
Texts in Computational Complexity:Probabilistic Preliminaries and Advanced Topics in RandomizationOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.January 28, 2006What is this? Chicken Quesadilla and Seafood Salad?Fine, but in the same plate? This is disgusting!Johan H�astad at Grendel's, Cambridge (1985)Summary: These notes lumps together some preliminaries regarding probability theoryand some advanced topics related to the role and use of randomness in computation.Needless to say, each of these appears in a separate section.The probabilistic preliminaries include our conventions regarding random variables,which are used throughout the book. Also included are overviews of three useful in-equalities: Markov Inequality, Chebyshev's Inequality, and Cherno� Bound.The advanced topics include hashing, sampling and randomness extraction. For hashing,we describe constructions of pairwise (and t-wise independent) hashing functions, andvariants of the Leftover Hashing Lemma (which are used a couple of times in the maintext). We then review the \complexity of sampling": that is, the number of samplesand the randomness complexity involved in estimating the average value of an arbitraryfunction de�ned over a huge domain. Finally, we provide an overview on the question ofextracting almost perfect randomness from sources of weak (or defected) randomness.Contents1 Probabilistic preliminaries 21.1 Notational Conventions : 21.2 Three Inequalities : 32 Hashing 52.1 De�nitions : 62.2 Constructions : 62.3 The Leftover Hash Lemma : 73 Sampling 101

4 Randomness Extractors 124.1 De�nitions and various perspectives : 134.1.1 The Main De�nition : 134.1.2 Extractors as averaging samplers : 144.1.3 Extractors as randomness-e�cient error-reductions : : : : : : : : : : : : : : : 154.1.4 Other perspectives : 164.2 Constructions : 16Bibliography 191 Probabilistic preliminariesProbability plays a central role in complexity theory. We assume that the reader is familiar with thebasic notions of probability theory. In this section, we merely present the probabilistic notationsthat are used throughout the book, and three useful probabilistic inequalities.1.1 Notational ConventionsThroughout the entire course we will refer only to discrete probability distributions. Speci�cally,the underlying probability space will consist of the set of all strings of a certain length `, taken withuniform probability distribution. That is, the sample space is the set of all `-bit long strings, andeach such string is assigned probability measure 2�`. Traditionally, random variables are de�ned asfunctions from the sample space to the reals. Abusing the traditional terminology, we use the termrandom variable also when referring to functions mapping the sample space into the set of binarystrings. We often do not specify the probability space, but rather talk directly about randomvariables. For example, we may say that X is a random variable assigned values in the set of allstrings such that Pr[X =00] = 14 and Pr[X =111] = 34 . (Such a random variable may be de�nedover the sample space f0; 1g2, so that X(11) = 00 and X(00) = X(01) = X(10) = 111.) Oneimportant case of a random variable is the output of a randomized process (e.g., a probabilisticpolynomial-time algorithm).All our probabilistic statements refer to functions of random variables that are de�ned before-hand. Typically, we may write Pr[f(X) = 1], where X is a random variable de�ned beforehand(and f is a function). An important convention is that all occurrences of the same symbol in aprobabilistic statement refer to the same (unique) random variable. Hence, if B(�; �) is a Booleanexpression depending on two variables, and X is a random variable then Pr[B(X;X)] denotes theprobability that B(x; x) holds when x is chosen with probability Pr[X=x]. For example, for everyrandom variable X, we have Pr[X =X] = 1. We stress that if we wish to discuss the probabilitythat B(x; y) holds when x and y are chosen independently with identical probability distribution,then we will de�ne two independent random variables each with the same probability distribution.Hence, if X and Y are two independent random variables then Pr[B(X;Y)] denotes the probabilitythat B(x; y) holds when the pair (x; y) is chosen with probability Pr[X=x] �Pr[Y =y]. For example,for every two independent random variables, X and Y , we have Pr[X=Y] = 1 only if both X andY are trivial (i.e., assign the entire probability mass to a single string).Throughout the entire book, Un denotes a random variable uniformly distributed over the setof strings of length n. Namely, Pr[Un=�] equals 2�n if � 2 f0; 1gn and equals 0 otherwise. We willoften refer to the distribution of Un as the uniform distribution (neglecting to qualify that it is uniformover f0; 1gn). In addition, we will occasionally use random variables (arbitrarily) distributed over2

f0; 1gn or f0; 1g`(n), for some function ` :N!N . Such random variables are typically denoted byXn, Yn, Zn, etc. We stress that in some cases Xn is distributed over f0; 1gn, whereas in other casesit is distributed over f0; 1g`(n), for some function `(�), which is typically a polynomial. We willoften talk about probability ensembles, which are in�nite sequence of random variables fXngn2Nsuch that each Xn ranges over strings of length bounded by a polynomial in n.Statistical di�erence. The statistical distance (a.k.a variation distance) between the randomvariables X and Y is de�ned as12 �Xv jPr[X = v]� Pr[Y = v]j = maxS fPr[X 2 S]� Pr[Y 2 S]g:We say that X is �-close (resp., �-far) to Y if the statistical distance between them is at least (resp.,at most) �.1.2 Three InequalitiesThe following probabilistic inequalities are very useful. All inequalities refer to random variablesthat are assigned real values and provide upper-bounds on the probability that the random variabledeviates from its expectation.Markov Inequality. The most basic inequality is Markov Inequality that applies to any randomvariable with bounded maximum or minimum value. For simplicity, it is stated for random variablesthat are lower-bounded by zero, and reads: Let X be a non-negative random variable and v a realnumber. Then Pr [X�v] � E(X)v (1)Equivalently, Pr[X � r � E(X)] � 1r . The proof amounts to the following sequence.E(X) = Xx Pr[X=x] � x� Xx<vPr[X=x] � 0 +Xx�vPr[X=x] � v= Pr[X�v] � vChebyshev's Inequality: Using Markov's inequality, one gets a potentially stronger bound onthe deviation of a random variable from its expectation. This bound, called Chebyshev's inequal-ity, is useful when having additional information concerning the random variable (speci�cally agood upper bound on its variance). For a random variable X of �nite expectation, we denoteby Var(X) def= E[(X � E(X))2] the variance of X, and observe that Var(X) = E(X2) � E(X)2.Chebyshev's inequality then reads as follows: Let X be a random variable, and � > 0. ThenPr [jX � E(X)j��] � Var(X)�2 (2)Proof: We de�ne a random variable Y def= (X � E(X))2, and apply Markov inequality. We getPr [jX � E(X)j��] = Pr h(X � E(X))2 � �2i� E[(X � E(X))2]�23

and the claim follows.Corollary (Pairwise Independent Sampling): Chebyshev's inequality is particularly useful in theanalysis of the error probability of approximation via repeated sampling. It su�ces to assumethat the samples are picked in a pairwise independent manner, where X1;X2; :::;Xn are pairwiseindependent if for every i 6= j and every �; � it holds that Pr[Xi=�^Xj=�] = Pr[Xi=�]�Pr[Xj=�].The corollary reads: Let X1;X2; :::;Xn be pairwise independent random variables with identicalexpectation, denoted �, and identical variance, denoted �2. Then, for every " > 0,Pr �����Pni=1Xin � ����� � "� � �2"2n (3)Proof: De�ne the random variablesX i def= Xi�E(Xi). Note that theX i's are pairwise independent,and each has zero expectation. Applying Chebyshev's inequality to the random variable Pni=1 Xin ,and using the linearity of the expectation operator, we getPr "����� nXi=1 Xin � ������ � "# � Var hPni=1 Xin i"2= E ��Pni=1Xi�2�"2 � n2Now (again using the linearity of expectation)E24 nXi=1Xi!235 = nXi=1 E hX2i i+ X1�i 6=j�nE hXiXjiBy the pairwise independence of the Xi's, we get E[X iXj] = E[X i] � E[Xj], and using E[X i] = 0,we get E24 nXi=1X i!235 = n � �2The corollary follows.Cherno� Bound: Using pairwise independent sampling, the error probability in the approxima-tion is decreasing linearly with the number of sample points (see Eq. (3)). Using totally independentsampling points, the error probability in the approximation can be shown to decrease exponentiallywith the number of sample points. (The random variables X1;X2; :::;Xn are said to be totally inde-pendent if for every sequence a1; a2; :::; an it holds that Pr[^ni=1Xi=ai] = Qni=1 Pr[Xi=ai].) Proba-bility bounds, supporting the above statement, are given next. The �rst bound, commonly referredto as Cherno� Bound, concerns 0-1 random variables (i.e., random variables that are assigned asvalues either 0 or 1), and asserts the following. Let p � 12 , and X1;X2; :::;Xn be independent 0-1random variables so that Pr[Xi = 1] = p, for each i. Then for all ", 0 < " � p(1� p), we havePr �����Pni=1Xin � p���� > "� < 2 � e� "22p(1�p) �n (4)4

Proof Sketch: We upper-bound Pr[Pni=1Xi � pn > "n] and Pr[pn �Pni=1Xi > "n] is boundedsimilarly. Letting Xi def= Xi�E(Xi), we apply Markov Inequality to the random variable e�Pni=1Xi ,where � > 0 is determined to optimize the expressions that we derive (hint: � = �("=p(1� p)) willdo). Thus, Pr[Pni=1X i > "n] is upper-bounded byE[e�Pni=1Xi]e�"n = e��"n � nYi=1E[e�X i]where the equality is due to the independence of the random variables. To simplify the rest ofthe proof, we establish a sub-optimal bound as follows. Using a Taylor expansion of ex (e.g., ex <1+x+2x2) and observing that E[X i] = 0, we get E[e�Xi] < 1+2�2E[X2i], which equals 1+2�2p(1�p).Thus, Pr[Pni=1Xi� pn > "n] is upper-bounded by (1+2�2p(1� p))n < exp(��"n+2�2p(1� p)n),which is optimized at � = "=(4p(1 � p)) yielding exp(� "28p(1�p) � n). Needless to say, this methodcan be applied in more general settings (e.g., for Xi 2 [0; 1] rather than Xi 2 f0; 1g).A more general bound, useful in the approximations of the expectation of a general random vari-able (not necessarily 0-1), is given next (and is commonly referred to as Hoefding Inequality).1 LetX1;X2; :::;Xn be n independent random variables with identical probability distribution, each rang-ing over the (real) interval [a; b], and let � denote the expected value of each of these variables.Then, for every " > 0, Pr �����Pni=1Xin � ����� > "� < 2 � e� 2"2(b�a)2 �n (5)Hoefding Inequality is useful in estimating the average value of a function de�ned over a large setof values, especially when the desired error probability needs to be negligible (i.e., decrease fasterthan any polynomial in the relevant parameter). Such an estimate can be obtained provided thatwe can e�ciently sample the set and have a bound on the possible values (of the function).Pairwise independent vs totally independent sampling. Consider, for simplicity the casethat a = 0 < � < b = 1. In this case, n independent samples give an approximation that deviates by" from the expectation with probability, denoted �, that is exponentially decreasing with "2n. Suchan approximation is called an ("; �)-approximation, and can be achieved using n = O("�2 � log(1=�))sample points. Thus, the number of sample points is polynomially related to "�1 and logarithmicallyrelated to ��1. It follows that, when using poly(n) many samples,2 the error probability (i.e., �)can be made negligible (as a function in n), but the accuracy of the estimation (i.e., ") can be onlybounded above by any �xed polynomial fraction (and cannot be made negligible). We stress thatthe dependency of the number of samples on " is not better than in the case of pairwise independentsampling; the advantage of totally independent samples is only in the dependency of the numberof samples on �.2 HashingHashing is extensively used in complexity theory in order to map arbitrary (unstructured) sets\almost uniformly" to a smaller structured set of adequate size. Speci�cally, hashing is supposedto map an arbitrary 2m-subset (of f0; 1gn) to f0; 1gm in an \almost uniform" manner.1A more general form requires the Xi's to be independent, but not necessarily identical, and uses � def=1nPni=1 E(Xi). See [1, Apdx. A].2Here and in the rest of the book, we denote by poly() some �xed but unspeci�ed polynomial.5

For a �xed set S of cardinality 2m, a 1-1 mapping fS : S ! f0; 1gm does exist, but it is notnecessarily an e�cient one (e.g., it may require \knowing" the entire set S). Clearly, no �xedfunction f : f0; 1gn ! f0; 1gm can map every 2m subset of f0; 1gn to f0; 1gm in a 1-1 manner(or even approximately so). However, a random function f : f0; 1gn ! f0; 1gm has the propertythat, for every 2m-subset S � f0; 1gn, with overwhelmingly high probability f maps S to f0; 1gmsuch that no point in the range has many f -preimages in S. The problem is that a truly randomfunction is unlikely to have a succinct representation (let alone an e�cient evaluation algorithm).We seek families of functions that have a similar property, but do have a succinct representationas well as an e�cient evaluation algorithm.2.1 De�nitionsMotivated by the foregoing discussion, we consider families of functions fHmn gm<n Such that thefollowing properties hold:1. For every S � f0; 1gn, with high probability, a function h selected uniformly in Hmn maps Sto f0; 1gm in an \almost uniform" manner. For example, for any jSj = 2m and each point y,with high probability over the choice of h, it holds that jfx 2 S : h(x) = ygj � poly(n).2. The functions in Hmn have succinct representation. For example, we may require that Hmn �f0; 1g`(n;m), for some polynomial `.3. The functions in Hmn can be e�ciently evaluated. That is, there exists a polynomial-timealgorithm that, on input a representation of a function, h (in Hmn), and a string x2f0; 1gn,returns h(x). In some cases we make even more stringent requirements regarding the thealgorithm (e.g., that it runs in linear space).Condition 1 was left vague on purpose. At the very least, we require that the expected sizeof fx 2 S : h(x) = yg equals jSj=2m. We shall see (in Section 2.3) that di�erent (stronger)interpretations of Condition 1 are satis�ed by di�erent types of hashing functions. We focus ont-wise independent hashing functions, de�ned next.De�nition 1 (t-wise independent hashing functions): A family Hmn of functions from n-bit stringsto m-bit strings is called t-wise independent if for every t distinct domain elements x1; :::; xt 2 f0; 1gnand every y1; :::; yt 2 f0; 1gm it holds thatPrh2Hmn [^ti=1h(xi) = y1] = 2�t�mThat is, every t domain elements are mapped by a uniformly chosen h 2 Hmn in a totally uniformmanner. Note that for t � 2, it follows that the probability that a random h 2 Hmn maps twodistinct domain elements to the same image is 2�m. Such (families of) functions are called universal(cf. [2]), but we will focus on the stronger condition of t-wise independence.2.2 ConstructionsThe following constructions are merely a re-interpretation of the constructions presented in thecontext of (special purpose) pseudorandom generators. (Alternatively, one may view the latterconstructions as a re-interpretation of the following two constructions.)6

Construction 2 (t-wise independent hashing): For t;m; n 2 N such that m � n, consider thefollowing family of hashing functions mapping n-bit strings to m-bit strings. Each t-sequence s =(s0; s1; :::; st�1) 2 f0; 1gt�n describes a function hs : f0; 1gn ! f0; 1gm such that hs(x) equals them-bit pre�x of the binary representation of Pt�1j=0 sjxj, where the arithmetic is that of GF(2n), the�nite �eld of 2n elements.Construction 2 constitutes a family of t-wise independent hash functions. Typically, we will useeither t = 2 or t = �(n). To make the construction totally explicit, we need an explicit represen-tation of GF(2n). An alternative construction for the case of t = 2 may be obtained as follows.Recall that a Toeplitz matrix is a matrix with all diagonals being homogeneous; that is, T = (ti;j)is a Toeplitz matrix if ti;j = ti+1;j+1, for all i; j.Construction 3 (Alternative pairwise independent hashing): For m � n, consider the family ofhashing functions in which each n-by-m Toeplitz matrix T and an m-dimensional vector b describesa function hT;b : f0; 1gn ! f0; 1gm such that hT;b(x) = Tx+ b.Construction 3 constitutes a family of pairwise independent hash functions. Note that a n-by-mToeplitz matrix can be speci�ed by n +m � 1 bits, yielding description length n + 2m � 1. Analternative construction (using m � n + m bits of representation) uses arbitrary n-by-m matricesrather than Toeplitz matrices.2.3 The Leftover Hash LemmaWe now turn to the \almost uniform" cover condition (i.e., Condition 1) mentioned in Section 2.1.One concrete interpretation of this condition is implied by the following lemma.Lemma 4 Let m < n be integers, Hmn be a family of pairwise independent hash functions, andS � f0; 1gn. Then, for every y 2 f0; 1gm and every " > 0, for all but at most an 2m"2jSj fraction ofh 2 Hmn it holds that jfx 2 S : h(x) = ygj = (1� ") � jSj2m : (6)By pairwise independence (or rather even by \1-wise independence"), the expected size of fx 2S : h(x) = yg is jSj=2m, where the expectation is taken uniformly over all h 2 Hmn . The lemmaupper bounds the fraction of h's that deviate from the expected value. Needless to say, the boundis meaningful only in case jSj > 2m (or alternatively for " > 1). Setting " = 3p2m=jSj (and focusingon the case that jSj > 2m), we infer that for all but at most an " fraction of h 2 Hmn it holds thatjfx 2 S : h(x) = ygj = (1 � ") � jSj=2m. Thus, each range element has approximately the rightnumber of h-preimages in the set S under almost all h 2 Hmn .Proof: Fixing an arbitrary set S � f0; 1gn and an arbitrary y 2 f0; 1gm, we estimate the proba-bility that a uniformly selected h 2 Hmn violates Eq. (6). We de�ne random variables �x, over theaforementioned probability space, such that �x = �x(h) equal 1 if h(x) = y and 0 otherwise. Theexpected value of Px2S �x is � def= jSj � 2�m, and we are interested in the probability that this sumdeviates from the expectation. Applying Chebyshev's Inequality, we getPr "�������Xx2S �x����� > " � �# < �"2�2because Var(Px2S �x) < jSj � 2�m by the pairwise independence of the �x's and the fact thatE[�x] = 2�m. The lemma follows. 7

A generalization (called mixing). The proof of Lemma 4 can be easily extended to show thatfor every set T � f0; 1gm and every " > 0, for all but at most an 2mjT j�jSj"2 fraction of h 2 Hmn it holdsthat jfx 2 S : h(x) = ygj = (1 � ") � jT j � jSj=2m. (Hint: just de�ne �x = �(h) = 1 if h(x) 2 T and0 otherwise.) In the case that m = n, this is called a mixing property, and is meaningfull providedjT j � jSj > 2m=".An extremely useful corollary. The aforementioned generalization of Lemma 4 asserts thatmost functions behave well with respect to any �xed sets of preimages S � f0; 1gn and imagesT � f0; 1gm. A seemingly stronger statement, which is (non-trivially) implied by Lemma 4, is thatfor all adequate sets S most functions h 2 Hmn map S to f0; 1gm in an almost uniform manner.3This is a consequence of the following theorem.Theorem 5 (a.k.a Leftover Hash Lemma): Let Hmn and S � f0; 1gn be as in Lemma 4, and de�ne" = 3p2m=jSj. Consider random variable X and H that are uniformly distributed on S and Hmn ,respectively. Then, the statistical distance between (H;H(X)) and (H;Um) is at most 2".Using the terminology of Section 4, we say that Hmn yields a strong extractor (with parameters tobe spelled out there).Proof: Let V denote the set of pairs (h; y) that violate Eq. (6), and V def= (Hmn � f0; 1gm) n V .Then for every (h; y) 2 V it holds thatPr[(H;H(X)) = (h; y)] = Pr[H = h] � Pr[h(X) = y]= (1� ") � Pr[(H;Um) = (h; y)]:On the other hand, by Lemma 4 (which asserts Pr[(H; y) 2 V] � " for every y 2 f0; 1gm), we havePr[(H;Um) 2 V] � ". UsingPr[(H;H(X)) 2 V] = 1� Pr[(H;H(X)) 2 V]� 1� Pr[(H;Un)) 2 V] + " � 2"we upper-bounded the statistical di�erence between (H;H(X)) and (H;Um) by12 � X(h;y)2Hmn �f0;1gm jPr[(H;H(X)) = (h; y)] � Pr[(H;Um) = (h; y)]j� "2 + 12 � X(h;y)2V jPr[(H;H(X)) = (h; y)] � Pr[(H;Um) = (h; y)]j� "2 + 12 � X(h;y)2V (Pr[(H;H(X)) = (h; y)] + Pr[(H;Um) = (h; y)])� "2 + 12 � (2" + ")and the claim follows.3That is, for X as in Theorem 5 and any � > 0, for all but at most an � fraction of the functions h 2 Hmn it holdsthat h(X) is (2"=�)-close to Um. 8

An alternative proof of Theorem 5. De�ne the collision probability of a random variableZ, denote cp(Z), as the probability that two independent samples of Z yield the same result.Alternatively, cp(Z) def= Pz Pr[Z = z]2. Theorem 5 follows by combining the following two facts:1. A general fact: If Z 2 [N] and cp(Z) � (1+4�2)=N then Z is �-close to the uniform distributionon [N].We prove the contra-positive: Assuming that the statistical distance between Z and theuniform distribution on [N] equals �, we show that cp(Z) � (1 + 4�2)=N . This is done byde�ning L def= fz : Pr[Z = z] < 1=Ng, and lower-bounding cp(Z) by using the fact that thecollision probability minimizes on uniform distributions. Speci�cally,cp(Z) � jLj � �Pr[Z 2 L]jLj �2 + (N � jLj) � �Pr[Z 2 [N] n L]N � jLj �2;which equals 1 + (�2=(1 � �)�) � 1 + 4�2, where � = jLj=N .2. The collision probability of (H;H(X)) is at most (1 + (2m=jSj))=(jHmn j � 2m). (Furthermore,this holds even if Hmn is only universal.)The proof is by a straightforward calculation. Speci�cally, note that cp(H;H(X)) = jHmn j�1 �Eh2Hmn [cp(h(X))], whereas Eh2Hmn [cp(h(X)] = jSj�2Px1;x22S Pr[H(x1) = H(x2)]. The sumequals jSj+ (jSj2 � jSj) � 2�m, and so cp(H;H(X)) < jHmn j�1 � (2�m + jSj�1).Note that it follows that (H;H(X)) is p2m=4jSj-close to (H;Um), which is a stronger bound thanthe one provided in Theorem 5.Stronger uniformity via higher independence. Recall that Lemma 4 asserts that for eachpoint in the range of the hash function, with high probability over the choice of the hash function,this �xed point has approximately the expected number of preimages in S. A stronger conditionasserts that, with high probability over the choice of the hash function, every point in its range hasapproximately the expected number of preimages in S. Such a guarantee can be obtained whenusing n-wise independent hashing functions.Lemma 6 Let m < n be integers, Hmn be a family of n-wise independent hash functions, andS � f0; 1gn. Then, for every " 2 (0; 1), for all but at most an 2m � (n � 2m="2jSj)n=2 fraction ofh 2 Hmn , it holds that jfx 2 S : h(x) = ygj = (1� ") � jSj=2m for every y 2 f0; 1gm.Indeed, the lemma should be used with 2m < "2jSj=4n. In particular, using m = log2 jSj �log2(5n="2) guarantees that with high probability each range elements has (1�")�jSj=2m preimagesin S. Under this setting of parameters jSj=2m = 5n="2, which is poly(n) whenever " = 1=poly(n).Needless to say, this guarantee is stronger than the conclusion of Theorem 5.Proof: The proof follows the footsteps of the proof of Lemma 4, taking advantage of the fact thatthe random variables (i.e., the �x's) are now 2t-wise independent, where t = n=2. This allows forthe use of a so-called 2tth moment analysis, which generalizes the analysis of pairwise independentsamplying (presented in Section 1.2). As in the proof of Lemma 4, we �x any S and y, and de�ne�x = �x(h) = 1 if and only if h(x) = y. Letting � = E[Px2S �x] = jSj=2m and �x = �x � E(�x), we9

start with Markov inequality:Pr "�������Xx2S �x����� > " � �# < E[(Px2S �x)2t]"2t�2t= Px1;:::;x2t2S E[Q2ti=1 �xi]"2t � (jSj=2m)2t (7)Using 2t-wise independence, we note that only the terms in Eq. (7) that do not vanish are those inwhich each variable appears with multiplicity. This mean that only terms having less than t distinctvariables contribute to Eq. (7). Now, for every j � t, we have less than �jSjj � � (2t!) < (2t!=j!) � jSjjterms with j distinct variables, and each contributes less than (2�m)j to the sum. Thus, Eq. (7) isupper-bounded by 2t!("2tjSj=2m)2t � tXj=1 (jSj=2m)jj! < 2t!=t!("2jSj=2m)t < �2t � 2m"2jSj �twhere the �rst inequality assumes jSj > n2m (since the claim hold vacuously otherwise). Thisupper-bounds the probability that a random h 2 Hmn violates the mapping condition regarding a�xed y. Using a union bound on all y 2 f0; 1gm, the lemma follows.3 SamplingIn many settings repeated sampling is used to estimate the average of a huge set of values. Namely,a \value" function � : f0; 1gn!R is de�ned over a huge domain, and one wishes to approximate�� def= 12n Px2f0;1gn �(x) without having to inspect the value of � at each point in the domain.The obvious thing to do is to sample the domain at random, and obtain an approximation to �� bytaking the average of the values of � on the sample points. It turns out that certain \pseudorandom"sequences of sample points may serve almost as well as truly random sequences of sample points.Formal Setting. It is essential to have the range of � be bounded (or else no reasonable ap-proximation is possible). For simplicity, we adopt the convention of having [0; 1] be the range of�, and the problem for other (predetermined) ranges can be treated analogously. Our notion ofapproximation depends on two parameters: accuracy (denoted ") and error probability (denoted �).We wish to have an algorithm that, with probability at least 1 � �, gets within " of the correctvalue. This leads to the following de�nition.De�nition 7 (sampler): A sampler is a randomized algorithm that on input parameters n (length)," (accuracy) and � (error), and oracle access to any function � : f0; 1gn ! [0; 1], outputs, withprobability at least 1� �, a value that is at most " away from �� def= 12n Px2f0;1gn �(x). Namely,Pr[jsampler�(n; "; �) � ��j > "] < �where the probability is taken over the internal coin tosses of the sampler, also called its randomseed.A non-adaptive sampler is a sampler that consists of two deterministic algorithms: a sample gener-ating algorithm, G, and a evaluation algorithm, V . On input n; "; � and a random seed, algorithm Ggenerates a sequence of queries, denoted s1; :::; sm 2 f0; 1gn. Algorithm V is given the corresponding�-values (i.e., �(s1); :::; �(sm)) and outputs an estimate to ��.10

We are interested in \the complexity of sampling" quanti�ed as a function of the parameters n, "and �. Speci�cally, we will consider three complexity measures: The sample complexity (i.e., thenumber of oracle queries made by the sampler); the randomness complexity (i.e., the length of therandom seed used by the sampler); and the computational complexity (i.e., the running-time of thesampler). We say that a sampler is e�cient if its running-time is polynomial in the total lengthof its queries (i.e., polynomial in both its sample complexity and in n). We will focus on e�cientsamplers. Furthermore, we will focus on e�cient samplers that have optimal (up-to a constantfactor) sample complexity, and will wish the randomness complexity to be as low as possible.We note that all positive results to be reviewed refer to non-adaptive samplers, whereas thelower bound hold also for general samplers. For more details see [5, Sec. 3.6.4].The naive sampler. The straightforward method (or the naive sampler) consists of uniformlyand independently selecting su�ciently many sample points (queries), and outputting the averagevalue of the function on these points. Using Cherno� Bound it follows that O(log(1=�)"2) samplepoints su�ce. The naive sampler is optimal (up-to a constant factor) in its sample complexity, butis quite wasteful in randomness.It is known that
(log(1=�)"2) samples are needed in any sampler, and that that samplers that makes(n; "; �) queries require randomness at least n+log2(1=�)�log2 s(n; "; �)�O(1). These lower boundsare tight (as demonstrated by non-explicit and ine�cient samplers). These facts guide our quest forimprovements, which is aimed at �nding more randomness-e�cient ways of e�ciently generatingsample sequences that can be used in conjunction with an appropriate evaluation algorithm V .(We stress that V need not necessarily take the average of the values of the sampled points.)The pairwise-independent sampler. Using a pairwise-independence generator for generatingsample points, along with the natural evaluation algorithm (which outputs the average of the valuesof these points), we obtain a great saving in the randomness complexity: pairwise-independentsampling uses 2n random bits rather than the
((log(1=�))"�2 �n) coins used by the naive sampler.Using Eq. (3) it follows that O(1=�"2) samples are su�cient to get accuracy " with error �. Thus,for constant � > 0, the Pairwise-Independent Sampler is optimal up-to a constant factor in both itssample and randomness complexities. However, for small � (i.e., � = o(1)), this sampler is wastefulin sample complexity.The Median-of-Averages sampler. A new idea is required for going further, and a relevanttool { random walks on expander graphs { is needed too. Speci�cally, we combine the Pairwise-Independent Sampler with the Expander Random Walk Generator to obtain a new sampler. Thenew sampler uses a random walk on an expander with vertex set f0; 1g2n to generate a sequence oft def= O(log(1=�)) related seeds for t invocations of the Pairwise-Independent Sampler, where eachof these invocations uses the corresponding 2n bits to generate a sequence of O(1="2) samples inf0; 1gn. Furthermore, each of these invocations returns a value that, with probability at least 0:9, is"-close to ��. The Expander Random Walk Theorem is used to show that, with probability at least1�exp(�t) = 1��, most of these t invocations return an "-close approximation. Hence, the medianamong these t values is an ("; �)-approximation to the correct value. The resulting sampler, calledthe Median-of-Averages Sampler, has sample complexity O(log(1=�)"2) and randomness complexity2n+O(log(1=�)), which is optimal up-to a constant factor in both complexities.
11

Further improvements. The randomness complexity of the Median-of-Averages Sampler canbe improved from 2n + O(log(1=�)) to n + O(log(1=�")), while maintaining its (optimal) samplecomplexity (of O(log(1=�)"2)). This is done by replacing the Pairwise Independent Sampler by asampler that picks a random vertex in a suitable expander and samples all its neighbors.Averaging Samplers. Averaging (a.k.a. Oblivious) samplers are non-adaptive samplers in whichthe evaluation algorithm is the natural one: that is, it merely outputs the average of the values ofthe sampled points. Indeed, the Pairwise-Independent Sampler is an averaging sampler, whereasthe Median-of-Averages Sampler is not. Interestingly, averaging samplers have applications forwhich ordinary non-adaptive samplers do not su�ce. Averaging samplers are closely related torandomness extractors, de�ned and discussed in Section 4.An odd perspective. Recall that a non-adaptive sampler consists of a sample generator G andan evaluator V such that for every � :f0; 1gn! [0; 1] it holds thatPr(s1;:::;sm) G(Uk)[jV (�(s1); :::; �(sm))� ��j > "] < �:Thus, we may view G as a pseudorandom generator that is subjected to a distinguishability textthat is determined by a �xed algorithm V and an arbitrary function � : f0; 1gn! [0; 1], where weassume that Pr[jV (�(U (1)n); :::; �(U (m)n)) � ��j > "] < �. What is a bit odd here is that, except forthe case of averaging samplers, the distinguishability test contains a central component (i.e., theevaluator V) that is potentially custom-made to help the generator G pass the test.44 Randomness ExtractorsExtracting almost-perfect randomness from sources of weak (i.e., defected) randomness is crucialfor the actual use of randomized algorithms, procedures and protocols. The latter are analyzedassuming that they are given access to a perfect random source, while in reality one typicallyhas access only to sources of weak randomness. Randomness extractors are e�cient proceduresthat (possibly with the help of little extra randomness) enhance the quality of random sources,converting any source of weak randomness to an almost perfect one. In addition, randomnessextractors are related to several other fundamental problems, to be further discuss later.One key parameter, which was avoided in the foregoing discussion, is the class of weak randomsources from which we need to extract almost perfect randomness. It is preferable to make as littleassumptions as possible regarding the weak random source. In other words, we wish to consider awide class of such sources, and require the randomness extractor (often referred to as the extractor)to \work well" for any source in this class. A general class of such sources is de�ned in x4.1.1, but�rst we wish to mention that even for very restricted classes of sources no deterministic extractorcan work. To overcome this impossibility result, two approach are used:Seeded extractors: The �rst approach consists of considering randomized extractors that use arelatively small amount of randomness (in addition to the weak random source). That is,these extractors obtain two input: a short truly random seed and a relatively long sequencegenerated by an arbitrary source that belong to the speci�ed class of sources. This suggestionis motivated in two di�erent ways:4Another aspect in which samplers di�er from the various pseudorandom generators is in the aim to minimize,rather than maximize, the number of blocks (denoted here by m) in the output sequence. However, also in case ofsamplers the aim is to maximize the block-length (denoted here by n).12

1. The application may have access to an almost-perfect random source, but bits from thissource are much more expensive than bits from the weak/defected random source. Thus,it makes sense to obtain few high-quality bits from the almost-perfect source and usethem to \purify" the cheap bits obtained from the defected source.2. In some applications (e.g., when using randomized algorithms), it may be possible toscan over all possible values of the seed and run the algorithm using the correspondingextracted randomness. That is, we obtain a sample r from the weak random source,and invoke the algorithm on extract(s; r), for every possible seed s, ruling by majority.(This alternative is typically not applicable to distributed settings.)Few independent sources: The second approach consists of considering deterministic extrac-tors that obtain samples from a few (say two) independent sources of weak randomness.Such extractors are applicable in any setting (including in cryptography), provided that theapplication has access to the required number of independent weak random sources.In this section we focus on the �rst type of extractors (i.e., the seeded extractors). This choice ismotivated both by the relatively more mature state of the research in that direction and the closerconnection between this direction and other topics in complexity.4.1 De�nitions and various perspectivesWe �rst present a de�nition that corresponds to the foregoing motivational discussion, and laterdiscuss its relation to other topics in complexity.4.1.1 The Main De�nitionA very wide class of weak random sources corresponds to sources for which no speci�c output is tooprobable (cf. [3]). That is, the class is parameterized by a bound � and consists of all sources Xsuch that for every x it holds that Pr[X = x] � �. In such a case, we say that X has min-entropy5at least log2(1=�). Indeed, we represent sources as random variables, and assume that they aredistributed over strings of a �xed length, denoted n. A (n; k)-source is a source that is distributedover f0; 1gn and has min-entropy at least k.An interesting special case of (n; k)-sources is that of sources that are uniform over a subsetof 2k strings. Such sources are called (n; k)-at. A simple but useful observation is that each(n; k)-source is a convex combination of (n; k)-at sources.De�nition 8 (extractor for (n; k)-sources):1. An algorithm Ext : f0; 1gd � f0; 1gn ! f0; 1gm is called an extractor with error " for the classC if for every source X in C it holds that Ext(Ud;X) is "-close to Um.An algorithm Ext is called a (k; ")-extractor if it is an extractor with error " for the class of(n; k)-sources.2. An algorithm Ext is called a strong extractor with error " for C if for every source X in C it holdsthat (Ud;Ext(Ud;X)) is "-close to (Ud; Um). A strong (k; ")-extractor is de�ned analogously.5Recall that the entropy of a random variable X is de�ned as Px Pr[X = x] log2(1=Pr[X = x]). Indeed themin-entropy of X equals minxflog2(1=Pr[X = x])g, and is always upper-bounded by its entropy.13

Using the \decomposition" of (n; k)-sources to (n; k)-at sources, it follows that Ext is a (k; ")-extractor if and only if it is an extractor with error " for the class of (n; k)-at sources. (A similarclaim holds for strong extractors.) Thus, much of the technical analysis is conducted with respectto the class of (n; k)-at sources. For example, it is easy to see that, for d = log2(n="2) + O(1),there exists a (k; ")-extractor Ext : f0; 1gd � f0; 1gn ! f0; 1gk . (The proof is by the ProbabilisticMethod and uses a union bound on the set of all (n; k)-at sources.)6We seek, however, explicit extractors; that is, extractors that are implementable by polynomial-time algorithms. We note that the evaluation algorithm of any family of pairwise independenthash functions mapping n-bit strings to m-bit strings constitutes a (strong) (k; ")-extractor for" = 2�(k�m)=2 (see the alternative proof of Theorem 5). However, these extractors necessarilyuse a long seed (i.e., d � 2m must hold (and in fact d = n + 2m � 1 holds in Construction 3)).In Section 4.2 we survey constructions of e�cient (k; ")-extractors that obtain logarithmic seedlength (i.e., d = O(log(n="))). But before doing so, we provide a few alternative perspectives onextractors.An important note on logarithmic seed length. The case of logarithmic seed length is ofparticular importance for a variety of reasons. Firstly, when emulating a randomized algorithmusing a defected random source (as in Item 2 of the motivational discussion of seeded extractors),the overhead is exponential in the length of the seed. Thus, the emulation of a generic probabilisticpolynomial-time algorithm can be done in polynomial time only if the seed length is logarithmic.Similarly, the applications discussed in x4.1.2 and x4.1.3 are feasible only if the seed length islogarithmic. Lastly, we note that logarithmic seed length is an absolute lower-bound for (k; ")-extractors, whenever n > k + k
(1) (and m � 1 and " < 1=2).4.1.2 Extractors as averaging samplersThere is a close relationship between extractors and averaging samplers (discussed towards the endof Section 3). We �rst show that any averaging sampler gives rise to an extractor. Let G : f0; 1gn !(f0; 1gm)t be the sample generating algorithm of an averaging sampler having accuracy " and errorprobability �. That is, G uses n bits of randomness and generates t sample points in f0; 1gm suchthat for every f : f0; 1gm ! [0; 1] with probability at least 1 � � the average f -values of thesepoints is in the interval [f � "], where f def= E[f(Um)]. De�ne Ext : [t] � f0; 1gn ! f0; 1gm suchthat Ext(i; r) is the ith sample generated by G(r). We shall prove that Ext is a (k; 2")-extractor,for k = n� log2("=�).Suppose towards the contradiction that there exists a (k; 2")-at source X such that for someS � f0; 1gm it is the case that Pr[Ext(Ud;X) 2 S] > Pr[Um 2 S] + 2", where d = log2 t and[t] � f0; 1gd. De�ne B = fx 2 f0; 1gn : Pr[Ext(Ud; x) 2 S] > (jSj=2m) + "g:Then, jBj > " � 2k = � � 2n. De�ning f(z) = 1 if z 2 S and f(z) = 0 otherwise, we havef def= E[f(Um)] = jSj=2m. But, for every r 2 B the f -average of the sample G(r) is greater thanf + ", in contradiction to the hypothesis that the sampler has error probability � (with respect toaccuracy ").6The probability that a random function Ext : f0; 1gd � f0; 1gn ! f0; 1gk is not an extractor with error " for a�xed (n; k)-at source is upper-bounded by 22k � exp(�
(2d+k"2)), which is smaller than 1=�2n2k�.14

We now turn to show that extractors give rise to averaging samplers. Let Ext : f0; 1gd �f0; 1gn ! f0; 1gm be a (k; ")-extractor. Consider the sample generation algorithm G : f0; 1gn !(f0; 1gm)2d de�ne by G(r) = (Ext(s; r))s2f0;1gd . We prove that it corresponds to an averagingsampler with accuracy " and error probability � = 2�(n�k�1).Suppose towards the contradiction that there exists a function f : f0; 1gm ! [0; 1] such that for�2n = 2k+1 strings r 2 f0; 1gn the average f -value of the sample G(r) deviates from f def= E[f(Um)]by more than ". Suppose, without loss of generality, that for at least half of these r's the average isgreater than f + ", and let B denote the set of these r's. Then, for X that is uniformly distributedon B and is thus a (n; k)-source, we haveE[f(Ext(Ud;X))] > E[f(Um)] + ";which (using jf(z)j � 1 for every z) contradicts the hypothesis that Ext(Ud;X) is "-close to Um.4.1.3 Extractors as randomness-e�cient error-reductionsAs may be clear from the foregoing discussion, extractors yield randomness-e�cient methods forerror-reduction. Indeed, error-reduction is a special case of the sampling problem, obtained byconsidering Boolean functions. Speci�cally, for a two-sided error decision procedure A, considerthe function fx : f0; 1g`(jxj) ! f0; 1g such that fx(r) = 1 if A(x; r) = 1 and fx(r) = 0 otherwise.Assuming that the probability that A is correct is at least 0:5 + " (say " = 1=6), error reductionamounts to providing a sampler with accuracy " and any desired error probability � for the Booleanfunction fx. In particular, any (k; ")-extractor Ext : f0; 1gd � f0; 1gn ! f0; 1g`(jxj) with k =n � log(1=�) � 1 will do, provided 2d is feasible (e.g., 2d = poly(`(jxj)), where `(�) represents therandomness complexity of the original algorithm A). The question of interest here is how does n(which represents the randomness complexity of the corresponding sampler) grow as a function of`(jxj) and �. Error-reduction using the extractor Ext: [poly(`(jxj))]�f0; 1gn!f0; 1g`(jxj)error probability randomness complexityoriginal algorithm 1=3 `(jxj)resulting algorithm � (may depend on jxj) n (function of `(jxj) and �)Jumping ahead, we note that for every � > 1, one can obtain n = O(`(jxj)) + � log2(1=�) (cf. [10,11]).7 Note that this bound on the randomness-complexity of error-reduction is better than the oneprovided (for the reduction of one-sided error) by the Expander Random Walk Generator, albeitthe number of samples here is larger (but still polynomial in n).Mentioning the reduction of one-sided error probability, brings us to a corresponding relaxationof the notion of an extractor, which is called a disperser. Loosely speaking, a (k; ")-disperser isonly required to hit (with positive probability) any set of density greater than " in its image, ratherthan produce a distribution that is "-close to uniform.De�nition 9 (dispersers): An algorithm Dsp : f0; 1gd�f0; 1gn ! f0; 1gm is called a (k; ")-disperserif for every (n; k)-source X the support of Dsp(Ud;X) covers at least (1�")�2m points. Alternatively,for every set S � f0; 1gm of size greater than "2m it holds that Pr[Dsp(Ud;X) 2 S] > 0.7In general, if n = poly(`(jxj)) + � log2(1=�) then for su�ciently small � > exp(�poly`(jxj))), we have n =(�+ o(1)) log2(1=�) = poly(`(jxj)), which means � < 2�n=�0 for every �0 > �.15

Dispersers can be used for the reduction of one-sided error analogously to the use of extractorsfor the reduction of two-sided error. Speci�cally, regarding the aforementioned function fx (andassuming that either Pr[fx(U`(jxj)) = 1] > " or fx(U`(jxj)) = 0), we may use any (k; ")-disperserDsp : f0; 1gd � f0; 1gn ! f0; 1g`(jxj) in attempt to �nd a point z such that fx(z) = 1. Indeed, ifPr[fx(U`(jxj)) = 1] > " then jfz : (8s 2 f0; 1gd) fx(Dsp(s; z)) = 0gj < 2k, and thus the one-sidederror can be reduced from 1� " to 2�(n�k) while using n random bits.4.1.4 Other perspectivesExtractors and dispersers have an appealing interpretation in terms of bipartite graphs. Startingwith dispersers, we view a disperser Dsp : f0; 1gd � f0; 1gn ! f0; 1gm as a bipartite graph G =((f0; 1gn; f0; 1gm); E) such that E = f(x;Dsp(s; x)) : x 2 f0; 1gn; s 2 f0; 1gdg. This graph has theproperty that any subset of 2k vertices on the left (i.e., in f0; 1gn) has a neighborhood that containsmore than a 1� " fraction of the vertices of the right, which is remarkable in the typical case whered is small (e.g., d = O(log n=")) and n � k � m whereas m =
(k) (or at least m = k
(1)).Furthermore, if Dsp is e�ciently computable then this bipartite graph is strongly constructible inthe sense that, given a vertex on the left, one can e�ciently �nd all its neighbors. An extractorExt : f0; 1gd � f0; 1gn ! f0; 1gm yields an analogous graph with a even stronger property: theneighborhood multi-set of any subset of 2k vertices on the left covers the vertices on the right inan almost uniform manner.An odd perspective. In addition to viewing extractors as averaging samplers, which in turnmay be viewed within the scope of the pseudorandomness paradigm, we mention here an evenmore odd perspective. Speci�cally, randomness extractors may be viewed as randomized (by theseed) algorithms designed on purpose such that to be fooled by any weak random source (but notby an even worse source). Consider an (k; ")-extractor Ext : f0; 1gd � f0; 1gn ! f0; 1gm, for say" � 1=100, m = k = !(log n=") and d = O(log n="), and a potential test TS , parameterized by aset S � f0; 1gm, such that Pr[TS(x) = 1] = Pr[Ext(Ud; x) 2 S] (i.e., on input x 2 f0; 1gn, the testuniformly selects s 2 f0; 1gd and outputs 1 if and only if Ext(s; x) 2 S). Then, for every (n; k)-source X the test TS does not distinguish X from Un (i.e., Pr[TS(X)] = Pr[TS(Un)] � 2", becauseExt(Ud;X) is 2"-close to Ext(Ud; Un)). On the other hand, for every (n; k � d � 4)-at source Ythere exists a set S such that TS distinguish Y from Un with gap 0:9 (e.g., for S that equals thesupport of Ext(Ud; Y), it holds that Pr[TS(Y)] = 1 and Pr[TS(Un)] � jSj �2�m+ " = 2�4+ " < 0:1).Furthermore, this class of tests detects as defected, with probability 2=3, any source that has entropybelow (k=4)�d.8 Thus, these weird class of tests views each (n; k)-source as \pseudorandom" whiledetecting sources of lower entropy (e.g., entropy lower than (k=4)�d) as non-pseudorandom. Indeed,this perspective stretches the pseudorandomness paradigm quite far.4.2 ConstructionsRecall that we seek explicit constructions of extractors; that is, functions Ext : f0; 1gd � f0; 1gn !f0; 1gm that can be computed in polynomial-time. The question, of course, is of parameters; thatis, having (k; ")-extractors with m as large as possible and d as small as possible. We �rst note8For any such source Y , the distribution Z = Ext(Ud; Y) has entropy at most k=4 = m=4, and thus is 0:7-far fromUm (and 2/3-far from Ext(Ud; Un)). The lower-bound on the statistical distance of Z to Um can be proven by thecontra-positive: if Z is �-close to Um then its entropy is at least (1� �) �m�1 (e.g., by using Fano's inequality, see [4,Thm. 2.11.1]). 16

that m � k + d� (2 log2(1=") � O(1)) and d � log2((n� k)="2)�O(1), regardless of explicitness.The aforementioned bounds are in fact tight; that is, there exists (non-explicit) (k; ")-extractorswith m = k+ d� 2 log2(1=")�O(1) and d = log2((n� k)="2) +O(1). The obvious goal is to meetthese bounds via explicit constructions.Despite tremendous progress on this problem (and occasional claims regarding \optimal" ex-plicit constructions), the ultimate goal was not reached yet. Yet, we are pretty close. In particular,we have the following.Theorem 10 (explicit constructions of extractors): Explicit (k; ")-extractors of the form Ext :f0; 1gd � f0; 1gn ! f0; 1gm exist in the following cases:� For any constants "; � > 0, with d = O(log n) and m = (1� �) � k.� For any constants "; � > 0, with d = (1� �) � log2 n and m = k=poly(log n).� For any " > exp(�k= log k), with d = O(log n=") and m =
(k= log k).The second item is due to [8], and the other two are due to [6], where these works build on previousones (which are not cited here). We note that, for sake of simplicity, we did not quote the bestpossible bounds. Furthermore, we did not mention additional incomparable results (which arerelevant for di�erent ranges of parameters). In general, it seems that the \last word" has not beensaid yet: indeed the current results are close to optimal, but this cannot be said about the waythat they are achieved. In view of the foregoing, we refrain from trying to provide an overview ofthe proof of Theorem 10, and review instead a conceptual insight that opened the door to much ofthe recent developments in the area.The pseudorandomness connectionWe conclude this section with an overview of a fruitful connection between extractors and certainpseudorandom generators. The connection, discovered by Trevisan [9], is surprising in the sense thatit goes in a non-standard direction: it transforms certain pseudorandom generators into extractors.As argued throughout this course, computational objects are typically more complex than thecorresponding information theoretical objects. Thus, if pseudorandom generators and extractorsare at all related (which was not suspected before [9]) then this relation should not be expected tohelp in the construction of extractors, which seem an information theoretic object. Nevertheless,the discovery of this relation did yield a breakthrough in the study of extractors.9But before describing the connection, let us wonder for a moment. Just looking at the syntax,we note that pseudorandom generators have a single input (i.e., the seed), while extractors havetwo inputs (i.e., the n-bit long source and the d-bit long seed). But taking a second look at theNisan{Wigderson Generator, we note that this construction can be viewed as taking two inputs: ad-bit long seed and a \hard" predicate on d0-bit long strings (where d0 =
(d)). Now, an appealingidea is to use the n-bit long source as a description of a (worse-case) hard predicate (which indeedmeans setting n = 2d0). The key observation is that even if the source is only weakly random weexpect it to represent a function that is hard on the worst-case.Recall that the aforementioned construction is supposed to yield a pseudorandom generatorwhenever it starts with a hard predicate. In the current context, where there are no computational9We note that once the connection became better understood, inuence started going in the \right" direction:from extractors to pseudorandom generators. 17

restrictions, pseudorandomness is supposed to hold against any (computationally unbounded) dis-tinguisher, and thus here pseudorandomness means being statistically close to the uniform distri-bution (on strings of the adequate length, denoted `). Intuitively, this makes sense only if theobserved sequence is shorter that the amount of randomness in the source (and seed), which isindeed the case (i.e., ` < k + d, where k denotes the min-entropy of the source). Hence, there ishope to obtain a good extractor this way.To turn the hope into a reality, we need a proof. Looking again at the Nisan{WigdersonGenerator, we note that the proof of indistinguishability of the generator provides a black-boxprocedure for computing the underlying predicate when given oracle access to any potential dis-tinguisher. This black-box procedure was implemented by a relatively small circuit, so it is clearthat this procedure contains relatively little information on top of the observed `-bit long outputof the extractor/generator. Speci�cally, a crude estimate yields an upper-bound of b def= poly(`) onthe amount of information available to the procedure, which is suppose to compute the predicatecorrectly on every input. That is, this amount of information is supposed to fully determine thepredicate in use, which in turn is identical to the n-bit long source. Thus, if the source has min-entropy exceeding b, then it cannot be fully determine using only b bits of information. It followsthat the foregoing construction constitutes a (b + O(1); 1=6)-extractor (outputting ` bits), wherethe constant 1=6 is the one used in the standard analysis of the Nisan{Wigderson Generator. Notethat this was obtained with a seed of length d = O(d0) = O(log n). The argument can be extendedto obtain (k;poly(1=k))-extractors that output m = k
(1) bits using a seed of length d = O(log n),provided that k = n
(1). (For further details, the interested reader is referred to either [9] or [7].)We note that the foregoing description has only referred to two abstract properties of theNisan{Wigderson Generator: (1) the fact that it uses any worst-case hard predicate as a black-box,and (2) the fact that its analysis uses any distinguisher as a black-box. In particular, we viewedthe ampli�cation of worst-case hardness to inapproximability as part of the construction of thepseudorandom generator. An alternative presentation, which is more self-contained, replaces theampli�cation step by a direct argument in the current (information theoretic) context and plugsthe resulting predicate directly into the Nisan{Wigderson Generator.The alternative presentation. Recall that we viewed the violation of worst-case hardness asan ability to fully determine the predicate, and used the upper-bound on the information availableto the \universal" evaluation procedure to upper-bound the number of sources that may be bad.From this perspective, the violation of inapproximability may be viewed as ability to generate afunction that is close to the predicate. If the predicates of interests are far apart, then this directlyyields the desired bound (on the number of bad sources that are encoded in such predicates). Thus,the idea is to encode the n-bit long source by an error correcting code of length n0 = poly(n) andrelative distance 0:5� (1=n)2, and use the resulting codeword as a truth-table of a predicate for theNisan{Wigderson Generator. Such codes (coupled with e�cient encoding algorithms) do exist, andthe bene�t in using them is that each n0-bit long string (determined by the information available tothe aforementioned \universal" evaluation procedure) may be (0:5� (1=n))-close to at most O(n2)codewords.Recommended readingThe interested reader is referred to a truly excellent survey of Shaltiel [7]. This survey contains acomprehensive introduction to the area, including an overview of the ideas that underly the variousconstructions. In particular, the survey describes the approaches used before the discovery of the18

pseudorandomness connection, the connection itself (and the constructions that arise from it), andthe \third generation" of constructions that followed.References[1] N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons, Inc., 1992.[2] L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer and SystemScience, Vol. 18, 1979, pages 143{154.[3] B. Chor and O. Goldreich. Unbiased Bits from Sources of Weak Randomness and ProbabilisticCommunication Complexity. SIAM Journal on Computing, Vol. 17, No. 2, pages 230{261,1988.[4] T.M. Cover and G.A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc.,New-York, 1991.[5] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithmsand Combinatorics series (Vol. 17), Springer, 1999.[6] C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: optimal up to constantfactors. In 35th ACM Symposium on the Theory of Computing, pages 602{611, 2003.[7] R. Shaltiel. Recent Developments in Explicit Constructions of Extractors. Bulletin of theEATCS 77, pages 67{95, 2002.[8] R. Shaltiel and C. Umans. Simple Extractors for All Min-Entropies and a New Pseudo-Random Generator. In 42nd IEEE Symposium on Foundations of Computer Science, pages648{657, 2001.[9] L. Trevisan. Constructions of Near-Optimal Extractors Using Pseudo-Random Generators.In 31st ACM Symposium on the Theory of Computing, pages 141{148, 1998.[10] D. Zuckerman. Simulating BPP Using a General Weak Random Source. Algorithmica, Vol. 16,pages 367{391, 1996.[11] D. Zuckerman. Randomness-Optimal Oblivious Sampling. Journal of Random Structuresand Algorithms, Vol. 11, Nr. 4, December 1997, pages 345{367.

19

