Computational Complexity

Oded Goldreich
Department of Computer Science
Weizmann Institute of Science
Rehovot, ISRAEL.
odedOwisdom.weizmann.ac.il

March 19, 2000

1 Introduction

Computational Complexity (a.k.a Complexity Theory) is a central field of Com-
puter Science! with a remarkable list of celebrated achievements as well as a very
vibrant research activity. The field is concerned with the study of the intrinsic
complerity of computational tasks, and this study tend to aim at generality: It
focuses on natural computational resources, and considers the effect of limiting
these resources on the class of problems that can be solved.

The (half-century) history of Complexity theory has witnessed two main
research efforts (or directions). The first direction is aimed towards actually
establishing concrete lower bounds on the complexity of problems, via an anal-
ysis of the evolution (or effect) of the process of computation. Thus, in a sense,
the heart of this direction is a “low-level” analysis of computation. Most re-
search in circuit complexity (cf. [3]) and in proof complexity (cf. [2]) falls within
this category. In contrast, a second research effort is aimed at exploring the
connections among computational problems and notions, without being able to
provide absolute statements on either of the problems (or notions) being re-
lated. The current exposition focuses on the latter effort (or direction), which
may be viewed as a “high-level” study of computation. We present a few of the
interesting notions, results and open problems in this direction.

We list several reasons for our choice to focus on the “high-level” direction.
The first is the great conceptual significance of the know results; that is, as we

IThe theoretical aspects of Computer Science can be viewed as consisting of two disciplines:
the Theory of Computation (TOC) and the Theory of Programming (TOP). TOC is concerned
with the process of computation and its effect, whereas TOP is concerned with the coding of
programs that induce computations. Complexity Theory is but one field of TOC; other fields
concern the design and analysis of algorithms for specific computational problems that arise
from a huge variety of areas of mathematics and science.

shall see, many known results (and open problems) in this direction have an
appealing conceptual message, which can be appreciated also by non-experts.
Furthermore, these conceptual aspects may be explained without getting into
too much technical details. Consequently, such material is more suitable for an
exposition in a book of the current nature. Finally, we admit that the “high-
level” direction is within the author’s expertise, while this cannot be said about
the “low-level” direction.

2 Preliminaries

This exposition considers only finite objects, encoded by binary finite sequences
called strings. For a natural number n, we denote by {0,1}" the set of all n-
bit long strings. The set of all strings is denoted {0,1}*; that is, {0,1}* =
U,eN10, 1} For z € {0,1}*, we denote by |z| the length of x (ie., z €
{0, 1141,

At times, we associate {0,1}*x{0,1}* with {0, 1}*; the reader should merely
consider an adequate encoding (i.e., (€1 Tm, Y1+ Yn) € {0,1}* x{0,1}* may
be encoded by 12 - i X 01y191 - - - YnYn € {0,1}*). Typically, natural num-
bers will be encoded by their binary expansion so that b,_1---biby € {0,1}"

encodes the number 377" b, - 2°.

Computability: We assume that the reader is familiar with the notion of
a computation (cf. [13]). Loosely speaking, a computation is a process that
modifies an environment via repeated applications of a predetermine rule that
depends and effects only a (small) portion of the environment, called the active
zone. The distinction is between the a-priori bounded size of the active zone
and the a-priori unbounded size of the entire environment. Although each ap-
plication of the (computation) rule has a very limited effect, the effect of the
computational process induced by the rule (i.e., many successive applications of
the rule) may be very complex.

We are interested in the transformation of the environment effected by the
computational process (or computation). Typically, the initial environment to
which the computation is applied encodes an input string, and the end environ-
ment (i.e., at termination of the computation)? encodes an output string. We
consider the mapping from inputs to outputs induced by the computation; that
is, for each possible input z, we consider the output y obtained at the end of a
computation initiated with input x, and say that the computation maps input
x to output y. We also consider the number of steps (i.e., application of the
rule) taken by the computation (as a function of all possible inputs). The latter
function is called the time complexity of the computational process.

2We assume that when invoked on any finite initial environment, the computation halts
after a finite number of steps.

To rigorously define computation (and computation time) one needs to spec-
ify some model of computation; that is, provide a concrete definition of envi-
ronments and a class of rules that may be applied to them. Such a model
corresponds to an abstraction of a real computer (be it a PC, mainframe or
network of computers); however a simpler abstract model that is commonly
used is the one of Turing machines. We stress that most results in the theory of
computation hold regardless of the specific computational model used, as long
as it is “reasonable”. This refers both to the class of functions that can be com-
puted, and to the class of functions (resp., problems) that can be “efficiently”
computed (resp., solved).

Efficient Computability: We associate efficient computations with compu-
tations that terminate within time polynomial in the length of their inputs.
The functional treatment of running-time (i.e., running-time as function of the
input length) is important for an easier development of the theory of efficient
computation, but such theories could also be developed for fixed input-length
(alas at much greater effort). Polynomials are viewed as the canonical class of
slowly-growing functions that enjoy closure properties relevant to computation.
Specifically, the class is closed under addition, multiplication and composition.
The growth-rate of polynomials allows to consider as efficient all procedures
that have practically admissible time complexity, and the closure properties of
polynomials offer robustness of the notion of efficient computation.

Definition 1 (polynomial-time) We say that a Turing machine M is polynomial-
time if there exists a polynomial p so that for every x € {0,1}*, when invoked
on input x, machine M halts after at most p(|z|) steps.

We stress again that the specific choice of Turing machines as a model of com-
putation is immaterial, and polynomial-time Turing machines correspond to
computations that can be carried out on a real computer within time polyno-
mial in the input length.

What is being Computed? The above discussion has implicitly referred to
computations and Turing machines as means for computing functions. Specifi-
cally, a Turing machine M computes the function fys : {0,1}* — {0,1}* defined
by fu(z) = y if when invoked on input machine M halts with output y. How-
ever, computations can also be viewed as means for “solving problems” or mak-
ing decisions. We may say that M solves a search problem R C {0,1}* x {0,1}*
if for every (z,y) € R it holds that (z, far(z)) € R; that is, given an instance x
that has a valid solution y (i.e., (z,y) € R), machine M finds some valid solution
y' for z (i.e., (z,y") € R). We say that M solves a decision problem S C {0,1}*
if it holds that fy;(xz) = 1 if and only if z € S; that is, given an instance z,
machine M determines whether x € S or not.

In the rest of this exposition we associate the machine M with the function
fu computed by it; that is, we write M (x) instead of fus(x).

3 The P versus NP Question

Our focus is on the concept of efficient computations, and on the question of
which functions (resp., problems) can be efficiently computed (resp., efficiently
solved). In terms of decision problems, a conservative approach to computing
devices associates efficient computations with the complexity class P (where
P stands for Polynomial-time). Jumping ahead, we note that a more liberal
approach (pursued in Section 5) allows the computing devices to “toss coins”
(be randomized).

Definition 2 (The complexity class P) A decision problem S C {0,1}* is
solvable in polynomial-time if there exists a deterministic polynomial-time Turing
machine M so that M (z) = 1 if and only if x € S. The class of search problems
that are solvable in polynomial-time is denoted P.

Similarly, we can define the class of functions (resp., search problems) that are
computable (resp., solvable) in polynomial-time. Clearly, we should consider
only polynomially-bounded functions and relations, where a function f (resp.,
relation R) is polynomially-bounded if there exists a polynomial p so that |f(z)| <

p(|z]) holds for every x (resp., |y| < p(Jz|) holds for every (z,y) € R). An

important fact is that for every polynomially-bounded relation R, if Sgr def

{(z,y") : " s.t. (z,y'y") € R} is in P then R is solvable in polynomial-time.
The complexity class AP is associated with search problems having solutions
that, once given, can be efficiently tested for validity. That is, a polynomially-
bounded search problem R C {0,1}* x {0,1}* is of the NP-type if one can decide
membership in R in polynomial-time. Thus, the following fundamental question

arises:

Open Problem 3 (P versus NP — search version) Is every NP-type search
problem solvable in polynomial-time?

That is, if there exists an efficient way to decide whether a given instance-
solution pair is valid then does it follow that there exists an efficient way to
find a valid solution to a given instance? The P versus NP Question has also a
fundamental formulation in terms of decision problems:

Definition 4 (The complexity class N'P) A set S is in NP, if there exists
a polynomially-bounded relation Rs C {0,1}* % {0,1}* such that Rs is in P and
x € S if and only if there exists a y such that (z,y) € Rs. Such a y is called a
proof of membership of z € S.

Thus, NP consists of the class of sets for which there exist short proofs of
membership that can be efficiently verified.?> Recall that P is the class of sets
for which membership can be efficiently decided (without being given a proof).
Thus, the P versus NP Question can be casted as follows: does the ezistence of
an efficient verification procedure for proofs of membership in a set imply the
ability to efficiently decide membership in the set?

Open Problem 5 (P versus NP — decision version) Is NP equal to P?

That is, do proofs help or is it the case that one can find out the truth by oneself
essentially as easily as one can be convinced of the fact by a proof? Problems 3
and 5 are in fact equivalent:

Fact 6 Every NP-type search problem is solvable in polynomial-time if and only
if P=NP.

Proof: Suppose that equality holds for the search version and let S € N'P.
Then Rg (as in Definition 4), being an NP-type search, is solvable in polynomial-
time, and it follows that S € P. Suppose, on the other hand, that NP = P,
and let R be an NP-type search. Then the set Sg (as defined above) is in NP
and so in P, and it follows that R is solvable in polynomial-time. [l

The Big Conjecture: It is widely believed that P # NP, and settling this
conjecture is certainly the most intriguing open problem in Computer Science.
The P # NP Conjecture is supported by our intuition regarding its two for-
mulations: we believe that solving problems is harder than verifying a given
solution, and that proofs do help. Empirical evidence towards the conjecture
is given by the fact that literally thousands of NP-type problems, coming from
a wide variety of mathematical and scientific disciplines, are not known to be
polynomial-time solvable in spite of extensive research attempts aimed at pro-
viding efficient solving procedures for them. A famous example is the Integer
Factorization problem: given a natural number, find its prime factorization.

Another Big Question: Assuming that P # AP, it is not clear whether
the existence of an efficient verification procedure for proofs of membership in
a set implies the the existence of an efficient verification procedure for proofs of

non-membership in that set. That is, let coNP denote the class of sets that are

complements of sets in NP (i.e., coN'P Lef {{0,1}*\ S : S € N'P}).

Open Problem 7 (NP versus coNP) Is NP equal to coN'P?

It is widely believed that coN'P # N'P. (Indeed, this implies P # NP.)

3In some sources the class NP is defined via a fictitious computing device called a non-
deterministic machine, and NP stands for Non-deterministic Polynomial-time.

4 NP-Completeness

For the current discussions, it is more convenient to view decision problems as
Boolean functions defined over the set of strings (i.e., S : {0,1}* — {0,1}) rather
than as sets of strings (i.e., S C {0,1}*). A general notion of (polynomially-
time) reducibility among computational problems is obtained by considering a
(polynomially-time) machine for solving one problem (e.g., computing a function
f) that may ask queries to another problem (e.g., to a function g).* Below, we
cousider a restricted notion of (polynomially-time) reducibility in which the
machine makes a single query and outputs the answer it obtains.

Definition 8 (NP-completeness) A function f is polynomially-reducible to a
function g if there exist a polynomial-time computabdle function h so that f(z) =
g(h(x)) for every x € {0,1}*. Specifically, in case of decision problems, the set
S is polynomially-reducible to the set S' if it holds that x € S if and only if
h(z) € S'. A decision problem S is N'P-complete if S is in NP and every
decision problem in NP is polynomially-reducible to S.

Thus, N'P-complete (decision) problems are “universal” in the sense that pro-
viding a polynomial-time procedure for solving any of them will immediately
imply polynomial-time procedures for solving any problem in A/P (and in par-
ticular all N'P-complete decision problems). Furthermore, in a sense, each of
these (NP-complete) problems “efficiently encodes” all the other problems, and
in fact all NP-type search problems. For example, the problem of integer factor-
ization can be “efficiently encoded” in any N'P-complete problem (which may
have nothing to do with integers).> Thus, at first glance it seems very surprising
that NP-complete problems exist at all.

Theorem 9 There exist N'P-complete decision problems. Furthermore, the fol-
lowing decision problems are N'P-complete:

SAT : Given a propositional formula, decide whether it is satisfiable.

3-Coloring: Given a simple graph, decide whether it is 3-colorable.”

4Such a machine is called an oracle machine, and in the case above we say that it computes
the function f by making queries to the oracle (function) g so that for query g the answer is
9(q).

5In particular, a polynomial-time decision procedure for any of the problems below yields
a polynomial-time algorithm for factoring integers.

%The problem remains NP-complete even when instances are restricted to be in Conjunc-
tive Normal Form (CNF), and even when each clause has exactly 3 literals. In this case, the
input is a set of clauses, each consisting of 3 literals, where each literal is either a Boolean vari-
able or its negation. The question is whether there exists a truth assignment to the variables,
so that each clause contains at least one literal that evaluates to true.

"The input consists of a set of unordered pairs, called edges, over a finite set V' (of vertices).
The question is whether there exists a mapping ¢ : V' — {1, 2, 3} so that ¢(u) # ¢(v) for every
edge (u,v).

Subset Sum: Given a sequence of integers ay,...,a, and b, decide whether
there exists a set I so that Ziel a; = b.
The decision problems mentioned above are but three examples out of literally
thousands of N"P-complete problems, coming from a wide variety of mathemat-
ical and scientific disciplines. (Hundreds of such problems are listed in [4].)
Assuming that P # NP, no N'P-complete problem has a polynomial-time
decision procedure. Consequently, the corresponding NP-type search problem
(associated with the relation in Definition 4), cannot be solve in polynomial-
time.

5 Randomized Computation

As hinted in Section 3, so far our approach to computing devises was somewhat
conservative: we thought of them as (repeatedly) executing a deterministic rule.
A more liberal approach pursued in this section considers computing devices
that use a probabilistic (or randomized) rule. We still focus on polynomial-
time computations, but these are probabilistic polynomial-time computations.
Specifically, we allow probabilistic rules that choose uniformly among two prede-
termined possibilities, and observe that the effect of more general probabilistic
rules can be efficiently approximated by a rule of the former type. We comment
that probabilistic computations are believed to take place in real-life computa-
tions that are employed in a variety of applications (e.g., sampling, simulations,
etc.).8

Rigorous models of probabilistic machines are defined by natural extensions
of the basic model; for example, we will talk of probabilistic Turing machines.
Again, the specific choice of model is immaterial; as long as it is “reasonable”.
We consider the output distribution of such probabilistic machines on fixed
inputs; that is, for a probabilistic machine M and string = € {0,1}*, we denote
by M (z) the distribution of the output of M on input x, where the probability is
taken over the machine’s random moves. Considering decision problems, three
natural types of machines arise:

1. Machines that never err, but may output a special don’t know symbol
(denoted 1)?;

2. Machines with one-sided error probability (see below);

3. Machines with two-sided error probability.

8In what sense do these applications really utilize random moves is a different question.
The point is that the programmers and users treat these computations as if they are taking
random moves. We further discuss this issue in Section 6.1.

9The latter relaxation is essential, or else one may obtain an equivalent deterministic
machine by merely fixing all choices of the probabilistic machine (e.g., to be all 1).

Of course, the error probability needs to be bounded (or else the definition is
meaningless). We focus on probabilistic polynomial-time machines, and on error
probability that may be reduced to a “negligible” amount by polynomially many
independent repetitions. This gives rise to natural complexity classes such as
the following.

Definition 10 (ZPP, RP and BPP) Let S : {0,1}* — {0,1} be a decision
problem, and M be a probabilistic polynomial-time machine.

1. Suppose that for every x € {0,1}* it holds that M(z) € {S(x),L} and
Pr[M(z) = S(z)] > 1. Then S € ZPP.

2. Suppose that for every x € {0,1}* it holds that S(z) = 1 implies Pr[M (z) =
1] > L and S(x) = 0 implies Pr[M(z) = 0] =1. Then S € RP.

Similarly, if S(z) = 1 implies Pr[M(z) = 1] = 1 and S(z) = 0 implies
Pr[M(z) = 0] > 5 then S € coRP.

1
2

3. If for every x € {0,1}* it holds that Pr[M(z) = S(z)] > 2 then S € BPP.

Indeed, coRP = {{0,1}*\S : S € RP}, and ZPP = RP N coRP. We
comment that, in all cases, the error (or don’t know) probability can be reduced
to, say, exp(—|z|) by invoking M for O(|z|) times, where in each run M utilizes
independent random choices.

A fundamental question that comes to mind refers to the effect of random-
ization on the computing power. Since P C ZPP C RP C BPP, the real
question is whether these inclusions are strict. In Section 6 we discuss evidence
to the contrary, still the following is a fundamental open problem:

Open Problem 11 Does P = BPP?

The set of prime numbers is known to be in ZPP. It is also known that
the Extended Riemann Hypothesis (ERH) implies that the set of primes is in
P, but an analogue unconditional result is not known. The current state of
knowledge (by which a specific problem is in P if either ERH holds or a general
computational conjecture holds but not unconditionally) seems fascinating.

5.1 Counting at Random

An interesting question regarding NP-type search problems is to determine how
many solutions does a specific instance have. Clearly, counting the number of
solutions (even approximately) allows to determine whether a solution exists
at all. For example, approximately counting the number of satisfying assign-
ments to a given propositional formula allows to determine whether the formula
is satisfiable. Interestingly, approximately counting the number of satisfying
assignments is not significantly harder than deciding if such exists:

Theorem 12 There exists a probabilistic polynomial-time oracle!® machine that,
on input a formula 1 and oracle access to SAT, outputs an integer that with
probability at least % is within a factor of 2 of the number of satisfying assign-
ments of .

We comment that an analogous statement holds for any A“P-complete problem,
and that it is not known whether a similar approximation can be obtained by
a deterministic polynomial-time oracle machine. The approximation factor can
be reduced to 1+ |¢| ¢, for any fixed constant c. However, it is believed that an
eract count cannot be obtained via a probabilistic polynomial-time oracle with
oracle access to SAT. Let us phrase this too as an important open problem.

Open Problem 13 Does there exist a probabilistic polynomial-time oracle ma-
chine that, on input a formula ¥ and oracle access to SAT, outputs an integer
that with probability at least % equals the number of satisfying assignments of V.

Turning back to what is known, we mention that a machine as in Theorem 12
can generate a uniformly distributed satisfying assignment, provided that such
exists: There exists a probabilistic polynomial-time oracle machine that, on input
a satisfiable formula ¥ and oracle access to SAT, outputs a uniformly distributed
satisfying assignment to .

5.2 Probabilistic Proof Systems

The glory attributed to the creativity involved in finding proofs, makes us forget
that it is the less glorified process of verification that gives proofs their value.
Conceptually speaking, proofs are secondary to the verification procedure; in-
deed, proof systems are defined in terms of their verification procedures.

The notion of a verification procedure assumes the notion of computation and
furthermore the notion of efficient computation. This implicit notion is made
explicit in the definition of A'P, in which efficient computation is associated
with (deterministic) polynomial-time procedures. Let us restate NP as a class
of proof systems.

Definition 14 (NP-proof systems) Let S C {0,1}* andv : {0,1}*x{0,1}* —
{0,1} be a function so that x € S if and only if there exists a w € {0,1}* such
that v(z,w) = 1. If v is computable in time bounded by a polynomial in the
length of its first argument then we say that S is an NP-set and that v defines
an NP-proof system.

The formulation of NP-proofs restricts the “effective” length of proofs to be
polynomial in length of the corresponding assertions (since the running-time of
the verification procedure is restricted to be polynomial in the length of the

10Gee Footnote 4. Here, upon making any query @' the machine is told whether ¢’ is
satisfiable or not.

assertion). However, longer proofs may be allowed by padding the assertion
with sufficiently many blank symbols. So it seems that NP-proofs give a sat-
isfactory formulation of proof systems (with efficient verification procedures).
This is indeed the case if one associates efficient procedures with deterministic
polynomial-time procedures. However, we can gain a lot if we are willing to take
a somewhat non-traditional step and allow probabilistic verification procedures.
In particular:

e Randomized and interactive verification procedures, giving rise to interac-
tive proof systems, seem much more powerful (i.e., “expressive”) than their
deterministic counterparts. In particular, such interactive proof systems
exists for any set in coNP (e.g., for the set of unsatisfied propositional
formula), whereas it is widely believed that some sets in coNP do NOT
have NP-proof systems (i.e., NP # coNP).

Loosely speaking, an interactive proof system is a game between a com-
putationally bounded verifier and a computationally unbounded prover
whose goal is to convince the verifier of the validity of some assertion.
Specifically, the verifier is probabilistic and its time-complexity is poly-
nomial in the length of the assertion. It is required that if the assertion
holds then the verifier always accepts (when interacting with an appropri-
ate prover strategy). On the other hand, if the assertion is false then the
verifier must reject with probability at least %, no matter what strategy
is being employed by the prover. Thus, a “proof” in this context is not
a fixed and static object, but rather a randomized (dynamic) process in
which the verifier interacts with the prover. Intuitively, one may think of
this interaction as consisting of “tricky” questions asked by the verifier,
to which the prover has to reply “convincingly”.

e Such randomized procedures allow the introduction of zero-knowledge proofs
which are of great theoretical and practical interest. Furthermore, under
reasonable complexity assumptions (such as those in Section 6), every set
in NP has a zero-knowledge proof system.

Loosely speaking, zero-knowledge proofs are interactive proofs that yield
nothing (to the verifier) beyond the fact that the assertion is indeed valid.
That is, whatever the verifier can efficiently compute after interacting with
a zero-knowledge prover, can be efficiently computed from the assertion
itself (without interacting with anyone). Thus, zero-knowledge proofs ex-
hibit an extreme contrast between being convinced of the validity of a
statement and learning anything in addition (while receiving such a con-
vincing proof).

e NP-proofs can be efficiently transformed into a (redundant) form that
offers a trade-off between the number of locations examined in the NP-
proof and the confidence in its validity. The latter redundant proofs are
called probabilistically checkable proofs (or pcp).

10

Loosely speaking, a PCP system consists of a probabilistic polynomial-time
verifier having access to an oracle which represents a proof in redundant
form. Typically, the verifier accesses only few of the oracle bits, and
these bit positions are determined by the outcome of the verifier’s coin
tosses. Again, it is required that if the assertion holds then the verifier
always accepts (when given access to an adequate oracle); whereas, if the
assertion is false then the verifier must reject with probability at least %,
no matter which oracle is used.

It turns out that any set in AP has a PCP system in which the verifier
asks only a constant number of (Boolean!) queries.

In all the abovementioned types of probabilistic proof systems, explicit bounds
are imposed on the computational complexity of the verification procedure,
which in turn is personified by the notion of a verifier. Furthermore, in all
these proof systems, the verifier is allowed to toss coins and rule by statistical
evidence. Thus, all these proof systems carry a probability of error; yet, this
probability is explicitly bounded and, furthermore, can be reduced by successive
application of the proof system.

6 The Bright Side of Hardness

The conjecture by which P # AP means that there are computational problems
of great interest that are inherently intractable. These are bad news, but there
is a bright side to them: computational hardness (alas in a stronger form than
known to follow from P # A'P) has many fascinating conceptual consequences
as well as important practical applications. Specifically, in accordance with
our intuition, we shall assume that not all efficient processes can be efficiently
reversed (or inverted). Furthermore, we shall assume that hardness to invert is
a typical (rather than pathological) phenomena for some efficiently-computable
functions. That is, we assume that one-way functions (as defined below) do
exist.

Definition 15 (One-Way Functions) A function f:{0,1}*—{0,1}* is called
one-way if the following two conditions hold

1. easy to compute: the function f is computable in polynomial-time.

2. hard to invert: for every probabilistic polynomial-time machine, M, every
positive polynomial p(-), and all sufficiently large n’s

R S
Pr, [MA", fa) € (f@)] < o

where x is uniformly distributed in {0,1}™.

11

For example, the widely believed conjecture by which integer factorization is
intractable for a noticeable fraction of the instances implies the existence of
one-way functions. On the other hand, if P = AP then no one-way functions
exist. An important open problem is whether P # NP implies the existence of
one-way functions.

Below, we discuss the connection between computational difficulty — in the
form of one-way functions — on one hand, and two important computational
theories on the other hand. Specifically, we refer to the theory of pseudoran-
domness and to the theory of cryptography. A fundamental concept, which is
pivotal to both these theories, is the concept of computational indistinguisha-
bility. Loosely speaking, two objects are said to be computationally indistin-
guishable if no efficient procedure can tell them apart. Here objects will be
probability distributions'! over bit strings rather than individual strings. We
actually consider probability ensembles each being an infinite sequence of dis-
tributions, where each distribution assigns positive probability weight only to

strings of length polynomial in the index of the distribution (within the ensem-
ble).

Definition 16 (Computational Indistinguishability) The probability en-
sembles {Pn}, N and {Qn}, N are called computationally indistinguishable if
for every probabilistic polynomial-time machine, M, every positive polynomial
p(-), and all sufficiently large n’s

PrM (1", Py) =1] - PrM(1", Q) =1]| < ——
p(n)
Computational indistinguishability is a (strict) coarsening of statistical indis-
tinguishability. We focus on the non-trivial cases of pairs of ensembles that are
computationally indistinguishable although they are statistically very different.
It is easy to show that such pairs do exist, but we care about pairs of ensembles
that are efficiently samplable.!? Interestingly, such pairs exists if and only if
one-way functions exist.

6.1 Pseudorandomness

Loosely speaking, a pseudorandom generator is an efficient (deterministic) pro-
cedure that stretches short random strings into longer strings that are compu-
tationally indistinguishable from long random strings.

Definition 17 (pseudorandom generators) A deterministic polynomial-time
machine G is called a pseudorandom generator if there exists a monotonely in-

11We stress that when we talk of distributions we mean discrete probability distributions
having a finite support that is a set of strings.

12The ensemble {P"}neN is efficiently samplable if there exists a a probabilistic polynomial-
time machine M so that M(1™) and P, are identically distributed, for every n.

12

creasing function, £: N — N, so that the following two probability ensembles,

denoted {G}, N and {R.},cN, are computationally indistinguishable.

1. Distribution G, is defined as the output of G on a uniformly selected n-bit
string.

2. Distribution R,, is defined as the uniform distribution over {0,1}4(™).

The function £ is called the stretch measure of the generator.

That is, pseudorandom generators yield a particularly interesting case of com-
putational indistinguishability: For every n, the distribution G, is efficiently
samplable using less that |G,,| truly random coins, and yet it is computationally
indistinguishable from the uniform distribution over |G, |-bit long strings (i.e.,
the distribution R,,).

Theorem 18 Pseudorandom generators exist if and only if one-way functions
exist. Furthermore, in case pseudorandom generators exist they exists for any
stretch measure that is a polynomial.

Thus, in a sense, computational difficulty can be converted into randomness,
and vice versa. Furthermore, the proof of Theorem 18 links computational in-
distinguishability to computational unpredictability, hinting that computational
difficulty (of predicting an information-theoretically determined event) is linked
to randomuess (or to appearance of being random).

Using pseudorandom generators. Pseudorandom generators allow to shrink
the amount of “true randomness” used in any efficient randomized procedure.
This is done by feeding the procedure with the output of a pseudorandom gener-
ator invoked on a truly random shorter string. The modified procedure needs a
much smaller amount of “true randomness” but essentially maintains the func-
tionality of the original procedure.!® Still we need to start with some amount of
“true randomness”, and the question is from where to obtain it. The answer is
that “true randomness” (or something that appears so) may be obtained from
nature; that is, by sampling some physical phenomena. Indeed, such samples
are not uniformly distributed over the set of strings of specific length, yet if they
contain enough entropy then almost perfect randomness can be (efficiently) ex-
tracted from them.!4

13 Using seemingly stronger notions of pseudorandom generators, one may shrink the amount
of “true randomness” to an even lower level, at which it is feasible to deterministically scan
all possibilities. Such seemingly stronger pseudorandom generators imply that BPP = P, and
exist under seemingly stronger (and yet very plausible) conjectures regarding computational
difficulty.

14The construction of such randomness extractors is indeed a very active research direction,
and the currently known results (although not optimal) are very satisfactory.

13

Pseudorandom functions. Pseudorandom generators allow one to efficiently
generate long pseudorandom sequences from short random seeds. Pseudoran-
dom functions are even more powerful: they allow efficient direct access to a
huge pseudorandom sequence (which is infeasible to scan bit-by-bit). In other
words, pseudorandom functions can replace truly random functions in any effi-
cient application (e.g., most notably in cryptography). That is, pseudorandom
functions are indistinguishable from random functions by any efficient procedure
that may obtain the function values at arguments of its choice. We refrain from
presenting a precise definition, but do mention a central result: Pseudorandom
functions can be constructed given any pseudorandom generator.

6.2 Cryptography

The assumption that one-way functions exists is a necessary and sufficient con-
dition for much of modern cryptography. Here we focus on the basic tasks of
providing secret and authenticated communication. Ignoring several important
issues, these tasks are reduced to the construction of encryption and signature
schemes.

Encryption schemes. Such schemes are supposed to provide secret commu-
nication between parties in a setting in which these parties communicate over a
channel that may be eavesdropped by an adversary. There are two cases differ-
ing by whether the communicating parties have agreed on a common secret prior
to the communication or not. In both cases, the encryption scheme consists of
three probabilistic polynomial-time procedures: key generation, encryption (de-
noted E), and decryption (D). Loosely speaking, on input a security parameter
n (in unary), the key-generation outputs a pair of corresponding encryption
and decryption keys, (e,d), so that for every string € {0,1}*, it holds that
Dy(E.(x)) = x, where E.(x) (resp., D4(y)) denotes the output of the encryption
(resp., decryption) procedure on input (e,z) (resp., (d,y)).

The difference between the two cases is in the way the scheme is employed
and this will be reflected in the definition of security. In the first case, known as
the private-key case, a set of mutually trustful parties employ the key-generation
process, prior to the actual communication, obtaining a pair of keys (e, d). We
stress that, in this case, the encryption-key e is known to all trusted parties and
only to them. Later, each trusted party may encrypt messages by applying E.,
and retrieve them (i.e., decrypt) by applying D,4. The information available to
the adversary, in this case, is a sequence of encrypted messages sent over the
channel, using a fixed encryption-key unknown to it. (We stress that the total
amount of information encrypted using this encryption-key may be much larger
than the length of the key, and so perfect information theoretic secrecy is not
possible.)

In the second case, known as the public-key case, the receiver invokes the key-
generation process, publicizes the encryption-key e (but not the decryption-key

14

d), and the sender uses e to generate encryptions as before. This allows every-
body (not only parties that the receiver trusts) to send encrypted messages to
the receiver, but in such a case also the adversary knows the encryption-key
e. Thus, the information available to the adversary in this case is a sequence
of encrypted messages sent over the channel, using a fixed encryption-key that
is also known to it. In both cases, security amounts to asserting that the ad-
versary does not learn anything from the information available to it. That is,
whatever the adversary can efficiently compute from the public information, can
be efficiently computed from scratch.!®

Private-key encryption schemes exist if and only if one-way functions exists.'®
Public-key encryption schemes can be constructed based on a seemingly stronger
assumption; yet this assumption is also implied by the abovementioned conjec-
ture regarding the intractability of integer factorization.

Signature schemes. Here too we have two cases corresponding to whether
a certain key (here it is the verification-key) is public or not. In both cases,
the scheme consists of three probabilistic polynomial-time procedures: key gen-
eration, signing (S), and verification (V). On input a security parameter n
(in unary), the key-generation outputs a pair of corresponding signing and
verification keys, (s,v), so that for every string « € {0,1}*, it holds that
Vo(z, Ss(x)) = 1, where Sy(z) (resp., Vy(z,y)) denotes the output of the signing
(resp., verification) procedure on input (s,z) (resp., (v,z,y)).

The difference between the two cases is in the way the scheme is employed
and this will be reflected in the definition of security. In the private-key case
(a.k.a message-authentication), the scheme is used to authenticate messages
sent among mutually trustful parties that communicate over a channel that
may be subject to message corruptions (and/or message insertion/deletion).
It is assumed that the parties have invoked the key-generation process prior
to the communication, obtaining a signing-key s (which may w.l.o.g equal the
verification-key v). Subsequently, the sender authenticates each message x by
appending S,(z) to it, and the receiver verifies the authenticity by applying V.
In the public-key case, the scheme is used in order to allow universal verification
of commitments done by parties. Towards this end, each party invokes the

15The actual formulation refers to the notion of computational indistinguishability. It as-
serts that for every distribution ensemble of the first type (representing what the aversary
computes from the information available to it) there exists a distribution ensemble of the
second type (representing what can be computed from scratch) so that the two ensembles are
computationally indistinguishable. Note that in the private-key case, we may assume without
loss of generality that e = d; whereas in the public-key case, d must be hard to compute from
e.
16Specifically, a private-key encryption scheme may be constructed as follows. The key-
generation procedure consists of selecting a pseudorandom function f : {0,1}" — {0,1}",
which serves both as the encryption and decryption key. Subsequently, each message €
{0,1}™ is encrypted by uniformly selecting r € {0,1}" and sending (r, f(r)®z), where @
denotes the bit-by-bit exclusive-or of equal-length strings.

15

key-generation process, deposits the resulting verification-key v on a trusted
public-file, and keeps the corresponding signing-key s secret. When the user
later wishes to commit to a document, it applies S, to it, and this commitment
is universally verifiable with respect to its public verification-key.

In both cases, security amounts to asserting that it is infeasible for anybody
given the public information (but not having the signing-key), to produce a valid
signature (i.e., a commitment w.r.t the verification-key) to a document for which
such a commitment was not supplied before by a party holding the signing-key.
That is, forgery should be infeasible even if the forger may ask the legitimate
user to sign documents of its choice; after such an attack the forger may indeed
present valid signatures to all documents it has requested a signature for, but
not for any other document. (We stress that in case of public-key schemes this
is required to hold even if the forger has the verification-key.)

Private-key signature schemes exist if and only if one-way functions exists.!”
Public-key signature schemes can be constructed based on the same assumption.

Beyond encryption and signature schemes. We stress that cryptography
encompasses much more than methods for providing secret and authenticated
communication. In general, cryptography is concerned with the construction
of schemes that maintain any desired functionality under malicious attempts
aimed at making them deviate from their prescribed functionality. Loosely
speaking, a secure implementation of a multi-party functionality is a multi-party
protocol in which the impact of malicious parties is effectively restricted to
applying the prescribed functionality on inputs chosen by the corresponding
parties. A major result in the area states that under plausible assumptions
regarding computational difficulty, any efficiently computed functionality can be
securely implemented.

7 The Tip of an Iceberg

Even within the topics discussed above, many important results were not dis-
cussed. Some of these omissions will amazed experts in the field; but in view of
space limitations we had no choice but to omit many interesting results regard-
ing the above topics. Furthermore, other important topics and even wide areas
were not mentioned at all. We briefly discuss some of these topics and areas.

Relaxing the requirements. The “P versus N'P” question, as well as much
of the discussion in Sections 2—4, focuses on a simplified view of the goals of
(efficient) computations. Specifically, we have insisted on efficient procedures
that always give the exact answer. In practice, one may be content with efficient

17Specifically, a private-key signature scheme may be constructed as follows. The key-
generation procedure consists of selecting a pseudorandom function f : {0,1}"* — {0,1}".
Subsequently, each message © € {0,1}" is signed by the value f(z).

16

procedures that “typically” give an “approximate” answer. Indeed, both terms
in quotes require clarification:

1. Average-case complexity. Indeed, one may talk of procedures that answer
correctly on a large fraction of the instances, but such a discussion assumes
that all instances are equally interesting for practice, which is typically not
the case.'® A more appealing theory of average-case complexity must con-
sider a wide class of “simple distributions” and measure the performance
of procedures when instances are selected according to such distributions
(cf. [5]). We warn that allowing arbitrary distributions would collapse
average-case complexity to worst-case complexity (as discussed in Sec-
tions 2—4). A reasonable choice of a class of “simple distributions” is the
class of distributions that can be efficiently sampled from.

2. Approzimation. What do we mean by an approximation to a computa-
tional problem? There are many possible answers, and their meaningful-
ness depends on the specifics of the application. For example, in case of
search problems, we may be satisfied with a solution that is close to be
valid; e.g., for a search problem R C {0,1}* x {0,1}*, given = we may
be content with a gy’ that differs in relatively few bits from a string y sat-
isfying (z,y) € R. More generally, we may care about a payoff function
7w :{0,1}* x {0,1}* so that given z one should find a y with maximum
(or close to maximum) value for m(z,y). (See [8].) A natural notion of
approximation is applicable also to decision problems (i.e., determining
set membership): given an instance z we may ask how close is z (under
some relevant distance measure) to an instance in the set (cf. [6]).

Other complexity measures. So far, we have focused on the running-time
of procedures, which is arguably the most important complexity measure. How-
ever, other complexity measures such as the amount of work-space consumed
during the computation are important too (cf. [13]). Another important issue is
to what extent can a computation be performed in parallel; that is, speeding-up
the computation by running — concurrently — several computing devices (which
may exchange information during the course of computation). In addition to
parallel-time, a fundamentally important complexity measure in such a case is
the number of (parallel) computing devices used (cf. [10]).

Other notions of computation. A setting related to parallel computing is
the one of distributed computing, with the difference being that in the latter
case only parts of the input are given to each computing device. Furthermore,

18We mention that the formulation of one-way function does refer to one simple distribution
of instances, which may be uniform in case the function is 1-1 over the set of strings of any
length. However, there we deal with artificially generated (hard) instances, rather than with
problem instances that arise from natural applications.

17

in typical studies one wishes to minimize the amount of communication between
these devices (and certainly prohibit communicating the entire input among the
devices). Consequently, measures of communication complexity arise and play a
major role (cf. [1]). Communication complexity is also considered as a measure
of the “complexity” of functions (cf. [12]), but in these abstract studies com-
munication proportional to the length of the input is not ruled out (but rather
appears frequently). An altogether different type of computational problems
are investigated in the context of computational learning theory (cf. [11]).

Major areas we have ignored. As stated in the introduction, our exposition
totally ignores two major areas of complexity theory: circuit complexity (cf. [3])
and proof complexity (cf. [2]). The activity in these areas is aimed towards
developing proof techniques that may be used towards the resolution of the
big problems (such as P vs NP), but the current achievements — though very
impressive — seem far from reaching this goal. Current crown-jewel achievements
in these areas take the form of tight (or strong) lower bounds on the complexity
of computing (resp., proving) “relatively simple” functions (resp., claims) in
restricted models of computation (resp., proof systems).

8 Concluding remarks

We hope that this ultra-brief survey conveys the fascinating flavor of the con-
cepts, results and open problems that dominate the field of computational com-
plexity. We believe that the coming century will witness even more exciting
developments in this field, and urge the reader to try to contribute to them.

Bibliographic Notes: Providing even a minimal set of bibliographic notes
for the material discussed in the main part of this exposition would have resulted
in an extensive bibliography, which we cannot afford due to space limitations.
Instead, we merely refer the reader to books containing such bibliographic notes:
For Sections 24, see [9, 4]. For Sections 5 and 6, see [7].

References

[1] H. Attiya and J. Welch: Distributed Computing: Fundamentals, Simula-
tions and Advanced Topics. McGraw-Hill Publishing Company, London,
1998.

[2] P. Beame and T. Pitassi: Propositional Proof Complexity: Past, Present,
and Future. In Bulletin of the European Association for Theoretical Com-
puter Science, Vol. 65, June 1998, pp. 66—89.

18

3]

[4]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

R. Boppana and M. Sipser: The complexity of finite functions. In Handbook
of Theoretical Computer Science: Volume A— Algorithms and Complexity,
J. van Leeuwen editor, MIT Press/Elsevier, 1990, pp. 757-804.

M.R. Garey and D.S. Johnson: Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, New York,
1979.

O. Goldreich: Notes on Levin’s Theory of Average-Case Complexity. In
ECCC, TR97-058, 1997.

O. Goldreich: Combinatorial Property Testing — A Survey. In DIMACS
Series in Disc. Math. and Theoretical Computer Science, Vol. 43 (Ran-
domization Methods in Algorithm Design), 1998.

O. Goldreich: Modern Cryptography, Probabilistic Proofs and Pseudoran-
domness. Algorithms and Combinatorics series (Vol. 17), Springer, 1999.

D. Hochbaum (ed.): Approzimation Algorithms for NP-hard Problems.
PWS, 1996.

J.E. Hopcroft and J.D. Ullman: Introduction to Automata Theory, Lan-
guages and Computation, Addison-Wesley, 1979.

R.M. Karp and V. Ramachandran: Parallel Algorithms for Shared Memory
Machines. In Handbook of Theoretical Computer Science, Vol A: Algorithms
and Complezity, 1990.

M.J. Kearns and U.V. Vazirani: An introduction to Computational Learn-
ing Theory, MIT Press, 1994.

E. Kushilevitz and N. Nisan: Communication Complexity, Cambridge Uni-
versity Press, 1996.

M. Sipser: Introduction to the Theory of Computation. PWS Publishing
Company, 1997.

19

