Texts in Computational Complexity:
Probabilistic Proof Systems

Oded Goldreich
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

January 28, 2006

A proof is whatever convinces me.

Shimon Even (1935-2004)

Various types of probabilistic proof systems have played a central role in the development of com-
puter science in the last couple of decades. In this text, we concentrate on three such proof systems:
interactive proofs, zero-knowledge proofs, and probabilistic checkable proofs. These proof systems
share a common (untraditional) feature — they carry a probability of error; yet, this probability is
explicitly bounded and can be reduced by successive application of the proof system. The gain in
allowing this untraditional relaxation is substantial, as demonstrated by the three results mentioned
in the summary.

Summary: The association of efficient procedures with deterministic polynomial-time
procedures is the basis for viewing NP-proof systems as the canonical formulation of
proof systems (with efficient verification procedures). Allowing probabilistic verification
procedures and, moreover, ruling by statistical evidence gives rise to various types of
probabilistic proof systems. These probabilistic proof systems carry a probability of
error (which is explicitly bounded), but they offer various advantages over the traditional
(deterministic and errorless) proof systems.

Randomized and interactive verification procedures, giving rise to interactive proof sys-
tems, seem much more powerful than their deterministic counterparts. In particular,
such interactive proof systems exist for any set in PSPACE D coNP (e.g., for the set
of unsatisfied propositional formulae), whereas it is widely believed that some sets in
coN'P do not have NP-proof systems (i.e., NP # coN'P). We stress that a “proof” in
this context is not a fixed and static object, but rather a randomized (and dynamic)
process in which the verifier interacts with the prover. Intuitively, one may think of this
interaction as consisting of questions asked by the verifier, to which the prover has to
reply convincingly.

Such randomized and interactive verification procedures allow for the introduction of
zero-knowledge proofs, which are of great conceptual and practical interest (especially in
cryptography). Loosely speaking, zero-knowledge proofs are interactive proofs that yield
nothing (to the verifier) beyond the fact that the assertion is indeed valid. For example,
a zero-knowledge proof that a certain propositional formula is satisfiable does not reveal



a satisfying assignment to the formula nor any partial information regarding such an
assignment (e.g., whether the first variable can assume the value true). Thus, zero-
knowledge proofs exhibit an extreme contrast between being convinced of the validity
of a statement and learning anything in addition (while receiving such a convincing
proof). Under reasonable complexity assumptions (i.e., assuming the existence of one-
way functions), every set in NP has a zero-knowledge proof system.

NP-proofs can be efficiently transformed into a (redundant) form that offers a trade-
off between the number of (randomly) examined locations in the resulting proof and
the confidence in its validity. It particular, it is known that any set in A/P has an
NP-proof system that supports probabilistic verification such that the error probability
decreases exponentially with the number of bits read from the alleged proof. These
redundant NP-proofs are called probabilistically checkable proofs (or PCPs). In addition
to their conceptually fascinating nature, PCPs have played a key role in the study of
the complexity of approximation problems.
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Introduction and Preliminaries

The glory attached to the creativity involved in finding proofs, makes us forget that it is the less
glorified procedure of verification that gives proofs their value. Conceptually speaking, proofs are
secondary to the verification procedure; whereas technically speaking, proof systems are defined in
terms of their verification procedures.

The notion of a verification procedure presumes the notion of computation and furthermore the
notion of efficient computation. This implicit stipulation is made explicit in the definition of NP, in
which efficient computation is associated with (deterministic) polynomial-time algorithms.! Thus,
NP provides the ultimate formulation of proof systems (with efficient verification procedures) as
long as one associates efficient procedures with determainistic polynomial-time algorithms. However,
we can gain a lot if we are willing to take a somewhat non-traditional step and allow probabilistic
verification procedures. In particular:

e Interactive proof systems, which employ randomized and interactive verification procedures,
seem much more powerful than their deterministic counterparts.

e Such interactive proof systems allow for the introduction of zero-knowledge proofs, which are
of great theoretical and practical interest.

e NP-proofs can be efficiently transformed into a (redundant) form that offers a trade-off be-
tween the number of randomly examined locations in the alleged proof and the confidence in
its validity.

In all these cases, explicit bounds are imposed on the computational complexity of the verification
procedure, which in turn is personified by the notion of a verifier. Furthermore, in all these proof
systems, the verifier is allowed to toss coins and rule by statistical evidence. Thus, all these proof
systems carry a probability of error; yet, this probability is explicitly bounded and, furthermore,
can be reduced by successive application of the proof system.

1Recall that the formulation of NP-proof systems explicitly restricts the length of proofs to be polynomial in the
length of the assertion. Thus, verification is performed in a number of steps that is polynomial in the length of the
assertion. We comment that deterministic proof systems that allow for longer proofs (but require that verification is
efficient in terms of the length of the alleded proof) can be modeled as NP-proof systems by adequate padding (of
the assertion).



One important convention. When presenting a proof system, we state all complexity bounds
in terms of the length of the assertion to be proven (which is viewed as an input to the verifier).
Namely, when we say “polynomial-time” we mean time that is polynomial in the length of this
assertion. Actually, as will become evident, this is the natural choice in all the cases that we
consider. Note that this convention is consistent with the definition of NP-proof systems, because

poly(|(x,y)|) = poly(|z[) for [y| = poly(|z]).

Notational Conventions. Denote by poly the set of all integer functions bounded by a poly-
nomial and by log the set of all integer functions bounded by a logarithmic function (i.e., f € log
iff f(n) = O(logn)). All complexity measures mentioned in the subsequent exposition are assumed
to be constructible in polynomial-time.

Organization. In Section 1 we present the basic definitions and results regarding interactive proof
systems. The definition of an interactive proof systems is the starting point for a discussion of zero-
knowledge proofs, which is provided in Section 2. Section 3, which presents the basic definitions
and results regarding probabilistically checkable proofs (PCP), can be read independently of the
other sections.

1 Interactive Proof Systems

In light of the growing acceptability of randomized and distributed computations, it is only natural
to associate the notion of efficient computation with probabilistic and interactive polynomial-time
computations. This leads naturally to the notion of an interactive proof system in which the
verification procedure is interactive and randomized, rather than being non-interactive and deter-
ministic. Thus, a “proof” in this context is not a fixed and static object, but rather a randomized
(dynamic) process in which the verifier interacts with the prover. Intuitively, one may think of
this interaction as consisting of questions asked by the verifier, to which the prover has to reply
convincingly. The foregoing discussion, as well as the definition provided in Section 1.1, makes
explicit reference to a prover, whereas a prover is only implicit in the traditional definitions of
proof systems (e.g., NP-proof systems). Before turning to the actual definition, we highlight and
further discuss some of the foregoing issues.

A static object versus an interactive process. Traditionally in mathematics, a “proof” is
a fired sequence consisting of statements that are either self-evident or are derived from previous
statements via self-evident rules. Actually, both conceptually and technically, it is more accurate to
substitute the phrase “self-evident” by the phrase “commonly agreed” (because, at the last account,
self-evidence is a matter of common agreement). In fact, in the formal study of proofs (i.e., logic),
the commonly agreed statements are called axioms, whereas the commonly agreed rules are referred
to as derivation rules. We highlight a key property of mathematics proofs: proofs are viewed as
fized (static) objects. In contrast, in other areas of human activity, the notion of a “proof” has
a much wider interpretation. In particular, a proof is not a fixed object but rather a process by
which the validity of an assertion is established. For example, the cross-examination of a witness
in court is considered a proof in law, and failure to answer a rival’s claim is considered a proof in
daily discussions. The latter convention (by which failure to answer a claim is considered a proof)
is common in philosophy, politics, and often even in Science. Furthermore, some technical “proofs
by contradiction” take a similar attitude by emulating an imaginary debate with a potential generic
skeptic.



We note that, in mathematics, proofs are often considered more fundamental than their conse-
quence (i.e., the theorem). In contrast, in many daily situations, proofs are considered secondary
(in importance) to their consequence.

The aforementioned daily attitudes will be adequate in the current text, where proofs are the
object of study. We will be interested in modeling proofs that can be verified by automated proce-
dures, which are designed to check the validity of potential proofs and are oblivious of additional
features such as beauty, insight, etc. Thus, we view proofs merely as a vehicle for the verification
of the validity of the claimed assertion. In fact, this attitude gets to an extreme in the case of zero-
knowledge proofs, where we actually require that the proofs themselve be useless beyond being
convincing of the validity of the claimed assertion. We note that the proof systems that we study
refer to mundane theorems (e.g., asserting that a specific propositional formula is not satisfiable
or that a party sent a message as instructed by a predetermined protocol). We stress that the
(meta) theorems that we shall state regarding these proof systems will be proven in the traditional
mathematical sense.

Prover and Verifier. The notion of a prover is implicit in all discussions of proofs, be it in
mathematics or in other situations: the prover is the (sometimes hidden or transcendental) entity
providing the proof. In contrast, the notion of a verifier tends to be more explicit in such discussions,
which typically emphasize the verification process, or in other words the role of the verifier. Both
in mathematics and in daily situations, proofs are defined in terms of the verification procedure.
The verification procedure is considered to be relatively simple, and the burden is placed on the
party/person supplying the proof (i.e., the prover). The asymmetry between the complexity of the
verification task and the complexity of the theorem-proving task is captured by the definition of
NP-proof systems (i.e., verification is required to be efficient whereas P # AP implies that in some
cases finding adequate proofs is infeasible).

We highlight the “distrustful attitude” towards the prover, which underlies any proof system.
If the verifier trusts the prover then no proof is needed. Hence, whenever discussing a proof system
one considers a setting in which the verifier is not trusting the prover, and furthermore is skeptic
of anything that the prover says.

Completeness and Soundness. Two fundamental properties of a proof system (i.e., of a verifi-
cation procedure) are its soundness (or validity) and completeness. The soundness property asserts
that the verification procedure cannot be “tricked” into accepting false statements. In other words,
soundness captures the verifier’s ability to protect itself from being convinced of false statements
(no matter what the prover does in order to fool it). On the other hand, completeness captures the
ability of some prover to convince the verifier of true statements (belonging to some predetermined
set of true statements). Note that both properties are essential to the very notion of a proof system.

We note that not every set of true statements has a “reasonable” proof system in which each
of these statements can be proven (while no false statement can be “proven”). This fundamental
fact is given a precise meaning in results such as Godel’s Incompleteness Theorem and Turing’s
theorem regarding the undecidability of the Halting Problem. This section is devoted to the study
of a liberal notion of “reasonable proof systems”.

1.1 Definition

Loosely speaking, an interactive proof is a game between a computationally bounded verifier and
a computationally unbounded prover whose goal is to convince the verifier of the validity of some



assertion. Specifically, the verifier employs a probabilistic polynomial-time strategy. It is required
that if the assertion holds then the verifier always accepts (i.e., when interacting with an appropriate
prover strategy). On the other hand, if the assertion is false then the verifier must reject with
probability at least %, no matter what strategy is being employed by the prover. (The error
probability can be reduced by running such a proof system several times.)

Formally, a strategy for a party describes the party’s next move (i.e., its next message or its
final decision) as a function of the common input (i.e., the aforementioned assertion), its internal
coin tosses, and all messages it has received so far. That is, we assume that each party records
the outcomes of its past coin tosses as well as all the messages it has received, and determines its
moves based on these. Thus, an interaction between two parties, employing strategies A and B
respectively, is determined by the common input, denoted z, and the randomness of both parties,
denoted r4 and rp. Assuming that A takes the first move (and B takes the last one), the corre-
sponding interaction transcript (on common input z and randomness r4 and rg) is aq, 31, ..., ay, B,
where o; = A(z,r4,01,...,0i—1) and f; = B(z,rp,a1,...,q;). The corresponding final decision of
A is defined as A(x, 74, 51, ..., Bt)-

We say that a party employs a probabilistic polynomial-time strategy if its next move can be
computed in a number of steps that is polynomial in the length of the common input. In particular,
this means that, on input common input z, the strategy may only consider a polynomial in |z|
many messages, which are each of poly(|z|) length.? Intuitively, if the other party exceeds an a
priori (polynomial in |z|) bound on the total length of the messages that it is allowed to send, then
the execution is suspended. Referring to the foregoing strategies, we say that A is a probabilistic
polynomial-time strategy if, for every i and ry, (1, ..., 5;, the value of A(x,ra,[1,...,3;) can be
computed in time polynomial in |z|. Again, in proper use, it must hold that |r4|,¢ and the |5;|’s
are all polynomial in |z|.

Definition 1 (Interactive Proof systems — IP):® An interactive proof system for a set S is a two-
party game, between a verifier ezecuting a probabilistic polynomial-time strategy (denoted V') and
a prover that executes a computationally unbounded strategy (denoted P), satisfying the following
two conditions:

e Completeness: For every « € S, the verifier V always accepts after interacting with the prover
P on common input x.

e Soundness: For every x € S and every strategy P*, the verifier V' rejects with probability at
least % after interacting with P* on common input x.

We denote by TP the class of sets having interactive proof systems.

The error probability (in the soundness condition) can be reduced by successive applications of the
proof system. (This is easy to see in the case of sequential repetitions, but holds also for parallel
repetitions; see Exercise 24.) In particular, repeating the proving process for k£ times, reduces the
probability that the verifier is fooled (i.e., accepts a false assertion) to 27*, and we can afford doing
so for any k = poly(|z|). Still, we have relaxed the requirements from the verification procedure
by allowing it to interact with the prover, toss coins and risk some (bounded) error probability.
(Variants on the basic definition are discussed in Section 1.3.)

ZNeedless to say, the number of internal coin tosses fed to a polynomial-time strategy must also be bounded by a
polynomial in the length of .

3We follow the convention of specifying strategies for both the verifier and the prover. An alternative presentation
only specifies the verifier’s strategy, while rephrasing the completeness condition as follows: There exists a prover
strategy P so that, for every x € S, the verifier V always accepts after interacting with P on common input x.



The role of randomness. Randomness is essential to the power of interactive proofs; that is,
if randomness is not allowed, then interactive proof systems collapse to NP-proof systems. The
reason being that, in case the verifier is deterministic, the prover can predict the verifier’s part of
the interaction. Thus, the prover can just supply its own answers to the verifier’s (predictable)
questions, and the verifier can just check that these answers are convincing. Actually we establish
that soundness error (and not merely randomized verification) is essential to the power of interactive
proof systems (i.e., their ability to reach beyond NP-proofs).

Proposition 2 Suppose that S has an interactive proof system (P,V') with no soundness error;
that is, for every x € S and every potential strateqy P*, the verifier V' rejects with probability one
after interacting with P* on common input x. Then S € N'P.

Proof: We may assume, without loss of generality, that V' is deterministic (by just fixing arbitrarily
the contents of its random-tape and noting that both (perfect) completeness and perfect (i.e.,
errorless) soundness still hold). Since V' is deterministic, the prover may predict each message sent
by V, and thus a sequence of optimal prover’s messages (i.e., a sequence of messages leading V' to
accept x) can be (pre)determined (without interacting with V') based solely on the common input
x. (In contrast, in the case that V is randomized, its random coins may effect the messages that
it sends, which in turn may effect the optimal prover’s responses.) Thus, € S if and only if there
exists a sequence of (prover’s) messages that make (the deterministic) V" accept z. It follows that

SeNP. R

Indeed, the punch-line of the foregoing proof is that the prover gains nothing from interacting
with an easily predictable verifier (i.e., a verifier that determines its messages in deterministic
polynomial-time based on the common input and the prover’s prior messages). The prover can just
produce the entire interaction by itself (and send it to the verifier for verification). The moral is
18 that there 1s no point to interact with a party whose mowves are easily predictable. This moral
represents the prover’s point of view (regarding deterministic verifiers). Certainly, from the verifier’s
point of view it is beneficial to interact with the prover, because the latter is computationally
stronger (and thus its moves may not be easily predictable by the verifier even in case they are
predictable in an information theoretic sense).

1.2 The Power of Interactive Proofs

We have seen that randomness is essential to the power of interactive proof systems in the sense
that without randomness interactive proofs are not more powerful than NP-proofs. Indeed, the
power of interactive proof arises from the combination of randomization and interaction. We first
demonstrate this point by a simple proof system for a specific coNP-set that is not known to have
an NP-proof system, and next prove the celebrated result ZP = PSP.ACE, which suggests that
interactive proofs are much stronger than NP-proofs.

1.2.1 A simple example

One day on the Olympus, bright-eyed Athena claimed that Nectar poured out of the new
silver-coated jars tastes less good than Nectar poured out of the older gold-decorated
jars. Mighty Zeus, who was forced to introduce the new jars by the practically oriented
Hera, was annoyed at the claim. He ordered that Athena be served one hundred glasses
of Nectar, each poured at random either from an old jar or from a new one, and that she
tell the source of the drink in each glass. To everybody’s surprise, wise Athena correctly



identified the source of each serving, to which the Father of the Gods responded “my
child, you are either right or extremely lucky.” Since all gods knew that being lucky
was not one of the attributes of Pallas-Athena, they all concluded that the impeccable
goddess was right in her claim.

The foregoing story illustrates the main idea underlying the interactive proof for Graph Non-
Isomorphism, presented in Construction 3. Informally, this interactive proof system is designed
for proving dissimilarity of two given objects (in the foregoing story these are the two brands of
Nectar, whereas in Construction 3 these are two non-isomorphic graphs). We note that, typically,
proving similarity between objects is easy, because one can present a mapping (of one object to the
other) that demonstrates this similarity. In contrast, proving dissimilarity seems harder, because
in general there seems to be no succinct proof of dissimilarity. More generally, it is typically easy
to prove the existence of an easily verifiable structure in the given object by merely presenting this
structure, but proving the non-existence of such a structure seems hard. Formally, membership in
an NP-set is proved by presenting an NP-witness, but it is not clear how to prove the non-existence
of such witness. Indeed, recall that the common belief is that coN'P # NP.

Recall that two graphs, G; =(V1, Ey) and Gy = (V3, Ey), are called isomorphic if there exists a
1-1 and onto mapping, ¢, from the vertex set Vi to the vertex set V5 such that {u,v} € E; if and
only if {¢(v), p(u)} € Ey. The (“edge preserving”) mapping ¢, if existing, is called an isomorphism
between the graphs. The following protocol allows proving that two graphs are not isomorphic.
(We note that it is not known whether or not such a statement can be proven via an NP-proof
system.)

Construction 3 (Interactive proof for Graph Non-Isomorphism):

e Common Input: A pair of graphs, G1=(V1, E1) and Go=(V, E3). Suppose, without loss of
generality, that Vi = {1,2,...,|V1|}, and similarly for Vj.

e Verifier’s first step (V1): The verifier selects at random one of the two input graphs, and sends
to the prover a random tsomorphic copy of this graph. Namely, the verifier selects uniformly
o € {1,2}, and a random permutation w from the set of permutations over the vertex set V.
The verifier constructs a graph with vertex set V, and edge set

def
E= {{r(u),n(v)} : {u,v} € E,}
and sends (V,, E) to the prover.

e Motivating Remark: If the input graphs are non-isomorphic, as the prover claims, then the
prover should be able to distinguish (not necessarily by an efficient algorithm) isomorphic
copies of one graph from isomorphic copies of the other graph. However, if the input graphs
are isomorphic, then a random isomorphic copy of one graph is distributed identically to a
random isomorphic copy of the other graph.

e Prover’s step: Upon receiving a graph, G' = (V' E"), from the verifier, the prover finds a
7 € {1,2} such that the graph G' is isomorphic to the input graph G,. (If both T=1,2 satisfy
the condition then T is selected arbitrarily. In case no T € {1,2} satisfies the condition, T is
set to 0). The prover sends T to the verifier.

e Verifier’s second step (V2): If the message, T, received from the prover equals o (chosen in
Step V1) then the verifier outputs 1 (i.e., accepts the common input). Otherwise the verifier
outputs 0 (i.e., rejects the common input).



The verifier’s strategy in Construction 3 is easily implemented in probabilistic polynomial-time.
We do not known of a probabilistic polynomial-time implementation of the prover’s strategy, but
this is not required. The motivating remark justifies the claim that Construction 3 counstitutes an
interactive proof system for the set of pairs of non-isomorphic graphs.* Recall that the latter is a
coNP-set (which is not known to be in N'P).

1.2.2 The full power of interactive proofs

The interactive proof system of Construction 3 refers to a specific coNP-set that is not known to
be in A'P. It turns out that interactive proof systems are powerful enough to prove membership in
any coNP-set (e.g., prove that a graph is not 3-colorable). Thus, assuming that NP # coN P, this
establishes that interactive proof systems are more powerful than NP-proof systems. Furthermore,
the class of sets having interactive proof systems coincides with the class of sets that can be decided
using a polynomial amount of work-space.

Theorem 4 (The IP Theorem): 7P = PSP.ACE.

Recall that it is widely believed that AP is a proper subset of PSPACE. Thus, under this
conjecture, interactive proofs are more powerful than NP-proofs.

Sketch of the Proof of Theorem 4

Theorem 4, was established using algebraic methods (see details below). In particular, the following
approach — unprecedented in complexity theory — was employed: In order to demonstrate that
a particular set is in a particular class, an arithmetic generalization of the Boolean problem is
presented, and (elementary) algebraic methods are applied for showing that the arithmetic problem
is solvable within the class. Following is a sketch of the proof. We first show that coNP C ZP, by
presenting an interactive proof system for the coN P-complete set of non-satisfiable CNF formulae.
Next we extend this proof system to obtain one for the PSP.ACE-complete set of non-satisfiable
Quantified Boolean Formulae. Finally, we observe that ZP C PSPACE.

Teaching note: We present a sketch of the proof that focuses on the main ideas, and
omit various implementation details (which can be found in [33, 37]). Furthermore, we
devote most of the presentation to establishing that coN’P C ZP, and recommend doing

the same in class.

Arithmetization of Boolean (CNF) formulae: Given a Boolean (CNF) formula, we replace
the Boolean variables by integer variables, OR-clauses by sums, and the top level conjunction by
a product. Then we sum over all 0-1 assignments to these variables. For example, the Boolean
formula

(Ig V —x5 V I17) VAN (I5 \Y Jfg) VAN (—|J}3 \Y —II4)

is replaces by the arithmetic expression

(w3 4+ (I —25) +217) - (25 + 29) - (1 = 23) + (1 — 24))

*In case G is not isomorphic to G2, no graph can be isomorphic to both G; and G3. On the other hand, if
G1 and G are isomorphic then for every G' the number of isomorphisms between 7 and G’ equals the number of
isomorphisms between G'» and G'. It follows that in this case G’ yields no information about the o chosen by V, and
so no prover may convince V with probability exceeding 1/2.



and the Boolean formula is non-satisfiable if and only if the sum of the arithmetic expression, taken
over all choices of 1,9, ...,x17 € {0,1}, equals 0. Observe that the arithmetic expression is a low
degree polynomial over the integers (i.e., its degree is upper-bounded by the number of clauses).
Also observe that, for any Boolean formula, the value of the corresponding arithmetic expression
(for any choice of zy,...,z, € {0,1}) resides within the interval [0,v™], where v is the maximum
number of variables in a clause, and m is the number of clauses. Summing over all 2" possible 0-1
assignments, where n < vm is the number of variables, the result resides in [0, 2"v™].

Moving to a Finite Field: Whenever we check equality between two integers in [0, M], it suffices
to check equality mod ¢, where ¢ > M. The benefit is that the arithmetic is now in a finite field
(mod ¢) and so certain things are “nicer” (e.g., uniformly selecting a value). Thus, proving that a
CNF formula is not satisfiable reduces to proving equality of the following form

Yo > d(@r, ) =0 (mod g), (1)

x1=0,1 zn,=0,1

where ¢ is a low degree multi-variate polynomial.

The actual protocol: stripping summations in iterations. We strip off summations in
iterations. In each iteration the prover is supposed to supply the univariate polynomial representing
the expression in one (currently stripped) variable. (By the foregoing observation, this is a low
degree polynomial and so has a short description.) The verifier checks that the polynomial (say,
p) is of low degree, and that it corresponds to the current value (say, v) being claimed (i.e.,
p(0) + p(1) = v). Next, the verifier randomly instantiates the variable (i.e., selects uniformly
r € GF(q))®, yielding a new value to be claimed for the resulting expression (i.e., the verifier
computes v < p(r), and expects a proof that the residual expression equals v). The verifier sends
the uniformly chosen instantiation (i.e., 7) to the prover, and the proceed to the next iteration
(which refers to the residual expression and to the value v). At the end of the last iteration, the
verifier has a closed form expression (i.e., an expression without formal summations), which can be
easily checked against the claimed value.

A single iteration (revisited): The i'? iteration is aimed at proving a claim of the form

Z Z ¢(T1,...,Ti_1,$i,$i+1,...,xn)E’Ui_l (mod q), (2)

z;=0,1 z,=0,1

where vg = 0, and 7y, ...,7_1 and v;_1 are as determined in previous iterations. The it® iteration
consists of two steps (messages): a prover step followed by a verifier step. The prover is supposed
to provide the verifier with the univariate polynomial p; that satisfies

def
pi(2) = Z Z O(T1y ey Tim1y Zy Tig 1y ey Tpy) MoOd q . (3)
$i+1:071 :Enzo,l

Denote by p the actual polynomial sent by the prover (i.e., the honest prover sets p, = p;). Then,
the verifier first checks if pi(0) +pi(1) =v;—1 (mod ¢), and next uniformly selects r; € GF(¢) and
sends it to the prover. Needless to say, the verifier will reject if the first check is violated. The
claim to be proven in the next iteration is

Z Z O(T1y ey T 1, Tiy Tig 1y ey Tp) = v (mod @), (4)

$i+1:071 wn:0,1

SHere and elsewhere, we denote by GF(q) the finite field having ¢ elements.
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where v; & pi(ri) mod g.

Completeness of the protocol: When the initial claim (i.e., Eq. (1)) holds, the prover can
supply the correct polynomials (as determined in Eq. (3)), and this will lead the verifier to always
accept.

Soundness of the protocol: It suffices to upper-bound the probability that, for a particular
iteration, the entry claim (i.e., Eq. (2)) is false while the ending claim (i.e., Eq. (4)) is valid. Both
claims refer to the current summation expression being equal to the current value, where ‘current’
means either at the beginning of the iteration or at its end. Let p(-) be the actual polynomial
representing the expression when stripping the current variable, and let p’(-) be any potential
answer by the prover. We may assume that p’(0) +p'(1) = v (mod ¢) and that p’ is of low-degree
(as otherwise the verifier will reject). Using our hypothesis (that the entry claim of Eq. (2) is false),
we know that p(0) + p(1) Zv (mod ¢). Thus, p’ and p are different low-degree polynomials, and
so they may agree on very few points (if at all). In case the verifier instantiation (i.e., its choice of
random r) does not happen to be one of these few points, the ending claim (i.e., Eq. (4)) is false
too. Details are left as an exercise (see Exercise 25).

This establishes that the set of non-satisfiable CNF formulae has an interactive proof system.
Actually, the same proof system can be used to prove that a given formula has a given number of
satisfying assignment; i.e., prove membership in the (“counting”) set

{(¢, k) : {7 2 o(7) = 1}] = k}.

Using adequate reductions, it follows that every problem in #P has an interactive proof system (i.e.,
for every R € PC, the set {(z,k) : |[{y : (z,y) € R}| = k} is in ZP). Proving that PSPACE C IP

requires a little more work.

Interactive Proofs for PSPACE (basic idea). We present an interactive proof for the set
of satisfied Quantified Boolean Formulae (QBF), which is complete for PSP.ACE. Recall that the
number of quantifiers in such formulae is unbounded (e.g., it may be polynomially related to the
length of the input), that there are both existential and universal quantifiers, and furthermore these
quantifiers may alternate. In the arithmetization of these formulae, we replace existential quantifiers
by summations and universal quantifiers by products. Two difficulties arise when considering the
application of the forgoing protocol to the resulting arithmetic expression. Firstly, the value of the
expression (which may involve a big number of nested formal products) is only upper-bounded by a
double exponential function (in the length of the input). Secondly, when stripping a summation (or
a product), the expression may be a polynomial of high degree (due to nested formal products that
may appear in the remaining expression). For example, both phenomena occur in the following

expression
Z H H (2 +yn)

z=0,1y1=0,1 yn=0,1

which equals 37, 2" (1+ :c)znfl. The first difficulty is easy to resolve by using the Chinese
Reminder Theorem (i.e., if two integers in [0, M] are different then they must be different modulo
most of the primes in the interval [3, poly(log M)]). Thus, we let the verifier selects a random
prime ¢ of length that is linear in the length of the original formula, and the two parties consider
the arithmetic expression reduced modulo this q. The second difficulty is resolved by noting that
PSPACE is actually reducible to a special form of QBF in which no variable appears both to the left
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and to the right of more than one universal quantifier (see the proof of the PSPACE-completeness
of QBF or alternatively Exercise 27). It follows that when arithmetizing and stripping summations
(or products) from the resulting arithmetic expression, the corresponding univariate polynomial is
of low degree (i.e., at most twice the length of the original formula, where the factor of two is due
to the single universal quantifier that has this variable quantified on its left and appearing on its
right).

IP is contained in PSPACE: We show that, for every interactive proof system, there exists
an optimal prover strategy that can be implemented in polynomial-space, where an optimal prover
strategy is one that maximizes the probability that the prescribed verifier accepts the common
input. It follows that ZP C PSP.ACE, because (for every S € ZP) we can emulate the interaction
of the prescribed verifier with an optimal prover strategy in polynomial space.

Proposition 5 Let V' be a probabilistic polynomial-time interactive machine. Then, there exists a
polynomial-space computable prover strateqy f that, for every x mazimizes the probability that V
accepts x. That is, for every P* and every x it holds that the probability that V accepts x after
interacting with P* is upper-bounded by the probability that V' accepts x after interacting with f.

Proof Sketch: For every common input « and any possible partial transcript v of the interaction
so far, the strategy f determines an optimal next message for the prover by considering all possible
coin tosses of the verifier that are consistent with (x,v). Specifically, f is determined recursively
such that f(x,v) = m if m maximizes the number of verifier coins that are consistent with (x,~)
and lead the verifier to accept when subsequent prover moves are determined by f (which is where
recursion is used). That is, coins r support the setting f(x,v) = m, where v = (a1, f1, ..., &y, Bt),
if the following two conditions hold:

1. 7 is consistent with (z,7), which means that g; = V(z,r, aq,...,q;) fori =1, ..., ¢.

2. r leads V to accept (when subsequent prover moves are determined by f), which means
that V(z,r, aq,...,a¢,m, apt9, ...,ar) = 1, where a1 = f(z,v,m, Bey1, ..., ;) and §; =
Vi, ryaq, ., o, my gy, o) for i =t +1,..., 7 — 1.

That is, f(z,y) = m if m maximizes the value of E[f(z, v, m, V (x, Ry, m))], where R, is selected uni-
formly among the 7’s that are consistent with (z,~). Thus, f(x,v) can be computed in polynomial-
space when given oracle access to f(z,7,-,-), and the proposition follows by standard composition
of space-bounded computations. O

1.3 Variants and finer structure: an overview

In this subsection we consider several variants on the basic definition of interactive proofs as well
as finer complexity measures. This is an advanced subsection, which only provides an overview of
the various notions and results (as well as pointers to proofs of the latter).

1.3.1 Arthur-Merlin games a.k.a public-coin proof systems

The verifier’s messages in a general interactive proof system are determined arbitrarily (but effi-
ciently) based on its view of the interaction so far (which includes its internal coin tosses, which
without loss of generality can take place at the onset of the interaction). In public-coin proof systems
(a.k.a Arthur-Merlin proof systems), the verifier’s messages are the outcome of any coin it tosses at
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the current round. Assuming, without loss of generality, that the verifier tosses the same number
{ of coins in each round, we may assume that the verifier’s message in each round consists of the
outcome of £ coin tosses (because any other string that the verifier may compute is determined by
the coins tossed so far). Note that the proof systems presented in the proof of Theorem 4 are of
the public-coin type, whereas this is not the case for the Graph Non-Isomorphism proof system (of
Construction 3). Thus, although not all natural proof systems are of the public-coin type, every
set having an interactive proof system also has a public-coin interactive proof system. This means
that, in the context of interactive proof systems, asking random questions is as powerful as asking
clever questions.

Indeed, public-coin proof systems are a syntactically restricted type of interactive proof systems.
This restriction may make the design of such systems more complex, but potentially facilitates their
analysis (and especially the analysis of a generic system). Another advantage of public-coin proof
systems is that the verifier’s actions (except for its final decision) are oblivious of the prover’s
messages. This property is used in the proof of Theorem 12.

1.3.2 Interactive proof systems with two-sided error

In Definition 1 error probability is allowed in the soundness condition but not in the completeness
condition. In such a case, we say that the proof system has perfect completeness (or one-sided error
probability). A more general definition allows an error probability (upper-bounded by, say, 1/3) in
both the completeness and soundness conditions. Note that sets having such generalized (two-sided
error) interactive proofs are also in PSPACE, and thus allowing two-sided error does not increase
the power of interactive proofs. See further discussion at the end of §1.3.3.

1.3.3 A hierarchy of interactive proof systems

Definition 1 only refers to the total computation time of the verifier, and thus allows an arbitrary
(polynomial) number of messages to be exchanged. A finer definition refers to the number of
messages being exchanged (also called the number of rounds).

Definition 6 (The round-complexity of interactive proof):

e For an integer function m, the complezity class TP(m) consists of sets having an interactive
proof system in which, on common input x, at most m(|x|) messages are exchanged between
the parties.”

e For a set of integer functions, M, we let TP(M) o Ument ZP(m). Thus, TP = IP(poly).

For example, interactive proof systems in which the verifier sends a single message that is answered
by a single message of the prover corresponds to ZP(2). Clearly, NP C ZP(1), yet the inclusion
may be strict because in ZP(1) the verifier may toss coins after receiving the prover’s single message.
(Also note that ZP(0) = coRP.) Concerning the finer structure of the IP-hierarchy, the following
is known:

e A linear speed-up (see [6] and [27]): For every integer function, f, such that f(n) > 2 for all
n, the class ZP(O(f(-))) collapses to the class ZP(f(-)). In particular, ZP(O(1)) collapses to
IP(2).

6 An even finer structure emerges when considering also the total length of the messages sent by the prover (see [25]).
"We count the total number of messages exchanged regardless of the direction of communication.

13



e The class ZP(2) contains sets not known to be in N'P; e.g., Graph Non-Isomorphism (see
Construction 3). However, under plausible intractability assumptions, ZP(2) = NP (see [35]).

e If coN'P C IP(2) then the Polynomial-Time Hierarchy collapses (see [13]).

It is conjectured that coN P is not contained in ZP(2), and consequently that interactive proofs with
an unbounded number of message exchanges are more powerful than interactive proofs in which
only a bounded (i.e., constant) number of messages are exchanged.® The class ZP(1) (also denoted
MA) seems to be the “real” randomized (and yet non-interactive) version of NP: Here the prover
supplies a candidate (polynomial-size) “proof”, and the verifier assesses its validity probabilistically
(rather than deterministically).

The IP-hierarchy (i.e., ZP(:)) equals an analogous hierarchy, denoted AM(-), that refers to
public-coin (a.k.a Arthur-Merlin) interactive proofs. That is, for every integer function f, it holds
that AM(f) = ZP(f). For f > 2, it is also the case that AM(f) = AM(O(f)); actually, the
aforementioned linear speed-up for ZP(-) is established by combining the following two results:

1. Emulating ZP(-) by AM(-) (see [27]): ZP(f) C AM(f + 3).
2. Linear speed-up for AM(-) (see [6]): AM(2f) C AM(f).

In particular, ZP(O(1)) = AM(2), even if AM(2) is restricted such that the verifier tosses no
coins after receiving the prover’s message. (Note that ZP(1) = AM(1) and ZP(0) = AM(0) are
trivial.) We comment that it is common to denote AM(2) by AM, which is indeed inconsistent
with the convention of using ZP to denote ZP(poly).

The fact that ZP(O(f)) = ZP(f) is proved by establishing an analogous result for AM(-)
demonstrates the advantage of the public-coin setting for the study of interactive proofs. A similar
phenomenon occurs when establishing that the IP-hierarchy equals an analogous two-sided error
hierarchy (see Exercise 28).

1.3.4 Something completely different

We stress that although we have relaxed the requirements from the verification procedure, by
allowing it to interact with the prover, toss coins, and risk some (bounded) error probability, we
did not restrict the validity of its assertions by assumptions concerning the potential prover. This
should be contrasted with other notions of proof systems, such as computationally-sound ones (see
§1.4.2), in which the validity of the verifier’s assertions depends on assumptions concerning the
prover(s).

1.4 On computationally bounded provers: an overview

Recall that our definition of interactive proofs (i.e., Definition 1) makes no reference to the com-
putational abilities of the potential prover. This fact has two conflicting consequences:

1. The completeness condition does not provide any upper bound on the complexity of the
corresponding proving strategy (which convinces the verifier to accept valid assertions).

2. The soundness condition guarantees that, regardless of the computational effort spend by a
cheating prover, the verifier cannot be fooled to accept invalid assertions (with probability
exceeding the soundness error).

8Note that the linear speed-up cannot be applied for an unbounded number of times, because each application
may increase (e.g., square) the time-complexity of verification.
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Note that providing an upper-bound on the complexity of the (presecribed) prover strategy P of
a specific interactive proof system (P, V') only strengthens the claim that (P, V') is a proof system
for the corresponding set (of valid assertions). We stress that the presecribed prover strategy is
referred to only in the completeness condition (and is irrelevant to the soundness condition). On
the other hand, relaxing the definition of interactive proofs such that soundness holds ounly for a
specific class of cheating prover strategies (rather than for all cheating prover strategies) weakens
the corresponding claim. In this advanced section we consider both possibilities.

Teaching note: Indeed, this is an advanced subsection, which is best left for indepen-
dent reading. It merely provides an overview of the various notions, and the reader is
directed to the notes for further detail (i.e., pointers to the relevant literature).

1.4.1 How powerful should the prover be?

Assume that a set S is in ZP. This means that there is a verifier V' that can be convinced to accept
any input in S but cannot be fooled to accept any input not in S (except with small probability).
One may ask how powerful should a prover be such that it can convince the verifier V to accept any
input in S. Note that Proposition 5 asserts that an optimal prover strategy can be implemented
in polynomial-space (and that we cannot expect better for a generic set in PSPACE = ZP), but
we will seek better upper-bounds on the complexity of the prover that convinces a specific verifier
(which in turn corresponds to a specific set S). More interestingly, considering all possible verifiers
that give rise to interactive proof systems for S, we ask what is the minimum power required from
a prover that satisfies the completeness requirement with respect to one of these verifiers?

We stress that, unlike the case of computationally-sound proof systems (see §1.4.2), we do not
restrict the power of the prover in the soundness condition, but rather consider the minimum com-
plexity of provers meeting the completeness condition. Specifically, we are interested in relatively
efficient provers that meet the completeness condition. The term “relatively efficient prover” has
been given three different interpretations.

1. A prover is considered relatively efficient if, when given an auxiliary input (in addition to the
common input in S), it works in (probabilistic) polynomial-time. Specifically, in case S € NP,
the auxiliary input maybe an NP-proof that the common input is in the set. Still, even in
this case the interactive proof need not consist of the prover sending the auxiliary input to
the verifier; for example, an alternative procedure may allow the prover to be zero-knowledge
(see Construction 10).

This interpretation is adequate and in fact crucial for applications in which such an auxiliary
input is available to the otherwise polynomial-time parties. Typically, such auxiliary input
is available in cryptographic applications in which parties wish to prove in (zero-knowledge)
that they have correctly conducted some computation. In these cases the NP-proof is just
the transcript of the computation by which the claimed result has been generated, and thus
the auxiliary input is available to the proving party.

2. A prover is considered relatively efficient if it can be implemented by a probabilistic polynomial-
time oracle machine with oracle access to the set S itself. (Note that the prover in Construc-
tion 3 has this property.)

This interpretation generalizes the notion of self-reducibility of NP-sets. (Recall that by
self-reducibility of an NP-set we mean that the search problem of finding an NP-witness is
polynomial-time reducible to deciding membership in the set.)
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3. A prover is considered relatively efficient if it can be implemented by a probabilistic machine
that runs in time that is polynomial in the deterministic complexity of the set. This inter-
pretation relates the difficulty of convincing a “lazy verifier” to the complexity of finding the
truth alone.

Hence, in contrast to the first interpretation, which is adequate in settings where assertions
are generated along with their NP-proofs, the current interpretation is adequate in settings
in which the prover is given only the assertion and has to find a proof to it by itself (before
trying to convince a lazy verifier of its validity).

1.4.2 Computational-soundness

Relaxing the soundness condition such that it only refers to relatively-efficient ways of trying to
fool the verifier (rather than to all possible ways) yields a fundamentally different notion of a proof
system. Assertions proven in such a system are not necessarily correct; they are correct only if the
potential cheating prover does not exceed the presumed complexity limits. Asin §1.4.1, the notion
of “relative efficiency” can be given different interpretations, the most popular one being that the
cheating prover strategy can be described by a (non-uniform) family of polynomial-size circuits.
The latter interpretation coincides with the first interpretation used in §1.4.1 (i.e., a probabilistic
polynomial-time strategy that is given an auxiliary input (of polynomial length)). Specifically, the
soundness condition is replaced by the following computational soundness condition that asserts that
it is infeasible to fool the verifier into accepting false statements:

For every prover strategy that is implementable by a family of polynomial-size circuits
{Cy}, and every sufficiently long = € {0,1}*\ S, the probability that V' accepts x when
interacting with C) is less than 1/2.

As in case of standard soundness, the computational-soundness error can be reduced by repetitions.
We warn, however, that unlike in the case of standard soundness (where both sequential and
parallel repetitions will do), the computational-soundness error cannot always be reduced by parallel
repetitions.

It is common and natural to consider proof systems in which the prover strategies considered
both in the completeness and soundness conditions satisfy the same notion of relative efficiency.
Protocols that satisfy these conditions with respect to the aforementioned interpretation are called
arguments. We mention that argument systems may be more efficient (e.g., in terms of their
communication complexity) than interactive proof systems.

2 Zero-Knowledge Proof Systems

Zero-Knowledge proofs are fascinating and extremely useful constructs. Their fascinating nature is
due to their seemingly contradictory definition: zero-knowledge proofs are both convincing and yet
yield nothing beyond the validity of the assertion being proven. Their applicability in the domain
of cryptography is vast; they are typically used to force malicious parties to behave according to a
predetermined protocol. In addition to their direct applicability in Cryptography, zero-knowledge
proofs serve as a good bench-mark for the study of various problems regarding cryptographic
protocols. In this section we focus on the conceptual contents of zero-knowledge and refer the
reader that is intertested in their cryptographic applications to [22, 23].
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Figure 1: Zero-knowledge proofs — an illustration.

Turning back to the conceptual angle, we highlight the fact that standard proofs are believed
to yield knowledge and not merely establish the validity of the assertion being proven. Indeed, it is
commonly believed that (good) proofs provide a deeper understanding of the theorem being proved.
At the technical level, an NP-proof of membership in some set S € NP\ P yields something (i.e.,
the NP-proof itself) that is typically hard to compute (even when assuming that the input is in
S). For example, a 3-coloring of a graph is an NP-proof that the graph is 3-colorable, but it yields
information (i.e., the coloring) that is infeasible to compute (when given an arbitrary 3-colorable
graph). In contrast to such NP-proofs, which seem to yield a lot of knowledge, zero-knowledge
proofs yield no knowledge at all; that is, the latter exhibit an extreme contrast between being
convincing (of the validity of a statement) and teaching anything on top of the validity of the
statement.

Teaching note: We believe that the treatment of zero-knowledge proofs provided in
this section suffices for the purpose of a course in complexity theory. For an extensive
treatment of (computational) zero-knowledge proofs, the interested reader is referred
to [22, Chap. 4].

2.1 Definitional Issues

Loosely speaking, zero-knowledge proofs are proofs that yield nothing beyond the validity of the
assertion; that is, a verifier obtaining such a proof only gains conviction in the validity of the
assertion. This is formulated by saying that anything that can be feasibly obtained from a zero-
knowledge proof is also feasibly computable from the (valid) assertion itself. The latter formulation
follows the simulation paradigm, which is discussed next.

2.1.1 A wider perspective: the simulation paradigm

In defining zero-knowledge proofs, we view the verifier as a potential adversary that tries to gain
knowledge from the (prescribed) prover.” We wish to state that no (feasible) adversary strategy for
the verifier can gain anything from the prover (beyond conviction in the validity of the assertion).
Let us consider the desired formulation from a wide perspective.

“Recall that when defining a proof system (e.g., an interactive proof system), we view the prover as a potential
adversary that tries to fool the (prescribed) verifier (into accepting invalid assertions).
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A key question regarding the modeling of security concerns is how to express the intuitive re-
quirement that an adversary “gains nothing substantial” by deviating from the prescribed behavior
of an honest user. Our approach is that the adversary gains nothing if whatever it can obtain by
unrestricted adversarial behavior can be obtained within essentially the same computational effort
by a benign behavior. The definition of the “benign behavior” captures what we want to achieve
in terms of security, and is specific to the security concern to be addressed. For example, in the
previous paragraph, we said that a proof is zero-knowledge if it yields nothing beyond the validity
of the assertion (i.e., the benign behavior is any computation that is based (only) on the assertion
itself, while assuming that the latter is valid). Thus, in a zero-knowledge proof no feasible adversar-
ial strategy for the verifier can obtain more than a “benign verifier” (which believes the assertion)
can obtain from the assertion itself. We comment that the simulation paradigm is pivotal to many
definitions in cryptography (e.g., it underlies the definition of security of encryption schemes and
cryptographic protocols); for further details see [22].

2.1.2 The basic definitions

Zero-knowledge is a property of some prover strategies. More generally, zero-knowledge is a property
of some interactive machines. Fixing an interactive machine (e.g., a prescribed prover), we consider
what can be gained (i.e., computed) by an arbitrary feasible adversary (e.g., a verifier) that interacts
with the aforementined fived machine on a common input taken from a predetermined set (in our
case the set of valid assertions). This gain is compared against what can be computed by an arbitrary
feasible algorithm (called a simulator) that is only given the input itself. The fixed machine is zero-
knowledge if the “computational power” of these two (fundamentally different settings) is essentially
equivalent. Details follow.

The formulation of the zero-knowledge condition considers two ensembles of probability distri-
butions, each ensemble associates a probability distribution to each valid assertion. Specifically, in
the case of interactive proofs, the first ensemble represents the output distribution of the verifier
after interacting with the specified prover strategy P, where the verifier is employing an arbitrary
efficient strategy (not necessarily the specified one). The second ensemble represents the output
distribution of some probabilistic polynomial-time algorithm (which does not interact with anyone).
The basic paradigm of zero-knowledge asserts that for every ensemble of the first type there exist
a “similar” ensemble of the second type. The specific variants differ by the interpretation given to
the notion of similarity. The most strict interpretation, leading to perfect zero-knowledge, is that
similarity means equality.

Definition 7 (perfect zero-knowledge, over-simplified):'® A prover strategy, P, is said to be perfect
zero-knowledge over a set S if for every probabilistic polynomial-time verifier strategy, V*, there
exists a probabilistic polynomaial-time algorithm, M™, such that

(P,V*)(z) = M*(x),  for everyx €S

where (P,V*)(z) is a random variable representing the output of verifier V* after interacting with
the prover P on common input x, and M*(z) is a random wvariable representing the output of
machine M™* on input x.

We comment that any set in coRP has a perfect zero-knowledge proof system in which the prover
keeps silence and the verifier decides by itself. The same holds for BPP provided that we relax

10T the actual definition one either allows M™ to run for ezpected polynomial-time or allows M* to have no output
with probability at most 1/2. The latter alternative implies the former, but the converse is not known to hold.
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the definition of interactive proof system to allow two-sided error. Needless to say, our focus is on
non-trivial proof systems; that is, proof systems for sets outside of BPP.

A somewhat more relaxed interpretation (of the notion of similarity), leading to almost-perfect
zero-knowledge (a.k.a statistical zero-knowledge), is that similarity means statistical closeness (i.e.,
negligible difference between the ensembles). The most liberal interpretation, leading to the stan-
dard usage of the term zero-knowledge (and sometimes referred to as computational zero-knowledge),
is that similarity means computational indistinguishability (i.e., failure of any efficient procedure
to tell the two ensembles apart). Combining the foregoing discussion with the relevant definition
of computational indistinguishability, we obtain the following definition.

Definition 8 (zero-knowledge, somewhat simplified): A prover strategy, P, is said to be zero-
knowledge over a set S if for every probabilistic polynomial-time verifier strategy, V*, there exists
a probabilistic polynomial-time simulator, M*, such that for every probabilistic polynomial-time
distinguisher, D, it holds that
d(n) = max A[Pr[D(z,(P,V*)(z))=1] = Pr[D(z, M*(x))=1]|}
z€SN{0,1}m

is a negligible function.'!
proof systems.

We denote by ZK the class of sets having zero-knowledge interactive

Definition 8 is a simplified version of the actual definition. Specifically, in order to guarantee that
zero-knowledge is preserved under sequential composition it is necessary to slightly augment the
definition (by providing V* and M* with the same arbitrary auxiliary input of poly(|z|) length).
For details see [22, Sec. 4.3.3-4]. Other definitional issues and related notions are discussed in [22,
Chap. 4].

On the role of randomness and interaction. It can be shown that only sets in BPP have
zero-knowledge proofs in which the verifier is deterministic. The same holds for deterministic
provers, provided we consider “auxiliary-input” zero-knowledge (as in [22, Sec. 4.3.3]). It can also
be shown that only sets in BPP have zero-knowledge proofs in which a single message is sent.
Thus, both randomness and interaction are essential to the non-triviality of zero-knowledge proof
systems. (For details, see [22, Sec. 4.5.1].)

Advanced Comment: Knowledge Complexity. Zero-knowledge is the lowest level of a
knowledge-complexity hierarchy that quantifies the “knowledge revealed in an interaction.” Specif-
ically, the knowledge complexity of an interactive proof system may be defined as the minimum
number of oracle-queries required in order to efficiently simulate an interaction with the prover.
(See [21, Sec. 2.3.1] for references.)

2.2 The Power of Zero-Knowledge

When faced with a definition as complex (and seemingly self-contradictory) as the definition of zero-
knowledge, one should indeed wonder whether the definition can be met (in a non-trivial manner).'?
It turns out that the existence of non-trivial zero-knowledge proofs is related to the existence of

"That is, d vanishes faster that the reciprocal of any positive polynomial (i.e., for every positive polynomial p and
for sufficiently large n, it holds that d(n) < 1/p(n)).

12Note that any set in BPP has a trivial zero-knowledge (two-sided) proof system in which the verifier just
determines membership by itself.
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intractable problems in A/P. In particular, we will show that if one-way functions exist then every
NP-set has a zero-knowledge proof system. (For the converse, see [22, Sec. 4.5.2] or [39].) We first
demonstrate the scope of zero-knowledge by a presenting a simple (perfect) zero-knowledge proof
system for a specific NP-set that is not known to be in BPP. In this case we make no intractability
assumptions, but the result is significant only if NP is not contained in BPP.

2.2.1 A simple example

A story not found in the Odyssey refers to the not so famous Labyrinth of the Island of
Aeaea. The Sorceress Circe, daughter of Helius, challenged godlike Odysseus to traverse
the Labyrinth from its North Gate to its South Gate. Canny Odysseus doubted whether
such a path existed at all and asked beautiful Circe for a proof, to which she replied
that if she showed him a path this would trivialize for him the challenge of traversing
the Labyrinth. “Not necessarily,” clever Odysseus replied, “you can use your magic to
transport me to a random place in the labyrinth, and then guide me by a random walk
to a gate of my choice. If we repeat this enough times then I’ll be convinced that there
is a labyrinth-path between the two gates, while you will not reveal to me such a path.”
“Indeed,” wise Circe thought to herself, “showing this mortal a random path from a
random location in the labyrinth to the gate he chooses will not teach him more than
his taking a random walk from that gate.”

The foregoing story illustrates the main idea underlying the zero-knowledge proof for Graph Isomor-
phism presented next. Recall that the set of pairs of isomorphic graphs is not known to be in BPP,
and thus the straightforward NP-proof system (in which the prover just suplies the isomorphism)
may not be zero-knowledge. Furthermore, assuming that Graph Isomorphism is not in BPP, this
set has no zero-knowledge NP-proofs of membership, but as we shall see it has zero-knowledge
interactive proofs.

Construction 9 (zero-knowledge proof for Graph Isomorphism):

e Common Input: A pair of graphs, G1=(V1, E1) and Go=(Va, Es). Let ¢ be an isomorphism
between the input graphs; namely, ¢ is a 1-1 and onto mapping of the vertex set Vi to the
vertex set Vy such that {u,v} € Ey if and only if {p(v),d(u)} € Es.

e Prover’s first Step (P1): The prover selects a random isomorphic copy of Ga, and sends it
to the verifier. Namely, the prover selects at random, with uniform probability distribution,
a permutation ™ from the set of permutations over the vertex set Vi, and constructs a graph
with vertex set Vo and edge set

B {{m(u),n(v)} : {u, v} € B}
The prover sends (Va, E) to the verifier.

e Motivating Remark: If the input graphs are isomorphic, as the prover claims, then the graph
sent in Step P1 is isomorphic to both input graphs. However, if the input graphs are not
1somorphic then no graph can be isomorphic to both of them.

e Verifier’s first Step (V1): Upon receiving a graph, G' = (V', E'), from the prover, the verifier
asks the prover to show an isomorphism between G' and one of the input graphs, chosen at
random by the verifier. Namely, the verifier uniformly selects o € {1,2}, and sends it to the
prover (who is supposed to answer with an isomorphism between G, and G').
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e Prover’s second Step (P2): If the message, o, received from the verifier equals 2 then the

prover sends w to the verifier. Otherwise (i.e., o # 2), the prover sends wo ¢ (i.e., the

composition of ™ on ¢, defined as 7o ¢(v) ot w(p(v))) to the verifier.

(Indeed, the prover treats any o # 2 as o = 1. In the analysis we shall assume, without loss
of generality, that o € {1,2} always holds.)

e Verifier’s second Step (V2): If the message, denoted 1, received from the prover is an isomor-
phism between G, and G’ then the verifier outputs 1, otherwise it outputs 0.

The verifier strategy in Construction 9 is easily implemented in probabilistic polynomial-time. In
case the prover is given an isomorphism between the input graphs as auxiliary input, also the
prover’s program can be implemented in probabilistic polynomial-time. The motivating remark
justifies the claim that Construction 9 constitutes an interactive proof system for the set of pairs of
isomorphic graphs. As for the zero-knowledge property, consider first the special case in which the
verifier actually follows the prescribed strategy (and selects o at random, and in particular oblivi-
ously of the graph G’ it receives). The view of this verifier can be easily simulated by selecting o
and v at random, constructing G’ as a random isomorphic copy of G, (via the isomorphism 1), and
outputting the triplet (G’, 0,1). Indeed (even in this case), the simulator behaves differently from
the prescribed prover (which selects G’ as a random isomorphic copy of Gy, via the isomorphism
7), but its output distribution is identical to the verifier’s view in the real interaction. However,
the forgoing description assumes that the verifier follows the prescribed strategy, while in general
the verifier may select o depending on the graph G’. Thus, a slightly more complicated simulation
(described next) is required.

A general clarification may be in place. Recall that we wish to simulate the interaction of an
arbitrary verifier strategy with the prescribed prover, and so the simulator must depend on the
verifier strategy. Indeed, we shall describe the simulator while referring to such a generic verifier
strategy. Formally this means that the simulator’s program incorporates the aforementioned verifier
strategy. (Actually, the following simulator uses the generic verifier strategy as a subroutine.)

Turning back to the specific protocol of Construction 9, the basic idea is that simulator tries
to guess o and can complete a simulation if its guess turns out to be correct. Specifically, the
simulator selects 7 € {1,2} uniformly (hoping that the verifier selects o = 7), and constructs G’
by randomly permuting G, (and thus being able to present an isomorphism between G, and G’).
Recall that the simulator is analyzed only on yes-instances (i.e., the input graphs G; and G are
isomorphic). The point is that if G; and Go are isomorphic, then the graph G’ does not yield any
information regarding the simulator’s guess (i.e., 7), and thus this guess is correct with probability
1/2. (Indeed, this is analogous to the analysis of the soundness of Construction 3.) If the guess is
correct then the simulator can produce an output that has the correct distribution, otherwise the
entire process is repeated.

Useful conventions. We wish to highlight three conventions that were either used (implicitly)
in the foregoing analysis or can be used to simplify the description of (this and/or) other zero-
knowledge simulators.

1. Without loss of generality, we may assume that the cheating verifier strategy is implemented
by a deterministic polynomial-size circuit (or, equivalently, by a polynomial-time algorithm
with an auxiliary input).'?

13This observation is not crucial, but it does simplify the analysis (by eliminating the need to specify a sequence
of coin tosses in each invocation of the verifier’s strategy).
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This is justified by fixing any outcome of the verifier’s coins, and observing that our (uniform)
simulation of the various (residual) deterministic strategies yields a simulation of the original
probabilistic strategy.

2. Without loss of generality, it suffices to consider cheating verifiers that (only) output their
view of the interaction (i.e., the common input, their internal coin tosses, and messages that
they received). In other words, it suffices to simulate the view of that cheating verifiers have
of the real interaction.

This is justified by noting that the final output of any verifier can be obtained from its
view of the interaction, where the complexity of the transformation is upper-bounded by the
complexity of the verifier’s strategy.

3. Without loss of generality, it suffices to construct a “weak simulator” that produces output
with some noticeable!* probability such that whenever an output is produced it is distributed
“correctly” (i.e., similarly to the distribution occuring in real interactions with the prescribed
prover).

This is justified by repeatedly invoking such a weak simulator (polynomially) many times and
using the first output produced by any of these invocations. Note that by using an adequate
number of invocations, we fail to produce an output with negligible probability. (Alterna-
tively, we always produce an output after an expected polynomial number of invocations.)
Furthermore, note that a simulator that fails to produce output with negligible probability
can be converted to a simulator that always produces an output, while incurring a negligible
statistic deviation in the output distribution.

2.2.2 The full power of zero-knowledge proofs

The forgoing zero-knowledge proof system refers to one NP-set that is not known to be in BPP. It
turns out that, under reasonable assumptions, zero-knowledge can be used to prove membership in
any NP-set. Intuitively, it suffices to establish this fact for a single NP-complete set, and thus we
focus on presenting a zero-knowledge proof system for the set of 3-colorable graphs. Note that it is
easy to prove that a given graph G is 3-colorable by just presenting a 3-coloring of G' (and the same
holds for membership in any set in A"P), but this NP-proof is not a zero-knowledge proof (unless
P = NP). In fact, assuming P # NP, graph 3-colorability has no zero-knowledge NP-proofs, but
as we shall see it has zero-knowledg interactive proofs. This interactive proof will be described
while referring to “boxes” in which information can be hidden and later revealed. Such boxes can
be implemented using one-way functions (see below).

Construction 10 (Zero-knowledge proof of 3-colorability, abstract description): The description
refers to abstract non-transparent bozes that can be perfectly locked and unlocked such that these
bozes perfectly hide their contents while being locked.

e Common Input: A simple graph G=(V, E).

e Prover’s first step: Let ¢ be a 3-coloring of G. The prover selects a random permutation, m,

over {1,2,3}, and sets ¢(v) e w(¢¥(v)), for each v € V.. Hence, the prover forms a random

relabeling of the 3-coloring . The prover sends the verifier a sequence of |V| locked and
non-transparent bowes such that the v box contains the value ¢(v).

MRecall that a probability is called noticeable if it is greater than the reciprocal of some positive polynomial (in
the relevant parameter).
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e Verifier’s first step: The wverifier uniformly selects an edge {u,v} € E, and sends it to the
prover.

e Motivating Remark: The boxes are supposed to contain a 3-coloring of the graph, and the
verifier asks to inspect the colors of vertices u and v. Indeed, for the zero-knowledge condition,
it 1s crucial that the prover only responds to pairs that correspond to edges of the graph.

e Prover’s second step: Upon receiving an edge {u,v} € E, the prover sends to the verifier the
keys to boxes u and v.

For simplicity of the analysis, if the verifier sends {u,v} ¢ E then the prover behaves as if
it has received o fized (or random) edge in E, rather than suspending the interaction, which
would have been the natural thing to do.

e Verifier’s second step: The verifier unlocks and opens boxes u and v, and accepts if and only
if they contain two different elements in {1,2,3}.

The verifier strategy in Construction 10 is easily implemented in probabilistic polynomial-time.
The same holds with respect to the prover’s strategy, provided that it is given a 3-coloring of G as
auxiliary input. Clearly, if the input graph is 3-colorable then the verfier accepts with probability 1
when interacting with the prescribed prover. On the other hand, if the input graph is not 3-
colorable, then any contents put in the boxes must be invalid on at least one edge, and consequently
the verifier will reject with probability at least % Hence, the foregoing protocol exhibits a non-
negligible gap in the accepting probabilities between the case of 3-colorable graphs and the case of
non-3-colorable graphs. To increase the gap, the game may be repeated sufficiently many times (of
course, using independent coin tosses in each repetition).

In the abstract setting of Construction 10, the zero-knowledge property follows easily, because
one can simulate the real interaction by placing a random pair of different colors in the boxes indi-
cated by the verifier. This indeed demonstrates that the verifier learns nothing from the interaction,
because it expects to see a random pair of different colors (and indeed this is what it sees). Note
that the aforementioned expectation relies on the fact that the boxes correspond to vertices that
are connected by an edge.

This simple demonstration of the zero-knowledge property is not possible in the digital imple-
mentation (discussed next), because the boxes are not totally unaffected by their contents (but are
rather effected, yet in an indistinguishable manner). Instead, we simulate the interaction as follows.
We first guess (at random) which pair of boxes (rorresponding to an edge) the verifier would ask
to open, and place a random pair of distinct colors in these boxes (and garbage in the rest).!> We
hand all boxes to the verifier. In case the verifier asks for the chosen pair (i.e., the one we guessed),
we can complete the simulation. Otherwise, we try again (with a new random guess). Thus, it
suffices to use boxes that hide their contents almost perfectly (rather than being perfectly opaque).
Such boxes can be implemented digitally.

Teaching note: Indeed, we recommend presenting and analyzing in class only the fore-
going abstract protocol. It suffices to briefly comment about the digital implementation,
rather than presenting a formal proof of Theorem 11 (which can be found in [24] (or [22,
Sec. 4.4])).

15An alternative (and more efficient) simulation consists of putting random independent colors in the various
boxes, hoping that the verifier asks for an edge that is properly colored. The latter event occurs with probability
(approximately) 2/3, provided that the boxes hide their contents (almost) perfectly.
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Digital implementation. We implement the abstract boxes (referred to in Construction 10) by
using (adequately defined) commitment schemes. Loosely speaking, such a scheme is a two-phase
game between a sender and a receiver such that after the first phase the sender is “committed” to
a value and yet, at this stage, it is infeasible for the receiver to find out the committed value (i.e.,
the commitment is “hiding”). The committed value will be revealed to the receiver in the second
phase and it is guaranteed that the sender cannot reveal a value other than the one committed
(i.e., the commitment is “binding”). Such commitment schemes can be implemented assuming the
existence of (nonuniform) one-way functions.

Zero-knowledge proofs for other NP-sets. Using the fact that 3-colorability is NP-complete,
one gets zero-knowledge proofs for any NP-set.'® Furthermore, NP-witnesses can be efficiently
transformed into polynomial-size circuits that implement the corresponding (presecribed zero-
knowledge) prover strategies.

Theorem 11 (The ZK Theorem): Assuming the ezistence of one-way functions, any NP-proof can
be efficiently transformed into a (computational) zero-knowledge interactive proof. In particular,
NP C ZK.

The hypothesis (regarding the existence of one-way functions) in Theorem 11 seems unavoidable,
because the existence of zero-knowledge proofs for “hard on the average” problems implies the
existence of one-way functions (and, likewise, the existence of zero-knowledge proofs for sets outside
BPP implies the existence of “auxiliary-input one-way functions”). Theorem 11 has a dramatic
effect on the design of cryptographic protocols (see [22, 23]). In a different vein we mention that,
under the same assumption, any interactive proof can be transformed into a zero-knowledge one.
(This transformation, however, is not efficient.)

Theorem 12 (The ultimate ZK Theorem): Assuming the existence of one-way functions, TP =
ZK.

Loosely speaking, Theorem 12 can be proved by recalling that ZP = AM(poly) and modifying any
public-coin protocol as follows: the modified prover sends commitments to its messages rather than
the messages themselves, and once the original interaction is completed it proves (in zero-knowledge)
that the corresponding transcript would have been accepted by the original verifier. Indeed, the
latter assertion is of the “NP type”, and thus the zero-knowledge proof system guaranteed in
Theorem 11 can be invoked to prove it.

Reflection. The proof of Theorem 11 uses the fact that 3-colorability is NP-complete in order to
obtain a zero-knowledge proofs for any set in NP by using such a protocol for 3-colorability (i.e.,
Construction 10). Thus, an NP-completeness result is used here in a “positive” way; that is, in
order to construct something rather than in order to derive a hardness result. This was probably the
first positive application of NP-completeness. Subsequent positive uses of completeness results have
appeared in the context of interactive proofs [33, 37], probabilistically checkable proofs [5, 18, 2, 1],
and “hardness versus randomness trade-offs”.

16 Actually, we should either rely on the fact that the standard Karp-reductions are invertible in polynomial time
or on the fact that the 3-colorability protocol is actually zero-knowledge with respect to auxiliary inputs (as in [22,
Sec. 4.3.3]).
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Perfect and Statistical Zero-Knowledge. The foregoing results may be contrasted with the
results regarding the complexity of statistical zero-knowledge proof systems: Statistical zero-
knowledge proof systems exist only for sets in ZP(2) N coZP(2), and thus are unlikely to exist
for all NP-sets. On the other hand, the class Statistical Zero-Knowledge is known to contain some
hard problems, and turns out to have interesting complexity theoretic properties (e.g., being closed
under complementation, and having very natural complete problems). The interested reader is
referred to [38].

2.3 Proofs of Knowledge — a parenthetical subsection

Teaching note: Technically speaking, this topic belongs to Section 1, but the more
interesting examples of proof of knowledge are ones that are zero-knowledge.

Loosely speaking, “proofs of knowledge” are interactive proofs in which the prover asserts “knowl-
edge” of some object (e.g., a 3-coloring of a graph), and not merely its existence (e.g., the existence
of a 3-coloring of the graph, which in turn is equivalent to the assertion that the graph is 3-colorable).

What do we mean by saying that a machine knows something? Any standard dictionary
suggests several meanings for the verb to know, but these are typically phrased with reference to
the notion of awareness, a notion which is certainly inapplicable in the context of machines. Instead,
we should look for a behavioristic interpretation of the verb to know. Indeed, it is reasonable to link
knowledge with the ability to do something (e.g., the ability to write down whatever one knows).
Hence, we will say that a machine knows a string « if it can output the string a. But this seems
as total non-sense too: a machine has a well defined output — either the output equals « or it does
not. So what can be meant by saying that ¢ machine can do something? Loosely speaking, it may
mean that the machine can be easily modified so that it does whatever is claimed. More precisely,
it may mean that there exists an efficient machine that, using the original machine as a black-box
(or given its code as an input), outputs whatever is claimed.

So much for defining the knowledge of machines. Yet, whatever a machine knows or does not
know is its own business. What can be of interest and reference to the outside is whatever can
be deduced about the knowledge of a machine by interacting with it. Hence, we are interested in
proofs of knowledge (rather than in mere knowledge).

For sake of simplicity let us consider a concrete question: how can a machine prove that it
knows a 3-coloring of a graph? An obvious way is just sending the 3-coloring to the verifier. Yet,
we claim that applying the protocol in Construction 10 (i.e., the zero-knowledge proof system for
3-Colorability) is an alternative way of proving knowledge of a 3-coloring of the graph.

The definition of a verifier of knowledge of 3-coloring refers to any possible prover strategy and
links the ability to “extract” a 3-coloring (of a given graph) from such a prover to the probabil-
ity that this prover convinces the verifier. That is, the definition postulates the existence of an
efficient universal way of “extracting” a 3-coloring of a given graph by using any prover strategy
that convinces this verifier to accept this graph with probability 1 (or, more generally, with some
noticeable probability). On the other hand, we should no expect this extrator to obtain much from
prover strategies that fail to convince the verifier (or, more generally, convince it with negligible
probability). A robust definition should allow a smooth transition between these two extremes
(and in particular between provers that convince the verifier with noticeable probability and those
that convince it with negligible probability). Such a definition should also support the intuition
by which the following strategy of Alice is zero-knowledge: Alice sends Bob a 3-coloring of a given
graph provided that Bob has successfully proved to her that he knows such a coloring. We stress that
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the zero-knowledge property of Alice’s strategy should hold regardless of the proof-of-knowledge
system used for proving Bob’s knowledge of a 3-coloring.

Loosely speaking, we say that an interactive machine, V', constitutes a verifier for knowledge of
3-coloring if, for any prover strategy P, the complexity of extracting a 3-coloring of G when using
machine P as a “black box”!7 is inversely proportional to the probability that V is convinced by
P (to accept the graph G). Namely, the extraction of the 3-coloring is done by an oracle machine,
called an extractor, that is given access to a function specifying the behavior P (i.e., the messages
it sends in response to particular messages it may receive). We require that the (ezpected) running
time of the extractor, on input G and access to an oracle specifying P’s messages, be inversely
related (by a factor polynomial in |G|) to the probability that P convinces V to accept G. In
particular, if P always convinces V to accept G, then the extractor runs in expected polynomial-
time. The same holds in case P convinces V to accept with noticeable probability. On the other
hand, if P never convinces V to accept, then nothing is required of the extractor. We stress that
the latter special cases do not suffice for a satisfactory definition; see discussion in [22, Sec. 4.7.1].

Proofs of knowledge, and in particular zero-knowledge proofs of knowledge, have many appli-
cations to the design of cryptographic schemes and cryptographic protocols. These are enabled by
the following general result.

Theorem 13 (Theorem 11, revisited): Assuming the existence of one-way functions, any NP-
relation has a zero-knowledge proof of knowledge (of corresponding NP-witnesses). Furthermore,
the prescribed prover strategy can be implemented in probabilistic polynomaial-time, provided it is
given such an NP-witness.

3 Probabilistically Checkable Proof Systems

Teaching note: Probabilistically checkable proof (PCP) systems may be viewed as
a restricted type of interactive proof systems in which the prover is memoryless and
responds to each verifier message as if it were the first such message. This perspective
creates a tighter link with previous sections, but is somewhat contrived. Indeed, such
a memoryless prover may be viewed as a static object that the verifier may query at
locations of its choice. But then it is more appealing to present the model using the
(more traditional) terminology of oracle machines rather than using (and degenerating)

the terminology of interactive machines.

Probabilistically checkable proof systems can be viewed as standard (deterministic) proof systems
that are augmented with a probabilistic procedure capable of evaluating the validity of the assertion
by examining few locations in the alleged proof. In fact, we focus on the latter probabilistic
procedure, which is given direct access to the individual bits of the alleged proof (and need not
scan it bit-by-bit). Thus, the alleged proofis a string, as in the case of a traditional proof system, but
we are interested in probabilistic verification procedures that access only few locations in the proof,
and yet are able to make a meaningful probabilistic verdict regarding the validity of the alleged
proof. Specifically, the verification procedure should accept any valid proof (with probability 1),
but rejects with probability at least 1/2 any alleged proof for a false assertion.

The main complexity measure associated with probabilistically checkable proof systems is in-
deed their query complexity. Another complexity measure of natural concern is the length of the

"Indeed, one may consider also non-black-box extractors.

26



proofs being employed, which in turn is related to the randomness complexity of the system. The
randomness complexity of PCPs plays a key role in numerous applications (e.g., in composing PCP
systems as well as when applying PCP systems to derive inapproximability results), and thus we
specify this parameter rather than the proof length.

Teaching note: Indeed, PCP systems are most famous for their role in deriving numer-
ous inapproximation results (see Section 3.3), but our view is that the latter is merely
one extremely important application of the fundamental notion of a PCP system. Our

presentation is organized accordingly.

3.1 Definition

Loosely speaking, a probabilistically checkable proof system consists of a probabilistic polynomial-
time verifier having access to an oracle that represents an alleged proof (in redundant form).
Typically, the verifier accesses only few of the oracle bits, and these bit positions are determined by
the outcome of the verifier’s coin tosses. As in the case of interactive proof systems, it is required
that if the assertion holds then the verifier always accepts (i.e., when given access to an adequate
oracle); whereas, if the assertion is false then the verifier must reject with probability at least %,
no matter which oracle is used. The basic definition of the PCP setting is given in Item (1) below.
Yet, the complexity measures introduced in Item (2) are of key importance for the subsequent
discussions.

Definition 14 (Probabilistic Checkable Proofs — PCP):

1. A probabilistic checkable proof system (PCP) for a set S is a probabilistic polynomial-time oracle
machine, called verifier and denoted V', that satisfies the following two conditions:

e Completeness: For every x € S there exists an oracle w such that, on input x and access
to oracle m,, machine V always accepts x.

e Soundness: For every x € S and every oracle m, on input x and access to oracle w,
machine V' rejects x with probability at least %

2. We say that a probabilistic checkable proof system has query complexity ¢: N— N if, on any
input of length n, the verifier makes at most q(n) oracle queries.'® Similarly, the randomness
complexity 7: N — N upper-bounds the number of coin tosses performed by the verifier on a
generic n-bit long input.

For integer functions r and q, we denote by PCP(r,q) the class of sets having probabilistic
checkable proof systems of randomness complexity r and query complexity q. For sets of
integer functions, R and Q,

def

PCP(R,Q)=  |J PCP(r,q).

reER,qEQ

We note that the oracle m, referred to in the completeness condition a PCP system constitutes a
proof in the standard mathematical sense (with respect to a verification procedure that examines
all possible outcomes of V’s internal coin tosses). Furthermore, the oracles in PCP systems of
logarithmic randomness complexity constitute NP-proofs. However, these oracles have the extra

18 As usual in complexity theory, the oracle answers are always binary (i-e., either 0 or 1).
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remarkable property of enabling a lazy verifier to toss coins, take its chances and “assess” the
validity of the proof without reading all of it (but rather by reading a tiny portion of it). Potentially,
this allows the verifier to utilize very long proofs (i.e., of super-polynomial length) or alternatively
examine very few bits of an NP-proof.

We note that the error probability (in the soundness condition) of PCP systems can be reduced
by successive applications of the proof system. In particular, repeating the process for k times,
reduces the probability that the verifier is fooled by a false assertion to 27%, whereas all complexities
increase by at most a factor of k. Thus, PCP systems provide a trade-off between the number of
locations examined in the proof and the confidence in the validity of the assertion.

Adaptive versus non-adaptive verifiers. Definition 14 allows the verifier to be adaptive; that
is, the verifier may determine its queries based on the answers it has received to previous queries (in
addition to their dependence on the input and the verifier’s internal coin tosses). In contrast, non-
adaptive verifiers determine all their queries based solely on their input and internal coin tosses. We
comment that most constructions of PCP systems use non-adaptive verifiers, and in fact in many
sources PCP systems are defined as non-adaptive.

Randomness versus proof length. Note that the “effective” length of proofs for any PCP
system is related to its query and randomness complexities, where the effective length means the
number of locations in a generic proof-oracle that may be examined on a fixed input and any
possible sequence of internal coin tosses. Specifically, if the PCP system has query complexity ¢
and randomness complexity r then its effective proof length is upper-bounded by 297", whereas a
bound of 2" - ¢ holds for non-adaptive systems (see Exercise 30). On the other hand, in some sense,
the randomness complexity of a PCP can be upper-bounded by the logarithm of the length of the
proofs employed (provided we allow non-uniform verifiers; see Exercise 32).

On the role of randomness. The PCP Theorem (i.e., NP = PCP(log, O(1))) exhibits a trade-
off between the number of bits examined in the alleged proof and the confidence in the validity
of the assertion. We note that such a trade-off is impossible if one requires the verifier to be
deterministic. This is due to the fact that every set in PCP(r,q) has an NP-proof system that
employs proofs of length 2"¢ (see Exercise 31). Thus, PCP(r,q) € DTIME(2?' 9 - poly), and, in
particular, PCP(0,1log) = P. Furthermore, since it is unlikely that all NP-sets have NP-proof
systems that employs proofs of (say) linear length, it follows that PCP(r,q) is unlikely to contain
NP for 27Mg(n) < n (or for any other fixed polynomial that bounds 2"¢). Actually, P # NP
implies that AP is not contained in PCP(o(log), o(log)) (see Exercise 34).

3.2 The Power of Probabilistically Checkable Proofs

The celebrated PCP Theorem asserts that NP = PCP(log,O(1)), and this result is indeed the
focus of the current section. But before getting to it we make several simple observation regarding
the PCP Hierarchy.

We first note that PCP(poly,0) equals coRP, whereas PCP(0, poly) equals N'P. It is easy to
prove an upper bound on the non-deterministic time complexity of sets in the PCP hierarchy (see
Exercise 31):

Proposition 15 (upper-bounds on the power of PCPs): For every polynomially bounded integer
function r, it holds that PCP(r,poly) C NTIME(2" - poly). In particular, PCP(log,poly) C N'P.
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The focus on PCP systems of logarithmic randomness complexity reflects an interest in PCP systems
that utilize proof oracles of polynomial length (see discussion in Section 3.1). We stress that such
PCP systems (i.e., PCP(log, q)) are NP-proof systems with a (potentially amazing) extra property:
the validity of the assertion can be “probabilistically evaluated” by examining a (small) portion
(i.e., g(n) bits) of the proof. Thus, for any fixed polynomially bounded function ¢, a result of the
form

NP C PCP(log,q) (5)

is interesting (because it applies also to NP-sets having witnesses of length exceeding ¢), and the
smaller ¢ — the better. The PCP Theorem asserts the amazing fact by which ¢ can be made a
constant.

Theorem 16 (The PCP Theorem): NP C PCP(log,O(1)).

Thus, probabilistically checkable proofs in which the verifier tosses only logarithmically many coins
and makes only a constant number of queries exist for every set in N'P. Furthermore, the proof of
Theorem 16 is constructive in the sense that it allows to efficiently transform any NP-witness (for
an instance of a set in N'P) into an oracle that makes the PCP verifier accept (with probability 1).
Thus, NP-proofs can be transformed into NP-proofs that offer a trade-off between the portion of
the proof being read and the confidence it offers. Specifically, for every € > 0, if the verifier is willing
to tolerate an error probability of e then it for it examine O(log(1/¢)) bits of the (transformed)
NP-proof. Indeed (as discussed in Section 3.1), these bit locations need to be selected at random.

A new characterization of NP: Combining Theorem 16 with Proposition 15 we obtain the
following characterization of N'P.

Corollary 17 (The PCP characterization of NP): NP = PCP(log, O(1)).

The proof of the PCP Theorem: Theorem 16 is a culmination of a sequence of remarkable
works, each establishing meaningful and increasingly stronger versions of Eq. (5). A presentation
of the full proof of Theorem 16 is beyond the scope of the current work (and is, in our opinion,
unsuitable for a basic course in complexity theory). Instead, we present an overview of the original
proof (see §3.2.2) as well as of an alternative proof (see §3.2.3) that was found more than a decade
later. We will start, however, by presenting a weaker result that is used in both proofs of Theorem 16
and is also of independent interest. This weaker result (see §3.2.1) asserts that any NP-set has a
PCP system with constant query complexity (albeit with polynomial randomness complexity); that
is, NP C PCP(poly, O(1)).

Teaching note: In our opinion, presenting in class any part of the proof of the PCP
Theorem should be given low priority. In particular, presenting the connections between
PCP and the complexity of approximation should be given a higher priority. As for
relative priorities among the following three subsections, we recommend giving §3.2.1
the highest priority, because it offers a direct demonstration of the power of PCPs. As
for the two alternative proofs of the PCP Theorem itself, our recommendation depends
on the intended goal. On one hand, for the purpose of merely giving a taste of the ideas
involved in the proof, we prefer an overview of the original proof (provided in §3.2.2).
On the other hand, for the purpose of actually providing a full proof, we definitely prefer

the new proof (which is only outlined in §3.2.3).
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3.2.1 Proving that NP C PCP(poly,O(1))

The fact that any NP-set has a PCP system with constant query complexity (regardless of its
randomness complexity) already testifies to the power of PCP systems. It asserts that probabilistic
verification of proofs is possible by inspecting very few locations in a (potentially huge) proof.
Indeed, the PCP systems presented next utilize exponentially long proofs, but they do so while
inspecting these proofs at a constant number of (randomly selected) locations.

We start with a brief overview of the construction. It suffices to construct a PCP for proving
the satisfiability of a given system of quadratic equations over GF(2), because this problem is NP-
complete.'® The oracle (of this PCP) is supposed to provide the values of all quadratic expressions
evaluated at some assignment to the (say n) variables of the system of quadratic equations (given
as input). This assignment is supposed to satisfy the latter system. We distinguish two tables in
the oracle: The first table corresponding to the (2™) linear expressions and the second table to
the (2"2) quadratic expressions. Each table is tested for self-consistency (via a “linearity test”),
and the two tables are tested to be consistent with each other (via a “matrix-equality” test, which
utilizes “self-correction”). Each of these tests utilizes a constant number of Boolean queries, and
randomness that is logarithmic in the size of the corresponding table (and is thus O(n?)). Finally,
we test (again via self-correction) the value assigned by these tables to an expression obtained by
a random linear combination of the system of quadratic equations that is given as input. Details
follow.

The starting point. We construct a PCP system for the set of satisfiable quadratic equations
over GF(2). The input is a sequence of such equations over the variables xy, ..., ,, and the proof
oracle consist of two parts (or tables), which are supposed to provide information reagrding some
satisfying assignment o = « - -+ o, (also viewed as an n-ary vector over GF(2)). The first part,
Ty, is supposed to provide a Hadamard encoding of the said satisfying assignment; that is, entry
B € GF(2)™ in this table is supposed to provide the inner product mod 2 of the n-ary vectors o and
B (i.e., T1(p) is supposed to equal > ;" ; f;c;). The second part, T5, is supposed to provide all linear
combinations of the values of the o;a;’s; that is, for v € GrF(Z)”Z7 the value of T5(7y) is supposed to
equal 3, ;vi . (Indeed T7 is contained in T3, because 0% = ¢ for any o0 € GF(2).) The PCP
verifier will uses the two tables to check that the input (i.e., a sequence of quadratic equations) is
satisfied by the assignment that is encoded in the two tables. Needless to say, these tables may not
be a valid encoding of any n-ary vector (let alone one that satisfies the input), and so the verifier
also needs to check that the encoding is (close to being) valid. We will focus on this task first.

Testing the Hadamard Code. Note that 77 is supposed to encode a linear function; that
is, there must be some o = «a;---a, € GF(2)" such that T1(8) = >, ;06 for every f =
Br-+Bn € GF(2)". This can be tested by selecting uniformly (', 3" € GF(2)" and checking
whether T1(8") + T1(8") = T1(8" + B"), where 3’ + " denotes addition of vectors over GF(2).
The analysis of this natural tester turns out to be quite complex. Nevertheless, it is indeed the
case that any table that is 0.01-far from being linear is rejected with probability at least 0.02 (see
Exercise 35), where T' is e-far from being linear if 7' disagrees with any linear function f on more
than an e fraction of the domain (i.e., Pr.[T'(r) = f(r)] > ¢).

By repeating the linearity test for a constant number of times, we may reject each table that is
0.01-far from being a codeword of the Hadamard Code with probability at least 0.99. Thus, using
a constant number of queries, the verifier rejects any 77 that is 0.01-far from being a Hadamard

YHere and elsewhere, we denote by GF(2) the 2-element field.
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encoding of any o € GF(2)", and likewise rejects any 7% that is 0.01-far from being a Hadamard
encoding of any o/ € GF(2)"". We may thus assume that 7} (resp., Tb) is 0.01-close to the
Hadamard encoding of some « (resp., o). (This does not mean, however, that o/ equals the outer
produce of a with itself.)

In the rest of the analysis, we fix & € GF(2)" and o/ € GF(2)", and denote the Hadamard
encoding of a (resp., /) by fo : GF(2)" — GF(2) (resp., for : GF(2)"" — GF(2)). Recall that T}
(resp., Ty) is 0.01-close to fq (resp., fur).

Self-correction of the Hadamard Code. Suppose that T is e-close to a linear function f (i.e.,
Pr.[T(r) = f(r)] < e). Then, we can recover the value of f at any desired point z, by making
two (random) queries to T'. Specifically, for a uniformly selected r € GF(2)", we use the value
T(x +r) —T(r). Note that the probability that we recover the correct value is at least 1 — 2,
because Pr.[T(x+r)—T(r) = f(z+7r)—f(r)] > 1—2¢ and f(z+7)— f(r) = f(z) by linearity of f.
(Needless to say, for € < 1/4, the function T cannot be e-close to two different linear functions.)?°
Thus, assuming that 77 is 0.01-close to f, (resp., Ty is 0.01-close to f,/) we may correctly recover
(i.e., with error probability 0.02) the value of f, (resp., fo) at any desired point by making 2
queries to T3 (resp., 1%).

r S r a a S
| | [ | |

A — — q(r) ) t](s)

Figure 2: Detail for testing consistency of linear and quadratic forms.

Checking consistency of f, and f,. Suppose that we are given access to f, : GF(2)" — GF(2)
and fo : GF(2)"" — GF(2), where fo(8) = Y; a3 and fu(8) = >i; @ ;B j, and that we wish to
verify that a%d = a;ay for every i, € {1,...,n}. In other words, we are given a (somewhat weird)
encoding of two matrices, A = (a;a;);; and A" = (a; ;)i j, and we wish to check whether or not
these matrices are identical. It can be shown (see Exercise 37) that if A # A’ then Pr, ([r' As #
rTA's] > 1/4, where r and s are random n-ary vectors. Note that, in our case (see Figure 2),
rTAs =3 ,(3 riciaj)s; = fa(r)fa(s) and rTA's = 3 ,(%, TiqG ;)sj = for(rs"), where rs' is the
outer-product of s and r, and so (for A # A") we have Pr, i[fo(r)fa(s) # fu(rs")] > 1/4. Using
self-correction (to obtain the desired value of fo on rs', which is not uniformly distributed in
GF(2)""), we test the consistency of f, and fu; that is, we select uniformly 7, s € GF(2)" and
R € GF(2)"" and check whether or not Ty (r)T1(s) = To(rs' + R) — Ty(R).

Checking that « satisfies the quadratic system. Suppose that we are given access to f,
and fo as above (i.e., in particular, o/ = aa' is the outer product of a with itself). A key
observation is that if o does not satisfy a system of quadratic equations then, with probability
1/2, it does not satisfy a random linear combination of these equations. Thus, in order to check
whether « satisfies the quadratic system, we create a single quadratic equation (by taking such

a random linear combination) and compare the value of the resulting quadratic expression to the

20Indeed, this fact follows from the self-correction argument, but a simpler proof merely refers to the fact that the
Hadamard code has relative distance 1/2.
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corresponding value, by recovering the value of f, at a single point (which corresponds to the
quadratic equation). That is, to test whether « satisfies the quadratic equation Q(z) = o, we test
whether f,/(Q) = 0. The actual checking is implemented by the verifier using self-correction (of
the table T%).

To summarize, the verifier performs a constant number of queries and uses randomness that
is quadratic in the number of variables. If the quadratic system is satisfiable (by some «), then
the verifier accepts the corresponding tables 77 and Ty (i.e., T} = fq and Ty = f,,7) with prob-
ability 1. On the other hand, if the quadratic system is unsatisfiable, then any pair of tables
(Th,T,) will be rejected with constant probability (by one of the foregoing tests). It follows that
NP C PCP(r,0(1)), where r(n) = O(n?).

3.2.2 Overview of the first proof of the PCP Theorem

The proof of the PCP Theorem (Theorem 16) is one of the most complicated proofs in the Theory
of Computation. The original proof consists of three main conceptual steps, which we roughly
sketch first and further discuss later.

1. Constructing a (non-adaptive) PCP system for NP having logarithmic randomness and poly-
logarithmic query complexity. Furthermore, this proof system has additional properties that
enable proof composition as in Step (3) below.

2. Constructing a PCP system for NP having polynomial randomness and constant query com-
plexity (indeed as in §3.2.1). This proof system too has additional properties enabling proof
composition as in Step (3).

3. The proof composition paradigm:?' In general, this paradigm allows to compose two proof
systems such that the “inner” one is used to probabilistically verify the acceptance criteria
of the “outer” verifier. The aim is to conduct the latter verification using much fewer queries
than the query complexity of the “outer” proof system. In particular, the inner verifier cannot
afford to read its input, which makes composition more subtle than the term suggests.

Loosely speaking, the outer verifier should be robust in the sense that its soundness condition
guarantee that with high probability the oracle answers are “far” from satisfying the residual
decision predicate (rather than merely not satisfy it). (Furthermore, the latter predicate,
which is well-defined by the non-adaptive nature of the outer verifier, must have a circuit of
size bounded by a polynomial in the number of queries.) The inner verifier is given oracle
access to its input and is charged for each query made to it, but is only required to reject
with high probability inputs that are far from being valid (and, as usual, accept inputs that
are valid). That is, the inner verifier is actually a verifier of proximity.

Composing two such PCPs yields a new PCP for NP, where the new proof oracle consists of
the proof oracle of the “outer” system and a sequence of proof oracles for the “inner” system
(one “inner” proof per each possible random-tape of the “outer” verifier). Thus, composing
an outer verifier of randomness complexity 7’ and query complexity ¢’ with an inner verifier of
randomness complexity 7" and query complexity ¢” yields a PCP of randomness complexity
r(n) =r'(n) +7"(¢'(n)) and query complexity g(n) = ¢"(¢'(n)), because ¢’(n) represents the
length of the input (oracle) that is accessed by the inner verifier. Recall that the outer verifier
is non-adaptive, and thus if the inner verifier is non-adaptive (resp., robust) then so is the

210ur presentation of the composition paradigm follows [10], rather than the original presentation of [2, 1].
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verifier resulting from the composition, which is important in case we wish to compose the
latter verifier with another inner verifier.

In particular, the proof system of Step (1) is composed with itself [using r'(n) = " (n) = O(log n)
and ¢'(n) = ¢"(n) = poly(logn)] yielding a PCP system (for N'P) of randomness complexity
r(n) = r'(n) + r"(¢'(n)) = O(logn) and query complexity g(n) = ¢"(¢'(n)) = poly(loglogn).
Composing the latter system (used as an “outer” system) with the the PCP system of Step (2),
yields a PCP system (for N'P) of randomness complexity r(n) + poly(g(n)) = O(log n) and query
complexity O(1), thus establishing the PCP Theorem.

A more detailed overview — the plan. The foregoing description of Step 3 uses two (non-
trivial) PCP systems and refers to additional properties such as robustness and verification of
proximity. A PCP system of polynomial randomness complexity and constant query complexity
(as postulated in Step 2) is outlined in §3.2.1. We thus start by discussing the notions of verifying
proximity and being robust, while demonstrating their applicability to the said PCP. Finally, we
outline the other PCP system (i.e., the one postulated in Step 1).

PCPs of Proximity. Recall that a standard PCP verifier gets an explicit input and is given
oracle access to an alleged proof (for membership of the input in a predetermined set). In contrast,
a PCP of proximity is given oracle access to two oracles, one representing an input and the other
being an alleged proof. Typically, the query complexity of the corresponding verifier is lower than
the length of the input oracle, and hence the verifier cannot afford to read the entire input and
cannot be expected to make absolute statements about it. Indeed, instead of deciding whether or
not the input is in a predetermined set, the verifier needs only distinguish the case that the input
is in the set from the case that the input is far from the set (where far means being at relative
Hamming distance at least 0.01 (or any other constant)).

For example, consider a variant of the system of §3.2.1 in which the quadratic system is fixed??
and the verifier needs to determine whether an input oracle satisfies the said system or is far from
any assignment that satisfies it. The proof oracle is as in §3.2.1, and a PCP of proximity may
proceed as in §3.2.1 and in addition perform a proximity test to verify that the input oracle is
close to the assignment encoded in the proof oracle. Specifically, the verifier may read a uniformly
selected bit of the input oracle and compare the value to the self-correction obtained from the proof
oracle (i.e., for a uniformly selected i € {1,...,n}, we compare the i*! bit of the input oracle to the
self-correction of the value Ty (0°~110"%), obtained from the proof oracle).

Robust PCPs. Composing an “outer” PCP verifier with an “inner” PCP verifier of proximity
makes sense provided that the outer verifier rejects in a “robust” manner. That is, the soundness
condition of a robust verifier requires that (with probability at least 1/2) the oracle answers are
far from any sequence that is acceptable by the residual predicate (rather than merely that the
answers are rejected by this predicate). Indeed, if the outer verifier is (non-adaptive and) robust,
then it suffices that the inner verifier distinguish (with the help of an adequate proof) answers that
are valid from answers that are far from being valid.

For example, if robustness is defined as referring to relative constant distance (which is indeed
the case), then the PCP of §3.2.1 (as well as any PCP of constant query complexity) is trivially
robust. However, we will not care about the robustness of this PCP, because we only use this PCP

2Indeed, in our applications the quadratic system will be “known” to the (“inner”) verifier, because it is determined
by the (“outer”) verifier.
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as an inner verifier in proof composition. In contrast, we will care about the robustness of PCPs
that are used as outer verifiers (e.g., the PCP presented next).

Teaching note: Unfortunately, the construction of a PCP of logarithmic randomness
and polylogarithmic query complexity for NP is quite complicated and involves many
technical details. Furthermore, obtaining a robust version of this PCP is beyond the
scope of the current text. Thus, we view the following description as merely providing a
flavor of the underlying ideas.

PCP of logarithmic randomness and polylogarithmic query complexity for NP. We
start by showing that NP C PCP(f, f), for f(n) = poly(logn). The proof system is based
on a different arithmetization of CNF formulae (i.e., different than the one used in §1.2.2 for
constructing an interactive proof system for coANP). In this arithmetization, the names of the
variables (resp., clauses) of the input formula ¢ are represented by binary strings of logarithmic (in
|¢|) length, and a generic variable (resp., clause) of ¢ is represented by a logarithmic number of
new variables (which are assigned values in a finite field F D {0,1}). The (structure of the) input
3CNF formula ¢(21, ...,2,) is represented by a Boolean function Cy : {0,1}90°8™) — 0,1} such
that Cy(a, B1, B2, B3) = 1 if and only if, for i = 1,2,3, the i literal in the o' clause has index
Bi = (vi,07) (which is viewed as a variable name augmented by its sign). We consider a multi-linear
extension of Cy over F, denoted ®; that is, ® is the (unique) multi-linear polynomial that agrees
with Cy on {0, 110(ogn)  pOlogn) Thus, on input ¢, the verifier first constructs Cy and ®. Part
of the proof oracle of this verifier is viewed as function A : F1°8™ — F, which is supposed to be a
multi-linear extension of a truth assignment that satisfies ¢ (i.e., for every v € {0,1}°6™ = [n], the
value A(7) is supposed to be the value of the v variable in such an assignment). Thus, we wish
to check whether, for every o € {0,1}°819] it holds that

3
> D(c, Br, Ba, B3) - [ (1 — A'(B)) = (6)
=1

B16203€{0,1}3 log 2n

where A’(3) is the value assigned by A to the g literal (i.e., if § = (v, o), where v € {0,1}1°8™ is
a variable name and o € {0,1} is the literal’s type, then A'(8) = o - A(y) + (1 — o) - (1 — A(%))).
Thus, Eq. (6) holds if and only if the o'® clause is satisfied by the assignment induced by A (since
A'(B) = 1 must hold for at least one of the three literals 3 that appear in this clause). As in §3.2.1,
we cannot afford to verify all instances of Eq. (6), and unlike in §3.2.1 we cannot afford to take
a random linear combination of them either (as this requires too much randomness). Fortuntaely,
taking a “pseudorandom” linear combination of these equations is good enough. Specifically, using
an adequate small-bias probability space S C Fl?l (of size poly(|@| - |F|)), the verifier may select
uniformly (s1, ..., $1¢|) € S and verify

3
> Sa- ®(a, B1, B2, 83) - [T (1 = A'(B)) =0 (7)

aB1B203€{0,1}¢ i=1

where ¢ & log |¢| + 3log 2n. The small-bias property guarantees that if A fails to satisfy any of
the equations of type Eq. (6) then, with high probability (over the choice of (s1, ..., s/¢/) € 5), it is

the case that A fails to satisfy Eq. (7). (Since |S| = poly(|¢| - |F|) rather that |S] = 2/?l, we can
select a sample in S using O(log |¢|) coin tosses.)
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Now, assuming that A is a low-degree polynomial, we can probabilistically verify Eq. (7) by
applying a summation test (as in the interactive proof for coNP). Indeed, the verifier obtains the
relevant univariant polynomials by making adequate queries (which specify the entire sequence of
choices made so far in the summation test). Note that after stripping the £ summations, the verifier
end-ups up with an expression that contains three unknown values of A’, which it may obtain by
making corresponding queries to A. This summation test involves tossing ¢ - log|F| coins and
making (£ + 3) - O(log |F|) Boolean queries (which correspond to ¢ queries that are each answered
by a univariate polynomial of constant degree (over F), and three queries to A (each answered by
an element of F)). Needless to say, we must also check that A is indeed a multi-variate polynomial
of low degree (or rather that it is close to such a polynomial). A low-degree test of complexities
similar to those of the summation text does exist. Using a finite field F of poly(log(n)) elements,
this yields NP C PCP(f, f) for f(n) def O(log(n) - loglog(n)).

To obtain the desired PCP system of logarithmic randomness complexity, we represent the
names of the original variables and clauses by ggffgnrz—long sequences over {1,...,log n}, rather than
by logarithmically-long binary sequences. This requires using low degree polynomial extensions
(i.e., polynomial of degree (logm) — 1), rather than multi-linear extensions. We can still use a
finite field of poly(log(n)) elements, and so we need only g(gl?fg”n) - O(log log n) random bits for the
summation and low-degree tests. However, the number of queries (needed for obtaining the answers
in these tests) grows, because now the polynomials involved have individual degree (log n)—1 rather
than constant individual degree. This merely means that the query complexity increases by a factor
of O(log n/loglogn). Thus, we obtain NP C PCP(log,q) for g(n) def O(log? n).

Recall that, in order to use the latter PCP system in composition, we need to guarantee that
it (or a version of it) is robust as well as to present a version that is a PCP of proximity. The
latter version is relatively easy to obtain (using ideas as applied to the PCP of §3.2.1), whereas
obtaining robustness is too complex to be described here. We comment that one way of obtaining a
robust PCP system is by a generic application of a (randomness-efficient) “parallelization” of PCP
systems (cf. [1]), which in turn depends heavily on highly efficient low-degree tests. A alternative
approach (cf. [10]) capitalizes of the specific structure of the summation test (as well as on the
actual robustness of the low-degree test).

Digest. Assuming that P # NP, the PCP Theorem asserts a PCP system that obtains simul-
taneously the minimal possible randomness and query complexity (up to a multiplicative factor).
The forgoing construction obtains this remarkable result by combining two different PCPs: the first
PCP obtains logarithmic randomness but uses polylogarithmically many queries, whereas the sec-
ond PCP uses a constant number of queries but has polynomial randomness complexity. We stress
that each of the two PCP systems is highly non-trivial and very interesting by itself. We highlight
the fact that these PCPs can be composed using a very simple composition method that refers to
auxiliary properties such as robustness and proximity testing. (Composition of PCP systems that
lack these extra properties is possible, but is far more cumbersome and complex.)

3.2.3 Overview of the second proof of the PCP Theorem

The original proof of the PCP Theorem focuses on the construction of two PCP systems that
are highly non-trivial and interesting by themselves, and combines them in a natural manner.
Loosely speaking, this combination (via proof composition) preserves the good features of each
of the two systems; that is, it yields a PCP system that inherits the (logarithmic) randomness
complexity of one system and the (constant) query complexity of the other. In contrast, the
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following alternative proof is focused at the “amplification” of PCP systems, via a gradual process
of logarithmically many steps. We start with a trivial “PCP” system that rejects false assertions
with probability inversely proportional to their length, and double the rejection probability in each
step. Furthermore, in each step, the constant query complexity is preserved and the length of
the PCP oracle is increased ounly by a constant factor. Thus, the process gradually transforms
an extremely weak PCP system into a remarkably strong PCP system as postulated in the PCP
Theorem.

In order to describe the aforementioned process we need to redefine PCP systems so to allow
arbitrary soundness error. In fact, for technical reasons it is more convenient to describe the process
as an interated reduction of a “constraint satisfaction” problem to itself. Specifically, we refer to
systems of 2-variable constraints, which are readily represented by (labelled) graphs such that the
vertices correspond to (non-Boolean) variables and the edges are associated with constraints.

Definition 18 (CSP with 2-variable constraints): For a fized finite set X, an instance of CSP
consists of a graph G = (V, E) (which may have parallel edges and self-loops) and a sequence of
2-variable constraints ® = (¢pe)ecr associated with the edges, where each constraint has the form
¢e : X2 — {0,1}. The value of an assignment o : V — % is the number of constraints satisfied by
a; that is, the value of « is [{(u,v) € E i ¢ry)(a(u),a(v)) = 1}[. We denote by v1t(G,®) the
fraction of unsatisfied constraints under the best possible assignment; that is,

V18(G,®) = min {[{(u,0) € B : g )(alu),a(v)) = 0}|/|B]} (5)

For various functions t : N — [0, 1], we will consider the promise problem gapCSPY, having instances
as above, such that the yes-instances are fully satisfiable instances (i.e., v1t = 0) and the no-
instances are pairs (G, ®) satisfying v1t(G, ®) > t(|G|), where |G| denotes the number of edges in
G.

Note that 3SAT is reducible to gapCSP;{I""j} for t(m) = 1/m; see Exercise 38. Our goal is to reduce
3SAT (or rather gapCSPi{l""J}) to gapCSPZ, for some fixed finite ¥ and constant ¢ > 0. The PCP
Theorem will follow by showing a simple PCP system for gapCSP¥; see Exercise 39. The desired
reduction is obtained by iteratively applying the following reduction logarithmically many times.

Lemma 19 (amplifying reduction of gapCSP to itself): For some finite ¥ and constant ¢ > 0, there
exists a polynomial-time reduction of gapCSP> to itself such that the following conditions hold with
respect to the mapping of any instance (G, ®) to the instance (G',P').

1. If v1t(G,®) = 0 then v1t(G',®') = 0.
2. v1t(G', @) > min(2 - v1t(G, ®),c).
3. |&' = O(|&)).

Proof Outline:?® The reduction consists of three steps. We first apply a pre-processing step that
makes the underlying graph suitable for further analysis. The value of vlt may decrease during
this step by a constant factor. The heart of the reduction is the second step in which we may
increase vlt by any desired constant factor. The latter step also increases the alphabet X, and
thus a post-processing step is employed to regain the original alphabet (by using any inner PCP
systems; e.g., the one presented in §3.2.1). Details follow.

Tor details, see [15].
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We first note that the aforementioned X and ¢, as well as the auxiliary parameters d and ¢, are
fixed constants that will be determined so to satisfy various conditions that arise in the course of
our argument.

We start with the pre-processing step. Our aim in this step is to reduce the input (G, ®) of
gapCSP* to an instance (G4, ®1) such that Gy is a d-regular expander graph.?* Furthermore, each
vertex in G will have at least d/2 self-loops, |G1| = O(|G]), and v1t(Gy, 1) = O(v1it(G, P)).
This step is quite simple: see Exercise 40.

The alphabet ¥/ as a labelling of the distance t = 3 neighborhoods,
when repetitions are omitted. In this case d = 6 but the self-loops are
not shown. The two-sided arrow indicates one of the edges in G that
will contribute to the edge constraint between u and w in (Gg, ).

Figure 3: The amplifying reduction in the second proof of the PCP Theorem.

The main step is aimed at increasing the fraction of violated constraints by a sufficiently large
constant factor. This is done by reducing the instance (G, ®1) of gapCSP* to an instance (Gz, ®2)
of gapCSPE' such that ¥/ = £ Specifically, the vertex set of Gy is identical to the vertex set
of G1, and each t-edge long path in G, is replaced by a corresponding edge in G, which is thus
a d'-regular graph. The constraints in ®; are the natural ones, viewing each element of ¥’ as a
Y-labelling of the (“distance < ¢”) neigborhood of a vertex (see Figure 3), and checking that two
such labellings are consistent as well as satisfy ®;. That is, suppose that there is a path of length

24 A d-regular graph is a graph in which each vertex is incident to exactly d edges. Loosely speaking, an expander
graph has the property that each moderately balanced cut (i.e., partition of its vertex set) has relatively many edges
crossing it. An equivalent definition, also used in the actual analysis, is that the second eigenvalue of the corresponding
adjacency matrix has asolute value that is bounded away from d.
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at most ¢ in G'; going from vertex u to vertex w and passing through vertex v. Then, there is an
edge in G1 between vertices u and w, and the constraint associated with it with mandates that the
entries correspondings to vertex v in the X'-labelling of vertices v and w are identical. In addition,
if the Gy-edge (v,v") is on a path of length at most ¢ starting at u then the corresponding edge in
G is associated a constraint that enforces the constraint that is associated to (v,v’) in @.

Clearly, if v1t(Gq, ®1) = 0 then v1t(Gy, ®3) = 0. The interesting fact is that the fraction of vio-
lated constraints increases by a factor of Q(v/%); that is, v1t(Gg, ®2) > min(Q(vV%-v1it(Gy, 1)), c).
Here we merely provide a rough intuition and refer the interested reader to [15]. The intuition
is that any Y'-labelling to the vertices of Go must either be consistent with a ¥-labelling of G
or violate the “equality constraints” of many edges in G3. Focusing on the first case and relying
on the hypothesis that G7 is an expander, it follows that the set of violated edge-constaints (of
®,) with respect to the aforementioned X-labelling causes many more edge-constaints of ®9 to be
violated (by virtue of the latter enforcing many edge-constaints of ®;). The point is that a set F
of edges of G is likely to appear on a min(2(t) - |F|/|G1],€2(1)) fraction of the edges of Gy (i.e.,
t-paths of G1). (Note that the claim is obvious if G; were a complete graph, but it also holds for
an expander.)?

The factor of (v/t) gained in the second step makes up for the constant factor lost in the
first step (as well as the constant factor to be lost in the last step). Furthermore, for a suitable
choice of the constant ¢, the aforementioned gain yields an overall constant factor amplification (of
v1lt). However, so far we obtained an instance of gapCSPE' rather than an instance of gapCSP™,
where ¥/ = £%. The purpose of the last step is to reduce the latter instance to an instance of
gapCSP*. This is done by viewing the instance of gapCSPE' as a (weak) PCP system and composing
it with an inner-verifier, using the proof composition paradigm outlined in §3.2.2. We stress that
the inner-verifier used here needs only handle instances of constant size (i.e., having description
length O(d"log|X|)), and so the one presented in §3.2.1 will do. The resulting PCP-system uses

randomness r % logs |G2|+0(d! log |X|)? and a constant number of binary queries, and has rejection
probability Q(v1t(Gy, ®2)), which is indepedent of the choice of the constant ¢. As in Exercise 38,
for & = {0,1}°M) we can easily obtain an instance of gapCSP® that has a Q(v1t(Gy, ®9)) fraction
of violated constraints. Furthermore, the size of the resulting instance is O(2") = O(|G3|), because
d and t are constants. This completes the last step as well as the (outline of the) proof of the entire
lemma. O

3.3 PCP and Approximation

The characterization of AP in terms of probabilistically checkable proofs plays a central role in
the study of the complexity of approximation problems. To demonstrate this relationship, we first
note that a PCP system V gives rise to a natural approximation problem; that is, on input =z,
the task is approximating the probability that V' accepts x when given oracle access to the best
possible 7 (i.e., we wish to approximate max {Pr[V™(z) = 1]}). Thus, if S € PCP(r,q) then
deciding membership in S is reducible to approximating the maximum among exp(2" %) quantities
(corresponding to all effective oracles), where each quantity can be evaluated in time 2" -poly. Note
that an approximation up to a constant factor (of 2) will do.

Let us take a closer look at the approximation problem associated with PCP(r,q). We focus, for
simplicity, on the case of non-adaptive PCP systems (i.e., all the queries are determined beforehand
by the input and the internal coin tosses of the verifier). On input x, we consider 27 () formulae,

?5We also note that due to a technical difficulty it is easier to establish the claimed bound of Q(v/% - v1t(G1, ®1))
rather than Q(¢ - v1t(G1, ®1)).
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each depending on ¢(|z|) Boolean variables that represent the values of the corresponding bits in
the proof oracle. Thus, if x is a yes-instance then there exists a truth assignment (to these variables)
that satisfies all 2"(#) formulae, whereas if « is a no-instance then there exists no truth assignment
that satisfies more than 27(#D—1 formulae. When focusing on the case that ¢ is constant, this
motivates the following definition.

Definition 20 (gap problems for SAT and generalized-SAT): For constants ¢ € N and £ > 0,
the promise problem gapGSATY consists of instances that are each a sequence of q-variable Boolean
formulae. The yes-instances are sequences that are simultaneously satisfiable, whereas the no-
instances are sequences for which no Boolean assignment satisfies more than a 1 — ¢ fraction of the
formulae in the sequence. The promise problem gapSAT? is defined analogously, except that in this
case each instance is a sequence of formulae that are each a single disjunctive clause.

Indeed, each instance of gapSAT? is naturally viewed as ¢g-CNF formulae, and we consider an
assignment that satisfies as many clauses (of the input CNF) as possible. As hinted, NP C

PCP(log,O(1)) implies that gapGSATIO/(;) is N'P-complete. The converse holds too, and (for some

constant ¢ > 0) the same holds for gapSATS.

Theorem 21 (equivalent formulations of the PCP Theorem). The following three conditions are
equivalent:

1. The PCP Theorem: there exists a constant ¢ such that NP C PCP(log,q).

2. There exists a constant q such that gapGSAT‘f/2 is N'P-hard.
3. There exists a constant € > 0 such that gapSAT? is N'P-hard.

Note that Items 2 and 3 make no reference to PCP. Instead, they manifest that the hardness of
approximation lies at the heart of the PCP Theorem. In general, probabilistic checkable proof
systems for A'P yield strong inapproximability results for various classical optimization problems
(cf., e.g., Exercise 33).

Proof: We first show that the PCP Theorem implies the NP-hardness of gapGSAT. We may
assume, without loss of generality, that, for some constant ¢ and every S € NP, it holds that
S € PCP(O(log),q) via a non-adaptive verifier (because ¢ adaptive queries can be emulated by 2¢
non-adaptive queries). We reduce S to gapGSAT as follows. On input z, we consider all 20(log |z)
possible coin tosses of the verifier, and for each sequence of outcomes we determine the queries made
as well as the residual decision predicate (of the PCP verifier). That is, for each random-outcome
w € {0, 1}0(1°g|x|), we consider the residual predicate determined by z and w, and note that this
predicate depends only on ¢ variables (which represent the values of the ¢ corresponding oracle
answers). Thus, we obtain an instance of gapGSAT?, and indeed = € S (resp., z € S) is mapped to
a yes-instance (resp., no-instance) of gapGSAT?

1/2°
Item 2 implies Item 3 by a standard reduction of GSAT to 3SAT. Specifically, gapGSAT‘f/2
reduces to gapSATgf(qul)7 which in turn reduces to gapSAT? for ¢ = 2=(e+1) /(g — 2). (Clearly,

Item 3 implies Item 2.)

We complete the proof by showing that Item 3 implies Item 1. In fact, we show that gapGSAT?
is in PCP(O(e tlog),0(q/e)), and do so by presenting a very natural PCP system. In this PCP
system the proof oracle is supposed to be an satisfying assignment, and the verifier selects at
random one of the (¢g-variable) formulae in the input sequence, and checks whether it is satisfied
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by the (assignment given by the) oracle. This amounts to tossing logarithmically many coins and
making ¢ queries. This verifier always accepts yes-instances (when given access to an adequate
oracle), whereas each no-instances is rejected with probability at least ¢ (no matter which oracle
is used). To amplify the rejection probability (to the desired threshold of 1/2), we invoke the
foregoing verifier O(¢~!) times. i

Gap amplifying reductions — a reflection. Items 2 and 3 of Theorem 21 assert the exis-
tence of “gap amplifying” reductions of problems like 3SAT to themselves. These reductions map
yes-instances to yes-instances (as usual), while mapping no-instances to no-instances of a special
type such that a “gap” is created between the yes-instances and no-instances at the image of the
reduction. For example, in the case of 3SAT, unsatisfiable formulae are mapped to formulae that
are not merely unsatisfiable but rather have no assignment that satisfies more than a 1 — ¢ fraction
of the clauses. Thus, PCP constructions are essentially “gap amplifying” reductions.

3.4 More on PCP itself: an overview

We start by discussing variants of the PCP characterization of NP, and next turn to PCPs having
expressing power beyond NP.

3.4.1 More on the PCP characterization of NP

Interestingly, the two complexity measures in the PCP-characterization of NP can be traded off
such that at the extremes we get NP = PCP(log, O(1)) and NP = PCP(0, poly), respectively.

Proposition 22 For every S € NP, there exist a constant o such that for every integer function
{ that satisfies 0<{(n) <alogyn it holds that S € PCP(r,q) C NP, where r(n) = «-loggn — £(n)
and q(n) = O(21").

Proof Sketch: Starting with Theorem 16, consider all possibilities for the ¢(n)-long prefix of the
random tape of the verifier. O

Following the establishment of Theorem 16, numerous variants of the PCP Characterization of
NP were explored. Following is a brief summary of some of these studies.?

The length of PCPs. Recall that the effective length of the oracle in any PCP(log, log) system
is polynomial (in the length of the input). Furthermore, in the PCP systems underlying the proof
of Theorem 16 the queries refer only to a polynomially long prefix of the oracle, and so the actual
length of these PCPs for NP is polynomial. Remarkablly, the length of PCPs for NP can be made
nearly-linear (in the combined length of the input and the standard NP-witness), while maintaining
constant query complexity, where by nearly-linear we mean linear up to a poly-logarithmic factor.
(For details see [11, 15].) This means that the redundency required for supporting probabilistic
verification of proofs is relatively modest.

*6With the exception of works that appeared after [21], we provide no references for the results quoted here. We
refer the interested reader to [21, Sec. 2.4.4].
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The number of queries in PCPs. Theorem 16 asserts that a constant number of queries suffice
for PCPs with logarithmic randomness and soundness error 1/2 (for NP). It is currently known
that this constant is at most 5, whereas with 3 queries one may get arbitrary close to error 1/2.
The obvious trade-off between the number of queries and the soundness error gives rise to the
robust notion of amortized query complexity, defined as the ratio between the number of queries and
(minus) the logarithm (to based 2) of the soundness error. For every e > 0, any set in NP has a
PCP system with logarithmic randomness and amortized query complexity 1 4 ¢ (cf. [30]), whereas
only sets in P have PCPs of logarithmic randomness and amortized query complexity 1 (or less).

The free-bit complexity. The motivation to the notion of free bits came from the PCP—to—
MaxClique connection (see Exercise 33 and [7, Sec. 8]), but we believe that this notion is of
independent interest. Intuitively, this notion distinguishes between queries for which the acceptable
answer is determined by previously obtained answers (i.e., the verifier compares the answer to a
value determined by the previous answers) and queries for which the verifier only records the answer
for future usage. The latter queries are called free (because any answer to them is “acceptable”).
For example, in the linearity test (see §3.2.1) the first two queries are free and the third is not
(i.e., the test accepts if and only if f(x) + f(y) = f(z + y)). The amortized free-bit complexity is
define analogously to the amortized query complexity. Interestingly, NP has PCPs with logarithmic
randomness and amortized free-bit complexity less than any positive constant.

Adaptive versus non-adaptive verifiers. Recall that a PCP verifier is called non-adaptive
if its queries are determined solely based on its input and the outcome of its coin tosses. (A
general verifier, called adaptive, may determine its queries also based on previously received oracle
answers.) Recall that the PCP Characterization of NP (i.e., Theorem 16) is established using a
non-adaptive verifier; however, it turns out that adaptive verifiers are more powerful than non-
adaptive ones in terms of quantitative results: Specifically, for PCP verifiers making three queries
and having logarithmic randomness complexity, adaptive queries provide for soundness error at
most 0.51 (actually 0.5+ ¢ for any € > 0) for any set in NP, whereas non-adaptive queries provide
soundness error 5/8 (or less) only for sets in P.

Non-binary queries. Our definition of PCP allows only binary queries. Certainly, non-binary
queries can always be coded as binary ones, but the converse is not necessarily valid, in particular in
adversarial settings. Note that the soundness condition constitutes an implicit adversarial setting,
where a bad proof may be thought of as being selected by an adversary. Thus, when several binary
queries are packed into one non-binary query, the adversary need not respect the packing (i.e., it
may answer inconsistently on the same binary query depending on the other queries packed with
it). For this reason, “parallel repetition” is highly non-trivial in the PCP setting. Still, a Parallel
Repetition Theorem that refers to independent invocations of the same PCP is known [36], but it is
not applicable for obtaining soundness error smaller than a constant (while preserving logarithmic
randomness). Nevertheless, using adequate “consistency tests” one may construct PCP systems
for NP using logarithmic randomness, a constant number of (non-binary) queries and soundness
error exponential in the length of the answers. (Currently, this is known only for sub-logarithmic
answer lengths.)
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3.4.2 PCP with super-logarithmic randomness

The foregoing text has focused on the important case where the verifier tosses logarithmically
many coins, and hence the “effective proof length” is polynomial. Here we mention that the PCP
Theorem scales up.

Theorem 23 (Theorem 16 — Generalized): Let t(-) be an integer function such that n < t(n) <
200 (") Then, NTIME(t) € PCP(O(logt), O(1)).

Recall that PCP(r,q) C NTIME(t), for t(n) = poly(n) - 27(),

Notes

(The following historical notes are quite long and still they fail to mention several important
technical contributions that played an important role in the development of the area. For further
details, the reader is referred to [21, Sec. 2.6.2].)

Motivated by the desire to formulate the most general type of “proofs” that may be used
within cryptographic protocols, Goldwasser, Micali and Rackoff [26] introduced the notion of an
interactive proof system. Although the main thrust of their work is the introduction of a special
type of interactive proofs (i.e., ones that are zero-knowledge), the possibility that interactive proof
systems may be more powerful from NP-proof systems has been pointed out in [26]. Independently
of [26], Babai [3] suggested a different formulation of interactive proofs, which he called Arthur-
Merlin Games (and conjectured to be “very close” to N'P). Syntactically, Arthur-Merlin Games are
a restricted form of interactive proof systems, yet it was subsequently shown that these restricted
systems are as powerful as the general ones (cf., [27]). The speed-up result (i.e., AM(2f) C AM(f))
is due to [6] (improving over [3]).

The first evidence of the power of interactive proofs was given by Goldreich, Micali, and Wigder-
son [24], who presented an interactive proof system for Graph Non-Isomorphism (Construction 3).
More importantly, they demonstrated the generality and wide applicability of zero-knowledge proofs:
Assuming the existence of one-way function, they showed how to construct zero-knowledge inter-
active proofs for any set in AP (Theorem 11). This result has had a dramatic impact on the
design of cryptographic protocols. For further discussion of zero-knowledge and its applications to
cryptography see [22, 23]. Theorem 12 (i.e., ZK =ZP) is due to [8, 31].

Probabilistically checkable proof (PCP) systems are related to multi-prover interactive proof
systems, a generalization of interactive proofs that was suggested by Ben-Or, Goldwasser, Kilian
and Wigderson [9]. Again, the main motivation came from the zero-knowledge perspective; specif-
ically, introducing multi-prover zero-knowledge proofs for NP without relying on intractability
assumptions. Yet, the complexity theoretic prospects of the new class, denoted MZP, have not
been ignored.

The amazing power of interactive proof systems has been demonstrated by using algebraic
methods. The basic technique has been introduced by Lund, Fortnow, Karloff and Nisan [33], who
applied it to show that the polynomial-time hierarchy (and actually P#%) is in ZP. Subsequently,
Shamir [37] used the technique to show that ZP = PSPACE, and Babai, Fortnow and Lund [4]
used it to show that MZP = NEXP. (Our entire proof of Theorem 4 follows [37].)

The aforementioned multi-prover proof system of Babai, Fortnow and Lund [4] (hereafter re-
ferred to as the BFL proof system) has been the starting point for fundamental developments
regarding AN/P. The first development was the discovery that the BFL proof system can be “scaled-
down” from NEXP to NP. This important discovery was made independently by two sets of
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authors: Babai, Fortnow, Levin, and Szegedy [5] and Feige, Goldwasser, Lovédsz, and Safra [17].
However, the manner in which the BFL proof is scaled-down is different in the two papers, and so
are the consequences of the scaling-down.

Babai et. al. [5] start by considering (only) inputs encoded using a special error-correcting code.
The encoding of strings, relative to this error-correcting code, can be computed in polynomial time.
They presented an almost-linear time algorithm that transforms NP-witnesses (to inputs in a set
S € N'P) into transparent proofs that can be verified (as vouching for the correctness of the encoded
assertion) in (probabilistic) poly-logarithmic time (by a Random Access Machine). Babai et. al. [5]
stress the practical aspects of transparent proofs; specifically, for rapidly checking transcripts of
long computations. In contrast, in the proof system of Feige et. al. [17, 18] the verifier stays
polynomial-time and only two more refined complexity measures (i.e., the randomness and query
complexities) are reduced to poly-logarithmic. This eliminates the need to assume that the input
is in a special error-correcting form, and yields a refinement of the complexity class introduced
in [19], where the refinement is obtained by specifying the randomness and query complexities (see
Definition 14). Hence, whereas the BFL proof system [4] can be reinterpreted as establishing

NEXP = PCP(poly,poly), (9)
the work of Feige et. al. [18] establishes
NP CPCP(f,f), where f(n) = O(logn -loglogn). (10)
We note that the work of Babai et. al. [5] implies
NP C PCP(log,polylog) . (11)

Interest in the new complexity class became immense since Feige et. al. [17, 18] demonstrated its
relevance to proving the intractability of approximating some combinatorial problems (specifically,
for MaxClique). When using the PCP-to-MaxClique connection established by Feige et. al., the
randomness and query complexities of the verifier (in a PCP system for an NP-complete set) relate
to the strength of the negative results obtained for approximation problems. This fact provided a
very strong motivation for trying to reduce these complexities and obtain a tight characterization
of NP in terms of PCP(:,-). Once the work of Feige et. al. [18] had been presented, the challenge
was clear: showing that AP equals PCP(log, log). This challenge was met by Arora and Safra [2].
Actually, they showed that

NP =PCP(log, f(+)), where f(n) = o(logn). (12)

Hence, a new challenge arose; namely, further reducing the query complexity — in particular to a
constant — while maintaining the logarithmic randomness complexity. Again, additional motivation
for this challenge came from the relevance of such a result to the study of approximation problems.
The new challenge was met by Arora, Lund, Motwani, Sudan and Szegedy [1], and is captured by
the equation

NP =PCP(log,O(1)). (13)

Indeed the PCP Characterization Theorem (captured in Eq. (13)) is a culmination of a sequence of
great works [33, 4, 5, 18, 2, 1]. These works are rich in innovative ideas (e.g., various arithmetizations
of SAT as well as various forms of proof composition) and employ numerous techniques (e.g., low-
degree tests, self-correction, and pseudorandomness). For further detail, the interested reader is
referred to [21, Sec. 2.6.2].
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Our overview of the original proof of the PCP Theorem (in §3.2.1-3.2.2) is based on [1, 2].27
The alternative proof outlined in §3.2.3 is due to Dinur [15]. We also mention some of the ideas
and techniques involved in deriving variants of the PCP Theorem. These include the Parallel
Repetition Theorem [36], the use of the Long-Code [7], and the application of Fourier analysis in
this setting [28, 29].

Computationally-Sound Proof Systems. Argument systems were defined by Brassard, Chaum
and Crépeau [14], with the motivation of providing perfect zero-knowledge arguments (rather than
zero-knowledge proofs) for N'P. A few years later, Kilian [32] demonstrated their significance
beyond the domain of zero-knowledge by showing that, under some reasonable intractability as-
sumptions, every set in AP has a computationally-sound proof in which the randomness and
communication complexities are poly-logarithmic.?® Interestingly, these argument systems rely on
NP CPCP(f,f), for f(n) = poly(logn). We mention that Micali [34] suggested a different type
of computationally-sound proof systems (which he called CS-proofs).

Final comment: The current text is a revision of [21, Chap. 2|. In particular, more details are
provided here for the main topics, whereas numerous secondary topics discussed in [21, Chap. 2]
are not mentioned here (or are only briefly mentioned here). In addition, a couple of the research
directions that were mentioned in [21, Sec. 2.4.4] received considerable attention in the period that
elapsed, and improved results are currently known. In particular, the interested reader is referred
to [10, 11, 15] (for a study of the length of PCPs) and to [30] (for a study of the amortized query
complexity).

Exercises

Exercise 24 (parallel error-reduction for interactive proof systems) Prove that the error
probability (in the soundness condition) can be reduced by parallel repetitions of the proof system.

Guideline: As a warm-up consider first the case of public-coin interactive proof systems. Next, note that
the analysis generalizes to arbitrary interactive proof systems. (Extra hint: As a mental experiment, consider a

“powerful verifier” that emulates the original verifier while behaining as in the public-coin model.) A proof appears
in [21, Apdx. C.1].

Exercise 25 Complete the details of the proof that coNP C IP (i.e., the first part of the proof
of Theorem 4). In particular, regarding the proof of non-satisfiability of a CNF with n variables
and m clauses, what is the length of the messages sent by the two parties? What is the soundness
error?

Exercise 26 Present a n/O(logn)-round interactive proof for the non-satisfiability of a CNF hav-
ing n variables.
(Hint: Modify the (first part of the) proof of Theorem 4, by stripping O(log n) summations in each round.)

Exercise 27 Show that QBF can be reduced to a special form of QBF in which no variable appears
both to the left and the right of more than one universal quantifier.

2TOur presentation also benefits from the notions of PCPs of proximity and robustness, put forward in [10, 16].
2#We comment that interactive proofs are unlikely to have such low complexities; see [25].
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Guideline: Consider a process (which proceeds from left to right) of “refreshing” variables after each uni-
versal quantifier. Let ¢(z1, ..., Ts, Y, Ts41, ..., Ts4+¢) be a quantifier-free boolean formula and let Qs41, ..., Qs+1
be an arbitrary sequence of quantifiers. Then, we replace the quantified (sub-)formula

VYQst1Tst1 = QsttTsyt Q(T1y o0y Ts, Yy T 1y oy Tstt)

by the (sub-)formula
Vyafﬂ'l T 355’3 [(/\29:1(55; =17i) N Qsr1Tsq1 - - QsptTstt ¢(l"l1a ---,Cﬂls;y,fﬂsﬂa vy Tsyt) ]

Note that the variables z1,...,zs do not appear to the right of the quantifier @41 in the replaced formula,
and that the length of the replaced formula grows by an additive term of O(s). This process of refreshing
variables is applied from left to right on the entire sequence of universal quantifiers (except the inner one,
for which this refreshing is useless).??

Exercise 28 (on interactive proofs with two-sided error (following [20])) Let ZP'(f) de-
note the class of sets having a two-sided error interactive proof system in which a total of f(|z|)

messages are exchanged on common input x. Extending the ideas underlying the proof of “BPP in
¥9”, show that ZP'(f) C ZP(f + 3). Note that ZP'(f) € AM(f + 1) follows.

Guideline: Consider the public-coin version of ZP', denoted AM’, and note that the proof of ZP(f) C
AM(f + 2) (cf. [27]) extends to ZP'(f) € AM'(f + 2). Observe that the proof of “BPP in 5" actually
establishes that BPP C MA = AM(1), and that BPP = AM'(0). Our aim is to establish AM'(f) C
AM(f+1) for arbitrary f (rather than for f = 0). Consider an optimal prover strategy and the set of verifier
coins that make the verifier accept any fixed yes-instance. Applying the ideas underlying the transformation
of BPP to MA, we obtain the desired result. For further details, see [20].

Exercise 29 In continuation to Exercise 28, show that ZP'(f) = ZP(f) for every function f :
N — N satisfying f > 1.

(Hint: If £ > 2 then the claim follows by combining Exercise 28 with ZP(O(f)) = ZP(f). For the case of f = 1,
note that ZP(1) = AM(1), and that the single prover message added in Exercise 28 can be incorporated in the single
message sent in ZP(1).)

Exercise 30 (on the effective length of PCP oracles) Suppose that V is a PCP verifier of
query complexity ¢ and randomness complexity r. Show that for every fixed x, the number of
possible locations examined on input x (when considering all possible internal coin tosses of V' and
all possible answers it may receive) is upper-bounded by 24(IzD+(1=)) - Show that if V' is non-adaptive
then the upper-bound can be improved to 272D . ¢(]z|).

(Hint: In the adaptive case, the i*" query is determined by V’s internal coin tosses and the previous 7 — 1 answers.

In the non-adaptive case, all ¢ queries are determined by Vs internal coin tosses.)

2For example,
Jz1Vz2323V 24325V 26 (21, 22, 23, 24, 25, 26)

is first replaced by
3z1Vz232] [(zi = z1) A Jz3Vz4325Vz6 qS(z;, 22,23, %4, %5, 26) |

and next (written as Jz1Vz532] [(2] = z1) A J25Vzy32LVzg (21, 25, 25, 24, 25, 26)]) is replaced by

2125321 [(21 = 21) A F25Vzy 321 325 324

[(Nioi (20 = 20)) A F25Vze0(21, 25, 28, 24, 25, 26)]]-

Thus, in the resulting formula, no variable appears both to the left and to the right of more than a single universal
quantifier.
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Exercise 31 (upper-bounds on the complexity of PCPs) Suppose that a set S has a PCP
of query complexity ¢ and randomness complexity r. Show that S can be decided by a non-
deterministic machine that, on input of length n, makes at most 2"(") . ¢(n) non-deterministic steps
and halts within a total number of 2"(™) - poly(n) steps. Thus, S € NTIME(2" - poly) N DTiME(22"9 -
poly).

(Hint: For each input = € S and each possible value w € {0, 1}T(|m|) of the random-tape, we consider a sequence of
q(|z|) bit values that represent a sequence of oracle answers that make the verifier accept. Indeed, for fixed x and
w € {0,1}70#D each setting of the ¢(|z|) oracle answers determine the computation of the corresponding verifier

(including the queries it makes).)

Exercise 32 (on the effective randomness of PCPs) Suppose that a set S has a PCP of
query complexity ¢ that utilizes proof oracles of length . Show that, for every constant € > 0, the
set S has a “non-uniform” PCP of query complexity ¢, soundness error 0.5 4+ ¢ and randomness
complexity r such that r(n) = O(1) + logy(¢(n) + n). By a “non-uniform PCP” we mean one in
which the verifier is a probabilistic polynomial-time oracle machine that gets a non-uniform advice
of length polynomial in £.

Guideline: Consider a PCP verifier V' as in the hypothesis, and denote its randomness complexity by ry .
We construct a non-uniform verifier V' that, on input of length n, obtains as advice a set R,, C {0, 1}"/(”)
of cardinality O((¢(n) + n)/e?), and emulates V on a uniformly selected element of R,,. Show that for a
random R,,, the verifier V' satisfies the claims of the exercise.

(Extra hint: Fixing any input = ¢ S and any oracle 7 € {0, 1}2(‘1‘), upper-bound the probability that a random set
R, causes V' to accept = with probability 0.5 4+ ¢ when using the oracle .)

Exercise 33 (The FGLSS-reduction [18]) For any S € PCP(r,q), consider the following map-
ping of instances for S to instances of the Independent Set problem. The instance = is mapped to
a graph G, = (Vi, E,), where V,, C {0,1}7(zD+a(l2l) consists of pairs (w, a) such that the PCP veri-
fier accepts the input x, when using coins w € {0, 1}T(‘$D and receiving the answers a = ay - - - g(J))
(to the oracle queries determined by x, r and the previous answers). The set E, consists of edges
that connect vertices that represents inconsistent view of the said verifier; that is, the vertex
v = (W, 1 Qg(lz))) is connected to the vertex v = (', af - a;(m)) if there exists ¢ and i’ such
that «; # o and qF (v) = q%(v'), where qF(v) (resp., q%(v')) denotes the i-th (resp., i'-th) query
of the verifier on input z, when using coins w (resp., w’) and receiving the answers aq---q;_1
(vesp., o -+~ ay ;). In particular, for every w € {0,1}7(#) and a # o, if (w, @), (w, ) € Vj, then
(w, @), (w,d)) € Ey.

1. Prove that the mapping = — G, can be computed in time that is polynomial in 2"(#D+a(=]). |z,

(Note that the number of vertices in G equals 2"(#D+/(=)) where f is the free-bit complexity
of the PCP verifier.)

2. Prove that, for every x, the size of the maximum independent set in G is at most 27 (l=])

3. Prove that if z € S then G, has an independent set of size 27121

4. Prove that if z ¢ S then the size of the maximum independent set in G is at most 27(#D-1,

In general, denoting the PCP verifier by V', prove that the size of the maximum independent set in
G, is exactly 272D . max, {Pr[V™(z) = 1]}. Show that the PCP Theorem implies that the size of
the maximum independent set (resp., clique) in a graph is NP-hard to approximate to within any
constant factor.
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(Hint: Note that an independent set in G, corresponds to a set of coins R and a partial oracle 7' such that V
accepts = when using coins in R and accessing any oracle that is consistent with 7'. The FGLSS reduction creates a
gap of a factor of 2 between yes and no-instances of S. Larger factors can be obtained by considering a PCP that
results from repeating the given PCP for a constant number of times. The result for Clique follows by considering

the complement graph.)

Exercise 34 In continuation to Exercise 33, prove that, for any t(n) = o(logn), it holds that
NP C PCP(t,t) implies that P = NP.

Guideline: We only use the fact that the said reduction actually reduces PCP to instances of the Clique
problem (and ignore the fact that we actually get a stronger result that refers to a “gapClique” problem). Fur-
thermore, when applies to problems in NP C PCP(t,t), this reduction runs in polynomial-time. The key ob-
servation is that this reduction maps instances of the Clique problem (which is in NP C PCP(o(log), o(log)))
to shorter instances of the same problem (because 20(logn) n). Thus, iteratively applying the reduction,
we can reduce instances of Clique to instances of constant size. Using the AN'P-completeness of Clique, we
reduce NP to a finite set, and NP = P follows.

Exercise 35 (a simple but partial analysis of the BLR Linearity Test) For Abelian groups
G and H, consider functions from G to H. For such a (generic) function f, consider the linearity (or
rather homomorphism) test that selects uniformly r, s € G and checks that f(r)+ f(s) = f(r+s).
Let 6(f) denote the distance of f from the set of homomorphisms (of G to H); that is, 6(f) is the
minimum taken over all homomorphisms b : G — H of Pryeq[f(z) # h(z)]. Using the following
guidelines, prove that the probability that the test rejects f, denoted (f), is at least 36(f)—66(f)2.

1. Suppose that h is the homomorphism closest to f (i.e., 6(f) = Pr[f(x)#h(x)]). Prove that
e(f) = Prayeclf(x) + f(y) # fz,y)] is lower-bounded by 3 - Pry,[f(z) # h(z) A f(y) =
h(y) A f e, y) =h(z +y)].

(Hint: consider three out of four disjoint events that support the case f(z) + f(y) # f(=,y).)

2. Prove that Pry,[f(x)Zh(z) A f(y)=h(y) A f(z,y)=h(z +y)] > 6(f) — 26(f)%.
(Hint: lower-bound the said probability by Pr.,[f(z) # h(z)] — (Pray[f(z) # h(z) A f(y) # h(y)] +
Proy[f(z) # h(z) A f(z +y) # h(z +y)]).)

Note that the lower-bound e(f) > 36(f) — 66(f)? increases with §(f) only in the case that §(f) <

1/4. Furthermore, the lower-bound is useless in the case that 6(f) > 1/2. Thus an alternative
lower-bound is needed in case 6(f) approaches 1/2 (or is larger than it); see Exercise 36.

Exercise 36 (a better analysis of the BLR Linearity Test (cf. [12])) In continuation to Ex-
ercise 35, use the following guidelines in order to prove that e(f) > min(1/7,6(f)/2). Specifically,
focusing on the case that e(f) < 1/7, show that f is 2e(f)-close to some homomorphism (and thus

e(f) 2 6(£)/2).

1. Define the vote of y regarding the value of f at = as ¢,(z) def f(x+y)— f(y), and define ¢(x)
as the corresponding plurality vote (i.e., ¢(x) Aot argmax,c p{[{y €G : ¢y(z)=v}|}).
Prove that, for every o € G, it holds that Pry[¢,(x) = ¢(x)] > 1 — 2¢(f).

Extra guideline: Fixing z, call a pair (y1,y2) good if f(y1) + f(y2 —y1) = f(y2) and f(z + y1) +
f(y2 —v1) = f(x + y2). Prove that, for any z, a random pair (y1,y2) is good with probability at
least 1 — 2e(f). On the other hand, for a good (y1,y2), it holds that ¢, () = ¢y,(z). Show that
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the graph in which edges correspond to good pairs must have a connected component of size at least
(1 —2¢(f)) - |G|. Note that ¢,(x) is identical for all vertices y in this connected component, which in
turn contains a majority of all ¥’s in G.

2. Prove that ¢ is a homomorphism; that is, prove that, for every x,y € G, it holds that
p(x) + ¢(y) = ¢(z +y).
Extra guideline: Prove that ¢(z) + ¢(y) = ¢(x + y) holds by considering the somewhat ficticious

expression Pr.cq|d(z) + ¢(y) # ¢(z + y)], and showing that it is structly smaller than 1 (and hence
o(x) + p(y) # é(x + y) is false). Upper-bound the probabilistic expression by

Pro[p(z)# f(x +7) = f(r) Vo) # f(r) — fr—y)Vo(z +y)#f(e+7) = flr—y)].

Use the union bound (and Item 1), and note that Pr.[¢(z) # f(x +7r) — f(r)] < 2e(f) < 1/3, whereas

Prolo(y) # f(r) = f(r =)l = Pro[o(y) # f(y +1') = ()] and Pro[p(x +y) # f(a+7) = f(r—y)] =
Pro[¢(z +y) # f(z +y +1') = f(r")] (by substituting r' =1 —y).

3. Prove that f is 2¢(f)-close to ¢.
Extra guideline: By Item 1, for every z, it holds that Pr,[f(z +y) — f(y) = ¢(z)] > 1 — 2¢(f).
Thus, there exists y € G such that Pry[f(z +y) — f(y) = &(x)] > 1 —2¢(f), and for z = = +y we
have Pr.[f(z) — f(y) = &(z —y)] > 1 — 2¢(f). Using Item 2 and letting 7 def fly) — é(y), we have
Pr[f(2) = #(2)+n] 2 1=2¢(f). Prove that Pry y[(¢(z)+n) +(d(y) +n) = ¢(z+y)+1] 2 1=7=(f) > 0,

using e(f) <1/7, Proy[f(z) + f(y) = fle+y)] = 1 —(f), and Pr.[f(z) = ¢(x) + 7] 2 1 —2¢(f) (and
the analogous statements for y and z + y). Using Item 2, n = 0 follows.

We comment that better bounds on the behavior of e(f) as a function of 6(f) are known.

Exercise 37 Let M be a non-zero m-by-n matrix over GF(p). Prove that Pr,. [r"Ms # 0]
(1 —p )%, where r (resp., s) is a random m-ary (resp., n-ary) vector.

A\

Guideline: Prove that if v # 0™ then Pry[v"s = 0] = p~!, and that if M has rank p then Pr,[r" M =0"] =
pr.

Exercise 38 Show that 3SAT is reducible to gapCSP,}{l""J} for t(m) = 1/m, where gapCSP is as
in Definition 18. Furthermore, show that the size of the resulting gapCSP instance is linear in the
length of the input formula.

Guideline: Given an instance 1 of 3SAT, consider the graph in which vertices correspond to clauses of
1, edges correspond to pairs of clauses that share a variable, and the constraints represent the natural
consistency condition regarding partial assignments that satisfy the clauses. See a similar construction in
Exercise 33.

Exercise 39 Show that, for any fixed finite ¥ and constant ¢ > 0, the problem gapCSPZ is in
PCP(log,O(1)).

Guideline: Consider an oracle that, for some satisfying assignment for the CSP-instance (G, ®), provides a
trivial encoding of the assignment; that is, for a satisfying assignment « : V' — 3, the oracle responds to the
query (v,4) with the i*" bit in the binary representation of a(v). Consider a verifier that uniformly selects
an edge (u,v) of G and checks the constraint ¢, ,) when applied to the values a(u) and a(v) obtained from
the oracle.
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Exercise 40 For any constant ¥ and d > 14, show that gapCSP* can be reduced to itself such
that the instance at the target of the reduction is a d-regular expander, and the fraction of violated
constraints is preserved up to a constant factor. That is, the instance (G, ®) is reduced to (Gy, ®;)
such that G is a d-regular expander graph and v1t(Gi,®;) = ©(v1t(G,?)). Furthermore, make
sure that |G1| = O(|G|) and that each vertex in G has at least d/2 self-loops.

Guideline: First, replace each vertex of degree d’ > 3 by a 3-regular expander of size d’, and connect each
of the original d’ edges to a different vertex of this expander, thus obtaining a graph of maximum degree
4. Maintain the constraints associated with the original edges, and associate the equality constraint (i.e.,
¢(i,7) = 1 if and only if i = j) to each new edge (residing in any of the added expanders). Next, denoting
the number of vertices in the resulting graph by Ny, add to this graph a 3-regular expander of size N; (while
associating with these edges the trivially satisfied constraint ¢(i,j) = 1 for all 7,5 € X). Finally, add at
least d/2 self-loops to each vertex (using again trivially satisfied constraints), so to obtain a d-regular graph.
Prove that this sequence of modifications may only decrease the fraction of violated constraints, and that
the decrease is only by a constant factor. The latter assertion relies on the equality constraints associated
with the small expanders used in the first step.

Exercise 41 (free bit complexity zero) Note that only sets in BPP have PCPs of query com-
plexity zero. Furthermore, Exercise 31 implies that only sets in P have PCP systems of logarithmic
randomness and query complexity zero.

1. Show that only sets in P have PCP systems of logarithmic randomness and free-bit complexity
Zero.

(Hint: Consider an application of the FGLSS-reduction to a set having a PCP of free-bit complexity zero.)

2. In contrast, show that Graph Non-Isomorphism has a PCP system of free-bit complexity zero
(and linear randomness complexity).

Exercise 42 (free bit complexity one) In continuation to Exercise 41, prove that only sets in
P have PCP systems of logarithmic randomness and free-bit complexity one.

Guideline: Consider an application of the FGLSS-reduction to a set having a PCP of free-bit complexity
one and randomness complexity r. Note that the question of whether the resulting graph has an independent
set of size 2" can be expressed as a 2CNF formula of size poly(2").
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