
Texts in Computational Complexity:IP, AM and round speed-upOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.November 12, 2005Proving that IP(f) � AM(O(f)) � AM(f)We denote by IP(f) (resp., AM(f)) the class of sets having interactive proof systems (resp.,public-coin proof systems) in which a total of f(jxj) messages are exchanged on common input x.We present proof of the following two results.Theorem 1 (Round-e�cient emulation of IP by AM): Let f : N!N be a polynomially boundedfunction. Then IP(f) � AM(f + 3).We comment that, in light of the following linear speed-up in round-complexity for AM, it su�cesto establish IP(f) � AM(O(f)).Theorem 2 (Linear speed-up for AM): Let f : N!N be a polynomially bounded function. ThenAM(2f) � AM(f + 1).Combining these two theorems, we obtain a linear speed-up for IP; that is, for any polynomiallybounded f : N ! (N n f1g), it holds that IP(O(f)) � AM(f) � IP(f).We mention that the proof of Theorem 1 relies on the fact that, for every f , error-reductionis possible for IP(f). Speci�cally, error-reduction can be obtained via parallel repetitions (see [3,Apdx. C.1]). We note that error-reduction (in the context of AM(f)) is implicit also in the proofof Theorem 2 (and is explicit in the original proof of [1]).1 Emulating general interactive proofs by AM-gamesIn this section we prove Theorem 1. Our proof di�ers from the original proof of Goldwasser andSipser [5] only in the conceptualization and implementation of the iterative process.1.1 The basic approachOur aim is to transform a general interactive proof system (P; V) into a public-coin interactiveproof system for the same problem. Suppose, without loss of generality, that P constitutes anoptimal prover with respect to V (i.e., P maximizes the acceptance probability of V on any input).Then, for any yes-instance, the set of coin sequences that make V accept when interacting withthis optimal prover contains all possible outcomes, whereas for a no-instance this set is very small.1

The idea is having a public-coin system in which the prover prove to the veri�er that the said setis big. Such a proof system can be constructed using ideas as in the case of approximate counting,while replacing the NP-oracle with a prover that is required to prove the correctness of its answers.Implementing this idea requires taking a closer look at the set of coin sequences that make V acceptan input.We demonstrate the implementation of the foregoing approach by considering an interactiveproof system (such as the Graph Non-Isomorphism Protocol of [4]) in which the veri�er V sends asingle message to which the prover P responses. Further suppose that, when the common input isa yes-instance, each possible message of V is equally likely (which holds for a minor modi�cationof the Graph Non-Isomorphism Protocol).1 Speci�cally, suppose that on input x, the veri�er Vtosses ` = `(jxj) coins and sends one out of M possible messages (as determined by the input andthe coin sequence). Then, in the public-coin system, the prover will claim that in the original proofthere are M possible V -messages such that the original prover can respond to each of them in away that is accepted by 2`=M corresponding coin sequences of V . To prove this claim, the proverlets the veri�er select at random one of the possible M messages (e.g., by selecting coins for V),denoted �, and the prover send back an adequate P -message, denoted �, and proves that � wouldhave been accepted by 2`=M possible coin sequences of V . The latter proof follows the idea of thereduction of approximate counting (of NP-witnesses) to NP : The veri�er applies a random sievethat lets only a (2`=M)�1 fraction of the elements pass, and the prover proves that some adequatesequence of V -coins has passed this sieve. The latter claim is proved by merely presenting sucha sequence, denoted r, and the veri�er can check whether indeed r passes the sieve as well as �tsthe initial message � and would have made V accept the prover message � (i.e., V would haveaccepted the input, on coins r, when receiving the prover message �). We stress that the foregoinginteraction (and in particular the random sieve) can be implemented in the public-coin model.A few technical problems arise. Firstly, recall that the random sieve only allows for an approx-imation of set sizes. However, since the gap between the acceptance probability of yes-instancesand no-instances is big enough (or can be made big enough by parallel repetition), this su�ces.Secondly, in general, it is not necessarily the case that each possible message of V is equally likely.However, the prover may cluster the V -messages into few (say `) clusters such that the messages ineach cluster are sent (by V) with roughly the same probability (say, up to a factor of two). Focusingon the cluster having the largest probability weight, the prover can proceed as in the simple case.This has a potential of cutting the probabilistic gap2 between yes-instances and no-instances bya factor related to the number of clusters times the approximation level within clusters (e.g., afactor of O(`)), but this loss is negligible in comparison to the initial gap (which can be obtainedvia error-reduction). Lastly, there is the fact that we only dealt with a two-message system (i.e.,IP(2)).It is tempting to say that the general case of IP(f) can be dealt by recursion (or ratheriterations), and indeed this is almost the case. Recall that our treatment of the case of IP(2)boils down to having the veri�er choose a random V -message, �, and having the prover send aP -response, �, and �nally prove that � is acceptable by many V -coins. In other words, the provershould prove that in the conditional probability space de�ned by V -message �, the original veri�erV accepts with high probability. In the general case (of IP(f)), the latter claim refers to the1In the original protocol, the veri�er selects at random one of the two input graphs, and sends a random isomorphiccopy of it. In the modi�cation, the veri�er creates a random isomorphic copy of each of the two input graphs, andsends them in a random order.2The point is that in one case all clusters may have equal weight, and thus a corresponding factor is lost, while inthe other case all probability mass may be concentrated in a single cluster.2

probability of accepting in the residual interaction, which consists of f � 2 messages, and thus thevery same protocol can be applied iteratively (until we get to the last message, which is dealt as inthe case of IP(2)). The only problem is that in the residual interactions, it may not be easy forthe veri�er to select a random V -message (as done in the case of IP(2)). Instead, the veri�er willbe assisted by the prover, while making sure that it is not being fooled by the prover. Indeed, thiscalls for an adequate \random selection" protocol, which need to be implemented in the public-coinmodel. For simplicity, we may consider the problem of selecting a uniform sequence of coins in theresidual probability space, because such a sequence determines the desired random V -message.1.2 Random selectionVarious types of \random selection" protocols have appeared in the literature (see, e.g., [6, Sec. 6.4]).The common theme in these protocols is that they allow for a probabilistic polynomial-time player(called the veri�er) to sample a set, denoted S � f0; 1g`, while being assisted by a second player(called the prover) that is powerful but not trustworthy. These nicknames �t the common con-ventions regarding interactive proofs and are further justi�ed by the typical applications of suchprotocols as subroutines within an interactive proof system (where indeed the �rst party is playedby the higher-level veri�er while the second party is played by the higher-level prover). The varioustypes of random selection protocols di�er by what is known about the set S and what is requiredfrom the protocol.Here we will assume that the veri�er is given a parameter N , which is supposed to equal jSj,and the performance guarantee of the protocol will be meaningful only for sets of size at most N .We desire a constant-round (preferably two-round) public-coin protocol for this setting such thatthe following holds, with respect to a security parameter " = 1=poly(`).1. If both players are honest and N = jSj then the veri�er's output is "-close to the uniformdistribution over S. Furthermore, the veri�er always outputs an element of S.2. For any set S0 � f0; 1g` if the veri�er follows the protocol then, no matter how the proverbehaves, the veri�er's output resides in S0 with probability at most poly(`=") � (jS0j=N).Note that the second property is meaningful only for sets S0 of size (signi�cantly) smaller than N .A three-round public-coin protocol can be obtained by using the ideas that underly uniformgeneration of NP-witnesses (as presented in [2]): Speci�cally, we use a high quality hashing functionof f0; 1g` to f0; 1gm, which in turn de�nes a partition of f0; 1g` into 2m cells. We set m =max(0; log2N � O(log `=")) in order to guarantee that if jSj = N then, with overwhelmingly highprobability, each cell de�ned by the hashing function contains (1 � ") � jSj=2m elements of S. Inthe protocol, the prover selects a good hashing function (i.e., one de�ning such a good partition ofS) and sends it to the veri�er, which answers with a uniformly selected cell, to which the proverresponds with a uniformly selected element of S that resides in this cell.3Note that this protocol satis�es the aforementioned properties. In particular, the second prop-erty follows because for every possible hashing function, the fraction of cells containing an element3A more natural version of this protocol consists of having the veri�er select at random a hashing function as wellas a cell, and asks the prover for a list of (1� ") � N=2m elements in this cell. The veri�er then outputs an elementthat is uniformly selected in the list. This protocol provides a stronger guarantee with respect to cheating provers:the veri�er's output resides in S0 with probability at most (jS0j=N) + ". However, even in case the prover is honest,this protocol does not guarantee that the veri�er always outputs an element of S, because it may happen (rarely)that the hashing function selected by the veri�er is not good. For this reason, we preferred the version presented inthe main text. 3

of S0 is at most jS0j=2m, which is upper-bounded by poly(`=") � jS0j=N . We stress that the protocolis indeed in the public-coin model, and comment that the fact that it uses three messages ratherthan two will have a minor e�ect on our application.1.3 The iterated partition protocolThe random selection protocol discussed in x1.2 is meaningful only with respect to sets (i.e., S0)that are smaller than the given parameter N . Here we explain why this su�ces for our goals. Westart with some notations.Fixing any input x to (P; V), we denote by t = t(jxj) the number of pairs of communicationrounds (assuming that the veri�er takes the �rst move in (P; V))4 and by ` = `(jxj) > t the numberof coins tossed by V . Recall that we assume that P is an optimal prover (with respect to V),and that (without loss of generality) P is deterministic. Let us denote by hP; V (r)i(x) the fulltranscript of the interaction of P and V on input x, when V uses coins r; that is, hP; V (r)i(x) =(�1; �1; :::; �t; �t; �) if � = V (x; r; �1; :::; �t) 2 f0; 1g is V 's �nal verdict and for every i = 1; :::; tit holds that �i = V (x; r; �1; :::; �i�1) and �i = P (x; �1; :::; �i). For any partial transcript endingwith a P-message, = (�1; �1; :::; �i�1; �i�1), we denote by ACCx() the set of coin sequences thatare consistent with the partial transcript and lead V to accept x when interacting with P ; thatis, r 2 ACCx() if and only if for some 0 it holds that hP; V (r)i(x) = (�1; �1; :::; �i�1; �i�1; 0; 1).The same notation is also used for a partial transcript ending with a V-message; that is, r 2ACCx(�1; �1; :::; �i) if and only if hP; V (r)i(x) = (�1; �1; :::; �i; 0; 1) for some 0.Motivation. By suitable error reduction, we may assume that (P; V) has soundness error � =�(jxj) that is smaller than poly(`)�t. Thus, for any yes-instance x it holds that jACCx(�)j = 2`,whereas for any no-instance x it holds that jACCx(�)j � � � 2`. Indeed, the gap between the setsizes is huge, and it will be preserved as long as we lose at most a factor of poly(`) per each round.The key observations is that, for any partial transcript = (�1; �1; :::; �i�1; �i�1), it holds thatjACCx()j =X� jACCx(; �)j; (1)whereas jACCx(; �)j = max�fjACCx(; �; �)jg. Clearly, we can prove that jACCx(; �)j is big byproviding an adequate � and proving that jACCx(; �; �)j is big. Likewise, proving that jACCx()jis big reduces to proving that the sum P� jACCx(; �)j is big. The problem is that this sum maycontain exponentially many terms, and so we cannot even a�ord asking for the value of each ofthese terms.5 As hinted in x1.1, we may cluster these terms into ` clusters, such that the jth clustercontains sets of cardinality approximately 2j (i.e., �'s such that 2j � jACCx(; �)j < 2j+1). Oneof these clusters must account for a 1=2` fraction of the claimed size of jACCx()j, and so we focuson this cluster; that is, the prover we construct will identify a suitable j and prove that there areat least N = jACCx()j=(2` � 2j+1) sets (i.e., the ACCx(; �) sets) each of size at least 2j . Notethat this establishes that jACCx()j is bigger than N � 2j = jACCx()j=O(`), which means that welost a factor of O(`) of the size of ACCx(). But as stated before, we may a�ord such a lost.Before we turn to the actual protocol, let us discuss the method of proving that that there areat least N sets (i.e., ACCx(; �)'s) each of size at least 2j . This claim is proved by employing the4We note if the prover takes the �rst move in (P; V) then its �rst message can be emulated with no cost (in thenumber of rounds).5Furthermore, we cannot a�ord verifying more than a single claim regarding the value of one of these terms,because examining at least two values per round will yield an exponential blow-up (i.e., time complexity that isexponential in the number of rounds). 4

random selection protocol (with size parameter set to N) with the goal of selecting such a set (orrather its index �). If indeed N such sets exists then the �rst property of the protocol guaranteesthat such a set is always chosen, and we will proceed to the next iteration with this set, whichhas size at least 2j (and so we should be able to establish a corresponding lower-bound there).Thus,, entering the current iteration with a valid claim, we proceed to the next iteration with anew valid claim. On the other hand, suppose that jACCx()j � N � 2j . Then, the second propertyof the protocol guarantees that, with probability at least 1 � (1=3t), the selected � is such thatjACCx(; �)j < poly(`) � jACCx()j=N � 2j , whereas at the next iteration we will need to provethat the selected set has size at least 2j . Thus, entering the current iteration with a false claimthat is wrong by a factor F , with probability at least 1� (1=3t), we proceed to the next iterationwith a claim that is wrong by a factor of at least F=poly(`).We note that, although the foregoing motivational discussion refers to proving lower-bounds onvarious set sizes, the actual implementation refers to randomly selecting elements in such sets. Ifthe sets are smaller than claimed, the selected elements are likely to reside outside these sets, whichwill be eventually detected.Construction 3 (the actual protocol). On common input x, the 2t-round interaction of P andV is \quasi-emulated" in t iterations, where t = t(jxj). The ith iteration starts with a partialtranscript i�1 = (�1; �1; :::; �i�1; �i�1) and a claimed bound Mi�1, where in the �rst iteration 0is the empty sequence and M0 = 2`. The ith iteration proceeds as follows.1. The prover determines an index j such that the cluster Cj = f� : 2j � jACCx(i�1; �)j <2j+1g has size at least N def= Mi�1=(2j+2`), and sends j to the veri�er. Note that if jACCx(i�1)j �Mi�1 then such a j exists.2. The prover invokes the random selection protocol with size parameter N in order to select� 2 Cj, where for simplicity we assume that Cj � f0; 1g`. Recall that this public-coin protocolinvolves three messages with the �rst and last message being sent by the prover. Let use denotethe outcome of this protocol by �i.3. The prover determines �i such that ACCx(i�1; �i; �i) = ACCx(i�1; �i) and sends �i to theveri�er.Towards the next iteration Mi 2j and i = (�1; �1; :::; �i; �i) � (i�1; �i; �i).After the last iteration,6 the prover invokes the random selection protocol with size parameter N =Mt in order to select r 2 ACCx(�1; �1; :::; �t; �t). Upon obtaining this r, the veri�er accepts if andonly if V (x; r; �1; :::; �t) = 1 and for every i = 1; :::; t it holds that �i = V (x; r; �1; :::; �i�1), wherethe �i's and �i's are as determined in the aforementioned iterations.Note that the three steps of each iteration involve a single message by the public-coin veri�er, andthus the foregoing protocol can be implemented using 2t+ 3 messages.Clearly, if x is a yes-instance then the prover can make the veri�er accept with probability one(because an adequately large cluster exists at each iteration, and the random selection protocolguarantees that the selected �i will reside in this cluster). Thus, at the last invocation of therandom selection protocol, the veri�er always obtains r 2 ACCx(t) and accepts. On the other6Alternatively, we may modify (P; V) by adding a last V -message in which V sends its internal coin tosses (i.e.,r). In this case, the additional invocation of the random selection protocol occurs as a special case of handling theadded t+ 1st iteration. 5

hand, if x is a no-instance then by using the low soundness error of (P; V) we can establish thesoundness of Construction 3. This is proved in the following claim, which refers to a polynomial pthat is su�ciently large.Claim 4 Suppose that jACCx(�)j < �t+1 �2`, where � = 1=p(`). Then, the veri�er of Construction 3accepts x with probability smaller than 1=2.Proof Sketch: We �rst prove that, for every i = 1; :::; t, if jACCx(i�1)j < �t+1�(i�1) �Mi�1 then,with probability at least 1�(1=3t), it holds that jACCx(i)j < �t+1�i �Mi. Let j be the value selectedby the prover in Step 1 (of iteration i), and de�ne S0 = f� : jACCx(i�1; �)j � �t+1�i � 2jg. ThenjS0j � �t+1�i2j < �t+1�(i�1) �Mi�1, and so jS0j < � � (Mi�1=2j) = 4`� �N , where N = Mi�1=(2j+2`)is as used in Step 2 (of this iteration). By the second property of the random selection protocolit follows that Pr[�i 2 S] � poly(`) � � = poly(`)=p(`), which is smaller than 1=3t provided thatthe aforementioned polynomial p is su�ciently large. Thus, with probability at least 1 � (1=3t),it holds that jACCx(i�1; �i)j < �t+1�i � 2j . The ith claim follows by recalling that Mi = 2j (inStep 3) and that for every � it holds that jACCx(i�1; �i; �)j � jACCx(i�1; �i)j.Recalling that jACCx(0)j < �t+1 �M0, with probability at least 2=3, we have jACCx(t)j < ��Mt.In this case, the random selection protocol produces an element of ACCx(t) with probability atmost 1=6, and the veri�er rejects otherwise (because the conditions that the veri�er checks regardingthe output r of the random selection protocol are logically equivalent to r 2 ACCx(t)). The mainclaim follows.2 Linear speed-up for AMIn this section we prove Theorem 2. Our proof di�ers from the original proof of Babai and Moran [1]in the way we analyze the basic switch (of MA to AM).We assume that the reader is familiar with the terminology of public-coin (a.k.a Arthur-Merlin)interactive proofs, where the veri�er is called Arthur and the prover is called Merlin. The executionof such a proof system, on any �xed common input x, can be viewed as a game (indexed by x)between an honest Arthur and powerful Merlin. These parties alternate in taking moves such thatArthur takes random moves and Merlin takes optimal moves with respect to a �xed (polynomial-time computable) predicate vx that is evaluated on the full transcript of the game's execution. Thevalue of the game is de�ned as the expected value of an execution of the game, where the expectationis taken over Arthur's moves (and Merlin's moves are assumed to be optimal).Recall that AM = AM(2) denotes a two-round system in which Arthur moves �rst and doesnot toss coins after receiving Merlin's answer, whereasMA = AM(1) denotes a one-round systemin which Merlin sends a single message and Arthur tosses additional coins after receiving thismessage. We may assume, without loss of generality, that all messages of Arthur are of the samelength, denoted ` = `(jxj). Similarly, each of Merlin's messages is of length m = m(jxj).2.1 The basic switch (from MA to AM)The basic idea is to transform an MA-game (i.e., a two-move game in which Merlin moves �rstand Arthur follows) into an AM-game (in which Arthur moves �rst and Merlin follows). Recallthat, in the original game, �rst Merlin sends a message � 2 f0; 1gm, then Arthur responds with arandom � 2 f0; 1g`, and the value of this execution of the game is given by vx(�; �) 2 f0; 1g. In thenew game (see Figure 1), the order of these moves will be switched, but to limit Merlin's potential6

gain from the switch we require it to provide a single answer that should \�t" several randommessages of Arthur. That is, for a parameter t to be speci�ed, �rst Arthur send a random sequence(�(1); :::; �(t)) 2 f0; 1gt�`, then Merlin responds with a string � 2 f0; 1gm, and the value of thistranscript of the new game is de�ned as the conjunction of the values vx(�; �(i)), for i = 1; :::; t.Intuitively, Merlin gets the advantage of choosing its move after seeing Arthur's move(s), butMerlin's choice must �t the t choices of Arthur's move, which intuitively leaves Merlin with littlegain (if t is su�ciently large).
ArthurMerlin

β

α

ArthurMerlin

β

αα . . .(1) (t)

The original MA game The new AM game

The value of the transcript (�; �) of the original MA-game is givenby vx(�; �), whereas the value of the transcript ((�(1); :::; �(t)); �) ofthe new AM-game is given by ^ti=1vx(�; �(i)).Figure 1: The transformation of an MA-game into an AM-game.Recall that the value, v0x, of the transcript (�; �) of the new game, where � = (�(1); :::; �(t)), isde�ned as ^ti=1vx(�; �(i)). Thus, the value of the new game is de�ned asE�[max� f^ti=1vx(�; �(i))g]; (2)which is upper-bounded by E� "max� (1t tXi=1 vx(�; �(i)))#: (3)Note that the upper-bound provided in Eq. (3) is tight in the case that the value of the originalMA-game equals one (i.e., if x is a yes-instance), and that in this case the value of the new game isone (because in this case there exists a move � such that vx(�; �) = 1 holds for every �). However,the interesting case, where Merlin may gain something by the switch is when the value of theoriginal MA-game is strictly smaller than one (i.e., when x is a no-instance). For this case, weupper-bound the probability that Merlin can obtain a signi�cant gain by selecting � based on thesequence � chosen by Arthur (in the new game, rather than obliviously of Arthur's move as in theoriginal game). Speci�cally, we upper-bound the probability that Merlin's gain from the switchexceeds a parameter � as follows.px;� def= Pr(�(1);:::;�(t)) "max� (1t � tXi=1 vx(�; �(i))) � max� fE�(vx(�; �))g + �#� Pr(�(1);:::;�(t)) "9�2f0; 1gm s.t. �����1t � tXi=1 vx(�; �(i))� E�(vx(�; �))����� � �#� 2m � exp(�
(�2 � t));where the last inequality is due to combining the Union Bound with Cherno� Bound. Denoting byVx = max�fE�(vx(�; �))g the value of the original game, we upper-bound Eq. (3) by px;� + Vx + �.7

Using t = O((m+ k)=�2) we have px;� � 2�k, and thusV 0x def= E� "max� (1t tXi=1 vx(�; �(i)))# � max� fE�(vx(�; �))g + � + 2�k: (4)Needless to say, Eq. (3) is lower-bounded by Vx (since Merlin may just use the optimal move of theMA-game). In particular, using � = 2�k = 1=8 and assuming that Vx � 1=4, we obtain V 0x < 1=2.Thus, starting from an MA proof system for some set, we obtain an AM proof system for the sameset; that is, we just proved thatMA � AM.Extension. We note that the foregoing transformation as well as its analysis does not refer tothe fact that vx(�; �) is e�ciently computable from (�; �). Furthermore, it does not refer to thefact that vx(�; �) is in f0; 1g. Thus, we may apply the foregoing transformation to the any twoconsecutive Merlin-Arthur moves in any public-coin interactive proof, provided that all subsequentmoves are performed in t copies, where each copy corresponds to a di�erent �(i) used in the switch.That is, if the jth move is by Merlin then we can switch the players in the j and j + 1 moves,by letting Arthur take the jth move, sending (�(1); :::; �(t)), followed by Merlin's move, answering�. Subsequent moves will be played in t copies such that the ith copy corresponds to the moves�(i) and �. The value of the new game may increase by at most 2�k + � < 1=4, and so weobtain an \equivalent" game with the two steps switched. Schematically, acting on the middleMA (indicated in bold font), we can replace [AM]j1AMA[MA]j2 by [AM]j1AAM[MA]j2 , which(for j2 � 1) may be written as [AM]j1AAMMA[MA]j2�1 = [AM]j1AMA[MA]j2�1 (and for j2 = 0yields [AM]j1AAM = [AM]j1AM). In particular, we get A[MA]j+1 = A[MA]j = � � � = AMA = AM.Thus, for any constant f , we get AM(f) = AM(2).We stress that the foregoing switching process can be obtained only a constant number oftimes, because each time we apply the switch the length of messages increases by a factor oft =
(m). Thus, a di�erent approach is required to deal with a non-constant number of messages(i.e., unbounded function f).2.2 The augmented switch (from [MAMA]j to [AMA]jA)Sequential applications of the \MA-to-AM switch" allows for reducing the number of rounds by anyadditive constant. However, each time this switch is applied, all subsequent moves are performedt times (in parallel). That is, the \MA-to-AM switch" splits the rest of the game to t independentcopies, and thus this switch cannot be performed more than a constant number of times. Fortu-nately, Eq. (3) suggests a way of shrinking the game back to a single copy: just have Arthur selecti 2 [t] uniformly and have the parties continue with the ith copy.7 In order to avoid introducingan Arthur-Merlin alternation, the extra move of Arthur is postpone to after the following move ofMerlin (see Figure 2). Schematically (indicating the action by bold font), we replace MAMA byAMMAA=AMA (rather than replacing MAMA by AMAMA and obtaining no reduction in thenumber of move-alternations).The value of game obtained via the aforementioned augmented switch is given by Eq. (3), whichcan be written as E�(1) ;:::;�(t)[max� fEi2[t](vx(�; �(i)))g];which in turn is upper-bounded (in Eq. (4)) by Vx + � + 2�k. As in x2.1, the argument appliesto any two consecutive Merlin-Arthur moves in any public-coin interactive proof. Recall that in7Indeed, the relaxed form of Eq. (3) plays a crucial role here (in contrast to Eq. (2)).8

ArthurMerlin ArthurMerlin

. . .

The MAMA game The AMA game

(1)α1 α1
(t)

1

α1

α

β

β2

2

1β
(1)β β

α2

i

(t)
2 2

The value of the transcript (�1; �1; �2; �2) of the original MAMA-game is given by vx(�1; �1; �2; �2), whereas the value of the tran-script ((�(1)1 ; :::; �(t)1); (�1; �(1)2 ; :::; �(t)2); (i; �2)) of the new AMA-gameis given by vx(�1; �(i)1 ; �(i)2 ; �2).Figure 2: The transformation of MAMA into AMA.order to avoid the introduction of an extra Arthur move, we actually postpone the last move ofArthur to after the next move of Merlin. Thus, we apply the augmented switch to any block of fourconsecutive moves that start with a Merlin move, transforming the schematic sequence MAMAinto AMMAA=AMA (see Figure 2). The key point is that the moves that take place after the saidblock remain intact. Thus, we may apply the augmented \MA-to-AM switch" (which is actually an\MAMA-to-AMA switch") concurrently to disjoint segments of the game. Schematically, we canreplace [MAMA]j by [AMA]j = A[MA]j. Note that Merlin's gain from each such switch is upper-bounded by � + 2�k, but selecting t = eO(f(jxj)2 � m(jxj)) = poly(jxj) allows to upper-bound thetotal gain by a constant (using, say, � = 2�k = 1=8f(jxj)). We thus obtain AM(4f) � AM(2f+1),and Theorem 2 follows.References[1] L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System and a Hierarchyof Complexity Classes. Journal of Computer and System Science, Vol. 36, pp. 254{276, 1988.[2] M. Bellare, O. Goldreich, and E. Petrank. Uniform Generation of NP-witnesses using anNP-oracle. Information and Computation, Vol. 163, pages 510{526, 2000.[3] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithmsand Combinatorics series (Vol. 17), Springer, 1999.[4] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity orAll Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol. 38, No.3, pages 691{729, 1991. Preliminary version in 27th FOCS, 1986.[5] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive Proof Systems.Advances in Computing Research: a research annual, Vol. 5 (Randomness and Computation,9

S. Micali, ed.), pages 73{90, 1989. Extended abstract in 18th ACM Symposium on the Theoryof Computing, 1986.[6] S. Vadhan. A Study ofStatistical Zero-Knowledge Proofs. PhD Thesis, Department of Mathematics, MIT, 1999.Available from http://www.eecs.harvard.edu/�salil/papers/phdthesis-abs.html.

10

