Texts in Computational Complexity:
Probabilistic Preliminaries and Advanced Topics in Randomization

Oded Goldreich
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

January 28, 2006

What is this? Chicken Quesadilla and Seafood Salad?
Fine, but in the same plate? This is disgusting!

Johan Hastad at Grendel’s, Cambridge (1985)

Summary: These notes lumps together some preliminaries regarding probability theory
and some advanced topics related to the role and use of randomness in computation.
Needless to say, each of these appears in a separate section.

The probabilistic preliminaries include our conventions regarding random variables,
which are used throughout the book. Also included are overviews of three useful in-
equalities: Markov Inequality, Chebyshev’s Inequality, and Chernoff Bound.

The advanced topics include hashing, sampling and randomness extraction. For hashing,
we describe constructions of pairwise (and t-wise independent) hashing functions, and
variants of the Leftover Hashing Lemma (which are used a couple of times in the main
text). We then review the “complexity of sampling”: that is, the number of samples
and the randomness complexity involved in estimating the average value of an arbitrary
function defined over a huge domain. Finally, we provide an overview on the question of
extracting almost perfect randomness from sources of weak (or defected) randomness.

Contents

1 Probabilistic preliminaries 2
1.1 Notational Conventions o o i i i e e e e e 2
1.2 Three Inequalities e e e e 3

2 Hashing 5
2.1 Definitions o e e 6
2.2 Constructions e e e e e e e e e e e e e 6
2.3 The Leftover Hash Lemma e e 7

3 Sampling 10

4 Randomness Extractors 12

4.1 Definitions and various perspectives oL o oo 13
4.1.1 The Main Definition 13

4.1.2 Extractors as averaging samplers 14

4.1.3 Extractors as randomness-efficient error-reductions 15

4.1.4 Other perspectives L e 16

4.2 Constructions e e e e e 16
Bibliography 19

1 Probabilistic preliminaries

Probability plays a central role in complexity theory. We assume that the reader is familiar with the
basic notions of probability theory. In this section, we merely present the probabilistic notations
that are used throughout the book, and three useful probabilistic inequalities.

1.1 Notational Conventions

Throughout the entire course we will refer only to discrete probability distributions. Specifically,
the underlying probability space will consist of the set of all strings of a certain length £, taken with
uniform probability distribution. That is, the sample space is the set of all ¢-bit long strings, and
each such string is assigned probability measure 2¢. Traditionally, random variables are defined as
functions from the sample space to the reals. Abusing the traditional terminology, we use the term
random variable also when referring to functions mapping the sample space into the set of binary
strings. We often do not specify the probability space, but rather talk directly about random
variables. For example, we may say that X is a random variable assigned values in the set of all
strings such that Pr[X =00] = I and Pr[X =111] = 2. (Such a random variable may be defined
over the sample space {0,1}2, so that X(11) = 00 and X(00) = X(01) = X(10) = 111.) One
important case of a random variable is the output of a randomized process (e.g., a probabilistic
polynomial-time algorithm).

All our probabilistic statements refer to functions of random variables that are defined before-
hand. Typically, we may write Pr[f(X) = 1], where X is a random variable defined beforehand
(and f is a function). An important convention is that all occurrences of the same symbol in a
probabilistic statement refer to the same (unique) random wvariable. Hence, if B(-,-) is a Boolean
expression depending on two variables, and X is a random variable then Pr[B(X, X)| denotes the
probability that B(x,z) holds when z is chosen with probability Pr[X =z|. For example, for every
random variable X, we have Pr[X = X] = 1. We stress that if we wish to discuss the probability
that B(x,y) holds when z and y are chosen independently with identical probability distribution,
then we will define two independent random variables each with the same probability distribution.
Hence, if X and Y are two independent random variables then Pr[B(X,Y")] denotes the probability
that B(x,y) holds when the pair (z,y) is chosen with probability Pr[X =z]-Pr[Y =y]. For example,
for every two independent random variables, X and Y, we have Pr[X =Y] =1 only if both X and
Y are trivial (i.e., assign the entire probability mass to a single string).

Throughout the entire book, U,, denotes a random variable uniformly distributed over the set
of strings of length n. Namely, Pr[U, =«] equals 27" if & € {0,1}" and equals 0 otherwise. We will
often refer to the distribution of U,, as the uniform distribution (neglecting to qualify that it is uniform
over {0,1}"). In addition, we will occasionally use random variables (arbitrarily) distributed over

{0,1}" or {0,1}(") for some function ¢: N—N. Such random variables are typically denoted by
Xn, Yo, Z,, etc. We stress that in some cases X, is distributed over {0,1}", whereas in other cases
it is distributed over {0,1}4") for some function £(-), which is typically a polynomial. We will
often talk about probability ensembles, which are infinite sequence of random variables {X,, },en
such that each X, ranges over strings of length bounded by a polynomial in n.

Statistical difference. The statistical distance (a.k.a variation distance) between the random
variables X and Y is defined as

% D OIPIX =] = Pr[Y =0]| = max{Pr[X € §] - Pr[Y" € S}.

v
We say that X is ¢-close (resp., 6-far) to Y if the statistical distance between them is at least (resp.,
at most) 4.

1.2 Three Inequalities

The following probabilistic inequalities are very useful. All inequalities refer to random variables
that are assigned real values and provide upper-bounds on the probability that the random variable
deviates from its expectation.

Markov Inequality. The most basic inequality is Markov Inequality that applies to any random

variable with bounded maximum or minimum value. For simplicity, it is stated for random variables

that are lower-bounded by zero, and reads: Let X be a non-negative random variable and v a real

number. Then

E(X)
v

PriX >v] < (1)

Equivalently, Pr[X > r-E(X)] < % The proof amounts to the following sequence.

E(X) = ZPr[Xza:] -z

> ZPr[sz]-O—l—ZPr[X:a:]-v
z<v T>v

= PrlX>v]-v

Chebyshev’s Inequality: Using Markov’s inequality, one gets a potentially stronger bound on
the deviation of a random variable from its expectation. This bound, called Chebyshev’s inequal-
ity, is useful when having additional information concerning the random variable (specifically a

good upper bound on its variance). For a random variable X of finite expectation, we denote

by Var(X) o E[(X — E(X))?] the variance of X, and observe that Var(X) = E(X?%) — E(X)2.

Chebyshev’s inequality then reads as follows: Let X be a random variable, and 6 > 0. Then

Prilx — E(¥)|24) < 2L Y) ®

Proof: We define a random variable ¥ & (X — E(X))?%, and apply Markov inequality. We get
PrX — E(X)[>6] = Pr|(X —E(X))* > ¢

E[(X — E(X))?]
62

<

and the claim follows. [}

Corollary (Pairwise Independent Sampling): Chebyshev’s inequality is particularly useful in the
analysis of the error probability of approximation via repeated sampling. It suffices to assume
that the samples are picked in a pairwise independent manner, where X1, Xo,..., X,, are pairwise
independent if for every i # j and every «, 3 it holds that Pr[X; =aAX;=p] = Pr[X; =qa]-Pr[X; =0].
The corollary reads: Let X1, Xs,...,X,, be patrwise independent mndom variables with identical
expectation, denoted u, and identical variance, denoted o*. Then, for every € > 0,

n
X
Pr [=l
n
Proof: Define the random variables X; % X;— —E(X;). Note that the X;’s are pairwise independent
and each has zero expectation. Applying Chebyshev’s inequality to the random variable 7

and using the linearity of the expectation operator, we get

r _—
i=1

(3)

zln7

Var [Zl 1)7?]

g2

(e)]

e2.n?

IN

Now (again using the linearity of expectation)

: [(éyﬂ :éE[Y?] + Y E[XE]

1<i#j<n

By the pairwise independence of the X;’s, we get E[X;X;] = E[X] - E[X,], and using E[X;] = 0,
we get
[(ZX)] =n-o’

Chernoff Bound: Using pairwise independent sampling, the error probability in the approxima-
tion is decreasing linearly with the number of sample points (see Eq. (3)). Using totally independent
sampling points, the error probability in the approximation can be shown to decrease exponentially
with the number of sample points. (The random variables X, Xo, ..., X,, are said to be totally inde-
pendent if for every sequence ai,as, ..., a, it holds that Pr[A"_; X;=a;] =[]~ ; Pr[X;=a;].) Proba-
bility bounds, supporting the above statement, are given next. The first bound, commonly referred
to as Chernoff Bound, concerns 0-1 random variables (i. e random variables that are assigned as
values either 0 or 1), and asserts the following. Let p < 3 , and X1, Xo,..., X, be independent 0-1
random variables so that Pr[X; = 1] = p, for each i. Then foralle, 0 <e < p(1 —p), we have

n X,
n

The corollary follows. [

EZ
—p‘ >g} <2.¢mIPT (4)

Proof Sketch: We upper-bound Pr[}"7; X; —pn > en| and Pr[pn — i, X; > en] is bounded
similarly. Letting X; def X; —E(X;), we apply Markov Inequality to the random variable e Xint Xi
where A > 0 is determined to optimize the expressions that we derive (hint: A = 6(¢/p(1 — p)) will

do). Thus, Pr[3 7, X; > en] is upper-bounded by

E[eAzz;lyi] —en " -
e = [TEEM]
=1

where the equality is due to the independence of the random variables. To simplify the rest of
the proof, we establish a sub-optimal bound as follows. Using a Taylor expansion of e* (e.g., e* <
1+z+22?) and observing that E[X;] = 0, we get E[eAE] < 1+2)\2E[7?], which equals 1+2A2p(1—p).
Thus, Pr[}-" ; X; —pn > en] is upper-bounded by (14 2X%p(1 —p))"* < exp(—Aen + 2A*p(1 —p)n),
which is optimized at A = ¢/(4p(1 — p)) yielding exp(—ﬁrz_p) -mn). Needless to say, this method
can be applied in more general settings (e.g., for X; € [0,1] rather than X; € {0,1}). O

A more general bound, useful in the approximations of the expectation of a general random vari-
able (not necessarily 0-1), is given next (and is commonly referred to as Hoefding Inequality).! Let
X1, X9, ..., X, be n independent random variables with identical probability distribution, each rang-
ing over the (real) interval [a,b], and let p denote the expected value of each of these variables.
Then, for every e > 0,

Pr [

Hoefding Inequality is useful in estimating the average value of a function defined over a large set
of values, especially when the desired error probability needs to be negligible (i.e., decrease faster
than any polynomial in the relevant parameter). Such an estimate can be obtained provided that
we can efficiently sample the set and have a bound on the possible values (of the function).

2:—:2

n .
Lim i > 6] <2-¢ @-a?™ (5)
n

i

Pairwise independent vs totally independent sampling. Consider, for simplicity the case
that a = 0 < u < b = 1. In this case, n independent samples give an approximation that deviates by
e from the expectation with probability, denoted 8, that is exponentially decreasing with 2n. Such
an approximation is called an (e, §)-approximation, and can be achieved using n = O(¢ 2 -log(1/6))
sample points. Thus, the number of sample points is polynomially related to e ! and logarithmically
related to 6 !. It follows that, when using poly(n) many samples,? the error probability (i.e., §)
can be made negligible (as a function in n), but the accuracy of the estimation (i.e., €) can be only
bounded above by any fixed polynomial fraction (and cannot be made negligible). We stress that
the dependency of the number of samples on ¢ is not better than in the case of pairwise independent
sampling; the advantage of totally independent samples is only in the dependency of the number
of samples on 9.

2 Hashing

Hashing is extensively used in complexity theory in order to map arbitrary (unstructured) sets
“almost uniformly” to a smaller structured set of adequate size. Specifically, hashing is supposed
to map an arbitrary 2™-subset (of {0,1}") to {0,1}"™ in an “almost uniform” manner.

A more general form requires the X;’s to be independent, but not necessarily identical, and uses u def
L3 E(Xi). See [1, Apdx. Al

*Here and in the rest of the book, we denote by poly() some fixed but unspecified polynomial.

For a fixed set S of cardinality 2™, a 1-1 mapping fg : S — {0,1}" does exist, but it is not
necessarily an efficient one (e.g., it may require “knowing” the entire set S). Clearly, no fixed
function f : {0,1}"™ — {0,1}™ can map every 2" subset of {0,1}" to {0,1}™ in a 1-1 manner
(or even approximately so). However, a random function f : {0,1}" — {0,1}" has the property
that, for every 2"™-subset S C {0,1}", with overwhelmingly high probability f maps S to {0,1}"
such that no point in the range has many f-preimages in S. The problem is that a truly random
function is unlikely to have a succinct representation (let alone an efficient evaluation algorithm).
We seek families of functions that have a similar property, but do have a succinct representation
as well as an efficient evaluation algorithm.

2.1 Definitions

Motivated by the foregoing discussion, we consider families of functions {H]"},,<, Such that the
following properties hold:

1. For every S C {0,1}", with high probability, a function h selected uniformly in H]* maps S
to {0,1}™ in an “almost uniform” manner. For example, for any |S| = 2™ and each point y,
with high probability over the choice of h, it holds that |{z € S : h(z) = y}| < poly(n).

2. The functions in H]* have succinct representation. For example, we may require that H," =
{0,1}¢0»™) " for some polynomial £.

3. The functions in H]" can be efficiently evaluated. That is, there exists a polynomial-time
algorithm that, on input a representation of a function, ~ (in H,"), and a string = € {0,1}",
returns A(z). In some cases we make even more stringent requirements regarding the the
algorithm (e.g., that it runs in linear space).

Condition 1 was left vague on purpose. At the very least, we require that the expected size
of {x € S : h(z) = y} equals |S|/2™. We shall see (in Section 2.3) that different (stronger)
interpretations of Condition 1 are satisfied by different types of hashing functions. We focus on
t-wise independent hashing functions, defined next.

Definition 1 (¢-wise independent hashing functions): A family H]"* of functions from n-bit strings
to m-bit strings is called t-wise independent if for every t distinct domain elements xy, ..., z; € {0,1}"
and every yi, ...,y € {0,1}™ it holds that

Procmm [Ni—ih(z;) =] = 270

That is, every ¢ domain elements are mapped by a uniformly chosen h € H]"* in a totally uniform
manner. Note that for £ > 2, it follows that the probability that a random h € H;* maps two
distinct domain elements to the same image is 2. Such (families of) functions are called universal
(cf. [2]), but we will focus on the stronger condition of t-wise independence.

2.2 Constructions

The following constructions are merely a re-interpretation of the constructions presented in the
context of (special purpose) pseudorandom generators. (Alternatively, one may view the latter
constructions as a re-interpretation of the following two constructions.)

Construction 2 (¢t-wise independent hashing): For t,m,n € N such that m < n, consider the
following family of hashing functions mapping n-bit strings to m-bit strings. Fach t-sequence 5 =
(80,815 -y St—1) € {0,1}F'™ describes a function hz : {0,1}" — {0,1}™ such that hs(z) equals the
m-bit preficx of the binary representation of Z;;% sja;j, where the arithmetic is that of GF(2™), the
finite field of 2™ elements.

Construction 2 constitutes a family of ¢-wise independent hash functions. Typically, we will use
either t = 2 or t = ©(n). To make the construction totally explicit, we need an explicit represen-
tation of GF(2™). An alternative construction for the case of ¢ = 2 may be obtained as follows.
Recall that a Toeplitz matrix is a matrix with all diagonals being homogeneous; that is, T' = (¢; ;)
is a Toeplitz matrix if ¢; ; = ¢;41 j41, for all ¢, 7.

Construction 3 (Alternative pairwise independent hashing): For m < n, consider the family of
hashing functions in which each n-by-m Toeplitz matriz T and an m-dimensional vector b describes
a function hpy 2 {0,1}" — {0,1}" such that hyp(x) = Tw + b.

Construction 3 constitutes a family of pairwise independent hash functions. Note that a n-by-m
Toeplitz matrix can be specified by n +m — 1 bits, yielding description length n + 2m — 1. An
alternative construction (using m - n + m bits of representation) uses arbitrary n-by-m matrices
rather than Toeplitz matrices.

2.3 The Leftover Hash Lemma

We now turn to the “almost uniform” cover condition (i.e., Condition 1) mentioned in Section 2.1.
One concrete interpretation of this condition is implied by the following lemma.

Lemma 4 Let m < n be integers, H]" be a family of pairwise independent hash functions, and
S C {0,1}". Then, for every y € {0,1}™ and every ¢ > 0, for all but at most an % fraction of
h € H* it holds that

5]

{oes: @) =y}l =1+ o

(6)
By pairwise independence (or rather even by “l-wise independence”), the expected size of {z €
S : h(z) = y} is |S|/2™, where the expectation is taken uniformly over all h € H]*. The lemma
upper bounds the fraction of A’s that deviate from the expected value. Needless to say, the bound
is meaningful only in case |S| > 2™ (or alternatively for e > 1). Setting ¢ = /2™ /|S| (and focusing
on the case that |S| > 2™), we infer that for all but at most an € fraction of h € H]" it holds that
H{z € S: h(z) =y} = (1 £e)-]|S|/2™. Thus, each range element has approximately the right
number of h-preimages in the set S under almost all h € H]".

Proof: Fixing an arbitrary set S C {0,1}" and an arbitrary y € {0,1}", we estimate the proba-
bility that a uniformly selected h € H!" violates Eq. (6). We define random variables (,, over the

aforementioned probability space, such that (, = (,(h) equal 1 if h(z) = y and 0 otherwise. The

expected value of 37 (s is p def |S]-27™, and we are interested in the probability that this sum

deviates from the expectation. Applying Chebyshev’s Inequality, we get
Pr [[Z Caz
€S

because Var(} ,cgCz) < |[S]-27™ by the pairwise independence of the (,’s and the fact that
E[¢z] = 27™. The lemma follows. [l

)

<
e2p

>e-

2

A generalization (called mixing). The proof of Lemma 4 can be easily extended to show that
for every set T C {0,1}™ and every ¢ > 0, for all but at most an % fraction of h € H]" it holds
that [{x € S : h(z) =y}| = (1 +e)-|T|-|S|/2™. (Hint: just define {, = ((h) =1 if h(z) € T and
0 otherwise.) In the case that m = n, this is called a mixing property, and is meaningfull provided
|T|-|S| >2™/e.

An extremely useful corollary. The aforementioned generalization of Lemma 4 asserts that
most functions behave well with respect to any fixed sets of preimages S C {0,1}" and images
T C {0,1}™. A seemingly stronger statement, which is (non-trivially) implied by Lemma 4, is that
for all adequate sets S most functions h € H™ map S to {0,1}™ in an almost uniform manner.?
This is a consequence of the following theorem.

Theorem 5 (a.k.a Leftover Hash Lemma): Let H]" and S C {0,1}" be as in Lemma 4, and define
e = /2m/|S|. Consider random wvariable X and H that are uniformly distributed on S and H)",
respectively. Then, the statistical distance between (H, H (X)) and (H,U,,) is at most 2¢.

Using the terminology of Section 4, we say that H]" yields a strong extractor (with parameters to
be spelled out there).

def

Proof: Let V denote the set of pairs (h,y) that violate Eq. (6), and V = (H™ x {0,1}™)\ V.

Then for every (h,y) € V it holds that

Pr((H,H(X)) = (h,y)] = Pr[H = h]-Pr[h(X)
= (1£e)-Pr[(H,U,)

Y]
(h,y)]-

On the other hand, by Lemma 4 (which asserts Pr[(H,y) € V] < ¢ for every y € {0,1}"™), we have
Pr((H,U,,) € V] <e. Using

Pri(H,H(X)) €V] = 1-Pr[(H,H(X))€eV]
< 1-Pr[(H,U,)) €eV]+e < 2¢

we upper-bounded the statistical difference between (H, H(X)) and (H,U,,) by

> X PHHHC) = (b)) = P, U) = ()
(h,y)eHT x{0,1}™
< Seg X IPHH)) = ()] - PACH, Un) = ()
(h,y)eV
< 543 X (PAHHX)) = (b)) + P, Un) = (y)
(h,y)eV
< %—F%-(Zs—i—s)

and the claim follows. [}

3That is, for X as in Theorem 5 and any « > 0, for all but at most an « fraction of the functions h € H7 it holds
that h(X) is (2¢/a)-close to Up,.

An alternative proof of Theorem 5. Define the collision probability of a random variable
Z, denote cp(Z), as the probability that two independent samples of Z yield the same result.

Alternatively, cp(Z) def >, Pr[Z = 2]?. Theorem 5 follows by combining the following two facts:

1. Ageneral fact: If Z € [N] and cp(Z) < (14+4€2)/N then Z is e-close to the uniform distribution
on [N].
We prove the contra-positive: Assuming that the statistical distance between Z and the
uniform distribution on [N] equals ¢, we show that cp(Z) > (1 + 46%)/N. This is done by
defining L o {# : Pr[Z = 2] < 1/N}, and lower-bounding cp(Z) by using the fact that the
collision probability minimizes on uniform distributions. Specifically,

cp(Z) > |L]- <W> +(N-|L))- <PV[ZNE_U|\;]|\ L])

which equals 1 + (62/(1 — p)p) > 1 + 462, where p = |L|/N.

2. The collision probability of (H, H(X)) is at most (1 + (2™/|S]))/(|H}"| - 2™). (Furthermore,
this holds even if H]" is only universal.)

The proof is by a straightforward calculation. Specifically, note that cp(H, H(X)) = |[H™| *-
Encry [cp(h(X))], whereas Epepm [cp(h(X)] = |S| 72X, 4yes PrH (1) = H(xp)]. The sum
equals |S| + (|S|?> — |S|) - 27™, and so cp(H, H(X)) < |[H™|~1- (27™ + |S|71).

Note that it follows that (H, H(X)) is /2™ /4|S|-close to (H,U,,), which is a stronger bound than
the one provided in Theorem 5.

Stronger uniformity via higher independence. Recall that Lemma 4 asserts that for each
point in the range of the hash function, with high probability over the choice of the hash function,
this fixed point has approximately the expected number of preimages in S. A stronger condition
asserts that, with high probability over the choice of the hash function, every point in its range has
approximately the expected number of preimages in S. Such a guarantee can be obtained when
using n-wise independent hashing functions.

Lemma 6 Let m < n be integers, H]" be a family of n-wise independent hash functions, and
S C {0,1}™. Then, for every ¢ € (0,1), for all but at most an 2™ - (n - 2™/2|S|)*? fraction of
h € H", it holds that |[{z € S : h(z) =y}| = (L £e)-|S|/2™ for every y € {0,1}™.

Indeed, the lemma should be used with 2™ < £2|S|/4n. In particular, using m = log, |S| —
log,y(5n/e?) guarantees that with high probability each range elements has (1+¢)-|S|/2™ preimages
in S. Under this setting of parameters |S|/2™ = 5n/<?, which is poly(n) whenever ¢ = 1/poly(n).
Needless to say, this guarantee is stronger than the conclusion of Theorem 5.

Proof: The proof follows the footsteps of the proof of Lemma 4, taking advantage of the fact that
the random variables (i.e., the (,’s) are now 2¢-wise independent, where ¢ = n/2. This allows for
the use of a so-called 2¢'" moment analysis, which generalizes the analysis of pairwise independent
samplying (presented in Section 1.2). As in the proof of Lemma 4, we fix any S and y, and define

Cz = Cu(h) =1 if and only if h(z) = y. Letting p = E[ZzES Cz] = |S]/2™ and Zz = Co — E(Ca), we

start with Markov inequality:

E - \2t
prlﬂ_zgw >€.#] < %
zeS K
_ Z$17...,€E2tes E[H?il ZLE@]
- c2t . (|S|/2m)2t (7>

Using 2¢-wise independence, we note that only the terms in Eq. (7) that do not vanish are those in
which each variable appears with multiplicity. This mean that only terms having less than ¢ distinct
variables contribute to Eq. (7). Now, for every j < ¢, we have less than (|f‘) (2t < (2t1/5") - |S)?
terms with j distinct variables, and each contributes less than (27™)7 to the sum. Thus, Eq. (7) is
upper-bounded by

2t! L(I8]/2m) _o e <2t-2m>t
(e25]/2m)* = 4! (e?[S]/2m)t e?|S]|

where the first inequality assumes |S| > n2™ (since the claim hold vacuously otherwise). This
upper-bounds the probability that a random h € H]" violates the mapping condition regarding a
fixed y. Using a union bound on all y € {0,1}"™, the lemma follows. [l

3 Sampling

In many settings repeated sampling is used to estimate the average of a huge set of values. Namely,

a “value” function v:{0,1}" — R is defined over a huge domain, and one wishes to approximate

v Z%er{[],l}n v(xz) without having to inspect the value of v at each point in the domain.

The obvious thing to do is to sample the domain at random, and obtain an approximation to v by
taking the average of the values of v on the sample points. It turns out that certain “pseudorandom”
sequences of sample points may serve almost as well as truly random sequences of sample points.

Formal Setting. It is essential to have the range of v be bounded (or else no reasonable ap-
proximation is possible). For simplicity, we adopt the convention of having [0,1] be the range of
v, and the problem for other (predetermined) ranges can be treated analogously. Our notion of
approximation depends on two parameters: accuracy (denoted) and error probability (denoted 6).
We wish to have an algorithm that, with probability at least 1 — ¢, gets within ¢ of the correct
value. This leads to the following definition.

Definition 7 (sampler): A sampler is a randomized algorithm that on input parameters n (length),

e (accuracy) and 6 (error), and oracle access to any function v : {0,1}"™ — [0,1], outputs, with

probability at least 1 — 6, a value that is at most € away from v At 2% 2 wef0,1}n v(z). Namely,
Pr[|sampler” (n,e,6) — 0| > ¢] < ¢

where the probability is taken over the internal coin tosses of the sampler, also called its random

seed.

A non-adaptive sampler is a sampler that consists of two deterministic algorithms: a sample gener-
ating algorithm, G, and a evaluation algorithm, V. On input n,e,0 and a random seed, algorithm G
generates a sequence of queries, denoted sy, ..., sy € {0,1}". Algorithm V is given the corresponding
v-values (i.e., v(81),...,v(sm)) and outputs an estimate to .

10

We are interested in “the complexity of sampling” quantified as a function of the parameters n, ¢
and 6. Specifically, we will consider three complexity measures: The sample complexity (i.e., the
number of oracle queries made by the sampler); the randomness complexity (i.e., the length of the
random seed used by the sampler); and the computational complexity (i.e., the running-time of the
sampler). We say that a sampler is efficient if its running-time is polynomial in the total length
of its queries (i.e., polynomial in both its sample complexity and in n). We will focus on efficient
samplers. Furthermore, we will focus on efficient samplers that have optimal (up-to a constant
factor) sample complexity, and will wish the randomness complexity to be as low as possible.

We note that all positive results to be reviewed refer to non-adaptive samplers, whereas the
lower bound hold also for general samplers. For more details see [5, Sec. 3.6.4].

The naive sampler. The straightforward method (or the naive sampler) consists of uniformly
and independently selecting sufficiently many sample points (queries), and outputting the average
value of the function on these points. Using Chernoff Bound it follows that O(loggﬁ) sample
points suffice. The naive sampler is optimal (up-to a constant factor) in its sample complexity, but
is quite wasteful in randomness.

It is known that Q(loggﬁ) samples are needed in any sampler, and that that samplers that make
s(n, e, 0) queries require randomness at least n+log,(1/6)—logy s(n,e,6)—O(1). These lower bounds
are tight (as demonstrated by non-explicit and inefficient samplers). These facts guide our quest for
improvements, which is aimed at finding more randomness-efficient ways of efficiently generating
sample sequences that can be used in conjunction with an appropriate evaluation algorithm V.

(We stress that V' need not necessarily take the average of the values of the sampled points.)

The pairwise-independent sampler. Using a pairwise-independence generator for generating
sample points, along with the natural evaluation algorithm (which outputs the average of the values
of these points), we obtain a great saving in the randomness complexity: pairwise-independent
sampling uses 2n random bits rather than the Q((log(1/6))e 2 -n) coins used by the naive sampler.
Using Eq. (3) it follows that O(1/6<?) samples are sufficient to get accuracy ¢ with error 6. Thus,
for constant 6 > 0, the Pairwise-Independent Sampler is optimal up-to a constant factor in both its
sample and randomness complexities. However, for small ¢ (i.e., 6 = o(1)), this sampler is wasteful
in sample complexity.

The Median-of-Averages sampler. A new idea is required for going further, and a relevant
tool — random walks on expander graphs — is needed too. Specifically, we combine the Pairwise-
Independent Sampler with the Expander Random Walk Generator to obtain a new sampler. The
new sampler uses a random walk on an expander with vertex set {0,1}?" to generate a sequence of

¢ O(log(1/6)) related seeds for ¢ invocations of the Pairwise-Independent Sampler, where each
of these invocations uses the corresponding 2n bits to generate a sequence of O(1/¢?) samples in
{0,1}™. Furthermore, each of these invocations returns a value that, with probability at least 0.9, is
e-close to v. The Expander Random Walk Theorem is used to show that, with probability at least
1—exp(—t) = 1—06, most of these ¢ invocations return an e-close approximation. Hence, the median
among these t values is an (e, §)-approximation to the correct value. The resulting sampler, called
the Median-of-Averages Sampler, has sample complexity O(loggﬁ) and randomness complexity
2n + O(log(1/6)), which is optimal up-to a constant factor in both complexities.

11

Further improvements. The randomness complexity of the Median-of-Averages Sampler can
be improved from 2n + O(log(1/6)) to n + O(log(1/éc)), while maintaining its (optimal) sample
complexity (of O(M)). This is done by replacing the Pairwise Independent Sampler by a

g
sampler that picks a random vertex in a suitable expander and samples all its neighbors.

Averaging Samplers. Averaging (a.k.a. Oblivious) samplers are non-adaptive samplers in which
the evaluation algorithm is the natural one: that is, it merely outputs the average of the values of
the sampled points. Indeed, the Pairwise-Independent Sampler is an averaging sampler, whereas
the Median-of-Averages Sampler is not. Interestingly, averaging samplers have applications for
which ordinary non-adaptive samplers do not suffice. Averaging samplers are closely related to
randomness extractors, defined and discussed in Section 4.

An odd perspective. Recall that a non-adaptive sampler consists of a sample generator G and
an evaluator V such that for every v:{0,1}" —[0, 1] it holds that

Pr(sl,...,sm)<—G(Uk)HV(V(Sl)? "'7V(8m)) - l7| > E] < 6.

Thus, we may view G as a pseudorandom generator that is subjected to a distinguishability text
that is determined by a fixed algorithm V' and an arbitrary function v:{0,1}" — [0, 1], where we

assume that Pr[|V(1/(U,g1))7 e V(Uém))) — | >¢] < 6. What is a bit odd here is that, except for
the case of averaging samplers, the distinguishability test contains a central component (i.e., the
evaluator V) that is potentially custom-made to help the generator G pass the test.t

4 Randomness Extractors

Extracting almost-perfect randomness from sources of weak (i.e., defected) randomness is crucial
for the actual use of randomized algorithms, procedures and protocols. The latter are analyzed
assuming that they are given access to a perfect random source, while in reality one typically
has access only to sources of weak randomness. Randomness extractors are efficient procedures
that (possibly with the help of little extra randomness) enhance the quality of random sources,
converting any source of weak randomness to an almost perfect one. In addition, randomness
extractors are related to several other fundamental problems, to be further discuss later.

One key parameter, which was avoided in the foregoing discussion, is the class of weak random
sources from which we need to extract almost perfect randomness. It is preferable to make as little
assumptions as possible regarding the weak random source. In other words, we wish to counsider a
wide class of such sources, and require the randomness extractor (often referred to as the extractor)
to “work well” for any source in this class. A general class of such sources is defined in §4.1.1, but
first we wish to mention that even for very restricted classes of sources no deterministic extractor
can work. To overcome this impossibility result, two approach are used:

Seeded extractors: The first approach consists of considering randomized extractors that use a
relatively small amount of randomness (in addition to the weak random source). That is,
these extractors obtain two input: a short truly random seed and a relatively long sequence
generated by an arbitrary source that belong to the specified class of sources. This suggestion
is motivated in two different ways:

*Another aspect in which samplers differ from the various pseudorandom generators is in the aim to minimize,
rather than maximize, the number of blocks (denoted here by m) in the output sequence. However, also in case of
samplers the aim is to maximize the block-length (denoted here by n).

12

1. The application may have access to an almost-perfect random source, but bits from this
source are much more expensive than bits from the weak/defected random source. Thus,
it makes sense to obtain few high-quality bits from the almost-perfect source and use
them to “purify” the cheap bits obtained from the defected source.

2. In some applications (e.g., when using randomized algorithms), it may be possible to
scan over all possible values of the seed and run the algorithm using the corresponding
extracted randomness. That is, we obtain a sample r from the weak random source,
and invoke the algorithm on extract(s,r), for every possible seed s, ruling by majority.
(This alternative is typically not applicable to distributed settings.)

Few independent sources: The second approach counsists of considering deterministic extrac-
tors that obtain samples from a few (say two) independent sources of weak randomness.
Such extractors are applicable in any setting (including in cryptography), provided that the
application has access to the required number of independent weak random sources.

In this section we focus on the first type of extractors (i.e., the seeded extractors). This choice is
motivated both by the relatively more mature state of the research in that direction and the closer
connection between this direction and other topics in complexity.

4.1 Definitions and various perspectives

We first present a definition that corresponds to the foregoing motivational discussion, and later
discuss its relation to other topics in complexity.

4.1.1 The Main Definition

A very wide class of weak random sources corresponds to sources for which no specific output is too
probable (cf. [3]). That is, the class is parameterized by a bound 3 and consists of all sources X
such that for every z it holds that Pr[X = z] < 8. In such a case, we say that X has min-entropy®
at least logy(1/4). Indeed, we represent sources as random variables, and assume that they are
distributed over strings of a fixed length, denoted n. A (n, k)-source is a source that is distributed
over {0,1}" and has min-entropy at least k.

An interesting special case of (n, k)-sources is that of sources that are uniform over a subset
of 2¥ strings. Such sources are called (n,k)-flat. A simple but useful observation is that each
(n, k)-source is a convex combination of (n, k)-flat sources.

Definition 8 (extractor for (n, k)-sources):

1. An algorithm Ext : {0,1}% x {0,1}™ — {0,1}™ is called an extractor with error ¢ for the class
C if for every source X in C it holds that Ext(Uy, X) is e-close to U,,.

An algorithm Ext is called o (k,e)-extractor if it is an extractor with error € for the class of
(n, k)-sources.

2. An algorithm Ext s called a strong extractor with error ¢ for C if for every source X in C it holds
that (Ug, Ext(Ug, X)) is e-close to (Ug,Upy,). A strong (k,e)-extractor is defined analogously.

°Recall that the entropy of a random variable X is defined as) Pr[X = x]log,(1/Pr[X = z]). Indeed the
min-entropy of X equals min,{log,(1/Pr[X = z])}, and is always upper-bounded by its entropy.

13

Using the “decomposition” of (n, k)-sources to (n,k)-flat sources, it follows that Ext is a (k,¢)-
extractor if and only if it is an extractor with error € for the class of (n,k)-flat sources. (A similar
claim holds for strong extractors.) Thus, much of the technical analysis is conducted with respect
to the class of (n,k)-flat sources. For example, it is easy to see that, for d = logy(n/e?) + O(1),
there exists a (k,¢)-extractor Ext : {0,1}% x {0,1}" — {0,1}*. (The proof is by the Probabilistic
Method and uses a union bound on the set of all (n, k)-flat sources.)®

We seek, however, explicit extractors; that is, extractors that are implementable by polynomial-
time algorithms. We note that the evaluation algorithm of any family of pairwise independent
hash functions mapping n-bit strings to m-bit strings constitutes a (strong) (k,c)-extractor for
e = 27 (k~m)/2 (see the alternative proof of Theorem 5). However, these extractors necessarily
use a long seed (i.e., d > 2m must hold (and in fact d = n + 2m — 1 holds in Construction 3)).
In Section 4.2 we survey constructions of efficient (k,e)-extractors that obtain logarithmic seed
length (i.e., d = O(log(n/e))). But before doing so, we provide a few alternative perspectives on
extractors.

An important note on logarithmic seed length. The case of logarithmic seed length is of
particular importance for a variety of reasons. Firstly, when emulating a randomized algorithm
using a defected random source (as in Item 2 of the motivational discussion of seeded extractors),
the overhead is exponential in the length of the seed. Thus, the emulation of a generic probabilistic
polynomial-time algorithm can be done in polynomial time only if the seed length is logarithmic.
Similarly, the applications discussed in §4.1.2 and §4.1.3 are feasible only if the seed length is
logarithmic. Lastly, we note that logarithmic seed length is an absolute lower-bound for (k,¢)-
extractors, whenever n > k + k() (and m > 1 and ¢ < 1/2).

4.1.2 Extractors as averaging samplers

There is a close relationship between extractors and averaging samplers (discussed towards the end
of Section 3). We first show that any averaging sampler gives rise to an extractor. Let G : {0,1}" —
({0,1}™) be the sample generating algorithm of an averaging sampler having accuracy € and error
probability 6. That is, G uses n bits of randomness and generates ¢ sample points in {0,1}™ such
that for every f : {0,1}"™ — [0,1] with probability at least 1 — 6 the average f-values of these
points is in the interval [f £ ¢], where f o E[f(Uy,)]. Define Ext : [t] x {0,1}" — {0,1}™ such
that Ext(i,7) is the i*" sample generated by G(r). We shall prove that Ext is a (k, 2¢)-extractor,
for £k =n —logy(e/9).

Suppose towards the contradiction that there exists a (k,2¢)-flat source X such that for some
S C {0,1}™ it is the case that Pr[Ext(Uy, X) € S] > Pr[U,, € S] + 2¢, where d = log,t and
[t] = {0,1}¢. Define

B ={x €{0,1}" : PrlExt(Ugq,z) € S] > (|S|/2™) + €}.

Then, |[B| > ¢-2F = §-2". Defining f(z) = 1if z € S and f(z) = 0 otherwise, we have
zdéf E[f(Un)] = |S|/2™. But, for every r € B the f-average of the sample G(r) is greater than

f + &, in contradiction to the hypothesis that the sampler has error probability § (with respect to
accuracy).

®The probability that a random function Ext : {0,1}% x {0,1}™ — {0,1}* is not an extractor with error ¢ for a
fixed (n, k)-flat source is upper-bounded by 22" -exp(—Q(24*£?)), which is smaller than 1/(;2)

14

We now turn to show that extractors give rise to averaging samplers. Let Ext : {0,1}% x
{0,1}™ — {0,1}" be a (k,e)-extractor. Consider the sample generation algorithm G : {0,1}" —
({0,1}m)2d define by G(r) = (Ext(s,7)),cq0,13¢- We prove that it corresponds to an averaging
sampler with accuracy e and error probability § = 2-(*—k=1),

Suppose towards the contradiction that there exists a function f : {0,1}" — [0, 1] such that for

62" = 2k+1 strings r € {0,1}" the average f-value of the sample G(r) deviates from f o Elf(Un)]

by more than €. Suppose, without loss of generality, that for at least half of these r’s the average is
greater than f 4 ¢, and let B denote the set of these r’s. Then, for X that is uniformly distributed
on B and is thus a (n, k)-source, we have

E[f(Ext(Ua, X))] > E[f(Um)] + ¢,

which (using |f(z)] <1 for every z) contradicts the hypothesis that Ext(Uy, X) is e-close to Uy,

4.1.3 Extractors as randomness-efficient error-reductions

As may be clear from the foregoing discussion, extractors yield randomness-efficient methods for
error-reduction. Indeed, error-reduction is a special case of the sampling problem, obtained by
considering Boolean functions. Specifically, for a two-sided error decision procedure A, consider
the function f, : {0,112 — {0,1} such that f.(r) = 1 if A(z,r) = 1 and f,(r) = 0 otherwise.
Assuming that the probability that A is correct is at least 0.5 + ¢ (say ¢ = 1/6), error reduction
amounts to providing a sampler with accuracy ¢ and any desired error probability ¢ for the Boolean
function f,. In particular, any (k,e)-extractor Ext : {0,1}% x {0,1}" — {0,1}4*D with k =
n — log(1/6) — 1 will do, provided 2¢ is feasible (e.g., 2¢ = poly(£(|z|)), where £(-) represents the
randomness complexity of the original algorithm A). The question of interest here is how does n
(which represents the randomness complexity of the corresponding sampler) grow as a function of
{(|z|) and 6.

Error-reduction using the extractor Ext: [poly(£(|z|))] x {0, 1}™ — {0, 1}=D
‘ ‘ error probability ‘ randomness complexity ‘

original algorithm | 1/3 £(|x))
resulting algorithm | 6 (may depend on |z|) | n (function of £(]z|) and §)

Jumping ahead, we note that for every @ > 1, one can obtain n = O({(|z])) + alogy(1/6) (cf. 10,
11]).7 Note that this bound on the randomness-complexity of error-reduction is better than the one
provided (for the reduction of one-sided error) by the Expander Random Walk Generator, albeit
the number of samples here is larger (but still polynomial in n).

Mentioning the reduction of one-sided error probability, brings us to a corresponding relaxation
of the notion of an extractor, which is called a disperser. Loosely speaking, a (k,¢)-disperser is
only required to hit (with positive probability) any set of density greater than e in its image, rather
than produce a distribution that is e-close to uniform.

Definition 9 (dispersers): An algorithm Dsp : {0,1}9x{0,1}"™ — {0,1}™ is called a (k, ¢)-disperser
if for every (n, k)-source X the support of Dsp(Ug, X) covers at least (1—¢)-2™ points. Alternatively,
for every set S C {0,1}™ of size greater than 2™ it holds that Pr[Dsp(Uy, X) € S] > 0.

"In general, if n = poly(£(|z|)) + alog,(1/8) then for sufficiently small § > exp(—poly£(|z]))), we have n =
(o +0(1)) log,(1/6) = poly(£(|z|)), which means 6§ < 277/ for every o > a.

15

Dispersers can be used for the reduction of one-sided error analogously to the use of extractors
for the reduction of two-sided error. Specifically, regarding the aforementioned function f, (and
assuming that either Pr[f;(Uys)) = 1] > € or fu(Uye)y)) = 0), we may use any (k,e)-disperser
Dsp : {0,1}% x {0,1}" — {0,1}¥1#D) in attempt to find a point z such that f,(z) = 1. Indeed, if
Prife(Uyep) = 1] > € then [{z : (Vs € {0,1}%) fo(Dsp(s, z)) = 0} < 2*, and thus the one-sided
error can be reduced from 1 — ¢ to 2~ (%) while using n random bits.

4.1.4 Other perspectives

Extractors and dispersers have an appealing interpretation in terms of bipartite graphs. Starting
with dispersers, we view a disperser Dsp : {0,1}¢ x {0,1}* — {0,1}" as a bipartite graph G =
(({0,1}",{0,1}™), E) such that E = {(z,Dsp(s,z)) : € {0,1}",5 € {0,1}9}. This graph has the
property that any subset of 2F vertices on the left (i.e., in {0,1}") has a neighborhood that contains
more than a 1 — e fraction of the vertices of the right, which is remarkable in the typical case where
d is small (e.g., d = O(logn/c)) and n > k > m whereas m = Q(k) (or at least m = kW),
Furthermore, if Dsp is efficiently computable then this bipartite graph is strongly constructible in
the sense that, given a vertex on the left, one can efficiently find all its neighbors. An extractor
Ext : {0,1}¢ x {0,1}® — {0,1}™ yields an analogous graph with a even stronger property: the
neighborhood multi-set of any subset of 2¥ vertices on the left covers the vertices on the right in
an almost uniform manner.

An odd perspective. In addition to viewing extractors as averaging samplers, which in turn
may be viewed within the scope of the pseudorandomness paradigm, we mention here an even
more odd perspective. Specifically, randomness extractors may be viewed as randomized (by the
seed) algorithms designed on purpose such that to be fooled by any weak random source (but not
by an even worse source). Consider an (k,¢)-extractor Ext : {0,1}¢ x {0,1}" — {0,1}™, for say
e < 1/100, m = k = w(logn/e) and d = O(logn/e), and a potential test T's, parameterized by a
set S C {0,1}"™, such that Pr[Ts(z) = 1] = Pr[Ext(Uq,x) € S] (i.e., on input x € {0,1}", the test
uniformly selects s € {0,1}¢ and outputs 1 if and only if Ext(s,z) € S). Then, for every (n,k)-
source X the test Ts does not distinguish X from U, (i.e., Pr[Ts(X)] = Pr[Ts(U,)| £ 2¢, because
Ext(Uy, X) is 2e-close to Ext(Ug, U,)). On the other hand, for every (n,k — d — 4)-flat source Y
there exists a set S such that Ts distinguish Y from U,, with gap 0.9 (e.g., for S that equals the
support of Ext(Ug, Y), it holds that Pr[Ts(Y)] = 1 and Pr[Ts(U,)] < |S]-27™ +e=2"1+¢ < 0.1).
Furthermore, this class of tests detects as defected, with probability 2/3, any source that has entropy
below (k/4)—d.® Thus, these weird class of tests views each (n, k)-source as “pseudorandom” while
detecting sources of lower entropy (e.g., entropy lower than (k/4)—d) as non-pseudorandom. Indeed,
this perspective stretches the pseudorandomness paradigm quite far.

4.2 Constructions

Recall that we seek explicit constructions of extractors; that is, functions Ext : {0,1}¢ x {0,1}" —
{0,1}™ that can be computed in polynomial-time. The question, of course, is of parameters; that
is, having (k,)-extractors with m as large as possible and d as small as possible. We first note

8For any such source Y, the distribution Z = Ext(Uy, Y') has entropy at most k/4 = m/4, and thus is 0.7-far from
Un (and 2/3-far from Ext(Ug,U,)). The lower-bound on the statistical distance of Z to U, can be proven by the
contra-positive: if Z is é-close to U, then its entropy is at least (1—§)-m —1 (e.g., by using Fano’s inequality, see [4,
Thm. 2.11.1)).

16

that m < k +d — (2logy(1/¢) — O(1)) and d > logy((n — k)/e?) — O(1), regardless of explicitness.
The aforementioned bounds are in fact tight; that is, there exists (non-explicit) (k,<)-extractors
with m = k +d — 2logy(1/¢) — O(1) and d = log,((n — k)/e%) + O(1). The obvious goal is to meet
these bounds via explicit constructions.

Despite tremendous progress on this problem (and occasional claims regarding “optimal” ex-
plicit constructions), the ultimate goal was not reached yet. Yet, we are pretty close. In particular,
we have the following.

Theorem 10 (explicit constructions of extractors): Explicit (k,e)-extractors of the form Ext :
{0,1}4 x {0,1}™ — {0,1}™ emist in the following cases:

e For any constants e, > 0, with d = O(logn) and m = (1 — «a) - k.
e For any constants e, > 0, with d = (1 — «) - logyn and m = k/poly(logn).

e For any € > exp(—k/logk), with d = O(logn/e) and m = Q(k/logk).

The second item is due to [8], and the other two are due to [6], where these works build on previous
ones (which are not cited here). We note that, for sake of simplicity, we did not quote the best
possible bounds. Furthermore, we did not mention additional incomparable results (which are
relevant for different ranges of parameters). In general, it seems that the “last word” has not been
said yet: indeed the current results are close to optimal, but this cannot be said about the way
that they are achieved. In view of the foregoing, we refrain from trying to provide an overview of
the proof of Theorem 10, and review instead a conceptual insight that opened the door to much of
the recent developments in the area.

The pseudorandomness connection

We conclude this section with an overview of a fruitful connection between extractors and certain
pseudorandom generators. The connection, discovered by Trevisan [9], is surprising in the sense that
it goes in a non-standard direction: it transforms certain pseudorandom generators into extractors.
As argued throughout this course, computational objects are typically more complex than the
corresponding information theoretical objects. Thus, if pseudorandom generators and extractors
are at all related (which was not suspected before [9]) then this relation should not be expected to
help in the construction of extractors, which seem an information theoretic object. Nevertheless,
the discovery of this relation did yield a breakthrough in the study of extractors.”

But before describing the connection, let us wonder for a moment. Just looking at the syntax,
we note that pseudorandom generators have a single input (i.e., the seed), while extractors have
two inputs (i.e., the n-bit long source and the d-bit long seed). But taking a second look at the
Nisan—Wigderson Generator, we note that this construction can be viewed as taking two inputs: a
d-bit long seed and a “hard” predicate on d'-bit long strings (where d’ = Q(d)). Now, an appealing
idea is to use the n-bit long source as a description of a (worse-case) hard predicate (which indeed
means setting n = 2d'). The key observation is that even if the source is only weakly random we
expect it to represent a function that is hard on the worst-case.

Recall that the aforementioned construction is supposed to yield a pseudorandom generator
whenever it starts with a hard predicate. In the current context, where there are no computational

“We note that once the connection became better understood, influence started going in the “right” direction:
from extractors to pseudorandom generators.

17

restrictions, pseudorandomness is supposed to hold against any (computationally unbounded) dis-
tinguisher, and thus here pseudorandomness means being statistically close to the uniform distri-
bution (on strings of the adequate length, denoted ¢). Intuitively, this makes sense only if the
observed sequence is shorter that the amount of randomness in the source (and seed), which is
indeed the case (i.e., { < k + d, where k£ denotes the min-entropy of the source). Hence, there is
hope to obtain a good extractor this way.

To turn the hope into a reality, we need a proof. Looking again at the Nisan-Wigderson
Generator, we note that the proof of indistinguishability of the generator provides a black-box
procedure for computing the underlying predicate when given oracle access to any potential dis-
tinguisher. This black-box procedure was implemented by a relatively small circuit, so it is clear
that this procedure contains relatively little information on top of the observed ¢-bit long output

of the extractor/generator. Specifically, a crude estimate yields an upper-bound of b def poly(£) on
the amount of information available to the procedure, which is suppose to compute the predicate
correctly on every input. That is, this amount of information is supposed to fully determine the
predicate in use, which in turn is identical to the n-bit long source. Thus, if the source has min-
entropy exceeding b, then it cannot be fully determine using only b bits of information. It follows
that the foregoing construction constitutes a (b + O(1),1/6)-extractor (outputting ¢ bits), where
the constant 1/6 is the one used in the standard analysis of the Nisan—-Wigderson Generator. Note
that this was obtained with a seed of length d = O(d') = O(logn). The argument can be extended
to obtain (k,poly(1/k))-extractors that output m = kU bits using a seed of length d = O(logn),
provided that k = n*(!). (For further details, the interested reader is referred to either [9] or [7].)

We note that the foregoing description has only referred to two abstract properties of the
Nisan—-Wigderson Generator: (1) the fact that it uses any worst-case hard predicate as a black-box,
and (2) the fact that its analysis uses any distinguisher as a black-box. In particular, we viewed
the amplification of worst-case hardness to inapproximability as part of the construction of the
pseudorandom generator. An alternative presentation, which is more self-contained, replaces the
amplification step by a direct argument in the current (information theoretic) context and plugs
the resulting predicate directly into the Nisan—-Wigderson Generator.

The alternative presentation. Recall that we viewed the violation of worst-case hardness as
an ability to fully determine the predicate, and used the upper-bound on the information available
to the “universal” evaluation procedure to upper-bound the number of sources that may be bad.
From this perspective, the violation of inapproximability may be viewed as ability to generate a
function that is close to the predicate. If the predicates of interests are far apart, then this directly
yields the desired bound (on the number of bad sources that are encoded in such predicates). Thus,
the idea is to encode the n-bit long source by an error correcting code of length n’ = poly(n) and
relative distance 0.5 — (1/n)%, and use the resulting codeword as a truth-table of a predicate for the
Nisan-Wigderson Generator. Such codes (coupled with efficient encoding algorithms) do exist, and
the benefit in using them is that each n'-bit long string (determined by the information available to
the aforementioned “universal” evaluation procedure) may be (0.5 — (1/n))-close to at most O(n?)
codewords.

Recommended reading

The interested reader is referred to a truly excellent survey of Shaltiel [7]. This survey contains a
comprehensive introduction to the area, including an overview of the ideas that underly the various
constructions. In particular, the survey describes the approaches used before the discovery of the

18

pseudorandomness connection, the connection itself (and the constructions that arise from it), and
the “third generation” of constructions that followed.

References

1]
2]

[3]

[5]

[6]

[10]

[11]

N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons, Inc., 1992.

L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer and System
Science, Vol. 18, 1979, pages 143-154.

B. Chor and O. Goldreich. Unbiased Bits from Sources of Weak Randomness and Probabilistic
Communication Complexity. SIAM Journal on Computing, Vol. 17, No. 2, pages 230-261,
1988.

T.M. Cover and G.A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc.,
New-York, 1991.

O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithms
and Combinatorics series (Vol. 17), Springer, 1999.

C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: optimal up to constant
factors. In 35th ACM Symposium on the Theory of Computing, pages 602-611, 2003.

R. Shaltiel. Recent Developments in Explicit Constructions of Extractors. Bulletin of the
EATCS 77, pages 67-95, 2002.

R. Shaltiel and C. Umans. Simple Extractors for All Min-Entropies and a New Pseudo-
Random Generator. In 42nd IEEE Symposium on Foundations of Computer Science, pages
648-657, 2001.

L. Trevisan. Counstructions of Near-Optimal Extractors Using Pseudo-Random Generators.
In 81st ACM Symposium on the Theory of Computing, pages 141-148, 1998.

D. Zuckerman. Simulating BPP Using a General Weak Random Source. Algorithmica, Vol. 16,
pages 367-391, 1996.

D. Zuckerman. Randomness-Optimal Oblivious Sampling. Journal of Random Structures
and Algorithms, Vol. 11, Nr. 4, December 1997, pages 345-367.

19

