in her claim.The foregoing story illustrates the main idea underlying the interactive proof for Graph Non-Isomorphism, presented in Construction 3. Informally, this interactive proof system is designedfor proving dissimilarity of two given objects (in the foregoing story these are the two brands ofNectar, whereas in Construction 3 these are two non-isomorphic graphs). We note that, typically,proving similarity between objects is easy, because one can present a mapping (of one object to theother) that demonstrates this similarity. In contrast, proving dissimilarity seems harder, becausein general there seems to be no succinct proof of dissimilarity. More generally, it is typically easyto prove the existence of an easily veri�able structure in the given object by merely presenting thisstructure, but proving the non-existence of such a structure seems hard. Formally, membership inan NP-set is proved by presenting an NP-witness, but it is not clear how to prove the non-existenceof such witness. Indeed, recall that the common belief is that coNP 6= NP .Recall that two graphs, G1=(V1; E1) and G2=(V2; E2), are called isomorphic if there exists a1-1 and onto mapping, �, from the vertex set V1 to the vertex set V2 such that fu; vg 2 E1 if andonly if f�(v); �(u)g 2 E2. The (\edge preserving") mapping �, if existing, is called an isomorphismbetween the graphs. The following protocol allows proving that two graphs are not isomorphic.(We note that it is not known whether or not such a statement can be proven via an NP-proofsystem.)Construction 3 (Interactive proof for Graph Non-Isomorphism):� Common Input: A pair of graphs, G1=(V1; E1) and G2=(V2; E2). Suppose, without loss ofgenerality, that V1 = f1; 2; :::; jV1 jg, and similarly for V2.� Veri�er's �rst step (V1): The veri�er selects at random one of the two input graphs, and sendsto the prover a random isomorphic copy of this graph. Namely, the veri�er selects uniformly� 2 f1; 2g, and a random permutation � from the set of permutations over the vertex set V�.The veri�er constructs a graph with vertex set V� and edge setE def= ff�(u); �(v)g : fu; vg2E�gand sends (V�; E) to the prover.� Motivating Remark: If the input graphs are non-isomorphic, as the prover claims, then theprover should be able to distinguish (not necessarily by an e�cient algorithm) isomorphiccopies of one graph from isomorphic copies of the other graph. However, if the input graphsare isomorphic, then a random isomorphic copy of one graph is distributed identically to arandom isomorphic copy of the other graph.� Prover's step: Upon receiving a graph, G0 = (V 0; E0), from the veri�er, the prover �nds a� 2 f1; 2g such that the graph G0 is isomorphic to the input graph G� . (If both �=1; 2 satisfythe condition then � is selected arbitrarily. In case no � 2 f1; 2g satis�es the condition, � isset to 0). The prover sends � to the veri�er.� Veri�er's second step (V2): If the message, � , received from the prover equals � (chosen inStep V1) then the veri�er outputs 1 (i.e., accepts the common input). Otherwise the veri�eroutputs 0 (i.e., rejects the common input). 8

The veri�er's strategy in Construction 3 is easily implemented in probabilistic polynomial-time.We do not known of a probabilistic polynomial-time implementation of the prover's strategy, butthis is not required. The motivating remark justi�es the claim that Construction 3 constitutes aninteractive proof system for the set of pairs of non-isomorphic graphs.4 Recall that the latter is acoNP-set (which is not known to be in NP).1.2.2 The full power of interactive proofsThe interactive proof system of Construction 3 refers to a speci�c coNP-set that is not known tobe in NP . It turns out that interactive proof systems are powerful enough to prove membership inany coNP-set (e.g., prove that a graph is not 3-colorable). Thus, assuming that NP 6= coNP, thisestablishes that interactive proof systems are more powerful than NP-proof systems. Furthermore,the class of sets having interactive proof systems coincides with the class of sets that can be decidedusing a polynomial amount of work-space.Theorem 4 (The IP Theorem): IP = PSPACE .Recall that it is widely believed that NP is a proper subset of PSPACE . Thus, under thisconjecture, interactive proofs are more powerful than NP-proofs.Sketch of the Proof of Theorem 4Theorem 4, was established using algebraic methods (see details below). In particular, the followingapproach { unprecedented in complexity theory { was employed: In order to demonstrate thata particular set is in a particular class, an arithmetic generalization of the Boolean problem ispresented, and (elementary) algebraic methods are applied for showing that the arithmetic problemis solvable within the class. Following is a sketch of the proof. We �rst show that coNP � IP, bypresenting an interactive proof system for the coNP-complete set of non-satis�able CNF formulae.Next we extend this proof system to obtain one for the PSPACE-complete set of non-satis�ableQuanti�ed Boolean Formulae. Finally, we observe that IP � PSPACE .Teaching note: We present a sketch of the proof that focuses on the main ideas, andomit various implementation details (which can be found in [33, 37]). Furthermore, wedevote most of the presentation to establishing that coNP � IP , and recommend doingthe same in class.Arithmetization of Boolean (CNF) formulae: Given a Boolean (CNF) formula, we replacethe Boolean variables by integer variables, or-clauses by sums, and the top level conjunction bya product. Then we sum over all 0-1 assignments to these variables. For example, the Booleanformula (x3 _ :x5 _ x17) ^ (x5 _ x9) ^ (:x3 _ :x4)is replaces by the arithmetic expression(x3 + (1 � x5) + x17) � (x5 + x9) � ((1 � x3) + (1� x4))4In case G1 is not isomorphic to G2, no graph can be isomorphic to both G1 and G2. On the other hand, ifG1 and G2 are isomorphic then for every G0 the number of isomorphisms between G1 and G0 equals the number ofisomorphisms between G2 and G0. It follows that in this case G0 yields no information about the � chosen by V , andso no prover may convince V with probability exceeding 1=2.9

and the Boolean formula is non-satis�able if and only if the sum of the arithmetic expression, takenover all choices of x1; x2; :::; x17 2 f0; 1g, equals 0. Observe that the arithmetic expression is a lowdegree polynomial over the integers (i.e., its degree is upper-bounded by the number of clauses).Also observe that, for any Boolean formula, the value of the corresponding arithmetic expression(for any choice of x1; :::; xn 2 f0; 1g) resides within the interval [0; vm], where v is the maximumnumber of variables in a clause, and m is the number of clauses. Summing over all 2n possible 0-1assignments, where n < vm is the number of variables, the result resides in [0; 2nvm].Moving to a Finite Field: Whenever we check equality between two integers in [0;M], it su�cesto check equality mod q, where q > M . The bene�t is that the arithmetic is now in a �nite �eld(mod q) and so certain things are \nicer" (e.g., uniformly selecting a value). Thus, proving that aCNF formula is not satis�able reduces to proving equality of the following formXx1=0;1 � � � Xxn=0;1�(x1; :::; xn) � 0 (mod q); (1)where � is a low degree multi-variate polynomial.The actual protocol: stripping summations in iterations. We strip o� summations initerations. In each iteration the prover is supposed to supply the univariate polynomial representingthe expression in one (currently stripped) variable. (By the foregoing observation, this is a lowdegree polynomial and so has a short description.) The veri�er checks that the polynomial (say,p) is of low degree, and that it corresponds to the current value (say, v) being claimed (i.e.,p(0) + p(1) � v). Next, the veri�er randomly instantiates the variable (i.e., selects uniformlyr 2 GF(q))5, yielding a new value to be claimed for the resulting expression (i.e., the veri�ercomputes v p(r), and expects a proof that the residual expression equals v). The veri�er sendsthe uniformly chosen instantiation (i.e., r) to the prover, and the proceed to the next iteration(which refers to the residual expression and to the value v). At the end of the last iteration, theveri�er has a closed form expression (i.e., an expression without formal summations), which can beeasily checked against the claimed value.A single iteration (revisited): The ith iteration is aimed at proving a claim of the formXxi=0;1 � � � Xxn=0;1�(r1; :::; ri�1; xi; xi+1; :::; xn) � vi�1 (mod q); (2)where v0 = 0, and r1; :::; ri�1 and vi�1 are as determined in previous iterations. The ith iterationconsists of two steps (messages): a prover step followed by a veri�er step. The prover is supposedto provide the veri�er with the univariate polynomial pi that satis�espi(z) def= Xxi+1=0;1 � � � Xxn=0;1�(r1; :::; ri�1; z; xi+1; :::; xn) mod q : (3)Denote by p0i the actual polynomial sent by the prover (i.e., the honest prover sets p0i = pi). Then,the veri�er �rst checks if p0i(0) + p0i(1) � vi�1 (mod q), and next uniformly selects ri 2 GF(q) andsends it to the prover. Needless to say, the veri�er will reject if the �rst check is violated. Theclaim to be proven in the next iteration isXxi+1=0;1 � � � Xxn=0;1�(r1; :::; ri�1; ri; xi+1; :::; xn) � vi (mod q); (4)5Here and elsewhere, we denote by GF(q) the �nite �eld having q elements.10

where vi def= p0i(ri) mod q.Completeness of the protocol: When the initial claim (i.e., Eq. (1)) holds, the prover cansupply the correct polynomials (as determined in Eq. (3)), and this will lead the veri�er to alwaysaccept.Soundness of the protocol: It su�ces to upper-bound the probability that, for a particulariteration, the entry claim (i.e., Eq. (2)) is false while the ending claim (i.e., Eq. (4)) is valid. Bothclaims refer to the current summation expression being equal to the current value, where `current'means either at the beginning of the iteration or at its end. Let p(�) be the actual polynomialrepresenting the expression when stripping the current variable, and let p0(�) be any potentialanswer by the prover. We may assume that p0(0) + p0(1) � v (mod q) and that p0 is of low-degree(as otherwise the veri�er will reject). Using our hypothesis (that the entry claim of Eq. (2) is false),we know that p(0) + p(1) 6� v (mod q). Thus, p0 and p are di�erent low-degree polynomials, andso they may agree on very few points (if at all). In case the veri�er instantiation (i.e., its choice ofrandom r) does not happen to be one of these few points, the ending claim (i.e., Eq. (4)) is falsetoo. Details are left as an exercise (see Exercise 25).This establishes that the set of non-satis�able CNF formulae has an interactive proof system.Actually, the same proof system can be used to prove that a given formula has a given number ofsatisfying assignment; i.e., prove membership in the (\counting") setf(�; k) : jf� : �(�) = 1gj = kg :Using adequate reductions, it follows that every problem in #P has an interactive proof system (i.e.,for every R 2 PC, the set f(x; k) : jfy : (x; y)2Rgj = kg is in IP). Proving that PSPACE � IPrequires a little more work.Interactive Proofs for PSPACE (basic idea). We present an interactive proof for the setof satis�ed Quanti�ed Boolean Formulae (QBF), which is complete for PSPACE . Recall that thenumber of quanti�ers in such formulae is unbounded (e.g., it may be polynomially related to thelength of the input), that there are both existential and universal quanti�ers, and furthermore thesequanti�ers may alternate. In the arithmetization of these formulae, we replace existential quanti�ersby summations and universal quanti�ers by products. Two di�culties arise when considering theapplication of the forgoing protocol to the resulting arithmetic expression. Firstly, the value of theexpression (which may involve a big number of nested formal products) is only upper-bounded by adouble exponential function (in the length of the input). Secondly, when stripping a summation (ora product), the expression may be a polynomial of high degree (due to nested formal products thatmay appear in the remaining expression). For example, both phenomena occur in the followingexpression Xx=0;1 Yy1=0;1 � � � Yyn=0;1 (x+ yn) ;which equals Px=0;1 x2n�1 � (1 + x)2n�1 . The �rst di�culty is easy to resolve by using the ChineseReminder Theorem (i.e., if two integers in [0;M] are di�erent then they must be di�erent modulomost of the primes in the interval [3;poly(logM)]). Thus, we let the veri�er selects a randomprime q of length that is linear in the length of the original formula, and the two parties considerthe arithmetic expression reduced modulo this q. The second di�culty is resolved by noting thatPSPACE is actually reducible to a special form of QBF in which no variable appears both to the left11

and to the right of more than one universal quanti�er (see the proof of the PSPACE-completenessof QBF or alternatively Exercise 27). It follows that when arithmetizing and stripping summations(or products) from the resulting arithmetic expression, the corresponding univariate polynomial isof low degree (i.e., at most twice the length of the original formula, where the factor of two is dueto the single universal quanti�er that has this variable quanti�ed on its left and appearing on itsright).IP is contained in PSPACE: We show that, for every interactive proof system, there existsan optimal prover strategy that can be implemented in polynomial-space, where an optimal proverstrategy is one that maximizes the probability that the prescribed veri�er accepts the commoninput. It follows that IP � PSPACE , because (for every S 2 IP) we can emulate the interactionof the prescribed veri�er with an optimal prover strategy in polynomial space.Proposition 5 Let V be a probabilistic polynomial-time interactive machine. Then, there exists apolynomial-space computable prover strategy f that, for every x maximizes the probability that Vaccepts x. That is, for every P � and every x it holds that the probability that V accepts x afterinteracting with P � is upper-bounded by the probability that V accepts x after interacting with f .Proof Sketch: For every common input x and any possible partial transcript
 of the interactionso far, the strategy f determines an optimal next message for the prover by considering all possiblecoin tosses of the veri�er that are consistent with (x;
). Speci�cally, f is determined recursivelysuch that f(x;
) = m if m maximizes the number of veri�er coins that are consistent with (x;
)and lead the veri�er to accept when subsequent prover moves are determined by f (which is whererecursion is used). That is, coins r support the setting f(x;
) = m, where
 = (�1; �1; :::; �t; �t),if the following two conditions hold:1. r is consistent with (x;
), which means that �i = V (x; r; �1; :::; �i) for i = 1; :::; t.2. r leads V to accept (when subsequent prover moves are determined by f), which meansthat V (x; r; �1; :::; �t;m; �t+2; :::; �T) = 1, where �i+1 = f(x;
;m; �t+1; :::; �i�i) and �i =V (x; r; �1; :::; �t;m; �t+2; :::; �i) for i = t+ 1; :::; T � 1.That is, f(x;
) =m ifmmaximizes the value of E[f(x;
;m; V (x;R
 ;m))], whereR
 is selected uni-formly among the r's that are consistent with (x;
). Thus, f(x;
) can be computed in polynomial-space when given oracle access to f(x;
; �; �), and the proposition follows by standard compositionof space-bounded computations.1.3 Variants and �ner structure: an overviewIn this subsection we consider several variants on the basic de�nition of interactive proofs as wellas �ner complexity measures. This is an advanced subsection, which only provides an overview ofthe various notions and results (as well as pointers to proofs of the latter).1.3.1 Arthur-Merlin games a.k.a public-coin proof systemsThe veri�er's messages in a general interactive proof system are determined arbitrarily (but e�-ciently) based on its view of the interaction so far (which includes its internal coin tosses, whichwithout loss of generality can take place at the onset of the interaction). In public-coin proof systems(a.k.a Arthur-Merlin proof systems), the veri�er's messages are the outcome of any coin it tosses at12

the current round. Assuming, without loss of generality, that the veri�er tosses the same number` of coins in each round, we may assume that the veri�er's message in each round consists of theoutcome of ` coin tosses (because any other string that the veri�er may compute is determined bythe coins tossed so far). Note that the proof systems presented in the proof of Theorem 4 are ofthe public-coin type, whereas this is not the case for the Graph Non-Isomorphism proof system (ofConstruction 3). Thus, although not all natural proof systems are of the public-coin type, everyset having an interactive proof system also has a public-coin interactive proof system. This meansthat, in the context of interactive proof systems, asking random questions is as powerful as askingclever questions.Indeed, public-coin proof systems are a syntactically restricted type of interactive proof systems.This restriction may make the design of such systems more complex, but potentially facilitates theiranalysis (and especially the analysis of a generic system). Another advantage of public-coin proofsystems is that the veri�er's actions (except for its �nal decision) are oblivious of the prover'smessages. This property is used in the proof of Theorem 12.1.3.2 Interactive proof systems with two-sided errorIn De�nition 1 error probability is allowed in the soundness condition but not in the completenesscondition. In such a case, we say that the proof system has perfect completeness (or one-sided errorprobability). A more general de�nition allows an error probability (upper-bounded by, say, 1=3) inboth the completeness and soundness conditions. Note that sets having such generalized (two-sidederror) interactive proofs are also in PSPACE , and thus allowing two-sided error does not increasethe power of interactive proofs. See further discussion at the end of x1.3.3.1.3.3 A hierarchy of interactive proof systemsDe�nition 1 only refers to the total computation time of the veri�er, and thus allows an arbitrary(polynomial) number of messages to be exchanged. A �ner de�nition refers to the number ofmessages being exchanged (also called the number of rounds).6De�nition 6 (The round-complexity of interactive proof):� For an integer function m, the complexity class IP(m) consists of sets having an interactiveproof system in which, on common input x, at most m(jxj) messages are exchanged betweenthe parties.7� For a set of integer functions, M , we let IP(M) def= Sm2M IP(m). Thus, IP = IP(poly).For example, interactive proof systems in which the veri�er sends a single message that is answeredby a single message of the prover corresponds to IP(2). Clearly, NP � IP(1), yet the inclusionmay be strict because in IP(1) the veri�er may toss coins after receiving the prover's single message.(Also note that IP(0) = coRP .) Concerning the �ner structure of the IP-hierarchy, the followingis known:� A linear speed-up (see [6] and [27]): For every integer function, f , such that f(n) � 2 for alln, the class IP(O(f(�))) collapses to the class IP(f(�)). In particular, IP(O(1)) collapses toIP(2).6An even �ner structure emerges when considering also the total length of the messages sent by the prover (see [25]).7We count the total number of messages exchanged regardless of the direction of communication.13

� The class IP(2) contains sets not known to be in NP; e.g., Graph Non-Isomorphism (seeConstruction 3). However, under plausible intractability assumptions, IP(2) = NP (see [35]).� If coNP � IP(2) then the Polynomial-Time Hierarchy collapses (see [13]).It is conjectured that coNP is not contained in IP(2), and consequently that interactive proofs withan unbounded number of message exchanges are more powerful than interactive proofs in whichonly a bounded (i.e., constant) number of messages are exchanged.8 The class IP(1) (also denotedMA) seems to be the \real" randomized (and yet non-interactive) version of NP : Here the proversupplies a candidate (polynomial-size) \proof", and the veri�er assesses its validity probabilistically(rather than deterministically).The IP-hierarchy (i.e., IP(�)) equals an analogous hierarchy, denoted AM(�), that refers topublic-coin (a.k.a Arthur-Merlin) interactive proofs. That is, for every integer function f , it holdsthat AM(f) = IP(f). For f � 2, it is also the case that AM(f) = AM(O(f)); actually, theaforementioned linear speed-up for IP(�) is established by combining the following two results:1. Emulating IP(�) by AM(�) (see [27]): IP(f) � AM(f + 3).2. Linear speed-up for AM(�) (see [6]): AM(2f) � AM(f).In particular, IP(O(1)) = AM(2), even if AM(2) is restricted such that the veri�er tosses nocoins after receiving the prover's message. (Note that IP(1) = AM(1) and IP(0) = AM(0) aretrivial.) We comment that it is common to denote AM(2) by AM, which is indeed inconsistentwith the convention of using IP to denote IP(poly).The fact that IP(O(f)) = IP(f) is proved by establishing an analogous result for AM(�)demonstrates the advantage of the public-coin setting for the study of interactive proofs. A similarphenomenon occurs when establishing that the IP-hierarchy equals an analogous two-sided errorhierarchy (see Exercise 28).1.3.4 Something completely di�erentWe stress that although we have relaxed the requirements from the veri�cation procedure, byallowing it to interact with the prover, toss coins, and risk some (bounded) error probability, wedid not restrict the validity of its assertions by assumptions concerning the potential prover. Thisshould be contrasted with other notions of proof systems, such as computationally-sound ones (seex1.4.2), in which the validity of the veri�er's assertions depends on assumptions concerning theprover(s).1.4 On computationally bounded provers: an overviewRecall that our de�nition of interactive proofs (i.e., De�nition 1) makes no reference to the com-putational abilities of the potential prover. This fact has two con
icting consequences:1. The completeness condition does not provide any upper bound on the complexity of thecorresponding proving strategy (which convinces the veri�er to accept valid assertions).2. The soundness condition guarantees that, regardless of the computational e�ort spend by acheating prover, the veri�er cannot be fooled to accept invalid assertions (with probabilityexceeding the soundness error).8Note that the linear speed-up cannot be applied for an unbounded number of times, because each applicationmay increase (e.g., square) the time-complexity of veri�cation.14

Note that providing an upper-bound on the complexity of the (presecribed) prover strategy P ofa speci�c interactive proof system (P; V) only strengthens the claim that (P; V) is a proof systemfor the corresponding set (of valid assertions). We stress that the presecribed prover strategy isreferred to only in the completeness condition (and is irrelevant to the soundness condition). Onthe other hand, relaxing the de�nition of interactive proofs such that soundness holds only for aspeci�c class of cheating prover strategies (rather than for all cheating prover strategies) weakensthe corresponding claim. In this advanced section we consider both possibilities.Teaching note: Indeed, this is an advanced subsection, which is best left for indepen-dent reading. It merely provides an overview of the various notions, and the reader isdirected to the notes for further detail (i.e., pointers to the relevant literature).1.4.1 How powerful should the prover be?Assume that a set S is in IP. This means that there is a veri�er V that can be convinced to acceptany input in S but cannot be fooled to accept any input not in S (except with small probability).One may ask how powerful should a prover be such that it can convince the veri�er V to accept anyinput in S. Note that Proposition 5 asserts that an optimal prover strategy can be implementedin polynomial-space (and that we cannot expect better for a generic set in PSPACE = IP), butwe will seek better upper-bounds on the complexity of the prover that convinces a speci�c veri�er(which in turn corresponds to a speci�c set S). More interestingly, considering all possible veri�ersthat give rise to interactive proof systems for S, we ask what is the minimum power required froma prover that satis�es the completeness requirement with respect to one of these veri�ers?We stress that, unlike the case of computationally-sound proof systems (see x1.4.2), we do notrestrict the power of the prover in the soundness condition, but rather consider the minimum com-plexity of provers meeting the completeness condition. Speci�cally, we are interested in relativelye�cient provers that meet the completeness condition. The term \relatively e�cient prover" hasbeen given three di�erent interpretations.1. A prover is considered relatively e�cient if, when given an auxiliary input (in addition to thecommon input in S), it works in (probabilistic) polynomial-time. Speci�cally, in case S 2 NP ,the auxiliary input maybe an NP-proof that the common input is in the set. Still, even inthis case the interactive proof need not consist of the prover sending the auxiliary input tothe veri�er; for example, an alternative procedure may allow the prover to be zero-knowledge(see Construction 10).This interpretation is adequate and in fact crucial for applications in which such an auxiliaryinput is available to the otherwise polynomial-time parties. Typically, such auxiliary inputis available in cryptographic applications in which parties wish to prove in (zero-knowledge)that they have correctly conducted some computation. In these cases the NP-proof is justthe transcript of the computation by which the claimed result has been generated, and thusthe auxiliary input is available to the proving party.2. A prover is considered relatively e�cient if it can be implemented by a probabilistic polynomial-time oracle machine with oracle access to the set S itself. (Note that the prover in Construc-tion 3 has this property.)This interpretation generalizes the notion of self-reducibility of NP-sets. (Recall that byself-reducibility of an NP-set we mean that the search problem of �nding an NP-witness ispolynomial-time reducible to deciding membership in the set.)15

3. A prover is considered relatively e�cient if it can be implemented by a probabilistic machinethat runs in time that is polynomial in the deterministic complexity of the set. This inter-pretation relates the di�culty of convincing a \lazy veri�er" to the complexity of �nding thetruth alone.Hence, in contrast to the �rst interpretation, which is adequate in settings where assertionsare generated along with their NP-proofs, the current interpretation is adequate in settingsin which the prover is given only the assertion and has to �nd a proof to it by itself (beforetrying to convince a lazy veri�er of its validity).1.4.2 Computational-soundnessRelaxing the soundness condition such that it only refers to relatively-e�cient ways of trying tofool the veri�er (rather than to all possible ways) yields a fundamentally di�erent notion of a proofsystem. Assertions proven in such a system are not necessarily correct; they are correct only if thepotential cheating prover does not exceed the presumed complexity limits. As in x1.4.1, the notionof \relative e�ciency" can be given di�erent interpretations, the most popular one being that thecheating prover strategy can be described by a (non-uniform) family of polynomial-size circuits.The latter interpretation coincides with the �rst interpretation used in x1.4.1 (i.e., a probabilisticpolynomial-time strategy that is given an auxiliary input (of polynomial length)). Speci�cally, thesoundness condition is replaced by the following computational soundness condition that asserts thatit is infeasible to fool the veri�er into accepting false statements:For every prover strategy that is implementable by a family of polynomial-size circuitsfCng, and every su�ciently long x 2 f0; 1g� nS, the probability that V accepts x wheninteracting with Cjxj is less than 1=2.As in case of standard soundness, the computational-soundness error can be reduced by repetitions.We warn, however, that unlike in the case of standard soundness (where both sequential andparallel repetitions will do), the computational-soundness error cannot always be reduced by parallelrepetitions.It is common and natural to consider proof systems in which the prover strategies consideredboth in the completeness and soundness conditions satisfy the same notion of relative e�ciency.Protocols that satisfy these conditions with respect to the aforementioned interpretation are calledarguments. We mention that argument systems may be more e�cient (e.g., in terms of theircommunication complexity) than interactive proof systems.2 Zero-Knowledge Proof SystemsZero-Knowledge proofs are fascinating and extremely useful constructs. Their fascinating nature isdue to their seemingly contradictory de�nition: zero-knowledge proofs are both convincing and yetyield nothing beyond the validity of the assertion being proven. Their applicability in the domainof cryptography is vast; they are typically used to force malicious parties to behave according to apredetermined protocol. In addition to their direct applicability in Cryptography, zero-knowledgeproofs serve as a good bench-mark for the study of various problems regarding cryptographicprotocols. In this section we focus on the conceptual contents of zero-knowledge and refer thereader that is intertested in their cryptographic applications to [22, 23].16

X

?
!

?
!

 !

??
X is true!

Figure 1: Zero-knowledge proofs { an illustration.Turning back to the conceptual angle, we highlight the fact that standard proofs are believedto yield knowledge and not merely establish the validity of the assertion being proven. Indeed, it iscommonly believed that (good) proofs provide a deeper understanding of the theorem being proved.At the technical level, an NP-proof of membership in some set S 2 NP n P yields something (i.e.,the NP-proof itself) that is typically hard to compute (even when assuming that the input is inS). For example, a 3-coloring of a graph is an NP-proof that the graph is 3-colorable, but it yieldsinformation (i.e., the coloring) that is infeasible to compute (when given an arbitrary 3-colorablegraph). In contrast to such NP-proofs, which seem to yield a lot of knowledge, zero-knowledgeproofs yield no knowledge at all; that is, the latter exhibit an extreme contrast between beingconvincing (of the validity of a statement) and teaching anything on top of the validity of thestatement.Teaching note: We believe that the treatment of zero-knowledge proofs provided inthis section su�ces for the purpose of a course in complexity theory. For an extensivetreatment of (computational) zero-knowledge proofs, the interested reader is referredto [22, Chap. 4].2.1 De�nitional IssuesLoosely speaking, zero-knowledge proofs are proofs that yield nothing beyond the validity of theassertion; that is, a veri�er obtaining such a proof only gains conviction in the validity of theassertion. This is formulated by saying that anything that can be feasibly obtained from a zero-knowledge proof is also feasibly computable from the (valid) assertion itself. The latter formulationfollows the simulation paradigm, which is discussed next.2.1.1 A wider perspective: the simulation paradigmIn de�ning zero-knowledge proofs, we view the veri�er as a potential adversary that tries to gainknowledge from the (prescribed) prover.9 We wish to state that no (feasible) adversary strategy forthe veri�er can gain anything from the prover (beyond conviction in the validity of the assertion).Let us consider the desired formulation from a wide perspective.9Recall that when de�ning a proof system (e.g., an interactive proof system), we view the prover as a potentialadversary that tries to fool the (prescribed) veri�er (into accepting invalid assertions).17

A key question regarding the modeling of security concerns is how to express the intuitive re-quirement that an adversary \gains nothing substantial" by deviating from the prescribed behaviorof an honest user. Our approach is that the adversary gains nothing if whatever it can obtain byunrestricted adversarial behavior can be obtained within essentially the same computational e�ortby a benign behavior. The de�nition of the \benign behavior" captures what we want to achievein terms of security, and is speci�c to the security concern to be addressed. For example, in theprevious paragraph, we said that a proof is zero-knowledge if it yields nothing beyond the validityof the assertion (i.e., the benign behavior is any computation that is based (only) on the assertionitself, while assuming that the latter is valid). Thus, in a zero-knowledge proof no feasible adversar-ial strategy for the veri�er can obtain more than a \benign veri�er" (which believes the assertion)can obtain from the assertion itself. We comment that the simulation paradigm is pivotal to manyde�nitions in cryptography (e.g., it underlies the de�nition of security of encryption schemes andcryptographic protocols); for further details see [22].2.1.2 The basic de�nitionsZero-knowledge is a property of some prover strategies. More generally, zero-knowledge is a propertyof some interactive machines. Fixing an interactive machine (e.g., a prescribed prover), we considerwhat can be gained (i.e., computed) by an arbitrary feasible adversary (e.g., a veri�er) that interactswith the aforementined �xed machine on a common input taken from a predetermined set (in ourcase the set of valid assertions). This gain is compared against what can be computed by an arbitraryfeasible algorithm (called a simulator) that is only given the input itself. The �xed machine is zero-knowledge if the \computational power" of these two (fundamentally di�erent settings) is essentiallyequivalent. Details follow.The formulation of the zero-knowledge condition considers two ensembles of probability distri-butions, each ensemble associates a probability distribution to each valid assertion. Speci�cally, inthe case of interactive proofs, the �rst ensemble represents the output distribution of the veri�erafter interacting with the speci�ed prover strategy P , where the veri�er is employing an arbitrarye�cient strategy (not necessarily the speci�ed one). The second ensemble represents the outputdistribution of some probabilistic polynomial-time algorithm (which does not interact with anyone).The basic paradigm of zero-knowledge asserts that for every ensemble of the �rst type there exista \similar" ensemble of the second type. The speci�c variants di�er by the interpretation given tothe notion of similarity. The most strict interpretation, leading to perfect zero-knowledge, is thatsimilarity means equality.De�nition 7 (perfect zero-knowledge, over-simpli�ed):10 A prover strategy, P , is said to be perfectzero-knowledge over a set S if for every probabilistic polynomial-time veri�er strategy, V �, thereexists a probabilistic polynomial-time algorithm, M�, such that(P; V �)(x) �M�(x) ; for every x 2 Swhere (P; V �)(x) is a random variable representing the output of veri�er V � after interacting withthe prover P on common input x, and M�(x) is a random variable representing the output ofmachine M� on input x.We comment that any set in coRP has a perfect zero-knowledge proof system in which the proverkeeps silence and the veri�er decides by itself. The same holds for BPP provided that we relax10In the actual de�nition one either allows M� to run for expected polynomial-time or allows M� to have no outputwith probability at most 1=2. The latter alternative implies the former, but the converse is not known to hold.18

the de�nition of interactive proof system to allow two-sided error. Needless to say, our focus is onnon-trivial proof systems; that is, proof systems for sets outside of BPP .A somewhat more relaxed interpretation (of the notion of similarity), leading to almost-perfectzero-knowledge (a.k.a statistical zero-knowledge), is that similarity means statistical closeness (i.e.,negligible di�erence between the ensembles). The most liberal interpretation, leading to the stan-dard usage of the term zero-knowledge (and sometimes referred to as computational zero-knowledge),is that similarity means computational indistinguishability (i.e., failure of any e�cient procedureto tell the two ensembles apart). Combining the foregoing discussion with the relevant de�nitionof computational indistinguishability, we obtain the following de�nition.De�nition 8 (zero-knowledge, somewhat simpli�ed): A prover strategy, P , is said to be zero-knowledge over a set S if for every probabilistic polynomial-time veri�er strategy, V �, there existsa probabilistic polynomial-time simulator, M�, such that for every probabilistic polynomial-timedistinguisher, D, it holds thatd(n) def= maxx2S\f0;1gnfjPr[D(x; (P; V �)(x))=1] � Pr[D(x;M�(x))=1]jgis a negligible function.11 We denote by ZK the class of sets having zero-knowledge interactiveproof systems.De�nition 8 is a simpli�ed version of the actual de�nition. Speci�cally, in order to guarantee thatzero-knowledge is preserved under sequential composition it is necessary to slightly augment thede�nition (by providing V � and M� with the same arbitrary auxiliary input of poly(jxj) length).For details see [22, Sec. 4.3.3-4]. Other de�nitional issues and related notions are discussed in [22,Chap. 4].On the role of randomness and interaction. It can be shown that only sets in BPP havezero-knowledge proofs in which the veri�er is deterministic. The same holds for deterministicprovers, provided we consider \auxiliary-input" zero-knowledge (as in [22, Sec. 4.3.3]). It can alsobe shown that only sets in BPP have zero-knowledge proofs in which a single message is sent.Thus, both randomness and interaction are essential to the non-triviality of zero-knowledge proofsystems. (For details, see [22, Sec. 4.5.1].)Advanced Comment: Knowledge Complexity. Zero-knowledge is the lowest level of aknowledge-complexity hierarchy that quanti�es the \knowledge revealed in an interaction." Specif-ically, the knowledge complexity of an interactive proof system may be de�ned as the minimumnumber of oracle-queries required in order to e�ciently simulate an interaction with the prover.(See [21, Sec. 2.3.1] for references.)2.2 The Power of Zero-KnowledgeWhen faced with a de�nition as complex (and seemingly self-contradictory) as the de�nition of zero-knowledge, one should indeed wonder whether the de�nition can be met (in a non-trivial manner).12It turns out that the existence of non-trivial zero-knowledge proofs is related to the existence of11That is, d vanishes faster that the reciprocal of any positive polynomial (i.e., for every positive polynomial p andfor su�ciently large n, it holds that d(n) < 1=p(n)).12Note that any set in BPP has a trivial zero-knowledge (two-sided) proof system in which the veri�er justdetermines membership by itself. 19

intractable problems in NP . In particular, we will show that if one-way functions exist then everyNP-set has a zero-knowledge proof system. (For the converse, see [22, Sec. 4.5.2] or [39].) We �rstdemonstrate the scope of zero-knowledge by a presenting a simple (perfect) zero-knowledge proofsystem for a speci�c NP-set that is not known to be in BPP . In this case we make no intractabilityassumptions, but the result is signi�cant only if NP is not contained in BPP .2.2.1 A simple exampleA story not found in the Odyssey refers to the not so famous Labyrinth of the Island ofAeaea. The Sorceress Circe, daughter of Helius, challenged godlike Odysseus to traversethe Labyrinth from its North Gate to its South Gate. Canny Odysseus doubted whethersuch a path existed at all and asked beautiful Circe for a proof, to which she repliedthat if she showed him a path this would trivialize for him the challenge of traversingthe Labyrinth. \Not necessarily," clever Odysseus replied, \you can use your magic totransport me to a random place in the labyrinth, and then guide me by a random walkto a gate of my choice. If we repeat this enough times then I'll be convinced that thereis a labyrinth-path between the two gates, while you will not reveal to me such a path."\Indeed," wise Circe thought to herself, \showing this mortal a random path from arandom location in the labyrinth to the gate he chooses will not teach him more thanhis taking a random walk from that gate."The foregoing story illustrates the main idea underlying the zero-knowledge proof for Graph Isomor-phism presented next. Recall that the set of pairs of isomorphic graphs is not known to be in BPP ,and thus the straightforward NP-proof system (in which the prover just suplies the isomorphism)may not be zero-knowledge. Furthermore, assuming that Graph Isomorphism is not in BPP , thisset has no zero-knowledge NP-proofs of membership, but as we shall see it has zero-knowledgeinteractive proofs.Construction 9 (zero-knowledge proof for Graph Isomorphism):� Common Input: A pair of graphs, G1=(V1; E1) and G2=(V2; E2). Let � be an isomorphismbetween the input graphs; namely, � is a 1-1 and onto mapping of the vertex set V1 to thevertex set V2 such that fu; vg 2 E1 if and only if f�(v); �(u)g 2 E2.� Prover's �rst Step (P1): The prover selects a random isomorphic copy of G2, and sends itto the veri�er. Namely, the prover selects at random, with uniform probability distribution,a permutation � from the set of permutations over the vertex set V2, and constructs a graphwith vertex set V2 and edge setE def= ff�(u); �(v)g : fu; vg2E2g :The prover sends (V2; E) to the veri�er.� Motivating Remark: If the input graphs are isomorphic, as the prover claims, then the graphsent in Step P1 is isomorphic to both input graphs. However, if the input graphs are notisomorphic then no graph can be isomorphic to both of them.� Veri�er's �rst Step (V1): Upon receiving a graph, G0 = (V 0; E0), from the prover, the veri�erasks the prover to show an isomorphism between G0 and one of the input graphs, chosen atrandom by the veri�er. Namely, the veri�er uniformly selects � 2 f1; 2g, and sends it to theprover (who is supposed to answer with an isomorphism between G� and G0).20

� Prover's second Step (P2): If the message, �, received from the veri�er equals 2 then theprover sends � to the veri�er. Otherwise (i.e., � 6= 2), the prover sends � � � (i.e., thecomposition of � on �, de�ned as � � �(v) def= �(�(v))) to the veri�er.(Indeed, the prover treats any � 6= 2 as � = 1. In the analysis we shall assume, without lossof generality, that � 2 f1; 2g always holds.)� Veri�er's second Step (V2): If the message, denoted , received from the prover is an isomor-phism between G� and G0 then the veri�er outputs 1, otherwise it outputs 0.The veri�er strategy in Construction 9 is easily implemented in probabilistic polynomial-time. Incase the prover is given an isomorphism between the input graphs as auxiliary input, also theprover's program can be implemented in probabilistic polynomial-time. The motivating remarkjusti�es the claim that Construction 9 constitutes an interactive proof system for the set of pairs ofisomorphic graphs. As for the zero-knowledge property, consider �rst the special case in which theveri�er actually follows the prescribed strategy (and selects � at random, and in particular oblivi-ously of the graph G0 it receives). The view of this veri�er can be easily simulated by selecting �and at random, constructing G0 as a random isomorphic copy of G� (via the isomorphism), andoutputting the triplet (G0; �;). Indeed (even in this case), the simulator behaves di�erently fromthe prescribed prover (which selects G0 as a random isomorphic copy of G2, via the isomorphism�), but its output distribution is identical to the veri�er's view in the real interaction. However,the forgoing description assumes that the veri�er follows the prescribed strategy, while in generalthe veri�er may select � depending on the graph G0. Thus, a slightly more complicated simulation(described next) is required.A general clari�cation may be in place. Recall that we wish to simulate the interaction of anarbitrary veri�er strategy with the prescribed prover, and so the simulator must depend on theveri�er strategy. Indeed, we shall describe the simulator while referring to such a generic veri�erstrategy. Formally this means that the simulator's program incorporates the aforementioned veri�erstrategy. (Actually, the following simulator uses the generic veri�er strategy as a subroutine.)Turning back to the speci�c protocol of Construction 9, the basic idea is that simulator triesto guess � and can complete a simulation if its guess turns out to be correct. Speci�cally, thesimulator selects � 2 f1; 2g uniformly (hoping that the veri�er selects � = �), and constructs G0by randomly permuting G� (and thus being able to present an isomorphism between G� and G0).Recall that the simulator is analyzed only on yes-instances (i.e., the input graphs G1 and G2 areisomorphic). The point is that if G1 and G2 are isomorphic, then the graph G0 does not yield anyinformation regarding the simulator's guess (i.e., �), and thus this guess is correct with probability1=2. (Indeed, this is analogous to the analysis of the soundness of Construction 3.) If the guess iscorrect then the simulator can produce an output that has the correct distribution, otherwise theentire process is repeated.Useful conventions. We wish to highlight three conventions that were either used (implicitly)in the foregoing analysis or can be used to simplify the description of (this and/or) other zero-knowledge simulators.1. Without loss of generality, we may assume that the cheating veri�er strategy is implementedby a deterministic polynomial-size circuit (or, equivalently, by a polynomial-time algorithmwith an auxiliary input).1313This observation is not crucial, but it does simplify the analysis (by eliminating the need to specify a sequenceof coin tosses in each invocation of the veri�er's strategy).21

This is justi�ed by �xing any outcome of the veri�er's coins, and observing that our (uniform)simulation of the various (residual) deterministic strategies yields a simulation of the originalprobabilistic strategy.2. Without loss of generality, it su�ces to consider cheating veri�ers that (only) output theirview of the interaction (i.e., the common input, their internal coin tosses, and messages thatthey received). In other words, it su�ces to simulate the view of that cheating veri�ers haveof the real interaction.This is justi�ed by noting that the �nal output of any veri�er can be obtained from itsview of the interaction, where the complexity of the transformation is upper-bounded by thecomplexity of the veri�er's strategy.3. Without loss of generality, it su�ces to construct a \weak simulator" that produces outputwith some noticeable14 probability such that whenever an output is produced it is distributed\correctly" (i.e., similarly to the distribution occuring in real interactions with the prescribedprover).This is justi�ed by repeatedly invoking such a weak simulator (polynomially) many times andusing the �rst output produced by any of these invocations. Note that by using an adequatenumber of invocations, we fail to produce an output with negligible probability. (Alterna-tively, we always produce an output after an expected polynomial number of invocations.)Furthermore, note that a simulator that fails to produce output with negligible probabilitycan be converted to a simulator that always produces an output, while incurring a negligiblestatistic deviation in the output distribution.2.2.2 The full power of zero-knowledge proofsThe forgoing zero-knowledge proof system refers to one NP-set that is not known to be in BPP . Itturns out that, under reasonable assumptions, zero-knowledge can be used to prove membership inany NP-set. Intuitively, it su�ces to establish this fact for a single NP-complete set, and thus wefocus on presenting a zero-knowledge proof system for the set of 3-colorable graphs. Note that it iseasy to prove that a given graph G is 3-colorable by just presenting a 3-coloring of G (and the sameholds for membership in any set in NP), but this NP-proof is not a zero-knowledge proof (unlessP = NP). In fact, assuming P 6= NP , graph 3-colorability has no zero-knowledge NP-proofs, butas we shall see it has zero-knowledg interactive proofs. This interactive proof will be describedwhile referring to \boxes" in which information can be hidden and later revealed. Such boxes canbe implemented using one-way functions (see below).Construction 10 (Zero-knowledge proof of 3-colorability, abstract description): The descriptionrefers to abstract non-transparent boxes that can be perfectly locked and unlocked such that theseboxes perfectly hide their contents while being locked.� Common Input: A simple graph G=(V;E).� Prover's �rst step: Let be a 3-coloring of G. The prover selects a random permutation, �,over f1; 2; 3g, and sets �(v) def= �((v)), for each v 2 V . Hence, the prover forms a randomrelabeling of the 3-coloring . The prover sends the veri�er a sequence of jV j locked andnon-transparent boxes such that the vth box contains the value �(v).14Recall that a probability is called noticeable if it is greater than the reciprocal of some positive polynomial (inthe relevant parameter). 22

� Veri�er's �rst step: The veri�er uniformly selects an edge fu; vg 2 E, and sends it to theprover.� Motivating Remark: The boxes are supposed to contain a 3-coloring of the graph, and theveri�er asks to inspect the colors of vertices u and v. Indeed, for the zero-knowledge condition,it is crucial that the prover only responds to pairs that correspond to edges of the graph.� Prover's second step: Upon receiving an edge fu; vg 2 E, the prover sends to the veri�er thekeys to boxes u and v.For simplicity of the analysis, if the veri�er sends fu; vg 62 E then the prover behaves as ifit has received a �xed (or random) edge in E, rather than suspending the interaction, whichwould have been the natural thing to do.� Veri�er's second step: The veri�er unlocks and opens boxes u and v, and accepts if and onlyif they contain two di�erent elements in f1; 2; 3g.The veri�er strategy in Construction 10 is easily implemented in probabilistic polynomial-time.The same holds with respect to the prover's strategy, provided that it is given a 3-coloring of G asauxiliary input. Clearly, if the input graph is 3-colorable then the ver�er accepts with probability 1when interacting with the prescribed prover. On the other hand, if the input graph is not 3-colorable, then any contents put in the boxes must be invalid on at least one edge, and consequentlythe veri�er will reject with probability at least 1jEj . Hence, the foregoing protocol exhibits a non-negligible gap in the accepting probabilities between the case of 3-colorable graphs and the case ofnon-3-colorable graphs. To increase the gap, the game may be repeated su�ciently many times (ofcourse, using independent coin tosses in each repetition).In the abstract setting of Construction 10, the zero-knowledge property follows easily, becauseone can simulate the real interaction by placing a random pair of di�erent colors in the boxes indi-cated by the veri�er. This indeed demonstrates that the veri�er learns nothing from the interaction,because it expects to see a random pair of di�erent colors (and indeed this is what it sees). Notethat the aforementioned expectation relies on the fact that the boxes correspond to vertices thatare connected by an edge.This simple demonstration of the zero-knowledge property is not possible in the digital imple-mentation (discussed next), because the boxes are not totally una�ected by their contents (but arerather e�ected, yet in an indistinguishable manner). Instead, we simulate the interaction as follows.We �rst guess (at random) which pair of boxes (rorresponding to an edge) the veri�er would askto open, and place a random pair of distinct colors in these boxes (and garbage in the rest).15 Wehand all boxes to the veri�er. In case the veri�er asks for the chosen pair (i.e., the one we guessed),we can complete the simulation. Otherwise, we try again (with a new random guess). Thus, itsu�ces to use boxes that hide their contents almost perfectly (rather than being perfectly opaque).Such boxes can be implemented digitally.Teaching note: Indeed, we recommend presenting and analyzing in class only the fore-going abstract protocol. It su�ces to brie
y comment about the digital implementation,rather than presenting a formal proof of Theorem 11 (which can be found in [24] (or [22,Sec. 4.4])).15An alternative (and more e�cient) simulation consists of putting random independent colors in the variousboxes, hoping that the veri�er asks for an edge that is properly colored. The latter event occurs with probability(approximately) 2=3, provided that the boxes hide their contents (almost) perfectly.23

Digital implementation. We implement the abstract boxes (referred to in Construction 10) byusing (adequately de�ned) commitment schemes. Loosely speaking, such a scheme is a two-phasegame between a sender and a receiver such that after the �rst phase the sender is \committed" toa value and yet, at this stage, it is infeasible for the receiver to �nd out the committed value (i.e.,the commitment is \hiding"). The committed value will be revealed to the receiver in the secondphase and it is guaranteed that the sender cannot reveal a value other than the one committed(i.e., the commitment is \binding"). Such commitment schemes can be implemented assuming theexistence of (nonuniform) one-way functions.Zero-knowledge proofs for other NP-sets. Using the fact that 3-colorability is NP-complete,one gets zero-knowledge proofs for any NP-set.16 Furthermore, NP-witnesses can be e�cientlytransformed into polynomial-size circuits that implement the corresponding (presecribed zero-knowledge) prover strategies.Theorem 11 (The ZK Theorem): Assuming the existence of one-way functions, any NP-proof canbe e�ciently transformed into a (computational) zero-knowledge interactive proof. In particular,NP � ZK.The hypothesis (regarding the existence of one-way functions) in Theorem 11 seems unavoidable,because the existence of zero-knowledge proofs for \hard on the average" problems implies theexistence of one-way functions (and, likewise, the existence of zero-knowledge proofs for sets outsideBPP implies the existence of \auxiliary-input one-way functions"). Theorem 11 has a dramatice�ect on the design of cryptographic protocols (see [22, 23]). In a di�erent vein we mention that,under the same assumption, any interactive proof can be transformed into a zero-knowledge one.(This transformation, however, is not e�cient.)Theorem 12 (The ultimate ZK Theorem): Assuming the existence of one-way functions, IP =ZK.Loosely speaking, Theorem 12 can be proved by recalling that IP = AM(poly) and modifying anypublic-coin protocol as follows: the modi�ed prover sends commitments to its messages rather thanthe messages themselves, and once the original interaction is completed it proves (in zero-knowledge)that the corresponding transcript would have been accepted by the original veri�er. Indeed, thelatter assertion is of the \NP type", and thus the zero-knowledge proof system guaranteed inTheorem 11 can be invoked to prove it.Re
ection. The proof of Theorem 11 uses the fact that 3-colorability is NP-complete in order toobtain a zero-knowledge proofs for any set in NP by using such a protocol for 3-colorability (i.e.,Construction 10). Thus, an NP-completeness result is used here in a \positive" way; that is, inorder to construct something rather than in order to derive a hardness result. This was probably the�rst positive application of NP-completeness. Subsequent positive uses of completeness results haveappeared in the context of interactive proofs [33, 37], probabilistically checkable proofs [5, 18, 2, 1],and \hardness versus randomness trade-o�s".16Actually, we should either rely on the fact that the standard Karp-reductions are invertible in polynomial timeor on the fact that the 3-colorability protocol is actually zero-knowledge with respect to auxiliary inputs (as in [22,Sec. 4.3.3]). 24

Perfect and Statistical Zero-Knowledge. The foregoing results may be contrasted with theresults regarding the complexity of statistical zero-knowledge proof systems: Statistical zero-knowledge proof systems exist only for sets in IP(2) \ coIP(2), and thus are unlikely to existfor all NP-sets. On the other hand, the class Statistical Zero-Knowledge is known to contain somehard problems, and turns out to have interesting complexity theoretic properties (e.g., being closedunder complementation, and having very natural complete problems). The interested reader isreferred to [38].2.3 Proofs of Knowledge { a parenthetical subsectionTeaching note: Technically speaking, this topic belongs to Section 1, but the moreinteresting examples of proof of knowledge are ones that are zero-knowledge.Loosely speaking, \proofs of knowledge" are interactive proofs in which the prover asserts \knowl-edge" of some object (e.g., a 3-coloring of a graph), and not merely its existence (e.g., the existenceof a 3-coloring of the graph, which in turn is equivalent to the assertion that the graph is 3-colorable).What do we mean by saying that a machine knows something? Any standard dictionarysuggests several meanings for the verb to know, but these are typically phrased with reference tothe notion of awareness, a notion which is certainly inapplicable in the context of machines. Instead,we should look for a behavioristic interpretation of the verb to know. Indeed, it is reasonable to linkknowledge with the ability to do something (e.g., the ability to write down whatever one knows).Hence, we will say that a machine knows a string � if it can output the string �. But this seemsas total non-sense too: a machine has a well de�ned output { either the output equals � or it doesnot. So what can be meant by saying that a machine can do something? Loosely speaking, it maymean that the machine can be easily modi�ed so that it does whatever is claimed. More precisely,it may mean that there exists an e�cient machine that, using the original machine as a black-box(or given its code as an input), outputs whatever is claimed.So much for de�ning the knowledge of machines. Yet, whatever a machine knows or does notknow is its own business. What can be of interest and reference to the outside is whatever canbe deduced about the knowledge of a machine by interacting with it. Hence, we are interested inproofs of knowledge (rather than in mere knowledge).For sake of simplicity let us consider a concrete question: how can a machine prove that itknows a 3-coloring of a graph? An obvious way is just sending the 3-coloring to the veri�er. Yet,we claim that applying the protocol in Construction 10 (i.e., the zero-knowledge proof system for3-Colorability) is an alternative way of proving knowledge of a 3-coloring of the graph.The de�nition of a veri�er of knowledge of 3-coloring refers to any possible prover strategy andlinks the ability to \extract" a 3-coloring (of a given graph) from such a prover to the probabil-ity that this prover convinces the veri�er. That is, the de�nition postulates the existence of ane�cient universal way of \extracting" a 3-coloring of a given graph by using any prover strategythat convinces this veri�er to accept this graph with probability 1 (or, more generally, with somenoticeable probability). On the other hand, we should no expect this extrator to obtain much fromprover strategies that fail to convince the veri�er (or, more generally, convince it with negligibleprobability). A robust de�nition should allow a smooth transition between these two extremes(and in particular between provers that convince the veri�er with noticeable probability and thosethat convince it with negligible probability). Such a de�nition should also support the intuitionby which the following strategy of Alice is zero-knowledge: Alice sends Bob a 3-coloring of a givengraph provided that Bob has successfully proved to her that he knows such a coloring. We stress that25

the zero-knowledge property of Alice's strategy should hold regardless of the proof-of-knowledgesystem used for proving Bob's knowledge of a 3-coloring.Loosely speaking, we say that an interactive machine, V , constitutes a veri�er for knowledge of3-coloring if, for any prover strategy P , the complexity of extracting a 3-coloring of G when usingmachine P as a \black box"17 is inversely proportional to the probability that V is convinced byP (to accept the graph G). Namely, the extraction of the 3-coloring is done by an oracle machine,called an extractor, that is given access to a function specifying the behavior P (i.e., the messagesit sends in response to particular messages it may receive). We require that the (expected) runningtime of the extractor, on input G and access to an oracle specifying P 's messages, be inverselyrelated (by a factor polynomial in jGj) to the probability that P convinces V to accept G. Inparticular, if P always convinces V to accept G, then the extractor runs in expected polynomial-time. The same holds in case P convinces V to accept with noticeable probability. On the otherhand, if P never convinces V to accept, then nothing is required of the extractor. We stress thatthe latter special cases do not su�ce for a satisfactory de�nition; see discussion in [22, Sec. 4.7.1].Proofs of knowledge, and in particular zero-knowledge proofs of knowledge, have many appli-cations to the design of cryptographic schemes and cryptographic protocols. These are enabled bythe following general result.Theorem 13 (Theorem 11, revisited): Assuming the existence of one-way functions, any NP-relation has a zero-knowledge proof of knowledge (of corresponding NP-witnesses). Furthermore,the prescribed prover strategy can be implemented in probabilistic polynomial-time, provided it isgiven such an NP-witness.3 Probabilistically Checkable Proof SystemsTeaching note: Probabilistically checkable proof (PCP) systems may be viewed asa restricted type of interactive proof systems in which the prover is memoryless andresponds to each veri�er message as if it were the �rst such message. This perspectivecreates a tighter link with previous sections, but is somewhat contrived. Indeed, sucha memoryless prover may be viewed as a static object that the veri�er may query atlocations of its choice. But then it is more appealing to present the model using the(more traditional) terminology of oracle machines rather than using (and degenerating)the terminology of interactive machines.Probabilistically checkable proof systems can be viewed as standard (deterministic) proof systemsthat are augmented with a probabilistic procedure capable of evaluating the validity of the assertionby examining few locations in the alleged proof. In fact, we focus on the latter probabilisticprocedure, which is given direct access to the individual bits of the alleged proof (and need notscan it bit-by-bit). Thus, the alleged proof is a string, as in the case of a traditional proof system, butwe are interested in probabilistic veri�cation procedures that access only few locations in the proof,and yet are able to make a meaningful probabilistic verdict regarding the validity of the allegedproof. Speci�cally, the veri�cation procedure should accept any valid proof (with probability 1),but rejects with probability at least 1=2 any alleged proof for a false assertion.The main complexity measure associated with probabilistically checkable proof systems is in-deed their query complexity. Another complexity measure of natural concern is the length of the17Indeed, one may consider also non-black-box extractors.26

proofs being employed, which in turn is related to the randomness complexity of the system. Therandomness complexity of PCPs plays a key role in numerous applications (e.g., in composing PCPsystems as well as when applying PCP systems to derive inapproximability results), and thus wespecify this parameter rather than the proof length.Teaching note: Indeed, PCP systems are most famous for their role in deriving numer-ous inapproximation results (see Section 3.3), but our view is that the latter is merelyone extremely important application of the fundamental notion of a PCP system. Ourpresentation is organized accordingly.3.1 De�nitionLoosely speaking, a probabilistically checkable proof system consists of a probabilistic polynomial-time veri�er having access to an oracle that represents an alleged proof (in redundant form).Typically, the veri�er accesses only few of the oracle bits, and these bit positions are determined bythe outcome of the veri�er's coin tosses. As in the case of interactive proof systems, it is requiredthat if the assertion holds then the veri�er always accepts (i.e., when given access to an adequateoracle); whereas, if the assertion is false then the veri�er must reject with probability at least 12 ,no matter which oracle is used. The basic de�nition of the PCP setting is given in Item (1) below.Yet, the complexity measures introduced in Item (2) are of key importance for the subsequentdiscussions.De�nition 14 (Probabilistic Checkable Proofs { PCP):1. A probabilistic checkable proof system (PCP) for a set S is a probabilistic polynomial-time oraclemachine, called veri�er and denoted V , that satis�es the following two conditions:� Completeness: For every x 2 S there exists an oracle �x such that, on input x and accessto oracle �x, machine V always accepts x.� Soundness: For every x 62 S and every oracle �, on input x and access to oracle �,machine V rejects x with probability at least 12 .2. We say that a probabilistic checkable proof system has query complexity q :N!N if, on anyinput of length n, the veri�er makes at most q(n) oracle queries.18 Similarly, the randomnesscomplexity r : N ! N upper-bounds the number of coin tosses performed by the veri�er on ageneric n-bit long input.For integer functions r and q, we denote by PCP(r; q) the class of sets having probabilisticcheckable proof systems of randomness complexity r and query complexity q. For sets ofinteger functions, R and Q, PCP(R;Q) def= [r2R ; q2QPCP(r; q) :We note that the oracle �x referred to in the completeness condition a PCP system constitutes aproof in the standard mathematical sense (with respect to a veri�cation procedure that examinesall possible outcomes of V 's internal coin tosses). Furthermore, the oracles in PCP systems oflogarithmic randomness complexity constitute NP-proofs. However, these oracles have the extra18As usual in complexity theory, the oracle answers are always binary (i.e., either 0 or 1).27

remarkable property of enabling a lazy veri�er to toss coins, take its chances and \assess" thevalidity of the proof without reading all of it (but rather by reading a tiny portion of it). Potentially,this allows the veri�er to utilize very long proofs (i.e., of super-polynomial length) or alternativelyexamine very few bits of an NP-proof.We note that the error probability (in the soundness condition) of PCP systems can be reducedby successive applications of the proof system. In particular, repeating the process for k times,reduces the probability that the veri�er is fooled by a false assertion to 2�k, whereas all complexitiesincrease by at most a factor of k. Thus, PCP systems provide a trade-o� between the number oflocations examined in the proof and the con�dence in the validity of the assertion.Adaptive versus non-adaptive veri�ers. De�nition 14 allows the veri�er to be adaptive; thatis, the veri�er may determine its queries based on the answers it has received to previous queries (inaddition to their dependence on the input and the veri�er's internal coin tosses). In contrast, non-adaptive veri�ers determine all their queries based solely on their input and internal coin tosses. Wecomment that most constructions of PCP systems use non-adaptive veri�ers, and in fact in manysources PCP systems are de�ned as non-adaptive.Randomness versus proof length. Note that the \e�ective" length of proofs for any PCPsystem is related to its query and randomness complexities, where the e�ective length means thenumber of locations in a generic proof-oracle that may be examined on a �xed input and anypossible sequence of internal coin tosses. Speci�cally, if the PCP system has query complexity qand randomness complexity r then its e�ective proof length is upper-bounded by 2q+r, whereas abound of 2r � q holds for non-adaptive systems (see Exercise 30). On the other hand, in some sense,the randomness complexity of a PCP can be upper-bounded by the logarithm of the length of theproofs employed (provided we allow non-uniform veri�ers; see Exercise 32).On the role of randomness. The PCP Theorem (i.e., NP = PCP(log; O(1))) exhibits a trade-o� between the number of bits examined in the alleged proof and the con�dence in the validityof the assertion. We note that such a trade-o� is impossible if one requires the veri�er to bedeterministic. This is due to the fact that every set in PCP(r; q) has an NP-proof system thatemploys proofs of length 2rq (see Exercise 31). Thus, PCP(r; q) � Dtime(22rq � poly), and, inparticular, PCP(0; log) = P. Furthermore, since it is unlikely that all NP-sets have NP-proofsystems that employs proofs of (say) linear length, it follows that PCP(r; q) is unlikely to containNP for 2r(n)q(n) � n (or for any other �xed polynomial that bounds 2rq). Actually, P 6= NPimplies that NP is not contained in PCP(o(log); o(log)) (see Exercise 34).3.2 The Power of Probabilistically Checkable ProofsThe celebrated PCP Theorem asserts that NP = PCP(log; O(1)), and this result is indeed thefocus of the current section. But before getting to it we make several simple observation regardingthe PCP Hierarchy.We �rst note that PCP(poly; 0) equals coRP , whereas PCP(0; poly) equals NP . It is easy toprove an upper bound on the non-deterministic time complexity of sets in the PCP hierarchy (seeExercise 31):Proposition 15 (upper-bounds on the power of PCPs): For every polynomially bounded integerfunction r, it holds that PCP(r; poly) � Ntime(2r � poly). In particular, PCP(log; poly) � NP.28

The focus on PCP systems of logarithmic randomness complexity re
ects an interest in PCP systemsthat utilize proof oracles of polynomial length (see discussion in Section 3.1). We stress that suchPCP systems (i.e., PCP(log; q)) are NP-proof systems with a (potentially amazing) extra property:the validity of the assertion can be \probabilistically evaluated" by examining a (small) portion(i.e., q(n) bits) of the proof. Thus, for any �xed polynomially bounded function q, a result of theform NP � PCP(log; q) (5)is interesting (because it applies also to NP-sets having witnesses of length exceeding q), and thesmaller q { the better. The PCP Theorem asserts the amazing fact by which q can be made aconstant.Theorem 16 (The PCP Theorem): NP � PCP(log; O(1)).Thus, probabilistically checkable proofs in which the veri�er tosses only logarithmically many coinsand makes only a constant number of queries exist for every set in NP . Furthermore, the proof ofTheorem 16 is constructive in the sense that it allows to e�ciently transform any NP-witness (foran instance of a set in NP) into an oracle that makes the PCP veri�er accept (with probability 1).Thus, NP-proofs can be transformed into NP-proofs that o�er a trade-o� between the portion ofthe proof being read and the con�dence it o�ers. Speci�cally, for every " > 0, if the veri�er is willingto tolerate an error probability of " then it for it examine O(log(1=")) bits of the (transformed)NP-proof. Indeed (as discussed in Section 3.1), these bit locations need to be selected at random.A new characterization of NP: Combining Theorem 16 with Proposition 15 we obtain thefollowing characterization of NP .Corollary 17 (The PCP characterization of NP): NP = PCP(log; O(1)).The proof of the PCP Theorem: Theorem 16 is a culmination of a sequence of remarkableworks, each establishing meaningful and increasingly stronger versions of Eq. (5). A presentationof the full proof of Theorem 16 is beyond the scope of the current work (and is, in our opinion,unsuitable for a basic course in complexity theory). Instead, we present an overview of the originalproof (see x3.2.2) as well as of an alternative proof (see x3.2.3) that was found more than a decadelater. We will start, however, by presenting a weaker result that is used in both proofs of Theorem 16and is also of independent interest. This weaker result (see x3.2.1) asserts that any NP-set has aPCP system with constant query complexity (albeit with polynomial randomness complexity); thatis, NP � PCP(poly; O(1)).Teaching note: In our opinion, presenting in class any part of the proof of the PCPTheorem should be given low priority. In particular, presenting the connections betweenPCP and the complexity of approximation should be given a higher priority. As forrelative priorities among the following three subsections, we recommend giving x3.2.1the highest priority, because it o�ers a direct demonstration of the power of PCPs. Asfor the two alternative proofs of the PCP Theorem itself, our recommendation dependson the intended goal. On one hand, for the purpose of merely giving a taste of the ideasinvolved in the proof, we prefer an overview of the original proof (provided in x3.2.2).On the other hand, for the purpose of actually providing a full proof, we de�nitely preferthe new proof (which is only outlined in x3.2.3).29

3.2.1 Proving that NP � PCP(poly; O(1))The fact that any NP-set has a PCP system with constant query complexity (regardless of itsrandomness complexity) already testi�es to the power of PCP systems. It asserts that probabilisticveri�cation of proofs is possible by inspecting very few locations in a (potentially huge) proof.Indeed, the PCP systems presented next utilize exponentially long proofs, but they do so whileinspecting these proofs at a constant number of (randomly selected) locations.We start with a brief overview of the construction. It su�ces to construct a PCP for provingthe satis�ability of a given system of quadratic equations over GF(2), because this problem is NP-complete.19 The oracle (of this PCP) is supposed to provide the values of all quadratic expressionsevaluated at some assignment to the (say n) variables of the system of quadratic equations (givenas input). This assignment is supposed to satisfy the latter system. We distinguish two tables inthe oracle: The �rst table corresponding to the (2n) linear expressions and the second table tothe (2n2) quadratic expressions. Each table is tested for self-consistency (via a \linearity test"),and the two tables are tested to be consistent with each other (via a \matrix-equality" test, whichutilizes \self-correction"). Each of these tests utilizes a constant number of Boolean queries, andrandomness that is logarithmic in the size of the corresponding table (and is thus O(n2)). Finally,we test (again via self-correction) the value assigned by these tables to an expression obtained bya random linear combination of the system of quadratic equations that is given as input. Detailsfollow.The starting point. We construct a PCP system for the set of satis�able quadratic equationsover GF(2). The input is a sequence of such equations over the variables x1; :::; xn, and the prooforacle consist of two parts (or tables), which are supposed to provide information reagrding somesatisfying assignment � = �1 � � ��n (also viewed as an n-ary vector over GF(2)). The �rst part,T1, is supposed to provide a Hadamard encoding of the said satisfying assignment; that is, entry� 2 GF(2)n in this table is supposed to provide the inner product mod 2 of the n-ary vectors � and� (i.e., T1(�) is supposed to equalPni=1 �i�i). The second part, T2, is supposed to provide all linearcombinations of the values of the �i�j 's; that is, for
 2 GF(2)n2 , the value of T2(
) is supposed toequal Pi;j
i;j�i�j. (Indeed T1 is contained in T2, because �2 = � for any � 2 GF(2).) The PCPveri�er will uses the two tables to check that the input (i.e., a sequence of quadratic equations) issatis�ed by the assignment that is encoded in the two tables. Needless to say, these tables may notbe a valid encoding of any n-ary vector (let alone one that satis�es the input), and so the veri�eralso needs to check that the encoding is (close to being) valid. We will focus on this task �rst.Testing the Hadamard Code. Note that T1 is supposed to encode a linear function; thatis, there must be some � = �1 � � ��n 2 GF(2)n such that T1(�) = Pni=1 �i�i for every � =�1 � � � �n 2 GF(2)n. This can be tested by selecting uniformly �0; �00 2 GF(2)n and checkingwhether T1(�0) + T1(�00) = T1(�0 + �00), where �0 + �00 denotes addition of vectors over GF(2).The analysis of this natural tester turns out to be quite complex. Nevertheless, it is indeed thecase that any table that is 0:01-far from being linear is rejected with probability at least 0:02 (seeExercise 35), where T is "-far from being linear if T disagrees with any linear function f on morethan an " fraction of the domain (i.e., Prr[T (r) = f(r)] > ").By repeating the linearity test for a constant number of times, we may reject each table that is0:01-far from being a codeword of the Hadamard Code with probability at least 0:99. Thus, usinga constant number of queries, the veri�er rejects any T1 that is 0:01-far from being a Hadamard19Here and elsewhere, we denote by GF(2) the 2-element �eld.30

encoding of any � 2 GF(2)n, and likewise rejects any T2 that is 0:01-far from being a Hadamardencoding of any �0 2 GF(2)n2 . We may thus assume that T1 (resp., T2) is 0:01-close to theHadamard encoding of some � (resp., �0). (This does not mean, however, that �0 equals the outerproduce of � with itself.)In the rest of the analysis, we �x � 2 GF(2)n and �0 2 GF(2)n2 , and denote the Hadamardencoding of � (resp., �0) by f� : GF(2)n ! GF(2) (resp., f�0 : GF(2)n2 ! GF(2)). Recall that T1(resp., T2) is 0:01-close to f� (resp., f�0).Self-correction of the Hadamard Code. Suppose that T is "-close to a linear function f (i.e.,Prr[T (r) = f(r)] � "). Then, we can recover the value of f at any desired point x, by makingtwo (random) queries to T . Speci�cally, for a uniformly selected r 2 GF(2)n, we use the valueT (x + r) � T (r). Note that the probability that we recover the correct value is at least 1 � 2",because Prr[T (x+r)�T (r) = f(x+r)�f(r)] � 1�2" and f(x+r)�f(r) = f(x) by linearity of f .(Needless to say, for " < 1=4, the function T cannot be "-close to two di�erent linear functions.)20Thus, assuming that T1 is 0:01-close to f� (resp., T2 is 0:01-close to f�0) we may correctly recover(i.e., with error probability 0:02) the value of f� (resp., f�0) at any desired point by making 2queries to T1 (resp., T2).
α α

A = = f (r) f (s)

srr s

α α
.Figure 2: Detail for testing consistency of linear and quadratic forms.Checking consistency of f� and f�0. Suppose that we are given access to f� : GF(2)n ! GF(2)and f�0 : GF(2)n2 ! GF(2), where f�(�) =Pi �i�i and f�0(�0) =Pi;j �0i;j�0i;j , and that we wish toverify that �0i;j = �i�j for every i; j 2 f1; :::; ng. In other words, we are given a (somewhat weird)encoding of two matrices, A = (�i�j)i;j and A0 = (�0i;j)i;j , and we wish to check whether or notthese matrices are identical. It can be shown (see Exercise 37) that if A 6= A0 then Prr;s[r>As 6=r>A0s] � 1=4, where r and s are random n-ary vectors. Note that, in our case (see Figure 2),r>As = Pj(Pi ri�i�j)sj = f�(r)f�(s) and r>A0s = Pj(Pi ri�0i;j)sj = f�0(rs>), where rs> is theouter-product of s and r, and so (for A 6= A0) we have Prr;s[f�(r)f�(s) 6= f�0(rs>)] � 1=4. Usingself-correction (to obtain the desired value of f�0 on rs>, which is not uniformly distributed inGF(2)n2), we test the consistency of f� and f�0 ; that is, we select uniformly r; s 2 GF(2)n andR 2 GF(2)n2 and check whether or not T1(r)T1(s) = T2(rs> +R)� T2(R).Checking that � satis�es the quadratic system. Suppose that we are given access to f�and f�0 as above (i.e., in particular, �0 = ��> is the outer product of � with itself). A keyobservation is that if � does not satisfy a system of quadratic equations then, with probability1=2, it does not satisfy a random linear combination of these equations. Thus, in order to checkwhether � satis�es the quadratic system, we create a single quadratic equation (by taking sucha random linear combination) and compare the value of the resulting quadratic expression to the20Indeed, this fact follows from the self-correction argument, but a simpler proof merely refers to the fact that theHadamard code has relative distance 1=2. 31

corresponding value, by recovering the value of f�0 at a single point (which corresponds to thequadratic equation). That is, to test whether � satis�es the quadratic equation Q(x) = �, we testwhether f�0(Q) = �. The actual checking is implemented by the veri�er using self-correction (ofthe table T2).To summarize, the veri�er performs a constant number of queries and uses randomness thatis quadratic in the number of variables. If the quadratic system is satis�able (by some �), thenthe veri�er accepts the corresponding tables T1 and T2 (i.e., T1 = f� and T2 = f��>) with prob-ability 1. On the other hand, if the quadratic system is unsatis�able, then any pair of tables(T1; T2) will be rejected with constant probability (by one of the foregoing tests). It follows thatNP � PCP(r;O(1)), where r(n) = O(n2).3.2.2 Overview of the �rst proof of the PCP TheoremThe proof of the PCP Theorem (Theorem 16) is one of the most complicated proofs in the Theoryof Computation. The original proof consists of three main conceptual steps, which we roughlysketch �rst and further discuss later.1. Constructing a (non-adaptive) PCP system for NP having logarithmic randomness and poly-logarithmic query complexity. Furthermore, this proof system has additional properties thatenable proof composition as in Step (3) below.2. Constructing a PCP system for NP having polynomial randomness and constant query com-plexity (indeed as in x3.2.1). This proof system too has additional properties enabling proofcomposition as in Step (3).3. The proof composition paradigm:21 In general, this paradigm allows to compose two proofsystems such that the \inner" one is used to probabilistically verify the acceptance criteriaof the \outer" veri�er. The aim is to conduct the latter veri�cation using much fewer queriesthan the query complexity of the \outer" proof system. In particular, the inner veri�er cannota�ord to read its input, which makes composition more subtle than the term suggests.Loosely speaking, the outer veri�er should be robust in the sense that its soundness conditionguarantee that with high probability the oracle answers are \far" from satisfying the residualdecision predicate (rather than merely not satisfy it). (Furthermore, the latter predicate,which is well-de�ned by the non-adaptive nature of the outer veri�er, must have a circuit ofsize bounded by a polynomial in the number of queries.) The inner veri�er is given oracleaccess to its input and is charged for each query made to it, but is only required to rejectwith high probability inputs that are far from being valid (and, as usual, accept inputs thatare valid). That is, the inner veri�er is actually a veri�er of proximity.Composing two such PCPs yields a new PCP for NP , where the new proof oracle consists ofthe proof oracle of the \outer" system and a sequence of proof oracles for the \inner" system(one \inner" proof per each possible random-tape of the \outer" veri�er). Thus, composingan outer veri�er of randomness complexity r0 and query complexity q0 with an inner veri�er ofrandomness complexity r00 and query complexity q00 yields a PCP of randomness complexityr(n) = r0(n) + r00(q0(n)) and query complexity q(n) = q00(q0(n)), because q0(n) represents thelength of the input (oracle) that is accessed by the inner veri�er. Recall that the outer veri�eris non-adaptive, and thus if the inner veri�er is non-adaptive (resp., robust) then so is the21Our presentation of the composition paradigm follows [10], rather than the original presentation of [2, 1].32

veri�er resulting from the composition, which is important in case we wish to compose thelatter veri�er with another inner veri�er.In particular, the proof system of Step (1) is composed with itself [using r0(n) = r00(n) = O(log n)and q0(n) = q00(n) = poly(log n)] yielding a PCP system (for NP) of randomness complexityr(n) = r0(n) + r00(q0(n)) = O(log n) and query complexity q(n) = q00(q0(n)) = poly(log log n).Composing the latter system (used as an \outer" system) with the the PCP system of Step (2),yields a PCP system (for NP) of randomness complexity r(n) + poly(q(n)) = O(log n) and querycomplexity O(1), thus establishing the PCP Theorem.A more detailed overview { the plan. The foregoing description of Step 3 uses two (non-trivial) PCP systems and refers to additional properties such as robustness and veri�cation ofproximity. A PCP system of polynomial randomness complexity and constant query complexity(as postulated in Step 2) is outlined in x3.2.1. We thus start by discussing the notions of verifyingproximity and being robust, while demonstrating their applicability to the said PCP. Finally, weoutline the other PCP system (i.e., the one postulated in Step 1).PCPs of Proximity. Recall that a standard PCP veri�er gets an explicit input and is givenoracle access to an alleged proof (for membership of the input in a predetermined set). In contrast,a PCP of proximity is given oracle access to two oracles, one representing an input and the otherbeing an alleged proof. Typically, the query complexity of the corresponding veri�er is lower thanthe length of the input oracle, and hence the veri�er cannot a�ord to read the entire input andcannot be expected to make absolute statements about it. Indeed, instead of deciding whether ornot the input is in a predetermined set, the veri�er needs only distinguish the case that the inputis in the set from the case that the input is far from the set (where far means being at relativeHamming distance at least 0.01 (or any other constant)).For example, consider a variant of the system of x3.2.1 in which the quadratic system is �xed22and the veri�er needs to determine whether an input oracle satis�es the said system or is far fromany assignment that satis�es it. The proof oracle is as in x3.2.1, and a PCP of proximity mayproceed as in x3.2.1 and in addition perform a proximity test to verify that the input oracle isclose to the assignment encoded in the proof oracle. Speci�cally, the veri�er may read a uniformlyselected bit of the input oracle and compare the value to the self-correction obtained from the prooforacle (i.e., for a uniformly selected i 2 f1; :::; ng, we compare the ith bit of the input oracle to theself-correction of the value T1(0i�110n�i), obtained from the proof oracle).Robust PCPs. Composing an \outer" PCP veri�er with an \inner" PCP veri�er of proximitymakes sense provided that the outer veri�er rejects in a \robust" manner. That is, the soundnesscondition of a robust veri�er requires that (with probability at least 1/2) the oracle answers arefar from any sequence that is acceptable by the residual predicate (rather than merely that theanswers are rejected by this predicate). Indeed, if the outer veri�er is (non-adaptive and) robust,then it su�ces that the inner veri�er distinguish (with the help of an adequate proof) answers thatare valid from answers that are far from being valid.For example, if robustness is de�ned as referring to relative constant distance (which is indeedthe case), then the PCP of x3.2.1 (as well as any PCP of constant query complexity) is triviallyrobust. However, we will not care about the robustness of this PCP, because we only use this PCP22Indeed, in our applications the quadratic system will be \known" to the (\inner") veri�er, because it is determinedby the (\outer") veri�er. 33

as an inner veri�er in proof composition. In contrast, we will care about the robustness of PCPsthat are used as outer veri�ers (e.g., the PCP presented next).Teaching note: Unfortunately, the construction of a PCP of logarithmic randomnessand polylogarithmic query complexity for NP is quite complicated and involves manytechnical details. Furthermore, obtaining a robust version of this PCP is beyond thescope of the current text. Thus, we view the following description as merely providing a
avor of the underlying ideas.PCP of logarithmic randomness and polylogarithmic query complexity for NP . Westart by showing that NP � PCP(f; f), for f(n) = poly(log n). The proof system is basedon a di�erent arithmetization of CNF formulae (i.e., di�erent than the one used in x1.2.2 forconstructing an interactive proof system for coNP). In this arithmetization, the names of thevariables (resp., clauses) of the input formula � are represented by binary strings of logarithmic (inj�j) length, and a generic variable (resp., clause) of � is represented by a logarithmic number ofnew variables (which are assigned values in a �nite �eld F � f0; 1g). The (structure of the) input3CNF formula �(x1; :::; xn) is represented by a Boolean function C� : f0; 1gO(log n) ! f0; 1g suchthat C�(�; �1; �2; �3) = 1 if and only if, for i = 1; 2; 3, the ith literal in the �th clause has index�i = (
i; �i) (which is viewed as a variable name augmented by its sign). We consider a multi-linearextension of C� over F, denoted �; that is, � is the (unique) multi-linear polynomial that agreeswith C� on f0; 1gO(log n) � FO(log n). Thus, on input �, the veri�er �rst constructs C� and �. Partof the proof oracle of this veri�er is viewed as function A : Flog n ! F, which is supposed to be amulti-linear extension of a truth assignment that satis�es � (i.e., for every
 2 f0; 1glog n � [n], thevalue A(
) is supposed to be the value of the
th variable in such an assignment). Thus, we wishto check whether, for every � 2 f0; 1glog j�j, it holds thatX�1�2�32f0;1g3 log 2n �(�; �1; �2; �3) � 3Yi=1 �1�A0(�i)� = 0 (6)where A0(�) is the value assigned by A to the �th literal (i.e., if � = (
; �), where
 2 f0; 1glog n isa variable name and � 2 f0; 1g is the literal's type, then A0(�) = � � A(
) + (1 � �) � (1 � A(
))).Thus, Eq. (6) holds if and only if the �th clause is satis�ed by the assignment induced by A (sinceA0(�) = 1 must hold for at least one of the three literals � that appear in this clause). As in x3.2.1,we cannot a�ord to verify all instances of Eq. (6), and unlike in x3.2.1 we cannot a�ord to takea random linear combination of them either (as this requires too much randomness). Fortuntaely,taking a \pseudorandom" linear combination of these equations is good enough. Speci�cally, usingan adequate small-bias probability space S � Fj�j (of size poly(j�j � jF j)), the veri�er may selectuniformly (s1; :::; sj�j) 2 S and verifyX��1�2�32f0;1g` s� � �(�; �1; �2; �3) � 3Yi=1 �1�A0(�i)� = 0 (7)where ` def= log j�j+ 3 log 2n. The small-bias property guarantees that if A fails to satisfy any ofthe equations of type Eq. (6) then, with high probability (over the choice of (s1; :::; sj�j) 2 S), it isthe case that A fails to satisfy Eq. (7). (Since jSj = poly(j�j � jF j) rather that jSj = 2j�j, we canselect a sample in S using O(log j�j) coin tosses.)34

Now, assuming that A is a low-degree polynomial, we can probabilistically verify Eq. (7) byapplying a summation test (as in the interactive proof for coNP). Indeed, the veri�er obtains therelevant univariant polynomials by making adequate queries (which specify the entire sequence ofchoices made so far in the summation test). Note that after stripping the ` summations, the veri�erend-ups up with an expression that contains three unknown values of A0, which it may obtain bymaking corresponding queries to A. This summation test involves tossing ` � log jFj coins andmaking (`+ 3) � O(log jFj) Boolean queries (which correspond to ` queries that are each answeredby a univariate polynomial of constant degree (over F), and three queries to A (each answered byan element of F)). Needless to say, we must also check that A is indeed a multi-variate polynomialof low degree (or rather that it is close to such a polynomial). A low-degree test of complexitiessimilar to those of the summation text does exist. Using a �nite �eld F of poly(log(n)) elements,this yields NP � PCP(f; f) for f(n) def= O(log(n) � log log(n)).To obtain the desired PCP system of logarithmic randomness complexity, we represent thenames of the original variables and clauses by O(log n)log log n -long sequences over f1; :::; log ng, rather thanby logarithmically-long binary sequences. This requires using low degree polynomial extensions(i.e., polynomial of degree (log n) � 1), rather than multi-linear extensions. We can still use a�nite �eld of poly(log(n)) elements, and so we need only O(log n)log log n � O(log log n) random bits for thesummation and low-degree tests. However, the number of queries (needed for obtaining the answersin these tests) grows, because now the polynomials involved have individual degree (log n)�1 ratherthan constant individual degree. This merely means that the query complexity increases by a factorof O(log n= log log n). Thus, we obtain NP � PCP(log; q) for q(n) def= O(log2 n).Recall that, in order to use the latter PCP system in composition, we need to guarantee thatit (or a version of it) is robust as well as to present a version that is a PCP of proximity. Thelatter version is relatively easy to obtain (using ideas as applied to the PCP of x3.2.1), whereasobtaining robustness is too complex to be described here. We comment that one way of obtaining arobust PCP system is by a generic application of a (randomness-e�cient) \parallelization" of PCPsystems (cf. [1]), which in turn depends heavily on highly e�cient low-degree tests. A alternativeapproach (cf. [10]) capitalizes of the speci�c structure of the summation test (as well as on theactual robustness of the low-degree test).Digest. Assuming that P 6= NP , the PCP Theorem asserts a PCP system that obtains simul-taneously the minimal possible randomness and query complexity (up to a multiplicative factor).The forgoing construction obtains this remarkable result by combining two di�erent PCPs: the �rstPCP obtains logarithmic randomness but uses polylogarithmically many queries, whereas the sec-ond PCP uses a constant number of queries but has polynomial randomness complexity. We stressthat each of the two PCP systems is highly non-trivial and very interesting by itself. We highlightthe fact that these PCPs can be composed using a very simple composition method that refers toauxiliary properties such as robustness and proximity testing. (Composition of PCP systems thatlack these extra properties is possible, but is far more cumbersome and complex.)3.2.3 Overview of the second proof of the PCP TheoremThe original proof of the PCP Theorem focuses on the construction of two PCP systems thatare highly non-trivial and interesting by themselves, and combines them in a natural manner.Loosely speaking, this combination (via proof composition) preserves the good features of eachof the two systems; that is, it yields a PCP system that inherits the (logarithmic) randomnesscomplexity of one system and the (constant) query complexity of the other. In contrast, the35

following alternative proof is focused at the \ampli�cation" of PCP systems, via a gradual processof logarithmically many steps. We start with a trivial \PCP" system that rejects false assertionswith probability inversely proportional to their length, and double the rejection probability in eachstep. Furthermore, in each step, the constant query complexity is preserved and the length ofthe PCP oracle is increased only by a constant factor. Thus, the process gradually transformsan extremely weak PCP system into a remarkably strong PCP system as postulated in the PCPTheorem.In order to describe the aforementioned process we need to rede�ne PCP systems so to allowarbitrary soundness error. In fact, for technical reasons it is more convenient to describe the processas an interated reduction of a \constraint satisfaction" problem to itself. Speci�cally, we refer tosystems of 2-variable constraints, which are readily represented by (labelled) graphs such that thevertices correspond to (non-Boolean) variables and the edges are associated with constraints.De�nition 18 (CSP with 2-variable constraints): For a �xed �nite set �, an instance of CSPconsists of a graph G = (V;E) (which may have parallel edges and self-loops) and a sequence of2-variable constraints � = (�e)e2E associated with the edges, where each constraint has the form�e : �2 ! f0; 1g. The value of an assignment � : V ! � is the number of constraints satis�ed by�; that is, the value of � is jf(u; v) 2 E : �(u;v)(�(u); �(v)) = 1gj. We denote by vlt(G;�) thefraction of unsatis�ed constraints under the best possible assignment; that is,vlt(G;�) = min�:V!�fjf(u; v) 2 E : �(u;v)(�(u); �(v)) = 0gj=jEjg (8)For various functions t : N ! [0; 1], we will consider the promise problem gapCSP�t , having instancesas above, such that the yes-instances are fully satis�able instances (i.e., vlt = 0) and the no-instances are pairs (G;�) satisfying vlt(G;�) � t(jGj), where jGj denotes the number of edges inG.Note that 3SAT is reducible to gapCSPf1;:::;7gt for t(m) = 1=m; see Exercise 38. Our goal is to reduce3SAT (or rather gapCSPf1;:::;7gt) to gapCSP�c , for some �xed �nite � and constant c > 0. The PCPTheorem will follow by showing a simple PCP system for gapCSP�c ; see Exercise 39. The desiredreduction is obtained by iteratively applying the following reduction logarithmically many times.Lemma 19 (amplifying reduction of gapCSP to itself): For some �nite � and constant c > 0, thereexists a polynomial-time reduction of gapCSP� to itself such that the following conditions hold withrespect to the mapping of any instance (G;�) to the instance (G0;�0).1. If vlt(G;�) = 0 then vlt(G0;�0) = 0.2. vlt(G0;�0) � min(2 � vlt(G;�); c).3. jG0j = O(jGj).Proof Outline:23 The reduction consists of three steps. We �rst apply a pre-processing step thatmakes the underlying graph suitable for further analysis. The value of vlt may decrease duringthis step by a constant factor. The heart of the reduction is the second step in which we mayincrease vlt by any desired constant factor. The latter step also increases the alphabet �, andthus a post-processing step is employed to regain the original alphabet (by using any inner PCPsystems; e.g., the one presented in x3.2.1). Details follow.23For details, see [15]. 36

We �rst note that the aforementioned � and c, as well as the auxiliary parameters d and t, are�xed constants that will be determined so to satisfy various conditions that arise in the course ofour argument.We start with the pre-processing step. Our aim in this step is to reduce the input (G;�) ofgapCSP� to an instance (G1;�1) such that G1 is a d-regular expander graph.24 Furthermore, eachvertex in G1 will have at least d=2 self-loops, jG1j = O(jGj), and vlt(G1;�1) = �(vlt(G;�)).This step is quite simple: see Exercise 40.
vu w

1

2

4

3

6

5 7

10

11

12

13

14

15

16
17

18

19

21 v

w6 7

3 4 5
19

8 109
18 19v

u w

u 7 20

22

23

23

21

20

89

The alphabet �0 as a labelling of the distance t = 3 neighborhoods,when repetitions are omitted. In this case d = 6 but the self-loops arenot shown. The two-sided arrow indicates one of the edges in G1 thatwill contribute to the edge constraint between u and w in (G2;�2).Figure 3: The amplifying reduction in the second proof of the PCP Theorem.The main step is aimed at increasing the fraction of violated constraints by a su�ciently largeconstant factor. This is done by reducing the instance (G1;�1) of gapCSP� to an instance (G2;�2)of gapCSP�0 such that �0 = �dt . Speci�cally, the vertex set of G2 is identical to the vertex setof G1, and each t-edge long path in G1 is replaced by a corresponding edge in G2, which is thusa dt-regular graph. The constraints in �2 are the natural ones, viewing each element of �0 as a�-labelling of the (\distance � t") neigborhood of a vertex (see Figure 3), and checking that twosuch labellings are consistent as well as satisfy �1. That is, suppose that there is a path of length24A d-regular graph is a graph in which each vertex is incident to exactly d edges. Loosely speaking, an expandergraph has the property that each moderately balanced cut (i.e., partition of its vertex set) has relatively many edgescrossing it. An equivalent de�nition, also used in the actual analysis, is that the second eigenvalue of the correspondingadjacency matrix has asolute value that is bounded away from d.37

at most t in G1 going from vertex u to vertex w and passing through vertex v. Then, there is anedge in G1 between vertices u and w, and the constraint associated with it with mandates that theentries correspondings to vertex v in the �0-labelling of vertices u and w are identical. In addition,if the G1-edge (v; v0) is on a path of length at most t starting at u then the corresponding edge inG2 is associated a constraint that enforces the constraint that is associated to (v; v0) in �1.Clearly, if vlt(G1;�1) = 0 then vlt(G2;�2) = 0. The interesting fact is that the fraction of vio-lated constraints increases by a factor of
(pt); that is, vlt(G2;�2) � min(
(pt �vlt(G1;�1)); c).Here we merely provide a rough intuition and refer the interested reader to [15]. The intuitionis that any �0-labelling to the vertices of G2 must either be consistent with a �-labelling of G1or violate the \equality constraints" of many edges in G2. Focusing on the �rst case and relyingon the hypothesis that G1 is an expander, it follows that the set of violated edge-constaints (of�1) with respect to the aforementioned �-labelling causes many more edge-constaints of �2 to beviolated (by virtue of the latter enforcing many edge-constaints of �1). The point is that a set Fof edges of G1 is likely to appear on a min(
(t) � jF j=jG1j;
(1)) fraction of the edges of G2 (i.e.,t-paths of G1). (Note that the claim is obvious if G1 were a complete graph, but it also holds foran expander.)25The factor of
(pt) gained in the second step makes up for the constant factor lost in the�rst step (as well as the constant factor to be lost in the last step). Furthermore, for a suitablechoice of the constant t, the aforementioned gain yields an overall constant factor ampli�cation (ofvlt). However, so far we obtained an instance of gapCSP�0 rather than an instance of gapCSP�,where �0 = �dt . The purpose of the last step is to reduce the latter instance to an instance ofgapCSP�. This is done by viewing the instance of gapCSP�0 as a (weak) PCP system and composingit with an inner-veri�er, using the proof composition paradigm outlined in x3.2.2. We stress thatthe inner-veri�er used here needs only handle instances of constant size (i.e., having descriptionlength O(dt log j�j)), and so the one presented in x3.2.1 will do. The resulting PCP-system usesrandomness r def= log2 jG2j+O(dt log j�j)2 and a constant number of binary queries, and has rejectionprobability
(vlt(G2;�2)), which is indepedent of the choice of the constant t. As in Exercise 38,for � = f0; 1gO(1), we can easily obtain an instance of gapCSP� that has a
(vlt(G2;�2)) fractionof violated constraints. Furthermore, the size of the resulting instance is O(2r) = O(jG2j), becaused and t are constants. This completes the last step as well as the (outline of the) proof of the entirelemma.3.3 PCP and ApproximationThe characterization of NP in terms of probabilistically checkable proofs plays a central role inthe study of the complexity of approximation problems. To demonstrate this relationship, we �rstnote that a PCP system V gives rise to a natural approximation problem; that is, on input x,the task is approximating the probability that V accepts x when given oracle access to the bestpossible � (i.e., we wish to approximate max�fPr[V �(x) = 1]g). Thus, if S 2 PCP(r; q) thendeciding membership in S is reducible to approximating the maximum among exp(2r+q) quantities(corresponding to all e�ective oracles), where each quantity can be evaluated in time 2r �poly. Notethat an approximation up to a constant factor (of 2) will do.Let us take a closer look at the approximation problem associated with PCP(r; q). We focus, forsimplicity, on the case of non-adaptive PCP systems (i.e., all the queries are determined beforehandby the input and the internal coin tosses of the veri�er). On input x, we consider 2r(jxj) formulae,25We also note that due to a technical di�culty it is easier to establish the claimed bound of
(pt � vlt(G1;�1))rather than
(t � vlt(G1;�1)). 38

each depending on q(jxj) Boolean variables that represent the values of the corresponding bits inthe proof oracle. Thus, if x is a yes-instance then there exists a truth assignment (to these variables)that satis�es all 2r(jxj) formulae, whereas if x is a no-instance then there exists no truth assignmentthat satis�es more than 2r(jxj)�1 formulae. When focusing on the case that q is constant, thismotivates the following de�nition.De�nition 20 (gap problems for SAT and generalized-SAT): For constants q 2 N and " > 0,the promise problem gapGSATq" consists of instances that are each a sequence of q-variable Booleanformulae. The yes-instances are sequences that are simultaneously satis�able, whereas the no-instances are sequences for which no Boolean assignment satis�es more than a 1� " fraction of theformulae in the sequence. The promise problem gapSATq" is de�ned analogously, except that in thiscase each instance is a sequence of formulae that are each a single disjunctive clause.Indeed, each instance of gapSATq" is naturally viewed as q-CNF formulae, and we consider anassignment that satis�es as many clauses (of the input CNF) as possible. As hinted, NP �PCP(log; O(1)) implies that gapGSATO(1)1=2 is NP-complete. The converse holds too, and (for someconstant " > 0) the same holds for gapSAT3".Theorem 21 (equivalent formulations of the PCP Theorem). The following three conditions areequivalent:1. The PCP Theorem: there exists a constant q such that NP � PCP(log; q).2. There exists a constant q such that gapGSATq1=2 is NP-hard.3. There exists a constant " > 0 such that gapSAT3" is NP-hard.Note that Items 2 and 3 make no reference to PCP. Instead, they manifest that the hardness ofapproximation lies at the heart of the PCP Theorem. In general, probabilistic checkable proofsystems for NP yield strong inapproximability results for various classical optimization problems(cf., e.g., Exercise 33).Proof: We �rst show that the PCP Theorem implies the NP-hardness of gapGSAT. We mayassume, without loss of generality, that, for some constant q and every S 2 NP , it holds thatS 2 PCP(O(log); q) via a non-adaptive veri�er (because q adaptive queries can be emulated by 2qnon-adaptive queries). We reduce S to gapGSAT as follows. On input x, we consider all 2O(log jxj)possible coin tosses of the veri�er, and for each sequence of outcomes we determine the queries madeas well as the residual decision predicate (of the PCP veri�er). That is, for each random-outcome! 2 f0; 1gO(log jxj), we consider the residual predicate determined by x and !, and note that thispredicate depends only on q variables (which represent the values of the q corresponding oracleanswers). Thus, we obtain an instance of gapGSATq, and indeed x 2 S (resp., x 62 S) is mapped toa yes-instance (resp., no-instance) of gapGSATq1=2.Item 2 implies Item 3 by a standard reduction of GSAT to 3SAT. Speci�cally, gapGSATq1=2reduces to gapSATq2�(q+1) , which in turn reduces to gapSAT3" for " = 2�(q+1)=(q � 2). (Clearly,Item 3 implies Item 2.)We complete the proof by showing that Item 3 implies Item 1. In fact, we show that gapGSATq"is in PCP(O("�1 log); O(q=")), and do so by presenting a very natural PCP system. In this PCPsystem the proof oracle is supposed to be an satisfying assignment, and the veri�er selects atrandom one of the (q-variable) formulae in the input sequence, and checks whether it is satis�ed39

by the (assignment given by the) oracle. This amounts to tossing logarithmically many coins andmaking q queries. This veri�er always accepts yes-instances (when given access to an adequateoracle), whereas each no-instances is rejected with probability at least " (no matter which oracleis used). To amplify the rejection probability (to the desired threshold of 1/2), we invoke theforegoing veri�er O("�1) times.Gap amplifying reductions { a re
ection. Items 2 and 3 of Theorem 21 assert the exis-tence of \gap amplifying" reductions of problems like 3SAT to themselves. These reductions mapyes-instances to yes-instances (as usual), while mapping no-instances to no-instances of a specialtype such that a \gap" is created between the yes-instances and no-instances at the image of thereduction. For example, in the case of 3SAT, unsatis�able formulae are mapped to formulae thatare not merely unsatis�able but rather have no assignment that satis�es more than a 1� " fractionof the clauses. Thus, PCP constructions are essentially \gap amplifying" reductions.3.4 More on PCP itself: an overviewWe start by discussing variants of the PCP characterization of NP, and next turn to PCPs havingexpressing power beyond NP.3.4.1 More on the PCP characterization of NPInterestingly, the two complexity measures in the PCP-characterization of NP can be traded o�such that at the extremes we get NP = PCP(log; O(1)) and NP = PCP(0; poly), respectively.Proposition 22 For every S 2 NP, there exist a constant � such that for every integer function` that satis�es 0�`(n)�� log2 n it holds that S 2 PCP(r; q) � NP, where r(n) = � � log2 n� `(n)and q(n) = O(2`(n)).Proof Sketch: Starting with Theorem 16, consider all possibilities for the `(n)-long pre�x of therandom tape of the veri�er.Following the establishment of Theorem 16, numerous variants of the PCP Characterization ofNP were explored. Following is a brief summary of some of these studies.26The length of PCPs. Recall that the e�ective length of the oracle in any PCP(log; log) systemis polynomial (in the length of the input). Furthermore, in the PCP systems underlying the proofof Theorem 16 the queries refer only to a polynomially long pre�x of the oracle, and so the actuallength of these PCPs for NP is polynomial. Remarkablly, the length of PCPs for NP can be madenearly-linear (in the combined length of the input and the standard NP-witness), while maintainingconstant query complexity, where by nearly-linear we mean linear up to a poly-logarithmic factor.(For details see [11, 15].) This means that the redundency required for supporting probabilisticveri�cation of proofs is relatively modest.26With the exception of works that appeared after [21], we provide no references for the results quoted here. Werefer the interested reader to [21, Sec. 2.4.4].
40

The number of queries in PCPs. Theorem 16 asserts that a constant number of queries su�cefor PCPs with logarithmic randomness and soundness error 1=2 (for NP). It is currently knownthat this constant is at most 5, whereas with 3 queries one may get arbitrary close to error 1=2.The obvious trade-o� between the number of queries and the soundness error gives rise to therobust notion of amortized query complexity, de�ned as the ratio between the number of queries and(minus) the logarithm (to based 2) of the soundness error. For every " > 0, any set in NP has aPCP system with logarithmic randomness and amortized query complexity 1 + " (cf. [30]), whereasonly sets in P have PCPs of logarithmic randomness and amortized query complexity 1 (or less).The free-bit complexity. The motivation to the notion of free bits came from the PCP{to{MaxClique connection (see Exercise 33 and [7, Sec. 8]), but we believe that this notion is ofindependent interest. Intuitively, this notion distinguishes between queries for which the acceptableanswer is determined by previously obtained answers (i.e., the veri�er compares the answer to avalue determined by the previous answers) and queries for which the veri�er only records the answerfor future usage. The latter queries are called free (because any answer to them is \acceptable").For example, in the linearity test (see x3.2.1) the �rst two queries are free and the third is not(i.e., the test accepts if and only if f(x) + f(y) = f(x + y)). The amortized free-bit complexity isde�ne analogously to the amortized query complexity. Interestingly, NP has PCPs with logarithmicrandomness and amortized free-bit complexity less than any positive constant.Adaptive versus non-adaptive veri�ers. Recall that a PCP veri�er is called non-adaptiveif its queries are determined solely based on its input and the outcome of its coin tosses. (Ageneral veri�er, called adaptive, may determine its queries also based on previously received oracleanswers.) Recall that the PCP Characterization of NP (i.e., Theorem 16) is established using anon-adaptive veri�er; however, it turns out that adaptive veri�ers are more powerful than non-adaptive ones in terms of quantitative results: Speci�cally, for PCP veri�ers making three queriesand having logarithmic randomness complexity, adaptive queries provide for soundness error atmost 0:51 (actually 0:5+ " for any " > 0) for any set in NP , whereas non-adaptive queries providesoundness error 5=8 (or less) only for sets in P.Non-binary queries. Our de�nition of PCP allows only binary queries. Certainly, non-binaryqueries can always be coded as binary ones, but the converse is not necessarily valid, in particular inadversarial settings. Note that the soundness condition constitutes an implicit adversarial setting,where a bad proof may be thought of as being selected by an adversary. Thus, when several binaryqueries are packed into one non-binary query, the adversary need not respect the packing (i.e., itmay answer inconsistently on the same binary query depending on the other queries packed withit). For this reason, \parallel repetition" is highly non-trivial in the PCP setting. Still, a ParallelRepetition Theorem that refers to independent invocations of the same PCP is known [36], but it isnot applicable for obtaining soundness error smaller than a constant (while preserving logarithmicrandomness). Nevertheless, using adequate \consistency tests" one may construct PCP systemsfor NP using logarithmic randomness, a constant number of (non-binary) queries and soundnesserror exponential in the length of the answers. (Currently, this is known only for sub-logarithmicanswer lengths.)
41

3.4.2 PCP with super-logarithmic randomnessThe foregoing text has focused on the important case where the veri�er tosses logarithmicallymany coins, and hence the \e�ective proof length" is polynomial. Here we mention that the PCPTheorem scales up.Theorem 23 (Theorem 16 { Generalized): Let t(�) be an integer function such that n < t(n) <2poly(n). Then, Ntime(t) � PCP(O(log t); O(1)).Recall that PCP(r; q) � Ntime(t), for t(n) = poly(n) � 2r(n).Notes(The following historical notes are quite long and still they fail to mention several importanttechnical contributions that played an important role in the development of the area. For furtherdetails, the reader is referred to [21, Sec. 2.6.2].)Motivated by the desire to formulate the most general type of \proofs" that may be usedwithin cryptographic protocols, Goldwasser, Micali and Racko� [26] introduced the notion of aninteractive proof system. Although the main thrust of their work is the introduction of a specialtype of interactive proofs (i.e., ones that are zero-knowledge), the possibility that interactive proofsystems may be more powerful from NP-proof systems has been pointed out in [26]. Independentlyof [26], Babai [3] suggested a di�erent formulation of interactive proofs, which he called Arthur-Merlin Games (and conjectured to be \very close" to NP). Syntactically, Arthur-Merlin Games area restricted form of interactive proof systems, yet it was subsequently shown that these restrictedsystems are as powerful as the general ones (cf., [27]). The speed-up result (i.e., AM(2f) � AM(f))is due to [6] (improving over [3]).The �rst evidence of the power of interactive proofs was given by Goldreich, Micali, and Wigder-son [24], who presented an interactive proof system for Graph Non-Isomorphism (Construction 3).More importantly, they demonstrated the generality and wide applicability of zero-knowledge proofs:Assuming the existence of one-way function, they showed how to construct zero-knowledge inter-active proofs for any set in NP (Theorem 11). This result has had a dramatic impact on thedesign of cryptographic protocols. For further discussion of zero-knowledge and its applications tocryptography see [22, 23]. Theorem 12 (i.e., ZK = IP) is due to [8, 31].Probabilistically checkable proof (PCP) systems are related to multi-prover interactive proofsystems, a generalization of interactive proofs that was suggested by Ben-Or, Goldwasser, Kilianand Wigderson [9]. Again, the main motivation came from the zero-knowledge perspective; specif-ically, introducing multi-prover zero-knowledge proofs for NP without relying on intractabilityassumptions. Yet, the complexity theoretic prospects of the new class, denoted MIP, have notbeen ignored.The amazing power of interactive proof systems has been demonstrated by using algebraicmethods. The basic technique has been introduced by Lund, Fortnow, Karlo� and Nisan [33], whoapplied it to show that the polynomial-time hierarchy (and actually P#P) is in IP. Subsequently,Shamir [37] used the technique to show that IP = PSPACE , and Babai, Fortnow and Lund [4]used it to show thatMIP = NEXP . (Our entire proof of Theorem 4 follows [37].)The aforementioned multi-prover proof system of Babai, Fortnow and Lund [4] (hereafter re-ferred to as the BFL proof system) has been the starting point for fundamental developmentsregarding NP . The �rst development was the discovery that the BFL proof system can be \scaled-down" from NEXP to NP . This important discovery was made independently by two sets of42

authors: Babai, Fortnow, Levin, and Szegedy [5] and Feige, Goldwasser, Lov�asz, and Safra [17].However, the manner in which the BFL proof is scaled-down is di�erent in the two papers, and soare the consequences of the scaling-down.Babai et. al. [5] start by considering (only) inputs encoded using a special error-correcting code.The encoding of strings, relative to this error-correcting code, can be computed in polynomial time.They presented an almost-linear time algorithm that transforms NP-witnesses (to inputs in a setS 2 NP) into transparent proofs that can be veri�ed (as vouching for the correctness of the encodedassertion) in (probabilistic) poly-logarithmic time (by a Random Access Machine). Babai et. al. [5]stress the practical aspects of transparent proofs; speci�cally, for rapidly checking transcripts oflong computations. In contrast, in the proof system of Feige et. al. [17, 18] the veri�er stayspolynomial-time and only two more re�ned complexity measures (i.e., the randomness and querycomplexities) are reduced to poly-logarithmic. This eliminates the need to assume that the inputis in a special error-correcting form, and yields a re�nement of the complexity class introducedin [19], where the re�nement is obtained by specifying the randomness and query complexities (seeDe�nition 14). Hence, whereas the BFL proof system [4] can be reinterpreted as establishingNEXP = PCP(poly; poly); (9)the work of Feige et. al. [18] establishesNP � PCP(f; f) ; where f(n) = O(log n � log log n). (10)We note that the work of Babai et. al. [5] impliesNP � PCP(log; polylog) : (11)Interest in the new complexity class became immense since Feige et. al. [17, 18] demonstrated itsrelevance to proving the intractability of approximating some combinatorial problems (speci�cally,for MaxClique). When using the PCP{to{MaxClique connection established by Feige et. al., therandomness and query complexities of the veri�er (in a PCP system for an NP-complete set) relateto the strength of the negative results obtained for approximation problems. This fact provided avery strong motivation for trying to reduce these complexities and obtain a tight characterizationof NP in terms of PCP(�; �). Once the work of Feige et. al. [18] had been presented, the challengewas clear: showing that NP equals PCP(log; log). This challenge was met by Arora and Safra [2].Actually, they showed thatNP = PCP(log; f(�)) ; where f(n) = o(log n). (12)Hence, a new challenge arose; namely, further reducing the query complexity { in particular to aconstant { while maintaining the logarithmic randomness complexity. Again, additional motivationfor this challenge came from the relevance of such a result to the study of approximation problems.The new challenge was met by Arora, Lund, Motwani, Sudan and Szegedy [1], and is captured bythe equation NP = PCP(log; O(1)): (13)Indeed the PCP Characterization Theorem (captured in Eq. (13)) is a culmination of a sequence ofgreat works [33, 4, 5, 18, 2, 1]. These works are rich in innovative ideas (e.g., various arithmetizationsof SAT as well as various forms of proof composition) and employ numerous techniques (e.g., low-degree tests, self-correction, and pseudorandomness). For further detail, the interested reader isreferred to [21, Sec. 2.6.2]. 43

Our overview of the original proof of the PCP Theorem (in x3.2.1{3.2.2) is based on [1, 2].27The alternative proof outlined in x3.2.3 is due to Dinur [15]. We also mention some of the ideasand techniques involved in deriving variants of the PCP Theorem. These include the ParallelRepetition Theorem [36], the use of the Long-Code [7], and the application of Fourier analysis inthis setting [28, 29].Computationally-Sound Proof Systems. Argument systems were de�ned by Brassard, Chaumand Cr�epeau [14], with the motivation of providing perfect zero-knowledge arguments (rather thanzero-knowledge proofs) for NP. A few years later, Kilian [32] demonstrated their signi�cancebeyond the domain of zero-knowledge by showing that, under some reasonable intractability as-sumptions, every set in NP has a computationally-sound proof in which the randomness andcommunication complexities are poly-logarithmic.28 Interestingly, these argument systems rely onNP � PCP(f; f), for f(n) = poly(log n). We mention that Micali [34] suggested a di�erent typeof computationally-sound proof systems (which he called CS-proofs).Final comment: The current text is a revision of [21, Chap. 2]. In particular, more details areprovided here for the main topics, whereas numerous secondary topics discussed in [21, Chap. 2]are not mentioned here (or are only brie
y mentioned here). In addition, a couple of the researchdirections that were mentioned in [21, Sec. 2.4.4] received considerable attention in the period thatelapsed, and improved results are currently known. In particular, the interested reader is referredto [10, 11, 15] (for a study of the length of PCPs) and to [30] (for a study of the amortized querycomplexity).ExercisesExercise 24 (parallel error-reduction for interactive proof systems) Prove that the errorprobability (in the soundness condition) can be reduced by parallel repetitions of the proof system.Guideline: As a warm-up consider �rst the case of public-coin interactive proof systems. Next, note thatthe analysis generalizes to arbitrary interactive proof systems. (Extra hint: As a mental experiment, consider a\powerful veri�er" that emulates the original veri�er while behaining as in the public-coin model.) A proof appearsin [21, Apdx. C.1].Exercise 25 Complete the details of the proof that coNP � IP (i.e., the �rst part of the proofof Theorem 4). In particular, regarding the proof of non-satis�ability of a CNF with n variablesand m clauses, what is the length of the messages sent by the two parties? What is the soundnesserror?Exercise 26 Present a n=O(log n)-round interactive proof for the non-satis�ability of a CNF hav-ing n variables.(Hint: Modify the (�rst part of the) proof of Theorem 4, by stripping O(log n) summations in each round.)Exercise 27 Show that QBF can be reduced to a special form of QBF in which no variable appearsboth to the left and the right of more than one universal quanti�er.27Our presentation also bene�ts from the notions of PCPs of proximity and robustness, put forward in [10, 16].28We comment that interactive proofs are unlikely to have such low complexities; see [25].44

Guideline: Consider a process (which proceeds from left to right) of \refreshing" variables after each uni-versal quanti�er. Let �(x1; :::; xs; y; xs+1; :::; xs+t) be a quanti�er-free boolean formula and let Qs+1; :::; Qs+tbe an arbitrary sequence of quanti�ers. Then, we replace the quanti�ed (sub-)formula8yQs+1xs+1 � � � Qs+txs+t �(x1; :::; xs; y; xs+1; :::; xs+t)by the (sub-)formula8y9x01 � � � 9x0s[(^si=1(x0i = xi)) ^ Qs+1xs+1 � � � Qs+txs+t �(x01; :::; x0s; y; xs+1; :::; xs+t)] :Note that the variables x1; :::; xs do not appear to the right of the quanti�er Qs+1 in the replaced formula,and that the length of the replaced formula grows by an additive term of O(s). This process of refreshingvariables is applied from left to right on the entire sequence of universal quanti�ers (except the inner one,for which this refreshing is useless).29Exercise 28 (on interactive proofs with two-sided error (following [20])) Let IP 0(f) de-note the class of sets having a two-sided error interactive proof system in which a total of f(jxj)messages are exchanged on common input x. Extending the ideas underlying the proof of \BPP in�2", show that IP 0(f) � IP(f + 3). Note that IP 0(f) � AM(f + 1) follows.Guideline: Consider the public-coin version of IP 0, denoted AM0, and note that the proof of IP(f) �AM(f + 2) (cf. [27]) extends to IP 0(f) � AM0(f + 2). Observe that the proof of \BPP in �2" actuallyestablishes that BPP � MA = AM(1), and that BPP = AM0(0). Our aim is to establish AM0(f) �AM(f+1) for arbitrary f (rather than for f � 0). Consider an optimal prover strategy and the set of veri�ercoins that make the veri�er accept any �xed yes-instance. Applying the ideas underlying the transformationof BPP to MA, we obtain the desired result. For further details, see [20].Exercise 29 In continuation to Exercise 28, show that IP 0(f) = IP(f) for every function f :N ! N satisfying f � 1.(Hint: If f � 2 then the claim follows by combining Exercise 28 with IP(O(f)) = IP(f). For the case of f = 1,note that IP(1) = AM(1), and that the single prover message added in Exercise 28 can be incorporated in the singlemessage sent in IP(1).)Exercise 30 (on the e�ective length of PCP oracles) Suppose that V is a PCP veri�er ofquery complexity q and randomness complexity r. Show that for every �xed x, the number ofpossible locations examined on input x (when considering all possible internal coin tosses of V andall possible answers it may receive) is upper-bounded by 2q(jxj)+r(jxj). Show that if V is non-adaptivethen the upper-bound can be improved to 2r(jxj) � q(jxj).(Hint: In the adaptive case, the ith query is determined by V 's internal coin tosses and the previous i � 1 answers.In the non-adaptive case, all q queries are determined by V 's internal coin tosses.)29For example, 9z18z29z38z49z58z6 �(z1; z2; z3; z4; z5; z6)is �rst replaced by 9z18z29z01 [(z01 = z1) ^ 9z38z49z58z6 �(z01; z2; z3; z4; z5; z6)]and next (written as 9z18z029z01 [(z01 = z1) ^ 9z038z049z058z06 �(z01; z02; z03; z04; z05; z06)]) is replaced by9z18z029z01 [(z01 = z1) ^ 9z038z049z001 9z002 9z003[(^3i=1(z00i = z0i)) ^ 9z058z06�(z001 ; z002 ; z003 ; z04; z05; z06)]]:Thus, in the resulting formula, no variable appears both to the left and to the right of more than a single universalquanti�er. 45

Exercise 31 (upper-bounds on the complexity of PCPs) Suppose that a set S has a PCPof query complexity q and randomness complexity r. Show that S can be decided by a non-deterministic machine that, on input of length n, makes at most 2r(n) � q(n) non-deterministic stepsand halts within a total number of 2r(n) � poly(n) steps. Thus, S 2 Ntime(2r � poly)\Dtime(22rq �poly).(Hint: For each input x 2 S and each possible value ! 2 f0; 1gr(jxj) of the random-tape, we consider a sequence ofq(jxj) bit values that represent a sequence of oracle answers that make the veri�er accept. Indeed, for �xed x and! 2 f0; 1gr(jxj), each setting of the q(jxj) oracle answers determine the computation of the corresponding veri�er(including the queries it makes).)Exercise 32 (on the e�ective randomness of PCPs) Suppose that a set S has a PCP ofquery complexity q that utilizes proof oracles of length `. Show that, for every constant " > 0, theset S has a \non-uniform" PCP of query complexity q, soundness error 0:5 + " and randomnesscomplexity r such that r(n) = O(1) + log2(`(n) + n). By a \non-uniform PCP" we mean one inwhich the veri�er is a probabilistic polynomial-time oracle machine that gets a non-uniform adviceof length polynomial in `.Guideline: Consider a PCP veri�er V as in the hypothesis, and denote its randomness complexity by rV .We construct a non-uniform veri�er V 0 that, on input of length n, obtains as advice a set Rn � f0; 1grV (n)of cardinality O((`(n) + n)="2), and emulates V on a uniformly selected element of Rn. Show that for arandom Rn, the veri�er V 0 satis�es the claims of the exercise.(Extra hint: Fixing any input x 62 S and any oracle � 2 f0; 1g`(jxj), upper-bound the probability that a random setRn causes V 0 to accept x with probability 0:5 + " when using the oracle �.)Exercise 33 (The FGLSS-reduction [18]) For any S 2 PCP(r; q), consider the following map-ping of instances for S to instances of the Independent Set problem. The instance x is mapped toa graph Gx = (Vx; Ex), where Vx � f0; 1gr(jxj)+q(jxj) consists of pairs (!; �) such that the PCP veri-�er accepts the input x, when using coins ! 2 f0; 1gr(jxj) and receiving the answers � = �1 � � ��q(jxj)(to the oracle queries determined by x, r and the previous answers). The set Ex consists of edgesthat connect vertices that represents inconsistent view of the said veri�er; that is, the vertexv = (!; �1 � � ��q(jxj)) is connected to the vertex v0 = (!0; �01 � � ��0q(jxj)) if there exists i and i0 suchthat �i 6= �0i and qxi (v) = qxi0(v0), where qxi (v) (resp., qxi0(v0)) denotes the i-th (resp., i0-th) queryof the veri�er on input x, when using coins ! (resp., !0) and receiving the answers �1 � � ��i�1(resp., �01 � � ��0i0�1). In particular, for every ! 2 f0; 1gr(jxj) and � 6= �0, if (!; �); (!; �0) 2 Vx, then((!; �); (!; �0)) 2 Ex.1. Prove that the mapping x 7! Gx can be computed in time that is polynomial in 2r(jxj)+q(jxj)�jxj.(Note that the number of vertices in Gx equals 2r(jxj)+f(jxj), where f is the free-bit complexityof the PCP veri�er.)2. Prove that, for every x, the size of the maximum independent set in Gx is at most 2r(jxj).3. Prove that if x 2 S then Gx has an independent set of size 2r(jxj).4. Prove that if x 62 S then the size of the maximum independent set in Gx is at most 2r(jxj)�1.In general, denoting the PCP veri�er by V , prove that the size of the maximum independent set inGx is exactly 2r(jxj) �max�fPr[V �(x) = 1]g. Show that the PCP Theorem implies that the size ofthe maximum independent set (resp., clique) in a graph is NP-hard to approximate to within anyconstant factor. 46

(Hint: Note that an independent set in Gx corresponds to a set of coins R and a partial oracle �0 such that Vaccepts x when using coins in R and accessing any oracle that is consistent with �0. The FGLSS reduction creates agap of a factor of 2 between yes and no-instances of S. Larger factors can be obtained by considering a PCP thatresults from repeating the given PCP for a constant number of times. The result for Clique follows by consideringthe complement graph.)Exercise 34 In continuation to Exercise 33, prove that, for any t(n) = o(log n), it holds thatNP � PCP(t; t) implies that P = NP .Guideline: We only use the fact that the said reduction actually reduces PCP to instances of the Cliqueproblem (and ignore the fact that we actually get a stronger result that refers to a \gapClique" problem). Fur-thermore, when applies to problems in NP � PCP(t; t), this reduction runs in polynomial-time. The key ob-servation is that this reduction maps instances of the Clique problem (which is inNP � PCP(o(log); o(log)))to shorter instances of the same problem (because 2o(logn) � n). Thus, iteratively applying the reduction,we can reduce instances of Clique to instances of constant size. Using the NP-completeness of Clique, wereduce NP to a �nite set, and NP = P follows.Exercise 35 (a simple but partial analysis of the BLR Linearity Test) For Abelian groupsG and H, consider functions from G to H. For such a (generic) function f , consider the linearity (orrather homomorphism) test that selects uniformly r; s 2 G and checks that f(r) + f(s) = f(r+ s).Let �(f) denote the distance of f from the set of homomorphisms (of G to H); that is, �(f) is theminimum taken over all homomorphisms h : G ! H of Prx2G[f(x) 6= h(x)]. Using the followingguidelines, prove that the probability that the test rejects f , denoted "(f), is at least 3�(f)�6�(f)2.1. Suppose that h is the homomorphism closest to f (i.e., �(f) = Pr[f(x) 6=h(x)]). Prove that"(f) = Prx;y2G[f(x) + f(y) 6= f(x; y)] is lower-bounded by 3 � Prx;y[f(x) 6= h(x) ^ f(y) =h(y) ^ f(x; y)=h(x+ y)].(Hint: consider three out of four disjoint events that support the case f(x) + f(y) 6=f(x; y).)2. Prove that Prx;y[f(x) 6=h(x) ^ f(y)=h(y) ^ f(x; y)=h(x+ y)] � �(f)� 2�(f)2.(Hint: lower-bound the said probability by Prx;y[f(x) 6= h(x)] � (Prx;y[f(x) 6= h(x) ^ f(y) 6= h(y)] +Prx;y[f(x) 6= h(x) ^ f(x+ y) 6= h(x+ y)]).)Note that the lower-bound "(f) � 3�(f) � 6�(f)2 increases with �(f) only in the case that �(f) �1=4. Furthermore, the lower-bound is useless in the case that �(f) � 1=2. Thus an alternativelower-bound is needed in case �(f) approaches 1=2 (or is larger than it); see Exercise 36.Exercise 36 (a better analysis of the BLR Linearity Test (cf. [12])) In continuation to Ex-ercise 35, use the following guidelines in order to prove that "(f) � min(1=7; �(f)=2). Speci�cally,focusing on the case that "(f) < 1=7, show that f is 2"(f)-close to some homomorphism (and thus"(f) � �(f)=2).1. De�ne the vote of y regarding the value of f at x as �y(x) def= f(x+ y)� f(y), and de�ne �(x)as the corresponding plurality vote (i.e., �(x) def= argmaxv2Hfjfy2G : �y(x)=vgjg).Prove that, for every x 2 G, it holds that Pry[�y(x) = �(x)] � 1� 2"(f).Extra guideline: Fixing x, call a pair (y1; y2) good if f(y1) + f(y2 � y1) = f(y2) and f(x + y1) +f(y2 � y1) = f(x + y2). Prove that, for any x, a random pair (y1; y2) is good with probability atleast 1 � 2"(f). On the other hand, for a good (y1; y2), it holds that �y1(x) = �y2(x). Show that47

the graph in which edges correspond to good pairs must have a connected component of size at least(1� 2"(f)) � jGj. Note that �y(x) is identical for all vertices y in this connected component, which inturn contains a majority of all y's in G.2. Prove that � is a homomorphism; that is, prove that, for every x; y 2 G, it holds that�(x) + �(y) = �(x+ y).Extra guideline: Prove that �(x) + �(y) = �(x + y) holds by considering the somewhat �cticiousexpression Prr2G[�(x) + �(y) 6= �(x + y)], and showing that it is structly smaller than 1 (and hence�(x) + �(y) 6= �(x+ y) is false). Upper-bound the probabilistic expression byPrr[�(x) 6=f(x + r) � f(r) _ �(y) 6=f(r) � f(r � y) _ �(x + y) 6=f(x+ r)� f(r � y)]:Use the union bound (and Item 1), and note that Prr[�(x) 6= f(x+ r)� f(r)] < 2"(f) < 1=3, whereasPrr[�(y) 6= f(r)� f(r� y)] = Prr0 [�(y) 6= f(y+ r0)� f(r0)] and Prr[�(x+ y) 6= f(x+ r)� f(r� y)] =Prr0 [�(x + y) 6= f(x+ y + r0)� f(r0)] (by substituting r0 = r � y).3. Prove that f is 2"(f)-close to �.Extra guideline: By Item 1, for every x, it holds that Pry[f(x + y) � f(y) = �(x)] � 1 � 2"(f).Thus, there exists y 2 G such that Prx[f(x + y) � f(y) = �(x)] � 1 � 2"(f), and for z = x + y wehave Prz[f(z) � f(y) = �(z � y)] � 1 � 2"(f). Using Item 2 and letting � def= f(y) � �(y), we havePrz[f(z) = �(z)+�] � 1�2"(f). Prove that Prx;y[(�(x)+�)+(�(y)+�) = �(x+y)+�] � 1�7"(f) > 0,using "(f) < 1=7, Prx;y[f(x)+ f(y) = f(x+ y)] = 1� "(f), and Prx[f(x) = �(x)+ �] � 1� 2"(f) (andthe analogous statements for y and x+ y). Using Item 2, � = 0 follows.We comment that better bounds on the behavior of "(f) as a function of �(f) are known.Exercise 37 Let M be a non-zero m-by-n matrix over GF(p). Prove that Prr;s[r>Ms 6= 0] �(1� p�1)2, where r (resp., s) is a random m-ary (resp., n-ary) vector.Guideline: Prove that if v 6= 0m then Prs[v>s = 0] = p�1, and that if M has rank � then Prr[r>M = 0n] =p��.Exercise 38 Show that 3SAT is reducible to gapCSPf1;:::;7gt for t(m) = 1=m, where gapCSP is asin De�nition 18. Furthermore, show that the size of the resulting gapCSP instance is linear in thelength of the input formula.Guideline: Given an instance of 3SAT, consider the graph in which vertices correspond to clauses of , edges correspond to pairs of clauses that share a variable, and the constraints represent the naturalconsistency condition regarding partial assignments that satisfy the clauses. See a similar construction inExercise 33.Exercise 39 Show that, for any �xed �nite � and constant c > 0, the problem gapCSP�c is inPCP(log; O(1)).Guideline: Consider an oracle that, for some satisfying assignment for the CSP-instance (G;�), provides atrivial encoding of the assignment; that is, for a satisfying assignment � : V ! �, the oracle responds to thequery (v; i) with the ith bit in the binary representation of �(v). Consider a veri�er that uniformly selectsan edge (u; v) of G and checks the constraint �(u;v) when applied to the values �(u) and �(v) obtained fromthe oracle. 48

Exercise 40 For any constant � and d � 14, show that gapCSP� can be reduced to itself suchthat the instance at the target of the reduction is a d-regular expander, and the fraction of violatedconstraints is preserved up to a constant factor. That is, the instance (G;�) is reduced to (G1;�1)such that G1 is a d-regular expander graph and vlt(G1;�1) = �(vlt(G;�)). Furthermore, makesure that jG1j = O(jGj) and that each vertex in G1 has at least d=2 self-loops.Guideline: First, replace each vertex of degree d0 > 3 by a 3-regular expander of size d0, and connect eachof the original d0 edges to a di�erent vertex of this expander, thus obtaining a graph of maximum degree4. Maintain the constraints associated with the original edges, and associate the equality constraint (i.e.,�(i; j) = 1 if and only if i = j) to each new edge (residing in any of the added expanders). Next, denotingthe number of vertices in the resulting graph by N1, add to this graph a 3-regular expander of size N1 (whileassociating with these edges the trivially satis�ed constraint �(i; j) = 1 for all i; j 2 �). Finally, add atleast d=2 self-loops to each vertex (using again trivially satis�ed constraints), so to obtain a d-regular graph.Prove that this sequence of modi�cations may only decrease the fraction of violated constraints, and thatthe decrease is only by a constant factor. The latter assertion relies on the equality constraints associatedwith the small expanders used in the �rst step.Exercise 41 (free bit complexity zero) Note that only sets in BPP have PCPs of query com-plexity zero. Furthermore, Exercise 31 implies that only sets in P have PCP systems of logarithmicrandomness and query complexity zero.1. Show that only sets in P have PCP systems of logarithmic randomness and free-bit complexityzero.(Hint: Consider an application of the FGLSS-reduction to a set having a PCP of free-bit complexity zero.)2. In contrast, show that Graph Non-Isomorphism has a PCP system of free-bit complexity zero(and linear randomness complexity).Exercise 42 (free bit complexity one) In continuation to Exercise 41, prove that only sets inP have PCP systems of logarithmic randomness and free-bit complexity one.Guideline: Consider an application of the FGLSS-reduction to a set having a PCP of free-bit complexityone and randomness complexity r. Note that the question of whether the resulting graph has an independentset of size 2r can be expressed as a 2CNF formula of size poly(2r).References[1] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Veri�cation and In-tractability of Approximation Problems. Journal of the ACM, Vol. 45, pages 501{555, 1998.Preliminary version in 33rd FOCS, 1992.[2] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP.Journal of the ACM, Vol. 45, pages 70{122, 1998. Preliminary version in 33rd FOCS, 1992.[3] L. Babai. Trading Group Theory for Randomness. In 17th ACM Symposium on the Theoryof Computing, pages 421{429, 1985.[4] L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time has Two-ProverInteractive Protocols. Computational Complexity, Vol. 1, No. 1, pages 3{40, 1991. Preliminaryversion in 31st FOCS, 1990. 49

[5] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in PolylogarithmicTime. In 23rd ACM Symposium on the Theory of Computing, pages 21{31, 1991.[6] L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System and a Hierarchyof Complexity Classes. Journal of Computer and System Science, Vol. 36, pp. 254{276, 1988.[7] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability { TowardsTight Results. SIAM Journal on Computing, Vol. 27, No. 3, pages 804{915, 1998. Extendedabstract in 36th FOCS, 1995.[8] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micali and P. Rogaway.Everything Provable is Probable in Zero-Knowledge. In Crypto88, Springer-Verlag LectureNotes in Computer Science (Vol. 403), pages 37{56, 1990[9] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Interactive Proofs:How to Remove Intractability. In 20th ACM Symposium on the Theory of Computing, pages113{131, 1988.[10] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of prox-imity, Shorter PCPs and Applications to Coding. In 36th ACM Symposium on the Theory ofComputing, pages 1{10, 2004. Full version in ECCC, TR04-021, 2004.[11] E. Ben-Sasson and M. Sudan. Simple PCPs with Poly-log Rate and Query Complexity.ECCC, TR04-060, 2004.[12] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to NumericalProblems. Journal of Computer and System Science, Vol. 47, No. 3, pages 549{595, 1993.[13] R. Boppana, J. H�astad, and S. Zachos. Does Co-NP Have Short Interactive Proofs? Infor-mation Processing Letters, 25, May 1987, pages 127-132.[14] G. Brassard, D. Chaum and C. Cr�epeau. Minimum Disclosure Proofs of Knowledge. Journalof Computer and System Science, Vol. 37, No. 2, pages 156{189, 1988. Preliminary versionby Brassard and Cr�epeau in 27th FOCS, 1986.[15] I. Dinur. The PCP Theorem by Gap Ampli�cation. ECCC, TR05-046, 2005.[16] I. Dinur and O. Reingold. Assignment-testers: Towards a combinatorial proof of the PCP-Theorem. In 45th IEEE Symposium on Foundations of Computer Science, pages 155{164,2004.[17] U. Feige, S. Goldwasser, L. Lov�asz and S. Safra. On the Complexity of Approximating theMaximum Size of a Clique. Unpublished manuscript, 1990.[18] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximating Clique is almostNP-complete. Journal of the ACM, Vol. 43, pages 268{292, 1996. Preliminary version in 32ndFOCS, 1991.[19] L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interactive protocols. In3rd IEEE Symp. on Structure in Complexity Theory, pages 156{161, 1988. See errata in 5thIEEE Symp. on Structure in Complexity Theory, pages 318{319, 1990.50

[20] M. F�urer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Completeness andSoundness in Interactive Proof Systems. Advances in Computing Research: a research annual,Vol. 5 (Randomness and Computation, S. Micali, ed.), pages 429{442, 1989.[21] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithmsand Combinatorics series (Vol. 17), Springer, 1999.[22] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University Press, 2001.[23] O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge University Press,2004.[24] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity orAll Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol. 38, No.3, pages 691{729, 1991. Preliminary version in 27th FOCS, 1986.[25] O. Goldreich, S. Vadhan and A. Wigderson. On interactive proofs with a laconic provers.Computational Complexity, Vol. 11, pages 1{53, 2002.[26] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive ProofSystems. SIAM Journal on Computing, Vol. 18, pages 186{208, 1989. Preliminary version in17th STOC, 1985. Earlier versions date to 1982.[27] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive Proof Systems.Advances in Computing Research: a research annual, Vol. 5 (Randomness and Computation,S. Micali, ed.), pages 73{90, 1989. Extended abstract in 18th STOC, 1986.[28] J. H�astad. Clique is hard to approximate within n1��. Acta Mathematica, Vol. 182, pages105{142, 1999. Preliminary versions in 28th STOC (1996) and 37th FOCS (1996).[29] J. H�astad. Getting optimal in-approximability results. In 29th ACM Symposium on theTheory of Computing, pages 1{10, 1997.[30] J. H�astad and S. Khot. Query e�cient PCPs with pefect completeness. In 42nd IEEESymposium on Foundations of Computer Science, pages 610{619, 2001.[31] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. In Crypto87, Springer-Verlag Lecture Notes in Computer Science (Vol. 293), pages 40{51, 1987.[32] J. Kilian. A Note on E�cient Zero-Knowledge Proofs and Arguments. In 24th ACM Sympo-sium on the Theory of Computing, pages 723{732, 1992.[33] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic Methods for Interactive ProofSystems. Journal of the ACM, Vol. 39, No. 4, pages 859{868, 1992. Preliminary version in31st FOCS, 1990.[34] S. Micali. Computationally Sound Proofs. SIAM Journal on Computing, Vol. 30 (4), pages1253{1298, 2000. Preliminary version in 35th FOCS, 1994.[35] P.B. Miltersen and N.V. Vinodchandran. Derandomizing Arthur-Merlin Games using HittingSets. Journal of Computational Complexity, to appear. Preliminary version in 40th FOCS,1999. 51

[36] R. Raz. A Parallel Repetition Theorem. SIAM Journal on Computing, Vol. 27 (3), pages763{803, 1998. Extended abstract in 27th STOC, 1995.[37] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages 869{877, 1992.Preliminary version in 31st FOCS, 1990.[38] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD Thesis, Depart-ment of Mathematics, MIT, 1999. Available from http://www.eecs.harvard.edu/�salil/papers/phdthesis-abs.html.[39] S. Vadhan. An Unconditional Study of Computational Zero Knowledge. In 45th IEEESymposium on Foundations of Computer Science, pages 176{185, 2004.

52

