Preliminaries. We denote by \mathcal{PC} the class of search problems that correspond to \mathcal{NP}; that is, $R \in \mathcal{PC}$ if there exists a polynomial p such that for every $(x, y) \in R$ it holds that $|y| \leq p(|x|)$ and membership in R can be decided in polynomial-time. We refer extensively to the standard proof of the hardness of unique solution instances (a.k.a. the Valiant-Vazirani Theorem [7]). See further notes at the end of this text.

We will use small-bias generators (see [3, 1] and notes at the end of this text) as well as the following simple characterization of the levels of the Polynomial-time Hierarchy (\mathcal{PH}).

Proposition 1 The set S is in Σ_{k+1} if and only if there exists a polynomial p and a set $S' \in \Pi_k$ such that $S = \{x : \exists y \in \{0, 1\}^p(|x|) \text{ s.t. } (x, y) \in S'\}$.

Proving that \mathcal{PH} reduces to $\#\mathcal{P}$

Recall that Toda’s Theorem asserts that \mathcal{PH} is Cook-reducible to $\#\mathcal{P}$ (via deterministic reductions). Here we prove a closely related result (also due to Toda [6]), which relaxes the requirement from the reduction (allowing it to be randomized) but uses an oracle to a seemingly weaker class. The latter class is denoted $\oplus\mathcal{P}$ and is the “modulo 2 analogue” of $\#\mathcal{P}$. Specifically, a Boolean function f is in $\oplus\mathcal{P}$ if there exists a function $g \in \#\mathcal{P}$ such that for every x it holds that $f(x) = g(x) \mod 2$. Equivalently, f is in $\oplus\mathcal{P}$ if there exists a search problem $R \in \mathcal{PC}$ such that $f(x) = |R(x)| \mod 2$, where $R(x) = \{y : (x, y) \in R\}$. (The \oplus in the notation $\oplus\mathcal{P}$ actually represents parity, which is merely addition modulo 2. Indeed, a notation such as $\#_2\mathcal{P}$ would have been more appropriate.)

Theorem 2 Every set in \mathcal{PH} is reducible to $\oplus\mathcal{P}$ via a probabilistic polynomial-time reduction. Furthermore, the reduction is many-to-one and fails with negligible error probability.

The proof follows the underlying ideas of the original proof [6], but the actual presentation is quite different. Alternative proofs of Theorem 2 can be found in [2, 5].

Proof Sketch: The proof uses three main ingredients. The first ingredient is the fact that \mathcal{NP} is reducible to $\oplus\mathcal{P}$ via a probabilistic polynomial-time Karp-reduction, and that this reduction in “highly structured” (see Footnote 2). The second ingredient is the fact that error-reduction is available in the correct context, resulting in reductions that have exponentially vanishing error
probability. The third ingredient may be schematically paraphrased by the Boolean equality
\[\oplus_i (z_i \land (\oplus_j X_{i,j})) = \oplus_i \oplus_j (z_i \land X_{i,j}) \]. These ingredients correspond to the three main steps of the proof.

Rather than presenting the actual proof at an abstract level (while using suitable definitions), we prefer a concrete presentation in which the third step is performed by an extension of the first step. In particular, this allows performing the third step at a level that clarifies what exactly is going on. In addition, it offers the opportunity for revisiting the standard presentations of the first step, while correcting what we consider to be a conceptual error in these presentations. Thus, we begin by dealing with the easy case of \(\mathcal{NP} \) (and co-\(\mathcal{NP} \)), and then turn the implementation of error-reduction (in the current context). Such error-reduction is crucial as a starting point for the third step, which deals with the case of \(\Sigma_2 \). When completing the third step, we will have all the ingredients needed for the general case (of dealing with \(\Sigma_k \) for any \(k \geq 2 \)), and we will thus conclude with a few comments regarding the latter case. Admittingly, the description of the last part is very sketchy and an actual implementation would be quite cumbersome; however, the ideas are all present in the case of \(\Sigma_2 \). Furthermore, we believe that the case of \(\Sigma_2 \) is of significant interest per se.

Let us first prove that every set in \(\mathcal{NP} \) is reducible to \(\oplus \mathcal{P} \) via a probabilistic polynomial-time Karp-reduction. Indeed, this follows immediately from the NP-hardness of deciding unique solutions for some relations \(R \in \mathcal{PC} \) (i.e., Theorem 3), because the corresponding modulo 2 counter (i.e., \(\#R \mod 2 \)) solves the unique solution problem associated with this relation (i.e., deciding the existence of unique solutions for \(R \)). Specifically, Theorem 3 asserts that, for some complete problems \(R \in \mathcal{PC} \), deciding membership in any \(\mathcal{NP} \)-set is reducible in probabilistic polynomial-time to the promise problem \((\mathcal{US}_R, \mathcal{SR}) \), where \(\mathcal{US}_R = \{ x : |R(x)| = 1 \} \) and \(\mathcal{SR} = \{ x : |R(x)| = 0 \} \). The point is that the function \(\oplus R(x) \) is reducible to \(\oplus R \) by the identity mapping. Thus, any reduction to the promise problem \((\mathcal{US}_R, \mathcal{SR}) \) constitutes a reduction to \(\oplus R \). Still, for the sake of self-containment and concreteness, let us consider an alternative proof.\(^2\)

Step 1: a direct proof for the case of \(\mathcal{NP} \). As in the proof of Theorem 3, we start with any \(R \in \mathcal{PC} \) and our goal is reducing \(S_R = \{ x : |R(x)| \geq 1 \} \) to \(\oplus \mathcal{P} \) by a randomized Karp-reduction.\(^3\) The standard way of obtaining such a reduction (e.g., in [2, 4, 5, 6]) consists of just using the reduction presented in the proof of Theorem 3, but we believe that this way is conceptually wrong. Recall that the proof of Theorem 3 consists of implementing a randomized sieve that has the following property. For any \(x \in S_R \), with noticeable probability, a single element of \(R(x) \) passes the sieve (and this event can be detected by an oracle to a unique solution problem). Indeed, an oracle in \(\oplus \mathcal{P} \) correctly detects the case in which a single element of \(R(x) \) passes the sieve. However, by definition, an oracle in \(\oplus \mathcal{P} \) correctly detects the more general case in which any odd number of elements of \(R(x) \) pass the sieve. Thus, insisting on a random sieve that allows the passing of a single

\(^1\)We comment that such an error-reduction is not available in the context of reductions to unique solution problems. This comment is made in view of the similarity between the reduction of \(\mathcal{NP} \) to \(\oplus \mathcal{P} \) and the reduction of \(\mathcal{NP} \) to problems of unique solution.

\(^2\)Indeed, the presentation can be modified such that the following direct proof is omitted. In this case, we shall only use the fact that each set in \(\mathcal{NP} \) is reducible to \(\oplus \mathcal{P} \) by a randomized Karp-reduction. Actually, we will have to rely on the fact that the reduction is “highly structured” in the sense that for any polynomially bounded relation \(R \) it reduces \(S_R \) to \(\oplus R_z \) such that \(x \) is mapped to \((x, s) \) and \(y \in R_z((x,s)) \) if and only if \(y \in R(x) \land \psi(x,s,y) \), where \(\psi \) is some polynomial-time computable predicate.

\(^3\)As in Theorem 3, if any search problem in \(\mathcal{PC} \) is reducible to \(R \) via a parsimonious reduction, then we can reduce \(S_R \) to \(\oplus R \). Specifically, we shall show that \(S_R \) is randomly reducible to \(\oplus R_z \), for some \(R_z \in \mathcal{PC} \), and a reduction of \(S_R \) to \(\oplus R \) follows (by using the parsimonious reduction of \(R_z \) to \(R \)).
element of $R(x)$ seems an over-kill (or at least is conceptually wrong). Instead, we should just apply a less stringent random sieve that, with noticeable probability, allows the passing of an odd number of elements of $R(x)$. The adequate tool for this sieve is a small-bias generator (see notes at the end of this text). Specifically, we use a strongly efficient generator that given a seed s and index i produces the adequate bit, denoted $G(s, i)$, in the $\ell(|s|)$-bit generator sequence $G(s)$, where $G(U_k)$ has small bias and $\ell(k) = \exp(\Omega(k))$. Assuming, without loss of generality, that $R(x) \subseteq \{0, 1\}^{p(|x|)}$ for some polynomial p, we consider the relation

$$R_2 = \{ (\langle x, s \rangle, y) : (x, y) \in R \land G(s, y) = 1 \}$$ \hspace{1cm} (1)

where $y \in \{0, 1\}^{p(|x|)} \equiv \{0, 1\}^{O(|b|)}$ and $s \in \{0, 1\}^{O(|b|)}$ such that $\ell(|s|) = 2^{|b|}$. Then, for every $x \in S_R$, with probability at least $1/3$, a uniformly selected $s \in \{0, 1\}^{O(|b|)}$ satisfies $|R_2(\langle x, s \rangle)| = 1 \pmod{2}$, whereas for every $x \notin S_R$ and every $s \in \{0, 1\}^{O(|b|)}$ it holds that $|R_2(\langle x, s \rangle)| = 0$. A key observation is that $R_2 \in \mathcal{PNC}$ (and thus $\oplus R_2$ is in $\oplus \mathcal{P}$). Thus, deciding membership in S_R is randomly reducible to $\oplus R_2$ (by the many-to-one randomized mapping of x to $\langle x, s \rangle$, where s is uniformly selected in $\{0, 1\}^{O(|b|)}$). Since the foregoing holds for any $R \in \mathcal{PNC}$, it follows that \mathcal{NP} is reducible to $\oplus \mathcal{P}$ via randomized Karp-reductions.

Dealing with coNP. We may Cook-reduce coNP to \mathcal{NP} and thus prove that coNP is randomly reducible to $\oplus \mathcal{P}$, but we wish to highlight the fact that a randomized Karp-reduction will also do. Starting with the reduction present for the case of sets in \mathcal{NP}, we note that for $S \in \text{coNP}$ we obtain a relation R_2 such that $x \in S$ is indicated by $|R_2(\langle x, s \rangle)| = 0 \pmod{2}$. We wish to flip the parity such that $x \in S$ will be indicated by $|R_2(\langle x, s \rangle)| = 1 \pmod{2}$, and this can be done by augmenting the relation R_2 with a single dummy solution per each x. For example, we may redefine $R_2(\langle x, s \rangle)$ as \{$(0y : y \in R_2(\langle x, s \rangle)) \cup \{0^{|p(|x|)|}\}$\}. Indeed, we have demonstrated and used the fact that $\oplus \mathcal{P}$ is closed under complementation.

We note that dealing with the cases of \mathcal{NP} and coNP is of interest only because we reduced these classes to $\oplus \mathcal{P}$ rather than to $\#P$. In contrast, even a reduction of Σ_2 to $\#P$ is of interest, and thus the reduction of Σ_2 to $\oplus \mathcal{P}$ (presented in Step 3) is interesting. This reduction relies heavily on the fact that error-reduction is applicable in the context of randomized Karp-reductions to $\oplus \mathcal{P}$.

Step 2: error reduction. An important observation, towards the core of the proof, is that it is possible to drastically reduce the (one-sided) error probability in randomized Karp-reductions to $\oplus \mathcal{P}$. Specifically, let R_2 be as in Eq. (1) and t be any polynomial. Then, a binary relation R'_2 that satisfies

$$|R'_2(\langle x, s_1, ..., s_t(|x|) \rangle)| = 1 + \prod_{i=1}^{t(|x|)} (1 + |R_2(\langle x, s_i \rangle)|)$$ \hspace{1cm} (2)

offers such an error reduction, because $|R'_2(\langle x, s_1, ..., s_t(|x|) \rangle)|$ is odd if and only if for some $i \in [t(|x|)]$ it holds that $|R_2(\langle x, s_i \rangle)|$ is odd. Thus, we have

$$\Pr_{s_1, ..., s_t(|x|)}[|R'_2(\langle x, s_1, ..., s_t(|x|) \rangle)| \equiv 0 \pmod{2}] = \Pr_s[|R_2(\langle x, s \rangle)| \equiv 0 \pmod{2}]^t(|x|)$$

where $s, s_1, ..., s_t(|x|)$ are uniformly and independently distributed in $\{0, 1\}^{O(p(|x|))}$ (and p is such that $R(x) \subseteq \{0, 1\}^{p(|x|)}$). This means that the one-sided error probability of a randomized reduction of S_R to $\oplus R_2$ (which maps x to $\langle x, s \rangle$) can be reduced by reducing S_R to $\oplus R'_2$, where the reduction maps x to $\langle x, s_1, ..., s_t(|x|) \rangle$. Specifically (for $S_R \in \mathcal{NP}$), error probability ε (e.g., $\varepsilon = 2/3$) in the
case that we desire an “odd outcome” (i.e., \(x \in S_R\)) is reduced to error probability \(\varepsilon'\), whereas zero error probability in the case of a desired “even outcome” (i.e., \(x \in \overline{S}_R\)) is preserved. A key question is whether this yields error-reduction for reductions to \(\oplus \mathcal{P}\); that is, whether \(R'_2\) (as postulated in Eq. (2)) can be implemented in \(\mathcal{PC}\) (and so imply \(\oplus R'_2 \in \oplus \mathcal{P}\)). The answer is positive, and this can be shown by using a Cartesian product construction (and adding some dummy solutions). For example, let \(R'_2(\langle x, s_1, \ldots, s_k(\|x\|) \rangle)\) consists of tuples \(\langle \sigma_0, y_1, \ldots, y_k(\|x\|) \rangle\) such that either \(\sigma_0 = 1\) and \(y_1 = \cdots = y_k(\|x\|) = 0^{p(\|x\|) + 1}\) or \(\sigma_0 = 0\) and for every \(i \in \{1, \ldots, \|x\|\}\) it holds that \(y_i \in \{0\} \times R_2(\langle x, s_i(1) \rangle) \cup \{10^{p(\|x\|)}\}\).

We wish to stress that, when starting with \(R_2\) as in Eq. (1), the foregoing process of error-reduction can be used for obtaining error probability that is upper-bounded by \(\exp(-q(\|x\|))\) for any desired polynomial \(q\). The importance of this comment will become clear shortly.

Step 3: the case of \(\Sigma_2\). With the foregoing preliminaries, we are now ready to handle the case of \(S \in \Sigma_2\). By Proposition 1, there exists a polynomial \(p\) and a set \(S' \in \Pi_1 = \mathcal{NP}\) such that \(S = \{x : \exists y \in \{0, 1\}^\|x\| \text{ s.t. } (x, y) \in S'\}\). Using \(S' \in \mathcal{NP}\), we apply the foregoing reduction of \(S'\) to \(\oplus \mathcal{P}\) as well as an adequate error-reduction that yields an upper-bound of \(\varepsilon \cdot 2^{-p(\|x\|)}\) on the error probability, where \(\varepsilon \leq 1/7\) is unspecified at this point. (For the case of \(\Sigma_2\) the setting \(\varepsilon = 1/7\) will do, but for the dealing with \(\Sigma_k\) we will need a much smaller value of \(\varepsilon > 0\).) Thus, we obtain a relation \(R'_2 \in \mathcal{PC}\) such that the following holds: for every \(x \in \{0, 1\}^\|x\|\), with probability at least \(1 - \varepsilon - 2^{-p(\|x\|)}\) over the random choice of \(s' \in \{0, 1\}^\Theta(\|x\|)^\gamma\), it holds that \(x' \stackrel{\text{def}}{=} (x, y) \in S'\) if and only if \(\langle x, y\rangle \in R'_2(x', s')\) is odd. Using a union bound (over all possible \(y \in \{0, 1\}^\|x\|\)), it follows that, with probability at least \(1 - \varepsilon\) over the choices of \(s'\), it holds that \(x \in S\) if and only if there exists a \(y\) such that \(\langle x, y\rangle \in R'_2((x, y), (s', s''))\) is odd. Now, as in the treatment of \(\mathcal{NP}\), we wish to reduce the latter “existential problem” to \(\oplus \mathcal{P}\). That is, we wish to define a relation \(R_3 \in \mathcal{PC}\) such that for a randomly selected \(s\) the value \(\langle R_3((x, s, s'))\rangle \mod 2\) provides an indication to whether or not \(x \in S\) (by indicating whether or not there exists a \(y\) such that \(\langle R'_2((x, y), s')\rangle\)) is odd. Analogously to Eq. (1), consider the binary relation

\[
I_3 = \{(x, s, s') : |R'_2((x, y), s')| = 1(\mod 2) \land G(s, y) = 1\}. \tag{3}
\]

Indeed, if \(x \in S\) then, with probability at least \(1 - \varepsilon\) over the random choice of \(s'\) and probability at least \(1/3\) over the random choice of \(s\), it holds that \(|I_3((x, s, s'))| \geq 1 - \varepsilon\). (For \(\varepsilon \leq 1/7\), it follows for every \(x \in S\) we have \(\Pr_{s,s''}[|I_3((x, s, s'))| \equiv 1(\mod 2)] \geq (1 - \varepsilon)/3 \geq 2/7\), whereas for every \(x \not\in S\) we have \(\Pr_{s,s''}[|I_3((x, s, s'))| \equiv 1(\mod 2)] \leq \varepsilon \leq 1/7\).) Thus, \(I_3((x, \cdot, \cdot))\mod 2\) provides a randomized indication to whether or not \(x \in S\), but it is not clear whether \(I_3\) is in \(\mathcal{PC}\) (and in fact \(I_3\) is likely not to be in \(\mathcal{PC}\)). The key observation is that

\[
|R_3((x, s, s'))| \equiv |I_3((x, s, s'))| (\mod 2)
\]

where \(R_3((x, s, s')) \stackrel{\text{def}}{=} \{(y, z) : ((x, y), s', z) \in R'_2 \land G(s, y) = 1\}
\]

(with \(y, z \in \{0, 1\}^{p(\|x\|)} \times \{0, 1\}^{p'(\|x\|)}\), where Eq. (4) is justified by letting \(x_{y,z} = 1\) (resp., \(\xi_y\) indicate the event \((x, y), s', z) \in R'_2\) (resp., the event \(G(s, y) = 1\)), and noting that \(\oplus y_{z,x} = \xi_{y'}\) equals \(\oplus y_{z,x} \land \xi_{y'}\). The punch-line is that \(R_3 \in \mathcal{PC}\). It follows that \(S\) is randomly Karp-reducible to \(\oplus \mathcal{P}\) (by the many-to-one randomized mapping of \(x\) to \(\langle x, s, s'\rangle\), where \((s, s')\) is uniformly selected in \(\{0, 1\}^{\Theta(\|x\|)} \times \{0, 1\}^{\Theta(p'(\|x\|))}\)).

\footnote{Note that \(R'_2 \subseteq \{0, 1\}^{p + \Theta(\|x\|)} \times \{0, 1\}^{p'(\|x\|)}\), where \(p'\) is some polynomial that may depend on \(p\). In particular, the specific implementation of \(R'_2\), which uses \(t = O(p)\), yields \(p' = O(p^2)\).}
Again, error-reduction may be applied to this reduction (of Σ_2 to $\oplus P$) such that it can be used for dealing with Σ_3. A technical difficulty arises since the foregoing reduction has two-sided error probability, where one type (or “side”) of error is due to the error in the reduction of $S' \in \co\NP$ to $\oplus R'_2$ (which occurs on no-instances of S') and the second type (or “side”) of error is due to the (new) reduction of S to $\oplus R_3$ (and occurs on the yes-instances of S). However, the error probability in the first reduction is (or can be made) very small and can be ignored when applying error-reduction to the second reduction. See following comments.

The general case. First note that, as in the case of $\co\NP$, we can obtain a similar reduction for $\Pi_2 = \co\Sigma_2$. It remains to extend the treatment of Σ_2 to Σ_k, for every $k \geq 2$. Indeed, $S \in \Sigma_k$ is treated by considering a polynomial p and a set $S' \in \Pi_{k-1}$ such that $S = \{x : \exists y \in \{0,1\}^{p(|x|)} \text{ s.t. } (x,y) \in S'\}$. Next, we use a relation R_k^p such that, with overwhelmingly high probability over the choice of s' the value $|R_k^p(((x,y),s')) \mod 2$ indicates whether or not $(x,y) \in S'$. Using the ideas underlies the treatment of \NP (and Σ_2) we check whether for some y it holds that $|R_k^p(((x,y),s')) \equiv 1 \pmod 2$. This yields a relation R_{k+1} such that for random s, s' the value $|R_{k+1}((x,s,s')) \mod 2$ indicates whether or not $x \in S$. Finally, we apply error reduction, while ignoring the probability that s' is bad, and obtain the desired relation R_{k+1}. This means that if we wish to upper-bound the error probability in the reduction (of S) to $\oplus R_{k+1}$ by ε_{k+1}, then the error probability in the reduction (of S') to $\oplus R_k$ should be upper-bounded by $\varepsilon_k = \varepsilon_{k+1} \cdot 2^{-p(|x|)}$. Thus, the proof that \PH is randomly reducible to $\oplus P$ actually proceed “top down” (at least partially): that is, starting with an arbitrary $S \in \Sigma_k$, we first determine the auxiliary sets (as per Proposition 1) as well as the error-bounds that should be proved for the reductions of these sets (which reside in lower levels of \PH), and only then we establish the existence of such reductions. Indeed, this latter (and main) step is done “bottom up” using the reduction (to $\oplus P$) of the set in the ith level when reducing (to $\oplus P$) the set in the $i+1$st level.

Notes

In the main text, we refer to a version of the Valiant-Vazirani Theorem, which is stated below. For a binary relation R, we denote $R(x) = \{y : (x,y) \in R\}$, and say that x has a unique solution $|R(x)| = 1$. We say that a many-to-one reduction f of R' to R is parsimonious if for every x it holds that $|R(x)| = |R'(f(x))|$.

Theorem 3 Let $R \in \PC$ and suppose that every search problem in \PC is parsimoniously reducible to R. Then solving the search problem of R (resp., deciding membership in $S_R = \{x : |R(x)| \geq 1\}$) is reducible in probabilistic polynomial-time to finding unique solutions for R (resp., the promise problem (US_R, \overline{S}_R), where $US_R = \{x : |R(x)| = 1\}$ and $\overline{S}_R = \{x : |R(x)| = 0\}$). Furthermore, there exists a probabilistic polynomial-time computable mapping M such that for every $x \in \overline{S}_R$ it holds that $M(x) \in \overline{S}_R$, whereas for every $x \in S_R$ it holds that $Pr[M(x) \in US_R] = 1/\poly(|x|)$.

The proof of Theorem 3 uses a mapping of x to $\langle x, i, h \rangle$, where i is uniformly selected in $\{1, \ldots, \poly(|x|)\}$ and h is a pairwise independent hashing function mapping $\poly(|x|)$-bit long strings to i-bit long strings. This mapping reduces S_R to the promise problem $(US_{R'}, \overline{S}_{R'})$, where $R' = \{(x, i, h(y)) : (x,y) \in R \land h(y) = 0^i\}$ is clearly in \PC. Note that every $x \in \overline{S}_R$ is mapped to $\overline{S}_{R'}$, whereas for every $x \in S_R$ it holds that $Pr_{i,h}([x, i, h] \in US_{R'}) = 1/\poly(|x|)$. The desired reduction to $(US_{R'}, \overline{S}_{R'})$ is obtained by composing the foregoing reduction with parsimonious reduction of R' to R.

5
Small bias generators. For $\varepsilon: \mathbb{N} \rightarrow [0, 1]$, an ε-bias generator with stretch function ℓ is an efficient deterministic algorithm (e.g., working in $\text{poly}(\ell(k))$ time) that expands a k-bit long random seed into a sequence of $\ell(k)$ bits such that for any fixed non-empty set $S \subseteq \{1, \ldots, \ell(k)\}$ the bias of the output sequence over S is at most $\varepsilon(k)$. The bias of a sequence of n (possibly dependent) Boolean random variables $\zeta_1, \ldots, \zeta_n \in \{0, 1\}$ over a set $S \subseteq \{1, \ldots, n\}$ is defined as
\[
2 \cdot \left| \Pr[\bigoplus_{i \in S} \zeta_i = 1] - \frac{1}{2} \right| = |\Pr[\bigoplus_{i \in S} \zeta_i = 1] - \Pr[\bigoplus_{i \in S} \zeta_i = 0]|.
\]
The factor of 2 is introduced so to make these biases correspond to the Fourier coefficients of the exponential stretch and exponentially vanishing bias are known. Random variables distribution (viewed as a function from $\{0, 1\}^n$ to the reals). Efficient small-bias generators with exponential stretch and exponentially vanishing bias are known.

Theorem 4 (small-bias generators [3]): For some universal constant $c > 0$, let $\ell: \mathbb{N} \rightarrow \mathbb{N}$ and $\varepsilon: \mathbb{N} \rightarrow [0, 1]$ such that $\ell(k) \leq \varepsilon(k) \cdot \exp(k/c)$. Then, there exists an ε-bias generator with stretch function ℓ operating in time polynomial in the length of its output.

Three simple constructions of small-bias generators that satisfy Theorem 4 are known (see [1]). One of these constructions is based on Linear Feedback Shift Registers. Loosely speaking, the first half of the seed, denoted $f_0 f_1 \cdots f_{(k/2)-1}$, is interpreted as a (non-degenerate) feedback rule\(^5\), the other half, denoted $s_0 s_1 \cdots s_{(k/2)-1}$, is interpreted as “the start sequence”, and the output sequence, denoted $r_0 r_1 \cdots r_{\ell(k)-1}$, is obtained by setting $r_i = s_i$ for $i < k/2$ and $r_i = \sum_{j=0}^{(k/2)-1} f_j \cdot r_{i-(k/2)+j}$ for $i \geq k/2$. We highlight the fact that the aforementioned constructions satisfy a stronger notion of efficient generation, which is use in the main text: there exists a polynomial-time algorithm that given a seed and a bit location $i \in [\ell(k)]$ (in binary), outputs the i^{th} bit of the corresponding output.

References

\(^5\)That is, $f_0 = 1$ and $f(z) \overset{\text{def}}{=} z^{k/2} + \sum_{j=0}^{(k/2)-1} f_j \cdot z^j$ is an irreducible polynomial over $\text{GF}(2)$.

6