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1 IntroductionThe notion of a zero-knowledge interactive proof was put forward and �rst exempli�ed by Gold-wasser, Micali and Racko� [29]. The generality of this notion was demonstrated by Goldreich, Micaliand Wigderson [25], who showed that any NP-statement can be proven in zero-knowledge, providedthat commitment schemes exist.1 Subsequently, related notions have been proposed; in particu-lar, zero-knowledge arguments [8], witness indistinguishability [16], and zero-knowledge proofs ofknowledge [29, 38, 15]. By now, zero-knowledge is the accepted way to de�ne and prove securityof various cryptographic tasks; in particular, as proposed by Fiat and Shamir [17], it provides thebasis for many proofs of identity.A basic question about zero knowledge. A zero knowledge proof of a non-trivial languageis possible only if the Prover tosses coins.2 But:Is zero-knowledge possible if the prover uses the same coins in more than one execution?For zero-knowledge proofs of knowledge (and thus for all proofs of identity �a la Fiat-Shamir [17]),by de�nition, the answer is NO: if the veri�er can force the prover to use the same coins for apolynomial number of executions, then even the honest veri�er can easily extract the very samesecret which the prover is claiming knowledge of.3For zero-knowledge proofs (of language membership), the answer also appeared to be negative:all known examples of zero-knowledge proofs (including the 3-Coloring protocol of [25]) are triviallybreakable if the prover is \reset" (to his initial state) and forced to use the same coins in futureinteractions, even if these interactions are with the honest veri�er.Example. For instance, to prove that z = x2 mod n is quadratic residue mod n, in [29] thefollowing basic protocol is repeated: the prover randomly chooses r 2 Z�n and sends r2 mod n tothe veri�er; the veri�er sends a random bit b to the prover; and the prover sends back r if b = 0,and xr mod n if b = 1. Assume now that the prover is forced to execute twice with the same coins rthe basic protocol. Then, by sending b = 0 in the �rst execution and b = 1 in the second execution,the veri�er learns both r and xr and thus trivially extract x, a square root of z mod n.A New Notion. In this paper we extend the classical notion of zero-knowledge by introducing thenotion of Resettable Zero-Knowledge (rZK for short).4 In essence, a rZK proof is a zero-knowledgeproof in which a veri�er learns nothing (except for the verity of a given statement) even if he caninteract with the prover polynomially many times, each time restarting the prover with the samecon�guration and coin tosses.In other words, a polynomial-time veri�er learns nothing extra even if it can \clone" the prover,with the same initial con�guration and random tape, as many times as it pleases, and then interactwith these clones in any order and manner it wants. In particular, it can start a second interactionin the middle of a �rst one, and thus choose to send a message in the second interaction as afunction of messages received in the �rst. We stress that, in each of these interleaved interactions,the prover (i.e., each prover clone) is not aware of any other interaction, nor of having been cloned.1Or, equivalently [36, 32], that one-way functions exist.2Zero-knowledge proofs in which the prover is deterministic exist only for BPP languages (cf., [26]).3For instance, in [17] it su�ces to repeat the protocol twice with the same prover-coins to be able to extract theprover's secret.4 In a preliminary version of this work [21], the same notion was referred to by the names rewind zero-knowledgeand interleaved zero-knowledge. 3



Resettability can be incorporated in the various variants of zero knowledge. In particular in thiswork we will pay close attention to Resettable Zero-Knowledge proofs, Resettable Zero-Knowledgearguments, and Resettable Witness-IndistinguishableProofs (rWI for short).Informally, in all of the above cases (i.e ZK proofs, arguments, and WI proofs)the securityrequirement is maintained even if the prover is forced to use the same coin tosses in repeatedexecutions.The Importance of the New Notion. Resettable zero knowledge sheds new light on what isit that make secure protocol possible. In particular, constructing such protocols, makes a muchweaker use of randomness than previously believed necessary. Moreover, resettable zero knowledgeis a powerful abstraction which yields both theoretical and practical results in a variety of settings.In particular,� rZK enlarges the number of physical ways in which zero-knowledge proofs may be imple-mented, while guaranteeing that security is preserved.As we have said, previous notions of zero knowledge were insecure whenever an enemy couldreset the device implementing the prover to its initial conditions (which include his randomtape). Unfortunately, for example, this class of implementations includes ordinary smartcards. In fact, without a built-in power supply or without a re-writable memory that isnot only tamper-proof, but also non-volatile, these cards can be reset by disconnecting andreconnecting the power supply.� rZK proofs, rWI proofs and rZK arguments are guaranteed to preserve security when executedconcurrently in an asynchronous network like the Internet.� rZK proofs, rWI proofs and rZK arguments provide much more secure ID schemes.NewResults. We show that, under standard complexity assumptions, Resettable Zero-Knowledgeexists. Let us quickly state our assumptions and main results.Assumptions. All our protocols are based on the existence of commitment schemes. In somecases, any commitment scheme with perfect privacy would do. In other cases, we need a moresophisticated primitive, which we call Veri�able Commitment (see Section 10 for a de�nition).Veri�able commitment can be implemented under traditional complexity assumptions, such as thehardness of the Discrete Log Problem (DLP), or on strong trapdoor claw-free pairs of permutations.5For the purposes of the current write-up, we renounce to some generality, and rely directly ontwo forms of the DLP assumption: Informally, denoting by DLP (k) the task of solving DLP forinstances of length k, we haveStrong DLP Assumption: DLP (k) is not solvable in time 2k� , for some � > 0.Weak DLP Assumption: DLP is not solvable in polynomial time.Main Results. We prove the following theorems:5 \Strong" refers to those in which the claw-free property should hold also with respect to subexponential-sizecircuits (i.e., circuits of size 2n� , where n is the input length and � > 0 is �xed), rather than only with respect topolynomial-size circuits, and \trapdoor" refers to the fact that these pairs that can be generated along with auxiliaryinformation which allows to form (random) claws. 4



Theorem 1: Under the weak DLP assumption, there is a (non-constant round) rZK proof for NP.Theorem 2: Under the weak DLP assumption, there is a constant-round rWI proof for NP.Theorem 3: Under the strong DLP assumption, there is a constant-round rZK argument for NPin the Public-Key Model.By the public-key model, we mean that a veri�er has a public key that has been registered |i.e.,�xed| prior to his interaction with the prover. We stress that we only assume that public-keyscan be registered in the literal sense of the word. Registration does not have to include interactionwith a trusted system manager which may verify properties of the registered public-key (e.g., thatit valid or even that the user registering it knows a corresponding secret key). We also stress thatthe prover does not need a public key.6 (As we shall point out later on, this quite standard modelof �xing a key before interaction starts can be further relaxed.)Consequences for concurrent zero knowledge. With the rise of the internet, the importanceof concurrent execution of zero-knowledge protocols emerged. In a concurrent setting, many execu-tions of protocols can be running at the same time, involving many veri�ers which may be talkingwith the same (or many) provers simultaneously. This presents the new risk of an overall adversarywho controls the veri�ers, interleaving the executions and choosing veri�ers queries based on otherpartial executions. This risk is made even more challenging by the fact that it is unrealistic for thehonest provers to coordinate their action so that zero-knowledge is preserved in this setting. Thus,we must assume that in each prover-veri�er pair the prover acts independently.A recent approach for solving the concurrent execution problem has been suggested by Dwork,Naor and Sahai [12], assuming that a certain level of synchronization is guaranteed: the so-calledtiming assumption. Under this assumption, (1) there are a-priori known bounds on the delays ofmessages with respect to some ideal global clock, and (2) each party uses a local clock whose rateis within a constant factor of the rate of the ideal clock. Under the timing assumption (and somestandard intractability assumption), constant-round, ZK arguments for NP were presented in [12].In a later paper, Dwork and Sahai [11] show how the push up the use of the timing assumptionto a pre-processing protocol, to be executed before the concurrent executions of protocols. Morerecent work by Ransom and Kilian [37] does not use the timing assumption, alas their protocolsare either not constant-round or only simulatable in quasi-polynomial time. We stress that noneof these concurrent ZK protocols is rZK.Because secure concurrent executability is critical for protocols to be played over the internet,and because the number of rounds is an important resource for internet protocols, establishingwhether constant-round concurrent ZK protocols exist is a critical problem. Theorem 3 providesan answer to this question by means of the followingCorollary 4: Under the strong DLP assumption, there exists a constant-round, concurrent ZKarguments for NP in the public-key model.The importance of this corollary stems from the fact that the public-key model is quite stan-dard whenever cryptography is used, speci�cally it underlies any public-key encryption or digital6Note that the fact that only the veri�er requires a public key is especially suitable when extending rZK proofsto rZK proofs of identity. In the latter case, in fact, the veri�er usually guards a resource and needs to identify theidentity of the user (the prover) attempting to use the resource. In this scenario, it is reasonable to expect (the few)veri�ers to have public key accessible by all users, and it useful that the (many) provers may implemented by cheap,resettable devices which do not have any registered public keys.5



signature scheme. Note, that this model may indeed be both simpler, and more realistic than thetiming assumption of [12, 11]. Even if one thinks of the public-key model as a mild form of pre-processing, Corollary 5 directly improves on Dwork and Sahai's protocol based on pre-processingwith the timing assumption. In fact, we would just rely on the existence of a pre-processing step,while they do rely on the existence of a pre-processing step in which the timing assumption holds.Thus the theory of rZKprotocols yields a constant-round and simple solution to the important (andextensively investigated) concurrent ZK problem.Consequences for proofs of identity. Fiat and Shamir in [17] introduced a paradigm for IDschemes based on the notion of Zero Knowledge Proof of Knowledge. In essence, a prover identi�eshimself by convincing the veri�er of knowledge of some secret (e.g. in the original [17] it wasknowing a square root of a given square mod n). All subsequent ID schemes follow this paradigm,and are traditionally implemented by the prover being a smart card (as suggested in [17]). However,Zero Knowledge Proof of Knowledge are impossible in a resettable setting (i.e., they exist only ina trivial sense7), and thus all Fiat-Shamir like ID schemes fail to be secure whenever the prover isresettable.Instead, an alternative paradigm emerges for constructing ID schemes so that the resultingschemes are secure when the identi�cation is done by a device which can be reset to its initial statesuch as a smart card. The new paradigm consists of viewing the ability to convince the veri�er thata �xed input is in a \hard" NP-language as a proof of identity, and employing an rZK proof to doso. We will elaborate further about the notion of Resettable Proofs of Identity and speci�c imple-mentations of it in a separate paper.2 OverviewDue to length of this write-up we provide here an overview of our work. Details are found insubsequent sections.2.1 The notion of resettable zero-knowledgeFor sake of simplicity, we present here a simple de�nition of resettable zero-knowledge. This de�ni-tion captures the most important aspects of the more general de�nition actually used. Furthermore,assuming the existence of pseudorandom functions, protocols satisfying the simpler de�nition canbe transformed into ones satisfying the full-edge de�nition.Given a speci�ed prover P , a common input x and an auxiliary input y to P (e.g., y maybe an NP-witness for x being in some NP-language), we consider polynomially-many sequentialinteractions with the residual deterministic prover strategy Px;y;! determined by uniformly selectingand �xing P 's coins, !. That is, ! is uniformly selected and �xed once and for all, and theadversary may sequentially invoke and interact with Px;y;!. In each such invocation, Px;y;! behavesas P would have behaved on common input x, auxiliary-input y, and random-tape !. Thus, theadversary and Px;y;! engage in polynomially-many interactions; but whereas Px;y;!'s actions in thecurrent interaction are independent of prior interaction (since Px;y;! mimics the \single interaction7 It can be shown that if, on input x, one can provide an rZK proof of knowledge of y so that (x; y) is in somepolynomial-time recognizable relation, then it is possible given x to �nd such a y in probabilistic polynomial-time.Thus, such a proof of knowledge is useless, since by de�nition (of knowledge) anybody who gets input x knows sucha y. 6



strategy" P ), the actions of the adversary may depend on prior interactions. In particular, theadversary may repeat the same messages sent in a prior interaction, resulting in an identical pre�xof an interaction (since the prover's randomness is �xed). Furthermore, by deviating in the nextmessage, the adversary may obtain two di�erent continuations of the same pre�x of an interaction.Viewed in other terms, the adversary may \e�ectively rewind" the prover to any point in a priorinteraction, and carry-on a new continuation (of this interaction pre�x) from this point.De�nition 1 (resettable security { simple case { vanilla model): A prover strategy P is saidto be resettable zero-knowledge (on L) if for every probabilistic polynomial-time adversary V � asbelow there exists a probabilistic polynomial-time simulator M� so that the following distributionensembles, indexed by a common input x 2 L and a prover auxiliary input y, are computationallyindistinguishable (cf., [27, 39]):Distribution 1 is de�ned by the following random process which depends on P and V �.1. Randomly select and �x a random-tape, !, for P , resulting in a deterministic strategyP 0 = Px;y;! de�ned by Px;y;!(history) = P (x; y; !; history ).2. Machine V � is allowed to initiate polynomially-many sequential interactions with P 0.The actions of V � in the ith interaction with P 0 may depend on previous interactions,but the ith interaction takes place only after the i� 1st interaction was completed.More formally, V � sends whatever message its pleases, yet this message is answered asindicated above. That is, suppose P 0 expects to get t messages per interaction. Then, forevery i � 0 and j = 1; :::; t, the it+ jth message sent by V � is treated as the jth messagein the ith interaction of P 0, and accordingly the response is P 0(msgit+1; :::; msgit+j), wheremsgk is the kth message sent by V �.3. Once V � decides it is done interacting with P 0, it (i.e., V �) produces an output based onits view of these interactions (which, as usual, includes the internal coin-tosses of V �).Distribution 2: The output of M�(x).We note that all known zero-knowledge protocols are not resettable zero-knowledge. (Furthermore,they are even not resettable witness indistinguishable.) For example, ability to \rewind" theoriginal zero-knowledge proof for 3-Colorability [25], allows the adversary to fully recover the 3-coloring of the input graph used by the prover: The adversary merely invokes the proof systemmany times, and asks the prover to reveal a uniformly selected edge in each invocation. Since theprover's randomness is �xed in all these invocations, it will commit to the same coloring of the graph,and reveal the values (w.r.t this �xed coloring) of two adjacent vertices in each invocation. Thus,after polynomially-many invocations (i.e., actually linear in the number of edges), the adversarywill obtain the values of all vertices w.r.t one �xed coloring. (Recall that in the standard zero-knowledge model the adversary will merely obtain in each invocation two di�erent values w.r.t anindependently chosen random coloring.)In Section 4, the above de�nition is generalized by allowing the adversary to interleave thevarious executions (rather than execute them sequentially one after the other). Interestingly, thisdoes not change the power of the model: Every protocol that is resettable zero-knowledge in thenon-interleaved model is also resettable zero-knowledge in the interleaved model. This equivalenceis important since it allows us to analyze protocols in the simpler non-interleaved model and infertheir security in the general (interleaved) model for free. (We use this fact to simplify the exposition7



of the analysis of our various protocols.) Another extension (to Def. 1) is to allow the adversary tointeract (many times) with several random independent incarnations of P (rather than with a singleone). That is, rather than interacting many times with one Px;y;!, where ! is randomly selected,the adversary many interact many times with each Pxi;yi;!j , where the !j's are independently andrandomly selected. Intuitively, this should not add power to the model either. Indeed, as statedabove, using pseudorandom function, one may transform protocols satisfying the single-incarnationde�nition (of above) to protocols satisfying the general de�nition in which polynomially-manyindependent incarnations are allowed.Note that the general de�nition (i.e., the one allowing polynomially-many independent incar-nations of the prover) implies concurrent zero-knowledge. In fact, concurrent zero-knowledge is(syntactically) a very restricted case of resettable zero-knowledge (in which one may interact onlyonce with each of these polynomially-many incarnations).For further details see Section 4.2.2 NP has constant-round resettable-WIThe notion of Witness Indistinguishability (WI) was introduced by [16] as a relaxation of the zero-knowledge requirement which could be still suitable in many applications and may be achieved withgreater ease and e�ciency. For example, all witness indistinguishable protocols are provably closedunder parallel composition and concurrent execution.Resettable-WI (resettable witness indistinguishable) relates to resettable zero-knowledge asstandardWI relates to ZK. Informally, in a resettable witness indistinguishable protocol a polynomial-time veri�er can still not distinguish between two di�erent witnesses for an NP statement used bythe prover, even if it can \clone" the prover (each time with the same initial con�guration, randomtape included) as many times as it pleases, and then interact with these clones in any order andmanner it wants. More formally, instead of requiring that Distribution 1 (in Def. 1 above) be sim-ulatable by a probabilistic polynomial-time machine, we require that instances of Distribution 1 {induced by the prover using di�erent NP-witnesses { be computationally-indistinguishable.We stress that all existing WI protocols are not rWI protocols. (Even the honest veri�er caneasily extract the entire witness |let alone distinguish between witnesses| when the protocol isexecuted polynomially many times with a prover using the same coins.) In contrast, as stated inTheorem 2, we can achieve constant-round rWI interactive proofs.To build resettable witness indistinguishable proof-systems for NP, we start with a ZK proof-system for NP. Traditionally, the latter proof-systems rely on the randomized nature of the proverstrategy (in a sense, this is essential |cf., [26]). In our context, the prover's randomization occursonly once and is �xed for all subsequent interactions. So the idea is to utilize the initial ran-domization (done in the very �rst invocation of the prover) in order to randomize all subsequentinvocations. The natural way of achieving this goal is to use a pseudorandom function, as de�nedand constructed in [20]. However, just \using a pseudorandom function" does not su�ce. Thefunction has to be applied to \crucial steps" of the veri�er; that is, exactly the steps which theveri�er may want to alter later (by rewinding) in order to extract knowledge. Thus, the zero-knowledge proof system for 3-Colorability of [25] is not an adequate starting-point (since therethe prover's randomization takes place before a crucial step by the veri�er). Instead, we start withthe zero-knowledge proof system of Goldreich and Kahan [22]: In that proof system, the veri�er�rst commits to a sequence of edge-queries, then the prover commits to random colorings, andthen the veri�er reveals its queries and the prover reveals the adequate colors. Starting with thisproof system, we replace the prover's random choices (in its commitment) by the evaluation of a8



pseudorandom function (selected initially by the prover) on the veri�er commitment. The resultingproof system can be shown to be resettable witness indistinguishable.An indication of the non-triviality of the result is given by the fact that we don't know whetherthe resulting protocol is resettable zero-knowledge. The key observation regarding the speci�cprotocol sketched above is that, in each single execution of it, all the veri�er steps following its�rst message (i.e., its commitment message) are essentially determined. The only choice left tothe veri�er is whether to reveal the correct value (i.e., properly decommmit) or refuse to continue(i.e., send an invalid decommitment message). This small level of freedom allows to prove thatthe protocol is resettable witness indistinguishable (however, it prevents us from proving that theprotocol is resettable zero-knowledge): intuitively, if the veri�er's subsequent steps are determined(except for the abort possibility) then its only real freedom is in selecting its �rst message. Now, if itselects the same �rst message as in a prior interaction, it will only get the same interaction transcriptagain (which being easily simulatable by mere copying is quite useless). If, on the other hand, theveri�er selects as �rst message a string di�erent from the one used as �rst message in all priorinteractions then the prover's actions in the current interaction will be independent of its actions inprior interactions (since the prover's actions are determined by applying a pseudorandom function tothe veri�er's �rst message). So in this case the veri�er obtains no more than in standard sequentialcomposition of zero-knowledge protocols (which are well-known to remain zero-knowledge).We warn that the explanation provided above ignores several important issues. For furtherdetails see Section 5.2.3 NP has resettable-ZK proofsWe show how to construct resettable zero-knowledge proof systems for any language in NP. Ourstarting point is a concurrent zero-knowledge proof system of Ransom and Kilian [37]. We modifythis proof system using the techniques discussed above (i.e., determining the prover's actions byapplying a pseudorandom function to suitable transcripts of the interaction so far), and replace theconcurrent witness indistinguishable (concurrent-WI) proof system employed by [37] with our reset-table witness indistinguishable proof system. Whereas any WI proof (cf. [16]) is also concurrent-WI(cf. [14]), let us stress again that all previously known WI proofs are not resettable witness indis-tinguishable. Thus, our resettable witness indistinguishable proof system plays a major role inshowing that NP has resettable zero-knowledge proofs.It is easy to show that the protocol resulting from the above sketched transformation remainsa proof system for the same language. The tricky part is to show that it is indeed resettable zero-knowledge (and not merely zero-knowledge in the standard sense, which is obvious). We presenttwo proofs for the claim that the resulting proof systems is indeed resettable zero-knowledge. The�rst proof adapts the simulation argument of [37], extending it from their concurrent model to ourstronger resettable model. The second (i.e., alternative) proof refers to a slight modi�cation ofthe above protocol. Very loosely speaking, it consists of showing that, for any protocol in whichthe veri�er's actions are essentially determined by its �rst message (as in the case of the modi�edprotocol), if the protocol is concurrent zero-knowledge then it is also resettable zero-knowledge.Again, we warn that the explanation provided above ignores several important issues. Forfurther details see Section 6.2.4 NP has resettable-ZK argumentsComputationally-sound proofs (a.k.a arguments) [8] are a weaker notion that interactive proofs [29]:it is infeasible rather than impossible to fool the veri�er to accept wrong statements with non-9



negligible probability. Still, we present an alternative construction achieving resettable zero-knowledge arguments for any language in NP (indeed a weaker result than the one reviewed inprevious subsection). The reason this alternative construction is interesting is that we don't use areduction to some NP-complete language (as in the proof system above). Loosely speaking, givena suitable resettable witness indistinguishable argument for a language L (in NP), we show howto transform it to a resettable zero-knowledge argument for L (without using a reduction of L tosome NP-complete language, as done in the above proof system).8Our construction uses a technique which may be of independent interest. We use two secureschemes, one with security parameterK and the other with a smaller security parameter k. Supposethat, for some � > 0, the security of the �rst scheme (with security parameter K) is maintainedagainst adversaries running in time 2K� , and that instances of the second scheme (with securityparameter k) can be broken in time 2k. Then setting k = K�=2 guarantees both security of thesecond scheme as well as \non-malleability" (cf. [10]) of the �rst scheme in presence of the secondone. The reason for the latter fact is that breaking the second scheme can be incorporated intoan adversary attacking the �rst scheme without signi�cantly e�ecting its running-time: Such anadversary is allowed running-time 2K� which dominates the time 2k = 2K�=2 required for breakingthe second scheme. This \telescopic" usage of intractability assumptions can be generalized to acase in which we have a lower and upper bound on the complexity of some problem; speci�cally,we need a lower bound L(n) on the average-case of solving n-bit long instances, and an upper-bound U(n) � L(n) on the corresponding worst-case complexity. Suppose that we can choosepolynomially-related security parameters k and K so that L(k) is infeasible and U(k) � L(K)(i.e., L(k) is infeasible and U(k) � L(poly(k))). Then the above reasoning still holds. (Above weused L(n) = 2n� and U(n) = 2n.)For further details see Section 7.2.5 The Public-Key modelSo far in this overview (and the corresponding Part I of this work), no set-up assumptions havebeen made. This is indeed the \simplest" model used for two-party and multi-party computation.Another model, used routinely in the di�erent context of providing privacy and/or authenticity ofmessages, is the public-key model, which instead relies on a set-up stage in which public-keys areregistered. One crucial aspect of our work consists of using the public-key model for tasks totallyunrelated to privacy and authenticity.9In the mildest form of the latter model, users are assumed to have deposited a public-key in apublic �le that is accessible by all users at all times. Access to this �le may be implementable byeither providing access to several identical servers, or by providing users with certi�cates for theirdeposited public-keys. The only assumption about this �le is that it is guaranteed that entriesin it were deposited before any interaction among the users takes place. No further assumptionabout this �le is made. In particular, an adversary may deposit in it arbitrarily many public-keys,including public key are are \non-sensical" or \bad" (e.g., for which no corresponding secret keyexist or are known).We use such a public-�le simply for limiting the number of di�erent identities that a potentialadversary may assume { it may indeed try to impersonate any registered user, but it cannot act8 In the proof system above, which follows the strategy of [37], a reduction to some NP-complete language isemployed in order to obtain an instance on which the resettable witness indistinguishable proof system is executed.Speci�cally, a statement of the form \x 2 L" is reduced to a statement of the form \either x 2 L or �", where � is astatement which depends on a preliminary part of the execution. For further details see Section 6.9 A similar use was independently suggested by Damgard [9] (see discussion below).10



on behalf of a non-registered user. This fact plays a key role in our main result for this model:Under the strong DLP assumption, we show how to construct constant-round resettablezero-knowledge arguments for NP in the public-key model.Since concurrent zero-knowledge are a special case of resettable zero-knowledge, we obtain constant-round concurrent zero-knowledge arguments for NP in the public-key model. We stress thatunlike [12], the above stated result does not use any timing assumption.We mention that the above constant-round resettable zero-knowledge arguments also employthe idea of \telescopic" usage of intractability assumptions discussed in the previous subsection.For further details see Sections 8 through 10: Speci�cally, Sections 9 and 10 provide two alternativepresentations of essentially the same protocol. (The simulator provided in Section 9 can be easilyadapted to simulate the protocol as presented in Section 10.)Related work. Using weaker assumptions but a stronger public-key model, Damgard has in-dependently shown that NP has constant-round concurrent zero-knowledge arguments [9]. Hispublic-key model postulates that the public-keys depositted in the public-�le are legal, and further-more that the user (or somebody else) knows the corresponding private-key. We stress that ourpublic-key model is much milder (see above).More on the model. A possible critique to this result is that it assumes that registration takesplace before any interaction between users may take place. One may claim that in some settingsthis is not desirable, as one may want to allow users to join-in (i.e., register) also during the activelife-time of the system. It is indeed desirable to allow parties to register at all times. Note, however,that such a exible model requires some restriction (as otherwise it coincides with the \vanilla"model, that is the model in which no set-up stage or special stage or model is used). We thussuggest two intermediate models in which we can obtain our result.1. One possibility is to make the assumption that a prover will not interact with a veri�er unlessthe veri�er's public-key was registered a su�ciently long time before, where \su�ciently long"ensures that whatever sessions were in progress before registration have terminated by now.Namely, parties need be able to distinguish between some predetermined large delay (whichall newly registered public-keys must undergo before being used) and a small delay (whichupper bounds the communication delays in actual interaction). Making such a distinction isquite reasonable in practice (e.g., say that a user in nowadays internet may start using its keya couple of days after registration, whereas each internet session is assumed to be completablewithin a couple of hours).Notice that, unlike usage of timing in [12], our usage of timing here does not a�ect typicalinteractions, which can be and actually are completed much faster than the conservativeupper bound (of message delay) being used. In contrast, in [12] each user delays each criticalmessage by an amount of time that upper bounds normal transmission delay. This meansthat all communication is delayed by this upper bound. Thus, in their case, this always causessigni�cant delays: in fact the upper bound should be conservative enough so to guaranteethat communication by honest users are rarely rejected.2. A di�erent possibility is to require newly registered public-keys to be used only after autho-rization by a trusted \switchboard", which may interact with the new user and then issuea certi�cate that will allow it to act as a veri�er. We stress that users that register at set-up time are not required to interact with a server (or a switchboard): they merely deposit11



their public-key via a one-sided communication. This alternative seems better suited to thesmart-card application discussed in the introduction.Let us repeat here that registration is only required of veri�ers. Again, this is nicely suited tosmart-card applications in which the provers are played by the smart-cards and the veri�ers byservice providers. In such applications service providers are much fewer in number, and are anyhowrequired to undergo more complex authorization procedures (than the smart-card users).Almost constant-round RZK under weaker assumptions. We mention that using the weakDLP assumption (rather than the strong one), we obtain for every unbounded function r : N! N,an r(�)-round resettable zero-knowledge argument for NP in the public-key model. Again, suchprotocols are concurrent zero-knowledge (as a special case). (For further details see Section 9.3.)3 Preliminaries3.1 Standard ConventionsThroughout this paper we consider interactive proof systems [29] in which the designated proverstrategy can be implemented in probabilistic polynomial-time given an adequate auxiliary input.Speci�cally, we consider interactive proofs for languages in NP and thus the adequate auxiliaryinput is an NP-witness for the membership of the common input in the language. Also, wheneverwe talk of an interactive proof system, we mean one in which the error probability is a negligiblefunction of the length of the common input (i.e., for every polynomial p and all su�ciently longx's, the error probability on common input x is smaller than 1=p(jxj)). Actually, we may furtherrestrict the meaning of the term `interactive proof system' by requiring that inputs in the languageare accepted with probability 1 (i.e., so-called perfect completeness).Likewise, when we talk of computationally-sound proof systems (a.k.a arguments) [8] we meanones with perfect completeness in which it is infeasible to cheat with non-negligible probability.Speci�cally, for every polynomial p and all su�ciently large inputs x not in the language, everycircuit of size p(jxj) (representing a cheating prover strategy) may convince the veri�er to acceptonly with probability less than 1=p(jxj).For simplicity, we consider only interactive proof systems in which the total number of message-exchanges (a.k.a. rounds) is a pre-determined (polynomial-time computable) function of the com-mon input. We are specially interested in interactive proof systems in which this number is aconstant; these are called constant-round interactive proof systems.We adopt the basic paradigm of the de�nition of zero-knowledge [29]: The output of everyprobabilistic polynomial-time adversary which interacts with the designated prover on a commoninput in the language, ought to simulatable by a probabilistic polynomial-time machine (whichinteracts with nobody). The latter machine is called a simulator. We mention that the simulatorsin Part I of the paper work is strict polynomial-time whereas those in Part II work in expectedpolynomial-time. (Recall that it is not known whether constant-round zero-knowledge proofs forNP exists, if one insists on strictly polynomial-time simulators (rather than expected polynomial-time ones); See [22, 19]. Recall that Part II focuses on constant-round resettable zero-knowledgesystems.)We also refer (or, actually, extend) the de�nition of witness indistinguishable proof systems(cf., [16]). Loosely speaking, these are proof systems in which the prover is a probabilistic polynomial-time machine with auxiliary input (typically, an NP-witness), having the property that interactions12



in which the prover uses di�erent \legitimate" auxiliary-inputs are computationally indistinguish-able.3.2 The models consideredIn this paper we consider two main models, depending on the initial set-up assumptions. Thevanilla case, considered in Part I, is when no set-up assumptions are made. This is indeed the\simplest" model typically employed in theoretical works regarding secure two-party and multi-party computation. In Part II we consider the public-key model as described in subsection 2.5.
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Part IThe Vanilla Model4 De�nitionGiven a speci�ed prover P , a common input x and an auxiliary input y to P (e.g., y may be anNP-witness for x being in some NP-language), we consider polynomially-many interactions withthe residual deterministic prover strategy Px;y;! determined by uniformly selecting and �xing P 'scoins, !. That is, ! is uniformly selected and �xed once and for all, and the adversary may invokeand interact with Px;y;! many times, each such interaction is called a session. In each such session,Px;y;! behaves as P would have behaved on common input x, auxiliary-input y, and random-tape !.Thus, the adversary and Px;y;! engage in polynomially-many sessions; but whereas Px;y;!'s actionsin the current session are independent of other sessions (since Px;y;! mimics the \single sessionstrategy" P ), the actions of the adversary may depend on other sessions.We consider two equivalent variants of the model. In the basic variant, a session must beterminated (either completed or aborted) before a new session can be initiated by the adversary. Inthe interleaving variant, this restriction is not made and so the adversary may concurrently initiateand interact with Px;y;! in many sessions. A suitable formalism must be introduce in order tosupport these concurrent executions. For simplicity, say that the adversary prepend a session-ID toeach message it sends, and a distinct copy of Px;y;! handles all messages prepended by any �xed ID.Note that in both variants, the adversary may repeat in the current session the same messages sentin a prior session, resulting in an identical pre�x of an interaction (since the prover's randomnessis �xed). Furthermore, by deviating in the next message, the adversary may obtain two di�erentcontinuations of the same pre�x of an interaction. Viewed in other terms, the adversary may\e�ectively rewind" the prover to any point in a prior interaction, and carry-on a new continuation(of this interaction pre�x) from this point. (The equivalence of the two variants is shown below.)The interleaved variant of our model seems related to the model of concurrent zero-knowledge.In both models an adversary conducts polynomially-many interleaved interactions with the prover.In our case these interactions are all with respect to the same common input and more importantlythe same prover's random coins (i.e., they are all with copies of the same Px;y;!, where ! israndom). In contrast, in the concurrent zero-knowledge model, each interaction is with respectto an independent sequence of prover's coin tosses (while the common input may di�er and maybe the same). That is, in the concurrent zero-knowledge model, one may interact only once witheach Pxj ;yj ;!j , where the !j 's are random and independent of one another. Intuitively, interactingwith copies of the prover that share the same coin sequence ! seem far more advantageous to theadversary than interacting with copies which have each its independent coin tosses !j. (In fact, anadversary of the resettable model may easily obtain the NP-witness used in the concurrent zero-knowledge protocols of [37].) However, in order to show that resettable zero-knowledge impliesconcurrent zero-knowledge, we augment the former model a little so to allow polynomially-manyinteraction with respect to each of a set of polynomially-many independent choices of prover's coinsequence.10 That is, we allow to interact polynomially-many times with each of polynomially-many10 We comment that assuming that one-way function exists, we may transform any polynomial-time prover that isresettable zero-knowledge with respect to a single common input and a single random-pad into one that is resettablezero-knowledge with respect to polynomially-many common inputs and random-pads (as de�ned below). The keyidea, used more extensively in Section 5, is to apply a pseudorandom function to the identi�er of the prover's copyin order to derive \computationally independent" random-pads.14



Pxi;yi;!j 's where the !j's are random and independent of one another.The actual de�nitionIn the actual de�nition we use a di�erent formalism than the one presented informally above. Thatis, instead of prepending each message to Pxi;yi;!j with a session ID, we prepend each message bythe full transcript of all messages exchanged so far. That is, we adopt the following convention.Convention: Given an interactive pair of (deterministic) machines, (A;B), we construct a mod-i�ed pair, (A0; B0), so that for t = 1; 2; :::A0(�1; �1; :::; �t�1; �t�1) = (�1; �1; :::; �t�1; �t�1; A(�1; :::; �t�1))provided that �i = A(�1; :::; �i�1), for i = 1; :::; t � 1B0(�1; �1; :::; �t�1; �t�1; �t) = (�1; �1; :::; �t�1; �t�1; �t; B(�1; :::; �t�1))provided that �i = B(�1; :::; �i�1), for i = 1; :::; t � 1In case the corresponding condition does not hold, the modi�ed machine outputs a special symbolindicating detection of cheating. Probabilistic machine are handled similarly (just view the random-pad of the machine as part of it). Same for initial (common and auxiliary) inputs. We stress thatthe modi�ed machines are memoryless (they respond to each message based solely on the messageand their initial inputs), whereas the original machines respond to each message based on theirinitial inputs and the sequence of all messages they have received so far.In the traditional context of zero-knowledge, the above transformation adds power to the ad-versary, since each machine just checks partial properness of the history presented to it { its ownprevious messages.11 That is, A0 checks that �i = A(�1; :::; �i�1), but it does not (and in generalcannot) check that �i = B(�1; :::; �i�1) as it does not know B (which by the convention regardingprobabilistic machines and inputs may depend also on \hidden variables" { the random-tape and/orthe auxiliary input to B). However, in the context of resettable zero-knowledge this transformationdoes not add power: Indeed, the transformation allows an adversary to pick a di�erent (possible)continuation to an interaction, but this is allowed anyhow in the resettable model. In the followingde�nition, we assume that P is a machine resulting from the modi�cation above.De�nition 2 (resettable security { vanilla model): A prover strategy P is said to be resettablezero-knowledge on L if for every probabilistic polynomial-time adversary V � as below there existsa probabilistic polynomial-time simulator M� so that the following distribution ensembles, whereeach distribution is indexed by a sequence of common inputs x = x1; :::; xpoly(n) 2 L \ f0; 1gnand a corresponding sequence of prover's auxiliary-inputs y = y1; :::; ypoly(n), are computationalindistinguishable:Distribution 1 is de�ned by the following random process which depends on P and V �.1. Randomly select and �x t = poly(n) random-tape, !1; :::; !t, for P , resulting in de-terministic strategies P (i;j) = Pxi;yi;!j de�ned by Pxi;yi;!j (�) = P (xi; yi; !j ; � ), fori; j 2 f1; :::; tg.2. Machine V � is allowed to initiate polynomially-many interactions with the P (i;j)'s.11Actually, this part of the history may be omitted from these messages, as it can be re-computed by the receiveritself. Furthermore, it is actually not needed at all. We chose the current convention for greater explicitness.15



� In the general model (i.e., the interleaving version) we allow V � to send arbitrarymessages to each of the P (i;j) and obtain the response of P (i;j) to such message.� In the sequential (or rewindable) version V � is required to complete its current inter-action with the current copy of P (i;j) before starting an interaction with any P (i0;j0),regardless if (i; j) = (i0; j0) or not. Thus, the activity of V � proceeds in rounds. Ineach round it selects one of the P (i;j)'s and conducts a complete interaction with it.3. Once V � decides it is done interacting with the P (i;j)'s, it (i.e., V �) produces an outputbased on its view of these interactions. Let us denote this output by hP (y); V �i(x).Distribution 2: The output of M�(x).In case there exists a universal probabilistic polynomial-time machine, M , so that M� can be im-plemented by letting M have oracle-access to V �, we say that P is resettable zero-knowledge via ablack-box simulation.12A prover strategy P is said to be resettable witness indistinguishable (on L) if every two distri-bution ensembles of Type 1, where each distribution is indexed by a sequence of common inputsx = x1; :::; xpoly(n) 2 L \ f0; 1gn, depending on two di�erent sequence of prover's auxiliary-inputs,aux(1)(x) = y(1)1 ; :::; y(1)poly(n) and aux(2)(x) = y(2)1 ; :::; y(2)poly(n), are computationally indistinguishable.That is, we require that fhP (aux(1)(x)); V �i(x)gx and fhP (aux(2)(x)); V �i(x)gx are computationallyindistinguishable.Several previously investigated aspects of zero-knowledge can be casted as special cases of the abovegeneral model. For example, sequential composition of zero-knowledge protocols coincides with aspecial case of the non-interleaved model, where one is allowed to run each P (j;j) once (and maynot run any other P (i;j)). More importantly, concurrent zero-knowledge coincides with a specialcase of the interleaving model where one is allowed to run each P (j;j) once (and may not run anyother P (i;j)).13 Thus, every resettable zero-knowledge protocol is concurrent zero-knowledge.Recall that, as stated above (and shown below), all known zero-knowledge protocols are notresettable zero-knowledge. Furthermore, they are even not resettable witness indistinguishable.For example, ability to \reset" the original zero-knowledge proof for 3-Colorability [25], allows theadversary to fully recover the 3-coloring of the input graph used by the prover. Still (as shownbelow), resettable zero-knowledge interactive proofs for NP exists, under standard intractabilityassumptions.Equivalence of the two variantsAs stated above, the restricted non-interleaved model is actually as powerful as the general (in-terleaved) model. That is, any prover strategy which is resettable zero-knowledge in the non-interleaved model is also resettable zero-knowledge in general (in the interleaved model). In fact, astronger claim holds:Theorem 3 Let P be any prover strategy. Then for every probabilistic polynomial-time V � for theinterleaved model, there exists a probabilistic polynomial-time W � in the non-interleaved model sothat hP (y);W �i(x) is distributed identically to hP (y); V �i(x).12 Recall that the existence of black-box simulators implies auxiliary-input zero-knowledge (cf. [26, 23]).13Indeed, the possibility to run various P (i;j)'s (i.e., same j and varying j's) was never considered before. Thisrefers to running the prover on the same random-tape but on di�erent input, and is a natural extension of our notionof resettable zero-knowledge. 16



So, in particular, a simulator guaranteed for W � will do also for V �.Proof Sketch: Using V � as a black-box and interacting with instances of P in a non-interleavedmanner, W � emulates for V � interleaved interactions with the same P . The emulation proceedsround by round. In order to emulate the next communication round (i.e., a message sent bythe interleaving adversary followed by a respond by some copy of Px;y;!), the (non-interleaving)adversary W � initiates a new session of the protocol, and conducts the prior interaction relating tothe session that the interleaving adversary wishes to extend.For simplicity, assume that V � interacts with a single incarnation of P (i.e., a single Px;y;!rather than polynomially-many such Pxi;yi;!j 's). Suppose that the sequence of messages emulatedso far is �1; :::; �t and the message to be emulated is �t+1 � (i; �(i)j+1) (i.e., the j + 1st message ofsession with ID i). Then the non-interleaving adversary, W �, initiates a new session with Px;y;!,and proceeds in j + 1 steps so that in the kth step it sends �(i)k and obtains the response of Px;y;!.It forward to V � (only) the last response of Px;y;! (i.e., the response of Px;y;! to �(i)k ), and abortsthe current (non-interleaved) session.The argument extends easily to the general case (in which V � interacts with polynomially-manyPxi;yi;!j 's). All that is required is for W � to initiate a new session with the corresponding Pxi;yi;!j(i.e., the one to which the current message of V � was directed).5 Resettable Witness-Indistinguishable proofs for NPAs a �rst indication towards the feasibility of the resettable model and as a tool towards theconstruction of resettable zero-knowledge proof systems, we show that under standard intractabilityassumptions, any NP-statement has a resettable witness indistinguishable proof system. We stressthat whereas any witness indistinguishable proof (cf. [16]) is also concurrent-WI (cf. [14]), allpreviously known witness indistinguishable proof are not resettable witness indistinguishable. Weactually prove the following:Theorem 4 If two-round perfectly-hiding commitment schemes exists then every language in NPhas a constant-round resettable witness indistinguishable interactive proof system.Recall that the hypothesis holds if families of claw-free permutations exists, which in turn holds ifthe Discrete Logarithm Problem (DLP) is hard modulo primes p of the form 2q + 1 where q is aprime. We note that the theorem holds also under the assumption that there exist constant-round(rather than two-round) perfectly-hiding commitment schemes that is computationally-binding alsoin the resettable model (i.e., when the receiver may be reset). Note that any two-round perfectly-hiding commitment scheme is computationally-binding in the resettable model.Proof Sketch of Theorem 4Traditional zero-knowledge interactive proofs rely on the randomized nature of the prover strategy.In a sense, this is essential (cf., [26]). In our context, the prover's randomization occurs only onceand is �xed for all subsequent interactions. So the main idea is to utilize the initial randomization(done in the very �rst invocation of the prover) in order to randomize all subsequent invocations.The natural way of achieving this goal is to use a pseudorandom function, as de�ned and constructedin [20].14 However, just \using a pseudorandom function" does not su�ce. The function has to be14Recall, that by combining [32] and [20] one may construct pseudorandom functions using any one-way function.Furthermore, relying on the intractability of the DLP, a much more e�cient construction is available by combining [6]17



applied to \crucial steps" of the veri�er; that is, exactly the steps which the veri�er may want toalter later (by rewinding) in order to extract knowledge. Thus, the zero-knowledge proof systemfor 3-Colorability of [25] is not an adequate starting-point (since there the prover's randomizationtakes place before a crucial step by the veri�er). Instead, we start with the zero-knowledge proofsystem of Goldreich and Kahan [22]: In that proof system, the veri�er �rst commits to a sequenceof edge-queries, then the prover commits to random colorings, and then the veri�er reveals itsqueries and the prover reveals the adequate colors. Starting with this proof system, we replacethe prover's random choices (in its commitment) by the evaluation of a pseudorandom function(selected initially by the prover) on the veri�er commitment. Thus, on an abstract level, the proofsystem is as follows.Common input: A graph G = (V;E), where V = [n] def= f1; :::; ng, claimed to be 3-colorable.Prover's auxiliary input: A 3-coloring � : [n] 7! f1; 2; 3g of G.Prover's initial randomization: The prover's random-pad is used to determine a pseudorandomfunction f : f0; 1gpoly(n) 7! f0; 1gpoly(n).The rest is an adaptation of the [22] proof system, where the only modi�cation is at Step (P1).(V1) The veri�er commits to a sequence of t def= n � jEj uniformly and independently chosen edges.The commitment is done using a perfectly-hiding commitment scheme, so that the prover getsno information on the committed values, while it is infeasible for the veri�er to \de-commit"in two di�erent ways (i.e., the scheme is computationally-binding).(P1) As in [25, 22], the prover commits to t random relabeling of colors. The commitment is doneusing an ordinary commitment scheme, providing computational-secrecy and perfect-binding.The key point is that the prover's random choices (both for the relabeling and randomizationneeded for the commitment scheme) are replaced by the value of the function f applied tothe message sent by the veri�er in Step (V1).Actually, we may apply f to the pair ((G;�); msg), where msg denotes the message sent by theveri�er in Step (V1). That is, let (�1; r1); :::; (�t; rt) = f(G;�; msg), and use �i : f1; 2; 3g 1�17!f1; 2; 3g as the ith randomization of � (i.e., �i(v) = �i(�(v))), and ri = (ri;1; :::; ri;n) asrandomness to be used when committing to the values of �i on [n]. That is, for i = 1; :::; tand j = 1; :::; n, the prover commits to �i(j) using randomness ri;j.(V2) The veri�er reveals the sequence of t edges to which it has committed to in Step (V1). Italso provides the necessary information required to determine the correctness of the revealedvalues (i.e., \de-commit").(P2) In case the values revealed (plus the \de-commitment") in Step (V2) match the commitmentssent in Step (V1), and in case all queries are edges, the prover reveals the corresponding colorsand provides the corresponding \de-commitment". That is, suppose that the ith edge revealedin Step (V2) is (u; v), then the prover reveals �i(u) and �i(v).(V3) In case the values revealed (plus the \de-commitment") in Step (P2) match the commitmentssent in Step (P1), and in case they look as part of legal 3-colorings (i.e., each correspondingpair is a pair of di�erent elements from the set f1; 2; 3g), the veri�er accepts. Otherwise itrejects.and [20]. 18



There is one problem, however, with the above presentation. In Step (V1) we have assumed theexistence of a 1-round (i.e., uni-directional communication) perfectly-hiding commitment scheme.However, any perfectly-hiding commitment scheme requires at least two rounds of communication(i.e., a message sent from the commitment-receiver to the commitment-sender followed by a messagefrom the sender to the receiver).15 Thus, we need to integrate such (two-round) commitmentschemes in the above protocol. Recall that the existence of such a scheme implies the existence ofone-way functions [33], which su�ces for constructing pseudorandom generators [32], pseudorandomfunctions [20], and (two-round) perfectly-binding commitment schemes [36]. (Our description canbe easily modi�ed to utilize the latter, rather than a one-round perfectly-binding scheme whichmay be constructed assuming that one-way permutations exist.)Clearly, the above protocol constitutes an interactive proof system for 3-colorability (since asfar as cheating provers are concerned there is no di�erence between the above protocol and the onein [22]). Thus the task is to show that the protocol is resettable witness indistinguishable.Comment: It appears as if the above protocol is resettable zero-knowledge; however, we werenot able to prove this. The subtle problem is that the veri�er may fail to de-commit in Step (V2).Speci�cally, it may fail to decommit in one session and decommit properly in a later session in whichit has sent the same message in Step (V1). Doing so will harm the straightforward simulationattempt, which proceeds session-by-session so that in each session one �rst tries to obtain theveri�er's commitment values via a dummy (P1)-message so that one can later simulate Step (P1)(and the subsequent steps of the same session) properly. The problem is that we cannot answerthe same Step (V1) message, sent in two sessions, in two di�erent ways (in the two sessions), sincethe prover would answer identically in the real execution.16Showing that the protocol in resettable witness indistinguishable: Fortunately, the sub-tle problem mentioned above has much milder e�ect on the proof that the above protocol is witness-indistinguishable. As a mental experiment, we consider an ideal prover that uses a truly randomfunction rather than a pseudorandom one.17 The key observation is that whenever a di�erentStep (V1) message is sent, the corresponding Step (P1) is an independently selected random com-mitment to an independently selected random relabeling of the speci�c coloring �. Our goal is toshow that the dependence of the interaction on the speci�c witness coloring � is computationallyunnoticeable. That is, we show that multiple sessions (with an adversary V �) in which one pos-sible witness coloring � is used are computationally indistinguishable from such sessions in which15 The lower bound refers to commitment schemes in which the computationally-hiding requirement should holdw.r.t (non-uniform) polynomial-size circuits. (Such circuits may just incorporate two valid decommits for the same1-message commitment.) Note that the standard zero-knowledge condition is itself somewhat non-uniform (as itrefers to any veri�er's input), and so the commitment scheme used by the veri�er must be computationally-bindingw.r.t. non-uniform polynomial-size circuits. (Such non-uniform complexity assumptions are employed in all work onzero-knowledge, with the exception of a fully-uniform treatment (cf. [18]).)16Speci�cally, suppose that the simulator always tries �rst to send a dummy message in Step (P1), and considertwo consequetive sessions with a cheating veri�er. In the �rst session, the veri�ers commits to some edge sequencein Step (V1) but refuses to decommit in Step (V2). The simulator will thus produce a truncated session (which, byitself, is �ne). Now suppose the veri�er repeats the same Step (V1) message in the second session, but does decommitproperly in Step (V2). The simulator would like now to send a corresponding commitment to a pseudo-coloring, butthe problem is that this message is di�erent from the dummy commitment sent in Step (P1) of the �rst session. Notethat the real prover will always send the same (P1)-message in response to the same (V1)-message, and so if thesimulator behaves di�erently this is easily detectable.17 As usual, once the claim is established for such a prover, we replace back the random function by a pseudorandomone (and so derive the stated result). 19



another witness coloring �0 is used. For simplicity (and, w.l.o.g., in view of Theorem 3), we mayassume that the adversary veri�er is a non-interleaving one (i.e., it completes or aborts a sessionbefore initiating a new one). The proof uses a hybrid argument, where the ith hybrid is de�ned asfollows:� For every j, if in the jth session the message sent in Step (V1) is identical to one sent insession j0 (for some j0 < j) then the prover repeats the corresponding Step (P1) message.� Otherwise (i.e., the message sent in Step (V1) of session j did not appear in any prior session),if j � i then the prover uses � when executing Step (P1) else (i.e., j > i) it uses �0.� Loosely speaking, in all cases, the execution of Step (P1) determines also the prover's actionsin Step (P2).This would have been accurate if the veri�er's commitment scheme had been perfectly-binding, but it is only computationally-binding. Still we ignore here and below the possibilitythat the veri�er may decommit to the same Step (V1) message (appearing in two di�erentsessions) in two di�erent way. We claim that such an event occurs with negligible probability,or else a contradiction to the computationally-binding feature of the veri�er's commitmentscheme follows.Thus, ability to distinguish the ensembles in question (which correspond to the extreme hybrids)implies ability to distinguish neighboring hybrids (i.e., hybrids i and i+1). Note that hybrids i andi+1 may di�er only when session i+1 has a Step (V1) message that did not appear in any of the�rst i sessions. The key observation is that in such a case the commitment generated in responseis independent of the prior iterations. The actual argument utilizes several standard tricks: Firstwe use an averaging argument to �x the transcript of the �rst i sessions. Since our distinguisheris non-uniform we may omit these �rst i sessions from our discussion and consider an distinguisherwhich receives as input only transcripts starting at session i+1 (which are taken either from hybridi or i+1). We next transform this distinguisher into one that only receives the transcript of sessioni + 1 (by emulating the following sessions in a straightforward manner using � and �0 which asusual can also be incorporated in the distinguisher). Note that if a latter session repeats the sameStep (V1) message then we just copy the prover's response from Step (P1) of the prior session. Thuswe obtain a polynomial-size circuit that distinguishes between a single execution of the protocolin which � is used and single execution in which �0 is used, which contradicts the fact that sucha single execution corresponds to the standard zero-knowledge/witness-indistinguishability model(in which the protocol is equivalent to the one of [22] which is zero-knowledge and thus witness-indistinguishable).An alternative approach for constructing resettable witness indistinguishableproofsAn alternative (but somewhat related) approach for constructing resettable witness indistinguish-able proofs is to start with a non-interactive zero-knowledge proof system (cf., [5, 13]). The idea isto employ \coin tossing into the well" (cf., [3]), but with a small twist: First, the veri�er commits toa sequence of random bits using a perfect (two-round) commitment scheme. Next, the prover sendsa corresponding sequence of bits which are determined by applying a pseudorandom function tothe veri�er's message. Then, the veri�er de-commits and a reference-string for the non-interactivezero-knowledge proof is de�ned (as usual in \coin tossing into the well"), and �nally the prover20



sends such a (non-interactive) proof (relative to that reference-string). Further details are omittedfrom the current version.6 NP has Resettable ZK proof systemsIn this section we show how to construct resettable zero-knowledge proof systems for any languagein NP. Our starting point is a concurrent zero-knowledge proof system of Ransom and Kilian [37].We modify this proof system using the techniques presented in Section 5, and replace the concur-rent witness indistinguishable (concurrent-WI) proof system employed by [37] with our resettablewitness indistinguishable proof system. We stress that whereas any witness indistinguishable proof(cf. [16]) is also concurrent-WI (cf. [14]), all previously known witness indistinguishable proof arenot resettable witness indistinguishable. Thus, the resettable witness indistinguishable proof systemof Section 5 plays a major role in obtaining the following result.Theorem 5 If two-round perfectly-hiding commitment scheme exist then any language in NP hasa resettable zero-knowledge proof system. Furthermore, this is obtained via black-box simulation.Recall that the hypothesis holds if claw-free permutations exist, which in turn holds if DLP isintractable.We start by reviewing the Ransom and Kilian protocol [37]. In essence, the protocol consists oftwo stages. In the �rst stage, which is independent of the actual common input, k instances of cointossing into the well [3] are executed in a speci�c manner to be described, where k is the securityparameter (or a parameter that is polynomially related to the security parameter). Speci�cally, �rstthe veri�er commits to k random bit sequences, r1; :::; rk 2 f0; 1gk , and next k iterations proceed sothat in each iteration the prover commits to a random bit sequence, si, and the veri�er decommitsto the corresponding ri. The result of the ith coin-toss is de�ned as ri� si and is known only to theprover. In the second stage, the prover provides a witness indistinguishable (WI) proof (cf. [16])that either the common input is in the language or one of the outcomes of the k coin-tosses is theall-zero string (i.e., ri = si for some i). Intuitively, since the latter case is unlikely to happen in anactual execution of the protocol, the protocol constitutes a proof system for the language. However,the latter case is the key to the simulation of the protocol in the concurrent zero-knowledge model:Whenever the simulator may cause ri = si to happen for some i, it can simulate the rest of theprotocol (and speci�cally Stage 2) by merely running the WI proof system with ri as witness. (Bythe WI property, such a run will be indistinguishable from a run in which an NP-witness for thecommon input being in the language is used.)To transform the above protocol into one that is resettable zero-knowledge, we replace theprover's random choices in the �rst phase by choices determined by the application of a pseudo-random function to the veri�er's initial commitment. In addition, we replace the WI proof systemused by [37] by our resettable witness indistinguishable proof system.6.1 The protocol (sketch)The implementation of the protocol uses two complementary types of commitment schemes: Theprover's commitments are via a perfectly-binding commitment scheme (which is only computationally-hiding), whereas the veri�er's commitments are via a perfectly-hiding commitment scheme (whichis only computationally-binding). For simplicity of presentation, we will use a one-round scheme21



based on any one-way permutations18 for the �rst type, and a two-round scheme based on claw-freepairs19 for the second type.Common Input: x supposedly in the language L 2 NP, and a security parameter k.20Prover's Auxiliary Input: an NP-witness w for x 2 L.Prover's Randomness is used to de�ne a pseudorandom function f : f0; 1g�poly(k) ! f0; 1gpoly(k).Stage 1: This stage has little e�ect on the actual interaction between the prover and the veri�er,yet it provides a \trapdoor" for the simulation.1. The veri�er commits to k uniformly selected k-bit strings. This is done as follows.First the prover uses f to determine its �rst message in the two-round perfectly-hidingcommitment scheme.21 (Towards this end, the prover applies f to an arbitrary �xedstring di�erent from all strings to which f is applied in the sequel.) In response, theveri�er uniformly selects r1; :::; rk 2 f0; 1gk , and sends the prover its commitment toeach of the ri's. Denote by � = �1; :::; �k the sequence of k commitments sent by theveri�er. Note that � reveals no information about r1; :::; rk.2. For i = 1; :::; k, the following two-round interaction goes on. First the prover commits(in a perfectly-bidding way) to a random k-bit string, denoted si, and next the veri�erdecommits to �i by providing ri along with the randomness used in forming �i fromri. The prover's choice (i.e., si) as well as the randomization used in its commitmentare determined by applying f to the transcript so far.22 We stress that si is uniquelydetermined by the string, denoted �i, sent by the prover.Stage 2: The prover provides a resettable witness indistinguishable proof that either x 2 L orri = si, for some i. The NP-witness used by the prover is w, and the witness indistinguishableproof is the one presented in Section 5. Speci�cally, we reduce the NP-statement either x 2 Lor there exists an i and an s so that �i is a valid commitment to s and ri = s to Graph3-Colorability. (The graph is formed depending on x, the sequence of �i's and the sequenceof ri's; whereas w is e�ciently transformed into a 3-coloring of this graph.)We stress that whenever a party fails to provide a message as instructed the other party halts(detecting an obvious cheating attempt).It is quite obvious that the above protocol constitutes a proof system for L. In particular,the soundness property follows from the perfect-hiding property of the veri�er's commitment inStage 1, the perfect-binding property of the prover's commitment, and the soundness of the proofsystem used in Stage 2. The di�cult part is to show that the above protocol is indeed resettable18 Speci�cally, given a one-way permutation f with a hard-core b (e.g., see [24]), one commits to bit � by selectinguniformly a string x, and sending the value f(x); b(x)� �. Decommitment is done by providing (� and) x.19 Speci�cally, given a family of claw-free pairs, f(f0a ; f1a ) : a 2 I � f0; 1g�g (e.g., see [19]), the sender commitsto bit � as follows. The receiver �rst selects at random an index a 2 I and sends it to the sender, which uniformlyselects x in the domain of f�a , and sends the value f�a (x). Decommitment is done by providing (� and) x.20 For simplicity we equate all \security governing" parameters such as the number of iterations in Stage 1, thelength of strings committed to in Stage 1, the security parameters used in the pseudorandom function and in thecommitment schemes, etc.21 Here and in the sequel, whenever a party fails to provide a message as instructed the other party halts (detectingan obvious cheating attempt).22 Alternatively, it su�ces to apply f to the pair (�; i). The alternative adopted in the main text merely simpli�esthe simulation a little. 22



zero-knowledge. We present two alternative proofs for this claim. The �rst alternative is outlinebelow and executed in subsection 6.2, whereas the second is presented in subsection 6.3. The�rst alternative consists of extending the simulation strategy of [37] from the concurrent setting tothe more demanding resettable setting. The basic strategy is based on constructing transcripts ofStage 1 in which ri = si for some i, and running the witness indistinguishable proof system (as ifwe were the prover) with witness si. We wish to stress two points which are crucial to the fact thatour protocol is indeed resettable zero-knowledge:1. The way in which [37] construct transcripts (of Stage 1) in which ri = si for some i, canbe extended from the concurrent model to the (stronger) resettable model. The extensioninvolves changing the location to which the simulator is rewinded so to meet the constraintsof the resettable model.2. The protocol used in Stage 2 is witness indistinguishable in the resettable model. We referthe reader to Section 5 for discussion of this feature.In both cases, the key to robustness in the resettable model is that the veri�er's actions are almostdetermined by its �rst message in the current stage, and so applying a pseudorandom functionto this message provides the prover with su�ciently good randomization. By saying that theveri�er's actions are almost determined by its �rst message in this stage we mean that this messagee�ectively commits the veri�er to all other actions in the stage. Essentially, its only choice is whetherto continue in its \predetermined" actions or abort the protocol.23 Whereas this restricted choice(of whether to proceed properly or abort) su�ces to prevent us from proving that the (resettablewitness indistinguishable) protocol used in Stage 2 is itself resettable zero-knowledge, we'll showthat the combined protocol (of both stages) is in fact resettable zero-knowledge.6.2 The simulation game (sketch)We �rst de�ne a simulation game that captures the simulation strategy. Our aim in this game isto capture the way the simulator \abuses" Stage 1 in order to produce transcripts of both stages(and speci�cally of Stage 2). As usual, the simulator has black-box access to an adversary strategyfor a cheating veri�er. Here this strategy operates in the resettable model which means that whensupplied with a history transcript h the veri�er may send a message corresponding to some pre�xof h (i.e., such a message may be the next message in any of the sessions described in the pre�x oran invocation of a new session).24 Now, suppose that we replace Stage 2 by the veri�er asking theprover if it has an NP-witness to the statement made in this stage, and by the prover answeringhonestly (i.e., always \yes" in the actual execution). (We stress that this replacement for Stage 2takes place only if the veri�er has properly decommitted in all k iterations of Stage 1.) Furthermore,let us postulate that the simulator is required to answer honestly too. It follows that in order toproduce good simulations the simulator must force ri = si for some i before completing (Stage 1of) a session in which the veri�er never fails to properly decommit. Alternatively, we postulate that23 This text is slightly imprecise since computational-binding does not disallow a di�erent decommitment to thesame value (i.e., providing (v; �1) and (v; �2) so that applying the commitment scheme to value v while using coins�i yields the same committal, regardless of �i. But we may assume, w.l.o.g., that this does not occur (since itonly increases the prover's freedom): Suppose that the veri�er decommits to some �i in two di�erent ways bothcorresponding to the same ri. Then, this does not e�ect our attempt to force si = ri; it only allows makes theprover's actions in next iterations more independent (as these may depend on the entire transcript).24 Note that in the standard zero-knowledge model, the veri�er must send the next message in the single sessiondescribed in h, whereas in the concurrent model the veri�er must send the next message in any session described inh or invoke a new session. 23



the simulator may make query h to the veri�er strategy only if for any (Stage 1) session that isproperly completed in h it is the case that ri = si for some i. Recall, that without loss of generality,we may assume that before outputting the full transcript h, the simulator queries the veri�er on h(and the latter responses with halt).Recall that the simulator makes queries which are partial transcripts of a possible execution,where each execution is a sequence of sessions. To simplify the exposition, the reader may assumethat these sessions are not interleaved but rather that a new session (possibly with a copy of the samePxi;yi;!j ) is initiated only after the previous session was terminated (i.e., completed or aborted).We stress that the same exposition applies also to an adversary that interleaves sessions (only theformalism is a bit more complex as we need to make conventions regarding the correspondence ofmessages in an execution to various sessions). Furthermore, recall that restricting the adversaryto the non-interleaving case does not limit its power (since such an adversary may emulate aninterleaving one; see Theorem 3).De�nition 6 (the simulation game): We call a session (of Stage 1) in an execution pre�x properlycompleted if (during this execution pre�x) the veri�er has decommitted properly in all its k iterations.A black-box simulator (for Stage 1) is called honest if for every query h made by the simulator andfor every properly completed session in h, it is the case that for some i the ith prover's commitmentin this session is to a value equal to the ith value revealed (and properly decommitted) by the veri�erin this session.Recall that the queries are made to adversary strategies which may respond by a next message inan existing session or by an initiation of a new session. We stress that new sessions may be witha copy Pxi;yi;!j which was already used in a previous session (described in the pre�x). Thus, itis instructive to prepend each such initiation with the corresponding pair (i; j). Finally, since theadversary's strategy to which we have black-box access captures the operation of a poly(k)-timeadversary, we know that for some polynomial p it is the case that for any query made by thesimulator either the veri�er strategy aborts or the total number of sessions appearing in the queryis at most p(k).Theorem 7 Suppose that the commitment schemes used in Stage 1 are as postulated. Speci�cally,suppose that the computational security conditions hold with respect to poly(k)-size circuits. Then,there exists an honest (black-box) simulator operating in poly(k)-time that, for every poly(k)-timeveri�er V � in the ressetable model, has output that is computationally indistinguishable (again w.r.tparameter k) from the transcript of executions of Stage 1 by V �.The proof is constructive. It will be clear from the construction that the simulator runs in strict (notmerely expected!) poly(k)-time. As in the proof of Theorem 4, we will consider an imaginary proverthat utilizes a truly random function rather than a pseudorandom one. We will make extensiveuse of the hypothesis that the veri�er's commitment is computational-binding, and ignore the rarecases (which may occur only with negligible probability) in which during the simulation game theveri�er properly decommits to the same commitment so to support two di�erent values. Thus,at any point where the veri�er sends a decommit message, it is either a proper decommitmentto a unique value (associated with the corresponding commitment message) or a special messageindicating refusal to decommit. Let K def= poly(k) (i.e., p(k) above) be a bound on the numberof sessions initiated by the veri�er strategy (say in the actual execution). We assume K is known(but this assumption may be easily removed by using the standard doubling trick; see [37]).24



Motivation towards the simulator: Standard simulator (and the current one is no exception)proceed by rewinding the veri�er so to force situations that occur rarely in actual executions (i.e., inour case ri = si for some i). (In a sense, impossibility results as [23] indicate that such \rewinding"in unavoidable.) A key observation, originating in [12], is that whenever many sessions are tobe simulated rewinding may result in loss of work done and cause the simulator to do the sameamount of work again. Speci�cally, all simulation-work done for sessions starting after the pointto which we rewind may be loss. The key observation is that only work invested for such \fresh"sessions is lost. Loosely speaking, considering a speci�c session, since there are in total at mostK sessions, there must be an iteration (i.e., an i 2 f1; :::; kg) so that at most K=k sessions startin the interval corresponding to possible rewindings of the ith iteration (of this speci�c session).So if we try to rewind on the correct i, we will invest (and so waste) only work proportional toK=k sessions. So the idea is to abort the rewinding attempt on the ith iteration if more than K=ksession are initiated in the corresponding interval. The same reasoning applies also recursively(i.e., to the rewinding in these K=k sessions). So at the `th level of the recursion we may need todeal with K` = K=k`�1 sessions, and each may cause us work proportional to the simulation ofK`=k = K=k` sessions. Denoting by W (m) the amount of work invested for m sessions, we obtainthe recursion W (m) = O(m �W (m=k)), which solves to W (K) = K�(logkK). Since K = poly(k)we get W (K) = KO(1).25 Clearly, the above is but a rough sketch of the argument and numerousdetails should be dealt with (as done below).The main procedure: This procedure uses a subroutine, denoted NextProverMsg, that givena partial transcript of an execution ending in a veri�er message, returns the next prover message(in the session indicated by the veri�er). Initiating h to equal the sequence of common inputs xand S  ;, the main procedure repeats the following steps until V � terminates, at which point itoutputs h.1. Extend the transcript by one veri�er message: h (h; V �(h));2. Extend the transcript by one prover message: (S; msg)  NextProverMsg(K;S; h) if msg =fail then we abort without output else we let h (h; msg).The rest of the description is recursive: NextProverMsg calls a subroutine Solve which in turncalls NextProverMsg itself. However the �rst parameter in these calls decreases and this providesa bound on the running time. The second parameter passed to NextProverMsg is a (monotonicallygrowing) set of \solved" sessions (i.e., sessions for which we've forced ri = si for some i) along withadequate witnesses (i.e., the ri's). We assume all procedures know K (as above). Recall that byour convention (see Section 4), each message (of both prover and veri�er) includes as pre�x theentire current transcript of the current session.Procedure NextProverMsg: On input (m;S0; h0) the procedure extracts the last message in h0,which is a veri�er message denoted msg, and acts as follows.1. Initiate session message: If msg is a veri�er's message asking to initiate a new session thenwe act as follows:25 It is indeed remarkable that the running-time of the simulator is polynomial, whenever the running-time of theadversary is polynomial, but the former polynomial is not a power of the latter one. Speci�cally, if the running-time ofthe adversary is TA(k) = ka then the simulator runs in (polynomial) time tS(k) = kO(a2) (rather than tS(k) = kO(a),or even tS(k) = ka+O(1), as is typically the case). This (bad) feature is inherited from [37].25



� If this is the �rst session to be initiated (in h0) then we emulate the prover's answer byselecting a random �rst receiver-message for the commitment scheme.� Otherwise (i.e., other sessions already exist), we merely answer with the same prover'smessage provided in the previous initializations.2. Repeated message: If msg appears several times in h0 (this cannot occur in the concurrentzero-knowledge model) then we act here to match the action in the previous occurrence:� Let i denote the currently handled session (to which msg belongs), I denote the previoussessions in which msg appears, and a be the answer given to msg in these previoussessions.� If msg is the last veri�er message in the session then return (S0; a).� Otherwise, suppose that a is the prover's jth commitment in session i (i.e., msg is eitherthe veri�er's commitment in session i or its j � 1st decommitment, where j � k). Ifthere exists (i0; j; r) 2 S0 so that i0 2 I then return (S0 [ f(i; j; r)g; a) else return (S0; a).3. Invalid message: If msg is an invalid message (i.e., an illegal decommit) then we return(S0; (msg; halt)) (i.e., the prover halts the current session).4. Message for a solved session: If msg relates to a session in S0 then we proceed in the straight-forward manner. That is,� if msg the last veri�er (valid) decommitment (viewed as the question whether the simu-lator knows an NP-witness) then we return (S0; (msg; yes)) (which is correct);� if, for i < k, msg is the ith veri�er decommitment (and it is proper and only appears oncein h0) then we return (S0; (msg; �)), where � is a (random) commitment to a randomk-bit string. Same if msg is the initial commitment of the veri�er (and it only appearsonce in h0).5. Last message for an unsolved session: If msg is a valid decommit to the last iteration in asession not in S0 then we've failed and return (S0; fail). (This is because at this point weare asked if we have an NP-witness and being honest we cannot answer \yes".)6. Non-last message for an unsolved session: If msg is a valid decommit (which appears once inh0) to a non-last iteration in a session, denoted i, not in S0 then we try to \solve" the sessionas follows. Basically, we'll try to obtain the next veri�er decommitment for the current session(that's why we insist that the current decommitment is not the last one). Denote by j � kthe index of the next decommitment. If we obtain the latter decommitment then we set theprover's next message to be a commitment to the corresponding value (and so force sj = rjwhich satis�es session i).Speci�cally, we repeat the following steps for O(K2) times:� Let S0  Solve(d2m=ke; S0; h0; i; j).(The values of i and j are implicit in h0, but we provide them explicitly for clarity ofexposition.)� If for some r the revised S0 contains (i; j; r) then return (S0; (msg; �)), where � is a(random) commitment to the value r.26



In case none of these attempts succeeded, return (S0; (msg; �)), where � is a (random) com-mitment to a random k-bit string. (In all these case the string � returned by the procedureis the prover's commitment in the next iteration of session i.)Same if msg is the initial commitment of the veri�er (in a session i not appearing in S0 andmsg only appears once in h0).We stress that Item 6 guarantees that the standard \rewinding" technique can be applied here.This is because we rewind to the �rst place which determines the randomization in the next prover'sstep. In the description of Solve we ignore the case of msg equal the initiation message of a session,which is handled as in Item 1 above.Procedure Solve: By the construction of NextProverMsg, when Solve is invoked with input(m;S0; h0; i; j), session i is not solved yet (i.e., it does not appear in S0), and it is the procedure'saim to redeem this state of a�airs (speci�cally by obtaining the veri�er's jth decommitment forsession i). We stress that, unlike in [37], this decommitment is not necessarily obtained from sessioni: It may be obtained from a session i0 in which the initial veri�er's commitment message is identicalto the �rst message in session i. We call such a session a conjugate of session i.A key point regarding Solve is that throughout its attempt to solve the current session, theprocedure never wastes too much time. This is guaranteed by maintaining a growing set, denotedI, of the sessions it has initiated during the current execution of Solve, and aborting when jIjexceeds m.On input (m;S0; h0; i; j), the procedure denotes by E the set of sessions existing in h0, andinitializes I  ;. It then executes iteratively the following steps:1. Get the veri�er's respond to the current history; i.e., msg V �(h0) and h0  (h0; msg).2. Act as follows according to msg:(a) If msg is a valid decommit to the jth iteration in a session that is conjugate to sessioni then we return S0 [ f(i; j; r)g, where r is the corresponding value revealed in thedecommitment.(This completes a successful execution of Solve.)(b) If msg is a valid decommit to iteration j0 in a session i0 that is conjugate to sessionsi1; :::; it 2 E nS0 then we return S0[f(i1; j0; r); :::; (it; j0; r)g, where r is the correspondingvalue.26(Although we did not solve session i, we did make progress since EnS0 became smaller.)27(c) If msg is an invalid decommit to any iteration in any session i0 then set h0  (h0; (msg; halt))(i.e., the prover halts session i0).28(Here, as in cases 2(d)ii and 2e below, we just continue to extend the current execution.)26 Note that i0 may but need not be one of the ij 's. We comment that in the concurrent setting, treated in [37],this case may occur only if i0 2 E n S0 (since there each session is only conjugated to itself).27 In case j0 < k we may indeed continue our solving attempts (rather than returning), but in case j0 = k we mustreturn as in Step 5 of NextProverMsg. Since the analysis does not seem to bene�t from this distinction, we prefer,for sake of simplicity, we the current presentation.28 Alternatively, we may invoke NextProverMsg(m;S0; h0), which will do exactly the same. We remark that in [37]if msg is an invalid decommit to the jth iteration in session i then we may abort (since we have no chance to succeedin the current invocation of Solve). This is however NOT the case in the resettable model, and it is crucial to proceedas in case 2c. It will become clear from the analysis that no damage is caused by continuing the current solving trial(and this holds, of course, also for the concurrent model treated in [37].27



(d) If msg is the �rst message (i.e., a veri�er's commitment) in a new session, i0 62 E [ I,theni. If jIj = m then we return S0.(This failure to solve session i is due to too many new session encountered in thecurrent execution of Solve.)ii. Otherwise (i.e., jIj < m), we set I  I[fi0g, invoke (S0; msg) NextProverMsg(m;S0; h0),and set h0  (h0; msg).(e) If msg is any message referring to a session in I[S0 then set (S0; msg) NextProverMsg(m;S0; h0)and h0  (h0; msg). In the unlikely case msg = fail (i.e., failure of NextProverMsg), wereturn S0.(f) If msg = halt (i.e., veri�er terminates) then we return S0.(This failure to solve session i is due to not encountering a proper decommit in the jthiteration prior to the termination of all sessions.)(The reader may verify that these cases cover all possibilities; e.g., valid decommits arehandled in Items 2a, 2b and 2e. Case 2e is handled as the other cases, but this is done bythe recursive call.)The reader may easily verify the following:Fact 6.1 Let TN (m) (resp., TS(m)) denote the running time of NextProverMsg (resp., Solve)when invoked with �rst parameter m. Then,1. the running time of the main procedure is poly(k) � TN (poly(k));2. TN (m) < poly(k) � TS(3m=k); and3. TS(m) = poly(k) � TN (m).Thus, TN (m) = poly(k)logk=3m, and the running time of the main procedure is poly(k).Ignoring the rare cases in which the veri�er decommits to di�erent values for the same commitment,it follows that the simulator works as claimed in Theorem 7, provided that the probability thatNextProverMsg returns fail is negligible. That is,Lemma 6.2 Conditioned on the main procedure not aborting, its output is computationally indis-tinguishable from the output of V � in executions of Stage 1 in the resettable model.The main procedure may abort only if NextProverMsg returns a fail symbol in one of its (poly(k)-many) invocations. As in [37], establishing a bound on the latter failure probability is the mostdi�cult part in the analysis of the simulator. The key observation allowing to adapt the argumentin [37] to our context is that the \rewinding intervals" remain disjoint. That is, in any execution andfor every session i, we consider the set of all sessions, denoted C(i), having the same �rst (veri�er'scommitment) message as in session i; that is, C(i) � fig is the set of all sessions conjugate tosession i in this execution. Consider any session i occuring in an execution. For j = 1; :::; k, thejth interval is between the �rst time a prover's (commitment) message is sent in the jth iteration ofa session in C(i) and the �rst proper decommitment in the jth iteration of a session in C(i). Theimportant facts regarding these intervals are: 28



1. Procedure Solve is only invoked with a message marking the beginning of such an interval,and it (as well as it recursive calls) only explores extensions which are contained in thisinterval.2. The intervals corresponding to such a session i are disjoint. This is because, for j > 1, theprover sends jth commitment to a session in C(i) only after the veri�er has provided a properdecommitment in the j � 1st iteration of this session.We stress that the above facts hold trivially in the concurrent zero-knowledge context (consideredin [37]). Using the above facts, we obtain:Lemma 6.3 The probability that NextProverMsg(m; �; �) returns fail is negligible.Proof Sketch: We extend the argument of [37]: In their (concurrent) context, NextProverMsg(m; �; �)returns fail only when encountering the last message of a session i for which the current tran-script contains k proper decommitments to session i. (Otherwise, the simulator rightfully com-pletes session i with a halting message on behalf of the prover.) In our (resettable) context,NextProverMsg(m; �; �) returns fail only when encountering the last message of a session i so thatfor every j 2 f1; :::; kg the current transcript contains a proper decommitment to the jth iterationof a session that is conjugate to i. (Otherwise, for some j all sessions conjugate to i (including iitself!) have the veri�er send an invalid message in one of the �rst j iterations, and the simulatorwould have rightfully completes session i with a halting message on behalf of the prover.)Thus, suppose that NextProverMsg(m; �; �) returns fail when invoked to provide the lastmessage of a session i, and let ij be the �rst session conjugate to session i so that the currenttranscript contains a proper decommitment to the jth iteration of it (i.e., of session ij). Still, ifNextProverMsg(m; �; �) returns fail (when invoked to provide the last message of a session i) itmeans that for every j we failed to solve ij in iteration j using a new-session bound of 2m=k (other-wise, for i = ij this means that Case 4 of NextProverMsg would have applied, and for i > ij Case 2would have applied). So we are talking of O(K2) failures to solve each of these speci�c sessions foreach of the relevant k iteration (i.e., O(K2) failures to solve ij in iteration j). Loosely speaking, ifat least k=3 of these iterations have low (say lower than 0:1) probability to yield a proper commit-ment then the above event occurs with probability smaller than 2k � 0:1k=3, which is negligible.29Otherwise, we consider 2k=3 iteration which have proper decommitment with probability at least0:1. For at least one of these iterations, the expected numbers of new sessions initiated duringthe relevant interval (de�ned above) is at most m2k=3 . Using Markov's Inequality it follows thatwith probability at least 1=4 at most 2m=k new sessions are initiated in an attempt to solve forthis iteration. Thus, it is highly unlikely that we fail in all our O(K) attempts at this iteration:Case 2b of Solve (i.e., solving an old session) may occur in at most m � K attempts, Case 2(d)ioccurs with probability at most 3=4 (see above), and Case 2f occurs with probability at most 0.9(see above).Conclusion: Combining Theorem 7 with the resettable witness indistinguishable proof systemsof Section 5, we prove the main result of the current section. This can be seen by either employinga general composition theorem or by extending the arguments in the simulation game to our actualtwo-stage protocol, using the techniques of Section 5.29 Following [37], the fact that we are talking about a sequence of k decommitments and are content with solvingone of them allows to simplify the otherwise complex analysis of such procedure. Compare the treatment of a singledecommitment, which must be solved no matter what, in [22].29



6.3 An alternative proofWe present an alternative proof which uses the [37] analysis as a black-box (rather than modifyingit as above).The modi�ed protocol: We slightly modify the protocol presented in the previous subsection.Speci�cally, we move the veri�er's second commitment, which takes place in the �rst two rounds ofthe resettable witness indistinguishable protocol taking place in Stage 2 to Step 1 of Stage 1. Thatis, both the veri�er commitment to k uniformly selected k-bit strings as well as its commitment torandom edges in the reduced graph are made up-front, as the very �rst thing in the entire protocol.We call this combined commitment strings, the veri�er's commitment-message. We comment thatthere is a minor problem here, since the graph (to which the resettable witness indistinguishableproof (of Stage 2) is applied) is not determined yet. However, the size of this graph is known. Thus,we let the veri�er commit to random pairs of vertices, and use a standard convention by which theprover interprets each non-edge as some �xed edge (cf. [25, p. 714]). The only other thing requiringchange is to increase the number of parallel repetitions; that is, set t = n3 (rather than t = n � jEj),where n (resp., jEj) is the number of vertices (resp., edges). This is done in order to guaranteethat the probability that a bad edge is hit in t tries, where in each trial we select a random pairof vertices, is (1 � n�2)t = exp(�n) (as before). From this point on, we referred to the modi�edprotocol as (P; V ).Intuitively, the above modi�cation, only restricts the power of the veri�er (as it needs to com-mit earlier to its choices). Since the original protocol (of the previous subsection) is a speci�c(complex)30 implementation of the [37] protocol, it follows that both the original protocol as wellas its modi�cation are concurrent zero-knowledge. It is not hard to see that the modi�ed protocolremains an interactive proof (since the commitments moved to the front yield no information tothe prover). The key observation regarding the new protocol is that (in a single execution of theprotocol) all the veri�er steps following its �rst message (i.e., its commitment-message) are essen-tially determined. (See similar claims made in Section 5 and 6.1.) Thus, if the veri�er repeats itscommitment-message in the current session then it is essentially bound to continue as in a previoussession until a point of its choice where it may abort. The key issue is how to deal with suchrestricted veri�er behavior; note this is not trivial (see discussion of a subtle problem in Section 5).The other case is that the veri�er uses a new commitment-message in the current session. But insuch a case, by virtue of the way in which the prover uses its pseudorandom function to deter-mine its actions, the current session is essentially independent of the previous ones. Using theseobservations, we show that the fact that (P; V ) is concurrent zero-knowledge implies that it is alsoresettable zero-knowledge. (We stress that this is a feature of the speci�c proof system (P; V ), andit is not true that any concurrent zero-knowledge protocol is also resettable zero-knowledge: Theoriginal protocol of [37] is a good counter-example.)Motivation: Loosely speaking, our proof transforms an arbitrary adversary, V �, operating in theresettable model into an adversary W � of the concurrent model so that the output distribution ofW � after interacting with concurrent sessions of P is computationally indistinguishable from theoutput distribution of W � after interacting with resettable sessions of P . Assume, for simplicity,that V � is restricted so that it interacts with a single \incarnation" of P (rather than polynomiallymany such copies), and that whenever it sends the same commitment-message in session �, ineach next round of session � it either sends the same (corresponding) decommitment message or30 Recall that the complications were needed in order to achieve resettable zero-knowledge.30



abort. Also ignore the �rst message sent by the prover (i.e., the receiver message in the two-roundcommitment scheme employed by the veri�er). (Both assumptions will be removed in the actualargument given below.) Using V � as a black-box, we construct an \equivalent" W � that interactswith concurrent (independent) copies of P . Machine W � serves the messages of V � as follows:� In case, V � sends a new commitment-message, denoted com, machine W � initiates a newsession, denoted �com, with P , and supplies V � with P 's response.� In case, V � repeats a message (either a commitment-message or a decommitment), machineW � just retrieves the corresponding response of P and forwards it to V �. (W � does not sendany message to any session of P .)� In case, V � sends a new valid decommitment message, associated with the session havingcommitment-message com, machine W � forwards this valid decommitment to session �com ofP .� In case, V � sends an invalid decommitment message, machine W � just feeds V � with thestandard message indicating that P has aborted this session. (We stress that W � does notsend any message to any session of P ; in fact, W � may need to send P a valid decommitmentcorresponding to the current session at a later stage.)Note that although V � interaction with P is in the resettable model, the induced interaction ofW � with P is restricted to the concurrent model. Speci�cally, the sessions initiated by W � useindependent prover's coins (determined by applying a random function to di�erent values), andin each session the interaction is indeed in order (i.e., the veri�er's jth message is sent after itsj � 1th message, since the prover proceeds to round j only after receiving a proper decommitmentfor round j � 1).The actual proof (sketch)Actually, some minor modi�cations have to be applied in order to allow the actual proof go through.The augmented-concurrent model: We prove this claim by considering an augmented-concurrentzero-knowledge model: In this model, the veri�er �rst asks the prover to provide one string, andthen concurrent executions of the protocol take place where in all of these executions (sessions) the�rst prover's message is taken to be the string provided above.Let us �rst consider the security of the modi�ed protocol, (P; V ), in this augmented-concurrentzero-knowledge model. In this speci�c protocol, the prover's �rst message is merely the receiver'smessage in a two-round perfectly-hiding commitment scheme. Clearly, the computational-bindingfeature of such a scheme holds also when several executions with the same random receiver-messagetake place. Thus, the e�ect of augmentation on the speci�c protocol that we consider (i.e., on (P; V ))is immaterial. (To justify this claim, we observe that the only role of the prover's �rst message in theanalysis of the protocol is to guarantee that the veri�er cannot decommit to two di�erent values.)It follows that the modi�ed protocol (P; V ) is zero-knowledge also in the augmented-concurrentmodel.A last modi�cation model: Actually, we need to modify the augmented-concurrent modela bit as follows. Rather than selecting one string (at the onset of the interaction), the proverselects polynomially-many such strings and puts them in a list. When later the veri�er initiates31



a new (concurrent) session it (i.e., the veri�er) speci�es which of these strings should be used as�rst message in this session. Clearly, (P; V ) is zero-knowledge also in this modi�ed augmented-concurrent model. >From this point on, we referred to the modi�ed augmented-concurrent modelas the augmented-concurrent model.Finally, we claim that for every probabilistic polynomial-time adversary, V �, interacting withP in the resettable zero-knowledge model there exists a probabilistic polynomial-time adversary,W �, interacting with P in the augmented-concurrent zero-knowledge model so that the outputdistribution of W � in actual executions (in the augmented-concurrent model) is computationallyindistinguishable from the output distribution of V � in executions (of the resettable model).31 Thus,the simulator provided for W � (by the above claim) is also adequate for V �. Following is an outlineof our construction of W �, which uses V � as a black-box. We stress that W � may concurrentlyexecute several sessions with prover P , but in these sessions { with the exception of the �rst messagethat is determined as postulated in the augmented model { the prover's actions are independent ofits actions in other sessions. In contrast, V � (being in the resettable model) may wish to conductseveral sessions with a �xed random incarnation of the prover, denoted P (i;j) = Pxi;yi;!j (seeterminology in Section 4). For simplicity, we may again assume that V � is in the non-interleavingmodel (see Theorem 3).The construction of W �: Working in the augmented-concurrent model,W � �rst asks the proverto supply polynomially-many strings (to be used as the prover's �rst message). These strings areput in a list in which entries correspond to pairs of integers. Next, adversary W � handles themessages of V � as follows:1. V � initiates a new session: Suppose that V � initiates a new session with one of the incar-nations of P . Speci�cally, suppose it is the �th time that V � initiates a session with P (i;j).Then, adversary W � initiates a new session with the actual prover, and feeds V � with theprover's response. Speci�cally, the adversary asks the prover to use the string (i; j) as its �rstmessage in this session, which is denoted (i; j; �).(It is crucial thatW � is in the augmented-concurrent model, rather than being in the standardconcurrent model: otherwise, W � could not have initiated two sessions with the actual proverwhile insisting that the actual prover uses the same �rst message in both of them.)2. V � sends a new commitment-message: Suppose that V � sends as its commitment-message,in session � with P (i;j), a string di�erent from all commitment-messages is has sent in priorsessions with P (i;j). Let com denote this commitment-message. ThenW � sends com to session(i; j; �) of the actual prover, and feeds V � with the prover's response. It records � as the activesession of P (i;j) for commitment com.(In subsequent messages directed by V � to P (i;j), for every commitment-message com, adver-sary W � will communicate only with session (i; j; �com), where �com is the active session ofP (i;j) for com.)(Note that in case V � sends di�erent commitment-messages (to sessions of the same P (i;j)),W � uses as reply messages obtained from two di�erent (i; j; �)-sessions. Case 1 ensures thatthese sessions share the �rst prover's message, but are otherwise independent (from theprover's point of view).)31 As in other cases in this paper, the di�erence may be due to a case in which V � decommits di�erently to the samemessage, in two sessions it conducts with the same \incarnation" of the prover (i.e., induced by the same prover'srandom-pad). 32



3. V � sends a new valid decommitment: Suppose that V � makes for the �rst time a validdecommitment to a speci�c commitment component in a session with a speci�c P (i;j) inwhich a speci�c commitment-message is sent. Let dec denote this decommitment, � denotethe current session of P (i;j), com denote the commitment-message in this session, and �com bethe active session of P (i;j) for commitment com. Then W � sends dec to session (i; j; �com) ofthe actual prover, and feeds V � with the prover's response.(We wish to clarify the conditions made in this case: Recall that the commitment-message comhas k+1 components; one per each of the k iterations of Stage 1, and a single one in Stage 2.Let ` be the index of the current decommitment; that is, dec is the `th decommitment takingplace in session � of P (i;j). The current case that dec be a valid decommitment. Furthermore,it requires that in any prior session of P (i;j), in which the commitment-message is com, the`th decommitment either did not take place or was invalid.)4. V � sends an invalid decommitment: Suppose that V � makes an invalid decommitment to aspeci�c commitment component in a session with a speci�c P (i;j). (We don't care whetheror not this is the �rst time such an invalid commitment is sent for this speci�c commitment-message.) In this case, all that W � does is feed V � with a message indicating that the proverhas halted this speci�c session.(We stress that W � does not communicate this halting message to (session (i; j; �) of) theactual prover, where � is the active session of P (i;j) for the corresponding commitment. Thispoint is crucial, since when responding to future messages of V �, machine W � may needto send a valid decommitment to the same commitment in session (i; j; �), so to obtain theprover's response (which it may not be able to generate). We are fortunate not to need anyhelp in generating the prover's response to an invalid decommit. Note that W � never sendsan invalid message to the actual prover; this should not bother the reader { our aim is tosimulate the view of V �, not the joint view of copies of the provers interacting with V �.)5. V � repeats a message: Suppose that V � repeats in session � with P (i;j) a message thathas appeared in a prior session with P (i;j). (Such a message may either be the veri�er'scommitment-message or one of its decommitment messages.) Let msg be the current message,com be the corresponding ((k+1)-component) commitment-message of this session, and �combe the active session of P (i;j) for commitment com. Then W � just copies the response to msgobtained from the prover in session (i; j; �com), and feeds it to V �.Our description assumes that whenever V � provides a valid decommitment to the same com-mitment, it always provides exactly the same text; that is, decommit to the same value whileproviding the same proof (witness) to vouch for the validity of the value. Recall, that we mayignore the rare cases (occurring with negligible probability) in which the veri�er decommitsproperly to two di�erent values. So the issue is what to do when the veri�er decommits tothe same value using two di�erent witnesses. A possible solution is to treat the latter caseas we treat the case of identical messages (i.e., pretend that the decommit message is identi-cally the same). This requires a minor modi�cation of the protocol, following the alternativesuggested in Footnote 22; that is, don't include the witness in the session history to whichthe pseudorandom function is applied. (Note that, intuitively, V � has nothing to gain fromusing a di�erent witness for proper decommitment to the same value; it is the value itselfthat matters. In fact, given the above modi�cation, the prover ignore the witness once thecorrectness of the decommitted value has been established.)33



(It is not important that W � does not communicate with the actual prover in case a massageis repeated, provided it does so in a way which is not conicting with its other actions (e.g.,W � should not communicate on session (i; j; �com), since the actual prover of this session hasalready responded to the current message msg). What is important is that the message fedto V � must be exactly the one given in prior sessions with P (i;j) in which V � sent the samemsg (in the same round). For simplicity, we just specify that W � does not communicate withthe actual prover in the current case.)6. V � terminates: When V � sends a termination message, which includes its output, adversaryW � just outputs this message and halts.7 NP has Resettable ZK ArgumentsIn this section we show how to achieve rZK arguments for NP. Our protocol uses no timing as-sumption, preprocessing, or public-�les, but runs in O(n) number of rounds, where n is the securityparameter. Mutatis mutandis, the situation is analogous to the original ZK proof of quadratic resid-uosity, which, in order to be zero-knowledge, must be executed in O(n) sequential rounds for havingan error probability of 2�n. (Only years later was a constant-round ZK protocol for quadratic resid-uosity found. We do not know whether the same may happen here.)As we have said already, our protocol can be implemented with any veri�able commitmentscheme, though for simplicity in this extended abstract we prefer to rely on a rather more concretecomplexity assumption.7.1 The Strong DLP Assumption for Safe PrimesLet p be a prime, g a generator for Z�p (the multiplicative group modulo p), and y an element in Z�p .Then the Discrete Logarithm Problem (DLP) consists of �nding, on inputs p, g amd y, an elementx 2 [1; p� 1] such that gx � y (mod p). In this extended abstract we assume that (1) the circuitcomplexity of this task is sub-exponential also in the special case where p is a safe prime (i.e., ofthe form p = 2q + 1 where also q is a prime), and that (2) safe primes are easily samplable. MorepreciselyStrong DLP Assumption For Safe Primes: The following two properties hold:1. Samplability. There exists a probabilistic polynomial-time algorithm that, for all su�cientlylarge n, on input 1n outputs a random safe prime of length n.2. Hardness. 9� > 0 such that, for every su�ciently large n, for every circuit C of size at most2n� , for a random, safe prime p of length n, for a random generator g of Z�p , and a randomx 2 Z�p : Pr[C(p; g; gx mod p) = x] < 2�n� :The above DLP assumption is quite reasonable, and enables us to implement our needed ver-i�able commitment in a very easy manner. Notice that we could also implement our veri�ablecommitment based on a weaker assumption, but at the price of additional complexities. In particu-lar, we could rely on the same DLP assumption as above, but stated for general primes rather thanfor safe ones.32 Alternatively, we could implement veri�able commitment based on the assumptionthat the circuit complexity of factoring is sub-exponential.32 We use safe primes because it is easy to check whether g is a generator mod p if the prime factorization of p�1 isan available input. Note that, in the case of a safe prime p, such a factorization is indeed available: one has to divide34



7.2 Initial Remarks About Our ProtocolTo show that all NP languages have rZK arguments, we show one such argument for 3-colorability.Security parameters. Our protocol uses instances of the DLP relative to safe primes of twodi�erent lengths: K and k. (In the general version, this corresponds to two commitment schemeswith di�erent security parameters.) K and k are not chosen independently. Rather, the protocolrequires that K be polynomially bigger than k: more precisely, K = k 12� where � is the hardnessconstant of our DLP assumption. Thus, solving a random instance of the strong DLP will be muchharder modulo a K-bit safe prime than modulo a k-bit safe prime. In fact, even if one were giventhe ability of performing a number of computational steps equal to those necessary for solving theDLP modulo a k-bit safe prime by exhaustive search (rather than by the best known discrete-log algorithm), then his chance of solving the DLP modulo a K-bit safe prime would be totallynegligible.Pseudo-random functions. In our protocol the prover random tape consists of a secret inputs, which he uses as the seed of a pseudo-random function �a la [GGM], fs. The length of seed s maybe chosen quite independently of K and k: it is only for simplicity that below we choose it to beK-bit long. The prover is de-facto deterministic: at each step of the protocol, all of his \random"choices are made by applying fs to the history of the communication so far.Rounds. The number of rounds of our protocol is not constant, but is a quite independent securityparameter. For simplicity, below we let this other parameter also be equal to K, and implementour protocol 3K+4 rounds.Two logical parts. Our protocol consists of two logical parts.In the �rst part (steps 1-2) the veri�er uses a K-bit instance of the DLP to establish a trapdoorcommitment scheme. The prover will use this commitment scheme later on in the protocol toencode the 3-coloring of the input graph, G. The commitment scheme is perfectly private for theveri�er (i.e., the veri�er will have absolutely no information about the colors the prover commitsto) and computationally binding for the prover (i.e., in our case, the prover cannot \change" thecommitted colors unless he solves a K-bit instance of the DLP). The commitment scheme has anadditional property: trapdoorness. Namely, the veri�er embeds in the instance of the DLP (usedfor implementing a commitment scheme) some auxiliary information (the trapdoor) which allowshim to decommit in more than 1 way. This extra feature does not allow him to cheat: recall thatthis DLP instance is used to commit by the prover, who knows no trapdoor information. In step2, the veri�er actually proves in ZK to the prover that he knows such trapdoor. This (ordinary)ZK proof of knowledge is necessary for making the whole protocol rZK.In the second part (steps 3-8), the prover convinces the veri�er that there exists a proper 3-coloring for the input graph. At a high level, this is done following a traditional approach consistingof four logical stages executed independently and in parallel: (1) the veri�er commits in advance toan edge, e of G; (2) the prover commits to a (randomized) 3-coloring of G; (3) the veri�er decommitse; and (4) the prover decommits the coloring of the e's end points. The commitment scheme usedby the veri�er for e has properties that are symmetric to those of the commitment scheme usedp� 1 by 2 and check that the result is also prime. We could also rely on the assumption that the DLP remains hardeven if the factorization of p� 1 is available. This assumption too is widely believed; moreover, it has proven thatit is possible to generate random n-bit integers in factored form [Bach]. One could therefore generate such randomintegers and then add one until a prime is found, without relying on any type of samplability assumption.35



by the prover for the coloring. That is, it is perfectly private for the prover and computationallybinding for the veri�er. This second commitment scheme is actually chosen by the prover usinga k-bit instance of the DLP. (It will not matter whether this second scheme has an embeddedtrapdoor or not.)7.3 DLP-Based Commitment SchemesRelying on the intuitive notion of what a commitment scheme is, let us informally describe somecommitment schemes under the DLP assumption.A folklore bit-commitment scheme. Assume that p is a prime, g a generator for Z�p , and yan element of Z�p . Then the following protocol COMMp;g;y is a well-known way for a party P tocommit to a bit b. Scheme COMMp;g;y1. (Committing Instructions for P) To commit to a bit b, randomly select r in Z�p and outputthe value C = COMMp;g;y(b) = ybgr mod p.2. (Decommitting Instructions for P) Output DECOMMp;g;y(C) = r.It is immediately seen that the value C is uniformly distributed in Z�p both when b = 0 and whenb = 1. Thus COMMp;g;y enjoys perfect secrecy. Moreover COMMp;g;y also enjoys computationalsoundness in the sense that, to be able to decommit C both as 0 and as 1, P must �nd the discretelog of y in base g (mod p).A folklore string commitment. Scheme COMMp;g;y is immediately extended to a stringcommitment scheme (with perfect secrecy and computational binding under the DLP) as follows:to commit to a binary value v = v1; : : : ; vn, commit to each vi individually and independently.That is, C = COMMp;g;y(v) = COMMp;g;y(v1); : : : ; COMMp;g;y(vn) = C1; : : : ; Cnand DECOMMp;g;y(C) = DECOMMp;g;y(C1); : : : ;DECOMMp;g;y(Cn):A second bit- and string-commitment scheme. Assume that p is a prime, that g is agenerator for Z�p , and that y1; : : : ; yn are n distinct elements of Z�p . Then, the following protocol isa bit commitment with perfect secrecy and computational binding under the DLP.Scheme COMMp;g;y1;:::;yn1. (Committing Instructions) To commit to a bit b, randomly select bits b1; : : : ; bn at randomso that Pni=1 bi = b and outputC = COMMp; g; y1; : : : ; yn(b) = COMMp;g;y1(b1); :::; COMMp;g;yn(bn) = C1; : : : ; Cn:2. (Decommitting Instructions for P) To decommit C = C1; : : : ; Cn, outputDECOMMp;g;y1;:::;yn(C) = DECOMMp;g;y1(C1); : : : ;DECOMMp;g;yn(Cn):36



It is immediately seen that COMMp;g;y1;:::;yn is a commitment scheme with perfect secrecy andcomputational binding if the DLP is hard. More precisely: P can decommit C in more than oneway, if and only if P �nds the discrete log in base g of yi for some i = 1; : : : ; n.Note: With an eye to the �nal paper, the above DLP-based schemes also are trapdoor, veri�ablecommitment schemes if they are implemented with safe primes, and enriched with the steps ofverifying that p is a safe prime and that g is a generator mod p.7.4 An rZK Argument for 3-ColorabilityProtocol (P; V )� Security Parameter(s): k and K (where K = k 12� , and � is the hardness constant of ourstrong DLP assumption).� Common input to P and V: A 3-colorable graph G with vertex set VERS and edge setEDGES (where VERS has cardinality n and EDGES has cardinality m).� P's secret seed: a random string s 2R f0; 1gK (specifying a GGM pseudo-random functionfs).� Secret input to P : a 3-coloring of G, COL : V ERS ! f1; 2; 3g (where COL(v) is the colorof vertex v).1. (Instructions for V)Randomly select: (a) a safe prime p of length K, (b) a random generator g for Z�p , and(c) elements x1; :::; xK in Z�p . Compute Xi = gxi mod p for i = 1; : : : ;K, and send p, g,Xi; : : : ;XK to P.(Instructions for P)Check that p is a safe prime of length K, that g is a generator for Z�p , and that X1; : : : ;XK 2Z�p . If not, halt.2. For i = 1:::K,(a) (instructions for V)Pick ri in Z�p at random and send Ri = gri mod p to P.(b) (Instructions for P)Check that Ri 2 Z�p ; if not, halt. Compute bi as the last bit of fs(pgX1:::XKR1:::Ri),and send bi to V.(c) (Instructions for V)If bi = 0, then send ri to P. Else, send ti = ri + xi mod p� 1 to P.(d) (Instructions for P)If bi = 0, then check that gti = Ri mod p. If not, halt. If bi = 1, then check thatgti = RiXi mod p. If not, halt.
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3. (Instructions for P)Select: (a) a safe prime q of length k, (b) a random generator h for Z�q , and (c) an element yin Z�q . Compute Y = gy mod q, and send q, h, and Y to P.(This selection is done "at random", but using as coin tosses the outcome of fs applied to allprevious messages sent so far by the veri�er.)4. (Instructions for V)Check that q is a safe prime of length k, that h is a generator for Z�q , and that Y 2 Z�q . Ifnot, halt.For j = 1 : : : ; n3, randomly select edge ej = (uj ; vj) in G, and send to P the commitmentvalues Ej = COMMq;h;Y (ej).5. (Instructions for P)For j = 1; : : : ; n3, choose �j, a random permutation of f1; 2; 3g, and, for all u 2 V ERS, sendCj;u = COMMp;g;X1;:::;Xk(�j(COL(u))) to V.6. (Instructions for V)For j = 1; : : : ; n3, decommit ej = (uj; vj) by sending DECOMMq;h;Y (Ej).7. (Instructions for P)For j = 1 : : : ; n3, if any of the decommitments are invalid, then reject. Else, for j = 1 : : : ; n3decommit the colors, �j(COL(uj) and �j(COL(vj), of the end points of ej by sendingDECOMMp;g;X1;:::;Xk(Cj;uj ) and DECOMMp;g;X1;:::;Xk(Cj;vj ) to V .8. (Instructions for V)If for some j an edge with two end points of the same color is discovered, or a wrong decom-mitment is received, then reject. Else, accept.Theorem: (P; V ) is a an resettable zero-knowledge argument for 3-colorability.Proof SketchCompleteness. If the prover P knows a 3-coloring of the input graph, then it is immediate to showthat, as long as he will follow the protocol, he will convince the honest veri�er V with probability1.Soundness.33 We have to show that, if the input graph G is not 3-colorable, then a polynomial-time cheating prover P 0 has but a negligible chance of leading honest V to acceptance. The essenceof this proof is best sketched in the extreme case in which we assume (for contradiction purposes)that such polynomial-time P 0 has probability 1 of convincing V . From this hypothesis we shallderive that there exists a 2k-size circuit C that solves K-size instances of the DLP for safe primeswith probability roughly 1=2K. This contradicts our DLP assumption given the relative sizes ofsecurity parameters k and K.We construct C by combing the polynomial-time P 0 with the following O(2k)-time machine M .On input p, g and X, a random K-bit instance of the DLP for safe primes, M randomly selects33 The argument is analogous to the one presented in Section 9.1.38



i 2 f1; : : : ;Kg, and sets Xi = X. Then, for j 2 f1; : : : ;Kg � fig, it randomly selects xj 2 Z�pand sets Xj = gxj mod p. Finally, it sends p, g, and X1; : : : ;XK to P 0. Note therefore that, byconstruction, M has sent P 0 a message that is distributed exactly as the step-1 message from V tothe prover in protocol (P; V ).Notice now that M has a probability 1=2 of being able to answer the \questions" of P 0 in alliterations of Step 2, and with exactly the same distribution as in a random execution of (P 0; V ).This is so because M has probability 1=2 of \passing" the question about Xi, and probability1 of passing the questions about all other Xj (for which it knows the discrete log in base g byconstruction). Note also that step 2 is a perfect zero-knowledge proof of knowledge (though withprobability of cheating 12) of the discrete logarithms of X1; :::;XK where P' serves as the step-2-veri�er and V (M inside this argument) serves as the step-2-prover. Thus, P 0 cannot use it in anymanner to gain knowledge of the secrets xj nor of the discrete log of Xi. 34Notice also that in proving that step 2 is a perfect zero knowledge proof of knowledge (whereP' is the step-2-veri�er and V the step-2-prover) we do not have to worry about resettability of thestep-2-veri�er, as in an rZK protocol the prover P' is not resettable, rather V is.Let us now describe how M executes step 4. Upon receiving from P 0 a k-size instance of theDLP for safe primes, q, h and Y , in step 3, M conducts an exhaustive search and �nds the discretelog, y, of Y in base h (mod q). This will take 2k computational steps. At this point, it commits toevery edge ej by committing to the right number of 0s. That is, by sending COMMq;h;Y (0 � � � 0)to P 0. Notice that each such message is equally distributed to the corresponding one of honestV because the commitment scheme has perfect privacy. Therefore, by hypothesis, P 0 still hasprobability 1 of convincingly executing the remaining steps when he sends M his commitmentsCj;u in step 5. Call S the internal state of P 0 at this point. Now M behaves as follows:First, it executes step 6 by decommitting ej to be always (i.e., for i = 1; : : : ; n3) the �rst edgeof G. (Notice that it can do this because COMMq;h;Y is a trap-door commitment scheme, andM has, by exhaustive search found the trapdoor.) Because such behavior were possible (thoughunlikely) for the honest V , and because P 0 has a probability 1 of satisfying V , P 0 will respond bydecommitting the colors of the end point of the �rst edge for each of the n3 committed, coloredcopies of G. Then, M resets P 0 in state S.Second, M executes step 6 again, this time by decommitting ej to be always the second edgeof G. P 0 decommits accordingly, and then M resets P 0 in state S.And so on, for m times, that is, once for each edge of G.Focus now on the �rst committed colored copy of G, and see what happens on an edge-by-edgebasis. Because P 0 has probability 1 of fooling V , then the decommitted colors of the end pointsof edge 1 will be locally correct (i.e., di�erent from each other); the same holds for the colors ofedge 2, edge 3, ..., edge m. However, because we are also assuming that G is NOT 3-colorable,it must be that these decommitted colors are NOT globally consistent. Hence, there must existsome some j between 1 and m, such that, letting (uj ; vj) be the jth edge of G, either (a) thecolor of uj has been decommitted by P 0 in two di�erent ways, or (b) the color of vj has been34Formally, to argue that step 2 is a perfect zero-knowledge proof of knowledge, let us simulate P' view during thestep 2 (note that here we need not worry about resettability as we arguing that the veri�er is giving no knowledgeto the prover rather than the other way around). The simulator SIM has access to the prover P' (which is apolynomial time algorithm) and has as inputs: all the inputs of the protocol, and what was sent in step 1 of theprotocol to the prover by the veri�er, i.e p; g;Xi = gxi . Initialize SIM � OUTPUT = �. In round i, (1) SIMpicks ci 2 f0; 1g at random. If ci = 0, then SIM chooses at random Ri and sends gRi mod p to P; otherwise SIMchooses at random Ri and sends gRi�xi mod p to P. (2) if P answer with bi = ci, then P send V Ri, and SIM setsSIM�OUTPUT = SIM�OUTPUTk(gRimodp; bi; Ri) (where k denotes concatenation), otherwise, SIM goes backto step 1 of round i, and rewinds the P' to the previous round.39



decommitted by P 0 in two di�erent ways. Either way, because these commitments are made usingour COMMp;g;X1;:::;XK scheme, and because of the property of our scheme, this entails that fromsuch two di�erent decommitments for the same value the discrete log of either X1, or X2, or,...,XK has been found. Because i was randomly chosen in f1; :::;Kg (and the proper probabilitydistribution totally respected), with probability 1=K, it will be the discrete log of Xi to have beenfound, that is, the discrete log base g of our initial random element X mod p. Thus, keeping trackalso of the probability 1=2 of passing step 2, this leaves us that an algorithm consisting of runningP 0 and M together, and thus taking at most (roughly) 2k steps, has chance 1=2K of solving arandom K-size instance of the DLP for safe primes. The contradiction establishes soundness forthe case in which P 0 can cheat with probability 1. It is not hard to see how M should be modi�edso as to take in consideration small probability of cheating.(Comment: M 's resetting of P 0 in the above argument should not be confused with the prover-resettability of rZK protocols. In fact, the latter resettability applies to provers whose coin tossesare not known to an adversary veri�er, and thus the prover is a kind of unknown (at least for hiscoin tosses) device that can nonetheless be reset. In the present context, instead, resettability isquite straightforward. Namely, if algorithm P 0 exists, then M can run with random coins that Mchooses and controls. Therefore M knows the entire internal con�guration of P 0 at each momentin time, and thus it can easily reset P 0 any time it likes.)Resettable Zero-Knowledge feature. What remains to be shown, having established thatthe protocol is complete and sound is that it is Resettable Zero-Knowledge. The simulator can beconstructed by a combination of the ideas presented in Sections 9.1 and 6.2. Details are omitted.
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Part IIThe Public-Key Model8 Discussion and De�nitionThe vanilla model, considered in Sections 4{6, is when no set-up assumptions are made. This isindeed the \cleanest" model typically employed in theoretical works regarding secure two-partyand multi-party computation.By the public-key model we mean a model in which all users are assumed to have deposited apublic-key in a �le that is accessible by all users at all times. The only assumption about this �leis that it guarantees that entries in it were deposited before any interaction among the users takesplace. No further assumption is made about this �le, and so in particular an adversary may depositmany (possibly invalid) public-keys in it (and, in particular, without even knowing correspondingsecret keys or whether such exist). Access to the �le may be implementable by either severalidentical servers or by providing users with certi�cates for their deposited public-keys.A more realistic public-key model allows parties to register at all times. Note however that sucha exible model requires some restriction (as otherwise it coincides with the vanilla model). Onepossibility is to make some mild timing assumption such as that all parties can distinguish betweensome predetermined large delay (which all newly registered public-keys must undergo before beingused) and a small delay (which upper bounds the communication delays in actual interaction).35 Adi�erent possibility is to require newly registered public-keys to be used only after authorization bya trusted \switchboard", and occasionally updating (i.e., replacing) the entire system. The secondalternative seems better suited to the smart-card application discussed in the introduction. Forsake of simplicity, we assume throughout the rest of this section that registration occurs before anyinteraction between the users takes place. The treatment of more exible models is deferred toa future version of this work. We comment that variants of the public-key model are a standardmodel in many applied works.A more imposing model (i.e., assuming stronger set-up assumptions) which is still quite rea-sonable in practice, augments the public-key model by allowing (\validating") interaction betweenusers and system manager at deposit time. In general, the preprocessing model postulates thatbefore any interaction among users takes place, the users have to interact with a system managerwhich issues them certi�cates in case it did not detect cheating at this stage. In particular, one mayuse the preprocessing stage in order to verify that the user knows a secret-key for the public-key itwishes to have certi�ed.We stress that we actually use weaker assumptions. Speci�cally, in both the latter models, weonly need that potential veri�er will deposit public-keys and/or participate in a precomputation.This is not required of users who are only going to play the role of provers.De�nition (sketch): Analogously to De�nition 2, we may de�ne resettable zero-knowledge in thepublic-key model: The only modi�cation is that the prover and veri�er (as well as the simulator)have access to a public-�le which was generated by the adversary V � before all interactions began.Thus, the public-�le may be viewed as part of the common input as far as the zero-knowledge (i.e.,RZK) condition holds. (In the soundness (in fact computational-soundness) condition one needs to35 As explained in Section 2 such an assumption does not e�ect typical interactions; whereas the timing assumptionin [12] amounts to slowing down all interactions to meet some a-priori upper bound (which must be quite conservativeto prevent abort of honest interactions). 41



consider what happens when the public-�le is randomly generated (by a honest veri�er), and theactual input is �xed possibly afterwards.)9 Constant-round RZK for NP in the public-key modelThe main result of this section is a construction of constant-round computationally-sound resettablezero-knowledge proof systems. Here we use two-round perfect commitment schemes with someadditional features (to be speci�ed below). Such schemes exist assuming that DLP is hard forsub-exponential circuits. Thus, as a special case, we obtain:Theorem 8 Suppose that for some � > 0 and su�ciently large n's, any circuit of size 2n� solvesDLP correctly only on a negligible fraction of the inputs of length n. Then every language in NPhas a constant-round resettable zero-knowledge computationally-sound proof system in the public-keymodel. Furthermore, the prescribed prover is resettable zero-knowledge via a black-box simulation.9.1 RZK for NP in the preprocessing modelWe �rst present a resettable zero-knowledge protocol for a model allowing preprocessing (i.e., amodel which has stronger set-up assumptions). The preprocessing will be used in order to guaranteethat veri�ers know \trapdoors" corresponding to \records" deposited by them in the public �le.The protocol uses two types of perfect commitment schemes; that is, secrecy of commitmentholds in an information theoretic sense, whereas the binding property holds only in a computationalsense. The two commitment schemes used has some extra features informally stated below. For aprecise de�nition see Appendix A.1. A two-round perfect commitment scheme, denoted PC1, with two extra features:� The trapdoor feature: It is possible to e�ciently generate a receiver message (called theindex) together with a trapdoor, so that knowledge of the trapdoor allows to decommitin any way.Note that the �rst message in a two-round commitment scheme is from the commitment-receiver to the commitment-sender. The trapdoor feature says that the receiver will beable to decommit to the sender's message in any way it wants (but as usual the sender,not knowing the trapdoor, will not be able to do so).In our solution we will \decouple the execution" of the two-round commitment schemeso that the �rst message (i.e., the index) will be sent in a preliminary stage (i.e., willbe deposited in a public-�le), and only the second message will be send in the actualprotocol. We stress that the same index can and will be used for polynomially manycommitments, and that the number of such commitments need not be a-priori known.(Note that both perfect secrecy and computational-binding continue to hold also undersuch \recycling" of the index.)� The strong computational-binding feature: The computational-binding property holdsalso with respect to subexponential circuits. That is, there exists a constant � > 0 sothat for su�ciently large security parameterK no sender strategy which is implementableby a circuit of size 2K� can decommit in two di�erent ways with probability greater than2�K� . 42



2. A constant-round perfect commitment scheme, denoted PC2. (This scheme corresponds tothe one used in the actual implementation of Step (V1) above.) Without loss of generality,we may assume that the binding property can be violated in exponential time. That is, whenthe commitment protocol is run on security parameter k, the sender may in time 2k decommitany way it wants.Indeed, any PC1 scheme yields a PC2 scheme. However, for sake of modularity we prefer the currentpresentation. We also note that for our application it is possible to further relax the requirementfrom PC2 so that secrecy may be demonstrated to hold at a latter stage (i.e., \a posteriori"); see [19,Sec. 4.8.2]. We comment that a PC1 scheme can be constructed under the assumption the DLPis hard for subexponential circuits; see details in Appendix A. More generally, one may use anypair of trapdoor claw-free permutations, provided the claw-free property holds w.r.t subexponentialcircuits.36The protocol in the preprocessing model: The inputs to the protocol are as follows.Security parameter: K. All objects (resp., actions taken) in the protocol have size poly(K)(resp., are implementable in poly(K)-time).Common input: A graph G = (V;E), where V = [n] def= f1; :::; ng, claimed to be 3-colorable.In addition, a public �le containing a list of indices (i.e., receiver's message for PC1), generatedby veri�ers on security parameter K. Each veri�er need only deposit a single index in thepublic �le, which may be stored under its name. We consider also cheating veri�ers who maydeposit polynomially many such indices. We stress however that the number of entries in thepublic-�le should be bounded by some �xed polynomial.At this point we assume that the veri�er knows a trapdoor to any index it has deposited.This can be enforced by a preprocessing stage, say, via a zero-knowledge proof of knowledge.Veri�er's auxiliary input: A trapdoor, denoted trap(i), for some index i in the public �le.Prover's auxiliary input: A 3-coloring � : [n] 7! f1; 2; 3g of G.Prover's initial randomization: The prover's random-pad is used to determine a pseudorandomfunction f : f0; 1gpoly(n) 7! f0; 1gpoly(n).The protocol itself is an adaptation of the resettable witness indistinguishable proof system ofSection 5 with Step (V1) being replaced (or rather implemented) by current Steps (1) and (3).Another important change is the replacement of former Step (P1) by current Step (2); the di�erencebeing that commitment via a standard commitment scheme (with perfect binding) is replaced bya commitment relative to a (perfect secrecy) scheme which is only computationally-binding.(1) The veri�er sends an index i to prover, who checks that it appears in the public-�le. (Otherwisethe prover aborts.)Note that this step may be viewed as transcendental to the protocol, since it amount to theveri�er telling the prover its identity. [Indeed, a cheating veri�er may lie about its identity;we merely rely on the fact that somebody knows the trapdoor to the index i if indeed it isin the public �le. Since we view the adversary as controlling the entire \world outside theprover" it really does not matter who knows the trapdoor.]36In fact, it su�ces to have collision-intractable family of hashing function, provided it carries trapdoors and isstrong wrt subexponential circuits. 43



(2) This step is analogous to Step (V1) in the protocol of the previous subsection: The veri�ercommits to a sequence of t def= n � jEj uniformly and independently chosen edges. The commit-ment is done using the constant-round perfect commitment scheme PC2, in which the veri�erplays the role of the sender and the prover plays the role of the receiver. The scheme PC2is invoked while setting the security parameter to k = K�=2, where � > 0 is as speci�ed inthe strong binding feature of PC1. The randomization required for the actions of the receiverin PC2 are determined by applying the pseudorandom function f to (G;�; history), wherehistory is the transcript of all messages received by the prover so far.Thus, the prover gets no information on the committed edges, while it is infeasible for theveri�er to \de-commit" in two di�erent ways.[The analysis makes heavy use of the setting of the security parameter k = K�=2. On onehand, this setting guarantees that a quantity that is polynomial in K is also polynomial ink. On the other hand, time 2k which su�ces to violate the computational-binding propertyof PC2 when run on security parameter k, is insu�cient to violate the strong computational-binding property of PC1 when run on security parameter K (since 2k = 2K�=2 � 2K�).](3) This step is analogous to Step (P1) in the protocol of the previous subsection: The prover usesPC1 with index i in order to commit to a sequence of t random colorings. That is, the proverinvokes t instances of protocol PC1 playing the sender in all, and acts as if it has received i(the index) in all these instances.Recall that the prover wishes to commit to t � n values, the (jn + v)th value being the colorassigned to vertex v by the jth random coloring (i.e., the jth random relabeling of �, selectedamong the six permutations of the colors f1; 2; 3g). All randomizations (i.e., the choice of therandom coloring as well as randomization required by PC1) are determined by applying thepseudorandom function f to (G;�; history), where history is the transcript of all messagesreceived by the prover so far.(4) The veri�er decommits to the edge-sequence it has committed to in Step (2). That is, itreveals the sequence of t edges, as well as the necessary information required to determinethe correctness of the revealed values. [This step is analogous to Step (V2).](5) In case the values revealed (plus the \de-commitment" information) in Step (4) match thecommitments sent in Step (2), and in case all queries are edges, the prover reveals the corre-sponding colors and provides the corresponding de-commitment. [This step is analogous toStep (P2).](6) In case the values revealed (plus the \de-commitment") in Step (5) match the commitmentssent in Step (3), and in case they look as part of legal 3-colorings (i.e., each correspondingpair is a pair of di�erent elements from the set f1; 2; 3g), the veri�er accepts. Otherwise itrejects. [This step is analogous to Step (V3).]We note that, in the above description of the protocol, the veri�er does not use the trapdoor (i.e.,trap(i)). The fact that the veri�er (or rather an adversary controlling all possible veri�ers) knowsthe trapdoor will be used by the simulator which is rather straightforward: In contrast to standardconstructions of simulators (cf., [29, 25]), the current simulator does not \rewind" the veri�er.Instead, it simulates an execution of the protocol by emulating the actions of the prover in Steps (1){(4) using some dummy sequence, rather than a sequence of colorings, in Step (3). However, whengetting to Step (5), and in case the veri�er has decommitted properly, the simulator uses trap(i)44



in order to decommit to the corresponding edge queries in a random legal-looking way (i.e., itdecommits to a uniformly and independently chosen pair of distinct colors, for each such edge).This uses the trapdoor feature of PC1 and the hypothesis that the veri�er (and so the simulator)knows this trapdoor. The above description corresponds to simulation of the �rst interaction withthe prover. Subsequent interactions are simulated in the same way assuming that the executionof Steps (1){(2) of the current interaction is di�erent than in all previous interactions. Otherwise,we simulate Steps (3) and (5) by copying the values used in the previous interaction. A last issueto be addressed is the possibility that in two executions of the protocol the veri�er may send thesame messages in Step (2) but latter decommit in two di�erent ways in Step (5), in which casethe output of the simulator may be noticeably di�erent from the output in real executions. Usingthe computational-binding property of the scheme PC2, we argue that this event may only occurwith negligible probability. This establishes the resettable zero-knowledge property of the aboveprotocol (in the preprocessing model).Observe that the computational-binding property of PC1 allows computationally-unboundedprovers to successfully fool the veri�er, and hence the above protocol does not constitute an inter-active proof. However, one can show that computationally-bounded provers can fool the veri�eronly with negligible probability, and so that the protocol is computationally-sound.Intuitively, one would like to argue that the computational-binding property of PC1 does notallow to decommit to two di�erent values in Step (5). The problem is that the prover commits tocolors in Step (3) after obtaining the veri�er's commitment to queries, and that the prover decom-mits only after the veri�er decommits. How can we rule out the (intuitively unlikely) possibility thatthe veri�er's decommitment allows the prover to decommit accordingly (in a way it could not havedone before getting the veri�er's decommitment)? Here we use the strong computational-bindingproperty of PC1 (relative to security parameter K); that is, the fact that it holds also with respectto circuits of size 2K� = 22k. We also use the fact that commitments with PC2 were done whilesetting the security parameter to k, and so we can decommit any way we want while using time 2k.Thus, the binding property of PC1 has to be maintained in Step (5); i.e., it should be infeasible todecommit \at will" in Step (5) also after obtaining the decommitment of the veri�er at Step (4). Inthe actual proof we consider what happens in Step (5) when the prover interacts with an imaginaryveri�er which at Step (4) uniformly selects new queries and decommits according to these values.Observe that such an imaginary veri�er can be implemented within time poly(n) � 2k. Thus, if weconsider the mental experiment in which Steps (4)-(5) are repeated T = 2k=3 times, after a singleexecution of Steps (1)-(3), then all proper decommits by the prover must be for the same value(or else the binding property of PC1 is violated in time T � poly(n) � 2k � 22k). Furthermore, theabove should hold for at least 1 � T�1 fraction of random executions of Steps (1)-(3). Thus, ifwe consider a computationally-bounded prover which fools the veri�er, only a term of O(2�k=3)in its success probability may be attributed to \ambiguous decommitment". The computational-soundness of the protocol follows by noting that (1 � jEj�1)t) � e�n is an upper bound on theprobability of fooling the veri�er in case commitments are non-ambiguous. This establishes thecomputationally-soundness of the above protocol.9.2 Back to the bare public-key modelGiven the above, all that is needed in order to adapt the protocol to the public-key model is to re-place the assumption that the veri�er knows the trapdoor by a (zero-knowledge) proof-of-knowledgeof this claim. We stress that the veri�er in the above protocol will play the role of knowledge-prover,whereas the main prover will play the role of a knowledge-veri�er. This protocol has to maintain45



its soundness also when the knowledge-veri�er undergoes \rewinding". Furthermore, it should beconstant-round. (We comment that we are not aware of a known protocol satisfying these strongrequirements.) On the other hand, we don't need \full-edged" zero-knowledge property; simu-latability in subexponential time will su�ce (as it is merely used for the computational-soundnessproperty which is established based on the strong computational-binding property of PC1, whichin turn accounts for such running times too). Thus, Step (1) in the above protocol is augmentedby a constant-round proof-of-knowledge (POK) which proceeds as follows:The parties: A knowledge-veri�er, denoted KV, played by the main prover, and a knowledge-prover, denoted KP, played by the main veri�er.Inputs: Common input i 2 f0; 1gK .Furthermore, KP gets auxiliary input the randomness used to generate i (equiv., to generate(i; trap(i))).Goal: KP wants to prove that it knows trap(i).High level: We present a proof of knowledge (POK) of the relevant NP-witness; that is, POK ofthe randomness used to generate i. (Such knowledge yields knowledge of trap(i).) The POKis via the standard reduction of this NP-relation to the NP-relation corresponding to Hamil-tonicity (which is NP-Complete). We stress that the standard reduction comes with e�cienttransformation of NP-witnesses from the original relation to the target Hamiltonicity relationand vice versa. Thus, the auxiliary-input of KP allows to e�ciently compute a Hamiltoniancycle in the target graph, and from any such Hamiltonian cycle one may e�ciently retrievetrap(i).The proof of knowledge (POK) of Hamiltonicity is based on Blum's proof system for thislanguage, which is reproduced in Appendix B. An important property of Blum's basic proto-col is that it is a \challenge{response" game in which the challenge consists of a single bit.Furthermore, responding correctly to both possible challenges allows to extract a Hamilto-nian cycle (i.e., the knowledge claimed).37 This property simpli�es the knowledge extractionargument in case many copies are played in parallel: Ability to respond to any two di�erentsequences of challenges yields a Hamiltonian cycle. Below we run the protocol k times inparallel, where k = K�=3. The resulting protocol will have negligible knowledge-error38 (i.e.,error of 2�k), and will be simulatable in time poly(K) � 2k. Furthermore, the simulation willbe indistinguishable from the real interaction by any 2K�-size circuits. As stated above, weare not concerned of the fact that the protocol may not be zero-knowledge (i.e., simulatablein poly(K)-time).The protocol uses a perfectly-binding commitment scheme with strong computational-secrecy;that is, circuits of size 2K� cannot distinguish commitments to two di�erent known values(with distinguishing gap better than 2�K�). Such a scheme can be constructed based on theDLP assumption utilized above.(pok1) Using the perfectly-binding commitment scheme, KP commits to each of the entries ofk = K�=3 matrices, each generated as in Blum's basic protocol. (That is, each matrix is the37This property holds also for other protocols for NP, but not for the 3-Colorability protocol of [25]. Any protocolhaving the property will do.38Loosely speaking, the knowledge-error is the probability that the veri�er may get convinced by a cheating proverwho does not know a Hamiltonian cycle. For a precise de�nition, see Appendix B.46



adjacency matrix of a random isomorphic copy of the graph obtained from the reduction.In case the output of the reduction is a graph with N vertices, the commitment scheme isapplied k �N2 times.) The commitment scheme is run with security parameter K.(pok2) KV \randomly" selects a sequence c = c1 � � � ck 2 f0; 1gk of k challenges. Actually, thesequence c is determined by applying the pseudorandom function f to the input (i.e., theindex i) and the history so far (of the POK protocol).(pok3) KP answers each of the k bit queries as in Blum's basic protocol. (That is, if cj = 0 thenKP decommits to all entries of the jth matrix and also reveals the isomorphism; otherwise, KPdecommits only to the entries corresponding to the Hamiltonian cycle. Note that the locationof the latter entries is determined by applying the isomorphism to the original cycle.)(pok4) KV accepts if and only if all answers are valid. Speci�cally, in case cj = 0, KV checksthat the revealed matrix is indeed isomorphic (via the provided isomorphism) to the matrixrepresenting the reduced graph. In case cj = 1, KV checks that all revealed entries are indeed1's. (In both cases, for each revealed value, KV checks that the decommitment is valid.)The weak zero-knowledge property is easy to establish. That is, we need and do show that theinteraction with any (possibly dishonest but computationally-bounded) knowledge-veri�er can besimulated in time poly(k) � 2k. This follows by merely using the standard simulator procedure(cf., [29, 25]), which merely selects a random string c 2 f0; 1gk and \simulates" Step (pok1) sothat it can answer the challenge c (but not any other challenge). The strong computational-secrecyof the commitment scheme (used with security parameterK) guarantees that the knowledge-veri�ercannot guess c better than with probability approximately 2�k, and so we will succeed with over-whelming probability after at most k �2k tries. Standard arguments will also show that the output ofthe simulator cannot be distinguish from the real interaction by circuits of size 2K��1 > 22k. Thus,this simulator can be plugged into the argument given above for computational-soundness in thecase of preprocessing, and yield that the augmented protocol maintains computational-soundness:The potentially cheating prover in the main protocol induces a cheating knowledge-veri�er, andwhat the simulation says is that in case the veri�er (playing the knowledge-prover) follows theprotocol then whatever the knowledge-veri�er can compute after interacting with it, can also becomputed with overhead of at most poly(k) � 2k on input the index i.We now turn to establish the resettable zero-knowledge property of the entire protocol. Asa �rst step towards this goal, we establish that the above sub-protocol is indeed a POK withknowledge-error 2�k (see Def. 13 in Appendix B). In other words, we analyze a single execution ofthe sub-protocol, and thus we may assume that Step (pok2) is replaced by sending a truly randomstring c. This assumption is not valid when the sub-protocol is run many times, and this is whythe simpli�ed analysis provided here does not su�ce. However, it does provide a good warm-up.Without loss of generality, consider a deterministic cheating knowledge-prover, and let C bethe message sent by it in Step (pok1). Consider the probability space of all 2k possible challengesc 2 f0; 1gk that KV may send in Step (pok2). Say that a challenge c 2 f0; 1gk is successful forthis knowledge-prover if its answer in Step (pok3) is accepted by KV in Step (pok4). The keyobservation is that given the knowledge-prover's answer to any two di�erent successful challengeswe can easily reconstruct the Hamiltonian cycle (and from it the trapdoor).39 To extract theHamiltonian cycle we just invoke the knowledge-prover many times, each time it answers with the39This is the case since each such pair of challenges di�ers in some location and from the two answers to thislocation we may reconstruct the Hamiltonian cycle. 47



same Step (pok1) message but then we challenge it with a new randomly chosen c (i.e., chosenindependently of all prior attempts). If we ever obtain its answer to two successful challengesthen we are done. Denoting by p the probability that a uniformly chosen challenge is successful, weconclude that if p > 2�k then given oracle access to the knowledge-prover (played by the adversary)we can (with overwhelmingly high probability) �nd the trapdoor in time poly(k)=(p � 2�k). Bya trivial modi�cation, we obtain a knowledge extractor which for any p > 0 with overwhelmingprobability runs for time poly(k)=p, and in case p > 2�k also retrieves the trapdoor.40The above argument would have su�ces if we were guaranteed that the adversary, when playingthe role of KP, never repeats the same Step (pok1) message (in two di�erent invocations of theentire protocol). Assuming that this is indeed the case avoids the subtle problem discussed in theprevious subsection. Still let use assume so and see how, under this unjusti�ed assumption (whichwill be removed later), the resettable zero-knowledge property follows.Consider a sequence of invocations of the main protocol. The simulator will proceed by sim-ulating one interaction after the other, where a single interaction is simulated as follows. Thesimulator starts by playing the role of KV in Step (1). In case KV rejects then the simulatorcomplete the simulation of the current interaction by announcing that the prover aborts it. Notethat this is exactly what would have happened in the real interaction. In case KV accepts, thesimulator will use the knowledge-extractor described above in order to extract the trapdoor of theindex i sent in Step (1). Here is where we use the assumption that the adversary does not repeatthe same Step (pok1) message. The point is that the knowledge-extractor described above willtry many di�erent challenges for Step (pok2). Since the challenge is determined as a \random"function evaluated at a new point (here is where we use the \no repeat" clause), we may view thischallenge as random. Thus, the above analysis applies. The conclusion is as follows. Suppose thatthe cheating veri�er convinces KV with probability p, We distinguish three cases. In case p = 0,the simulator will always construct an aborting execution (just as in the real interaction). In casep > 2�k, with probability 1 � p the simulator will construct an aborting execution (just as in thereal interaction), and otherwise using time poly(k)=p it �nds the trapdoor of the index i sent inStep (1), which allows it to complete the simulation of Steps (2){(6) just as done above (in the caseof preprocessing). Note that the expected number of steps required for the simulation in this caseis (1� p) �poly(k) + p � (poly(k)=p) = poly(k). The only case left is the one where p = 2�k. In thiscase, the simulator fails with probability p, which is negligible, and so its output is computationallyindistinguishable from a real interaction. We stress that in all cases the simulator runs in expectedtime poly(k).Having concluded all these warm-ups, we are now ready to deal with reality. The di�culty occurswhen the adversary uses the same index and same Step (pok1) message in two di�erent interactionswith the prover. Furthermore, suppose that in the �rst interaction it fails to convince KV played bythe prover, but in the second it succeeds. The problem (avoided by the assumptions above) is thatwe cannot use a di�erent challenge (i.e., message for Step (pok2)) in the second interaction, sincethe challenge is determined already by the �rst interaction. Thus, the simulator cannot completethe simulation of the second interaction, unless it \rewinds" upto the �rst interaction in whichthe same Step (pok1) message is used.41 This need to \rewind" interactions which were alreadycompleted may lead to exponential blow-ups as discussed by Dwork, Naor and Sahai [12]. Whatsaves us here is that the number of times we possibly need to \rewind" is a-priori bounded by40This can be done by using a time-out mechanism invoked when poly(k) � 2k steps are completed, and observingthat if p > 2�k then in fact p � 2 � 2�k and so (p� 2�k)�1 � 2=p.41We comment that in general, a simulator for resettable zero-knowledge may not proceed by generating theinteractions one after the other without \rewinding" between di�erent interactions.48



the total number of indices in the public �le. (This is the key and only place where we use theassumption underlying the public-key model.)Resolving the problem { a sketch: Let us reproduce and further abstract the problem weneed to analyze. For sake of simplicity, we will consider only non-interleaving adversaries (yet thisassumption can be removed as in Section 6) We are dealing a game consisting of multiple (historydependent) iterations of the following steps, which depends on a random function f �xed once andfor all.(a) The veri�er sends a pair (i; C), where i belongs to some �xed set I and C is arbitrary. This pairis determined by applying the veri�er's strategy, V �, to the history of all previous iterations(of these steps).[Indeed, i corresponds to the index sent in Step (1), I to the public �le, and C to theStep (pok1) message.](b) The prover determines a k-bit string, c = f(i; C), by applying f to the pair (i; C).[This corresponds to Step (pok2) of KV played by the prover.](c) The veri�er either succeeds in which case some additional steps (of both prover and veri�er)take place or it fails in which case the current execution is completed.[This corresponds to whether the veri�er, playing KP, has provided a valid decommitment inStep (pok3), and to the continuation of the main protocol which takes place only in case theveri�er has done so.]We want to simulate an execution of this game, while having oracle access to the veri�er's strategy(but without having access to the prover's strategy, which enables the further steps referred to inStep (c) above). Towards this goal we are allowed to consider corresponding executions with otherrandom functions, f 0; f 00; :::, and the rule is that whenever we have two di�erent successes (i.e.,with two di�erent challenges c) for the same pair (i; C) we can complete the extra steps referred toin Step (c). [This corresponds to extracting the trapdoor of i, which allows the simulation of therest of the steps in the current interaction of the main protocol.]Thus, problems in simulating the above game occur only when we reach a successful Step (c).In such a case, in order to continue, we need a di�erent success with respect to the same pair (i; C).In order to obtain such a di�erent success, we will try to run related simulations of the game. Oncewe �nd two successes for the same pair (i; C), we say that i is covered, and we may proceed in thesimulation temporarily suspended above. That is, a natural attempt at a simulation procedure isas follows. We simulate the iterations of the game one after the other, using a random functionf selected by us. Actually, the random function f is de�ned iteratively { each time we need toevaluate f at a point in which it is unde�ned (i.e., on a new pair (i; C)) we randomly de�ne fat this point. As long as the current iteration we simulate fails, we complete it with no problem.Similarly, if the current iteration is successful relative to the current pair (i; C) and i is alreadycovered, then we can complete the execution. We only get into trouble if the current iterationis successful relative to (i; C) but i is not covered yet. One natural thing to do is to try to get icovered and then proceed. (Actually, as we shall see, covering any new element of I, not necessarilyi, will do.)Starting with all I uncovered, let us denote by p the probability that when we try to simulatethe game a success occurs. Conditioned on such a success occuring, our goal is to cover someelement of I within expected time poly(k)=p. Suppose we can do this. So in expected time49



(1 � p) � poly(k) + p � (poly(k)=p) = poly(k) we either completed a simulation of the entire gameor got some i 2 I covered. In the �rst case, we are done. In the second case, we start again in anattempt to simulate the game, but this time we have already i covered. Thus, we get into troubleonly if we reach a success relative to (i0; C) with i0 2 I 0 def= I n fig. Again, we may denote by p0 theprobability that when we try to simulate the game a success occurs with respect to some i0 2 I 0. Insuch a case, we try to cover some element of I 0, and again the same analysis holds. We may proceedthis way, in upto jIj + 1 phases, where in each phase we either complete a random simulation ofthe game or we get a new element of I covered in each iteration. Eventually, we do complete arandom simulation of the game (since there are more phases than new elements to cover). So,pending on our ability to cover new elements within time inversely proportional to the probabilitythat we encounter a success relative to a yet uncovered element, each phase requires poly(k) stepson the average. Thus, pending on the above, we can simulate the game within expected timepoly(k) � jIj = poly(k) (by the hypothesis regarding I).We now consider the task of covering a new element. Let us denote the set of currently uncoveredelements by U . Let H denote the pre�x of completed executions of the simulated game and let(i; C) = V �(H) be the current pair which is related to the current success, where i 2 U . To get icovered we do the following:1. Let H 0 be the maximal sequence of executions which does not contain (i; C) as a Step (a)message. Note that H 0 = H in case the current pair (i; C) does not appear as a Step (a)message in some (prior) execution in H.2. Rede�ne f 0(i; C) uniformly at random, and try to extend H 0 (wrt to the function f 0) just aswe do in the main simulation (where we currently try to extend H wrt to the function f).If during an attempt to extend H 0 we encounter a new (i.e., di�erent than above) successwith respect to the same pair (i; C) then i itself gets covered, and we have ful�lled our goal.Otherwise, we repeat the attempt to extend H 0 (with a new random choice for f 0(i; C)) aslong as we did not try more than k � 2k times. In case all attempts fail, we abort the entiresimulation.We will show that, for p > 2�k, we will get a new element covered while making (p� 2�k)�1tries, on the average.3. If during the current attempt to extend H 0 we encounter a success relative to some other pair(i0; C 0) 6= (i; C), where i0 (possibly equals i) is also currently uncovered, then we abort thecurrent extension of H 0 (and try a new one { again as long as k � 2k tries are made).9.3 Almost constant-round RZK under weaker assumptionsUsing a perfect commitment scheme which enjoys the trapdoor feature but not necessarily thestrong computational-binding feature, one may obtain resettable zero-knowledge computationally-sound proof system for NP in the public-key model. These protocols, however, have an unboundednumber of rounds. The idea is to use sequential repetitions of the basic protocols (both for Steps (2){(6) of the main protocol as well as for the POK sub-protocol) rather that parallel repetitions. Thatis, both Steps (2){(6) of the main protocol and the POK sub-protocol consists of parallel executionsof a basic protocol, and what we suggest here is to use sequential repetitions instead. The numberof (sequential) repetitions can be decreased by using Blum's protocol (rather than the one of [25])also as a basis for the main proof system (i.e., in Steps (2){(6)). To minimize round complexity, onemay use a parallel-sequential hybrid in which one performs s(n) sequential repetitions of a protocol50



composed of parallel execution of p(n) = O(log n) copies of the basic protocol (of Blum). Thisyields a O(s(n))-round resettable zero-knowledge computationally-sound proof system for NP inthe public-key model, for any unbounded function s : N 7!N. In particular, we obtainTheorem 9 Let r : N 7!N be any unbounded function which is computable in polynomial-time, andsuppose that for every polynomial p and all su�ciently large n's, any circuit of size p(n) solves DLPcorrectly only on a negligible fraction of the inputs of length n. Then every language in NP has ar(�)-round resettable zero-knowledge computationally-sound proof system in the public-key model.Alternatively, we note that by using the perfect commitment scheme PC1 also in role of the(\weaker") scheme PC2, we obtain resettable zero-knowledge property also against subexponentialadversaries. Speci�cally, even adversaries of running-time bounded by 2k� = 2K�2 gain nothingfrom the interaction, where K (the primary security parameter), k = K� (the secondary securityparameter) and � (the exponent in the strong computational-binding feature) are as above.10 Alternative Constant Round RZK Protocol for NP in thePublic Key ModelIn this section we give an alternative version of the Resettable Zero Knowledge (RZK) Proof forNP. This presentation does not use Blum's (or any other version) of the general proof that NPstatement has Zero-Knowledge proofs. Rather, we de�ne two types of commitment schemes Type-1 and Type-2 and show how to use them directly to give RZK protocol for NP statements in thepublic key model where the veri�er has a public key assigned to it. These commitment schemesexist under the strong DLP assumption. We note that this version of the protocol is very similarto the perfect rZK arguments for NP protocol, except that the latter does not run in constantnumber of rounds. Having introduced the public-key model enables achieving rZK arguments forNP in constant number of rounds. Whereas in Section 7 we describe the protocol in terms of thediscrete problem, here we will de�ne the commitments schemes abstractly.PreliminariesProbability spaces.42 If A(�) is an algorithm, then for any input x, the notation \A(x)" refersto the probability space that assigns to the string � the probability that A, on input x, outputs �.The set of strings having a positive probability in A(x) will be denoted by \fA(x)g".If S is a probability space, then \x R S" denotes the algorithm which assigns to x an elementrandomly selected according to S, and \x1; : : : ; xn R S" denotes the algorithm that respectivelyassigns to, x1; : : : ; xn, n elements randomly and independently selected according to S. If F is a�nite set, then the notation \x R F" denotes the algorithm that chooses x uniformly from F .If p is a predicate, the notation PROB [x R S; y R T ; � � � : p(x; y; � � �)] denotes the probabilitythat p(x; y; � � �) will be true after the ordered execution of the algorithms x R S; y R T ; � � �.The notation [x R S; y R T ; � � � : (x; y; � � �)] denotes the probability space over f(x; y; � � �)g gener-ated by the ordered execution of the algorithms x R S; y R T; � � �.10.1 Two Types of CommitmentsIn this section we introduce two types of commitment schemes which will be useful for our result.42Verbatim from [4] and [30]. 51



Type-1 Commitments (Veri�able Commitments)Informal Description. A type-1 commitment (or alternatively called a "veri�able commit-ment") consists of a quintuple of algorithms. Algorithm GEN1 generates a pair of matching publicand secret keys. Algorithm COM1 takes two inputs, a value v to be committed to and a public key,and outputs a pair, (c; d), of commitment and decommitment values. Without knowledge of thesecret key, it is computationally hard |given c, v and d| to decommit to any value other thanv (computational soundness). On the other hand, having seen c yields no information about thevalue v (perfect secrecy).The knowledge of the secret key enables decommitting the same value c in arbitrary ways (trap-doorness). This arbitrary decommitment ability is achieved by by running the FAKE1 algorithm.Finally, succeeding in decommitting any single value into more than one way is essentiallyequivalent to knowing the secret key (one-or-all). This property is achieved by algorithm FAKE0.Put together, the properties of type-1 commitment yield (using standard terminology) a perfect-secrecy computationally- binding commitment scheme for which there exists auxiliary information(the secret key) whose knowledge enables decommitment in more than one way. Moreover, it ispossible to give a secure "proof-of-knowledge" of the secret key. This commitment scheme will beused in the rZK protocol for graph 3-colorability in the following way: the veri�er will publish thepublic key of the commitment scheme ahead of the protocol and keep to himself the secret key. Atthe onset of the rZK protocol itself, the veri�er will essentially proves to the prover that he knowsthe matching secret key. This proof will be secure to the extent that the prover cannot learn anyknowledge which will allow him to cheat. Next, the prover will use commitment scheme speci�edby the veri�ers public key to encode the coloring of the input graph.The Formal Notion.De�nition 1: A Type-1 Commitment Scheme is a tuple of probabilistic polynomial-time algorithmsGEN1(�), COM1(�; �), V ER1(�; �), KEY V ER1, FAKE1(�; �), and FAKE10 such that1. Completeness. 8k, 8v,PROB[(PK;SK) R GEN1(1k); (c; d) R COM1(PK; v) : KEY V ER1(PK; 1k) = V ER1(1k; PK; c; v; d) = Y ES] = 12. Computational Soundness. 9� > 0 such that 8 su�ciently large k and 8 2k� -gate adversaryADVPROB[(PK;SK) R GEN1(1k) ; (c; v1; v2; d1; d2) R ADV (1k; PK) :v1 6= v2 and V ER1(1k; PK; c; v1; d1) = Y ES = V ER1(1k; PK; c; v2; d2)] < 2�k�(We call � the soundness constant.)3. Trapdoorness. 8 (PK;SK) 2 fGEN1(1k)g, 8v1; v2 such that v1 6= v2 the following twoprobability distributions are identical:[(c; d1) R COM1(PK; v1) ; d02 R FAKE1(PK;SK; c; v1 ; d1; v2) : (c; d02)]and[(c; d2) R COM1(PK; v2) : (c; d2)](Comment: d02 R FAKE1(PK;SK; c; v1 ; d1; v2) implies V ER1(1k; PK; c; v2; d02) = Y ES)52



4. Perfect Secrecy. 8 PK such that KEY V ER1(PK; 1k) = 1 and 8v1; v2:[(c1; d1) R COM1(PK; v1) : c1] = [(c2; d2) R COM1(PK; v2) : c2]5. One-Or-All. 8 (PK;SK) 2 fGEN1(1k)g, and 8c; v1; v2; d1; d2; C; V1;D1; V such that v1 6= v2,V ER1(1k; PK; c; v1; d1) = Y ES = V ER1(1k; PK; c; v2; d2), (C;D1) 2 fCOM1(V1; PK), andV1 6= V2,:PROB[D2 R FAKE10(PK; c; v1; v2; d1; d2; C; V1;D1; V2) : V ER1(1k; PK;C; V2;D2) = Y ES] =1Type-2 CommitmentInformal Description. In type-1 commitment schemes, one commits to a value by means of apublic key, and can de-commit at will if he knows the matching secret key.In a type-2 commitment scheme, there is a single key used to commit to values, but this keycan be easily inspected (by algorithm KEYVER2) to determine that a corresponding trap-doorinformation exists (and thus can be used by algorithm FAKE2 to decommit at will). Because suchtrapdoor information exists, it can be found by an exhaustive search. It is not required, however,that there is a easy way to generate type-1 commitment keys and their trapdoor informationtogether.Type-1 and type-2 requirement appear to be incomparable.The use we make of type-2 commitment in the rZK protocol for graph 3-colorability is for theveri�er to commit to his questions about colors of end points of edges in the graph before he seesan encoding of the graph.The Formal Notion.De�nition 2: A type-2 commitment scheme is a quintuple of probabilistic polynomial-time algo-rithms GEN2(�), COM2(�; �), V ER2(�; �; �; �), FAKE2(�; �) and KEY V ER2(�),1. Completeness. 8k, 8v,PROB[key R GEN2(1k) ; (c; d) R COM2(key; v) : V ER2(key; c; v; d) = Y ES] = 12. Computational Soundness. 9�;> 0 such that 8 su�ciently large k and 8 2k�-gate adversaryADVPROB[key R GEN2(1k) ; (c; v1; v2; d1; d2) R ADV (key) :v1 6= v2 and V ER2(key; c; v1; d1) = Y ES = V ER2(key; c; v2; d2)] < 2k�(� is referred to as the soundness constant.)3. Veri�able Trapdoorness. 8 key such that KEY V ER2(key; 1k) = Y ES 9 trap 2 f0; 1gk suchthat, 8v1; v2 such that v1 6= v2:PROB[c R COM2(key; v1) ; d R FAKE2(key; trap; c; v1; d1; v2) : V ER2(key; c; v2; d) =Y ES] = 14. Veri�able Perfect Secrecy. 8key such that KEY V ER2(key)=YES and 8v1; v2[(c1; d1) R COM2(key; v1) : c1] = [(c2; d2) R COM(key; v2) : c2]53



Remarks on Type-1 and Type-2 CommitmentsThe above commitment schemes can be implemented under a variety of assumptions. For example,the assumption that family of claw-free trapdoor permutation pairs de�ned by [GoMiRi] su�ces forType-1 commitment. Moreover, this same assumption su�ces for implementing type-2 commitmentif KEYVER2 is relaxed to be an interactive procedure (or if it has access to a random string asrequired for non-interactive zero-knowledge proofs).Alternatively, based on the assumption that the discrete logarithm problem is hard, both Type-1 and Type-2 commitment can be achieved as we show below. Even though the two commit-ment schemes implementations follow from the same complexity assumption, our rewindable zero-knowledge protocol uses commitments in two fundamentally di�erent ways. Thus, having twodi�erent types of commitments enhances the understanding of the protocol, and may possibly leadto minimizing the complexity assumptions necessary in future implementations.Finally, as shown within our RZK protocol (i.e., in its �rst 4 steps ), the producer of a public-secret key pair for a type-1 commitment scheme, can prove in constant round that he knows thesecret key corresponding to the public key without enabling the veri�er of this proof of knowledgeto \decommit at will".10.2 Discrete-Log Implementations of Type-1 and Type-2 CommitmentDe�nition: We de�ne the language DLP0 to consist of the quadruples (p; g; x; p � 1), where pis a prime, g a generator of Z�p , x an element of Z�P , and p� 1 is an encoding of the primefactorization of p� 1. We denote by DLP 0k the set of quadruples in DLP 0 whose prime has lengthk: DLP 0k def= f(p; g; x; p � 1) 2 DLP 0 : jpj = kg.Lemma 1: Under the strong DLP assumption, there exist a type-1 commitment scheme.Proof: De�ne algorithms GEN1, COM1, V ER1, FAKE1, and FAKE10 as follows:GEN1 is a probabilistic, polynomial-time algorithm that, on input 1k, randomly selects a k-bitprime p, a generator g for Z�p , and x 2 [1; p�1] and outputs PK = (p; g; y; p� 1) and SK = x.(Note: GEN1 makes use of the fact that one can generate k-bit composite numbers in factoredform as shown by Bach.)COM1 is a probabilistic polynomial-time algorithm that, on inputs (p; g; y; p � 1) 2 DLP 0k and abit b, randomly selects d 2 f1; :::; p � 1g, computes c = gdyb mod p, and outputs (c; d).(Note: Longer binary strings are committed in a \bit-by-bit fashion")V ER1 takes as input (p; g; y; p� 1) and c; v; d. If (p; g; y; p � 1) 2 DLP 0k and c = gdyv mod p itoutputs YES, else it outputs NO.KEY V ER1 is a probabilistic polynomial time algorithm that takes as input (p; g; y; p� 1) andoutputs YES if p is prime, g is generator for Z�p , and y 2 Z�p , and NO otherwise.FAKE1 takes as input (p; g; y; p � 1) 2 DLP 0k and (x; c; v1; d1; v2) where gx = y mod p, v1 6= v2mod p� 1, and c = gd1yv1 mod p, and outputs d2 = d1 + x(v1 � v2) mod p� 1.FAKE10 takes as input PK 2 DLP 0k and c; v1; v2; d1; d2; C; V1;D1; V such that v1 6= v2 mod p� 1,V1 6= V mod p � 1, and V ER1(PK; c; v1; d1) = Y ES = V ER1(PK; c; v2 ; d2). It computesx = (d1 � d2)(v1 � v2)�1 mod p� 1 and outputs D = D1 + x(V1 � V ) mod p� 1.54



Lemma 2: Under the strong DLP assumption, there is a type-2 commitment scheme.Proof: De�ne algorithms GEN2, COM2, V ER2, FAKE2, and KEY V ER2 as follows:GEN2 is a probabilistic, polynomial-time algorithm that, on input 1k, randomly selects a k-bit prime q together with q � 1, a generator h for Z�q , and z 2 Z�q and outputs PK =(q; h; z; q � 1).COM2 is a probabilistic polynomial-time algorithm that, on input (q; h; z; q � 1) 2 DLP 0k and abit b, randomly selects d 2 f1; :::; q � 1g, computes c = hdzb mod q, and outputs (c; d).(Note: Longer binary strings are committed in a \bit-by-bit fashion")V ER2 takes as input (q; h; z; q � 1) 2 DLP 0k and c; v; d. If c = hdhv mod q it outputs YES, else itoutputs NO.KEY V ER2 takes as input (q; h; z; q � 1) 2 DLP 0k and 1k. If q is prime, h is a generator for Z�qand z 2 Z�q it outputs YES, else it outputs NO.FAKE2 takes as input key = (q; h; z; q � 1) such that KEY V ER(key; 1k) = Y ES, trap 2 f0; 1gkand c; v2; v1; d1 such that v1 6= v2 mod p�1 and V ER2((q; h; z); c; v1 ; d1) = Y ES. If htrap = zmod q, then output d2 = d1 + trap(v1 � v2) mod q � 1.Note that for every key = (q; h; z) where KEY V ER(key; 1k) = Y ES, there exists trap suchthat htrap = z mod q (as required above).10.3 An RZK Protocol For 3-Coloring Using Public KeysInitial RemarksThe protocol utilizes a type-1 commitment scheme, (GEN1; COM1; V ER1;KEY V ER1; FAKE1; FAKE10),with soundness constant �1. Before the protocol starts, the veri�er runs GEN1 with security pa-rameter K to obtain a public key, PK, and its matching secret key, SK. This public key will be acommon input of prover and veri�er. The second common input will be G, a graph that the proverclaims to be 3-colorable. The private input of the veri�er consist of SK, while the private input tothe prover consist of a seed s for a pseudo-random function �a la [GGM], fs.The protocol also uses a type-2 commitment scheme, (GEN2; COM2; V ER2; FAKE2;KEY V ER2),with soundness constant �2. The prover generates a (single) key for this commitment scheme byusing GEN2, with security parameter k, during run time.Note that the security parameters K and k are not chosen equal, nor independently. Rather,the protocol requires that K be suitably bigger than k: more precisely, K = k 12�1 . 43 The lengthof the seed s, may however, be chosen quite independently of K and k: it is only for simplicity thatwe chose it to be K-bit long.At a very high level, the protocol consists of two phases. First, the veri�er convinces the proverthat he \knows" SK(steps 1-4). Second, the prover convinces the veri�er that the input graph Gis 3-colorable (steps 5-10). The prover is de-facto deterministic: at each step of the protocol, allhis \random" choices are made by applying fs to the history of the communication so far.The Protocol43As a result, \cheating" will be hard in both schemes, but it will be much harder for the type-1 scheme than forthe type-2 scheme. In particular, as it will become clear later on, �nding two di�erent decommitments for the sametype-2 commitment cannot signi�cantly help in �nding SK, the type-1 secret key.55



Protocol RZK� Security Parameter(s): k and K where K = k 12�1 .� Veri�er's public and secret key: (PK;SK) R GEN1(1K).� Prover's secret seed: s 2R f0; 1gK� Common input to protocol: A 3-colorable graph G with vertex set VERTICES and edgeset EDGES, where VERTICES has cardinality n and EDGES has cardinality m.� Secret input to prover : a 3-coloring of G, COL : V ERS ! f1; 2; 3g, where COL(v) isthe color of vertex v.Comment: The following 10 steps are executable in 7 rounds of communication.1. (Instructions for V)For i = 1; : : : ; k, let (Xi; Ri) R COM1(PK; 0), send Xi to P.2. (Instructions for P) If KEY V ER1(Pk; 1k) = NO, then halt. Else,Compute a1; : : : ; ak = fs(X1j : : : jXk) where fs is a GGM random function with seed s andsend them to V.3. (Instructions for V)For i = 1; : : : ; k, compute R0i R FAKE1(PK;SK;Xi ; 0; Ri; 1).If ai = 0, then set Di= Ri, else set Di = R0I . Send Di to P .4. (Instructions for P)For i = 1 : : : ; k, if V ER1(PK;Xi; ai;Di) = NO, then reject.5. (Instructions for P)Select key R GEN2(1k) and send it to V.6. (Instructions for V) If KEY V ER2(key; 1k) = NO, then reject. Else,For j = 1 : : : ; n3, randomly select edge ej = (uj ; vj) in G, compute (cej ; dej) R COM2(key; ej),and send P the commitment values cej .7. (Instructions for P) For j = 1; : : : ; n3, choose �j , a random permutation of f1; 2; 3g, and:for all u 2 V ERTICES do: (cuj ; duj) R COM1(PK; �j(COL(u))) and send cuj to V.8. (Instructions for V) For j = 1; : : : ; n3, decommit ej = (uj ; vj) by sending ej and dej to P.9. (Instructions for P) For j = 1 : : : ; n3, if V ER2(key; cej ; ej ; dej) = NO, then reject. Else,decommit the colors of the endpoints of ej by sending �j(COL(uj)), duj , �j(COL(vj)) anddvj to P.10. (Instructions for V)(a) For j = 1; : : : ; n3, if V ER1(PK; cvj ; �j(COL(vj)); dvj) = NO or V ER1(PK; cuj ; �j(COL(uj)); duj) =NO, then reject.(b) For j = 1; : : : ; n3, if �j(COL(uj)) = �j(COL(vj)) (where ej = (uj; vj)), then reject.(c) Else, accept. 56
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Part IIIAppendicesThese appendices are reproduced from an old versions; some inconsistencies with and repetitionsof the main text may occur.Appendix A: Commitment SchemesWe formally de�ne the various types of commitment schemes used in the main text. We startwith the more standard notion of a commitment scheme in which secrecy is preserved only w.r.tcomputationally bounded adversaries, and later pass to the dual notion of a perfect commitmentscheme (in which secrecy is preserved in an information theoretic sense). Recall that the bindingproperty in standard schemes is absolute (i.e., information theoretical), whereas in perfect commit-ment schemes it holds only w.r.t computationally bounded adversaries. But before de�ning anyof these, let use de�ne a su�cient condition for the existence of all these schemes { a strong DLPassumption.A.1 The Strong DLP Intractability AssumptionThe Discrete Logarithm Problem (DLP) is de�ned as follows. On input p; g; y, where p is a prime, gis a primitive element in the multiplicative group modulo p, and y 2 Z�p, one has to �nd x suct thatgx � y (mod p). We assume that this task is intractable also in the special case where p = 2q+1and q is a prime too. Such p's are often called safe primes, and the above assumption is quitestandard. It follows that the same would hold when g is of order q and so is y. Finally, we assumethat intractability refers to sub-exponential size circuits rather merely to super-polynomial ones.Thus we assume the following:The Strong DLP Assumption: For some � > 0, for every su�ciently large n, andevery circuit C of size at most 2n�Pr[C(p; g; gx mod p) = x] < 2�n�where the probability is taken uniformly over all n-bit long safe primes p, elements g oforder q def= (p� 1)=2, and x 2 Z�q.We comment that, although stronger than the standard assumption, the above Strong DLP As-sumption seems very reasonable.A.2 Standard Commitment SchemesBy a standard commitment scheme we refer to one providing computational-secrecy and absolute(or perfect) binding. For simplicity, we consider here only one-round commitment schemes.De�nition 10 (standard commitment scheme): A standard commitment scheme is a probabilisticpolynomial-time algorithm, denoted C satisfying:
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(Computational) Secrecy: For every v; u of equal poly(n)-length, the random variables C(1n; v)and C(1n; u) are computationally indistinguishable by circuits. That is, for every two polyno-mials p; q, all su�ciently large n's and all v; u 2 f0; 1gp(n) and every distinguishing circuit Dof size q(n), jPr[D(C(1n; v)) = 1] � Pr[D(C(1n; u)) = 1]j < 1q(n)(Perfect) Binding: For every v; u of equal poly(n)-length, the random variables C(1n; v) andC(1n; u) have disjoint support. That is, for every v; u and �, if Pr[C(1n; v) = �] andPr[C(1n; u) = �] are both positive then u = v.The way such a commitment scheme is used should be clear: To commit to a string v, under securityparameter n, the sender invokes C(1n; v) and sends the result as its commitment. The randomnessused by C during this computation, is to be recorded and can latter be used as a decommitment.A commitment scheme as above can be constructed based on any one-way permutation: Looselyspeaking, given a permutation f : D 7! D with a hard-core predicate b (cf., [24]), one commits toa bit � by uniformly selecting x 2 D, and sending (f(x); b(x)� �) as a commitment.A strong version of the standard commitment scheme requires computational-secrecy to holdalso with respect to subexponential-size circuits (i.e., replace the polynomial q above by a functionf of the form f(n) = 2n� , for some �xed � > 0). This is analogous to the strong computational-binding feature discussed below. The Strong DLP Assumption implies the existence of such strongcomputational-secrecy commitment schemes.A.3 Perfect Commitment SchemesWe start by de�ning two-round perfect commitment schemes. In such schemes the party's strategiesmay be represented by two algorithms, denoted (S;R), for sender and receiver. The sender has asecret input v 2 f0; 1g� and both parties share a security parameter n. Thus, the �rst messagesent (by an honest receiver) is R(1n), and the response by a sender wishing to commit to a value v(of length bounded by a polynomial in n) is S(1n; v; msg), where msg is the message received in the�rst round. To \de-commit" to a value v, the sender may provide the coin tosses used by S whencommitting to this value, and the receiver may easily verify the correctness of the de-committedvalue.De�nition 11 (perfect two-round commitment scheme): A perfect two-round commitment schemeis a pair of probabilistic polynomial-time algorithms, denoted (S;R) satisfying:(Perfect) Secrecy: For every mapping R� (representing a computationally-unbounded cheatingreceiver), and for every v; u of equal poly(n)-length, the random variables S(1n; v; R�(1n)) andS(1n; u;R�(1n)) are statistically close. That is, for every two polynomials p; q, all su�cientlylarge n's and all v; u 2 f0; 1gp(n)X� jPr[S(1n; v; R�(1n)) = �]� Pr[S(1n; u;R�(1n)) = �] j < 1q(n)(Computational) Binding: Loosely speaking, it should be infeasible for the sender, given themessage sent by the honest receiver, to answer in a way allowing it to later de-commit in twodi�erent ways. 61



In order to formulate the above, we rewrite the honest sender move, S(1n; v; msg), as con-sisting of uniformly selecting s 2 f0; 1gpoly(n;jvj), and computing a polynomial-time functionS0(1n; v; s; msg), where msg is the receiver's message. A cheating sender tries, given a receivermessage msg, to �nd two pairs (v; s) and (v0; s0) so that v 6= v0 and yet S0(1n; v; s; msg) =S0(1n; v0; s0; msg). This should be infeasible; that is, we require that for every polynomial-sizecircuit S� (representing a cheating sender invoked as part of a larger protocol), for everypolynomial p, all su�ciently large n'sPr[Vn 6= V 0n & S0(1n; Vn; Sn; R(1n)) = S0(1n; V 0n; S0n; R(1n)) ] < 1q(n)where (Vn; Sn; V 0n; S0n) = S�(1n; R(1n)).A perfect two-round commitment scheme can be constructed using any claw-free collection (cf., [22]).In particular, it can be constructed based on the standard assumption regarding the intractabilityof DLP (as the latter yields a claw-free collection). Combing the two constructions, we get thefollowing perfect two-round commitment scheme: On input a security parameter n, the receiverselects uniformly an n-bit prime p so that q def= (p� 1)=2 is prime, a element g of order q in Z�p, andz in the multiplicative subgroup of Z�p formed by g, and sends the triple (p; g; z) over. To committo a bit �, the sender �rst checks that (p; g; z) is of the right form (otherwise it halts announcingthat the receiver is cheating44), uniformly selects s 2 Zq, and sends gsz� mod p as its commitment.Additional features: The additional requirements assumed of the perfect commitment schemesin Section 9 can be easily formulated. The strong computational binding feature is formulated byextending the Computational Binding Property (of Def. 11) to hold for subexponential circuits S�.Again, the Strong DLP Assumption yields such a stronger binding feature. The trapdoor featurerequires the existence of a probabilistic polynomial-time algorithm R that outputs pairs of stringsso that the �rst string is distributed as in R (above), whereas the second string allows arbitrarydecommiting. That is, there exists a polynomial-time algorithm A so that for every (msg; aux) inthe range of R(1n), every v; u 2 f0; 1gpoly(n), and every s 2 f0; 1gpoly(n;jvj), satis�esS0(1n; v; s; msg) = S0(1n; u; A(aux; (v; s); u); msg)That is, a = A(aux; (v; s); u) is a valid decommit of the value u to the sender's commitment tothe value v (i.e., the message S0(1n; v; s; msg)). Thus, one may generate random commitments c(by uniformly selecting s and computing S0(1n; 0poly(n); s; msg)) so that later, with knowledge ofaux, one can decommit to any value u of its choice (by computing a = A(aux; (0poly(n); s); u)).The DLP construction (of above) can be easily modi�ed to satisfy the trapdoor feature: Actually,the known implementation for the random selection of z (in the subgroup generated by g) is toselect r uniformly in Z�q and set z = gr mod p. But in this case r is the trapdoor we need, sincegszv � gs+(v�u)rzu (mod p), and so we may decommit to u by presenting s+ (v � u)r mod q.Appendix B: Blum's Proof of KnowledgeFor sake of self-containment, we �rst recall the de�nition of a proof of knowledge. The followingtext is reproduced from [19].44Actually, to �t the de�nition, the sender should commit via a special symbol which allows arbitrary decommit.Surely, such a commitment-decommit pair will be rejected by the honest receiver, which never cheats.62



B.1 Proofs of KnowledgeB.1.1 PreliminariesLet R � f0; 1g� � f0; 1g� be a binary relation. Then R(x) def= fs : (x; s) 2 Rg and LR def= fx :9s s.t. (x; s) 2 Rg. If (x; s) 2 R then we call s a solution for x. We say that R is polynomiallybounded if there exists a polynomial p such that jsj � p(jxj) for all (x; s) 2 R. We say that Ris an NP relation if R is polynomially bounded and, in addition, there exists a polynomial-timealgorithm for deciding membership in R (i.e., LR 2 NP). In the sequel, we con�ne ourselves topolynomially bounded relations.We wish to be able to consider in a uniform manner all potential (knowledge) provers, withoutmaking distinction based on their running-time, internal structure, etc. Yet, we observe that theseinteractive machine can be given an auxiliary-input which enables them to \know" and to provemore. Likewise, they may be lucky to select a random-input which enables more than another.Hence, statements concerning the knowledge of the prover refer not only to the prover's programbut also to the speci�c auxiliary and random inputs it has. Hence, we �x an interactive machineand all inputs (i.e., the common-input, the auxiliary-input, and the random-input) to this machine,and consider both the corresponding accepting probability (of the veri�er) and the usage of this(prover+inputs) template as an oracle to a \knowledge extractor". This motivates the followingde�nition.De�nition 12 (message speci�cation function): Denote by Px;y;r(m) the message sent by machineP on common-input x, auxiliary-input y, and random input r, after receiving messages m. Thefunction Px;y;r is called the message speci�cation function of machine P with common-input x,auxiliary-input y, and random input r.An oracle machine with access to the function Px;y;r will represent the knowledge of machine P oncommon-input x, auxiliary-input y, and random input r. This oracle machine, called the knowledgeextractor, will try to �nd a solution to x (i.e., an s 2 R(x)). (As postulated below, the running timeof the extractor is inversely related to the corresponding accepting probability (of the veri�er).)B.1.2 Knowledge veri�ersNow that all the machinery is ready, we present the de�nition of a system for proofs of knowledge.At �rst reading, the reader may set the function � to be identically zero.De�nition 13 (System of proofs of knowledge): Let R be a binary relation, and � : N ! [0; 1].We say that an interactive machine V is a knowledge veri�er for the relation R with knowledge error� if the following two conditions hold.� Non-triviality: There exists an interactive machine P so that for every (x; y) 2 R all possibleinteractions of V with P on common-input x and auxiliary-input y are accepting.� Validity (with error �): There exists a probabilistic oracle machine K such that for everyinteractive machine P , every x 2 LR and every y; r 2 f0; 1g�, on input x and access to Px;y;rmachine K �nds a solution s 2 R(x) within expected time inversely proportional to p��(jxj),where p is the probability that V accepts x when interacting with Px;y;r. More precisely:Denote by p(x; y; r) the probability that the interactive machine V accepts, on input x, wheninteracting with the prover speci�ed by Px;y;r. Then if p(x; y; r) > �(jxj) then, on input x and63



access to oracle Px;y;r, machine K outputs a solution s2R(x) within an expected number ofsteps bounded above by poly(jxj)p(x; y; r)� �(jxj)The oracle machine K is called a universal knowledge extractor.When �(�) is identically zero, we just say that V is a knowledge veri�er for the relation R. Aninteractive pair (P; V ) so that V is a knowledge veri�er for a relation R and P is a machinesatisfying the non-triviality condition (with respect to V and R) is called a system for proofs ofknowledge for the relation R.B.2 Blum's ProtocolIn the main text, we consider k parallel repetitions of the following basic proof system for the Hamil-tonian Cycle (HC) problem which is NP-complete (and thus get proof systems for any language inNP). We consider directed graphs (and the existence of directed Hamiltonian cycles).Construction 14 (Basic proof system for HC):� Common Input: a directed graph G = (V;E) with n def= jV j.� Auxiliary Input to Prover: a directed Hamiltonian Cycle, C � E, in G.� Prover's �rst step (P1): The prover selects a random permutation, �, of the vertices V , andcommits to the entries of the adjacency matrix of the resulting permuted graph. That is, itsends an n-by-n matrix of commitments so that the (�(i); �(j))th entry is a commitment to1 if (i; j) 2 E, and is a commitment to 0 otherwise.� Veri�er's �rst step (V1): The veri�er uniformly selects � 2 f0; 1g and sends it to the prover.� Prover's second step (P2): If � = 0 then the prover sends � to the veri�er along with therevealing (i.e., preimages) of all commitments. Otherwise, the prover reveals to the veri�eronly the commitments to entries (�(i); �(j)) with (i; j) 2 C. In both cases the prover alsosupplies the corresponding decommitments.� Veri�er's second step (V2): If � = 0 then the veri�er checks that the revealed graph is indeedisomorphic, via �, to G. Otherwise, the veri�er just checks that all revealed values are 1 andthat the corresponding entries form a simple n-cycle. In both cases the veri�er checks that thedecommitments are proper (i.e., that they �ts the corresponding commitments). The veri�eraccepts if and only if the corresponding condition holds.We stress that the above protocol uses a standard commitment scheme.Proposition 15 The protocol which results by k parallel repetitions of Construction 14 is a proof ofknowledge of Hamiltonicity with knowledge error 2�k. Furthermore if, for every positive polynomialp, the commitment scheme used in Step (P1) maintain secrecy with respect to circuits of size p(n)�23kand distinguishing gap of 2�3k=p(n) then, for every positive polynomial q, the interaction can besimulated in time poly(n) �2k so that no circuit of size q(n) �22k can distinguish the simulation fromthe real interaction with gap of 2�2k=q(n) or more.64


