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Preliminaries. We denote by PC the calss of search problems that correspond to N'P; that is,
R € PC if there exists a polynomial p such that for every (z,y) € R it holds that |y| < p(|z|) and
membership in R can be decided in polynomial-time. We refer extensively to the standard proof
of the hardness of unique solution instances (a.k.a the Valiant-Vazirani Theorem [7]). See further
notes at the end of this text.

We will use small-bias generators (see [3, 1] and notes at the end of this text) as well as the
following simple characterization of the levels of the Polynomial-time Hierarchy (PH).

Proposition 1 The set S is in Y11 if and only if there exists a polynomial p and a set S" € 11
such that S = {z : Iy € {0,1}P(2) st. (x,y)€5'}.

Proving that PH reduces to #P

Recall that Toda’s Theorem asserts that PH is Cook-reducible to #P (via deterministic reductions).
Here we prove a closely related result (also due to Toda [6]), which relaxes the requirement from
the reduction (allowing it to be randomized) but uses an oracle to a seemingly weaker class. The
latter class is denoted ©P and is the “modulo 2 analogue” of #P. Specifically, a Boolean function
f is in &P if there exists a function g € #P such that for every z it holds that f(x) = g(x) mod 2.
Equivalently, f is in @P if there exists a search problem R € PC such that f(z) = |R(z)| mod 2,
where R(z) = {y : (z,y) € R}. (The @ in the notation &P actually represents parity, which is
merely addition modulo 2. Indeed, a notation such as #9P would have been more appropriate.)

Theorem 2 Every set in PH s reducible to &P via a probabilistic polynomial-time reduction.
Furthermore, the reduction s many-to-one and fails with negligible error probability.

The proof follows the underlying ideas of the original proof [6], but the actual presentation is quite
different. Alternative proofs of Theorem 2 can be found in [2, 5].

Proof Sketch: The proof uses three main ingredients. The first ingredient is the fact that AP
is reducible to @P via a probabilistic polynomial-time Karp-reduction, and that this reduction
in “highly structured” (see Footnote 2). The second ingredient is the fact that error-reduction
is available in the correct context, resulting in reductions that have exponentially vanishing error



probability.! The third ingredient may be schematically paraphrased by the Boolean equality
®i(G A (9;X5 ) = @j(¢G A X, j). These ingredients correspond to the three main steps of the
proof.

Rather than presenting the actual proof at an abstract level (while using suitable definitions),
we prefer a concrete presentation in which the third step is performed by an extension of the first
step. In particular, this allows performing the third step at a level that clarifies what exactly is
going on. In addition, it offers the opportunity for revisiting the standard presentations of the
first step, while correcting what we consider to be a conceptual error in these presentations. Thus,
we begin by dealing with the easy case of NP (and coNP), and then turn the implementation
of error-reduction (in the current context). Such error-reduction is crucial as a starting point for
the third step, which deals with the case of 9. When completing the third step, we will have all
the ingredients needed for the general case (of dealing with ¥ for any & > 2), and we will thus
conclude with a few comments regarding the latter case. Admittingly, the description of the last
part is very sketchy and an actual implementation would be quite cumbersome; however, the ideas
are all present in the case of Y. Furthermore, we believe that the case of 39 is of significant interest
per se.

Let us first prove that every set in AP is reducible to ©P via a probabilistic polynomial-
time Karp-reduction. Indeed, this follows immediately from the NP-hardness of deciding unique
solution for some relations R € PC (i.e., Theorem 3), because the corresponding modulo 2 counter
(i.e., #R mod 2) solves the unique solution problem associated with this relation (i.e., deciding
the existence of unique solutions for R). Specifically, Theorem 3 asserts that, for some complete
problems R € PC, deciding membership in any NP-set is reducible in probabilistic polynomial-time
to the promise problem (USg,Sg), where USg = {x : |R(z)| =1} and Sg = {x : |R(x)| = 0}.
The point is that the function ©R(x) & |R(z)| mod 2 solves the latter promise problem; that is,
(USg, Sg) is reducible to ®R by the identity mapping. Thus, any reduction to the promise problem
(USg, Sr) constitutes a reduction to @R. Still, for the sake of self-containment and concreteness,
let us consider an alternative proof.?

Step 1: a direct proof for the case of AP. As in the proof of Theorem 3, we start with any R € PC
and our goal is reducing Sg = {x : |R(x)| > 1} to ®P by a randomized Karp-reduction.®> The
standard way of obtaining such a reduction (e.g., in [2, 4, 5, 6]) consists of just using the reduction
presented in the proof of Theorem 3, but we believe that this way is conceptually wrong. Recall
that the proof of Theorem 3 consists of implementing a randomized sieve that has the following
property. For any x € Sg, with noticeable probability, a single element of R(x) passes the sieve
(and this event can be detected by an oracle to a unique solution problem). Indeed, an oracle in
®P correctly detects the case in which a single element of R(xz) passes the sieve. However, by
definition, an oracle in &P correctly detects the more general case in which any odd number of
elements of R(x) pass the sieve. Thus, insisting on a random sieve that allows the passing of a single

!We comment that such an error-reduction is not available in the context of reductions to unique solution problems.
This comment is made in view of the similarity between the reduction of NP to @P and the reduction of NP to
problems of unique solution.

2Indeed, the presentation can be modified such that the following direct proof is omitted. In this case, we shall
only use the fact that each set in NP is reducible to &P by a randomized Karp-reduction. Actually, we will have to
rely on the fact that the reduction is “highly structured” in the sense that for any polynomially bounded relation R
it reduces Sg to ®R2 such that z is mapped to (z,s) and y € R2((x, s}) if and only if y € R(z) A ¢ (=, s,y), where
is some polynomial-time computable predicate.

3 As in Theorem 3, if any search problem in PC is reducible to R via a parsimonious reduction, then we can reduce
Sr to ®R. Specifically, we shall show that Sgr is randomly reducible to ®R2, for some R» € PC, and a reduction of
Sk to @R follows (by using the parsimonious reduction of Ry to R).



element of R(x) seems an over-kill (or at least is conceptually wrong). Instead, we should just apply
a less stringent random sieve that, with noticeable probability, allows the passing of an odd number
of elements of R(x). The adequate tool for this sieve is a small-bias generator (see notes at the
end of this text). Specifically, we use a strongly efficient generator that given a seed s and index ¢
produces the adequate bit, denoted G(s,1), in the £(]s|)-bit generator sequence G(s), where G(Uy)
has small bias and £(k) = exp(€Q(k)). Assuming, without loss of generality, that R(x) C {0, 1}?(z)
for some polynomial p, we consider the relation

Ry = {((,8),9) : (x,y) ERNG(s,y)=1} (1)

where y € {0,1}P(2) = [27(2D] and s € {0,1}°U0¥) such that £(|s|) = 2/¥|. Then, for every € Sk,
with probability at least 1/3, a uniformly selected s € {0,1}°(¥D satisfies |Ry((z,5))| =1 (mod 2),
whereas for every & ¢ Sy and every s € {0,1}°0¥) it holds that |Ro((z,s))| = 0. A key observation
is that Ry € PC (and thus ®Ry is in &P). Thus, deciding membership in Sg is randomly reducible
to @Ry (by the many-to-one randomized mapping of = to (x,s), where s is uniformly selected in
{0,1}909D). Since the foregoing holds for any R € PC, it follows that NP is reducible to &P via
randomized Karp-reductions.

Dealing with coNP. We may Cook-reduce coNP to NP and thus prove that coNP is randomly
reducible to &P, but we wish to highlight the fact that a randomized Karp-reduction will also do.
Starting with the reduction present for the case of sets in NP, we note that for S € coNP we
obtain a relation Ry such that x € S is indicated by |Ra((z,-))] = 0 (mod 2). We wish to flip
the parity such that x € S will be indicated by |R2({x,-))| = 1 (mod 2), and this can be done
by augmenting the relation Ry with a single dummy solution per each x. For example, we may
redefine Ry((z,s)) as {Oy : y € Ry((z,s))} U {107(=D} Indeed, we have demonstrated and used the
fact that ®P is closed under complementation.

We note that dealing with the cases of NP and coNP is of interest only because we reduced
these classes to ®P rather than to #P. In contrast, even a reduction of X9 to #P is of interest, and
thus the reduction of ¥y to &P (presented in Step 3) is interesting. This reduction relies heavily
on the fact that error-reduction is applicable in the context of randomized Karp-reductions to ®P.

Step 2: error reduction. An important observation, towards the core of the proof, is that it is
possible to drastically reduce the (one-sided) error probability in randomized Karp-reductions to
®P. Specifically, let Ry be as in Eq. (1) and ¢ be any polynomial. Then, a binary relation R/, that

satisfies
t(|=|)

IRy ((m, 51,y syep))| = 1+ [] (14 |R2((=,5:))]) (2)
=1

offers such an error reduction, because |Ry((x, 51, .., 5¢(|2()))| is odd if and only if for some i € [t(|z])]
it holds that |Ry((z, s;))| is odd. Thus,

Prsl,__.,st(‘z‘)HRlz((l‘, S1y 00y St(\w\)>)| =0 (mod 2)]
= Pry[|Ra((z, )] =0 (mod 2)]0*)

where s, 51, ...., Sy(|o|) are uniformly and independently distributed in {0, 119@(2D) (and p is such
that R(z) C {0,1}P(2])), This means that the one-sided error probability of a randomized reduction
of Sk to @R (which maps z to (x, s)) can be reduced by reducing Sg to ®R5, where the reduction
maps  t0 (z,51, ..., Sy(|z)))- Specifically (for Sg € N'P), error probability ¢ (e.g., ¢ = 2/3) in the

3



case that we desire an “odd outcome” (i.e., z € Sg) is reduced to error probability ', whereas
zero error probability in the case of a desired “even outcome” (i.e., z € Spg) is preserved. A
key question is whether this yields error-reduction for reductions to @P; that is, whether Rj
(as postulated in Eq. (2)) can be implemented in PC (and so imply ©®R), € ©&P). The answer
is positive, and this can be shown by using a Cartesian product construction (and adding some
dummy solutions). For example, let R)((x,s1, ..., 5y(|4())) consists of tuples (oo, Y1, - Yy(je|)) Such
that either o9 = 1 and y1 = -+ = yy(j5) = 0PUzD+1 or g = 0 and for every i € [t(|z])] it holds that
s € ({0} x R ((w, 53))) U {10°01D .

We wish to stress that, when starting with Ry as in Eq. (1), the forgoing process of error-
reduction can be used for obtaining error probability that is upper-bounded by exp(—q(|z|)) for
any desired polynomial ¢. The importance of this comment will become clear shortly.

Step 3: the case of ¥5. With the foregoing preliminaries, we are now ready to handle the case
of S € ¥y. By Proposition 1, there exists a polynomial p and a set S’ € II; = coN'P such that
S = {z:3yec{0,1}7=) st. (z,y)€S'}. Using S’ € coN'P, we apply the forgoing reduction of S’
to @®P as well as an adequate error-reduction that yields an upper-bound of ¢ - 2722 on the error
probability, where ¢ < 1/7 is unspecified at this point. (For the case of Xy the setting ¢ = 1/7 will
do, but for the dealing with X3 we will need a much smaller value of ¢ > 0.) Thus, we obtain a

relation R) € PC such that the following holds: for every z and ye {0,1}20D with probability at

least 1 — ¢ - 27PU=) over the random choice of s' € {0, 1}0(7’('“3'))2, it holds that o' % (x,y) € S" if

and only if |Ry((z',5"))| is odd.* Using a union bound (over all possible y € {0,1}7(2D) it follows
that, with probability at least 1 — ¢ over the choices of s', it holds that = € S if and only if there
exists a y such that |R,({(z,y), s'))| is odd. Now, as in the treatment of NP, we wish to reduce the
latter “existential problem” to ®&P. That is, we wish to define a relation R3 € PC such that for a
randomly selected s the value |R3({x, s, s’))| mod 2 provides an indication to whether or not = € S
(by indicating whether or not there exists a y such that |R,(((z,y),s'))| is odd). Analogously to
Eq. (1), consider the binary relation

Iy = {((z,5,5"),y) - [Ry({(w, 9), ") = L(mod 2) A G(s,y)=1}. (3)

Indeed, if x € S then, with probability at least 1 — & over the random choice of s’ and probability
at least 1/3 over the random choice of s, it holds that |I3(({x, s, s"})| is odd, whereas for every x ¢ S
and every choice of s it holds that Pry[|I3({x,s,s'))| =0] > 1 —¢e. (For e < 1/7, it follows for every
x € S we have Pry o[|I3((x,s,s"))| =1 (mod 2)] > (1 —¢)/3 > 2/7, whereas for every z ¢ S we
have Pry o[|I3((z,s,s"))] =1 (mod 2)] < e < 1/7.) Thus, |I3({z,-,-))| mod 2 provides a randomized
indication to whether or not x € S, but it is not clear whether I3 is in PC (and in fact I3 is likely
not to be in PC). The key observation is that

|R3((z,5,8')] = [I((z,s,5'))] (mod 2) (4)
where R3((x,s,5")) def (y,2) : (((z,y),s'),2) ERy AG(s,y)=1}

(with (y,2) € {0,137 x {0,1}P'(2D) where Eq. (4) is justified by letting y,. = 1 (resp., &)
indicate the event (((x,y),s’),z) € R5 (resp., the event G(s,y)=1), and noting that &, .xy.. A&y
equals @y(D.xy ) A &. The punch-line is that R3 € PC. It follows that S is randomly Karp-

reducible to ®P (by the many-to-one randomized mapping of x to (x, s, s'), where (s, ') is uniformly
selected in {0,1}0@(2D) x {0, 1}0@" (1=D)),

“Note that Ry C {0, 1}|I|+p(|xl)+o(p(‘z‘)2) x {0, 1}131(‘“1‘)7 where p’ is some polynomial that may depend on p. In
particular, the specific implementation of Rj, which uses t = O(p), yields p' = O(p?).



Again, error-reduction may be applied to this reduction (of ¥y to ©&P) such that it can be used
for dealing with 3. A technical difficulty arises since the foregoing reduction has two-sided error
probability, where one type (or “side”) of error is due to the error in the reduction of S’ € coN'P to
®R), (which occurs on no-instances of S’) and the second type (or “side”) of error is due to the (new)
reduction of S to ®R3 (and occurs on the yes-instances of S). However, the error probability in the
first reduction is (or can be made) very small and can be ignored when applying error-reduction to
the second reduction. See following comments.

The general case. First note that, as in the case of coN P, we can obtain a similar reduction for IIy =
coXy. It remains to extend the treatment of X9 to Xy, for every k > 2. Indeed, S € X is treated by
considering a polynomial p and a set S’ € II,_; such that S = {z : 3y {0,1}*(*) st. (z,y) e S'}.
Next, we use a relation Rj such that, with overwhelmingly high probability over the choice of s’
the value |R} (((z,y), s'))| mod 2 indicates whether or not (z,y) € S’. Using the ideas underlies the
treatment of NP (and ¥y) we check whether for some y it holds that |R,({(z,y),s"))] =1 (mod 2).
This yields a relation Rji1 such that for random s, s’ the value |Ryy1({x,s,s’))| mod 2 indicates
whether or not z € S. Finally, we apply error reduction, while ignoring the probability that s’ is
bad, and obtain the desired relation Rj_ ;. This means that if we wish to upper-bound the error
probability in the reduction (of S) to ®Rj_ | by €41, then the error probability in the reduction (of
S') to @R, should be upper-bounded by ¢; = 541 - 27P(2). Thus, the proof that PH is randomly
reducible to &P actually proceed “top down” (at least partially); that is, starting with an arbitrary
S € Xk, we first determine the auxiliary sets (as per Proposition 1) as well as the error-bounds
that should be proved for the reductions of these sets (which reside in lower levels of PH), and
only then we establish the existence of such reductions. Indeed, this latter (and main) step is done
“bottom up” using the reduction (to @P) of the set in the i'" level when reducing (to ©P) the set
in the 7 + 15¢ level. O

Notes

In the main text, we refer to a version of the Valiant-Vazirani Theorem, which is stated below.
For a binary relation R, we denote R(z) = {y : (z,y) € R}, and say that = has a unique solution
|R(z)] = 1. We say that a many-to-one reduction f of R’ to R is parsimonious if for every z it holds
that |R(x)| = |R'(f(x))]-

Theorem 3 Let R € PC and suppose that every search problem in PC s parsimoniously reducible
to R. Then solving the search problem of R (resp., deciding membership in Sp = {z : |R(z)| > 1})
is reducible in probabilistic polynomial-time to finding unique solutions for R (resp., the promise
problem (USg, Sg), where USg = {x : |R(x)| = 1} and Si = {x : |[R(x)| = 0}). Furthermore, there
exists a probabilistic polynomial-time computable mapping M such that for every x € Sg it holds
that M(x) € Sk, whereas for every x € Sg it holds that Pr[M(x) € USg] > 1/poly(|z|).

The proof of Theorem 3 uses a mapping of x to (z, i, h), where 7 is uniformly selected in {1, ..., poly(|z|)}
and h is a pairwise independent hashing function mapping poly(|z|)-bit long strings to i-bit long
strings. This mapping reduces Sg to the promise problem (USg,Sg/), where R’ = {({x,i,h),y) :
(z,y) € R A h(y) = 0%} is clearly in PC. Note that every x € Sg is mapped to S/, whereas for
every x € Sg it holds that Pr; ,[(x,i,h) € USg] > 1/poly(|z|). The desired reduction to (USg, Sk)

is obtained by composing the foregoing reduction with parsimonious reduction of R’ to R.



Small bias generators. For e:N— [0, 1], an e-bias generator with stretch function ¢ is an efficient
deterministic algorithm (e.g., working in poly(¢(k)) time) that expands a k-bit long random seed
into a sequence of £(k) bits such that for any fixed non-empty set S C {1,...,¢(k)} the bias of the
output sequence over S is at most (k). The bias of a sequence of n (possibly dependent) Boolean
random variables (i, ...,(, € {0,1} over a set S C {1,..,n} is defined as

2-|Pridiest = 1] - 5| = IPrl@rest: = 1] — PridiesG; = 0]] 5)

The factor of 2 is introduced so to make these biases correspond to the Fourier coefficients of the
distribution (viewed as a function from {0,1}" to the reals). Efficient small-bias generators with
exponential stretch and exponentially vanishing bias are know.

Theorem 4 (small-bias generators [3]): For some universal constant ¢ > 0, let { : N—=N and
e:N—[0,1] such that (k) < e(k) - exp(k/c). Then, there exists an -bias generator with stretch
function  operating in time polynomial in the length of its output.

Three simple constructions of small-bias generators that satisfy Theorem 4 are known (see [1]).
One of these constructions is based on Linear Feedback Shift Registers. Loosely speaking, the first
half of the seed, denoted f0f1 J (k/2)=1> is interpreted as a (non- degenerate) feedback rule’, the
other half, denoted spsy - - - s(x/2)—1, IS interpreted as “the start sequence”, and the output sequence,
denoted o7y -+ Tyk)—1, is obtained by setting r; = s; for ¢ < k/2 and r; = Z(k/z firick/2)+j
for i > k/2. We highlight the fact that the aforementioned constructions satzsfy a stronger notion
of efficient generation, which is use in the main text: there exists a polynomial-time algorithm that
given a seed and a bit location i € [((k)] (in bianry), outputs the i bit of the corresponding output.
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"That is, fo = 1 and f(z) Lef k/2 Z(k/2) 1 i - 27 is an irreducible polynomial over GF(2).



