
Texts in Computational Complexity:A proof of Toda's TheoremOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.November 12, 2005Preliminaries. We denote by PC the calss of search problems that correspond to NP ; that is,R 2 PC if there exists a polynomial p such that for every (x; y) 2 R it holds that jyj � p(jxj) andmembership in R can be decided in polynomial-time. We refer extensively to the standard proofof the hardness of unique solution instances (a.k.a the Valiant-Vazirani Theorem [7]). See furthernotes at the end of this text.We will use small-bias generators (see [3, 1] and notes at the end of this text) as well as thefollowing simple characterization of the levels of the Polynomial-time Hierarchy (PH).Proposition 1 The set S is in �k+1 if and only if there exists a polynomial p and a set S0 2 �ksuch that S = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g.Proving that PH reduces to #PRecall that Toda's Theorem asserts that PH is Cook-reducible to #P (via deterministic reductions).Here we prove a closely related result (also due to Toda [6]), which relaxes the requirement fromthe reduction (allowing it to be randomized) but uses an oracle to a seemingly weaker class. Thelatter class is denoted �P and is the \modulo 2 analogue" of #P. Speci�cally, a Boolean functionf is in �P if there exists a function g 2 #P such that for every x it holds that f(x) = g(x) mod 2.Equivalently, f is in �P if there exists a search problem R 2 PC such that f(x) = jR(x)j mod 2,where R(x) = fy : (x; y) 2 Rg. (The � in the notation �P actually represents parity, which ismerely addition modulo 2. Indeed, a notation such as #2P would have been more appropriate.)Theorem 2 Every set in PH is reducible to �P via a probabilistic polynomial-time reduction.Furthermore, the reduction is many-to-one and fails with negligible error probability.The proof follows the underlying ideas of the original proof [6], but the actual presentation is quitedi�erent. Alternative proofs of Theorem 2 can be found in [2, 5].Proof Sketch: The proof uses three main ingredients. The �rst ingredient is the fact that NPis reducible to �P via a probabilistic polynomial-time Karp-reduction, and that this reductionin \highly structured" (see Footnote 2). The second ingredient is the fact that error-reductionis available in the correct context, resulting in reductions that have exponentially vanishing error1



probability.1 The third ingredient may be schematically paraphrased by the Boolean equality�i(�i ^ (�jXi;j)) = �i;j(�i ^ Xi;j). These ingredients correspond to the three main steps of theproof.Rather than presenting the actual proof at an abstract level (while using suitable de�nitions),we prefer a concrete presentation in which the third step is performed by an extension of the �rststep. In particular, this allows performing the third step at a level that clari�es what exactly isgoing on. In addition, it o�ers the opportunity for revisiting the standard presentations of the�rst step, while correcting what we consider to be a conceptual error in these presentations. Thus,we begin by dealing with the easy case of NP (and coNP), and then turn the implementationof error-reduction (in the current context). Such error-reduction is crucial as a starting point forthe third step, which deals with the case of �2. When completing the third step, we will have allthe ingredients needed for the general case (of dealing with �k for any k � 2), and we will thusconclude with a few comments regarding the latter case. Admittingly, the description of the lastpart is very sketchy and an actual implementation would be quite cumbersome; however, the ideasare all present in the case of �2. Furthermore, we believe that the case of �2 is of signi�cant interestper se.Let us �rst prove that every set in NP is reducible to �P via a probabilistic polynomial-time Karp-reduction. Indeed, this follows immediately from the NP-hardness of deciding uniquesolution for some relations R 2 PC (i.e., Theorem 3), because the corresponding modulo 2 counter(i.e., #R mod 2) solves the unique solution problem associated with this relation (i.e., decidingthe existence of unique solutions for R). Speci�cally, Theorem 3 asserts that, for some completeproblems R 2 PC, deciding membership in any NP-set is reducible in probabilistic polynomial-timeto the promise problem (USR; SR), where USR = fx : jR(x)j = 1g and SR = fx : jR(x)j = 0g.The point is that the function �R(x) def= jR(x)j mod 2 solves the latter promise problem; that is,(USR; SR) is reducible to �R by the identity mapping. Thus, any reduction to the promise problem(USR; SR) constitutes a reduction to �R. Still, for the sake of self-containment and concreteness,let us consider an alternative proof.2Step 1: a direct proof for the case of NP . As in the proof of Theorem 3, we start with any R 2 PCand our goal is reducing SR = fx : jR(x)j � 1g to �P by a randomized Karp-reduction.3 Thestandard way of obtaining such a reduction (e.g., in [2, 4, 5, 6]) consists of just using the reductionpresented in the proof of Theorem 3, but we believe that this way is conceptually wrong. Recallthat the proof of Theorem 3 consists of implementing a randomized sieve that has the followingproperty. For any x 2 SR, with noticeable probability, a single element of R(x) passes the sieve(and this event can be detected by an oracle to a unique solution problem). Indeed, an oracle in�P correctly detects the case in which a single element of R(x) passes the sieve. However, byde�nition, an oracle in �P correctly detects the more general case in which any odd number ofelements of R(x) pass the sieve. Thus, insisting on a random sieve that allows the passing of a single1We comment that such an error-reduction is not available in the context of reductions to unique solution problems.This comment is made in view of the similarity between the reduction of NP to �P and the reduction of NP toproblems of unique solution.2Indeed, the presentation can be modi�ed such that the following direct proof is omitted. In this case, we shallonly use the fact that each set in NP is reducible to �P by a randomized Karp-reduction. Actually, we will have torely on the fact that the reduction is \highly structured" in the sense that for any polynomially bounded relation Rit reduces SR to �R2 such that x is mapped to hx; si and y2R2(hx; si) if and only if y2R(x) ^  (x; s; y), where  is some polynomial-time computable predicate.3As in Theorem 3, if any search problem in PC is reducible to R via a parsimonious reduction, then we can reduceSR to �R. Speci�cally, we shall show that SR is randomly reducible to �R2, for some R2 2 PC, and a reduction ofSR to �R follows (by using the parsimonious reduction of R2 to R).2



element of R(x) seems an over-kill (or at least is conceptually wrong). Instead, we should just applya less stringent random sieve that, with noticeable probability, allows the passing of an odd numberof elements of R(x). The adequate tool for this sieve is a small-bias generator (see notes at theend of this text). Speci�cally, we use a strongly e�cient generator that given a seed s and index iproduces the adequate bit, denoted G(s; i), in the `(jsj)-bit generator sequence G(s), where G(Uk)has small bias and `(k) = exp(
(k)). Assuming, without loss of generality, that R(x) � f0; 1gp(jxj)for some polynomial p, we consider the relationR2 = f(hx; si; y) : (x; y)2R ^G(s; y)=1g (1)where y 2 f0; 1gp(jxj) � [2p(jxj)] and s 2 f0; 1gO(jyj) such that `(jsj) = 2jyj. Then, for every x 2 SR,with probability at least 1=3, a uniformly selected s 2 f0; 1gO(jyj) satis�es jR2(hx; si)j � 1 (mod 2),whereas for every x 62 SR and every s 2 f0; 1gO(jyj) it holds that jR2(hx; si)j = 0. A key observationis that R2 2 PC (and thus �R2 is in �P). Thus, deciding membership in SR is randomly reducibleto �R2 (by the many-to-one randomized mapping of x to hx; si, where s is uniformly selected inf0; 1gO(jyj)). Since the foregoing holds for any R 2 PC, it follows that NP is reducible to �P viarandomized Karp-reductions.Dealing with coNP . We may Cook-reduce coNP to NP and thus prove that coNP is randomlyreducible to �P , but we wish to highlight the fact that a randomized Karp-reduction will also do.Starting with the reduction present for the case of sets in NP, we note that for S 2 coNP weobtain a relation R2 such that x 2 S is indicated by jR2(hx; �i)j � 0 (mod 2). We wish to ipthe parity such that x 2 S will be indicated by jR2(hx; �i)j � 1 (mod 2), and this can be doneby augmenting the relation R2 with a single dummy solution per each x. For example, we mayrede�ne R2(hx; si) as f0y : y2R2(hx; si)g [ f10p(jxj)g. Indeed, we have demonstrated and used thefact that �P is closed under complementation.We note that dealing with the cases of NP and coNP is of interest only because we reducedthese classes to �P rather than to #P . In contrast, even a reduction of �2 to #P is of interest, andthus the reduction of �2 to �P (presented in Step 3) is interesting. This reduction relies heavilyon the fact that error-reduction is applicable in the context of randomized Karp-reductions to �P .Step 2: error reduction. An important observation, towards the core of the proof, is that it ispossible to drastically reduce the (one-sided) error probability in randomized Karp-reductions to�P. Speci�cally, let R2 be as in Eq. (1) and t be any polynomial. Then, a binary relation R02 thatsatis�es jR02(hx; s1; :::; st(jxj)i)j = 1 + t(jxj)Yi=1 (1 + jR2(hx; sii)j) (2)o�ers such an error reduction, because jR02(hx; s1; :::; st(jxj)i)j is odd if and only if for some i 2 [t(jxj)]it holds that jR2(hx; sii)j is odd. Thus,Prs1;:::;st(jxj)[jR02(hx; s1; :::; st(jxj)i)j � 0 (mod 2)]= Prs[jR2(hx; si)j � 0 (mod 2)]t(jxj)where s; s1; ::::; st(jxj) are uniformly and independently distributed in f0; 1gO(p(jxj)) (and p is suchthat R(x) � f0; 1gp(jxj)). This means that the one-sided error probability of a randomized reductionof SR to �R2 (which maps x to hx; si) can be reduced by reducing SR to �R02, where the reductionmaps x to hx; s1; :::; st(jxj)i. Speci�cally (for SR 2 NP), error probability " (e.g., " = 2=3) in the3



case that we desire an \odd outcome" (i.e., x 2 SR) is reduced to error probability "t, whereaszero error probability in the case of a desired \even outcome" (i.e., x 2 SR) is preserved. Akey question is whether this yields error-reduction for reductions to �P; that is, whether R02(as postulated in Eq. (2)) can be implemented in PC (and so imply �R02 2 �P). The answeris positive, and this can be shown by using a Cartesian product construction (and adding somedummy solutions). For example, let R02(hx; s1; :::; st(jxj)i) consists of tuples h�0; y1; :::; yt(jxj)i suchthat either �0 = 1 and y1 = � � � = yt(jxj) = 0p(jxj)+1 or �0 = 0 and for every i 2 [t(jxj)] it holds thatyi 2 (f0g�R2(hx; sii)) [ f10p(jxj)g.We wish to stress that, when starting with R2 as in Eq. (1), the forgoing process of error-reduction can be used for obtaining error probability that is upper-bounded by exp(�q(jxj)) forany desired polynomial q. The importance of this comment will become clear shortly.Step 3: the case of �2. With the foregoing preliminaries, we are now ready to handle the caseof S 2 �2. By Proposition 1, there exists a polynomial p and a set S0 2 �1 = coNP such thatS = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g. Using S0 2 coNP , we apply the forgoing reduction of S0to �P as well as an adequate error-reduction that yields an upper-bound of " � 2�p(jxj) on the errorprobability, where " � 1=7 is unspeci�ed at this point. (For the case of �2 the setting " = 1=7 willdo, but for the dealing with �k we will need a much smaller value of " > 0.) Thus, we obtain arelation R02 2 PC such that the following holds: for every x and y2f0; 1gp(jxj) , with probability atleast 1 � " � 2�p(jxj) over the random choice of s0 2 f0; 1gO(p(jxj))2 , it holds that x0 def= (x; y) 2 S0 ifand only if jR02(hx0; s0i)j is odd.4 Using a union bound (over all possible y2f0; 1gp(jxj)), it followsthat, with probability at least 1 � " over the choices of s0, it holds that x 2 S if and only if thereexists a y such that jR02(h(x; y); s0i)j is odd. Now, as in the treatment of NP, we wish to reduce thelatter \existential problem" to �P. That is, we wish to de�ne a relation R3 2 PC such that for arandomly selected s the value jR3(hx; s; s0i)j mod 2 provides an indication to whether or not x 2 S(by indicating whether or not there exists a y such that jR02(h(x; y); s0i)j is odd). Analogously toEq. (1), consider the binary relationI3 = f(hx; s; s0i; y) : jR02(h(x; y); s0ij � 1(mod 2) ^G(s; y)=1g: (3)Indeed, if x 2 S then, with probability at least 1� " over the random choice of s0 and probabilityat least 1=3 over the random choice of s, it holds that jI3(hx; s; s0i)j is odd, whereas for every x 62 Sand every choice of s it holds that Prs0 [jI3(hx; s; s0i)j = 0] � 1� ". (For " � 1=7, it follows for everyx 2 S we have Prs;s0[jI3(hx; s; s0i)j � 1 (mod 2)] � (1 � ")=3 � 2=7, whereas for every x 62 S wehave Prs;s0[jI3(hx; s; s0i)j � 1 (mod 2)] � " � 1=7.) Thus, jI3(hx; �; �i)j mod 2 provides a randomizedindication to whether or not x 2 S, but it is not clear whether I3 is in PC (and in fact I3 is likelynot to be in PC). The key observation is thatjR3(hx; s; s0i)j � jI3(hx; s; s0i)j (mod 2) (4)where R3(hx; s; s0i) def= �hy; zi : (h(x; y); s0i; z)2R02 ^G(s; y)=1	(with hy; zi 2 f0; 1gp(jxj) � f0; 1gp0(jxj)), where Eq. (4) is justi�ed by letting �y;z = 1 (resp., �y)indicate the event (h(x; y); s0i; z)2R02 (resp., the event G(s; y) = 1), and noting that �y;z�y;z ^ �yequals �y(�z�y;z) ^ �y. The punch-line is that R3 2 PC. It follows that S is randomly Karp-reducible to �P (by the many-to-one randomized mapping of x to hx; s; s0i, where (s; s0) is uniformlyselected in f0; 1gO(p(jxj)) � f0; 1gO(p0(jxj))).4Note that R02 � f0; 1gjxj+p(jxj)+O(p(jxj)2) � f0; 1gp0(jxj), where p0 is some polynomial that may depend on p. Inparticular, the speci�c implementation of R02, which uses t = O(p), yields p0 = O(p2).4



Again, error-reduction may be applied to this reduction (of �2 to �P) such that it can be usedfor dealing with �3. A technical di�culty arises since the foregoing reduction has two-sided errorprobability, where one type (or \side") of error is due to the error in the reduction of S0 2 coNP to�R02 (which occurs on no-instances of S0) and the second type (or \side") of error is due to the (new)reduction of S to �R3 (and occurs on the yes-instances of S). However, the error probability in the�rst reduction is (or can be made) very small and can be ignored when applying error-reduction tothe second reduction. See following comments.The general case. First note that, as in the case of coNP, we can obtain a similar reduction for �2 =co�2. It remains to extend the treatment of �2 to �k, for every k � 2. Indeed, S 2 �k is treated byconsidering a polynomial p and a set S0 2 �k�1 such that S = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g.Next, we use a relation R0k such that, with overwhelmingly high probability over the choice of s0the value jR0k(h(x; y); s0i)j mod 2 indicates whether or not (x; y) 2 S0. Using the ideas underlies thetreatment of NP (and �2) we check whether for some y it holds that jR0k(h(x; y); s0i)j � 1 (mod 2).This yields a relation Rk+1 such that for random s; s0 the value jRk+1(hx; s; s0i)j mod 2 indicateswhether or not x 2 S. Finally, we apply error reduction, while ignoring the probability that s0 isbad, and obtain the desired relation R0k+1. This means that if we wish to upper-bound the errorprobability in the reduction (of S) to �R0k+1 by "k+1, then the error probability in the reduction (ofS0) to �R0k should be upper-bounded by "k = "k+1 � 2�p(jxj). Thus, the proof that PH is randomlyreducible to �P actually proceed \top down" (at least partially); that is, starting with an arbitraryS 2 �k, we �rst determine the auxiliary sets (as per Proposition 1) as well as the error-boundsthat should be proved for the reductions of these sets (which reside in lower levels of PH), andonly then we establish the existence of such reductions. Indeed, this latter (and main) step is done\bottom up" using the reduction (to �P) of the set in the ith level when reducing (to �P) the setin the i+ 1st level.NotesIn the main text, we refer to a version of the Valiant-Vazirani Theorem, which is stated below.For a binary relation R, we denote R(x) = fy : (x; y) 2Rg, and say that x has a unique solutionjR(x)j = 1. We say that a many-to-one reduction f of R0 to R is parsimonious if for every x it holdsthat jR(x)j = jR0(f(x))j.Theorem 3 Let R 2 PC and suppose that every search problem in PC is parsimoniously reducibleto R. Then solving the search problem of R (resp., deciding membership in SR = fx : jR(x)j � 1g)is reducible in probabilistic polynomial-time to �nding unique solutions for R (resp., the promiseproblem (USR; SR), where USR = fx : jR(x)j = 1g and SR = fx : jR(x)j = 0g). Furthermore, thereexists a probabilistic polynomial-time computable mapping M such that for every x 2 SR it holdsthat M(x) 2 SR, whereas for every x 2 SR it holds that Pr[M(x) 2 USR] � 1=poly(jxj).The proof of Theorem 3 uses a mapping of x to hx; i; hi, where i is uniformly selected in f1; :::;poly(jxj)gand h is a pairwise independent hashing function mapping poly(jxj)-bit long strings to i-bit longstrings. This mapping reduces SR to the promise problem (USR0 ; SR0), where R0 = f(hx; i; hi; y) :(x; y) 2 R ^ h(y) = 0ig is clearly in PC. Note that every x 2 SR is mapped to SR0 , whereas forevery x 2 SR it holds that Pri;h[hx; i; hi 2 USR0 ] > 1=poly(jxj). The desired reduction to (USR; SR)is obtained by composing the foregoing reduction with parsimonious reduction of R0 to R.5



Small bias generators. For " :N! [0; 1], an "-bias generator with stretch function ` is an e�cientdeterministic algorithm (e.g., working in poly(`(k)) time) that expands a k-bit long random seedinto a sequence of `(k) bits such that for any �xed non-empty set S � f1; :::; `(k)g the bias of theoutput sequence over S is at most "(k). The bias of a sequence of n (possibly dependent) Booleanrandom variables �1; :::; �n 2 f0; 1g over a set S � f1; ::; ng is de�ned as2 � ����Pr[�i2S�i = 1]� 12 ���� = jPr[�i2S�i = 1]� Pr[�i2S�i = 0]j: (5)The factor of 2 is introduced so to make these biases correspond to the Fourier coe�cients of thedistribution (viewed as a function from f0; 1gn to the reals). E�cient small-bias generators withexponential stretch and exponentially vanishing bias are know.Theorem 4 (small-bias generators [3]): For some universal constant c > 0, let ` : N!N and" : N ! [0; 1] such that `(k) � "(k) � exp(k=c). Then, there exists an "-bias generator with stretchfunction ` operating in time polynomial in the length of its output.Three simple constructions of small-bias generators that satisfy Theorem 4 are known (see [1]).One of these constructions is based on Linear Feedback Shift Registers. Loosely speaking, the �rsthalf of the seed, denoted f0f1 � � � f(k=2)�1, is interpreted as a (non-degenerate) feedback rule5, theother half, denoted s0s1 � � � s(k=2)�1, is interpreted as \the start sequence", and the output sequence,denoted r0r1 � � � r`(k)�1, is obtained by setting ri = si for i < k=2 and ri = P(k=2)�1j=0 fj � ri�(k=2)+jfor i � k=2. We highlight the fact that the aforementioned constructions satisfy a stronger notionof e�cient generation, which is use in the main text: there exists a polynomial-time algorithm thatgiven a seed and a bit location i 2 [`(k)] (in bianry), outputs the ith bit of the corresponding output.References[1] N. Alon, O. Goldreich, J. H�astad, R. Peralta. Simple Constructions of Almost k-wise Inde-pendent Random Variables. Journal of Random structures and Algorithms, Vol. 3, No. 3,(1992), pages 289{304.[2] R. Kannan, H. Venkateswaran, V. Vinay, and A.C. Yao. A Circuit-based Proof of Toda'sTheorem. Information and Computation, Vol. 104 (2), pages 271{276, 1993.[3] J. Naor and M. Naor. Small-bias Probability Spaces: E�cient Constructions and Applica-tions. SIAM Journal on Computing, Vol 22, 1993, pages 838{856.[4] C.H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.[5] D.A. Spielman. Advanced Complexity Theory, Lectures 10 and 11. Notes (by D. Lewinand S. Vadhan), March 1997. Availablefrom http://www.cs.yale.edu/homes/spielman/AdvComplexity/1998/ as lect10.ps andlect11.ps.[6] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,Vol. 20 (5), pages 865{877, 1991.[7] L.G. Valiant and V.V. Vazirani. NP Is as Easy as Detecting Unique Solutions. TheoreticalComputer Science, Vol. 47 (1), pages 85{93, 1986.5That is, f0 = 1 and f(z) def= zk=2 +P(k=2)�1j=0 fj � zj is an irreducible polynomial over GF(2).6


