
Texts in Computational Complexity:Ampli�cation of HardnessOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.February 1, 2006The existence of natural computational problems that are (or seem to be) infeasible to solveis usually perceived as bad news, because it means that we cannot do things we wish to do. Butthese bad news have a positive side, because hard problem can be \put to work" to our bene�t,most notably in cryptography.One key issue that arises whenever one tries to utilize hard problem is bridging the gap between\occasional" hardness (e.g., worst-case hardness or mild average-case hardness) and \typical" hard-ness (i.e., inapproximability). Much of the current chapter is devoted to this issue, which is knownby the term hardness ampli�cation.Summary: We consider two conjectures that are related to P 6= NP. The �rstconjecture is that there are problems that are solvable in exponential-time but are notsolvable by (non-uniform) families of small (say polynomial-size) circuits. We show thatthis worst-case conjecture can be transformed into an average-case hardness result ofthe type that can be used towards derandomized BPP in a non-trivial way (see [9,Text 17]).The second conjecture is that there are problems in NP (i.e., search problems in PC) forwhich it is easy to generate (solved) instances that are hard to solve for other people.This conjecture is captured in the formulation of one-way functions, which are functionsthat are easy to evaluate but hard to invert (in an average-case sense). We show thatfunctions that are hard to invert in a relatively mild average-case sense yield functionsthat are hard to invert almost everywhere, and that the latter yield predicates that arevery hard to approximate (called hard-core predicates). The latter are useful for theconstruction of general-purpose pseudorandom generators (see [9, Text 17]) as well asfor a host of cryptographic applications (see [7, 8]).The order of presentation of the two aforementioned conjectures and their consequences is actuallyreversed: We start (in Section 1) with the study of one-way function, and only later (in Section 2)turn to the study of problems in E that are hard for small circuits.
1

Teaching note: We list several reasons for preferring the aforementioned order of pre-sentation. First, we mention the conceptual appeal of one-way functions and the fact thatthey have very practical applications. Second, hardness ampli�cation in the context ofone-way functions is technically simpler in comparison to the ampli�cation of hardness inthe context of E . (In fact, Section 2 seems the most technical text in this course.) Third,some of the techniques that are shared by both treatments seem easier to understand�rst in the context of one-way functions. Last, the chosen order facilitates the possibilityof teaching hardness ampli�cation only in one incarnation, where the context of one-wayfunctions is recommended as the incarnation of choice (for the aforementioned reasons).If you wish to teach hardness ampli�cation and pseudorandomness in the two aforemen-tioned incarnations, then we suggest following the order of the current text. That is,�rst teach hardness ampli�cation in its two incarnations, and only next teach pseudo-randomness in the corresponding incarnations.Prerequisites: We assume a basic familiarity with elementary probability theory and random-ized algorithms. In particular, standard conventions regarding random variables (presented in [9,Text 20]) will be extensively used.1 One-Way FunctionsLoosely speaking, one-way functions are functions that are easy to evaluate but hard (on theaverage) to invert. Thus, in assuming that one-way functions exist, we are postulating the existenceof e�cient processes (i.e., the computation of the function in the forward direction) that are hardto reverse. Analogous phenomena in daily life are known to us in abundance (e.g., the lighting ofa match). Thus, the assumption that one-way functions exists is a complexity theoretic analogueof daily experience.One-way functions can also be thought of as e�cient ways for generating \puzzles" that areinfeasible to solve; that is, the puzzle is a random image of the function and a solution is acorresponding preimage. Furthermore, the person generating the puzzle knows a solution to it andcan e�ciently verify the validity of (possibly other) solutions to the puzzle. In fact, as explained inSection 1.1, every mechanism for generating such puzzles can be converted to a one-way function.The reader may note that when presented in terms of generating hard puzzles, one-way functionshave a clear cryptographic
avor. Indeed, one-way functions are central to cryptography, butwe shall not explore this aspect here (and rather refer the reader to [7, 8]). Similarly, one-wayfunctions are closely related to (general-purpose) pseudorandom generators, but this connectionwill be explored in [9, Text 17]. Instead, in the current section, we will focus on one-way functionsper se. Teaching note: While we recommend including a basic treatment of pseudorandom-ness within a course on complexity theory, we do not recommend doing so with respectto cryptography. The reason is that cryptography is far more complex than pseudo-randomness (e.g., compare the de�nition of secure encryption to the the de�nition ofpseudorandom generators). The extra complexity is due to conceptual richness, which issomething good, except that some of these conceptual issues are central to cryptographybut not to complexity theory. Thus, teaching cryptography in the context of a course oncomplexity theory is likely to either overload the course with material that is not centralto complexity theory or cause a super�cial and misleading treatment of cryptography.We are not sure as to which of these two possibilities is worse.2

1.1 The concept of one-way functionsLet us assume that P 6= NP or even that NP is not contained in BPP. Can we use this assumptionto our bene�t? Not really, because the assumption refers to the worst-case complexity of problems,and it may be that hard instances are hard to �nd. But then, it seems that if we cannot generatehard instances then we cannot bene�t from their existence.In Section 2 we shall see that worst-case hardness (of NP or even E) can be transformedinto average-case hardness of E . Such a transformation is not known for NP itself, and in someapplications (e.g., in cryptography) we wish the hard on the average problem to be in NP. In thiscase, we need to assume that, for some problem in NP, hard instances not only exist but are easyto generate. That is, NP is \hard on the average" with respect to a distribution that is e�cientlysampleable. This assumption will be further discussed in [9, Text 18].However, for the aforementioned applications (e.g., in cryptography) this assumption does notseem to su�ce either and we know how to utilize such \hard on the average" problems only whenwe can e�ciently generate hard instances coupled with adequate solutions.1 That is, we assumethat, for some search problem in PC (resp., decision problem in NP), we can e�ciently generateinstance-solution pairs (resp., yes-instances coupled with corresponding NP-witnesses) such thatthe instance is hard to solve (of course, for a person that does not get the solution (resp., witness)).Let us formulate the latter notion. We consider a relation R in PC (i.e., R is polynomiallybounded and membership in R can be determined in polynomial-time), and assume that thereexists a probabilistic polynomial-time algorithm G that satis�es the following two conditions:1. On input 1n, algorithm G always generates a pair in R such that the �rst element has lengthn. That is, Pr[G(1n) 2 R \ (f0; 1gn � f0; 1g�)] = 1.2. It is infeasible to �nd solutions to instances that are generated by G; that is, when only giventhe �rst element of G(1n), it is infeasible to �nd an adequate solution. Formally, denoting the�rst element of G(1n) by G1(1n), for every probabilistic polynomial-time (solver) algorithm S,it holds that Pr[(G1(1n); S(G1(1n)) 2 R] = �(n), where � vanishes faster than any polynomialfraction (i.e., for every positive polynomial p and all su�ciently large n it is the case that�(n) < 1=p(n)).We call G a generator of solved intractable instances for R. We will show that such a generatorexists if and only if one-way functions exists, where one-way functions are functions that are easyto evaluate but hard (on the average) to invert. That is, a function f :f0; 1g�!f0; 1g� is called one-way if there is an e�cient algorithm that on input x outputs f(x), whereas any feasible algorithmthat tries to �nd a preimage of f(x) under f may succeed only with negligible probability (wherethe probability is taken uniformly over the choices of x and the algorithm's coin tosses). Associatingfeasible computations with probabilistic polynomial-time algorithms and negligible functions withfunctions that vanish faster than any polynomial fraction, we obtain the following de�nition.De�nition 1 (one-way functions): A function f :f0; 1g�!f0; 1g� is called one-way if the followingtwo conditions hold:1. Easy to evaluate: There exist a polynomial-time algorithm A such that A(x) = f(x) for everyx 2 f0; 1g�.1We wish to stress the di�erence between the two gaps discussed here. Our feeling is that worst-case hardness(per se) is far more di�cult to utilize than average-case hardness that does not correspond to an e�cient generationof \solved" instances. 3

2. Hard to invert: For every probabilistic polynomial-time algorithm A0, every polynomial p, andall su�ciently large n, Prx2f0;1gn [A0(f(x); 1n) 2 f�1(f(x))] < 1p(n) (1)where the probability is taken uniformly over all the possible choices of x 2 f0; 1gn and all thepossible outcomes of the internal coin tosses of algorithm A0.2Algorithm A0 is given the auxiliary input 1n so as to allow it to run in time polynomial in the lengthof x, which is important in case f drastically shrinks its input (e.g., jf(x)j = O(log jxj)). Typically(and, in fact, without loss of generality, see Exercise 24), f is length preserving, in which case theauxiliary input 1n is redundant. Note that A0 is not required to output a speci�c preimage of f(x);any preimage (i.e., element in the set f�1(f(x))) will do. (Indeed, in case f is 1-1, the string x isthe only preimage of f(x) under f ; but in general there may be other preimages.) It is requiredthat algorithm A0 fails (to �nd a preimage) with overwhelming probability, when the probability isalso taken over the input distribution. That is, f is \typically" hard to invert, not merely hard toinvert in some (\rare") cases.Proposition 2 The following two conditions are equivalent:1. There exists a generator of solved intractable instances for some R 2 NP.2. There exist one-way functions.Proof Sketch: Suppose that G is such a generator of solved intractable instances for someR 2 NP ,and suppose that on input 1n it tosses `(n) coins. For simplicity, we assume that `(n) = n, andconsider the function g(r) = G1(1jrj; r), where G(1n; r) denotes the output of G on input 1n whenusing coins r (and G1 is as in the foregoing discussion). Then g must be one-way, because analgorithm that inverts g on input x = g(r) obtains r0 such that G1(1n; r0) = x and G(1n; r0) mustbe in R (which means that the second element of G(1n; r0) is a solution to x). In case `(n) 6= n(and assuming without loss of generality that `(n) � n), we de�ne g(r) = G1(1n; s) where n is thelargest integer such that `(n) � jrj and s is the `(n)-bit long pre�x of s.Suppose, on the other hand, that f is a one-way function. Then R def= f(f(x); x) : x 2 f0; 1g�g isin PC, and G(1n) = (f(r); r) for a uniformly selected r 2 f0; 1gn is a generator of solved intractableinstances for R, because any solver of R is e�ectively inverting f on f(Un).Comments. Several candidates one-way functions and variation on the basic de�nition are pre-sented in [7, Chap. 2]. Here, for the sake of future discussions, we de�ne a stronger version ofone-way functions, which refers to the infeasibility of inverting the function by non-uniform circuitsof polynomial-size. Here we use the form discussed in Footnote 2.De�nition 3 (one-way functions, non-uniformly hard): A one-way function f : f0; 1g�!f0; 1g�is said to be non-uniformly hard to invert if for every family of polynomial-size circuits fCng, everypolynomial p, and all su�ciently large n,Pr[Cn(f(Un); 1n) 2 f�1(f(Un))] < 1p(n)2An alternative formulation of Eq. (1) relies on the conventions in [9, Text 2]. Speci�cally, letting Un denote arandom variable uniformly distributed in f0; 1gn, we may write Eq. (1) as Pr[A0(f(Un); 1n) 2 f�1(f(Un))] < 1=p(n),recalling that both occurrences of Un refer to the same sample.4

We note that if a function is infeasible to invert by polynomial-size circuits then it is hard to invertby probabilistic polynomial-time algorithms; that is, non-uniformity (more than) compensates forlack of randomness. See Exercise 25.1.2 Ampli�cation of Weak One-Way FunctionsIn the forgoing discussion we have interpreted \hardness on the average" in a very strong sense.Speci�cally, we required that any feasible algorithm fails to solve the problem (e.g., invert the one-way function) almost always (i.e., except with negligible probability). This interpretation is indeedthe one that is suitable for various applications. Still, a weaker interpretation of hardness on theaverage, which is also appealing, only requires that any feasible algorithm fails to solve the problemoften enough (i.e., with noticeable probability). The main thrust of the current section is showingthat the mild form of hardness on the average can be transformed into the strong form discussedin Section 1.1. Let us �rst de�ne the mild form of hardness on the average, using the framework ofone-way functions. Speci�cally, we de�ne weak one-way functions.De�nition 4 (weak one-way functions): A function f :f0; 1g�!f0; 1g� is called weakly one-way ifthe following two conditions hold:1. Easy to evaluate: As in De�nition 1.2. Weakly hard to invert: There exists a positive polynomial p such that for every probabilisticpolynomial-time algorithm A0 and all su�ciently large n,Prx2f0;1gn [A0(f(x); 1n) 62 f�1(f(x))] > 1p(n) (2)where the probability is taken uniformly over all the possible choices of x 2 f0; 1gn and all thepossible outcomes of the internal coin tosses of algorithm A0. In such a case, we say that fis 1=p-one-way.Here we require that algorithm A0 fails (to �nd an f -preimage for a random f -image) with noticeableprobability, rather than with overwhelmingly high probability (as in De�nition 1). For clarity, wewill occasionally refer to one-way functions as in De�nition 1 by the term strong one-way functions.We note that, assuming that one-way functions exist at all, there exists weak one-way functionsthat are not strongly one-way (see Exercise 26). Still, any weak one-way function can be transformedinto a strong one-way function. This is indeed the main result of the current section.Theorem 5 (ampli�cation of one-way functions): The existence of weak one-way functions impliesthe existence of strong one-way functions.Proof Sketch: The construction itself is straightforward. We just parse the argument to thenew function into su�ciently many blocks, and apply the weak one-way function on the individualblocks. That is, suppose that f is 1=p-one-way, for some polynomial p, and consider the followingfunction F (x1; :::; xt) = (f(x1); :::; f(xt)) (3)where t def= n � p(n) and x1; :::; xt 2 f0; 1gn.5

(Indeed F should be extended to strings of length outside fn2 � p(n) : n 2 Ng and this extensionmust be hard to invert on all preimage lengths.)3We warn that the hardness of inverting the resulting function F is not established by mere\combinatorics" (i.e., considering the relative volume of St in (f0; 1gn)t, for S � f0; 1gn, where Srepresents the set of \easy to invert" f -images). Speci�cally, one may not assume that the potentialinverting algorithm works independently on each block. Indeed this assumption seems reasonable,but we should not make assumptions regarding arbitrary algorithms (as appearing in the de�nitionof one-way functions) unless we can actually prove that nothing is lost by such assumptions.The hardness of inverting the resulting function is proved via a so called \reducibility argument"(which is used to prove all conditional results in the area). By a reducibility argument we actuallymean a reduction, but one that is analyzed with respect to average case complexity. Speci�cally, weshow that any algorithm that inverts the resulting function F with non-negligible success probabilitycan be used to construct an algorithm that inverts the original function f with success probabilitythat violates the hypothesis (regarding f). In other words, we reduce the task of \strongly inverting"f (i.e., violating its weak one-wayness) to the task of \weakly inverting" F (i.e., violating its strongone-wayness). In particular, on input y = f(x), the reduction invokes the F -inverter (polynomially)many times, each time feeding it with a sequence of random f -images that contains y at a randomlocation. (Indeed such a sequence corresponds to a random image of F .) Details follow.Suppose towards the contradiction that F is not strongly one-way; that is, there exists a prob-abilistic polynomial-time algorithm B0 and a polynomial q(�) so that for in�nitely many m'sPr[B0(F (Um))2F�1(F (Um))] > 1q(m) (4)Focusing on such a generic m and assuming (see Footnote 3) that m = n2p(n), we present thefollowing probabilistic polynomial-time algorithm, A0, for inverting f . On input y and 1n (wheresupposedly y = f(x) for some x 2 f0; 1gn), algorithm A0 proceeds by applying the followingprobabilistic procedure, denoted I, on input y for t0(n) times, where t0(�) is a polynomial thatdepends on the polynomials p and q (speci�cally, we set t0(n) def= 2n2 � p(n) � q(n2p(n))).Procedure I (on input y and 1n):For i = 1 to t(n) def= n � p(n) do begin(1) Select uniformly and independently a sequence of strings x1; :::; xt(n) 2 f0; 1gn.(2) Compute (z1; :::; zt(n)) B0(f(x1); :::; f(xi�1); y; f(xi+1); :::; f(xt(n)))(Note that y is placed in the ith position instead of f(xi).)(3) If f(zi) = y then halt and output zi.(This is considered a success).endUsing Eq. (4), we now present a lower bound on the success probability of algorithm A0, deriving acontradiction to the theorem's hypothesis. To this end we de�ne a set, denoted Sn, that containsall n-bit strings on which the procedure I succeeds with probability greater than n=t0(n). (Theprobability is taken only over the coin tosses of procedure I). Namely,Sn def= �x2f0; 1gn : Pr[I(f(x))2f�1(f(x))] > nt0(n)�3One simple extension is to de�ne F (x) to equal F (x1; :::; xn�p(n)), where n is the largest integer satisfying n2p(n) �jxj and xi is the ith consecutive n-bit long string in x (i.e., x = x1 � xn�p(n)x0, where x1; :::; xn�p(n) 2 f0; 1gn).6

In the next two claims we shall show that Sn contains all but at most a 1=2p(n) fraction of thestrings of length n, and that for each string x 2Sn algorithm A0 inverts f on f(x) with probabilityexponentially close to 1. It will follow that A0 inverts f on f(Un) with probability greater than1� (1=p(n)), in contradiction to the theorem's hypothesis.Claim 5.1: For every x 2Sn Pr hA0(f(x))2f�1(f(x))i > 1� 2�nThis claim follows directly from the de�nitions of Sn and A0.Claim 5.2: jSnj > �1� 12p(n)� � 2nThe rest of the proof is devoted to establishing this claim, and indeed combining Claims 5.1 and 5.2,the theorem follows.The key observation is that, for every i 2 [t(n)] and every xi 2 f0; 1gn n Sn, it holds thatPr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ���U (i)n = xi i� Pr hI(f(xi)) 2 f�1(f(xi))i � nt0(n)where U (1)n ; :::; U (n�p(n))n denote the n-bit long blocks in the random variable Un2p(n). On the otherhand, by Eq. (4) we have t(n)Xi=1 Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ^ U (i)n 2f0; 1gn n Sni> 1q(n2p(n)) � Pr h(8i)U (i)n 2 SniThus, we have Pr[Un 2 Sn]t(n) > 1q(n2p(n)) � t(n)� nt0(n) . Using t0(n) = 2n2 �p(n)�q(n2p(n)) and t(n) =n � p(n), we get Pr[Un 2 Sn] > (1=2q(n2p(n)))1=(n�p(n)), which implies Pr[Un 2 Sn] > 1� (1=2p(n))for su�ciently large n. Claim 5.2 follows, and so does the theorem.Digest. Let us recall the structure of the proof of Theorem 5. Given a weak one-way function f ,we �rst constructed a polynomial-time computable function F with the intention of later provingthat F is strongly one-way. To prove that F is strongly one-way, we used a reducibility argument.The argument transforms e�cient algorithms that supposedly contradict the strong one-wayness ofF into e�cient algorithms that contradict the hypothesis that f is weakly one-way. Hence F mustbe strongly one-way. We stress that our algorithmic transformation, which is in fact a randomizedCook reduction, makes no implicit or explicit assumptions about the structure of the prospectivealgorithms for inverting F . Such assumptions, as the \natural" assumption that the inverter ofF works independently on each block, cannot be justi�ed (at least not at our current state ofunderstanding of the nature of e�cient computations).We use the term a reducibility argument, rather than just saying a reduction so as to empha-size that we do not refer here to standard (worst-case complexity) reductions. Let us clarify thedistinction: In both cases we refer to reducing the task of solving one problem to the task of solv-ing another problem; that is, we use a procedure solving the second task in order to construct a7

procedure that solves the �rst task. However, in standard reductions one assumes that the secondtask has a perfect procedure solving it on all instances (i.e., on the worst-case), and constructssuch a procedure for the �rst task. Thus, the reduction may invoke the given procedure (for thesecond task) on very \non-typical" instances. This cannot be allowed in our reducibility arguments.Here, we are given a procedure that solves the second task with certain probability with respect to acertain distribution. Thus, in employing a reducibility argument, we cannot invoke this procedureon any instance. Instead, we must consider the probability distribution, on instances of the secondtask, induced by our reduction. In our case (as in many cases) the latter distribution equals thedistribution to which the hypothesis (regarding solvability of the second task) refers, but othercases may be handled too (e.g., these distributions may be \su�ciently close" for the speci�c pur-pose). In any case, a careful analysis of the distribution induced by the reducibility argument isdue. (Indeed, the same issue arises in the context of reductions among \distributional problems"considered in [9, Text 18].)An information theoretic analogue. Theorem 5 has a natural information theoretic (or \prob-abilistic") analogue that asserts that repeating an experiment that has a noticeable failure proba-bility, su�ciently many times yields some failure with very high probability. The reader is probablyconvinced at this stage that the proof of Theorem 5 is much more complex than the proof of the in-formation theoretic analogue. In the information theoretic context the repeated events are indepen-dent by de�nition, whereas in the computational context no such independence (which correspondsto the naive argument discussed at the beginning of the proof of Theorem 5) can be guaranteed.Another indication to the di�erence between the two settings follows. In the information theoreticsetting the probability that none of the failure events occurs decreases exponentially in the numberof repetitions. In contrast, in the computational setting we can only reach an unspeci�ed negligiblebound on the inverting probabilities of polynomial-time algorithms. Furthermore, it may be thecase that F constructed in the proof of Theorem 5 can be e�ciently inverted on F (Un2p(n)) withsuccess probability that is sub-exponentially decreasing (e.g., with probability 2�(log2 n)3), whereasthe analogous information theoretic bound is exponentially decreasing (i.e., e�n).1.3 Hard-Core PredicatesOne-way functions per se su�ce for one central application: the construction of secure signatureschemes (see [8, Chap. 6]). For other applications, one relies not merely on the infeasibility offully recovering the preimage of a one-way function, but rather on the infeasibility of meaningfullyguessing bits in the preimage. The latter notion is captured by the de�nition of a hard-corepredicate.Recall that saying that a function f is one-way means that given a typical y (in the range off) it is infeasible to �nd a preimage of y under f . This does not mean that it is infeasible to�nd out partial information about the preimage(s) of y under f . Speci�cally, it may be easy toretrieve half of the bits of the preimage (e.g., given a one-way function f consider the function f 0de�ned by f 0(x; r) def= (f(x); r), for every jxj= jrj). We note that hiding partial information (aboutthe function's preimage) plays an important role in more advanced constructs (e.g., pseudorandomgenerators and secure encryption). With this motivation in mind, we will show that essentiallyany one-way function hides speci�c partial information about its preimage, where this partialinformation is easy to compute from the preimage itself. This partial information can be consideredas a \hard core" of the di�culty of inverting f . Loosely speaking, a polynomial-time computable(Boolean) predicate b, is called a hard-core of a function f if no feasible algorithm, given f(x), can8

guess b(x) with success probability that is non-negligibly better than one half.
f(x)

x

b(x)The solid arrows depict easily computable transformationwhile the dashed arrows depict infeasible transformations.Figure 1: The hard-core of a one-way function { an illustration.De�nition 6 (hard-core predicates): A polynomial-time computable predicate b : f0; 1g� ! f0; 1gis called a hard-core of a function f if for every probabilistic polynomial-time algorithm A0, everypositive polynomial p(�), and all su�ciently large n'sPr �A0(f(x))=b(x)� < 12 + 1p(n)where the probability is taken uniformly over all the possible choices of x 2 f0; 1gn and all thepossible outcomes of the internal coin tosses of algorithm A0.Note that for every b : f0; 1g� ! f0; 1g and f : f0; 1g� ! f0; 1g�, there exist obvious algorithmsthat guess b(x) from f(x) with success probability at least one half (e.g., the algorithm that,obliviously of its input, outputs a uniformly chosen bit). Also, if b is a hard-core predicate (of anyfunction) then it follows that b is almost unbiased (i.e., for a uniformly chosen x, the di�erencejPr[b(x)=0] � Pr[b(x)=1]j must be a negligible function in n). Finally, if b is a hard-core of a 1-1function f that is polynomial-time computable then f must be a one-way function. In general, theinteresting case is when being a hard-core is a computational phenumenon rather an informationtheoretic one (which is due to \information loss" of f).Theorem 7 (a generic hard-core predicate): For any one-way function f , the inner-product mod 2of x and r, denoted b(x; r), is a hard-core of f 0(x; r) = (f(x); r).In other words, given f(x) and a random subset S � [jxj], it is infeasible to guess�i2Sxi signi�cantlybetter than with probbaility 1=2, where x = x1 � � � xn is uniformly distributed in f0; 1gn.Proof Sketch: The proof is by a so-called \reducibility argument" (see Section 1.2). Speci�cally,we reduce the task of inverting f to the task of predicting the hard-core of f 0, while making sure thatthe reduction (when applied to input distributed as in the inverting task) generates a distribution9

as in the de�nition of the predicting task. Thus, a contradiction to the claim that b is a hard-core off 0 yields a contradiction to the hypothesis that f is hard to invert. We stress that this argument isfar more complex than analyzing the corresponding \probabilistic" situation (i.e., the distributionof the inner-product mod 2 of X and r, conditioned on a uniformly selected r 2 f0; 1gn, where X isa random variable with super-logarithmic min-entropy, which represents the \e�ective" knowledgeof x, when given f(x)).4Our starting point is a probabilistic polynomial-time algorithm B that satis�es, for some poly-nomial p and in�nitely many n's, Pr[B(f(Xn); Un) = b(Xn; Un)] > (1=2) + (1=p(n)), where Xn andUn are uniformly and independently distributed over f0; 1gn. Using a simple averaging argument,we focus on a " def= 1=2p(n) fraction of the x's for which Pr[B(f(x); Un) = b(x;Un)] > (1=2) + "holds. We will show how to use B in order to invert f , on input f(x), provided that x is in thegood set (which has density ").As a warm-up, suppose for a moment that, for the aforementioned x's, algorithm B succeedswith probability p > 34 + 1=poly(jxj) rather than at least 12 + 1=poly(jxj). In this case, retrieving xfrom f(x) is quite easy: To retrieve the ith bit of x, denoted xi, we randomly select r 2 f0; 1gjxj,and obtain B(f(x); r) and B(f(x); r�ei), where ei = 0i�110jxj�i and v � u denotes the additionmod 2 of the binary vectors v and u. A key observation underlying the foregoing scheme aswell as the rest of the proof is that b(x; r�s) = b(x; r) � b(x; s), which can be readily veri�edby writing b(x; y) = Pni=1 xiyi mod 2 and noting that addition modulo 2 of bits corresponds totheir XOR. Indeed, note that if both B(f(x); r) = b(x; r) and B(f(x); r�ei) = b(x; r�ei) hold,then B(f(x); r) � B(f(x); r� ei) equals b(x; r) � b(x; r� ei) = b(x; ei) = xi. The probabilitythat both B(f(x); r) = b(x; r) and B(f(x); r�ei) = b(x; r�ei) hold, for a random r, is at least1� 2 � (1� p) > 12 + 1poly(jxj) . Hence, repeating the above procedure su�ciently many times (usingindependent random choices of such r's) and ruling by majority, we retrieve xi with very highprobability. Similarly, we can retrieve all the bits of x, and hence invert f on f(x). However, theentire analysis was conducted under (the unjusti�able) assumption that p > 34+ 1poly(jxj) , whereaswe only know that p > 12+" for " = 1=poly(jxj).The problem with the foregoing procedure is that it doubles the original error probability ofalgorithm B on inputs of the form (f(x); �). Under the unrealistic assumption (made above), thatB's average error on such inputs is non-negligibly smaller than 14 , the \error-doubling" phenomenonraises no problems. However, in general (and even in the special case where B's error is exactly14) the above procedure is unlikely to invert f . Note that the average error probability of B (fora �xed f(x), when the average is taken over a random r) can not be decreased by repeating Bseveral times (e.g., for every x, it may be that B always answer correctly on three quarters of thepairs (f(x); r), and always err on the remaining quarter). What is required is an alternative wayof using the algorithm B, a way that does not double the original error probability of B.The key idea is generating the r's in a way that allows to apply algorithm B only once per eachr (and i), instead of twice. Speci�cally, we will use algorithm B to obtain a \guess" for b(x; r�ei),and obtain b(x; r) in a di�erent way (which does not require using B). The good news is that theerror probability is no longer doubled, since we only use B to get a \guess" of b(x; r�ei). Thebad news is that we still need to know b(x; r), and it is not clear how we can know b(x; r) withoutapplying B. The answer is that we can guess b(x; r) by ourselves. This is �ne if we only need toguess b(x; r) for one r (or logarithmically in jxj many r's), but the problem is that we need to know4The min-entropy of X is de�ned as minvflog2(1=Pr[X = v])g; that is, if X has min-entropym then maxvfPr[X =v]g = 2�m. The Leftover Hashing Lemma (see [9, Text 20])) implies that, in this case, Pr[b(X;Un) = 1jUn] =12 � 2�
(m), where Un denotes the uniform distribution over f0; 1gn, and b(u; v) denotes the inner-product mod 2 ofu and v. 10

(and hence guess) the value of b(x; r) for polynomially many r's. The obvious way of guessing theseb(x; r)'s yields an exponentially small success probability. Instead, we generate these polynomiallymany r's such that, on one hand they are \su�ciently random" whereas, on the other hand, wecan guess all the b(x; r)'s with noticeable success probability.5 Speci�cally, generating the r's in aspeci�c pairwise independent manner will satisfy both (seemingly contradictory) requirements. Westress that in case we are successful (in our guesses for all the b(x; r)'s), we can retrieve x with highprobability. Hence, we retrieve x with noticeable probability.A word about the way in which the pairwise independent r's are generated (and the correspond-ing b(x; r)'s are guessed) is indeed in place. To generate m = poly(jxj) many r's, we uniformly (andindependently) select ` def= log2(m+ 1) strings in f0; 1gjxj. Let us denote these strings by s1; :::; s`.We then guess b(x; s1) through b(x; s`). Let us denote these guesses, which are uniformly (andindependently) chosen in f0; 1g, by �1 through �`. Hence, the probability that all our guesses forthe b(x; si)'s are correct is 2�` = 1poly(jxj) . The di�erent r's correspond to the di�erent non-emptysubsets of f1; 2; :::; `g. Speci�cally, for every such subset J , we let rJ def= �j2Jsj. The reader caneasily verify that the rJ 's are pairwise independent and each is uniformly distributed in f0; 1gjxj; seeExercise 28. The key observation is that b(x; rJ) = b(x;�j2Jsj) = �j2Jb(x; sj). Hence, our guessfor b(x; rJ) is �j2J�j , and with noticeable probability all our guesses are correct. Wrapping-upeverything, we obtain the following procedure, where " = 1=poly(n) represents a lower-bound onthe advantage of B in guessing b(x; �) for an " fraction of the x's.Inverting procedure (on input y = f(x) and parameters n and "):Set ` = log2(n="2) +O(1).(1) Select uniformly and independently s1; :::; s` 2 f0; 1gn.Select uniformly and independently �1; :::; �` 2 f0; 1g.(2) For every non-empty J � [`], compute rJ = �j2Jsj and �J = �j2J�j.(3) For i = 1; :::; n determine the bit zi according to the majority voteof the (2` � 1)-long sequence of bits (�J�B(f(x); rJ�ei));6=J�[`].(4) Output z1 � � � zn.Note that the \voting scheme" employed in Step 3 uses pairwise independent samples (i.e., therJ 's), but works essentially as well as it would have worked with independent samples (i.e., theindependent r's).6 That is, for every i and J , it holds that Prs1;:::;s`[B(f(x); rJ�ei) = b(x; rJ�ei)] >(1=2)+", where rJ = �j2Jsj , and for any �xed the events corresponding to di�erent J 's are pairwiseindependent. It follows that if for every j 2 [`] it holds that �j = b(x; sj), then for every i and Jwe have Prs1;:::;s`[�J �B(f(x); rJ�ei) = b(x; ei)] (5)= Prs1;:::;s`[B(f(x); rJ�ei) = b(x; rJ�ei)] > 12 + "5Alternatively, we can try all polynomially many possible guesses. In such a case, we shall output a list ofcandidates that, with high probability, contains x.6Our focus here is on the accuracy of the approximation obtained by the sample, and not so much on the errorprobability. We wish to approximate Pr[b(x; r) � B(f(x); r�ei) = 1] up to an additive term of ", because such anapproximation allows to correctly determine b(x; ei). A pairwise independent sample of O(t="2) points allows for anapproximation of a value in [0; 1] up to an additive term of " with error probability 1=t, whereas a totally randomsample of the same size yields error probability exp(�t). Since we can a�ord to set t = poly(n) and work with error1=2n, the di�erence in the error probability between the two approximation schemes is not important here. For awider perspective see [9, Text 20]. 11

where the equality is due to �J = �j2J�j = b(x; rJ) = b(x; rJ�ei) � b(x; ei). Note that Eq. (5)refers to the correctness of a single vote for b(x; ei). Using m = O(n="2) and noting that these(Boolean) votes are pairwise independent, we infer that the probability that the majority of thesevotes is wrong is upper-bounded by 1=2n. Using a union bound on all i's, we infer that withprobability at least 1=2, all majority votes are correct and thus x is retreived correctly. Recall thatthe foregoing is conditioned on �j = b(x; sj) for every j 2 [`], which in turn holds with probability2�` = (m+1)�1 =
("2=n) = 1=poly(n), Thus, x is retreived correctly with probability 1=poly(n),and the theorem follows.Digest. Looking at the proof of Theorem 7, we note that it actually refers to a black-box Bx(�)that approximates b(x; �); speci�cally, in the case of Theorem 7 we used Bx(r) def= B(f(x); r). Inparticular, the proof does not use the fact that we can verify the correctness of the preimagerecovered by the described process. Indeed, using the alternative procedure outlined in Footnote 5,the proof extends to establish the existence of a poly(n=")-time oracle machine that, for everyx 2 f0; 1gn, given oracle access to any Bx : f0; 1gn ! f0; 1g satisfyingPrr2f0;1gn [Bx(r) = b(x; r)] � 12 + " (6)outputs, with probability at least 1=2, a list of n-bit strings that includes x. Noting that x is merelya string for which Eq. (6) holds, and that the procedure may get n and " as inputs, we deriveTheorem 8 (Theorem 7, revisited): There exists a probabilistic oracle machine that, given param-eters n; " and oracle access to any function B : f0; 1gn ! f0; 1g, for every x 2 f0; 1gn, given oracleaccess to any Bx halts after poly(n=") steps and with probability at least 1=2 outputs a list of allstrings x 2 f0; 1gn that satisfy Prr2f0;1gn [B(r) = b(x; r)] � 12 + ";where b(x; r) denotes the inner-product mod 2 of x and r.This machine can be modi�ed such that, with high probability, its output list does not include anystring x such that Prr2f0;1gn [B(r) = b(x; r)] < 12 + "2 . Theorem 8 can be viewed as a list decoding7procedure for the Hadamard Code, where the Hadamard encoding of a string x 2 f0; 1gn is the2n-bit long string containing b(x; r) for every r 2 f0; 1gn.Applications. Hard-core predicates play a central role in the construction of general-purposepseudorandom generators (see [9, Text 17]). commitment schemes and zero-knowledge proofs(see [7, Chap. 4]), and encryption schemes (see [8, Chap. 5]).7In contrast to standard decoding in which one recovers the unique information that is encoded in the codewordthat is closest to the given string, in list decoding one recovers all strings having encoding that is at a speci�eddistance from the given string. We mention that list decoding is applicable and valuable in the case that the speci�eddistance does not allow for unique decoding and/or that the speci�ed distance is greater than half the distance of thecode. See further discussion in [9, Text 12].
12

2 Hard Predicates in EWe start again with the assumption P 6= NP . In fact, we consider the seemingly stronger as-sumption by which NP cannot be solved by (non-uniform) families of polynomial-size circuits;that is, NP is not contained in P=poly (even not in�nitely often). Our goal is to transform thisworst-case assumption into an average-case condition, which is useful for our applications. Sincethe transformation will not yield a problem in NP but rather one in E , we might as well take theweaker assumption (see Exercise 31). That is, our starting point is actually that there exists anexponential-time solvable decision problem such that any family of polynomial-size circuit fails tosolve it correctly on all but �nitely many input lengths.Recall that our goal is to obtain a predicate (i.e., a decision problem) that is computable inexponential-time but is inapproximable by small circuits, where small may mean polynomial-size.For sake of later developments, we formulate a general notion of inapproximability.De�nition 9 (inapproximability, a general formulation): We say that f : f0; 1g� ! f0; 1g is(S; �)-inapproximable if for every family of S-size circuits fCngn2N and all su�ciently large n itholds that Pr[C(Un) 6= f(Un)] � �(n)2 (7)We say that f is T -inapproximable if it is (T; 1� (1=T))-inapproximable.We chose the speci�c form of Eq. (7) such that the \level of inapproximability" represented by theparameter � will range in (0; 1) and increase with the value of �. Speci�cally, (almost-everywhere)worst case hardness for circuits of size S is represented by (S; �)-inapproximability with �(n) =2�n+1 (i.e., in this case Pr[C(Un) 6= f(Un)] � 2�n for every circuit Cn of size S(n)), whereas nopredicate can be (S; �)-inapproximability for �(n) = 1 � O(2�n) even with S(n) = O(n) (i.e., inthis case Pr[C(Un) = f(Un)] � 0:5 + O(2�n) for some linear-size circuit; see Exercise 32). Indeed,Eq. (7) can be interpreted as an upper-bound on the correlation of each adequate circuit with f(i.e., E[�(C(Un); f(Un))] � 1��(n), where �(�; �) = 1 if � = � and �(�; �) = �1 otherwise). Thus,T -inapproximability means that no family of size T circuits can correlate f better than 1=T .Comments. Recall that E denote the class of exponential-time solvable decision problems (equiv-alently, exponential-time computable Boolean predicates); that is, E = ["Dtime(t"), where t"(n) def=2"n. We highlight the aforementioned term almost everywhere: Our starting point is not merelythat E is not contained in P=poly (or in other circuit size classes to be discussed), but rather thatthis is the case almost everywhere. Note that by saying that f has circuit complexity exceeding S,we merely mean that there are in�nitely many n's such that no circuit of size S(n) can computes fcorrectly on all inputs of length n. In contrast, by saying that f has circuit complexity exceedingS almost everywhere, we mean that for all but �nite many n's no circuit of size S(n) can computesf correctly on all inputs of length n.2.1 Ampli�cation wrt polynomial-size circuitsAs hinted above, our goal is to prove the following result.Theorem 10 Suppose that for every polynomial p there exists a problem in E having circuitcomplexity that is almost-everywhere greater than p. Then there exist polynomial-inapproximableBoolean functions in E; that is, for every polynomial p there exists a p-inapproximable Booleanfunction in E. 13

Theorem 10 is used towards deriving a meaningful derandomization of BPP under the aforemen-tioned assumption (see [9, Text 17]). We present two proofs of Theorem 10. The �rst proof proceedsin two steps:1. Starting from the worst-case hypothesis, we �rst establish some mild level of average-casehardness (i.e., a mild level of inapproximability). Speci�cally, we show that for every polyno-mial p there exists a problem in E that is (p; ")-inapproximable for "(n) = 1=n2.2. For any polynomial p, we prove that if for every polynomial q the function f is (q; 1=p)-inapproximable, then the function F (x1; :::; xt(n)) = �t(n)i=1f(xi), where x1; :::; xt(n) 2 f0; 1gnand t(n) = n � p(n), is T -inapproximable for any polynomial T . This claim is known as Yao'sXOR Lemma, and its proof is far more complex than the proof of its information theoreticanalogue.The second proof consists of showing that the construction employed in the �rst step, when com-posed with Theorem 8, actually yields the desired end result. This proof will uncover a connectionbetween hardness ampli�cation and coding theory. Our presentation will thus proceed in threecorresponding steps (presented in x7.2.1.1-7.2.1.3, and schematically depicted in Figure 2).
worst-case

HARDNESS HARDNESS

average-case
mild

via list decoding (7.2.1.3)

7.2.1.1 7.2.1.2

Yao’s XOR

derandomized
Yao’s XOR (7.2.2)

inapprox.

Figure 2: Proofs of hardness ampli�cation: organization2.1.1 From worst-case hardness to mild average-case hardnessThe construction is based on the self-correction paradigm to be reviewed �rst. The paradigm refersto functions g that can be evaluated at any desired point by using the value of g at a few randompoints, where each of these points is uniformly distributed in the function's domain (but indeed thepoints are not independently distributed). The key observation is that if g(x) can be reconstructedbased on the value of g at t such random points, then such a reconstruction can tolerate a 1=3tfraction of errors (regarding the values of g). Thus, if we can correctly obtain the value of g on allbut at most a 1=3t fraction of its domain, then we can probabilistically recover the correct valueof g at any point with very high probability. It follows that if no probabilistic polynomial-timealgorithm can correctly compute g in the worst-case sense, then every probabilistic polynomial-timealgorithm must fail to correctly compute g on at least a 1=3t fraction of its domain.The archetypical example of a self-correctable function is anym-variate polynomial of individualdegree d over a �nite �eld F such that jF j > dm+1. The value of such a polynomial at any desiredpoint x can be recovered based on the values of dm + 1 points (other than x) that reside on arandom line that passes through x. Note that each of these points is uniformly distributed in Fm,which is the function's domain. 14

Recall that we are given an arbitrary function f 2 E that is hard to compute in the worst-case.Needless to say, this function is not necessarily self-correctable (based on relatively few points),but it can be extended into such a function. Speci�cally, we extend f : [N] ! f0; 1g (viewedas f : [N1=m]m ! f0; 1g) to an m-variate polynomial of individual degree d over a �nite �eld Fsuch that jF j > dm + 1 and (d + 1)m = N . Intuitively, the extended function is at least as hardon the worst-case as f , and by self-correction the extended function must be mildly hard in theaverage-case. Details follow.Construction 11 (multi-variate extension)8: For any function fn : f0; 1gn ! f0; 1g, �nite �eld F ,H � F and integer m such that jHjm = 2n and jF j � mjHj, we consider the function f̂n : Fm ! Fde�ned as the m-variate polynomial of individual degree jHj � 1 that extends fn : Hm ! f0; 1g.That is, we identify f0; 1gn with Hm, and de�ne f̂n as the uniquem-variate polynomial of individualdegree jHj � 1 that satis�es f̂n(x) = fn(x) for every x 2 Hm, where we view f0; 1g as a subset ofF .Note that f̂n can be evaluated at any desired point, by evaluating fn on its entire domain, anddetermining the unique m-variate polynomial of individual degree jHj � 1 that agrees with fn onHm. Thus, for f : f0; 1g� ! f0; 1g in E , the corresponding f̂ (de�ned by separately extending therestriction of f to each input length) is also in E . For the sake of preserving various complexitymeasures, we wish to have jFmj = poly(2n), which leads to setting m = O(n= log n) (yieldingjF j = poly(n)). In particular, in this case f̂n is de�ned over strings of length O(n). The mildaverage-case hardness of f̂ follows by the forgoing discussion. In fact, we state and prove a moregeneral result.Theorem 12 Suppose that there exists a Boolean function f in E having circuit complexity thatis almost-everywhere greater than S. Then, there exists an exponential-time computable functionf̂ : f0; 1g� ! f0; 1g� such that jf̂(x)j � jxj and for every family of circuit fC 0n0gn02N of sizeS0(n0) = S(n0=O(1))=poly(n0) it holds that Pr[C 0n0(Un0) 6= f̂(Un0)] > (1=n0)2.Theorem 12 completes the �rst step of the proof of Theorem 10, except that we desire a Booleanfunction rather than one that does not stretch its input. The extra step (of obtaining a Booleanfunction that is (poly(n); n�3)-inapproximable) may be taken by considering the bits in the outputof the function (see Exercise 33).9 That is, if f̂ is hard to compute on an (1=n0)2 fraction of then0-bit long inputs then the Boolean predicate that returns an indicated bit of f̂(x) must be mildlyinapproximable.Proof: Given f as in the hypothesis and for every n 2 N , we consider the restriction of f tof0; 1gn, denoted fn, and apply Construction 11 to it, while using m = n= log n, jHj = n and n2 <jF j = poly(n). Recall that the resulting function f̂n maps strings of length n0 = log2 jFmj = O(n)to strings of length log2 jF j = O(log n). Following the foregoing discussion, we note that by makingmjHj = o(n2) oracle calls to any circuit C 0n0 that satis�es Pr[C 0n0(Un0) = f̂n(Un0)] > 1 � (1=n0)2 >1 � (1=3mjHj), we can probabilistically recover the value of (f̂n and thus) fn on each input, withprobability at least 2=3. Using ampli�cation and derandomization, we obtain a circuit of sizen3 � jC 0n0 j that computes fn. By the hypothesis n3 � jC 0n0 j > S(n), and the theorem follows.8The algebraic fact underlying this construction is that for any function f : Hm ! F there exists a unique m-variate polynomial f̂ : Fm ! F of individual degree jHj � 1 such that for every x 2 Hm it holds that f̂(x) = f(x).This polynomial is called a multi-variate polynomial extension of f , and it can be found in poly(jHjm log jF j)-time.9A quantitatively stronger bound can be obtained by noting that the proof of Theorem 12 actually establishes anerror lower-bound of
((log n0)=(n0)2) and that jf̂(x)j = O(log jxj).15

Digest. The proof of Theorem 12 is actually a worst-case to average-case reduction. That is,the proof consists of a self-correction procedure that allows for the evaluation of f at any desiredpoint, using oracle calls to circuits that, for every n0, compute f̂ correctly on a 1� (1=n0)2 fractionof the n0-bit long inputs. We note that if f 2 E then f̂ 2 E , but we do not know how to preservethe complexity of f in case it is in NP . (Various indications to the di�culty of a worst-case toaverage-case reduction for NP are known; see, e.g., [3].)2.1.2 Yao's XOR LemmaHaving obtained a mildly inapproximable predicate, we wish to obtain a strongly inapproximableone. The information theoretic context provides an appealing suggestion: Suppose that X is aBoolean random variable (representing the mild inapproximability of the aforementioned predicate)that equals 1 with probability ". Then XORing the outcome of n=" independent samples of X yieldsa bit that equals 1 with probability 0:5� exp(�
(n)). It is tempting to think that the same shouldhappen in the computational setting. That is, if f is hard to approximate correctly with probabilityexceeding 1 � " then XORing the output of f on n=" non-overlapping parts of the input shouldyield a predicate that is hard to approximate correctly with probability that is non-negligiblyhigher than 1=2. The latter assertion turns out to be correct, but (as in Section 1.2) the proof ofthe computational phenomenon is considerably more complex than the analysis of the informationtheoretic analogue.Theorem 13 (Yao's XOR Lemma): Let p be a polynomial and suppose that the Boolean function fis (T; 1=p)-inapproximable, for every polynomial T . Then the function F (x1; :::; xt(n)) = �t(n)i=1f(xi),where x1; :::; xt(n) 2 f0; 1gn and t(n) = n � p(n), is T 0-inapproximable for every polynomial T 0.Combining Theorems 12 and 13 (and Exercise 33), we complete the (�rst) proof of Theorem 10.Several di�erent proofs of Theorem 13 are known. We choose using a proof that bene�ts most fromthe material already presented (in Section 1). This proof proceeds in two steps: First we provethat the corresponding \direct product" function P (x1; :::; xt(n)) = (f(x1); :::; f(xt(n))) is di�cult tocompute in a strong average-case sense, and next we establish the desired result by an applicationof Theorem 8. In fact, the �rst step is the main one, and we believe that it is of independentinterest (and thus generalize it from Boolean functions to arbitrary ones).Theorem 14 (The Direct Product Lemma): Let p be a polynomial and f : f0; 1g� ! f0; 1g�.Suppose that for every family of polynomial-size circuits, fCngn2N, and all su�ciently large n 2N , it holds that Pr[Cn(Un) 6= f(Un)] > 1=p(n). Let P (x1; :::; xt(n)) = (f(x1); :::; f(xt(n))), wherex1; :::; xt(n) 2 f0; 1gn and t(n) = n � p(n). Then, for every family of polynomial-size circuits,fC 0mgm2N, it holds that Pr[C 0m(Um) = P (Um)] < �(m), where � is a negligible function.Theorem 13 follows from Theorem 14 by considering the function P 0(x1; :::; xt(n); r) = b(f(x1) � � � f(xt(n)); r),where f is a Boolean function, r 2 f0; 1gt(n) , and b(y; r) is the inner-product modulo 2 of the t(n)-bitlong strings y and r. Applying Theorem 8, we infer that P 0 is T 0-inapproximable for every polyno-mial T 0. Lastly, we reduce the approximation of P 0 to the approximation of F (see Exercise 34),and Theorem 13 follows.Proof of Theorem 14. As in the proof of Theorem 5, we show how to converts circuits thatviolate the theorem's conclusion into circuits that violate the theorem's hypothesis. We note,however, that things were much simpler in the context of Theorem 5: There we could (e�ciently)16

check whether or not a value contained in the output of the circuit that solves the direct-productproblem constitutes a correct answer for the corresponding instance of the basic problem. Lackingsuch an ability in the current context, we shall have to use such values more carefully. Looselyspeaking, we will take a weighted majority vote among various answers, where the weights re
ectour con�dence in the correctness of the various answers.We derive Theorem 14 by applying the following lemma that provides quantitative bounds on thefeasibility of computing the direct product of two functions. In this lemma, fYmgm2N and fZmgm2Nare independent probability ensembles such that Ym; Zm 2 f0; 1gm, and Xn = (Y`(n); Zn�`(n)) forsome function ` : N ! N . The lemma refers to the success probability of computing the directproduct function F :f0; 1g�!f0; 1g� de�ned by F (yz) = (F1(y); F2(z)), where jyj = `(jyzj), whengiven bounds on the success probability of computing F1 and F2 (separately). Needless to say, theseprobability bounds refer to circuits of certain sizes. We stress that the statement of the lemmais not symmetric with respect to the two functions, guaranteeing a stronger (and in fact lossless)preservation of circuit sizes for one of the functions (which is arbitrarily chosen to be F1).Lemma 15 (Direct Product, a quantitative two argument version): For fYmg, fZmg, F1, F2, `,fXng and F as in the foregoing, let �1(�) be an upper-bound on the success probability of s1(�)-sizecircuits in computing F1 over fYmg. That is, for every such circuit family fCmgPr[Cm(Ym)=F1(Ym)] � �1(m)Likewise, suppose that �2(�) is an upper-bound on the probability that s2(�)-size circuits compute F2over fZmg. Then, for every function " :N!R , the function � de�ned as�(n) def= �1(`(n)) � �2(n� `(n)) + "(n)is an upper-bound on the probability that families of s(�)-size circuits correctly compute F overfXng, where s(n) def= min�s1(`(n)) ; s2(n� `(n))poly(n="(n))�Theorem 14 is derived from Lemma 15 by using careful induction, which capitalizes on the asym-metry of Lemma 15. Speci�cally, we write P (x1; x2; :::; xt(n)) as P (t(n))(x1; x2; :::; xt(n)), whereP (i)(x1; :::; xi) = (f(x1); :::; f(xi)) and P (i)(x1; :::; xi) � (P (i�1)(x1; :::; xi�1); f(xi)). For every poly-nomial s and a noticeable function " (i.e., "(n) > 1=p(n) for some positive polynomial p), we proveby induction on i that circuits of size s(n) cannot compute P (i)(Ui�n) with success probabilitygreater than (1 � (1=p(n))i + i � "(n). (The induction basis is guaranteed by the theorem's hy-pothesis.) The induction step is proved using Lemma 15 with F1 = P (i�1) and F2 = f (alongwith �1((i � 1)n) = (1 � (1=p(n))i�1 + (i � 1) � "(n), s1((i � 1)n) = s(n), �2(n) = 1 � (1=p(n))and s2(n) = poly(n="(n)) � s(n)). In particular, we use again the theorem's hypothesis regard-ing f , and note that ((1 � (1=p(n))i�1 + (i � 1) � "(n)) � (1 � (1=p(n)) + "(n) is upper-boundedby (1 � (1=p(n))i + i � "(n). Thus, no s(n)-size circuit can compute P (t(n))(Ut(n)�n) with successprobability greater than (1� (1=p(n))t(n) + t(n) � "(n) = exp(�n) + t(n) � "(n).Proof of Lemma 15: Proceeding (as usual) by the contrapositive, we consider a family of s(�)-size circuits fCngn2N that violates the lemma's conclusion; that is, Pr[Cn(Xn) = F (Xn)] > �(n).We will show how to use such circuits in order to obtain either circuits that violate the lemma'shypothesis regarding F1 or circuits that violate the lemma's hypothesis regarding F2. Towards this17

end, it is instructive to write the success probability of Cn in a conditional form, while denotingthe ith output of Cn(x) by Cn(x)i (i.e., Cn(x) = (Cn(x)1; Cn(x)2)):Pr[Cn(Y`(n); Zn�`(n))=F (Y`(n); Zn�`(n))]= Pr[Cn(Y`(n); Zn�`(n))1=F1(Y`(n))]� Pr[Cn(Y`(n); Zn�`(n))2=F2(Zn�`(n)) jCn(Y`(n); Zn�`(n))1=F1(Y`(n))]:The basic idea is that if the �rst factor is greater than �1(`(n)) then we derive a circuit contradictingthe lemma's hypothesis regarding F1, whereas if the second factor is signi�cantly greater than�2(n � `(n)) then we derive a circuit contradicting the lemma's hypothesis regarding F2. Thebasic idea for the latter case is that a su�ciently large sample of (Y`(n); F1(Y`(n))), which maybe hard-wired into the circuit, allows using the conditional probability space (in such a circuit)towards an attempt to approximate F2. This may work provided the condition holds with noticeableprobability. The last caveat motivates a separate treatment of z's with noticeable Pr[Cn(Y`(n); z)1=F1(Y`(n))] and of the rest.Let us �rst simplify the notations by �xing a generic n and using the abbreviations C = Cn," = "(n), ` = `(n), Y = Y`, and Z = Yn�`. We call z good if Pr[C(Y; z)1 = F1(Y)] � "=2 andlet G be the set of good z's. Then, we upper-bound the success probability of C by Pr[C(Y;Z)=F (Y;Z) ^ Z2G] + "=2, where the bound follows by observing that for any z 62 G:Pr[C(Y; z)=F (Y; z)] � Pr[C(Y; z)1=F1(Y)] < "=2 :Thus, using Pr[C(Y; z)=F (Y; z)] > �(n) = �1(`) � �2(n� `) + ", we havePr[C(Y;Z)=F (Y;Z) ^ Z2G] > �1(`) � �2(n� `) + "2 : (8)We proceed according to the forgoing outline, �rst showing that if Pr[C(Y;Z)1=F1(Y)] > �1(`) thenwe derive circuits violating the hypothesis concerning F2. Actually, we prove something stronger(which we will actually need for the other case).Claim 15.1: For every z, it holds that Pr[C(Y; z)1=F1(Y)] � �1(`).Proof: Otherwise, using any z 2 f0; 1gn�` that satis�es Pr[C(Y; z)1=F1(Y)] > �1(`), we obtain acircuit C 0(y) def= C(y; z)1 that contradicts the lemma's hypothesis concerning F1. 2Using Claim 15.1, we show how to obtain a circuit that violates the lemma's hypothesis con-cerning F2, and doing so we complete the proof of the lemma.Claim 15.2: There exists a circuit C 00 of size s2(n� `) such thatPr[C 00(Z)=F2(Z)] � Pr[C(Y;Z)=F (Y;Z) ^ Z2G]�1(`) � "2> �2(n� `)Proof: The second inequality is due to Eq. (8), and thus we focus on establishing the �rst one. Weconstruct the circuit C 00 as suggested in the foregoing outline. Speci�cally, we take a poly(n=")-large sample, denoted S, from the distribution (Y; F1(Y)) and let C 00(z) def= C(y; z)2, where (y; v)is a uniformly selected among the elements of S for which C(y; z)1 = v holds. Details follow.Let S be a sequence of m def= poly(n=") pairs, generated by taking m independent samplesfrom the distribution (Y; F1(Y)). We stress that we do not assume here that such a sample canbe produced by an e�cient (uniform) algorithm (but, jumping ahead, we remark that such a18

sequence can be �xed non-uniformly). For each z 2 G � f0; 1gn�`, we denote by Sz the set of pairs(y; v) 2 S for which C(y; z)1 = v. Note that Sz is a random sample for the residual probabilityspace de�ned by (Y; F1(Y)) conditioned on C(Y; z)1 = F1(Y). Also, with overwhelmingly highprobability, jSzj =
(n="2), because z 2 G implies Pr[C(Y; z)1=F1(Y)] � "=2 and m =
(n2="3).Thus, for each z 2 G, with overwhelming probability taken over the choices of S, the sample Szprovides a good approximation to the conditional probability space. In particular, with probabilitygreater than 1� 2�n, it holds thatjf(y; v) 2 Sz : C(y; z)2=F2(z)gjjSzj � Pr[C(Y; z)2=F2(z) jC(Y; z)1=F1(Y)]� "2 (9)Thus, with positive probability, Eq. (9) holds for all z 2 G � f0; 1gn�`. The circuit C 00 computingF2 is now de�ned as follows. A set S = f(yi; vi) : i = 1; :::;mg satisfying Eq. (9) for all good z's is\hard-wired" into the circuit C 00. (In particular, Sz is not empty for any good z.) On input z, thecircuit C 00 �rst determines the set Sz, by running C for m times and checking, for each i = 1; :::;m,whether or not C(yi; z) = vi. In case Sz is empty, the circuit returns an arbitrary value. Otherwise,the circuit selects uniformly a pair (y; v) 2 Sz and outputs C(y; z)2. (The latter random choicecan be eliminated by a standard averaging argument.) Using the de�nition of C 00, Eq. (9), andClaim 15.1, we have:Pr[C 00(Z)=F2(Z)] � Xz2GPr[Z=z] � Pr[C 00(z)=F2(z)]= Xz2GPr[Z=z] � jf(y; v) 2 Sz : C(y; z)2=F2(z)gjjSzj� Xz2GPr[Z=z] � �Pr[C(Y; z)2=F2(z) jC(Y; z)1=F1(Y)] � "2�= Xz2GPr[Z=z] � �Pr[C(Y; z)2=F2(z) ^ C(Y; z)1=F1(Y)]Pr[C(Y; z)1=F1(Y)] � "2�� Xz2GPr[Z=z] � Pr[C(Y; z)=F (Y; z)]�1(`) ! � "2where the last inequality is due to Claim 15.1. The claim follows. 2This completes the proof of the lemma.Comments. Firstly, we wish to call attention to the care with which an inductive argument needsto be carried out in the computational setting, especially when a non-constant number of inductivesteps is concerned. Indeed, our inductive proof of Theorem 14 involves invoking a quantitativelemma that allows to keep track of the relevant quantities (e.g., success probability and circuit size)throughout the induction process. Secondly, we mention that Lemma 15 (as well as Theorem 14)has a uniform complexity version that assumes that one can e�ciently sample the distribution(Y`(n); F1(Y`(n))) (resp., (Un; f(Un))). For details see [11]. Indeed, a good lesson from the proof ofLemma 15 is that non-uniform circuits can \e�ectively sample" any distribution. Lastly, we mentionthat Theorem 5 (the ampli�cation of one-way functions) and Theorem 13 (Yao's XOR Lemma) alsohave (tight) quantitative versions (see, e.g., [7, Sec. 2.3.2] and [11, Sec. 3], respectively).19

2.1.3 List decoding and hardness ampli�cationIn this subsection we provide an alternative proof of Theorem 10, showing that (for a suitable choiceof parameters) combining Construction 11 with the inner-product construction (of Theorem 8)yields the desired result. Speci�cally, we claim the following.Proposition 16 Suppose that there exists a Boolean function f in E having circuit complexity thatis almost-everywhere greater than S, and let " : N ! [0; 1] satisfying "(n) > n=2n. Let fn be therestriction of f to f0; 1gn, and let f̂n be the function obtained from fn when applying Construction 11with jHj = n="(n) and jF j = jHj3. Then, the function f̂ : f0; 1g� ! f0; 1g�, de�ned by f̂(x) =f̂jxj=3(x), is computable in exponential-time and for every family of circuit fC 0n0gn02N of size S0(n0) =poly("(n0=3)=n0) � S(n0=3) it holds that Pr[C 0n0(Un0) = f̂(Un0)] < "0(n0) def= "(n0=3).In particular, for some
 > 0, Proposition 16 yields an exponential-time computable function f̂ suchthat jf̂(x)j � jxj and for every family of circuit fC 0n0gn02N of size S0(n0) = S(n0=3)
=poly(n0) it holdsthat Pr[C 0n0(Un0) = f̂(Un0)] < 1=S0(n0). Combining this with Theorem 8, we infer that P (x; r) =b(f̂(x); r), where jrj = jf̂(x)j � jxj, is S00-inapproximable for S00(n00) = S(n00=2)
(1)=poly(n00). Inparticular, for every polynomial p, we obtain a p-inapproximable predicate in E by applying theforegoing with S(n) = poly(n; p(n)). Thus, Theorem 10 follows.Proposition 16 is proven by observing that the transformation of fn to f̂n constitutes a \good"code (see [9, Text 12]) and that any such code provides a worst-case to (strongly) average-casereduction. We start by de�ning the class of codes that su�ces for the latter reduction, while notingthat the code underlying the mapping fn 7! f̂n is actually stronger than needed.De�nition 17 (e�cient codes supporting implicit decoding): For �xed functions q; ` : N ! N and� : N ! [0; 1], the mapping � : f0; 1g� ! f0; 1g� is e�cient and supports implicit decoding withparameters q; `; � if it satis�es the following two conditions:1. Encoding: The mapping � is polynomial-time computable.It is instructive to view � as mapping N -bit long strings to sequences of length `(N) over[q(N)], and to view �(x) 2 [q(jxj)]`(jxj) as a mapping from [`(jxj)] to [q(jxj)].2. Decoding: There exists a polynomial p such that the following holds. For every w : [`(N)]![q(N)] and x2f0; 1gN such that �(x) is (1��(N))-close to w, there exists an oracle-aided10circuit C of size p((logN)=�(N)) such that, for every i 2 [N], it holds that Cw(i) equals theith bit of x.The encoding condition implies that ` is polynomially bounded. The decoding condition refers toany �-codeword that agrees with trhe oracle w : [`(N)] ! [q(N)] on an �(N) fraction of the `(N)coordinates, where �(N) may be very small. We highlight the non-triviality of the decoding condi-tion: There are N bits of information in x, while the size of the circuit C is only p((logN)=�(N))and yet C should be able to recover any desired entry of x by making only p((logN)=�(N)) queriesto w, which may be a highly corrupted version of �(x). On the other hand, the decoding conditiondoes not refer to the complexity of obtaining the aforementioned oracle-aided circuits.We mention that the transformation of fn to f̂n underlying Proposition 16 is e�cient andsupports implicit decoding with parameters q; `; � such that `(2n) = `(jhfnij) = jhfnij3 = 23n,10Oracle-aided are de�ned analogously to oracle Turing machines. Alternatively, we may consider here oraclemachines that take advice such that both the advice length and the machine's running time are upper-bounded byp((logN)=�(N)). We comment that we potentially consider also non-binary oracles, which return elements in [q(N)].20

�(2n) = "(n), and q(2n) = (n=�(2n))3. Furthermore, there are at most O(1=�(2n)2) codewords(i.e., f̂n's) that are (1��(2n))-close to any �xed w : [`(2n)]! [q(2n)], and the corresponding oracle-aided circuits can be constructed in probabilistic p(n=�(2n))-time.11 These results are termed \listdecoding" (with implicit representations). We stress that all these facts are highly non-trivial, butbeyond the scope of the current text (and the interested reader is referred to [17]). Our focus is onshowing that such e�cient codes that supports implicit decoding su�ce for worst-case to (strongly)average-case reductions.Theorem 18 Suppose that there exists a Boolean function f in E having circuit complexity thatis almost-everywhere greater than S, and let " : N ! [0; 1]. Consider ` : N ! N such thatn 7! log2 `(2n) is a 1-1 map of the integers, and let m(n) = log2 `(2n). Suppose that the mapping� : f0; 1g� ! f0; 1g� is e�cient and supports implicit decoding with parameters q; `; � such that�(N) = "(blog2Nc). De�ne gn : [`(2n)]! [q(2n)] such that gn(i) = �(hfni)(i), where hfni denotesthe 2n-bit long description of the truth-table of fn. Then, the function g : f0; 1g� ! f0; 1g�, de�nedby g(z) = gm�1(jzj)(z), is computable in exponential-time and for every family of circuit fC 0n0gn02Nof size S0(n0) = poly("(m�1(n0))=n0) � S(m�1(n0)) it holds that Pr[C 0n0(Un0) = g(Un0)] < "0(n0) def="(m�1(n0)).Proof Sketch: First note that we can generate the truth-table of fn in exponential-time, and bythe encoding condition of � it follows that gn can be evaluated in exponential-time. Regardingg's average-case hardness, consider a circuit C 0 = C 0n0 violating the conclusion of the theorem, letn = m�1(n0), and recall that "0(n0) = "(n) = �(2n). Then, C 0 is (1 � �(2n))-close to gn = �(hfni),and the decoding condition of � asserts that we can recover each bit of hfni (i.e., evaluate fn) bya circuit of size p(n=�(2n)) � S0(n0) < S(n), in contradiction to the hypothesis.Comment. For simplicity, we formulated De�nition 17 in a crude manner that su�ces for theforegoing application. A more careful formulation of the decoding condition refers to codewordsthat are (1 � �(N))-close to the oracle w : [`(N)]! [q(N)] rather than (1 � ((1=q(N)) + �(N)))-close to it.12 Needless to say, the di�erence is insigni�cant in the case that �(N)� 1=q(N) (as inProposition 16, where we used q(N) = ((log2N)=�(N))3), but it is signi�cant in case we care aboutbinary codes (i.e., q(N) = 2, or codes over other small alphabets). We mention that Theorem 18can be adapted to this context, and directly yields strongly inapproximable predicates. For details,see Exercise 35.2.2 Ampli�cation wrt exponential-size circuitsFor the purpose of stronger derandomization of BPP , we start with a stronger assumption regardingthe worst-case circuit complexity of E and turn it to a stronger inapproximability result.11Needless to say, the construction may yield also oracle-aided circuits that compute the decoding of codewordsthat are almost (1� �(2n))-close to w. That is, there exists a probabilistic p(n=�(2n))-time algorithm that outputsa list of circuits that, with high probability, contains an oracle-aided circuit for the decoding of each codeword thatis (1 � �(2n))-close to w. Furthermore, with high probability, the list contains only circuits that decode codewordsthat are (1� �(2n)=2)-close to w.12Note that this is the \right" formulation, because a random `(N)-sequence over [q(N)] is expected to be (1 �(1=q(N)))-close to any �xed codeword, and with overwhelmingly high probability it will be (1� ((1� o(1))=q(N)))-close to almost all the codewords, provided `(N) � q(n)2. But in case N � log q(N), we cannot hope to recoveralmost all N -bit long strings based on poly(q(N) logN) bits of advice.21

Theorem 19 Suppose that there exists a decision problem L 2 E having almost-everywhere expo-nential circuit complexity; that is, there exists a constant b > 0 such that, for all but �nitely manyn's, any circuit that correctly decides L on f0; 1gn has size at least 2bk. Then, for some constantc > 0 and T (n) def= 2c�n, there exists a T -inapproximable Boolean function in E.Theorem 19 can be used for deriving a full derandomization of BPP (i.e., BPP = P) under theaforementioned assumption (see [9, Text 17]).Theorem 19 follows as a special case of Proposition 16 (and the modi�cation discussed rightafter it). An alternative proof, which uses di�erent ideas that are of independent interest, willbe brie
y reviewed next. The starting point of this proof is a mildly inapproximable predicate,as provided by Theorem 12. However, here we cannot a�ord to apply Yao's XOR Lemma (i.e.,Theorem 13), because the latter relates the circuit complexity of a strongly inapproximable predicatede�ned over poly(n)-bit long strings to the circuit complexity of a mildly inapproximable predicatede�ned over n-bit long strings. That is, if f : f0; 1gn ! f0; 1g is mildly inapproximable by Sf -sizecircuits then F : f0; 1gpoly(n) ! f0; 1g is strongly inapproximable by SF -size circuits, for someSF (poly(n)) that is polynomially related to Sf (n). In particular, SF (poly(n)) < Sf (n) seemsinherent in this reasoning. For the case of polynomial lower-bounds, this is good enough (i.e., ifSf can be an arbitrarily large polynomial then so can SF), but for SF (n) = exp(
(n)) we cannotobtain SF (m) = exp(
(m)) (but rather only SF (m) = exp(m
(1))).The source of trouble is that ampli�cation of inapproximability was achieved by taking a poly-nomial number of independent instances. Indeed, we cannot hope to amplify hardness withoutapplying f on many instances, but these instances need not be independent. Thus, the idea is tode�ne F (r) = �poly(n)i=1 f(xi), where x1; :::; xpoly(n) 2 f0; 1gn are generated from r and still jrj = O(n).That is, we seek a \derandomized" version of Yao's XOR Lemma. In other words, we seek a \pseu-dorandom generator" of a type appropriate for expanding r to dependent xi's such that the XORof the f(xi)'s is as inapproximable as it would have been for independent xi's.13Teaching note: In continuation to Footnote 13, we note that there is a strong con-nection between the rest of this section and pseudorandom generators (see [9, Text 17]).On top of the aforementioned conceptual aspects, we will refer to pairwise independencegenerators, random walks on expanders , and even to the Nisan-Wigderson Construction.The pivot of the proof is the notion of a hard region. Loosely speaking, S is a hard region ofa Boolean function f if f is strongly inapproximable on a random input in S; that is, for every(relatively) small circuit Cn, it holds that Pr[Cn(Un) = f(Un)jUn 2 S] � 1=2. By de�nition,f0; 1g� is a hard region of any strongly inapproximable predicate. One important (and non-trivial)observation is that any mildly inapproximable predicate has a hard region of density related to itsinapproximability parameter. Loosely speaking, hardness ampli�cation will proceed via methodsfor generating related instances that hit the hard region with su�ciently high probability. But,�rst let us study the notion of a hard region.2.2.1 Hard regionsWe actually generalize the notion of hard regions to arbitrary distributions. The important specialcase of uniform distributions is obtained by taking Xn to be Un (i.e., the uniform distribution overf0; 1gn). In general, we only assume that Xn 2 f0; 1gn.13Indeed, this falls within the general paradigm discussed in [9, Text 17]. Furthermore, this suggestion providesanother perspective on the connection between randomness and computational di�culty, which is the focus of muchdiscussion in [9, Text 17]. 22

De�nition 20 (hard region relative to arbitrary distribution): Let f :f0; 1g�!f0; 1g be a Booleanpredicate, fXng be a probability ensemble, s :N!N and " :N! [0; 1].� We say that a set S is a hard region of f relative to fXng with respect to s(�)-size circuits andadvantage "(�) if for every n and every circuit Cn of size at most s(n), it holds thatPr[Cn(Xn)=f(Xn)jXn2S] � 12 + "(n):� We say that f has a hard region of density �(�) relative to fXng with respect to s(�)-size circuitsand advantage "(�) if there exists a set S that is a hard region of f relative to fXng with respectto the above such that Pr[Xn2Sn] � �(n).Note that a Boolean function f is (s; 1� 2")-inapproximable if and only if f0; 1g� is a hard regionof f relative to fUng with respect to s(�)-size circuits and advantage "(�). Thus, strongly inapprox-imable predicates (e.g., S-inapproximable predicates for super-polynomial S) have a hard regionof density 1 (with respect to a negligible advantage). But this trivial observation does not providehard regions (with small advantage) for mildly inapproximable predicates. Providing such hardregions is the contents of the following theorem.Theorem 21 (hard regions for mildly inapproximable predicates): Let f : f0; 1g� ! f0; 1g bea Boolean predicate, fXng be a probability ensemble, s : N ! N , and � : N ! [0; 1] such that�(n) > 1=poly(n). Suppose that, for every circuit Cn of size at most s(n), it holds that Pr[Cn(Xn)=f(Xn)] � 1� �(n). Then, for every " :N! [0; 1], the function f has a hard region of density �0(�)relative to fXng with respect to s0(�)-size circuits and advantage "(�), where �0(n) def= (1�o(1)) ��(n)and s0(n) def= s(n)=poly(n="(n)).In particular, if f is (s; 2�)-inapproximable then f has a hard region of density �0(�) relative to theuniform distribution (with respect to s0(�)-size circuits and advantage "(�)).Proof Sketch:14 We start by proving a weaker statement; namely, that fXng \dominates" anensemble fYng such that f is strongly inapproximable on fYng. For � : N ! [0; 1], we say thatfXng �-dominates fYng if for every x it holds that Pr[Xn = x] � �(n) � Pr[Yn = x]. Fixing thefunction � (to the one provided by the theorem's hypothesis), in this case we also say that fYngis dominated by fXng. We say that fYng is critically dominated by fXng if for every x eitherPr[Yn=x] = (1=�(n)) � Pr[Xn=x] or Pr[Yn=x] = 0.The notion of domination and critical domination play a central role in the proof, which consistsof two parts. In the �rst part (Claim 21.1), we prove the existence of a ensemble fYng that is dom-inated by fXng such that f is strongly inapproximable on fYng. In the second part (Claim 21.2),we prove that the existence of such a dominated ensemble implies the existence of an ensemblefZng that essentially is critically dominated by fXng such that f is strongly inapproximable onfZng. Finally, we note that such a critically dominated ensemble de�nes a hard region of f relativeto fXng, and the theorem follows.Claim 21.1: Under the hypothesis of the theorem it holds that there exists a probability ensemblefYng that is �-dominated by fXng such that, for every s0(n)-size circuit Cn, it holds thatPr[Cn(Yn)=f(Yn)] � 12 + "(n)2 : (10)Proof: We employ von Neumann's Min-Max Principle (cf. [18]) to a \game" between all criticallydominated (by Xn) probability distributions and all possible s0(n)-size circuits.15 We start by as-14See details in [11, Apdx. A].15We warn that this application of the min-max principle is somewhat non-straightforward.23

suming, towards the contradiction, that for every distribution Yn that is dominated by Xn thereexists a s0(n)-size circuits Cn such that Pr[Cn(Yn) = f(Yn)] > 0:5+"0(n), where "0(n) = "(n)=2. Onekey observation is that any distribution that is dominated by Xn can be written as a convex com-bination of critically dominated (by Xn) distributions. Considering an enumeration Y (1)n ; :::; Y (t)nof the critically dominated (by Xn) distributions, we conclude that for every distribution � on [t]there exists a s0(n)-size circuits Cn such thattXi=1 �(i) � Pr[Cn(Y (i)n) = f(Y (i)n)] > 0:5 + "0(n): (11)Consider a �nite game between two players, where the �rst player selects a critically dominated(by Xn) distribution, and the second player selects a s0(n)-size circuit and obtains a payo� asdetermined by the corresponding success probability; that is, if the �rst player selects the ithcritically dominated distribution and the second player selects the circuit C then the payo� equalsPr[C(Y (i)n) = f(Y (i)n)]. Now, Eq. (11) means that for any randomized strategy for the �rst playerthere exists a deterministic strategy for the second player yielding average payo� greater than0:5 + "0(n). The min-max principle asserts that in such a case there exists a randomized strategyfor the second player that yields average payo� greater than 0:5+ "0(n) no matter what strategy isemployed by the �rst player. This means that there exists a distribution, Dn, on s0(n)-size circuitssuch that for every i it holds thatPr[Dn(Y (i)n) = f(Y (i)n)] > 0:5 + "0(n); (12)where the probability refers both to the choice of the circuit Dn and to the random variable Yn.Let Bn = fx :Pr[Dn(x) = f(x)] � 0:5 + "0(n)g. Then, Pr[Xn 2 Bn] < �(n), because otherwise wereach a contradiction to Eq. (12) by de�ning Yn such that Pr[Yn=x] = Pr[Xn=x]=Pr[Xn 2 Bn] ifx 2 Bn and Pr[Yn = x] = 0 otherwise, and noting that Yn is dominated by Xn and Pr[Dn(Yn) =f(Yn)] > 0:5 + "0(n).16 By employing standard ampli�cation to Dn, we obtain a distribution D0nover poly(n="0(n)) � s0(n)-size circuits such that for every x 2 f0; 1gn nBn it holds that Pr[D0n(x) =f(x)] > 1 � 2�n. It follows that there exists a s(n)-sized circuit Cn such that Cn(x) = f(x) forevery x 2 f0; 1gn nBn, and it follows that Pr[Cn(Xn) = f(Xn)] � Pr[Xn 2 f0; 1gn nBn] > 1� �(n),in contradiction to the theorem's hypothesis. The claim follows. 2Claim 21.2: If there exists a probability ensemble fYng that is �-dominated by fXng and satis�esEq. (10), then there exists a probability ensemble fZng that is �0-critically dominated by fXng andsatis�es Eq. (10) with "(n)=2 replaced by "(n).In other words, Claim 21.2 asserts that the function f has a hard region of density �0(�) relativeto fXng with respect to s0(�)-size circuits and advantage 2"(�), thus establishing the theorem. Theproof of Claim 21.2 is by the Probabilistic Method (cf. [1]). Speci�cally, we select a set Sn atrandom by including each n-bit long string x with probabilityp(x) def= �(n) � Pr[Yn=x]Pr[Xn=x] � 1 (13)independently of the choice of all other strings. It can be shown that, with high probability over thechoice of Sn, it holds that Pr[Xn 2Sn] � �(n) and that Pr[Cn(Xn)= f(Xn)jXn 2Sn] < 0:5 + "(n)for every circuit Cn of size s0(n). The latter assertion is proved by a union bound on all relevant16We use again the fact that any dominated distribution is a convex combination of critically dominateddistributions. 24

circuits, showing that for each such circuit Cn, with probability 1� exp(�s0(n)2) over the choice ofSn, it holds that jPr[Cn(Xn)=f(Xn)jXn2Sn]� Pr[Cn(Yn)=f(Yn)]j < "(n)=2. For details see [11,Apdx. A].2.2.2 Hardness ampli�cation via hard regionsBefore showing how to use the notion of a hard region in order to prove a derandomized versionof Yao's XOR Lemma, we show how to use it in order to prove the original version of Yao's XORLemma (i.e., Theorem 13).An alternative proof of Yao's XOR Lemma. Let f , p, and T be as in Theorem 13. Then,by Theorem 21, for �0(n) = 1=3p(n) and s0(n) = T (n)
(1)=poly(n), the function f has a hardregion S of density �0 (relative to fUng) with respect to s0(�)-size circuits and advantage 1=s0(�).Thus, for t(n) = n � p(n) and F as in Theorem 13, with probability at least 1 � (1 � �0(n))t(n) =1� exp(�
(n)), one of the t(n) random n-bit blocks of F resides in S (i.e., the hard region of f).Intuitively, this su�ces for establishing the strong inapproximability of F . Indeed, suppose towardsthe contradiction that a small circuit Cn can approximate F with advantage "(n) + exp(�
(n)),where "(n) > 1=s0(n). Then, the "(n) term must be due to t(n) � n-bit long inputs that containa block in S. Using an averaging argument, we can �rst �x the index of this block and then thecontents of the other blocks, and infer the following: for some i 2 [t(n)] and x1; :::; xt(n) 2 f0; 1gnit holds that Pr[Cn(x0; Un; x00) = F (x0; Un; x00) jUn 2 S] � 12 + "(n)where x0 = (x1; :::; xi�1) 2 f0; 1g(i�1)�n and x00 = (xi+1; :::; xt(n)) 2 f0; 1g(t(n)�i)�n . Hard-wiringi 2 [t(n)], x0 = (x1; :::; xi�1) and x00 = (xi+1; :::; xt(n)) as well as � def= �j 6=if(xj) in Cn, we obtain acontradiction to the (established) fact that S is a hard region of f (by using the circuit C 0n(z) =Cn(x0; z; x00) � �), and the theorem follows. Actually, we derive a generalization of Theorem 13asserting that for any function T such that f is (T; 1=p)-inapproximable it holds that F is T 0-inapproximable for T 0(t(n) � n) = s0(n) = T (n)
(1)=poly(n).Derandomized versions of Yao's XOR Lemma. We �rst show how to use the notion of ahard region in order to amplify very mild inapproximability to a constant level of inapproximability.This ampli�cation utilizes a pairwise independence generator (see [9, Text 17]), G, that stretches2n-bit long seeds to sequences of n strings, each of length n.Lemma 22 (derandomized XOR Lemma up to constant inapproximability): Suppose that f :f0; 1g� ! f0; 1g is (T; �)-inapproximable, for �(n) > 1=poly(n). Let b denote the inner-productmod 2 predicate, and G be the aforementioned pairwise independence generator. Then F1(s; r) =b(f(x1) � � � f(xn); r), where jrj = n = jsj=2 and (x1; :::; xn) = G(s), is (T 0; �0)-inapproximable forT 0(n0) = T (n0=3)=poly(n0) and �0(n0) =
(min(n0 � �(n0=3); 1)).Needless to say, if f 2 E then F1 2 E .Proof Sketch: Again, by Theorem 21, for �(n) = �(n)=3 and s0(n) = T (n)=poly(n), the functionf has a hard region S of density � (relative to fUng) with respect to s0(�)-size circuits and advantage0:01. Consider the function P1(s) = (f(x1); :::; f(xn)), where jsj = 2n and (x1; :::; xn) = G(s). ByExercise 36, with probability at least �(n) def= min(n ��(n); 1)=2, at least one of the n strings outputby G(U2n) resides in S. Intuitively, we expect every s0(n)-sized circuit to fail in computing P1(U2n)25

with probability at least 0:49�(n), because with probability �(n) the sequence G(U2n) contains anelement in the hard region of f . Things are somewhat more involved (than in the non-derandomizedcase) because it is not clear what is the conditional distribution on the hard region.For simplicity17 (and without loss of generality), we assume that �(n) < 1=2n, and note thatin this case with probability at least �(n) def= 0:75 � n � �(n), at least one of the n strings outputby G(U2n) resides in S. We claim that every (s0(n) � poly(n))-sized circuit fails to compute P1correctly with probability at least
(n) = 0:2�(n). As usual, the claim is proved by a reducibilityargument. Let G(s)i denote the ith string in the sequence G(s) (i.e., G(s) = (G(s)1; :::; G(s)n)),and note that given i and x we can e�ciently sample G�1i (x) def= fs2f0; 1g2n : G(s)i=xg. Givena circuit Cn that computes P1(U2n) correctly with probability 1�
(n), we consider the circuit C 0nthat, on input x, uniformly selects i 2 [n] and s 2 G�1i (x), and outputs the ith bit in Cn(s). Then,Pr[C 0n(Un)=f(Un)jUn2S] � nXi=1 1n � Pr[Cn(U2n)=P1(U2n)jG(U2n)i2S]� 1n � Pr[Cn(U2n)=P1(U2n) ^ 9iGi(U2n)i2S]maxifPr[G(U2n)i2S]g� 1n � (1�
(n))� (1� �(n))�(n) = 0:8�(n)n � �(n) = 0:6contradicting the fact that S is a hard region of f with respect to s0(�)-size circuits and advantage0:01. Employing the simple (warm-up) case discussed at the beginning of the proof of Theorem 7,it follows that, for s00(n0) = s(n0=3)=poly(n0), every s00(jsj + jrj)-sized circuits fails to compute(s; r) 7! b(P1(s); r) with probability at least �(jsj + jrj) def= 0:24 �
(jrj). Thus, F1 is (s00; 2�)-inapproximable, and the lemma follows.The next lemma o�ers an ampli�cation of constant inapproximability to strong inapproximability.Indeed, combining Theorem 12 with Lemmas 22 and 23, yields Theorem 19 (as a special case).Lemma 23 (derandomized XOR Lemma starting with constant inapproximability): Suppose thatf : f0; 1g� ! f0; 1g is (T; �)-inapproximable, for some constant �, and let b denote the inner-product mod 2 predicate. Then there exists a exponential-time computable function G such thatF2(s; r) = b(f(x1) � � � f(xn); r), where (x1; :::; xn) = G(s) and n =
(jsj) = jrj = jx1j = � � � = jxnj,is T 0-inapproximable for T 0(n0) = T (n0=O(1))
(1)=poly(n0).Again, if f 2 E then F2 2 E .Proof Outline:18 As in the proof of Lemma 22, we start with a hard region of density �=3(and advantage 1=T 0) for f and focus on the analysis of the function P2(s) = (f(x1); :::; f(xn)),where jsj = O(n) and (x1; :::; xn) = G(s). The \generator" G is de�ned such that G(s0s00) =G1(s0)�G2(s00), where js0j = js00j, jG1(s0)j = jG2(s00)j, and the following conditions hold:1. G1 is the Expander Random Walk Generator discussed in [9, Text 17]. It can be shownthat G1(UO(n)) outputs a sequence of n strings such that for any set S of density �, with17The choice of some of the constants in the following argument is rather arbitrary. In general, assuming that�(n) < c=n, for some constant c 2 (0; 1), we can set �(n) = (1� (c=2)) � n � �(n). This allows setting
(n) = c0�(n)for c0 satisfying (1� c0)(1� (c=2)) � (0:5+ "), where " is the advantage in the de�nition of the hard region. (We haveused " = 0:01, c = 0:5 and c0 = 0:2.) Finally, in moving from P1 to F1 we lose a factor that can be made arbitrarilyclose to 4.18For details, see [15]. 26

probability 1 � exp(�
(�n)), at least
(�n) of the strings hit S. Note that this propertyis inherited by G, provided jG1(s0)j = jG2(s00)j for any js0j = js00j. It follows that, withprobability 1 � exp(�
(�n)), a constant fraction of the xi's in the de�nition of P2 hit thehard region of f .It is tempting to say that small circuits cannot compute P2 better than with probabilityexp(�
(�n)), but this is clear only in case the the xi's that hit the hard region are drawnindependently from it, which is hardly the case here. Indeed, G2 is used to handle thisproblem.2. G2 is the \set projection" system underlying the Nisan-Wigderson Generator; speci�cally,G2(s) = (sS1 ; :::; sSn), where each Si is an n-subset of [jsj] and the Si's have pairwise inter-sections of size at most n=O(1).19 An analysis as the one applied to the Nisan-WigdersonGenerator can be employed for showing that the dependency among the xi's does not helpfor computing a particular f(xi) when given xi as well as all the other f(xj)'s. (Note thatthe relevant property of G2 is inherited by G.)The actual analysis of the construction (via a guessing game presented in [15, Sec. 3]), links thesuccess probability of computing P2 to the advantage of guessing f on its hard region. The interestedreader is referred to [15].Digest. Both Lemmas 22 and 23 are proved by �rst establishing corresponding \direct product"versions (i.e., derandomized versions of Theorem 14). We call the reader's attention to the seem-ingly crucial role of this step (especially in the proof of Lemma 23): We cannot treat the valuesf(x1); :::f(xn) as independent (at least not for the generator G as postulated in the proof), andso we seek to avoid analyzing the probability of correctly computing the XOR of all these values.In contrast, we have established that it is very hard to correctly compute all n values, and thusXORing a random subset of these values yields a strongly inapproximable predicate. Note that theargument used in Exercise 34 fails here, becuase the xi's are not independent.NotesThe notion of a one-way function was suggested by Di�e and Hellman [5]. The notion of weakone-way functions as well as the ampli�cation of one-way functions (Theorem 5) were suggested byYao [19]. A proof of Theorem 5 has �rst appeared in [6].The concept of hard-core predicates was suggested by Blum and Micali [2]. They also provedthat a particular predicate constitutes a hard-core for the \DLP function" (i.e., exponentiationin a �nite �eld), provided that the latter function is one-way. The generic hard-core predicate(Theorem 7) was suggested by Levin, and proven as such by Goldreich and Levin [10]. The proofpresented here was suggested by Racko�. We comment that the original proof has its own merits(cf., e.g., [12]).The construction of canonical derandomizers and, speci�cally, the Nisan-Wigderson frameworkhas been the driving force behind the study of inapproximable predicates in E . Theorem 10 isdue to [4], whereas Theorem 19 is due to [15]. Both results rely heavily of variants of Yao's XORLemma, to be reviewed next.19Recall that sS denotes the projection of s on coordinates S � [jsj]; that is, for s = �1 � � � �k and S = fij : j =1; :::; ng, we have sS = �i1 � � ��in . 27

Like several other fundamental insights attributed to Yao's paper [19], Yao's XOR Lemma(Theorem 13) is not even stated in [19] but is rather due to Yao's oral presentations of his paper.The �rst published proof of Yao's XOR Lemma was given by Levin (see [11, Sec. 3]). Levin'sproof is the only one known giving a tight quantitative analysis (on the decrease in the level ofapproximability), and the interested reader is referred to it (via the non-laconic presentation of [11,Sec. 3]). The proof presented in x2.1.2 is due to Goldreich, Nisan and Wigderson [11, Sec. 5].The notion of a hard region and its applications to proving the original version of Yao's XORLemma as well as the �rst derandomization of it (Lemma 22) are due to Impagliazzo [14]. Thesecond derandomization (Lemma 23) as well as Theorem 19 are due to Impagliazzo and Wigder-son [15].The connection between list decoding and hardness ampli�cation (Section 2.1.3), yielding analternative proof of Theorem 19, is due to Sudan, Trevisan, and Vadhan [17].Hardness ampli�cation forNP has been the subject of recent attention: An ampli�cation of mildinapproximablity to strong inapproximablity is provided in [13], an indication to the impossibilityof a worst-case to average-case reductions (at least non-adaptive ones) is provided in [3].ExercisesExercise 24 Prove that if one way-functions exist then there exists one-way functions that arelength preserving (i.e., jf(x)j = jxj for every x 2 f0; 1gn).(Hint: Clearly, for some polynomial p, it holds that jf(x)j � p(jxj) for all x. Assume, without loss of generality thatn 7! p(n) is 1-1, and let p�1(m) = n if p(n) � m < p(n+1). De�ne f 0(z) = f(x)0jzj�jf(x)j, where x is the p�1(jzj)-bitlong pre�x of z.)Exercise 25 Prove that if a function f is hard to invert in the sense of De�nition 3 then it is hardto invert in the sense of De�nition 1.(Hint: consider a sequence of internal coin tosses that maximizes the probability in Eq. (1).)Exercise 26 Assuming the existence of one-way functions, prove that there exists a weak one-wayfunction that is not strongly one-way.Exercise 27 (a universal one-way function) Using the notion of a universal machine, presenta polynomial-time computable that is hard to invert (in the sense of De�nition 1) if and only ifthere exist one-way functions.Guideline: Consider the function F that parses its input into a pair (M;x) and emulates jxj3 steps of Mon input x. Note that if there exists a one-way function that can be evaluated in cubic time then F is aweak one-way function. Using padding, prove that there exists a one-way function that can be evaluated incubic time if and only if there exist one-way functions.Exercise 28 For ` > 1, prove that the following 2`� 1 samples are pairwise independent and uni-formly distributed in f0; 1gn. The samples are generated by uniformly and independently selecting` strings in f0; 1gn. Denoting these strings by s1; :::; s`, we generate 2` � 1 samples correspondingto the di�erent non-empty subsets of f1; 2; :::; `g such that for subset J we let rJ def= �j2Jsj.(Hint: for J 6= J 0, it holds that rJ � rJ0 = �j2Ksj , where K denotes the symmetric di�erence of J and J 0. Seerelated material in [9, Text 17].)Exercise 29 Prove Theorem 8. In particular, provide a detailed presentation of the alternativeprocedure outlined in Footnote 5. 28

Exercise 30 A polynomial-time computable predicate b :f0; 1g�!f0; 1g is called a universal hard-core predicate if for every one-way function f , the predicate b is a hard-core of f . Note that thepredicate presented in Theorem 7 is \almost universal" (i.e., for every one-way function f , thatpredicate is a hard-core of f 0(x; r) = (f(x); r), where jxj = jrj). Prove that there exist no universalhard-core predicate.(Hint: Let b be a candidate universal hard-core predicate, and let f be an arbitrary one-way function. Then considerthe function f 0(x) = (f(x); b(x)).)Exercise 31 Prove that if NP is not contained in P=poly then neither is E . Furthermore, forevery S : N ! N , if some problem in NP does not have circuits of size S then some problem in Edoes not have circuits of size S0, where S0(n) = S(n") for some constant " > 0.(Hint: SAT is in E .)Exercise 32 For every function f : f0; 1gn ! f0; 1g, present a linear-size circuit Cn such thatPr[C(Un) = f(Un)] � 0:5 + O(2�n). Furthermore, for every t � 2n�1, present a circuit Cn ofsize O(t � n) such that Pr[C(Un) = f(Un)] � 0:5 + t � 2�n. Warning: you may not assume thatPr[f(Un) = 1] = 0:5.Exercise 33 Let f̂ be as in the conclusion of Theorem 12. Prove that there exists a Booleanfunction g in E that is (p; ")-inapproximable for every polynomial p and for "(n) = 1=n3.(Hint: consider the function g de�ned such that g(x; i) equals the ith bit of f̂(x).)Exercise 34 Let f be a Boolean function, and b(y; r) denote the inner-product modulo 2 of theequal-length strings y and r. Suppose that F 0(x1; :::; xt(n); r) def= b(f(x1) � � � f(xt(n)); r), wherex1; :::; xt(n) 2 f0; 1gn and r 2 f0; 1gt(n) , is T -inapproximable for every polynomial T . Assuming thatn 7! t(n) � n is 1-1, prove that F (x) def= F 0(x; 1t0(jxj)), where t0(t(n) � n) = t(n), is T -inapproximablefor every polynomial T .Guideline: Reduce the approximation of F 0 to the approximation of F . An important observation is thatfor any x = (x1; :::; xt(n)), x0 = (x01; :::; x0t(n)), and r = r1 � � � rt(n) such that x0i = xi if ri = 1, it holds thatF 0(x; r) = F (x0)��i:ri=0f(x0i). Note that the equality holds regardless of the choice of the string x0i 2 f0; 1gnfor which ri = 0. Also note that the suggested reduction requires knowledge of � = �i:ri=0f(x0i), but in ourcontext the reduction may be performed by a small non-uniform circuit, which may incorporate the valuesof f(z)'s for a small number of z's. Indeed, for uniformly chosen z1; :::; zt(n) 2 f0; 1gn, we use these zi's aswell as the f(zi)'s as advice to the reduction. On input x1; :::; xt(n); r1 � � � rt(n), the reduction sets x0i = xi ifri = 1 and x0i = zi otherwise, makes the query x0 = (x01; :::; x0t(n)) to F , and returns F (x0)�i:ri=0 f(zi).Exercise 35 Consider a modi�cation of De�nition 17, in which the decoding condition reads asfollows (where p is a �xed polynomial): For every w : [`(N)]! [q(N)] and x2f0; 1gN such that �(x)is (1�((1=q(N))+�(N)))-close to w, there exists an oracle-aided circuit C of size p((logN)=�(N))such that Cw(i) yields the ith bit of x for every i 2 [N].1. Formulate and prove a version of Theorem 18 that refers to the modi�ed de�nition (ratherthan to the original one).(Hint: the modi�ed version should refer to computing g(Um(n)) with success probability greater than (1=q(n))+"(n).)2. Prove that, when applied to binary codes (i.e., q � 2), the version in Item 1 yields S00-inapproximable predicates, for S00(n0) = S(m�1(n0))
(1)=poly(n0).29

3. Prove that the Hadamard Code allows implicit decoding under the modi�ed de�nition (butnot according to the original one).20(Hint: this is the actual contents of Theorem 8.)Note that encoding the symbols of a non-binary code � that allows implicit decoding with theHadamard code yields a binary code that allows implicit decoding. Note that e�cient encoding ispreserved only if q(N) = poly(N).Exercise 36 Let G be as in Lemma 22, S � f0; 1gn and � def= jSj=2n. Prove that, with probabilityat least min(n � �; 1)=2, at least one of the n strings output by G(U2n) resides in S.Guideline: Using the pairwise independence property and employing the Inclusion-Exclusion formula, welower-bound the aforementioned probability by n � p� �n2� � p2. If p � 1=n then the claim follows, otherwisewe employ the same reasoning to the �rst 1=p elements in the output of G(U2n).Exercise 37 (one-way functions versus inapproximable predicates) Prove that the exis-tence of a non-uniformly hard one-way function (as in De�nition 3) implies the existence of anexponential-time computable predicate that is T -inapproximable (as per De�nition 9), for everypolynomial T .Guideline: Suppose �rst that the one-way function f is length-preserving and 1-1. Consider the correspond-ing function g and hard-core predicate b guaranteed by Theorem 7, and show that the Boolean function hsuch that h(z) = b(g�1(z)) is polynomially inapproximable. For the general case a di�erent approach seemsneeded. Speci�cally, given a (length preserving) one-way function f , consider the Boolean function h de�nedas h(z; i; �) = 1 if the ith bit of the lexicographically �rst element in f�1(z) = fx : f(x) = zg equals �. Notethat h is computable in exponential-time, but is not (worst-case) computable in polynomial-time. ApplyingTheorem 10, we are done.References[1] N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons, Inc., 1992.[2] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, pages 850{864, 1984. Preliminaryversion in 23rd FOCS, 1982.[3] A. Bogdanov and L. Trevisan. On worst-case to average-case reductions for NP problems. InProc. 44th IEEE Symposium on Foundations of Computer Science, pages 308{317, 2003.[4] L. Babai, L. Fortnow, N. Nisan and A. Wigderson. BPP has Subexponential Time Simulationsunless EXPTIME has Publishable Proofs. Complexity Theory, Vol. 3, pages 307{318, 1993.[5] W. Di�e, and M.E. Hellman. New Directions in Cryptography. IEEE Trans. on Info. Theory,IT-22 (Nov. 1976), pages 644{654.[6] O. Goldreich. Foundation of Cryptography { Class Notes. Computer Science Dept., Technion,Israel, Spring 1989. Superseded by [7, 8].20Needless to say, the Hadamard Code is not e�cient (for the trivial reason that its codewords have exponentiallength). 30

[7] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University Press, 2001.[8] O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge University Press,2004.[9] O. Goldreich. Expositions in Complexity Theory (various texts). Unpublished notes, De-cember 2005. Availabe from the webpage http://www.wisdom.weizmann.ac.il/�oded/cc-texts.html[10] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st ACMSymposium on the Theory of Computing, pages 25{32, 1989.[11] O. Goldreich, N. Nisan and A. Wigderson. On Yao's XOR-Lemma. ECCC, TR95-050, 1995.[12] O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials with queries: the highlynoisy case. SIAM J. Discrete Math., Vol. 13 (4), pages 535{570, 2000.[13] A. Healy, S. Vadhan and E. Viola. Using nondeterminism to amplify hardness. In 36th ACMSymposium on the Theory of Computing, pages 192{201, 2004.[14] R. Impagliazzo. Hard-core Distributions for Somewhat Hard Problems. In 36th IEEE Sym-posium on Foundations of Computer Science, pages 538{545, 1995.[15] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Derandomizingthe XOR Lemma. In 29th ACM Symposium on the Theory of Computing, pages 220{229,1997.[16] N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computer and SystemScience, Vol. 49, No. 2, pages 149{167, 1994.[17] , M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR Lemma.Journal of Computer and System Science, Vol. 62, No. 2, pages 236{266, 2001.[18] J. von Neumann, Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100, pages295{320, 1928.[19] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium onFoundations of Computer Science, pages 80{91, 1982.

31

