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1 IntroductionThe notion of a zero-knowledge interactive proof was put forward and �rst exempli�ed by Gold-wasser, Micali and Racko� [32]. The generality of this notion was demonstrated by Goldreich,Micali and Wigderson [28], who showed that any NP-statement can be proven in zero-knowledge,provided that commitment schemes exist.1 Subsequently, related notions have been proposed;in particular, zero-knowledge arguments [9], witness indistinguishability [19], and zero knowledgeproofs of knowledge [32, 43, 18, 1]. By now, zero-knowledge is the accepted way to de�ne andprove security of various cryptographic tasks; in particular, as proposed by Fiat and Shamir [20],it provides the basis for many proofs of identity.A basic question about zero-knowledge. A zero-knowledge proof of a non-trivial languageis possible only if the Prover tosses coins.2 But:Is zero-knowledge possible when the prover uses the same coins in more than one execution?For zero-knowledge proofs of knowledge (and thus for all proofs of identity �a la Fiat-Shamir [20]),by de�nition, the answer is NO: if the veri�er can force the prover to use the same coins for apolynomial number of executions, then even the honest veri�er can easily extract the very samesecret which the prover is claiming knowledge of.3For zero-knowledge proofs (of language membership), the answer also appeared to be negative:all known examples of zero-knowledge proofs (including the 3-Coloring protocol of [28]) are triviallybreakable if the prover is \reset" (to his initial state) and forced to use the same coins in futureinteractions, even if these interactions are with the honest veri�er.Example. For instance, to prove that z = x2 mod n is quadratic residue mod n, in [32] thefollowing basic protocol is repeated: the prover randomly chooses r 2 Z�n and sends r2 mod n tothe veri�er; the veri�er sends a random bit b to the prover; and the prover sends back r if b = 0,and xr mod n if b = 1. Assume now that the prover is forced to execute twice with the same coins rthe basic protocol. Then, by sending b = 0 in the �rst execution and b = 1 in the second execution,the veri�er learns both r and xr and thus trivially extract x, a square root of z mod n.A New Notion. In this paper we extend the classical notion of zero-knowledge by introducingthe notion of Resettable Zero-Knowledge (rZK for short).4 In essence, a rZK proof is a zero-knowledge proof in which a veri�er learns nothing (except for the verity of a given statement) evenif he can interact with the prover polynomially many times (in an \interleaved manner"), each timerestarting the prover with the same con�guration and coin tosses.In other words, a polynomial-time veri�er learns nothing extra even if it can \clone" the prover,with the same initial con�guration and random tape, as many times as it pleases, and then interactwith these clones in any order and manner it wants. In particular, it can start a second interactionin the middle of a �rst one, and thus choose to send a message in the second interaction as afunction of messages received in the �rst. We stress that, in each of these interleaved interactions,the prover (i.e., each prover clone) is not aware of any other interaction, nor of having been cloned.1 Or, equivalently [40, 35], that one-way functions exist.2 Zero-knowledge proofs in which the prover is deterministic exist only for BPP languages (cf., [29]).3 For instance, in [20] it su�ces to repeat the protocol twice with the same prover-coins to be able to extract theprover's secret.4 In a preliminary version of this work [24], the same notion was called rewind zero-knowledge and interleavedzero-knowledge. 3



Resetability can be incorporated in the various variants of zero knowledge. In particular in thiswork we will pay close attention to Resettable Zero-Knowledge proofs, Resettable Zero-Knowledgearguments, and Resettable Witness-Indistinguishable Proofs (rWI for short).Informally, in all of the above cases (i.e., ZK proofs, arguments, and WI proofs) the securityrequirement is maintained even if the prover is forced to use the same coin tosses in repeated andinterleaved executions.The Importance of the New Notion. Resettable zero knowledge sheds new light on what itis that make secure protocol possible. In particular, such protocols make a much weaker use ofrandomness than previously believed necessary. Moreover, resettable zero knowledge is a powerfulabstraction which yields both theoretical and practical results in a variety of settings: In particular,� rZK increases the number of physical ways in which zero-knowledge proofs may be imple-mented, while guaranteeing that security is preserved.As we have said, previous notions of zero knowledge were insecure whenever an attacker couldreset the device implementing the prover to its initial conditions (which include his randomtape). For example, this class of implementations includes ordinary smart cards. In fact,without a built-in power supply or without a re-writable memory that is not only tamper-proof, but also non-volatile, these cards can be reset by disconnecting and reconnecting thepower supply.� rZK proofs, rWI proofs and rZK arguments are guaranteed to preserve security when executedconcurrently in an asynchronous network like the Internet.� rZK proofs, rWI proofs and rZK arguments provide much more secure identi�cation (ID)schemes; that is, ID schemes that preserve security under circumstances as above.NewResults. We show that, under standard complexity assumptions, Resettable Zero-Knowledgeexists. Let us quickly state our assumptions and main results.Assumptions. All our protocols are based on the existence of certain types of commitmentschemes. Some of these schemes may be implemented under traditional complexity assumptions,such as the hardness of the Discrete Log Problem (DLP), and for some we use stronger assumptionssuch that the existence of strong trapdoor claw-free pairs of permutations.5 For the purposes ofthe current write-up, we renounce to some generality, and rely directly on two forms of the DLPassumption: Informally, denoting by DLP (k) the task of solving DLP for instances of length k, wehave Strong DLP Assumption: DLP (k) is not solvable in time 2k� , for some � > 0.Weak DLP Assumption: DLP is not solvable in polynomial time.Main Results. We prove the following theorems:Theorem 1: Under the weak DLP assumption, there is a (non-constant round) rZK proof for NP.5 \Strong" refers to those in which the claw-free property should hold also with respect to sub-exponential-sizecircuits (i.e., circuits of size 2n� , where n is the input length and � > 0 is �xed), rather than only with respect topolynomial-size circuits, and \trapdoor" refers to the fact that these pairs that can be generated along with auxiliaryinformation which allows to form (random) claws. 4



Theorem 2: Under the weak DLP assumption, there is a constant-round rWI proof for NP.Theorem 3: Under the strong DLP assumption, there is a constant-round rZK argument for NPin the Public-Key Model.By the public-key model, we mean that a veri�er has a public key that has been registered |i.e.,�xed| prior to his interaction with the prover. We stress that we only assume that public-keyscan be registered in the sense that it has been posted. Registration does not have to include anyinteraction with a trusted system manager that may verify properties of the registered public-key.We also stress that the prover does not need a public key.6 (As we shall point out later on, thisquite standard model of �xing a key before interaction starts can be further relaxed.) For a moredetailed discussion of this model see Section 6.1.1.1 Resettable vs. Concurrent ZKA weaker notion. In the past few years, considerable attention has been devoted to concurrentzero-knowledge (cZK) protocols. In essence, these are ZK proofs that withstand malicious veri�erswho can interact several times with the prover, in an \interleaved way," about the same theorem.In each interaction, however, the prover will use a "fresh" random tape. (This model was �rstconsidered in [17].)Concurrent ZK is a weaker notion than resettable ZK, because in a rZK protocol, a maliciousveri�er may not only interact several times with the prover in an interleaved way, but also enforcethat, in each such interaction, the prover has the same initial con�guration (and thus uses the samerandom tape).Some prior cZK protocols. Concurrent ZK protocols have been suggested by Dwork, Naorand Sahai [15], assuming that a certain level of synchronization is guaranteed: the so-called timingassumption. Under this assumption, (1) there are a-priori known bounds on the delays of messageswith respect to some ideal global clock, and (2) each party uses a local clock whose rate is withina constant factor of the rate of the ideal clock. Under the timing assumption (and some standardintractability assumption), constant-round, ZK arguments for NP were presented in [15]. In alater paper, Dwork and Sahai [14] show how the push up the use of the timing assumption toa pre-processing protocol, to be executed before the concurrent executions of protocols. Morerecent protocols by Richardson and Kilian [41] and Kilian and Petrank [38] do not use the timingassumption, however their protocols are not constant-round. We stress that none of these concurrentZK protocols is rZK.1.1.1 rZK vs. cZK in the standard modelIn the standard (non public-key) model, we construct our resettable ZK protocols based on con-current ZK ones, and in particular the cZK protocol of Richardson and Kilian [41]. (Therefore, inthis model, our constructions do not result in better cZK protocols.)Constructions of rZK proof systems. We actually present two constructions of rZK protocolsfor NP: one \by reduction" and a \direct" one. Our �rst construction consists of two steps. In6 Note that the fact that only the veri�er requires a public key is especially suitable when extending rZK proofsto rZK proofs of identity. In the latter case, in fact, the veri�er usually guards a resource and needs to identify theidentity of the user (the prover) attempting to use the resource. In this scenario, it is reasonable to expect (the few)veri�ers to have public key accessible by all users, and it useful that the (many) provers may implemented by cheap,resettable devices which do not have any registered public keys.5



a �rst step, we provide a transformation mapping any cZK protocol satisfying a special condition(the admissible cZK protocols) into rZK protocols. In the second step, we show how to transformthe cZK protocol of [41] into an admissible one.Our direct construction also consists of two steps. In the �rst step, we provide a constant-roundresettable witness-indistinguishable (rWI) protocol for NP (a step of independent interest). In thesecond step, we properly combine our rWI protocol with the cZK protocol of [41] so as to obtainan rZK protocol for NP. The combined protocol inherits the round complexity of the [41] protocol,and thus is not constant-round.Lower bounds for rZK proof systems. Demonstrating limitations on the ability to constructcZK protocols, Kilian et.al. [39] show that four-round cZK protocols whose security is proved viablack-box simulation exist only for languages in BPP. Rosen [42] has recently extended this resultto seven-round protocols. Since any rZK protocol is also cZK, these lower bounds apply to rZKprotocols as well.1.1.2 rZK vs. cZK in the public-key modelIn the public-key model, our rZK protocols are built in totally novel ways (i.e., are not basedon prior cZK protocols), and indeed provide new implications for concurrent zero knowledge. Inparticular, Theorem 3 yields the following corollary.Corollary 4: Under the strong DLP assumption, there exists a constant-round, concurrent ZKarguments for NP in the public-key model.This result is important whenever ZK protocols are to be played over asynchronous networks(like the Internet), because in such networks it is easy for a malicious veri�er to run many ZKprotocols at once in an interleaved way (thus making concurrent executions an eminent threat),and because the number of rounds is an important resource for internet protocols.Moreover, the above result is widely implementable, because the public-key model is ubiqui-tous whenever cryptography is used (speci�cally, it underlies any public-key encryption or digitalsignature scheme). As the public-key model is both simpler and more realistic than the timing as-sumptions of [15, 14], we believe that the constant-round cZK protocol of Corollary 4 is preferableto the constant-round one of [15, 14]. Indeed, even if one thinks of the public-key model as a formof preprocessing, Corollary 4 provides an alternative to Dwork and Sahai's protocol which is basedon pre-processing with the timing assumption. For further comparison see Section 6.1.Another constant-round cZK argument for NP (but not an rZK one!) has been independentlyprovided by Damg�ard[11, 12], but his protocol relies on a stronger public-key model: one in which atrusted center generates the (secret key, public key) pairs (i.e the soundness of the protocols dependson the trusted center keeping the secret key con�dential). Alternatively, this trusted center can bereplaced by a pre-processing interactive protocol between users (setting up their public-keys) andcerti�cation authorities.1.2 Implications of rZK for Proofs of IdentityFiat and Shamir in [20] introduced a paradigm for ID schemes based on the notion of Zero Knowl-edge Proof of Knowledge. In essence, a prover identi�es himself by convincing the veri�er of knowinga given secret (e.g., in [20], of knowing a square root of a given square mod n). All subsequent IDschemes follow this paradigm, and are traditionally implemented by the prover being a smart card(as suggested in [20]). However, Zero Knowledge Proof of Knowledge are impossible in a resettable6



setting (i.e., they exist only in a trivial sense7), and thus all Fiat-Shamir like ID schemes fail to besecure whenever the prover is resettable.Instead, an alternative paradigm emerges for constructing ID schemes so that the resultingschemes are secure when the identi�cation is done by a device which can be reset to its initial statesuch as a smart card. The new paradigm consists of viewing the ability to convince the veri�erthat a �xed input is in a \hard" NP-language as a proof of identity, and employing an rZK proofto do so. Further elaboration on the notion and the construction of Resettable Proofs of Identitywill appear in a separate paper.Organization. Section 2 de�nes the notions of rZK and rWI. Section 3 provides a general methodfor transforming a certain class of proof systems designed for the concurrent setting into resettableones. Sections 4 and 5 use the transformation of Section 3 to present rWI and rZK proof systemsfor NP, respectively. Sections 2 through 5 concentrate on the standard model for interactive proofs.Section 6 presents the public key model and describes our results in this model.2 The Notions of rWI and rZK2.1 PreliminariesWe shortly review some basic notions and point the reader to more comprehensive sources on thesenotions.Interactive proof systems. Throughout this paper we consider interactive proof systems [32]in which the designated prover strategy can be implemented in probabilistic polynomial-time givenan adequate auxiliary input. Speci�cally, we consider interactive proofs for languages in NP andthus the adequate auxiliary input is an NP-witness for the membership of the common input in thelanguage. Also, whenever we talk of an interactive proof system, we mean one in which the errorprobability is a negligible function of the length of the common input (i.e., for every polynomialp and all su�ciently long x's, the error probability on common input x is smaller than 1=p(jxj)).Actually, we may further restrict the meaning of the term `interactive proof system' by requiringthat inputs in the language are accepted with probability 1 (i.e., so-called perfect completeness).Argument systems. Likewise, when we talk of computationally-sound proof systems (a.k.aarguments) [9] we mean ones with perfect completeness in which it is infeasible to cheat with non-negligible probability. Speci�cally, for every polynomial p and all su�ciently large inputs x not inthe language, every circuit of size p(jxj) (representing a cheating prover strategy) may convince theveri�er to accept only with probability less than 1=p(jxj).Zero-knowledge. We adopt the basic paradigm of the de�nition of zero-knowledge [32]: Theoutput of every probabilistic polynomial-time adversary which interacts with the designated proveron a common input in the language, ought to be simulatable by a probabilistic polynomial-timemachine (which interacts with nobody), called the simulator. We mention that the simulators in7 It can be shown that if, on input x, one can provide an rZK proof of knowledge of y so that (x; y) is in somepolynomial-time recognizable relation, then it is possible given x to �nd such a y in probabilistic polynomial-time.Thus, such a proof of knowledge is useless, since by de�nition (of knowledge) anybody who gets input x knows sucha y. 7



Sections 3 and 5 run in strict polynomial-time, whereas those in Section 6.1 run in expected polynomial-time. (As Section 6 focuses on constant-round resettable zero-knowledge systems, expectedpolynomial-time simulation seems unavoidable: recall that it is not known whether constant-roundzero-knowledge proofs forNP exists, when one insists on strictly polynomial-time simulators (ratherthan expected polynomial-time ones); See [25, 22].)Witness indistinguishable proof systems [19]. Loosely speaking, these are proof systemsin which the prover is a probabilistic polynomial-time machine with auxiliary input (typically,an NP-witness), having the property that interactions in which the prover uses di�erent \legit-imate" auxiliary-inputs are computationally indistinguishable from each other. Recall that anyzero-knowledge proof system is also witness indistinguishable, and there are witness indistinguish-able proof systems that are not zero-knowledge.2.2 De�nition of rWI and rZKGiven a speci�ed prover P , a common input x and an auxiliary input y to P (e.g., y may be anNP-witness for x being in some NP-language), we consider polynomially-many interactions withthe deterministic prover strategy Px;y;! determined by uniformly selecting and �xing P 's coins,denoted !. That is, ! is uniformly selected and �xed once and for all, and the adversary mayinvoke and interact with many instances of Px;y;!. An interaction with an instance of Px;y;! iscalled a session. It is stressed that Px;y;!'s actions in each session are oblivious of other sessions(since Px;y;! mimics the \single session strategy" P ); nonetheless, the actions of the adversary maydepend on other sessions.We consider two variants of the model, and prove their equivalence. In the basic variant, asession must be terminated (either completed or aborted) before a new session can be initiatedby the adversary. In the interleaving variant, this restriction is not made and so the adversarymay concurrently initiate and interact with Px;y;! in many sessions. A suitable formalism must beintroduce in order to support these concurrent executions. For simplicity, say that the adversaryprepend a session-ID to each message it sends, and a distinct copy of Px;y;! handles all messagesprepended by each �xed ID. Note that in both variants, the adversary may repeat in the currentsession the same messages sent in a prior session, resulting in an identical pre�x of an interaction(since the prover's randomness is �xed). Furthermore, by deviating in the next message, theadversary may obtain two di�erent continuations of the same pre�x of an interaction. Viewed inother terms, the adversary may \e�ectively rewind" the prover to any point in a prior interaction,and carry-on a new continuation (of this interaction pre�x) from this point.The interleaved variant of our model seems related to the model of concurrent zero-knowledge.In both models an adversary conducts polynomially-many interleaved interactions with the prover.In our case these interactions are all with respect to the same common input, and more importantlywith respect to the same prover's random coins (i.e., they are all with copies of the same Px;y;!,where ! is random). In contrast, in the concurrent zero-knowledge model, each interaction is withrespect to an independent sequence of prover's coin tosses (while the common input may di�er andmay be the same). That is, in the concurrent zero-knowledge model, one may interact only once witheach Pxj ;yj ;!j , where the !j 's are random and independent of one another. Intuitively, interactingwith copies of the prover that share the same coin sequence ! seem far more advantageous to theadversary than interacting with copies which have each its independent coin tosses !j. However,in order to show that resettable zero-knowledge implies concurrent zero-knowledge, we augmentthe former model a little so to allow polynomially-many interaction with respect to each of a set of8



polynomially-many independent choices of prover's coin sequence. That is, we allow the adversaryto interact polynomially-many times with each of polynomially-many Pxi;yi;!j 's, where the !j's arerandom and independent of one another.2.2.1 The actual de�nitionIn the actual de�nition we use a di�erent formalism than the one presented informally above. Thatis, instead of prepending each message to Pxi;yi;!j with a session ID, we prepend each message bythe full transcript of all messages exchanged so far. That is, we adopt the following convention.Convention: Given an interactive pair of (deterministic) machines, (A;B), we construct a mod-i�ed pair, (A0; B0), so that for t = 1; 2; :::A0(�1; �1; :::; �t�1; �t�1) = (�1; �1; :::; �t�1; �t�1; A(�1; :::; �t�1))provided that �i = A(�1; :::; �i�1), for i = 1; :::; t � 1B0(�1; �1; :::; �t�1; �t�1; �t) = (�1; �1; :::; �t�1; �t�1; �t; B(�1; :::; �t�1))provided that �i = B(�1; :::; �i�1), for i = 1; :::; t � 1In case the corresponding condition does not hold, the modi�ed machine outputs a special symbolindicating detection of cheating. Probabilistic machine are handled similarly (just view the random-tape of the machine as part of it). Same for initial (common and auxiliary) inputs. We stress thatthe modi�ed machines are memoryless (they respond to each message based solely on the messageand their initial inputs), whereas the original machines respond to each message based on theirinitial inputs and the sequence of all messages they have received so far.In the traditional context of zero-knowledge, the above transformation adds power to the ad-versary, since each machine just checks partial properness of the history presented to it { its ownprevious messages. That is, A0 checks that �i = A(�1; :::; �i�1), but it does not (and in general can-not) check that �i = B(�1; :::; �i�1) since it does not know B (which by the convention regardingprobabilistic machines and inputs may depend also on \hidden variables" { the random-tape and/orthe auxiliary input to B). However, in the context of resettable zero-knowledge this transformationdoes not add power: Indeed, the transformation allows an adversary to pick a di�erent (possible)continuation to an interaction, but this is allowed anyhow in the resettable model. In the followingde�nition, we assume that P is a machine resulting from the modi�cation above. Also, without lossof generality we use the standard convention where the \cheating veri�er", V �, is deterministic.De�nition 1 (rZK and rWI - standard model): An interactive proof system (P; V ) for a languageL is said to be resettable zero-knowledge if for every probabilistic polynomial-time adversary V � thereexists a probabilistic polynomial-time simulator M� so that the following two distribution ensemblesare computational indistinguishable: Let each distribution be indexed by a sequence of commoninputs x = x1; :::; xpoly(n)2 L \ f0; 1gn and a corresponding sequence of prover's auxiliary-inputsy = y1; :::; ypoly(n),Distribution 1 is de�ned by the following random process which depends on P and V �.1. Randomly select and �x t = poly(n) random-tapes, !1; :::; !t, for P , resulting in de-terministic strategies P (i;j) = Pxi;yi;!j de�ned by Pxi;yi;!j (�) = P (xi; yi; !j ; � ), fori; j 2 f1; :::; tg. Each P (i;j) is called an incarnation of P .2. Machine V � is allowed to run polynomially-many sessions with the P (i;j)'s.9



� In the general model (i.e., the interleaving version) we allow V � to send arbitrarymessages to each of the P (i;j), and obtain the responses of P (i;j) to such messages.� In the sequential (or non-interleaving) version V � is required to complete its currentinteraction with the current copy of P (i;j) before starting a new interaction withany P (i0;j0), regardless if (i; j) = (i0; j0) or not. Thus, the activity of V � proceedsin rounds. In each round it selects one of the P (i;j)'s and conducts a completeinteraction with it.3. Once V � decides it is done interacting with the P (i;j)'s, it (i.e., V �) produces an outputbased on its view of these interactions. Let us denote this output by hP (y); V �i(x).Distribution 2: The output of M�(x).In case there exists a universal probabilistic polynomial-time machine, M , so that M� can be im-plemented by letting M have oracle-access to V �, we say that P is resettable zero-knowledge via ablack-box simulation.8An interactive proof system (P; V ) for L is said to be resettable witness indistinguishable (rWI)if every two distribution ensembles of Type 1 that are indexed by the same sequence of inputsx = x1; :::; xpoly(n) 2 L \ f0; 1gn, (but possibly di�erent sequences of prover's auxiliary-inputs,aux(1)(x) = y(1)1 ; :::; y(1)poly(n) and aux(2)(x) = y(2)1 ; :::;y(2)poly(n)), are computationally indistinguishable.That is, we require that fhP (aux(1)(x)); V �i(x)gx and fhP (aux(2)(x)); V �i(x)gx are computationallyindistinguishable.Comments on the De�nition:Several previously investigated aspects of zero-knowledge can be cast as special cases of theabove general de�nition. For example, sequential composition of zero-knowledge protocols coincideswith the special case where V � must complete each session before starting another, and to runagainst a di�erent incarnation of the prover in each session so that the prover uses di�erent cointosses in every session. More importantly, Concurrent zero-knowledge coincides exactly with rZK,except that in each session V � runs against a di�erent incarnation of the prover, so that theprover uses di�erent coin tosses in every session. Thus, every resettable zero-knowledge protocol isconcurrent zero-knowledge.2.2.2 Relationship among the variantsBelow we refer to four variants of the above de�nition, depending on two parameters:1. Sequential versus interleaving: This aspect is explicitly considered in De�nition 1.2. Single versus multiple incarnations: De�nition 1 refers to multiple incarnations, and thesingle-incarnation variant is obtained by postulating above that t � 1 (or, equivalently, al-lowing V � to interact only with P (1;1)).Sequential versus interleaving. As stated above, the restricted non-interleaved model is actu-ally as powerful as the general (interleaved) model. That is, any prover strategy that is resettablezero-knowledge in the non-interleaved model is also resettable zero-knowledge in general (i.e., is rZKin the interleaved model). This holds both when allowing a single incarnation or many incarnations.In fact, a stronger result holds:8 Recall that the existence of black-box simulators implies auxiliary-input zero-knowledge (cf. [29, 26]).10



Theorem 2 Let P be any prover strategy. Then for every probabilistic polynomial-time V � forthe interleaved model, there exists a probabilistic polynomial-time W � in the non-interleaved modelso that hP (y);W �i(x) is distributed identically to hP (y); V �i(x). Furthermore, W � uses V � as ablack-box, and if V � interacts with a single incarnation of P then so does W �.So, in particular, a (zero-knowledge) simulator guaranteed forW � will do also for V �, and the black-box feature will be preserved. Furthermore, resettable witness indistinguishable in the sequentialmodel imply rWI in the general (interleaved) model.Proof Sketch: Using V � as a black-box and interacting with instances of P in a non-interleavedmanner, W � emulates interleaved interactions of V � with P . The emulation proceeds round byround. In order to emulate the next communication round (i.e., a message sent by the interleavingadversary followed by a respond by some copy of Px;y;!), the (non-interleaving) adversary W �initiates a new session of the protocol, and conducts the prior interaction relating to the sessionthat the interleaving adversary wishes to extend. Details follow.Recall that by our conventions, each message sent in an interaction contains the full transcriptof prior messages exchanged during that session. Thus, given a veri�er-message, we can recover allprior veri�er-messages sent in the corresponding session.9 For simplicity, we �rst assume that V �interacts with a single incarnation of P (i.e., a single Px;y;! rather than polynomially-many suchPxi;yi;!j 's).Suppose that the sequence of messages emulated so far is �1; :::; �t and the message to beemulated is �t+1 = (�i1 ; �i1 ; :::; �ij ; �ij ). That is, �ij+1 def= �t+1 is the j + 1st veri�er-message inthe current session that V � wishes to extend, and the previous veri�er-messages in that sessionare �i1 ; :::; �ij . Then the non-interleaving adversary, W �, initiates a new session with Px;y;!, andproceeds in j + 1 steps so that in the kth step it sends �ik and obtains the response of Px;y;!. Thenon-interleaving adversary W � forward to V � (only) the last response of Px;y;! (i.e., the responseof Px;y;! to �ij+1). Finally, W � aborts the current session with Px;y;! (or, actually, to �t the exactde�nition of the sequential model, it completes the interaction with this session arbitrarily).10Note that the emulation of each message-exchange between V � and Px;y;! (in the interleavedmodel) is performed by W � by initiating and conducting a brand new session with Px;y;! (inthe sequential model). Thus, if V � (interleavingly) interacts with s sessions of Px;y;! then W �will (sequentially) interact with r � s sessions, where r is the number of message-exchanges in theprotocol (P; V ).The argument extends easily to the general case in which V � (interleavingly) interacts withpolynomially-many Pxi;yi;!j 's. All that is required is for W � to initiate a new session with thecorresponding Pxi;yi;!j (i.e., the one to which the current message of V � was directed).Single versus multiple incarnations. As stated above, it is our intuition that interacting withmultiple incarnations of P is less advantageous to the adversary than interacting (many times) withthe same incarnation. This intuition holds for all natural results presented in this paper: as in theproof of Theorem 2, the argument for the of security for the single-incarnation case extends easilyto the multiple-incarnation case. Unfortunately, a clean result analogous to Theorem 2 is false:Proposition 3 There exists a protocol that is resettable zero-knowledge in the single-incarnationmodel, but is not resettable zero-knowledge in the multiple-incarnation model.9 Note that this holds also in case the alternative convention of specifying a session-ID is adopted. In such a case,one recovers the prior messages corresponding to the current session from the sequence of all messages exchanged.10 Indeed, the current session of Px;y;! may be \unhappy" with this completion, but (by de�nition) this informationcannot be passed to other sessions of Px;y;!. 11



Proof Sketch: We adapt an argument of Goldreich and Krawczyk [26], introducing a prover Pthat behaves as follows:� In case the common input x is of even parity, the prover sends the jxj-bit long pre�x of itsrandom-tape (i.e., !), and halts.� In case the common input x is of odd parity, the prover compares the message received fromthe veri�er to the jxj-bit long pre�x of its random-tape (i.e., !). If equality holds then theprover reveals to the veri�er some hard to compute function of x and/or its auxiliary input(and halts). Otherwise, it halts without sending anything.It can be easily veri�ed that P is resettable zero-knowledge in the single incarnation model: for xof even parity, the simulator merely outputs a (sequence of repeats of a) uniformly chosen jxj-bitlong string; whereas for x of odd parity it outputs nothing. In contrast, P is not resettable zero-knowledge in the multiple incarnation model: an adversary interacting with P0x0;y;! and P1x0;y;!,where ! is uniformly selected and x0 is of even parity, obtains \knowledge" (and/or y), by �rstobtaining the j0x0j-bit long pre�x of ! from P0x0;y;! and then sending it to P1x0;y;!.Summary and simpli�ed notation. In view of the results above, we analyze the protocolspresented in the rest of this paper only with respect to the sequential multiple-incarnation model.In all cases, we �rst present the analysis of the single-incarnation (sequential) model, and then(easily) extend it to the multiple-incarnation model. Since we shall be using the sequential variant,we can drop the conventions of dealing with many sessions (which were introduced in Section 2.2.1).These conventions were introduced only for the interleaving model, since there an indication mustbe provided as to which session the current message belongs. Such an indication is unnecessary forthe sequential model.3 Constructing rWI and rZK Protocols: A general paradigmThis section presents a general methodology for constructing rWI and rZK proof systems. Thisis done as follows. First we present a transformation from a certain class of proof systems, calledadmissible proof systems, into proof systems in the resettable model. Next, we de�ne a slightstrengthening of the concurrent model, called the hybrid model. We show that if the original proofsystem is admissible and WI (respectively ZK) in the hybrid model then the transformed proofsystem is rWI (respectively rZK).It turns out that in the single-incarnation case the same transformation turns any admissibleproof-system that is WI (ZK) in the concurrent model (rather than in the hybrid model) intoan rWI (rZK) proof-system. The proof of this fact is somewhat simpler than the proof for themultiple-incarnation case and can serve as a \warm-up" for that proof. This simpler proof appearsin Appendix A.The next two sections demonstrate how to transform known constructions of concurrent WIand ZK proof systems for NP (speci�cally, the constructions of Goldreich and Kahan [25] andRichardson and Kilian [41]) into admissible ones that are WI and ZK in the hybrid model, obtaining:Theorem 4 Suppose that there exists a two-round perfectly-hiding commitment scheme. Then thefollowing holds:1. Every language in NP has a constant-round resettable witness indistinguishable interactiveproof system. 12



2. Every language in NP has a resettable zero-knowledge interactive proof system. Furthermore,rZK holds via black-box simulation.The Class of Admissible Protocols Intuitively, we consider protocols (P; V ) in which the �rstveri�er-message \essentially determines" all its subsequent messages. What we mean by \essentiallydetermine" is that the only freedom retained by the veri�er is either to abort (or act so that theprover aborts) or to send a practically predetermined message. For clari�cation, consider the specialcase (which actually su�ces for our applications), in which the �rst veri�er-message is a sequenceof commitments that are revealed (i.e., decommitted) in subsequent veri�er steps. In such a case,the veri�er's freedom in subsequent steps is con�ned to either send an illegal decommitment (whichis viewed as aborting) or properly decommit to the predetermined value. (See Appendix B for amore detail de�nition of commitment schemes.)Although the above intuitive formulation su�ces for our main results (i.e., deriving the conclu-sion of Theorem 4 under the standard DLP assumption), we wish to relax it for greater generality.We syntactically partition each subsequent message of the veri�er into two parts: a main part andan authenticator. In the special case considered above (of the �rst veri�er-message being a commit-ment), the main part (of a subsequent veri�er-message) is the revealed value and the authenticatoris the extra decommitment information that establishes the validity of this value. The relaxation isthat the main part (in this case the revealed value) must be determined by the �rst veri�er message(i.e., the commitment), but the authenticator (i.e., the decommitment information) may vary. Notethat this corresponds to the standard de�nition of commitment schemes that require that the com-mitment binds the sender to a unique revealed value, but the decommitment information may vary.(We comment that in some implementations, like the one based on DLP, the proper decommitmentinformation is unique too.) The above relaxed form su�ces, provided that the prover's subsequentactions merely depend on whether the authenticator is valid (otherwise it aborts), and in case theauthenticator is valid the action depends only on the main part of the message. Note that this �tsthe usual use of commitment schemes within protocols.Let us �rst set some useful convention regarding the presentation of protocols in the concurrentand resettable settings. The �rst message in a session is always sent by the veri�er and speci�es anincarnation of P . The second message is sent by the prover, and is called the prover initializationmessage. The third message, sent by the veri�er, is called the determining message of the session.(Recall that by our convention the determining message includes the previous two messages.) Thisterminology will become self-explanatory below.De�nition 5 (admissible proof-systems): A proof-system (P; V ) is called admissible if the followingrequirements hold:1. The prover P consists of two modules, P1; P2. Similarly, the random input w is partitionedinto two disjoint parts, w(1); w(2), where w(i) is given to Pi. The prover initialization messageis sent by P1.2. Each veri�er message (other than the �rst one) is �rst received by P1 and is interpreted asconsisting of two parts, called main and authenticator. P1 decides11 whether to accept the11 The above phrase postulates a deterministic decision, which su�ces for our applications. We may allow thedecision to be probabilistic; In such a case we require that the decision is via bounded-away probabilities (which,without loss of generality, means that the prover either rejects or accepts with negligible probability). The analysisof our transformation holds also in this case. A more relaxed (and natural) de�nition allows the prover's decision13



message or to abort.12 If P1 accepts, it forwards the main part of the message to P2, whogenerates the next prover message.3. Let V � be an arbitrary (deterministic) polynomial-size circuit representing a possible strategyfor the veri�er in the interactive proof (P; V ). Then, except with negligible probability, V �is unable to generate two di�erent messages for some round ` that specify the same sessiondetermining message in their corresponding pre�xes, and such that P1 accepts both.The hybrid model. Recall that the di�erence between the concurrent model and the resettablemodel is that in the resettable model the \cheating veri�er" V � can invoke many incarnations ofthe prover with the same random input w, whereas in the concurrent model any two incarnationsof the prover have independently chosen random inputs. The hybrid model is de�ned for admissibleprotocols (where the random input of the prover is of the form w = w(1); w(2)) and provides thefollowing intermediate power to V �. Here V � can invoke many incarnations of the prover with thesame value of w(1); but any two incarnations of the prover must have independently chosen valuesfor w(2). The hybrid veri�er may be regarded as closer in spirit to the veri�er in the concurrentsetting (than to the veri�er in the resettable setting), since the �rst message usually only containsinitialization information for the session (and in particular is independent of the input). Speci�cally,in the proof systems considered in this work the �rst prover message consists only on initializationparameters for a (perfectly secret) commitment scheme.More formally, In admissible proof systems an incarnation of the prover is identi�ed via threeindices: P (i;j;k) = Pxi;yi;wj;k , where wj;k = w(1)j ; w(2)k . That is, i speci�es the input, j speci�es therandom input to P1 and k speci�es the random input to P2.De�nition 6 (hZK and hWI): A hybrid cheating veri�er V � works against admissible proof systemsas described above. That is, V � proceeds as in Distribution 1 of De�nition 1 with the exception thatno two sessions started by V � may interact with incarnations P (i;j;k) and P (i0;j0;k0) such that k = k0.An admissible proof system is hZK (resp., hWI) if it satis�es De�nition 1 with respect to hybridcheating veri�ers.3.1 The transformationWe are now ready to present our transformation from admissible proof systems to resettable ones:Construction 7 Given an admissible proof system (P; V ), where P = (P1; P2), and a collectionffg of pseudorandom functions (see [23]), we de�ne a new proof system (P;V) as follows.The new veri�er is identical to V .The new prover: The new prover's randomness is viewed as a pair (w(1); f), where w(1) 2f0; 1gpoly(n) is of length adequate for the random-tape of P1, and f : f0; 1g�poly(n) ! f0; 1gpoly(n)is a description of a function taken from an ensemble of pseudorandom functions. For con-venience we describe the new prover, P, as a pair P = P1;P2. P1 is identical to P1 withto depend also on the �rst part of its random-tape. However, in this case the validity of veri�er's messages is notuniversally veri�able (but rather veri�able only by the prover). We were not able to analyze our transformation forthe latter class.12 The de�nition can be further extended by allowing P1 to consider the main part of all prior veri�er-messages.This requires to further specify in the next item what is meant by a properly authenticated generated by the oraclemachine (rather than in an interaction). However, the current de�nition su�ces for our purposes.14



random-tape w(1); P2 emulates the actions of P2 with random tape that is determined byapplying f to the determining message and the input. That is, upon receiving the determiningmessage, denoted msg, P2 sets w(2) = f(x; msg) and runs P2 with random input w(2). Fromthis step on, P2 emulates the actions of P using (w(1); w(2)) as P 's random-tape.Intuitively, Construction 7 \takes care" of the fact that in the resettable model the random-tapeof P2 is �xed in all the sessions of an incarnation of P. The construction does not modify P1, andin particular does not solve potential problems that may occur when P1 uses the same w(1) indi�erent incarnations of the prover. However, this is where the hybrid model becomes useful, sincein this model the cheating veri�er is prohibited from using the same w(1) in di�erent incarnations.In other words, in the single-incarnation case Construction 7 is su�cient for turning any ad-missible proof-system that is WI (ZK) in the concurrent model into an rWI (rZK) proof-system.The hybrid model is not necessary in this case. The proof of this fact is somewhat simpler thanthe proof for the multiple-incarnation case (presented below) and can serve as a \warm-up" forthat proof. This simpler proof appears in Appendix A. We now turn to stating and proving theadequacy of Construction 7 for the general (i.e., multiple-incarnation) case.Theorem 8 Suppose that (P; V ) is admissible, and let P be the prover strategy obtained from P byapplying Construction 7, assuming that pseudorandom functions exist. Then for every probabilisticpolynomial-time cheating veri�er V � (as in De�nition 1 there exists a probabilistic polynomial-time hybrid cheating veri�er W � so that hP (y);W �i(x) is computationally indistinguishable fromhP(y); V �i(x).Corollary 9 If a proof system (P; V ) is hWI then (P;V) is rWI. Similarly, if (P; V ) is hZK then(P;V) is rZK.Proof of Theorem 8 (sketch): Our analysis refers to a mental experiment in which P utilizesa truly random function rather than a pseudorandom one. As usual, the corresponding views ofthe veri�er V � in the two cases (i.e., random versus pseudorandom function) are computationallyindistinguishable. From this point on, we identify the random-tape of P with a truly randomfunction.A �rst consequence of the above is that in the hybrid model there is essentially no di�erencebetween the actions of P and of P.13 For clarity, we state and prove Theorem 8 with respect to W �interacting with P rather than with P. Recall that hP(y); V �i(x) denotes the view (or output) ofV � after interacting with P on various inputs under the resettable model. Similarly, hP (y);W �i(x)denotes the view (or output) of W � after interacting with P on various inputs under the hybridmodel.We construct a hybrid-model adversary, W �, that interacts with incarnations of P , denotedP (i;j;k)'s (as in Def. 6). To satisfy De�nition 6, this W � will invoke each P (i;j;k) at most once,and furthermore if it invokes P (i;j;k) then it will not invoke any other P (i0;j0;k). Essentially, W �serves as a \mediator" between adversary V � and the prover P . That is, W � runs V �; wheneverV � starts a new session whose determining message is di�erent from all previous ones, W � merelyrelays the messages of this session between V � and P . When V � \replays" an existing session s(i.e., V � starts a new session whose determining message is identical to that of an existing sessions) W � responds to V � using the answers of P in session s, without interacting with P . Finally W �outputs whatever V � outputs.13More precisely, a veri�er that can distinguish between P and P with non-negligible probability breaks the\admissibility" of (P; V ). 15



The construction of W �. Working in the hybrid model, W � handles the messages of V � asfollows:1. V � initiates a new session with some P(i;j): In this case W � initiates a new session withP (i;j;k), where k is a new index not used so far. Next it obtains the prover initializationmessage, and forwards msg to V �.We stress that a session with P (i;j;k) may be invoked even if a session with some P (i;j;k0), withk0 < k, was invoked before. In the latter case, since r1 = r(j)1 is identical in both sessions,the prover initialization message obtained from P (i;j;k) is identical to the prover initializationmessage obtained previously from P (i;j;k0).2. V � sends a new determining message to P(i;j): That is, we refer to the case where V � sendsa determining message in the current session, and assume that this message is di�erent fromall determining messages sent in prior sessions with P(i;j). Let msg0 denote the message sentby V �. Then W � sends msg0 to one of the sessions of the form P (i;j;�) that still awaits adetermining message, obtains the response, and forwards it to V �. It designates this session(with P(i;j)) as the active session of (i; j; msg0), and stores the prover's response.(All subsequent sessions of V � with P(i;j) in which the determining message equals msg0 willbe \served" by the single session of W � designated as the active session of (i; j; msg0).)3. V � repeats a �rst-message to P(i;j): That is, we refer to the case where the current messagesent by V � is the determining message in the current session, and assume that this messageequals a determining message, msg0, sent in a prior session of V � with P(i;j). In this case, W �retrieves from its storage P 's answer in the active session of (i; j; msg0), and forwards it to V �.We stress that W � does not communicate with any session of P in this case. (Note that ifW � were to send the same message msg0 to two sessions of the form P (i;j;�) then the responsescould have di�ered, whereas V � expects to see exactly the same answer in sessions in whichit sends the same msg0.)4. V � sends a valid message to P(i;j): That is, we refer to the case where V � sends a message inthe current session with P(i;j), and assume that this message is accepted; that is, P1 acceptsit as valid as per De�nition 5. (In this case, the message is essentially determined by thedetermining message in that session.)14We distinguish two cases, depending on whether this is the �rst time that a valid veri�er-message of the current round was sent in a session of V � with P(i;j) in which the determiningmessage equals msg0, where msg0 is the determining message sent by V � in the current session.Let � > 1 denote the index of the current message sent by V �.(a) The current session is the �rst session of V � with P(i;j) in which the determining messageequals msg0 and the �th veri�er-message is valid: In this case W � forwards the currentmessage to the active session of (i; j; msg0), obtains P 's response, stores it, and forwardsit to V �.(b) The current session is not the �rst session of V � with P(i;j) in which the determiningmessage equals msg0 and the �th veri�er-message is valid: In this case W � does not14We stress that by the standard de�nition of commitment schemes it is universally veri�able whether the currentmessage of V � is valid or not (i.e., this depends only on the current and the determining messages, and on allprover-messages in the current session). 16



communicate with any session of P . Instead, it merely retrieve the corresponding proverresponse from its storage, and forwards it to V �. Note that the corresponding answer isstored in the history of the active session of (i; j; msg0).(Note that by De�nition 5, it is infeasible for V � to send, in two sessions starting withany �xed veri�er-message, valid messages for the same round that di�er in their mainpart. Thus, the responses of P(i;j) to valid �th messages, in sessions starting with anydetermining message, are identical. It follows that V � will be content with the identicalresponses supplied to it by W �.)5. V � sends an invalid message to P(i;j): That is, we refer to the case where V � sends a messagein the current session with P(i;j), and assume that this message is invalid. In this case, W �just forwards P 's standard abort message to V �.We stress that W � does not forward the invalid message of V � to any session of P , mostimportantly not to an active session. This allows W � to handle a corresponding valid messagethat may be sent by V � in a future session.6. V � terminates: When V � sends a termination message, which includes its output, W � justoutputs this message and halts.We stress that W � is de�ned to operate in the hybrid model. That is, in every session it invokeswith P , a di�erent incarnation is used, and furthermore for every k the adversaryW � holds at mostone session with an incarnation of the form P (�;�;k). So the second part of P 's random-tape in thissession is independent from the random-tape in all other sessions. In contrast, V � that operatesin the (stronger) resettable model may invoke each incarnation of P many times, and so the taper2 as determined (by the same incarnation of P) in these sessions is identical. Nevertheless, weclaim that the output of W � is computationally indistinguishable from the output of V �. The keyobservations justifying this claim refer to the actions of P in the various sessions invoked by V �:� In sessions having di�erent determining messages, the second parts of the random-tape (i.e.,the r2 part) are independent. Same for sessions in which a di�erent incarnation P(i;j) isused. This is because P determines r2 by applying a random function on the the triplet(xi; r(j)1 ; msg0), where msg0 is the determining message.(Indeed, if i 6= i0 (resp., j 6= j0) then xi 6= xi0 (resp., r(j)1 6= r(j0)1 , with overwhelmingly highprobability).)� In sessions having the same common-input, the same r1, and the same determining message,the actions of P are essentially determined by the determining message. This is because inthis case P determines the same r2, and the only freedom of V � is practically to choose ateach message whether to send a predetermined (by the determining message) value or toabort. Thus, the transcripts of all these sessions correspond to various augmented pre�xes ofone predetermined transcript, where each pre�x is either the complete transcript or a strictpre�x of it augmented by an abort message.The corresponding transcripts (of imaginary sessions with P) are generated byW � by merely copy-ing from real sessions it conducts with P . Each set of P(i;j)-sessions sharing the same determiningmessage, is generated from a single (distinct) session with P (called the active session of thatmessage). The way in which W � handles invalid messages of V � guarantees that it never abortsan active session, and so such a session can always be extended (up-to completion) to allow the17



generation of all P(i;j)-sessions sharing that determining message. We stress again that W � doesnot need to (and in fact does not) abort a session in order to produce P's abort message; it merelydetermines whether P aborts (and, if so, generates the standard abort message by itself).4 rWI proof systems for NPPart 1 of Theorem 4 is proved by applying Construction 7 to an admissible (as per De�nition 5)proof system for NP that is constant-round and witness-indistinguishable in the hybrid model (ofDe�nition 6). Thus, we need to assert the existence of such a proof system.Proposition 10 Suppose that there exists a two-round perfectly-hiding commitment scheme. Thenevery language in NP has a 5-round admissible proof system that is hWI.Proof Sketch: It su�ces to present a proof system for some NP-complete problem (we use Graph3-Colorability). We comment that most of the known zero-knowledge proofs systems are eithernot admissible (e.g., typically, they do not satisfy the third requirement in De�nition 5) or arenot witness-indistinguishable in the hybrid model.15 Fortunately, as we show below, the (5-round)zero-knowledge proof system of [25] is both admissible and witness-indistinguishable in the hybridmodel. On an abstract level, the proof system of [25] is as follows.Common input: A graph G = (V;E), where V = [n] def= f1; :::; ng, claimed to be 3-colorable.Prover's auxiliary input: A 3-coloring � : [n]! f1; 2; 3g of G.(V1) The veri�er commits to a sequence of t def= n � jEj uniformly and independently chosen edges.The commitment is done using a perfectly-hiding commitment scheme,16 so that the provergets no information on the committed values, while it is infeasible for the veri�er to \de-commit" in two di�erent ways (i.e., the scheme is computationally-binding).(P1) The prover commits to t �n values corresponding to the colors of all vertices under t randomrelabeling of the coloring �. The commitments are done using an ordinary commitmentscheme, providing computational-secrecy and perfect-binding.(V2) The veri�er reveals the sequence of t edges to which it has committed to in Step (V1). Italso provides the necessary information required to determine the correctness of the revealedvalues (i.e., \de-commit").(P2) In case the values revealed (plus the \de-commitment") in Step (V2) match the commitmentssent in Step (V1), and in case all queries are edges, the prover reveals the corresponding colorsand provides the corresponding \de-commitment".15 For example, in the zero-knowledge proof system of Goldreich, Micali and Wigderson [28], the prover startsby committing itself to a (random) coloring of the graph, and the veri�er asks it to reveal the colors of a pair ofadjacent vertices. In case the prover's commitment is via unidirectional communication, the proof system is triviallyadmissible (since the prover uses randomness only in its �rst message, and the veri�er sends a single message), butis not witness-indistinguishable in the hybrid model (since the veri�er can obtain a full coloring of the graph byinvoking the prover many times on the same r1. In case the prover's commitment is via a two-round commitmentscheme (cf. [40], the proof system is not admissible (since the veri�er has total freedom in selecting the edges).16 See discussion following this abstract presentation. 18



(V3) In case the values revealed (plus the \de-commitment") in Step (P2) match the commitmentssent in Step (P1), and in case they look as part of legal 3-colorings (i.e., each correspondingpair is a pair of di�erent elements from the set f1; 2; 3g), the veri�er accepts. Otherwise itrejects.There is one problem, however, with the above presentation. In Step (V1) we have assumed theexistence of a 1-round (i.e., uni-directional communication) perfectly-hiding commitment scheme.However, any perfectly-hiding commitment scheme requires at least two rounds of communica-tion (i.e., a message sent from the commitment-receiver to the commitment-sender followed by amessage from the sender to the receiver).17 Thus, we need to integrate such (two-round) commit-ment schemes in the above proof system. We stress that doing so means that the prover's initialrandomization is interpreted as a pair (r1; r2), where r1 is randomness required by the receiver'sstrategy in the two-round (perfectly-hiding) commitment scheme, and r2 is the randomization usedfor implementing Step (P1).The reader may easily verify that the resulting proof system is indeed admissible. Furthermore,as shown in [25], the proof system is indeed a 5-round zero-knowledge proof system for Graph3-Colorability. Thus, it follows that the proof system is witness-indistinguishable in the concurrentmodel (cf. [17]). However, we need to show that it is witness-indistinguishable also in the hybridmodel. The extra power of the adversary in the latter model is to invoke sessions with the same(random) value of r1. However, the randomness of r1 is only used to establish the (computational)binding property of the veri�er's commitment, and this property continues to hold also when thesender commits to several values using the same receiver message.18 Thus, the above proof systemis witness-indistinguishable in the hybrid model, and the proposition follows.Remarks:1. In fact, the \modi�cation" to the proof system of [25] does not modify any protocol messages;it only speci�es the separation of the prover P into P1 and P2 as in De�nition 5. Essentially, P1will play the role of the receiver in the (unconditionally binding) commitment scheme in the [25]protocol; the other functions of P are played by P2.2. The resulting proof system is probably not rZK; in fact, it is probably not even cZK. Thisfollows from recent work of A. Rosen (priv. comm.). Speci�cally, extending [26, 39], Rosen showsthat no language outside BPP can have a 7-round proof system that is concurrent zero-knowledgevia black-box simulation.An alternative proof of Proposition 10. An alternative approach for constructing proofsystems as required by Proposition 10 is to start with a non-interactive zero-knowledge proofsystem (cf., [6, 16]). The idea is to employ \coin tossing into the well" (cf., [4]). First, the veri�ercommits to a sequence of random bits using a perfectly-hiding (two-round) commitment scheme.17 The lower bound refers to commitment schemes in which the computationally-hiding requirement should holdw.r.t (non-uniform) polynomial-size circuits. (Such circuits may just incorporate two valid decommitments for thesame 1-message commitment.) Note that the standard zero-knowledge condition is itself somewhat non-uniform (asit refers to any veri�er's input), and so the commitment scheme used by the veri�er must be computationally-bindingw.r.t. non-uniform polynomial-size circuits. (Such non-uniform complexity assumptions are employed in all work onzero-knowledge, with the exception of a fully-uniform treatment (cf. [21]).)18 See an analogous discussion in the proof of Proposition 11.19



Next, the prover sends a corresponding sequence of bits that it selects uniformly. Then, the veri�erde-commits and a reference-string for the non-interactive zero-knowledge proof is de�ned (as usualin \coin tossing into the well"), and �nally the prover sends such a (non-interactive) proof (relativeto that reference-string). Recall that the latter may require the prover to toss additional coins.The reader may easily verify that the resulting proof system constitutes a 5-round admissible proofsystem. Again, witness-indistinguishability in the hybrid model is established by analyzing the roleof the randomization in the prover's very �rst message.5 rZK proof systems for NPPart 2 of Theorem 4 is proved by applying Construction 7 to an admissible (as per De�nition 5)proof system for NP that is zero-knowledge in the hybrid model (of De�nition 6). Thus, we needto assert the existence of such a proof system.Proposition 11 Suppose that there exists a two-round perfectly-hiding commitment scheme. Thenevery language in NP has an admissible proof system that is zero-knowledge in the hybrid model.The rest of this section is dedicated to proving Proposition 11. The desired proof-system isobtained by properly modifying the cZK proof system of [41]. While the modi�cation is simple,proving that it su�ces is non-trivial. We start by sketching their proof system (a more detaileddescription of the modi�ed scheme is to follow.)The Richardson-Kilian Protocol. In essence, given a common input x (allegedly a memberof an NP-complete language L), their proof system consists of two stages.The �rst stage is independent of x. At its start, the veri�er commits to k random bit sequences,r1; :::; rk 2 f0; 1gn, where n is the security parameter and k is a parameter of the proof. We �x k tobe polynomial in the security parameter.19 This initial commitment is then followed by k iterations.In iteration i, the prover commits to a random bit sequence, si, and the veri�er decommits to thecorresponding ri, thereby pinning down the ith coin-toss ri � si, the bit-by-bit exclusive or of siand ri. Note that ri � si string is known only to the prover.In the second stage, the prover provides a witness indistinguishable (WI) proof of the followingstatement: either x 2 L or one of the k coin-tosses is the all-zero string (i.e., ri = si for some i).Intuitively, since the latter case is unlikely to happen, the protocol constitutes a proof systemfor the language. However, the latter case is the key to the simulatability of the protocol: wheneverthe simulator may force ri = si for some i, it can simulate the rest of the protocol (and speci�callyStage 2) by merely running the WI proof system with ri (and thus si) as a witness. By the WIproperty, such a run will be indistinguishable from a run in which an NP-witness for the commoninput being in the language is used.Our Modi�cation. The above proof system is cZK, but it is not admissible. To obtain a proofsystem (P;V), that is admissible and secure in the hybrid model, we require the veri�er to send its�rst message in the rWI proof system of Stage 2 together with his initial commitment message ofphase 1. more precisely, the statement S to be proven in Stage 2 is \x 2 L _ 9i s.t.ri = si. This19Recall that, by our convention, the veri�er commitment message is in fact the third message in the proof system.In the �rst message the veri�er initiates the session; next the prover chooses and sends, in the second message,parameters for the (perfectly secret) commitment scheme used by the veri�er in the third message. Indeed, theveri�er commitment message corresponds to the determining message de�ned in the previous section.20



\NP statement" is transformed in a standard fashion in an instance of 3 colorability, that is, in agraph G, and this G will be the common input of our rWI proof system. Therefore, because (thestructure and) the size of S is known in advance (i.e., it is independent of the particular executionof Stage 1 and thus of the particular values of the strings si and ri), so is the number of nodes inG. Consequently, because the veri�er of our rWI proof system should commit to choosing randomedges in G, such commitment can be made right away (i.e., together with the veri�er's commitmentat the start of Stage 1), based solely of the number of nodes of G. The veri�er simply commits toa random pair of nodes, and when such a pair (u; v) will not correspond to an actual edge of G, itwill simply be ignored.Because the veri�er of our rWI proof system proceeds deterministically after sending its �rstmessage, our modi�cation guarantees that, barring negligible probability events (e.g. the probabil-ity that one could de-commit in two di�erent ways), the veri�er's �rst message (in Stage 1) of anexecution of the modi�ed protocol uniquely determines the rest of its messages (both in Stage 1and Stage 2), unless the veri�er decides to abort the execution in the middle.The next sub-section provides a more complete description of this proof-system.5.1 The Proof-System (P;V)The implementation of the protocol uses two complementary types of commitment schemes: Theprover's commitments are via a perfectly-binding commitment scheme (which is only computationally-hiding), whereas the veri�er's commitments are via a perfectly-hiding commitment scheme (whichis only computationally-binding). For simplicity of presentation, we will use a one-round schemebased on any one-way permutations20 for the �rst type, and a two-round scheme based on claw-freepairs21 for the second type. The protocol is visually summarized in Figure 1.Common Input: x supposedly in the language L 2 NP, and a security parameter n.22Prover's Auxiliary Input: an NP-witness w for x 2 L.Prover's Randomness consists of two parts w = w(1); w(2). (Recall that w(2) is later used inConstruction 7 to de�ne a pseudorandom function f : f0; 1g�poly(n) ! f0; 1gpoly(n).)Stage 1: This stage has little e�ect on the actual interaction between the prover and the veri�er,yet it provides a \trapdoor" for the simulation.1. The veri�er sends a new-session(x) message to the prover. This message indicates thatthe veri�er wishes to start a session for proving that x 2 L.2. The prover uses w(1) to determine its �rst message in the two-round perfectly-hidingcommitment scheme.2320 Speci�cally, given a one-way permutation f with a hard-core b (e.g., see [27]), one commits to bit � by selectinguniformly a string x, and sending the value f(x); b(x)� �. Decommitment is done by providing (� and) x.21 Speci�cally, given a family of claw-free pairs, f(f0a ; f1a ) : a 2 I � f0; 1g�g (e.g., see [22]), the sender commitsto bit � as follows. The receiver �rst selects at random an index a 2 I and sends it to the sender, which uniformlyselects x in the domain of f�a , and sends the value f�a (x). Decommitment is done by providing (� and) x.22 For simplicity we equate the \security governing" parameters such as the the length of strings committed to inStage 1, the security parameters used in the pseudorandom function and in the commitment schemes, etc.23 Here and in the sequel, whenever a party fails to provide a message as instructed the other party halts (detectingan obvious cheating attempt). 21



P (x; y; !) V (x)new-session(x;prover-ID)�initialize veri�er-commitment-[r1]; :::; [rk]� [s1] -]r1[� :::[sk] -]rk[�RWI proof of \x 2 L _ 9i; ri = si"� -Figure 1: A sketch of the hZK protocol for language L. Here \[a]" and \]a[" denote commitmentand decommitment to a, respectively. The prover sets sets ! = !1; !2, and uses !1 for the �rstmessage and !2 for the rest. Recall that, when transformed to the resettable setting, the value� = f!2(x; [r1]; :::; [rk ]) is used instead of using !2 directly.3. The veri�er commits to k uniformly selected n-bit strings r1; :::; rk 2 f0; 1gn, using theperfectly-hiding commitment scheme whose �rst message was just sent by the prover.Denote by � = �1; :::; �k the sequence of k commitments sent by the veri�er. Note that� reveals no information about r1; :::; rk.In addition, the veri�er executes the �rst round of the rZK WI proof from Section 4,using the same commitment scheme whose parameters were just sent by the prover.4. For i = 1; :::; k, the following two-round interaction goes on. First the prover commits(in a perfectly-hiding way) to a random k-bit string, denoted si, and next the veri�erdecommits to �i by providing ri along with the randomness used in forming �i fromri. The prover's choice (i.e., si) as well as the randomization used in its commitmentare determined by w(2). (Recall that, when transforming this protocol to the resettablemodel, the randomness for this step, as well as for the prover's actions in Step 2, isdetermined by applying f to (x; ��; i).) We stress that si is uniquely determined by thestring, denoted �i, sent by the prover.Stage 2: The prover provides a resettable witness indistinguishable proof that either x 2 L orri = si, for some i. The NP-witness used by the prover is w, and the witness indistinguishableproof is the one presented in Section 4. Speci�cally, we reduce the NP-statement either x 2 Lor there exists an i and an s so that �i is a valid commitment to s and ri = s to Graph 3-Colorability. (Letting G be the graph resulting from this reduction, then G does not directlydepend on w, but w is e�ciently transformed into a 3-coloring of G.)Completeness and soundness of (P;V) are straightforward. The rest of this section is dedicatedto proving that (P;V) is zero-knowledge in the hybrid model. To simplify that proof, we make thefollowing assumptions on the model, but stress that none of them restricts the generality of theresult. 22



5.2 Without Loss of GeneralityRecall that the veri�er V � is taken to be deterministic. We also assume that V � does not generateinvalid messages (e.g., invalid decommitments). In addition, we make the following simplifyingassumptions. (Yet other simplifying assumptions are made when presenting the actual proof below.)A �xed bound on the number of sessions. Our simulator works assuming that a malicious(resetting) veri�er V � opens at most K sessions in any of its runs, where K depends on thesecurity parameter n via some �xed polynomial known in advance. The simulator built here canbe extended in standard ways to handle situations where the value of K is no a-priori known orthe number of sessions depends on the execution itself. (For instance, keep running the simulatorwith exponentially increasing values of K, until a successful simulation is generated.) Actually,without loss of generality, but with greater resulting simplicity, we shall assume that V � alwaysopens exactly K sessions in each run.Ignoring Stage 2. To prove that (P;V) is hZK, we must exhibit a simulator S that generates,with the right distribution, the view of a malicious veri�er interacting with an honest prover. Such averi�er will reset the prover K times, and thus execute K di�erent sessions of the protocol. Becausethe protocol consists of two stages, in a session the veri�er may obtain a sub-view of Stage 2. Thus,it may choose its messages in some session (better said, its initial-commitment message of Stage 1 insome session) in a way that also depends on its sub-views of Stage 2 of other sessions. Nonetheless,we shall construct our simulator S assuming that Stage 2 does not exist. The reason this can bedone without loss of generality is that, even though operating in the more di�cult resetting model,our simulator S satis�es the following \forcing" property: whenever S completes a Stage 1 viewof some session in which the malicious veri�er has properly decommitted in all k iterations, then,with overwhelming probability, S has already forced \si = ri for some i" in that session. Therefore,simulating the subsequent Stage 2 of that session against the malicious veri�er is so trivial that itdoes not even need any \rewinding" of the veri�er: S just executes with the malicious veri�er thehonest prover program of our hWI protocol on common input \x 2 L_9i; ri = si" and private input\9i; ri = si". Witness indistinguishability in the hybrid model guarantees that the so generatedview of the malicious resetting veri�er is computationally indistinguishable from that the sameveri�er may have with the real prover (who would instead use his witness of x 2 L as privateinput).Therefore, it su�ces and it is simpler to construct S, with the above \forcing" property, byimagining that the protocol actually \consists of Stage 1 alone." Figuratively, we imagine that atthe end of Stage 1 (i.e., if the veri�er has properly decommitted in all k iterations of Stage 1), wereplace Stage 2 by the veri�er asking the prover if it has an NP-witness for \x 2 L or si = ri forsome i" and by the prover providing a truthful answer (which will always be YES whenever he hasa witness for x 2 L). Accordingly, the simulator is required to answer truthfully too.5.3 The High-Level Strategy of the SimulatorAt a high level, this strategy is similar to that of the simulator of the cZK protocol of [41]; butsigni�cant di�erences exist in the actual simulation. (In fact, our proof also provides a detailedalternative to the proof of the underlying cZK protocol.)Call a session solved if, in it, si = ri for some i, unsolved otherwise; and say that the simulatorsolves a session in iteration i if it forces si = ri. As we said, our simulator S should, with highprobability, solve every session s (in some iteration is). But: how can it do this?23



Recall that a malicious veri�er V � starts the �rst (ofK) session by committing to all its iterationvalues, r1; : : : ; rk. Upon receiving this commitment message, the simulator (like the prover) doesnot know r1, nor the other ri's. Thus it tries, by means of a \look ahead," to �gure out what r1might be. To this end, it sends V � a commitment, �, to a random value s1 (most probably, di�erentfrom r1). Assume V � responds to � with its next message of session 1, that is, by decommitting tor1, then S has succeeded in discovering r1. In this case it \rewinds" V � up to the point in whichV � sent its initial commitment to r1; : : : ; rk, and, instead of �, this time sends a commitment tor1, thus forcing s1 = r1 and \solving" the session.Assume, however, that V � responds to � by opening a new session s0, thus sending a commitmentto r01; : : : ; r0k. Then, (at least) the following two choices are available to the simulator:1. It may stop the look-ahead and leave session 1 unsolved at iteration 1. (That is, it may stickwith its answer � and hope to solve session s in some future iteration.)2. It may insist on solving session 1 at iteration 1. (That is, it may choose random prover valuesin all other sessions, until V � decommits to r1 in session 1.)Similar choices arise relative to other sessions and other iterations. Clearly, a simulator alwaysopting for type-1 choices cannot work properly. Nor can a simulator always opting for type-2choices. (In particular, it fails to work whenever it interacts with the malicious veri�er V � thatdecommits to r1 in session 1 only when it has completed all iterations of all other sessions and hasveri�ed in Stage 2 that the proper NP-witness exists for all of them.) Therefore, simulator S willadopt an \in-between" strategy.Speci�cally, S uses three main procedures. Procedure Simulate tries to generate a simulatedrun of V �. Each time a new prover's message is needed, Simulate calls procedure NextProverMsg,which returns the next prover's message to be used in the simulated run. When NextProverMsgencounters an unsolved session in an iteration j < k, it calls procedure Solve. Procedure Solve triesto solve session s at iteration j+1 by means of a bounded look ahead. That is, before committing toprover's string sj+1, Simulate tries to �nd the value rj+1 that V � might decommit to in iterationj + 1 of s, so as to choose sj+1 = rj+1. Such look-ahead is no di�erent than the main simulation:it is done via a recursive call to Simulate. At each call, however, a properly initialized counter` is decreased by 1, and when ` = 0 no more recursive calls are made, and the simulator alwayscommits to random prover values s0i for all iterations i of other sessions s0 (unless it happens toknow the right r0i), hoping to solve s at iteration j + 1. If it fails, it abandons all hope to solves in iteration j + 1, hoping instead to solve it at a future iteration. (In this case the simulatorsticks with a commitment, �, to a randomly selected value si, and proceeds with the rest of thesimulation). Below we show that the running time of the simulator is nO(logkK), and that, as longas k = 
(logkK), the above strategy solves all sessions with high probability.5.4 The Simulator SBasic Notation� Say that a message is an iteration-j (veri�er) message if it is a valid decommitment in iterationj of some session i. The initial commitment message of a session is called an iteration-0message.� Sessions are addressed via their session identi�er. A session identi�er s includes the �rst threemessages in the session; these include the veri�er's new-session(x; prover ID) message, theprover's initialization message, and the veri�er's commitment to r1; :::; rk.24



� A session in an execution pre�x is completed if, within this execution pre�x, the veri�er hasdecommitted properly in all its k iterations. A session is solved if for some j the jth prover'scommitment in this session is to a value equal to the jth value decommitted to by the veri�erin the same session. A black-box simulator is called truthful if for every query h made by thesimulator and for every completed session in h, that session is solved.Variables� `, a local variable bounding the number of recursive calls of Simulate.Initially, ` = L = 2dlog k214 Ke.Comment: In each call, the value of ` is reduced by one; when ` = 0 no more recursive callsare made. This parameter will be used to bound the running time of NextProverMsg (andthe entire simulation).� h, a local variable holding the current (pre�x of) the execution history of V �.Initially, h holds the common input x.� S, a global variable holding a set of triplets (s; j; r).Initially, S is empty.Comment: S consists of \identi�ed decommitment values". If (s; j; r) 2 S, then s is asession identi�er, j is a numeral of an iteration within session s, and r is the (presumablyunique) value that V � can decommit to in the jth iteration of session s. A variable is \global"if it is accessible to all procedures at all levels of the recursion.� SS, a global variable holding the set of solved sessions.Initially, SS is empty. Simulator S1. Let h Simulate(L; h).2. If the last message in h is a halt message of the veri�er then output h. Otherwise (the lastmessage in h is fail) output fail.Procedure Simulate(`; h): Here ` is the level of the recursion and h is a pre�x of a transcript ata point where V � is expected to provide the next message. Keep iterating the following instructions:1. Extend the transcript by one veri�er message:(1) Set v-msg V �(h) and h (h; v-msg).Comment: Recall that v-msg can be either a haltmessage, or a new-sessionmessage,or an iteration-j message for some session s.(2) If v-msg = halt (i.e., veri�er terminates), then return h.(3) If v-msg is a decommitment in iteration j of session s, then set S  S[f(s; j; r)g, wherer is the decommitted value.2. Extend the transcript by one prover message:(1) Set (p-msg) NextProverMsg(`; h) and h (h; p-msg).(2) If p-msg = fail (i.e., failure of NextProverMsg) then return h. Otherwise, continue thesimulation by going back to Step 1. 25



Procedure NextProverMsg(`; h): Extract the last message in h, which is a veri�er message de-noted v-msg, and proceed as follows.1. New-Session message: If v-msg is a veri�er's message asking to initiate a new session then actas follows. If this is the �rst session to be initiated (in h) then emulate the prover's answerby selecting a random �rst receiver-message for the commitment scheme in use. Otherwise,answer with the same prover's message provided in the previous initializations.2. Iteration-j message in session s:(1) If s 2 SS:1. If j = k (last message in a session) then return (yes).2. If j < k then return (�), where � is a commitment to a random k-bit string.(2) If s =2 SS:1. If j = k then return (fail).2. Else, if (s; j + 1; r) 2 S for some r then add s to the set SS of solved sessions, andreturn (�) where � is a commitment to r.Comment: In this case we actually solve session s.3. Else (i.e., if j < k and (s; j + 1; r) =2 S:1. If ` > 0 then set S0  Solve(`� 1; h; s; j). If S0 equals (s; j + 1; r) for some r,then add s to SS and return (�), where � is a commitment to r. Otherwise,return (�), where � is a commitment to a random k-bit string.Comment: The values of s and j are implicit in h, but we provide themexplicitly for clarity of exposition.2. If ` = 0 then return (�), where � is a commitment to a random k-bit string.Procedure Solve(`; h; s; j): Set i 1. Next:1. Make up to 128K attempts to solve session s at iteration j. That is, as long as i � 128K do:(1) Run Simulate(`; h).(2) If the global variable S contains a triple (s; j; r) for some r then return f(s; j; r)g. Oth-erwise set i i+ 1 and go back to Step 1 (i.e., continue to the next attempt).2. Return ;.Comments:1. Note that procedure Solve never updates h, even though Simulate returns an updated valuefor h. In particular, all the attempts (i.e., all the invocations of Simulate) start with thesame value of h.2. Note that, in principle, it su�ces to solve any one of the sessions in the inputs of the invoca-tions of Solve that recursively called the current invocation. To simplify the analysis, we donot take advantage of this additional \leeway" for the simulation.3. It may seem at �rst glance that if an attempt stops due to the fact that V � halts then thesimulator can stop at this point and output the current history h. Doing so, however, wouldskew the probability of the output of the simulation. (For instance, doing so would raise the26



probability of \short executions", namely executions where V � halts after a smaller numberof steps.) To avoid such skew, we end the simulation only when V � halts within the mainprocedure.5.5 S is Poly-TimeWe �rst show that the simulator runs in (worst case) polynomial time. Say that an invocationof Simulate (resp., an invocation of NextProverMsg or of Solve) is at level ` if it is called with�rst parameter `. Let Tnpm(`; n) (resp., Tsolve(`; n)) denote the (worst case over all inputs)running time of NextProverMsg (resp., Solve) at level ` and with security parameter n. Weassume for simplicity that the veri�er, V �, runs in worst-case polynomial time (in n). Recall thatL = 2dlog k214 Ke. The reader may verify the following facts:1. The running time of the main procedure is at most poly(n) � Tnpm(L; n);2. Tnpm(`; n) < Tsolve(`� 1; n) + poly(n);3. Tsolve(`; n) � poly(n) � Tnpm(`; n);4. Tsolve(0; n) = poly(n).Thus, Tnpm(L) � nO(L) and the running time of the main procedure is poly(n) (as long as K =kO(1)).5.6 The Output of S is correctly distributedTo prove that S does its job, we show that it satis�es two main properties:1. Conditioned on the event that S does not output fail, we have [S; V �](x) � [P; V �](x); and2. S outputs fail with negligible probability.Property 1 is easily veri�ed. (Essentially, any veri�er that violates property 1 can be turned intoan adversary that breaks the computational secrecy of the prover's commitments. We omit furtherdetails.) Let us then focus on proving property 2, more speci�cally that S fails with probability atmost 2�O(n). The heart of the proof is showing that, when invoked in a situation that is not toounfavorable, procedure Solve succeeds in obtaining the desired value (i.e., the value decommittedby V � in the corresponding iteration) with overwhelming probability. Once this is formalized andshown, the rest of the proof is simpler.The following three types of events can cause an \unfavorable situation" where Solve(l; h; s; j)may fail. First, the probability of V � ever decommitting in iteration j of session s may be small.Second, V � may open and complete too many new sessions before it decommits in iteration j ofsession s. Third, the transcript h may contain existing sessions that are closed to completion butnot yet solved.Demonstrating that each one of these three bad events does not a�ect the simulation too muchis done using di�erent techniques. For the �rst bad event, we argue that a session where many ofits iterations have small probability of completing will almost never complete. For the second typeof event we argue that if V � opens and completes \too many" new sessions before decommittingin iteration j of session s, then it must be the case that during other iterations of this sessiononly few new sessions are opened. For the third bad event, we show that it never occurs; this,27



however, requires that k, the number of iterations, be non-constant. (Note that this requirementon k is made regardless of the restriction on k imposed by the requirement that the simulator runsin polynomial time. In particular, we require k to be non-constant even if the simulator is allowedto run in quasi-polynomial time.) We remark that much of the complexity of the proof is due tothe fact that the schedule of opening and completing sessions is determined by V � \on the y". IfV � were limited to a �xed and known schedule the proof would would be considerably simpler.The rest of the proof is organized as follows. We start with setting some notation to be usedthroughout the proof. Next we prove three claims bounding the probabilities of the bad eventssketched above. Next, we show (in Claim 5.4) that under certain conditions each invocation ofSolve succeeds with overwhelming probability. Finally, we demonstrate Property 2 based on Claim5.4.Notation:Simulator states, executions, and attempts. A state � of the simulator at some point during its rundescribes all the current memory and control information about the current point in therun. (Our convention is that a state does not specify the random choices to be used by thesimulator in a continuation of a run from the state.) An execution describes a speci�c runof the simulator. some state. It is determined by the input x and by the random choices ofthe simulator made during this execution. Given r 2 f0; 1g�, we use the term \execution r"to denote \the execution with random choices r". (Formally, an execution r is a sequence ofstates, where each state follows from the previous one by the code of the simulator and the(deterministic) behavior of V �.) We also consider \execution-segments" that start at somestate (not necessarily the start state of the simulator) and end at some state (not necessarilya halting state).Successful attempts. Say that an attempt within an invocation of Solve(`; h; s; j) (within someexecution of the simulator) is successful if during this attempt an entry (s; j; r) is added to S.An invocation of Solve is successful if one of its attempts is successful.De�nition of q�. Let � be some state of the simulator at the point where an invocation Solve(`; h; s; j)is called, and consider the following bad event: An invocation of Simulate(`; h) within anattempt of this invocation of Solve returns a transcript in which V � halts, and a triple (s; j; r)was not added to S during this attempt. Let q� denote the probability of this event. Herethe probability is taken over the random choices of the simulator, starting from state �.24De�nition of ��. Consider an execution r of Simulate starting at state �. Let h�;r denote the valuereturned by Simulate in this execution. (Recall that this value holds a transcript, or historyof a run of V �.) Let ��;r denote the number of sessions in h�;r that are opened after Simulateis called and are completed before h�;r ends. Let �� denote the expected value of ��;r whenr is chosen at random. (Loosely speaking, �� denotes the expected number of sessions thatare opened and completed within the \main thread" of a run of Simulate. Sessions that areopened in recursive invocations of Simulate (i.e., during \look-aheads") are not counted.)Since we have a strict bound K on the number of sessions in an execution of V � we have that�� � K for all �.24The above de�nition implicitly assumes that all the attempts of the invocation of Solve start at the same state.This is somewhat imprecise, since each attempt has a slightly di�erent start state. speci�cally, the sets S and SSmay be di�erent for each attempt. We ignore this slight imprecision and return to it at the end of the analysis. (Forconcreteness, de�ne q� with respect to the �rst attempt made in the said invocation of Solve.)28



Safe sessions, states, and executions. Consider a state � of the simulator at the point where eitheran invocation Simulate(`; h) is called or an invocation Solve(`; h; s; j) is called. A sessions0 is called an old session for � if the veri�er's commitment message in session s0 is alreadysent in h. An old session s0 is called m-safe for � if session s0 is already solved by thesimulator (i.e., s0 2 SS), or V � has not yet decommitted in at least m + 1 iterations ofsession s0. State � is called m-safe if all the old sessions for it (and, in particular, sessions) are m-safe. An execution of Solve starting from state � is m-safe if � is m-safe. Anexecution of Simulate is called m-safe throughout if all the states during this execution, inwhich Simulate is recursively called, are m-safe. An attempt of Solve is m-safe throughoutif the corresponding execution of Simulate is m-safe throughout.Observe that in a session that is m-safe and not solved for some state � there are at leastm iterations where the prover did not yet send its commitment. Also, an attempt of Solvethat starts from state � and is m-safe throughout for some m � 0 never fails due to failureof NextProverMsg (in Step 22 of Simulate) on a session that is old for �.Next we prove three claims that bound the probability of bad events in executions of Solveand Simulate. The claims correspond to the three possibilities of failure, sketched above. The �rstclaim is used to bound the number of attempts that may fail due to old sessions:Claim 5.1 Let ` � 0 and consider an (` + 1)-safe execution of Solve(`; S; h; s; j). Then at mostK � 1 attempts in this execution are not `-safe throughout.Proof: Assume that an attempt in the given execution of Solve is not `-safe throughout. Thismeans that some old session s0 is not `-safe at some state during this attempt. For that to happen,V � must have properly decommitted in iteration k� ` of session s0. However, in this case the entry(s0; k � `; r) is added to S in this attempt. Since the current execution of Solve is (`+ 1)-safe, wehave that the prover's commitment for iteration k�` in session s0 is not yet sent in h. Consequently,in future attempts session s0 will remain `-safe. (Either V � will not decommit in iteration k � ` orsession s0 will be solved and added to SS.)Altogether, there are at most K � 1 old sessions. Thus at most K � 1 attempts are preventedfrom being `-safe throughout.For the next two claims, consider an execution of Simulate at level `. The second claim (Claim5.2) says, essentially, that any new session that reaches the point where 2k=3 of its iterations arecompleted must have many iterations where the corresponding invocations of Solve, at level `� 1,have low probability of failure due to the fact that V � halts. (We remark that the \cut-o�" pointof 2k=3 iterations is rather arbitrary. It is chosen so that there is a substantial number of iterationsboth before and after the cut-o� point.) The third claim (Claim 5.3) says that any new sessionthat reaches the point where 2k=3 of its iterations are completed must have many iterations wherethe corresponding values of � are su�ciently small.More precisely, consider an execution r of Simulate at level `, starting from state �. Recallthat h�;r denotes the value returned by Simulate in this execution. Let �i;j;r denote the state ofthe simulator at the point where Solve is invoked (at level `�1) for the jth iteration at the ith newsession in h�;r.25 Recall that ��;r denotes the number of sessions in h�;r that are opened after the25We remark that state �i;j;r is a bit \over-speci�ed", in the sense that only a pre�x of r may be needed to specify�i;j;r. Nonetheless, we stress that the state �i;j;r does not specify any random choices to be used in a continuationof the run. In particular, the values q�i;j;r and ��i;j;r are de�ned, as usual, with respect to random continuations of�i;j;r. 29



execution of Simulate started and completed before this execution returns, and that �� denotesthe expected value of ��;r when r is chosen at random. De�ne the following bad events: (Again,the constants are somewhat arbitrary. They are set to match the conditions of Claim 5.4.)Qbad executions. An execution r of Simulate, starting from state �, is i-Qbad if q�i;j;r > 3132 for atleast k=12 iterations j out of the �rst 2k=3 iterations in the ith new session in h�;r to complete2k=3 iterations. An execution is Qbad if it is i-Qbad for some i.Mbad executions. An execution r of Simulate at level `, starting from state �, is i-Mbad if ��i;j;r >164 (k=214)`�1 for at least k=2 iterations j out of the �rst 2k=3 iterations in the ith new sessionto complete 2k=3 iterations in h�;r. An execution is Mbad if it is i-Mbad for some i.Observe that in an execution r of Simulate at level `, that is not Qbad and not Mbad, anysession that completes 2k=3 iterations has at least one iteration j where both q�i;j;r � 3132 and��i;j;r � 164(k=214)`�1. (In fact, at least k=12 such iterations exist.) This fact will be useful inproving the induction step of Claim 5.4 below.Long executions. An execution r of Simulate, starting from state �, is `-long if ��;r > ( k214 )`. Anexecution that is not `-long is called `-short.Claim 5.2 Let � be a state of the simulator at the point where an execution of Simulate is called.Then an execution of Simulate starting from state � is Qbad with probability at most K � 2�O(k).Proof: Let �i denote the probability that an execution is i-Qbad. We show that �i � 2�O(k)for every i. Consider an i-Qbad execution r, and let rj denote the segment of r that is used bythe simulator from state �i;j�1;r until state �i;j;r is reached. Note that r1; :::; rk are disjoint andcontained in r. Since the execution is i-Qbad, we have q�i;j;r > 3132 for at least k=12 iterations j outof the �rst 2k=3 iterations in the ith session. Thus, we have:�i � XB�f1:: 2k3 g;jBj< k12 Prr(r is i-Qbad j q�i;j;r > 3132 for j 2 B)� XB�f1:: 2k3 g;jBj< k12 Prr0@ĵ2B iteration j completed j q�i;j;r > 3132 for j 2 B1A� XB�f1:: 2k3 g;jBj< k12 Yj2BPrrj (iteration j completed j q�i;j;r > 3132 )�  2k=3k=12! � (1=32)k=12 � 2�O(k)(The third inequality follows from the fact that the simulator uses independent random choices foreach message sent to V �.) It follows that an attempt is Qbad with probability at mostPi=1::K �i �K � 2�O(k).Claim 5.3 Consider a state � at the point where an invocation of Simulate at level ` is called,and assume that �� � 164(k=214)`. Then, a random `-short execution of Simulate starting fromstate � is Mbad with probability at most K2�O(k).30



Proof: Let hi;j�;r denote the segment of h�;r that starts when V � decommits in iteration j � 1in the ith session opened in execution r, and ends when V � either halts or decommits in iterationj of this session. Let mi;j�;r denote the number of sessions that are opened and completed withinthe segment hi;j�;r. Observe that for any execution r and session i we have Pkj=1mi;j�;r � ��;r. (Thisholds since for all r the segments fhi;j�;rgj=1::k are disjoint and contained in h�;r.) It holds that ineach execution r there are at most k=4 iterations j with mi;j�;r > 4k��;r. Since in `-short executionswe have ��;r � (k=214)`, it follows that in such executions there are at least 3k=4 iterations j with:mi;j�;r � 4k��;r � 4k ( k214 )` = 1212 ( k214 )`�1:It follows that in Mbad executions there are at least k=4 iterations j among the �rst 2k=3 iterations,such that mi;j�;r � 1212 ( k214 )`�1 and ��i;j;r � 164(k=214)`�1. Call such iterations unlikely. Notice thatan unlikely iteration occurs with probability at most 2�6: mi;j�;r describes a value drawn at randomfrom a distribution with expectancy at least ��i;j;r . It thus follows from Markov Inequality thatmi;j�;r is less than 26 times ��i;j;r only with probability 2�6.26 Moreover, unlikely iterations occurindependently of each other, since they use disjoint segments of the random input r. More precisely,recall that rj denotes the segment of r that is used by the simulator from state �i;j�1;r until state�i;j;r is reached. Let i denote the probability that an `-short execution r is i-Mbad. We have:i � XB�f1:: 2k3 g;jBj< k4 Prr(iterations j 2 B are unlikely)� XB�f1:: 2k3 g;jBj< k4 Yj2BPrrj (iteration j is unlikely)�  2k=3k=4 ! � (2�6)k=6 � 2�O(k)It follows that an `-short execution is Mbad with probability at most Pi=1::K i � K � 2�O(k).We proceed to state and prove the main technical claim used to prove Lemma 5.5:Claim 5.4 Let � be a state of the simulator at the point where some invocation of Solve at level` is called, and assume that:� q� � 3132� �� < 164 ( k214 )`� State � is (`+ 1)-safe.Then there exists a constant c such that a random execution of Solve starting from state � failswith probability 2�cK. Again, the probability is taken over the random choices of the simulatorstarting from state �.Proof: The proof proceeds by induction on `:26The above argument implicitly assumes that all the attempts of the invocation of Solve start at state �i;j;r. Thisis somewhat imprecise, since each attempt has a slightly di�erent start state. speci�cally, the sets S and SS may bedi�erent for each attempt. We ignore this slight imprecision and return to it at the end of the analysis.31



Base case: ` = 0. An execution of Solve is not successful only if none of its 128K attempts issuccessful. We bound the probability that this event happens. We �rst assert the following fact:Base-Case Fact: The invocation of Simulate(0; h) within a random attempt that is 0-safe through-out returns due to failure of NextProverMsg(in Step 22 of Simulate) with probability at most 1=64.Proof: Executions of Simulate that are 0-safe throughout never return due to failure of NextProverMsgon an old session. The probability that an execution of Simulate returns due to failure ofNextProverMsg on a new session is at most the probability that V � starts and completes a newsession during this execution. However, since �� < 1=64 � (k=214)0 = 1=64, it follows from MarkovInequality that V � starts and completes even a single new session during this execution with prob-ability at most 1=64. 2We are now ready to prove the base case. Say that an attempt is unfortunate if one of the twoevents occur:(i) The invocation of Simulate returns due to the fact that V � halts (i.e., in Step 12), and a triple(s; j; r) was not added to S during this attempt.(ii) The invocation of Simulate returns due to failure of NextProverMsg on a new session.By the premise of the lemma, the probability of event (i) is at most q� < 3132 . By our Base-CaseFact, the probability of event (ii) is at most 1=64. Altogether, the expected number of unfortunateattempts is at most 6364 �128K = 126K . Since the attempts are independent of each other, it followsfrom Cherno� Inequality that the probability that more than 126:5K attempts are unfortunate isat most 2�cK for some c > 0. In other words, except with probability 2�cK , there are at least 1:5Kattempts that are either successful or where Simulate returns due to failure of NextProverMsgon an old session. However, it follows from Claim 5.1 that at most K attempts are not 0-safethroughout, thus in at most K attempts Simulate returns due to failure of NextProverMsg on anold session. It follows that, except with probability 2�cK , at least K2 attempts succeed. (In fact, asingle successful attempt would su�ce.)Induction step: As in the base case, we bound the probability that none of the 128K attempts inan execution of Solve (now at level `) is successful. We �rst show:Induction-Step Fact: Let � be a state where an invocation of Simulate at level ` is called. Assumethat Claim 5.4 holds for all `0 < ` and that �� < 164 ( k214 )`. Then a random execution of Simulate,starting from state �, that is `-short and `-safe throughout, returns due to failure of NextProverMsgwith probability at most K2�poly(k).Proof: Recall that an execution of Simulate that is `-safe throughout never returns due to failureof NextProverMsg on an old session. We bound the probability that an `-safe throughout executionof Simulate returns due to failure of NextProverMsg on a new session. In fact, we show a slightlystronger result than stated in the claim: Except with probability 1=64 + K2�poly(k), all the newsessions in this execution remain k3 -safe (i.e., they do not go beyond their 2k3 -th iteration withoutbeing solved).Say than an execution of Simulate at level ` is bad if it is either Qbad or Mbad. Recall that arandom execution of Simulate at level ` is Qbad with probability at most K2�poly(k) (Claim 5.2),and is Mbad given that it is `-short with probability at most K2�poly(k) (Claim 5.3). It followsthat a random execution of Simulate is bad with probability at most K2�poly(k). We show thatan execution of Simulate that is not bad and `-safe throughout fails in Step 22 of Solve on a newsession with probability at most K � 2O(K). Speci�cally, we demonstrate the following inductiveclaim. Order the new sessions in an execution of Simulate according to the order in which they32



complete 2k=3 iterations. That is, let si denote the ith session to complete 2k=3 iterations. Let Zidenote the event that, at the point where session si has completed 2k=3 iterations, there are newsessions that are not k=3-safe. We show by induction on i that there exists a constant c > 0 suchthat Pr(Zi) � i � 2�cK . (In other words, we show that, except for probability at most i � 2�cK , allthe �rst i new sessions to complete 2k=3 iterations are solved. (c is the constant guaranteed byLemma 5.4 for level `� 1.)We proceed to prove the induction step. (The base case is treated as a special case of a step.)Let i � 1, and let r be a random execution of an attempt that is `-safe throughout, not Qbad andnot Mbad. Consider the invocations of Solve at level `� 1 that are associated with the �rst 2k=3iterations of the ith session. Say that an invocation is good if the three conditions of Lemma 5.4are satis�ed with respect to this invocation. (That is, let �0 denote the state at the onset of a goodinvocation; then, q�0 < 3132 , ��0 < 164( 1214 )`�1, and �0 is `-safe.) We want to show that at least oneof these invocation of Solve is good. Recall that, since the execution is neither Qbad not Mbad,there is at least one such invocation of Solve for which the �rst two conditions are met. It remainsto show that this invocation is also `-safe. This is argued as follows. Since the attempt is `-safethroughout, all the old sessions are `-safe. From the hypothesis of the induction on i we have that,except for probability (i� 1)2�cK , all the new sessions are k=3-safe, hence also `-safe.27We conclude that, except for probability (i�1)2�cK , at least one out of the �rst 2k=3 invocationof Solve associated with the ith session is good. Applying the hypothesis of the induction on`, we get this invocation of Solve fails with probability at most 2�cK . Consequently, the ithsession is not solved by the time 2k=3 of its iterations are completed with probability at most2�cK + (i � 1)2�cK = i2�cK . This completes the step of the induction on i, and the proof of ourInduction-Step Fact. 2We are now ready to complete the step of the induction on ` (and the proof of Lemma 5.4)based on our Induction-Step Fact. The argument is very similar to that of the base case. We repeatit here for completeness, at the price of some repetition.Recall the de�nition of unfortunate attempts. By the premise of the lemma, the probability ofevent (i) is at most q� < 3132 . By our Induction-Step Fact, the probability that Simulate returnsdue to failure of NextProverMsg in an `-short execution is at most K2�poly(k) = 2�poly(n). Bythe premise of Claim 5.4, �� < 164 ( 1214 )`. It follows from Markov Inequality that an execution ofSimulate within an attempt of Solve at level ` is `-long with probability at most 1=64. Conse-quently, the probability of event (ii) is at most 1=64 + 2�poly(n). Altogether, the expected numberof unfortunate attempts is at most (6364 + 2�poly(n))128K = 126K + 2�poly(n). Since the attemptsare independent of each other, it follows from Cherno� Inequality that the probability that morethan 126:5K attempts are unfortunate is at most 2�cK for some c > 0. In other words, except withprobability 2�cK , there are at least 1:5K attempts that are either successful or where Simulatereturns due to failure of NextProverMsg on an old session. However, it follows from Claim 5.1 thatat most K attempts are not `-safe throughout, thus in at most K attempts Simulate returns dueto failure of NextProverMsg on an old session. It follows that, except with probability 2�cK , atleast K2 attempts succeed. This completes the proof of Lemma 5.4.We are �nally ready to prove the main lemma:Lemma 5.5 The main procedure fails with probability at most 2�cK = 2�poly(n).Proof:27Recall that both k and K are polynomial in the security parameter n. Consequently ` � L = O(1), and k > 3`for large enough n. 33



The main procedure consists of a single invocation of Simulate at level L, and fails if thisinvocation returns due to failure of NextProverMsg. We prove the lemma by applying our Induction-Step Fact to this invocation.28 Speci�cally, all the requirements of our Induction-Step Fact are met:� Claim 5.4 holds for all ` < L.� We have that V � opens at most K sessions in an execution. Let �0 be the state of thesimulator at the point where Simulate is invoked within the main procedure. Thus, forK > 64 we have ��0 < K264 = 164 ( k214 )L. Furthermore, any execution of Simulate within themain procedure is L-short.� There are no old sessions for state �0. Consequently, any execution of Simulate within themain procedure is L-safe throughout.We conclude that a random execution of Simulate within the main procedure returns due to failureof NextProverMsg with probability at most 2�poly(n).On the e�ect of imperfect commitments. In the de�nition and argumentation on the quan-tities q� and �� we have so far ignored the following fact. Di�erent attempts within an invocationof Solve start with somewhat di�erent states of the simulator. Speci�cally, the sets S and SS maydi�er from attempt to attempt (and also in the continuation of a simulation once Solve returns).Consequently, when invoked by Simulate in di�erent attempts, procedure NextProverMsgmay tryto \solve" di�erent sessions in Steps 2(2)2 and 2(2)31.As long as the prover's commitments are assumed to be perfectly secret these di�erences inthe behavior of the simulator is transparent to V �, and the above analysis is precise. We concludethe analysis by noting that the above analysis holds even when the prover's commitments are onlycomputationally secret. Speci�cally, we claim that the di�erences between the values of q� (andsimilarly ��) in di�erent attempts of an execution of Solve are negligible. More precisely, consideran execution of Solve starting from state �, and let �v denote the state at the point where thevth attempt begins. Then for all v; v0 = 1:::128K the di�erences q�v � q�v0 and ��v � ��v0 mustbe negligible in the security parameter n. (If this were not the case then we could use this factto break the computational secrecy of the prover's commitment.) Consequently, it can be veri�edthat the analysis (and in particular Claims 5.2 and 5.3) still holds.296 rZK in the Public-Key ModelThus far in the paper no set-up assumptions have been made in the model. This is indeed the\simplest" model used for two-party and multi-party computation. Another model, used routinelyin the context of providing privacy and/or authenticity of messages (i.e public-key encryption anddigital signatures), is the public-key model, which relies on a set-up stage in which public-keysare registered. In the work presented in this section, the public-key model is used for tasks totallyunrelated to privacy and authenticity, but rather for proving security of protocols whose participants28Though our Induction-Step Fact is stated within the induction step of Claim 5.4, it applies also to the invocationof Simulate within the \main procedure."29The proof also ignores the fact that the veri�er's commitments are only computationally binding. This \ab-straction" can be removed in standard ways: Assume that V �, in a run with the simulator, decommits to one of itscommitments in two di�erent valid ways with some probability p(n). Then, it is easy to construct an algorithms thatbreaks the computational binding property of the commitment scheme in use with probability poly(p(n)).34



hold public-keys. (A similar use was independently suggested by Damg�ard [11, 12]. See discussionbelow.)6.1 The Public Key ModelIn the mildest form of the public-key model, users are assumed to have deposited a public-key in apublic �le that is accessible by all users at all times. In fact, it is only necessary for the veri�ers inour protocol to have public-keys. Access to this �le may be implementable by either providing accessto several identical servers, or by providing users with certi�cates for their deposited public-keys.The sole assumption is that entries in the public-�le were deposited before any interaction amongthe users takes place. But no assumption is made on whether or not the public key deposited areunique or \non-sensical" or \bad" (e.g., for which no corresponding secret key exist or are known)public keys.We use such a public-�le simply for limiting the number of di�erent identities that a potentialadversary may assume { it may indeed try to impersonate any registered user, but it cannot acton behalf of a non-registered user.We analyze our solutions in an \idealized" setting where the registration to the public �le iscomplete before any interaction starts. A more realistic public-key model allows users to registerat all times. Note, however, that formally speaking such exibility requires some restriction asotherwise it will coincide exactly with the the case in which no set-up stage or special model isused. We thus suggest two intermediate augmentations of the public-key models in which we canobtain our result (We note that others are possible but we defer discussion of those for anotherpaper.)One augmentation is to enforce a time lag between when a public-key is registered and the�rst time it will be used in an actual protocol. Namely, a prover will not interact with a veri�erunless the veri�er's public-key was registered a su�ciently long time before the interaction starts,where \su�ciently long" is chosen so as to ensure that whatever sessions were in progress beforeregistration occurred have terminated by the �rst time the key registered will be used. This impliesthat users need be able to distinguish between some predetermined large delay (that all newlyregistered public-keys must undergo before being used) and a small delay (that upper bounds thecommunication delays in actual interaction).Making such a distinction is quite reasonable in practice (e.g., say that a user in nowadaysinternet may start using its key a couple of days after registration, whereas each internet session isassumed to be completable within a couple of hours). Notice that, unlike usage of timing in [15], ourusage of timing here does not a�ect typical interactions, which can be and actually are completedmuch faster than the conservative upper bound (of message delay) being used. In contrast, in [15]each user delays each critical message by an amount of time that upper bounds normal transmissiondelay. This means that all communication is delayed by this upper bound. Thus, in their case,this always causes signi�cant delays: in fact the upper bound should be conservative enough so toguarantee that communication by honest users are rarely rejected.The second augmentation of the public-key model possible to require newly registered public-keys to be used only after authorization by a trusted \switchboard", which go through an interactiveprotocol with the new user and then issue a certi�cate that will allow it to act as a veri�er. We stressthat users that register at set-up time are not required to interact with a server (or a switchboard):they merely deposit their public-key via a one-sided communication. This alternative seems bettersuited to the smart-card application discussed in the introduction.Moreover, the fact that registration is only required of veri�ers is nicely suited to smart-card35



applications in which the provers are played by the smart-cards and the veri�ers by service providers.In such applications service providers are much fewer in number, and are anyhow required toundergo more complex authorization procedures (than the smart-card users).De�nition 12 resettable zero-knowledge in the public-key model is de�ned similarly to rZK in thestandard model (De�nition 1), with the following exceptions:� Before any interaction begins, the veri�er generates a public �le that contains identities ofpotential veri�er-incarnations, together with information associated with each identity. (Infact, the identities of veri�er-incarnations are only implicit in the �le, or in other words theyare understood as the numeral of the entry in the �le.) The algorithm for generating the �leis part of the description of the (honest) veri�er.� The �rst veri�er message in any interaction should contain an identity that appears in thepublic �le. In other words, the completeness and and soundness requirements are made onlyin case that the �rst veri�er message contains an entry in the public �le.� The rZK requirement remains unchanged, with the exception that the veri�er V � generatesan arbitrary public �le before any interaction begins. It is stressed that in all the sessions theprover has access to the same instance of the public �le.A more imposing model (i.e., assuming stronger set-up assumptions), which is still quite rea-sonable in practice, augments the public-key model by allowing (\validating") interaction betweenusers and system manager at deposit time. In general, the preprocessing model postulates thatbefore any interaction among users takes place, the users have to interact with a system managerthat provides them with suitable certi�cates (in case it did not detect cheating at this stage). Inparticular, one may use the preprocessing stage in order to verify that the user knows a secret-keyfor the public-key it wishes to have certi�ed.6.2 OverviewWe start with an overview of our results and techniques in the public-key model.Theorem 13 Under the strong DLP assumption, there exist constant-round resettable zero-knowledgearguments for NP in the public-key model.Recall that arguments (a.k.a computationally-sound proofs)[9] are a weaker notion than in-teractive proofs [32]: it is infeasible rather than impossible to fool the veri�er to accept wrongstatements with non-negligible probability.Since concurrent zero-knowledge are a special case of resettable zero-knowledge, we obtain:Corollary 14 Under the strong DLP assumption, there exist constant-round concurrent zero-knowledgearguments for NP in the public-key model.6.2.1 TechniquesSeveral techniques used by our construction are worth singling out. First, in all messages of theprover which require randomization, the prover will use, instead of fair coins, the result of applyinga pseudo random function [23] to the prover's input and the sequence of messages exchanged in theinteraction thus far. (In fact, it su�ces to apply the pseudo random function only to the input plus36



some critical parts of the communication.) This ensures that on the same pre�x of an interaction,the veri�er will always get the same response from the prover. Thus, the veri�er will not be ableto collect di�erent responses of the prover to the same questions { a capability which can lead tobreaking the security of the protocol, and is an obvious attack strategy for a veri�er who can runseveral executions of the protocol each time resetting the prover to the same initial state and samerandom tape.Second, the public-key i which the veri�er deposited in the public-�le is used to specify aperfectly hiding (and computationally binding) commitment scheme Commi for the prover to useduring the protocol when he encrypts the coloring of graph which he attempts to show is 3-colorable(Recall that in a top level, the prover is trying to convince the veri�er that a graph is 3-colorable).The �rst phase of the protocol is a sub-protocol in which the veri�er convinces the prover that he(the veri�er) knows the secret key that matches the public key i. The knowledge of such secretkey enables decommitting values committed to using Commi in more than one way. One must becareful that this sub-protocol will not leak too much knowledge about this secret-key as otherwisethe soundness of the global protocol will be compromised. We did not construct a full edgedzero-knowledge proof of knowledge sub-protocol for this task as we do not know of the existenceof one which runs in constant rounds and will maintain its soundness even when its veri�er can bereset (note: the veri�er in the sub-protocol is actually the resettable prover in the global protocol).Instead we use a constant round proof of knowledge which can be simulated in sub-exponential time,and argue that such simulation is su�cient to prove global soundness as otherwise our assumptionthat commitment scheme secure against sub-exponential time exists will be violated.Third, our construction uses actually two secure commitment schemes which interact in a novelway, One commitment scheme is with security parameter K and the other with a smaller securityparameter k. We assume that , for some � > 0, the security of the �rst commitment scheme (withsecurity parameter K) is maintained against adversaries running in time 2K� ,30 and that instancesof the second scheme (with security parameter k) can be broken in time 2k. Then setting k = K�=2guarantees both security of the second scheme as well as \non-malleability" (cf. [13]) of the �rstscheme in presence of the second one. The reason for the latter fact is that breaking the secondscheme can be incorporated into an adversary attacking the �rst scheme without signi�cantlye�ecting its running-time: Such an adversary is allowed running-time 2K� which dominates thetime 2k = 2K�=2 required for breaking the second scheme. This \telescopic" usage of intractabilityassumptions can be generalized to a case in which we have a lower and upper bound on thecomplexity of some problem; speci�cally, we need a lower bound L(n) on the average-case ofsolving n-bit long instances, and an upper-bound U(n) � L(n) on the corresponding worst-casecomplexity. Suppose that we can choose polynomially-related security parameters k and K so thatL(k) is infeasible and U(k) � L(K) (i.e., L(k) is infeasible and U(k) � L(poly(k))). Then theabove reasoning still holds. (Above we used L(n) = 2n� and U(n) = 2n.)Outline of the Protocol. The common input is a 3-colorable input graph G. The input of theprover is a 3-coloring of this graph and the input to the veri�er is the secret-key that matches hispublic-key.1. prover looks up public-key i of the veri�er ( no interaction required) which speci�es a com-mitment scheme Commi (which is perfectly private and computationally binding and hassecurity parameter K)30 The strong DLP assumption is used to guarantee security against adversaries running in time 2K� (rather thanin polynomial-time). 37



2. veri�er runs a sub-protocol in which he convinces the prover that he knows the matchingsecret key to i3. veri�er commits to a sequence of edges e1; :::en of the graph G using 2nd commitment schemeComm0 (which is also perfectly private and computationally binding but its security param-eter is k)..4. prover commits independently to n copies EG1; :::; EGn of the graph G, each copy is coloredwith a permutation of the 3-coloring which the prover knows, using the commitment schemeCommi speci�ed by i.5. veri�er decommits edges e1,..., en.6. prover decommits for each EGi the colors of the end points of the edge ei7. the veri�er accepts if indeed all edges ei were colored properly and rejects otherwise.Almost constant-round rZK under weaker assumptions. We mention that using the weakDLP assumption (rather than the strong one), we obtain for every unbounded function r : N! N,an r(�)-round resettable zero-knowledge argument for NP in the public-key model. Again, suchprotocols are concurrent zero-knowledge (as a special case).6.3 A constant-round rZK protocolThe main result of this section is a construction of constant-round computationally-sound resettablezero-knowledge proof systems. Here we use two-round perfect commitment schemes with someadditional features (to be speci�ed below). Such schemes exist assuming that DLP is hard forsub-exponential circuits. Thus, as a special case, we obtain:Theorem 15 Suppose that for some � > 0 and su�ciently large n's, any circuit of size 2n� solvesDLP correctly only on a negligible fraction of the inputs of length n. Then every language in NPhas a constant-round resettable zero-knowledge computationally-sound proof system in the public-keymodel. Furthermore, the prescribed prover is resettable zero-knowledge via a black-box simulation.In the proof below, we only refer to the sequential single-incarnation variant of resettable zero-knowledge in the public-key model. The treatment extends easily to the sequential multiple-interaction model, and the equivalence (to the general interleaving variant), proven in Theorem 2,holds here too.6.3.1 rZK for NP in the preprocessing modelWe �rst present a resettable zero-knowledge protocol for a model allowing preprocessing (i.e., amodel which has stronger set-up assumptions). The preprocessing will be used in order to guaranteethat veri�ers know \trapdoors" corresponding to \records" deposited by them in the public �le.The protocol uses two types of perfect commitment schemes; that is, secrecy of commitmentholds in an information theoretic sense, whereas the binding property holds only in a computationalsense. The two commitment schemes used have some extra features informally stated below. Fora precise de�nition see Appendix A.1. A two-round perfectly-hiding commitment scheme, denoted PC1, with two extra features:38



� The trapdoor feature: It is possible to e�ciently generate a receiver message (called theindex) together with a trapdoor, so that knowledge of the trapdoor allows to decommitin any way.Note that the �rst message in a two-round commitment scheme is from the commitment-receiver to the commitment-sender. The trapdoor feature says that the receiver will beable to decommit to the sender's message in any way it wants (but as usual the sender,not knowing the trapdoor, will not be able to do so).In our solution we will \decouple the execution" of the two-round commitment schemeso that the �rst message (i.e., the index) will be sent in a preliminary stage (i.e., willbe deposited in a public-�le), and only the second message will be send in the actualprotocol. We stress that the same index can and will be used for polynomially manycommitments, and that the number of such commitments need not be a-priori known.(Note that both perfect secrecy and computational-binding continue to hold also undersuch \recycling" of the index.)� The strong computational-binding feature: The computational-binding property holdsalso with respect to sub-exponential circuits. That is, there exists a constant � > 0 sothat for su�ciently large security parameter K no sender strategy that is implementableby a circuit of size 2K� can, given a random K-bit index, produce a single commit-ment together with two conicting decommitments (i.e., to two di�erent values) withprobability greater than 2�K� .2. A constant-round perfectly-hiding commitment scheme, denoted PC2. Without loss of gen-erality, we may assume that the binding property can be violated in exponential time. Thatis, when the commitment protocol is run on security parameter k, the sender may in time 2kdecommit any way it wants.Indeed, any PC1 scheme yields a PC2 scheme. However, for sake of modularity we prefer the currentpresentation. We also note that for our application it is possible to further relax the requirementfrom PC2 so that secrecy may be demonstrated to hold at a latter stage (i.e., \a posteriori"); see [22,Sec. 4.8.2]. We comment that a PC1 scheme can be constructed under the assumption the DLP ishard for sub-exponential circuits; see details in Appendix A. More generally, one may use any pairof trapdoor claw-free permutations, provided the claw-free property holds w.r.t sub-exponentialcircuits.31The protocol in the preprocessing model: The inputs to the protocol are as follows.Security parameter: K. All objects (resp., actions taken) in the protocol have size poly(K)(resp., are implementable in poly(K)-time).Common input: A graph G = (V;E), where V = [n] def= f1; :::; ng, claimed to be 3-colorable.In addition, a public �le containing a list of indices (i.e., receiver's message for PC1), generatedby veri�ers on security parameter K. Each veri�er need only deposit a single index in thepublic �le, which may be stored under its name. We consider also cheating veri�ers who maydeposit polynomially many such indices. We stress however that the number of entries in thepublic-�le should be bounded by some �xed polynomial.31 In fact, it su�ces to have collision-intractable family of hashing function, provided it carries trapdoors and isstrong with respect to sub-exponential circuits. 39



At this point we assume that the veri�er knows a trapdoor to any index it has deposited.This can be enforced by a preprocessing stage, say, via a zero-knowledge proof of knowledge.Veri�er's auxiliary input: A trapdoor, denoted trap(i), for some index i in the public �le.Prover's auxiliary input: A 3-coloring � : [n]! f1; 2; 3g of G.Prover's initial randomization: The prover's random-tape is used to determine a pseudoran-dom function f : f0; 1gpoly(n) ! f0; 1gpoly(n).The protocol itself is an adaptation of the resettable witness indistinguishable proof system ofSection 4, with Step (P1) being replaced (or rather implemented) by current Steps (1) and (3).Another important change is the replacement of former Step (V1) by current Step (2); the di�erencebeing that commitment via a standard commitment scheme (with perfect binding) is replaced bya commitment relative to a (perfect secrecy) scheme that is only computationally-binding.(1) The veri�er sends an index i to prover, who checks that it appears in the public-�le. (Otherwisethe prover aborts.)Note that this step may be viewed as transcendental to the protocol, since it amount to theveri�er telling the prover its identity. [Indeed, a cheating veri�er may lie about its identity;we merely rely on the fact that somebody knows the trapdoor to the index i if indeed it isin the public �le. Since we view the adversary as controlling the entire \world outside theprover" it really does not matter who knows the trapdoor.](2) This step is analogous to Step (V1) in the protocol of Section 4: The veri�er commits to asequence of t def= n � jEj uniformly and independently chosen edges. The commitment is doneusing the constant-round perfectly-hiding commitment scheme PC2, in which the veri�erplays the role of the sender and the prover plays the role of the receiver. The scheme PC2is invoked while setting the security parameter to k = K�=2, where � > 0 is as speci�ed inthe strong binding feature of PC1. The randomization required for the actions of the receiverin PC2 is determined by applying the pseudorandom function f to (G;�; history), wherehistory is the transcript of all messages received by the prover so far.Thus, the prover gets no information on the committed edges, while it is infeasible for theveri�er to \de-commit" in two di�erent ways.[The analysis makes heavy use of the setting of the security parameter k = K�=2. On onehand, this setting guarantees that a quantity that is polynomial in K is also polynomial ink. On the other hand, time 2k which su�ces to violate the computational-binding propertyof PC2 when run on security parameter k, is insu�cient to violate the strong computational-binding property of PC1 when run on security parameter K (since 2k = 2K�=2 � 2K�).](3) This step is analogous to Step (P1) in the protocol of Section 4: The prover uses PC1 withindex i in order to commit to a sequence of t random colorings. That is, the prover invokest instances of protocol PC1 playing the sender in all of them, and acts as if it has received i(the index) in all these instances.Recall that the prover wishes to commit to t � n values, the (jn + v)th value being the colorassigned to vertex v by the jth random coloring (i.e., the jth random relabeling of �, selectedamong the six permutations of the colors f1; 2; 3g). All randomizations (i.e., the choice of therandom coloring as well as randomization required by PC1) are determined by applying the40



pseudorandom function f to (G;�; history), where history is the transcript of all messagesreceived by the prover so far.(4) The veri�er decommits to the edge-sequence it has committed to in Step (2). That is, itreveals the sequence of t edges, as well as the necessary information required to determinethe correctness of the revealed values. [This step is analogous to Step (V2).](5) In case the values revealed (plus the \de-commitment" information) in Step (4) match thecommitments sent in Step (2), and in case all queries are edges, the prover reveals the corre-sponding colors and provides the corresponding de-commitment. [This step is analogous toStep (P2).](6) In case the values revealed (plus the \de-commitment") in Step (5) match the commitmentssent in Step (3), and in case they look as part of legal 3-colorings (i.e., each correspondingpair is a pair of di�erent elements from the set f1; 2; 3g), the veri�er accepts. Otherwise itrejects. [This step is analogous to Step (V3).]We note that, in the above description of the protocol, the veri�er does not use the trapdoor(i.e., trap(i)). The fact that the veri�er (or rather an adversary controlling all possible veri�ers)knows the trapdoor will be used by the simulator which is rather straightforward: In contrastto standard constructions of simulators (cf., [32, 28]), the current simulator does not \rewind"the veri�er. Instead, it simulates an execution of the protocol by emulating the actions of theprover in Steps (1){(4), using some dummy sequence (rather than a sequence of colorings) inStep (3). However, when getting to Step (5), and in case the veri�er has decommitted properly, thesimulator uses trap(i) in order to decommit to the corresponding edge queries in a random legal-looking way (i.e., it decommits to a uniformly and independently chosen pair of distinct colors,for each such edge). This uses the trapdoor feature of PC1 and the hypothesis that the veri�er(and so the simulator) knows this trapdoor. The above description corresponds to simulation ofthe �rst session with the prover. Subsequent sessions are simulated in the same way assumingthat the execution of Steps (1){(2) of the current session is di�erent than in all previous sessions.Otherwise, we simulate Steps (3) and (5) by copying the values used in the previous session. A lastissue to be addressed is the possibility that in two executions of the protocol the veri�er may sendthe same messages in Step (2) but latter decommit in two di�erent ways in Step (5), in which casethe output of the simulator may be noticeably di�erent from the output in real executions. Usingthe computational-binding property of the scheme PC2, we argue that this event may only occurwith negligible probability. This establishes the resettable zero-knowledge property of the aboveprotocol (in the preprocessing model).Observe that the computational-binding property of PC1 allows computationally-unboundedprovers to successfully fool the veri�er, and hence the above protocol does not constitute an inter-active proof. However, one can show that computationally-bounded provers can fool the veri�eronly with negligible probability, and so that the protocol is computationally-sound.Proposition 16 (informal): The above protocol is computationally sound.Proof Sketch: Intuitively, one would like to argue that the computational-binding propertyof PC1 does not allow to decommit to two di�erent values in Step (5). The problem is that theprover commits to colors in Step (3) after obtaining the veri�er's commitment to queries, andthat the prover decommits only after the veri�er decommits. How can we rule out the (intuitivelyunlikely) possibility that the veri�er's decommitment allows the prover to decommit accordingly41



(in a way it could not have done before getting the veri�er's decommitment)? Here we use thestrong computational-binding property of PC1 (relative to security parameter K); that is, the factthat it holds also with respect to circuits of size 2K� = 22k. We also use the fact that commitmentswith PC2 were done while setting the security parameter to k, and so we can decommit any waywe want while using time 2k. Thus, the binding property of PC1 has to be maintained in Step (5);i.e., it should be infeasible to decommit \at will" in Step (5) also after obtaining the decommitmentof the veri�er at Step (4).In the actual proof we consider what happens in Step (5) when the prover interacts with animaginary veri�er that at Step (4) uniformly selects new queries and decommits according to thesevalues. Observe that such an imaginary veri�er can be implemented within time poly(n) �2k. Thus,if we consider the mental experiment in which Steps (4)-(5) are repeated T = 2k=3 times, after asingle execution of Steps (1)-(3), then all proper decommits by the prover must be for the samevalue (or else the binding property of PC1 is violated in time T � poly(n) � 2k � 22k). Furthermore,the above should hold for at least 1 � T�1 fraction of random executions of Steps (1)-(3). Thus,if we consider a computationally-bounded prover that fools the veri�er, only a term of O(2�k=3)in its success probability may be attributed to \ambiguous decommitment". The computational-soundness of the protocol follows by noting that (1 � jEj�1)t) � e�n is an upper bound on theprobability of fooling the veri�er in case commitments are non-ambiguous. This establishes thecomputationally-soundness of the above protocol.6.3.2 Back to the (bare) public-key modelGiven the above, all that is needed in order to adapt the protocol to the public-key model is to re-place the assumption that the veri�er knows the trapdoor by a (zero-knowledge) proof-of-knowledgeof this claim. We stress that the veri�er in the above protocol will play the role of knowledge-prover,whereas the main prover will play the role of a knowledge-veri�er. This protocol has to maintainits soundness also when the knowledge-veri�er undergoes \rewinding". Furthermore, it should beconstant-round. (We comment that we are not aware of a known protocol satisfying these strongrequirements.) On the other hand, we don't need \full-edged" zero-knowledge property; simu-latability in sub-exponential time will su�ce (as it is merely used for the computational-soundnessproperty which is established based on the strong computational-binding property of PC1, whichin turn accounts for such running times too). Thus, Step (1) in the above protocol is augmentedby a constant-round proof-of-knowledge (POK) which proceeds as follows:The parties: A knowledge-veri�er, denoted KV, played by the main prover, and a knowledge-prover, denoted KP, played by the main veri�er.Inputs: Common input i 2 f0; 1gK .Furthermore, KP gets as auxiliary input the randomness used to generate i (equiv., to generate(i; trap(i))).Goal: KP wants to prove that it knows trap(i).High level: We present a proof of knowledge (POK) of the relevant NP-witness; that is, POK ofthe randomness used to generate i. (Such knowledge yields knowledge of trap(i).) The POKis via the standard reduction of this NP-relation to the NP-relation corresponding to Hamil-tonicity (which is NP-Complete). We stress that the standard reduction comes with e�cienttransformation of NP-witnesses from the original relation to the target Hamiltonicity relation42



and vice versa. Thus, the auxiliary-input of KP allows to e�ciently compute a Hamiltoniancycle in the target graph, and from any such Hamiltonian cycle one may e�ciently retrievetrap(i).The proof of knowledge (POK) of Hamiltonicity is based on Blum's proof system for thislanguage, which is reproduced in Appendix B. An important property of Blum's basic proto-col is that it is a \challenge{response" game in which the challenge consists of a single bit.Furthermore, responding correctly to both possible challenges allows to extract a Hamilto-nian cycle (i.e., the knowledge claimed).32 This property simpli�es the knowledge extractionargument in case many copies are played in parallel: Ability to respond to any two di�erentsequences of challenges yields a Hamiltonian cycle. Below we run the protocol k times inparallel, where k = K�=3. The resulting protocol will have negligible knowledge-error33 (i.e.,error of 2�k), and will be simulatable in time poly(K) � 2k. Furthermore, the simulation willbe indistinguishable from the real interaction by any 2K�-size circuits. As stated above, weare not concerned of the fact that the protocol may not be zero-knowledge (i.e., simulatablein poly(K)-time).The protocol uses a perfectly-binding commitment scheme with strong computational-secrecy; thatis, circuits of size 2K� cannot distinguish commitments to two di�erent known values (with distin-guishing gap better than 2�K�). Such a scheme can be constructed based on the DLP assumptionutilized above.(pok1) Using the perfectly-binding commitment scheme, KP commits to each of the entries ofk = K�=3 matrices, each generated as in Blum's basic protocol. (That is, each matrix is theadjacency matrix of a random isomorphic copy of the graph obtained from the reduction.In case the output of the reduction is a graph with N vertices, the commitment scheme isapplied k �N2 times.) The commitment scheme is run with security parameter K.(pok2) KV \randomly" selects a sequence c = c1 � � � ck 2 f0; 1gk of k challenges. Actually, thesequence c is determined by applying the pseudorandom function f to the input (i.e., theindex i) and the history so far (of the POK protocol).(pok3) KP answers each of the k bit queries as in Blum's basic protocol. (That is, if cj = 0 thenKP decommits to all entries of the jth matrix and also reveals the isomorphism; otherwise, KPdecommits only to the entries corresponding to the Hamiltonian cycle. Note that the locationof the latter entries is determined by applying the isomorphism to the original cycle.)(pok4) KV accepts if and only if all answers are valid. Speci�cally, in case cj = 0, KV checksthat the revealed matrix is indeed isomorphic (via the provided isomorphism) to the matrixrepresenting the reduced graph. In case cj = 1, KV checks that all revealed entries are indeed1's. (In both cases, for each revealed value, KV checks that the decommitment is valid.)The weak zero-knowledge property is easy to establish. That is, we need and do show that theinteraction with any (possibly dishonest but computationally-bounded) knowledge-veri�er can besimulated in time poly(k) � 2k. This follows by merely using the standard simulator procedure(cf., [32, 28]), which merely selects a random string c 2 f0; 1gk and \simulates" Step (pok1) so32 This property holds also for other protocols for NP, but not for the 3-Colorability protocol of [28]. Any protocolhaving the property will do.33 Loosely speaking, the knowledge-error is the probability that the veri�er may get convinced by a cheating proverwho does not know a Hamiltonian cycle. For a precise de�nition, see Appendix B.43



that it can answer the challenge c (but not any other challenge). The strong computational-secrecyof the commitment scheme (used with security parameterK) guarantees that the knowledge-veri�ercannot guess c better than with probability approximately 2�k, and so we will succeed with over-whelming probability after at most k �2k tries. Standard arguments will also show that the output ofthe simulator cannot be distinguish from the real interaction by circuits of size 2K��1 > 22k. Thus,this simulator can be plugged into the argument given above for computational-soundness in thecase of preprocessing, and yield that the augmented protocol maintains computational-soundness:The potentially cheating prover in the main protocol induces a cheating knowledge-veri�er, andwhat the simulation says is that in case the veri�er (playing the knowledge-prover) follows theprotocol then whatever the knowledge-veri�er can compute after interacting with it, can also becomputed with overhead of at most poly(k) � 2k on input the index i. Thus, we haveProposition 17 (informal): The modi�ed main protocol is computationally sound.We now turn to establish the resettable zero-knowledge property of the entire protocol. Asa �rst step towards this goal, we establish that the above sub-protocol is indeed a POK withknowledge-error 2�k (see Def. 25 in Appendix B). In other words, we analyze a single execution ofthe sub-protocol, and thus we may assume that Step (pok2) is replaced by sending a truly randomstring c. This assumption is not valid when the sub-protocol is run many times, and this is whythe simpli�ed analysis provided here does not su�ce. However, it does provide a good warm-up.Without loss of generality, consider a deterministic cheating knowledge-prover, and let C bethe message sent by it in Step (pok1). Consider the probability space of all 2k possible challengesc 2 f0; 1gk that KV may send in Step (pok2). Say that a challenge c 2 f0; 1gk is successful forthis knowledge-prover if its answer in Step (pok3) is accepted by KV in Step (pok4). The keyobservation is that given the knowledge-prover's answer to any two di�erent successful challengeswe can easily reconstruct the Hamiltonian cycle (and from it easily reconstruct the trapdoor).34 Toextract the Hamiltonian cycle we just invoke the knowledge-prover many times, each time it answerswith the same Step (pok1) message but then we challenge it with a new randomly chosen c (i.e.,chosen independently of all prior attempts). If we ever obtain its answer to two successful challengesthen we are done. Denoting by p the probability that a uniformly chosen challenge is successful, weconclude that if p > 2�k then given oracle access to the knowledge-prover (played by the adversary)we can (with overwhelmingly high probability) �nd the trapdoor in time poly(k)=(p � 2�k). Bya trivial modi�cation, we obtain a knowledge extractor which for any p > 0 with overwhelmingprobability runs for time poly(k)=p, and in case p > 2�k also retrieves the trapdoor.35The above argument would have su�ces if we were guaranteed that the adversary, when playingthe role of KP, never repeats the same Step (pok1) message (in two di�erent sessions of the entireprotocol). Let use assume so and see how, under this unjusti�ed assumption (which will be removedlater), the resettable zero-knowledge property follows.Consider a sequence of invocations (sessions) of the main protocol. The simulator will proceedby simulating one session after the other, where a single session is simulated as follows. Thesimulator starts by playing the role of KV in Step (1). In case KV rejects then the simulatorcomplete the simulation of the current session by announcing that the prover aborts it. Notethat this is exactly what would have happened in the real interaction. In case KV accepts, thesimulator will use the knowledge-extractor described above in order to extract the trapdoor of the34 This is the case since each such pair of challenges di�ers at some location, and from the two answers to thislocation we may reconstruct the Hamiltonian cycle.35 This can be done by using a time-out mechanism invoked when poly(k) � 2k steps are completed, and observingthat if p > 2�k then in fact p � 2 � 2�k and so (p� 2�k)�1 � 2=p.44



index i sent in Step (1). Here is where we use the assumption that the adversary does not repeatthe same Step (pok1) message. The point is that the knowledge-extractor described above willtry many di�erent challenges for Step (pok2). Since the challenge is determined as a \random"function evaluated at a new point (here is where we use the \no repeat" clause), we may view thischallenge as random. Thus, the above analysis applies. The conclusion is as follows. Suppose thatthe cheating veri�er convinces KV with probability p, We distinguish three cases. In case p = 0,the simulator will always construct an aborting execution (just as in the real interaction). In casep > 2�k, with probability 1 � p the simulator will construct an aborting execution (just as in thereal interaction), and otherwise using time poly(k)=p it �nds the trapdoor of the index i sent inStep (1), which allows it to complete the simulation of Steps (2){(6) just as done above (in the caseof preprocessing). Note that the expected number of steps required for the simulation in this caseis (1� p) �poly(k) + p � (poly(k)=p) = poly(k). The only case left is the one where p = 2�k. In thiscase, the simulator fails with probability p, which is negligible, and so its output is computationallyindistinguishable from a real interaction. We stress that in all cases the simulator runs in expectedtime poly(k).Having concluded all these warm-ups, we are now ready to deal with reality. The di�culty occurswhen the adversary uses the same index and same Step (pok1) message in two di�erent sessionswith the prover. Furthermore, suppose that in the �rst session it fails to convince KV played bythe prover, but in the second session it succeeds. The problem (avoided by the assumptions above)is that we cannot use a di�erent challenge (i.e., message for Step (pok2)) in the second session,since the challenge is determined already by the �rst session. Thus, the simulator cannot completethe simulation of the second session, unless it \rewinds" up to the �rst session in which the sameStep (pok1) message is used.36 This need to \rewind" sessions that were already completed maylead to exponential blow-ups as discussed by Dwork, Naor and Sahai [15]. What saves us here isthat the number of times we possibly need to \rewind" is a-priori bounded by the total number ofindices in the public �le. (This is the key and only place where we use the assumption underlyingthe public-key model.)The heart of the analysis { a sketch: Let us reproduce and further abstract the problem weneed to analyze. Recall that we will consider only non-interleaving (i.e., sequential) adversaries.We are dealing with a game consisting of multiple (history dependent) iterations of the followingsteps, which depends on a random function f �xed once and for all.(a) The veri�er sends a pair (i; C), where i belongs to some �xed set I and C is arbitrary. This pairis determined by applying the veri�er's strategy, V �, to the history of all previous iterations(of these steps).[Indeed, i corresponds to the index sent in Step (1), I to the public �le, and C to the messageof Step (pok1).](b) The prover determines a k-bit string, c = f(i; C), by applying f to the pair (i; C).[This corresponds to Step (pok2) of KV played by the prover.](c) The veri�er either succeeds in which case some additional steps (of both prover and veri�er)take place or it fails in which case the current execution is completed.36 We comment that in general, a simulator for resettable zero-knowledge may not proceed by generating thesessions one after the other without \rewinding" between di�erent sessions.45



[This corresponds to whether the veri�er, playing KP, has provided a valid decommitment inStep (pok3), and to the continuation of the main protocol which takes place only in case theveri�er has done so.]We want to simulate an execution of this game, while having oracle access to the veri�er's strategy(but without having access to the prover's strategy, which enables the further steps referred to inStep (c) above). Towards this goal we are allowed to consider corresponding executions with otherrandom functions, f 0; f 00; :::, and the rule is that whenever we have two di�erent successes (i.e.,with two di�erent challenges c) for the same pair (i; C) we can complete the extra steps referred toin Step (c). [This corresponds to extracting the trapdoor of i, which allows the simulation of therest of the steps in the current interaction of the main protocol.]Thus, problems in simulating the above game occur only when we reach a successful Step (c).In such a case, in order to continue, we need a di�erent success with respect to the same pair (i; C).In order to obtain such a di�erent success, we will try to run related simulations of the game. Oncewe �nd two successes for the same pair (i; C), we say that i is covered, and we may proceed in thesimulation temporarily suspended above. That is, a natural attempt at a simulation procedure isas follows. We simulate the iterations of the game one after the other, using a random functionf selected by us. Actually, the random function f is de�ned iteratively { each time we need toevaluate f at a point in which it is unde�ned (i.e., on a new pair (i; C)) we randomly de�ne fat this point. As long as the current iteration we simulate fails, we complete it with no problem.Similarly, if the current iteration is successful relative to the current pair (i; C) and i is alreadycovered, then we can complete the execution. We only get into trouble if the current iterationis successful relative to (i; C) but i is not covered yet. One natural thing to do is to try to get icovered and then proceed. (Actually, as we shall see, covering any new element of I, not necessarilyi, will do.)Starting with all I uncovered, let us denote by p the probability that when we try to simulatethe game a success occurs. Conditioned on such a success occurring, our goal is to cover someelement of I within expected time poly(k)=p. Suppose we can do this. So in expected time(1 � p) � poly(k) + p � (poly(k)=p) = poly(k) we either completed a simulation of the entire gameor got some i 2 I covered. In the �rst case, we are done. In the second case, we start again in anattempt to simulate the game, but this time we have already i covered. Thus, we get into troubleonly if we reach a success relative to (i0; C) with i0 2 I 0 def= I n fig. Again, we may denote by p0 theprobability that when we try to simulate the game a success occurs with respect to some i0 2 I 0. Insuch a case, we try to cover some element of I 0, and again the same analysis holds. We may proceedthis way, in up to jIj + 1 phases, where in each phase we either complete a random simulation ofthe game or we get a new element of I covered in each iteration. Eventually, we do complete arandom simulation of the game (since there are more phases than new elements to cover). So,pending on our ability to cover new elements within time inversely proportional to the probabilitythat we encounter a success relative to a yet uncovered element, each phase requires poly(k) stepson the average. Thus, pending on the above, we can simulate the game within expected timepoly(k) � jIj = poly(k) (by the hypothesis regarding I).We now consider the task of covering a new element. Let us denote the set of currently uncoveredelements by U . Let H denote the pre�x of completed executions of the simulated game and let(i; C) = V �(H) be the current pair which is related to the current success, where i 2 U . To get icovered we do the following:1. Let H 0 be the maximal sequence of executions which does not contain (i; C) as a Step (a)message. Note that H 0 = H in case the current pair (i; C) does not appear as a Step (a)46



message in some (prior) execution in H.2. Rede�ne f 0(i; C) uniformly at random, and try to extend H 0 (with respect to to the functionf 0) just as we do in the main simulation (where we currently try to extend H with respectto to the function f). If during an attempt to extend H 0 we encounter a new (i.e., di�erentthan above) success with respect to the same pair (i; C) then i itself gets covered, and wehave ful�lled our goal. Otherwise, we repeat the attempt to extend H 0 (with a new randomchoice for f 0(i; C)) as long as we did not try more than k � 2k times. In case all attempts fail,we abort the entire simulation.We will show that, for p > 2�k, we will get a new element covered while making (p� 2�k)�1tries, on the average.3. If during the current attempt to extend H 0 we encounter a success relative to some other pair(i0; C 0) 6= (i; C), where i0 (possibly equals i) is also currently uncovered, then we abort thecurrent extension of H 0 (and try a new one { again as long as k � 2k tries are made).Thus, we haveProposition 18 (informal): The above game can be simulated within expected poly(k)-time.The procedure has oracle access to the adversary V �, and calls the procedure Extend.(M1) Initialization: U  ;.(M2) Repeat up to jIj+ 1 times(M3) Initialization: H  x and f is totally unde�ned.(M4) Let answer ExtendfV �(U;H).(M5) If answer constitute a full simulation transcript then halt with output answer.[Comment: Otherwise answer = (H; (i; C); f(i; C)), with i =2 U ,and V �(H; (i; C); f(i; C)) is successful. Our aim now is to cover i](M6) Let H 0 be the maximal pre�x of H satisfying V �(H 0) = V �(H), and let r = f(i; C).(M7) Repeat up to k � 2k times(M8) Rede�ne f(i; C) at random di�erent than r:That is, select r0 uniformly in f0; 1gk n frg and let f(i; C) r0.(M9) Let answer ExtendfV �(U;H 0).[Comment: answer is an extension of H 0.](M10) If answer contains a success with respect to (i; C) then U  U [ fig and goto (M2).[Comment: In this case we have two di�erent successes w.r.t (i; C),since f(i; C) = r0 6= r. Thus, i got covered.][Comment: Otherwise we proceed to the next iteration of (M7).](M11) End [of inner repeat loop](M12) In case all attempts have failed, the procedure aborts with an error message.(M13) End [of outer repeat loop]Figure 2: The main simulation procedureA more precise description is provided in Figures 2 and 3, and the actual analysis presented belowrefers to this formal description. The main procedure (of Figure 2) attempts jIj+1 times to generate47



The procedure is invoked with some set U � I, partial transcript H and partially de�nedfunction f . Speci�cally, it is either invoked with a trivial partial transcript (i.e., H = x) orwith H so that (i; C) def= V �(H) and i =2 U . In the latter case, f is de�ned on (i; C), andV �(H; (i; C); f(i; C)) succeeds.ExtendfV �(U;H)(E1) Repeat till V �(H) halts(E2) (i0; C 0) V �(H) (assuming V �(H) does not halt).(E3) If f is not de�ned on (i0; C 0) then select r0 uniformly in f0; 1gk and let f(i0; C 0) r0.(E4) If V �(H; (i0; C 0); f(i0; C 0)) fails then H  (H; (i0; C 0); f(i0; C 0);?) and goto (E1).[Comment: Otherwise V �(H; (i0; C 0); f(i0; C 0)) succeeds.](E5) If i0 is covered (i.e., i0 2 I n U) then complete H as in Step (c) and goto (E1).[Comment: Otherwise i0 is not covered, and we return a partial transcript.](E6) return(H; (i0; C 0); f 0(i0; C 0)).[Comment: If (i0; C 0) = (i; C) we return a transcript containing a success w.r.t (i; C).](E7) End [of repeat loop][Comment: Reaching this point means completion of simulation.](E8) return(H). Figure 3: The Extend procedurea full transcript, while constructing the random function, f , on the y. Typically, each attemptwhich fails to generate a full transcript provides \progress" in the form of a new element beingcovered. The non-typical case, which (as we will show) occurs with negligible probability, is thatneither happens. Another thing to be proven is that the expected number of times that the mainprocedure repeats (M8){(M10) is inversely proportion to the probability that for uniformly chosenr 2 f0; 1gk it holds that V �(H 0; (i; C); r) succeeds, where H 0 and (i; C) are as de�ned in (M6). Theextension of transcripts, either initial ones as in (M4) or partial ones as in (M9), is performed (in astraightforward manner) by the Extend procedure depicted in Figure 3. In particular, once Extend\gets into trouble" (reaches a success w.r.t (i0; C 0) where i0 is uncovered) it returns control to themain procedure. In case Extend is invoked in (M4), we next try to get i covered. In case Extend isinvoked in (M9), if (i0; C 0) = (i; C) then we obtain a di�erent success to the one obtained already,and consequently i gets covered.Proposition 19 (Analysis of the main procedure): We consider a single execution of the outerloop in the main procedure.1. The total expected time spent in such an execution is poly(k).2. The probability that the the execution aborts with an error message is at most poly(k) � 2�k.Recall that, unless the execution aborts with an error message, it either completes a simulation ofthe game or provides a new covered element. Incorporating the abort event into the deviation ofthe simulator, we obtain a simulation of the game within expected time jIj � poly(k) = poly(k) anddeviation poly(k) � 2�k.Proof Sketch: The running-time of Extract is bounded by the running time of an execution ofthe real game, which in turn is polynomial in k. Thus, we may charge each invocation of Extract48



as unit cost. Our aim is to show that the expected charge accumulated in a single execution of theouter loop in the main procedure is poly(k).For every partial transcript H (and every U � I), denote by pH the probability that H appearsas a pre�x of a transcript generated by ExtendV �(U; x). By disjointness of the events correspondingto pre�xes of equal length we have PH pH = poly(k).Let us call H 0 interesting if the following two conditions hold: (1) V �(H 0) = (i; C) with i 2 U ,and (2) for every pre�x H 00 of H 0, it holds that V �(H 00) 6= V �(H 0). For every interesting H 0,denote by qH0 the probability that ExtendV �(U;H 0) contains a success with respect to V �(H 0) andfurthermore that this is the �rst success in the extension of H 0. Note that qH0 equals the probabilitythat a single execution of the outer loop of the main procedure determines H 0 as a maximal pre�xin (M6), conditioned on H 0 being a pre�x of ExtendV �(U; x). Thus, conditioned on the latter event,the inner loop is executed with probability qH0 . In case qH0 > 2�k (i.e., qH0 � 2 �2�k), each iterationof the inner loop covers i with probability2k � qH0 � 12k � 1 > qH0 � 2�kThus, the expected number of iteration of the inner loop is less than (qH0 � 2�k)�1 � 2=qH0 .Furthermore, with probability at least 1 � 2�k, the inner loop is not repeated more than 2k=qH0times. In case qH0 = 2�k, the number of iteration of the inner loop equals k � 2k = k=qH0 . Weconclude that the expected running time of a single iteration of the outer loop is at mostXH0:qH0=0 pH0 � 1 + XH0:qH0>0 pH0 � �qH0 � O(k)qH0 + (1� qH0) � 1� = poly(k)and Part 1 of the proposition follows.Part 2 follows easily by observing that the execution (of the outer loop) may be aborted onlyin two cases (relative to the current H 0 determined in (M6)). The �rst case is when qH0 > 2�k, but(as mentioned above) in this case abort happens with probability at most (1� (qH0=2))k2k < 2�k,since k � 2k � 2k=qH0 . The second case is when qH0 = 2�k, but in this case we reach (M6) withprobability pH0 � qH0 . Summing over all H 0's, the probability of abort is bounded above byXH0:qH0=2�k pH0 � qH0 + XH0:qH0>2�k pH0 � qH0 � 2�k � XH0 pH0 � 2�k = poly(k) � 2�kand Part 2 of the proposition follows.6.4 Almost constant-round rZK under weaker assumptionsUsing a perfectly-hiding commitment scheme which enjoys the trapdoor feature but not necessarilythe strong computational-binding feature, one may obtain resettable zero-knowledge computationally-sound proof system for NP in the public-key model. These protocols, however, have an unboundednumber of rounds. The idea is to use sequential repetitions of the basic protocols (both for Steps (2){(6) of the main protocol as well as for the POK sub-protocol) rather that parallel repetitions. Thatis, both Steps (2){(6) of the main protocol and the POK sub-protocol consists of parallel executionsof a basic protocol, and what we suggest here is to use sequential repetitions instead. The numberof (sequential) repetitions can be decreased by using Blum's protocol (rather than the one of [28])also as a basis for the main proof system (i.e., in Steps (2){(6)). To minimize round complexity, onemay use a parallel-sequential hybrid in which one performs s(n) sequential repetitions of a protocol49



composed of parallel execution of p(n) = O(log n) copies of the basic protocol (of Blum). Thisyields a O(s(n))-round resettable zero-knowledge computationally-sound proof system for NP inthe public-key model, for any unbounded function s : N!N. In particular, we obtainTheorem 20 Let r : N!N be any unbounded function which is computable in polynomial-time,and suppose that for every polynomial p and all su�ciently large n's, any circuit of size p(n) solvesDLP correctly only on a negligible fraction of the inputs of length n. Then every language in NPhas a r(�)-round resettable zero-knowledge computationally-sound proof system in the public-keymodel.Alternatively, we note that by using the perfectly-hiding commitment scheme PC1 also in roleof the (\weaker") scheme PC2, we obtain resettable zero-knowledge property also against sub-exponential adversaries. Speci�cally, even adversaries of running-time bounded by 2k� = 2K�2 gainnothing from the interaction, where K (the primary security parameter), k = K� (the secondarysecurity parameter) and � (the exponent in the strong computational-binding feature) are as above.6.5 An alternative presentation of resettable zero-knowledge systemsAn alternative presentation of the above protocol may proceed as follows: Rather than relyingon general proofs of knowledge we introduce an additional requirement from the PC1 commit-ment scheme. The new feature referred to as One-Or-All asserts that obtaining two di�erentdecommitments to the same commitment allows to (feasibly) decommit any way one wants. Inour application, the veri�er is supposed to know the trapdoor to an instance of the PC1 scheme,allowing it to decommit any way it wants. Thus, if the veri�er demonstrates ability to decom-mit at will then this e�ectively yields a proof of knowledge of the trapdoor. Put in other words,if the simulator may obtain from the veri�er (by rewinding, which is not possible for the actualprover) two di�erent decommitments to the same commitment then it can later decommit at will.Of course, the veri�er's demonstration of ability to decommit at will should be performed in a\zero-knowledge" manner. The natural protocol is to have the veri�er commit to a k-bit string,and later decommit any way as required by the prover. The natural way to (weakly) simulate thisis to select at random a single k-bit string, commit to it and hope that the prover will require todecommit to this value.References[1] M. Bellare and O. Goldreich, Proofs of Computational Ability. Crypto '92,August 1992. Full version available on the Theory of Cryptography Library,http://philby.ucsd.edu/old.html, Record Arc-03.[2] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the Error inComputationally Sound Protocols? In 38th FOCS, pages 374{383, 1997.[3] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micali and P. Rogaway.Everything Provable is Probable in Zero-Knowledge. In CRYPTO88, Springer-VerlagLNCS403, pages 37{56, 1990[4] M. Blum. Coin Flipping by Phone. IEEE Spring COMPCOM, pages 133{137, February1982. See also SIGACT News, Vol. 15, No. 1, 1983.50
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are computationally indistinguishable. From this point on, we identify the random-tape of P witha truly random function.Working in the concurrent model, W � handles the messages of V � as follows:1. V � initiates a new session: In this case W � initiates a new session with the prover P , obtainsits �rst message, denoted msg, and forwards msg to V �.(Here we capitalize on the fact that, by our hypothesis, independent sessions of P yieldthe very same �rst prover-message. This is important because V � always initiates the sameincarnation of P, and hence expects to always obtain the same �rst prover-message.)2. V � sends a new �rst-message: That is, we refer to the case where the current message sentby V � is the �rst veri�er-message in the current session (carried out by V � with P), andassume that this message is di�erent from all �rst-veri�er-messages sent in prior sessions. Letmsg0 denote the message sent by V �. Then W � sends msg0 to one of the sessions (which itcarries out with P ) that still awaits a �rst-veri�er-message,38 obtains the prover's response,and forwards it to V �. Finally, W � designates this session (with P ) as the active session ofmsg0, and stores the prover's response.(All subsequent sessions of V � in which the �rst-veri�er-message equals msg0 will be \served"by the single session of W � designated as the active session of msg0. Non-active sessions willnot be used (i.e., W � does not send any message in them).)3. V � repeats a �rst-message: That is, we refer to the case where the current message sent byV � is the �rst veri�er-message in the current session, and assume that this message equals a�rst-veri�er-message, msg0, sent in a prior session. In this case, W � retrieves from its storageP 's answer in the active session of msg0, and forwards it to V �.We stress that W � does not communicate with any session of P in this case. (Note that ifW � were to send the same message msg0 to two sessions of P then the responses could havedi�ered, whereas V � expects to see exactly the same answer in sessions in which it sends thesame msg0.)4. V � sends a valid non-�rst-message: That is, we refer to the case where V � sends a non-�rst-message in the current session and this message is valid; that is, P accepts it as valid as perDe�nition 5. (In this case, the message is essentially determined by the �rst-veri�er-messagein that session.)We stress that it is universally veri�able whether the current message of V � is valid or not(i.e., this depends only on the current and �rst veri�er-messages, and on all prover-messagesin the current session).We distinguish two cases, depending on whether this is the �rst time that a valid veri�er-message of the current round was sent in a session of V � in which the �rst veri�er-messageequals msg0, where msg0 is the �rst veri�er-message sent by V � in the current session. Let� > 1 denote the index of the current message sent by V �.(1) The current session is the �rst session in which the �rst veri�er-message equals msg0and the �th veri�er-message is valid: In this case W � forwards the current message tothe active session of msg0 (with P ), obtains P 's response, stores it, and forwards it toV �.38 Such a session exists since W � initiates a new session per each new session initiated by V �, whereas W � sendsat most one �rst veri�er-message per each such message sent by V �.54



(2) The current session is not the �rst session in which the �rst veri�er-message equalsmsg0 and the �th veri�er-message is valid: In this case W � does not communicate withany session of P . Instead, it merely retrieve the corresponding prover response fromits storage, and forwards it to V �. Note that the corresponding answer is stored in thehistory of the active session of msg0.(Note that by De�nition 5, it is infeasible for V � to send, in two sessions starting withany �xed veri�er-message, valid messages for the same round that di�er in their mainpart. Thus, the responses of P to valid �th messages, in sessions starting with any�xed veri�er-message, are identical. It follows that V � will be content with the identicalresponses supplied to it by W �.)5. V � sends an invalid non-�rst-message: That is, we refer to the case where V � sends a non-�rst-message in the current session and this message is invalid. In this case, W � just forwardsP 's standard abort message to V �.We stress that W � does not forward the invalid message of V � to any session of P , mostimportantly not to an active session. This allows W � to handle a corresponding valid messagethat may be sent by V � in a future session.6. V � terminates: When V � sends a termination message, which includes its output, W � justoutputs this message and halts.We stress that W � is de�ned to operate in the concurrent model. That is, in every session itinvokes with P , the action of the latter are independent of other sessions. In contrast, V � thatoperates in the (stronger) resettable model interacts with a single incarnation of P, and so theactions of P in various sessions are potentially related. Nevertheless, we claim that the output ofW � is computationally indistinguishable from the output of V �. The key observations justifyingthis claim refer to the actions of P in the various sessions invoked by V �:� In sessions having di�erent �rst-veri�er-messages, the actions of P are independent. This isbecause P determines its actions by applying a random function on the �rst-veri�er-message,and in this case the results are independent random-tapes.� In sessions having the same �rst-veri�er-message, the actions of P are practically determinedby that �rst message. This is because in this caseP determines the same random-tape, and theonly freedom of V � is essentially to choose at each message whether to send a predetermined(by the �rst-veri�er-message) value or to abort. Thus, the transcripts of all these sessionscorrespond to various augmented pre�xes of one predetermined transcript, where each pre�xis either the complete transcript or a strict pre�x of it augmented by an abort message.The corresponding transcripts (of imaginary sessions with P) are generated by W � by merelycopying from real sessions it conducts with P . Each set of P-sessions sharing the same �rst-veri�er-message, is generated from a single (distinct) session with P (called the active session ofthat message). The way in which W � handles invalid messages of V � guarantees that it neveraborts an active session, and so such a session can always be extended (up-to completion) to allowthe generation of all P-sessions sharing that �rst-veri�er-message. We stress again that W � doesnot need to (and in fact does not) abort a session in order to produce P's abort message; it merelydetermines whether P aborts and, if so, generates the standard abort message by itself.55



Comment: We emphasize the concurrent nature of the adversary W � constructed in the proofabove. If V � �rst abort a session with �rst-veri�er-message msg0, and later sends a correspondingvalid message in a later session with the same �rst-veri�er-message, then W � answers V � by ob-taining a response from the active session of msg0. However, the latter session was initiated at thetime when msg0 was �rst sent, and other sessions could have been initiated between the two timesin which V � sent msg0 as a �rst message. Thus, W � conducts concurrent sessions with P , althoughV � only interacts sequentially with P.B Commitment SchemesWe formally de�ne the various types of commitment schemes used in the main text. We start withthe more standard notion of a commitment scheme in which secrecy is preserved only w.r.t compu-tationally bounded adversaries, and later pass to the dual notion of a perfectly-hiding commitmentscheme (in which secrecy is preserved in an information theoretic sense). Recall that the bindingproperty in standard schemes is absolute (i.e., information theoretical), whereas in perfectly-hidingcommitment schemes it holds only w.r.t computationally bounded adversaries. But before de�ningany of these, let use de�ne a su�cient condition for the existence of all these schemes { a strongDLP assumption.B.1 The Strong DLP Intractability AssumptionThe Discrete Logarithm Problem (DLP) is de�ned as follows. On input p; g; y, where p is a prime, gis a primitive element in the multiplicative group modulo p, and y 2 Z�p, one has to �nd x such thatgx � y (mod p). We assume that this task is intractable also in the special case where p = 2q+1and q is a prime too. Such p's are often called safe primes, and the above assumption is quitestandard. It follows that the same would hold when g is of order q and so is y. Finally, we assumethat intractability refers to sub-exponential size circuits rather merely to super-polynomial ones.Thus we assume the following:The Strong DLP Assumption: For some � > 0, for every su�ciently large n, andevery circuit C of size at most 2n�Pr[C(p; g; gx mod p) = x] < 2�n�where the probability is taken uniformly over all n-bit long safe primes p, elements g oforder q def= (p� 1)=2, and x 2 Z�q.We comment that, although stronger than the standard assumption, the above Strong DLP As-sumption seems very reasonable.B.2 Standard Commitment SchemesBy a standard commitment scheme we refer to one providing computational-secrecy and absolute(or perfect) binding. For simplicity, we consider here only one-round commitment schemes.De�nition 22 (standard commitment scheme): A standard commitment scheme is a probabilisticpolynomial-time algorithm, denoted C satisfying:56



(Computational) Secrecy: For every v; u of equal poly(n)-length, the random variables C(1n; v)and C(1n; u) are computationally indistinguishable by circuits. That is, for every two polyno-mials p; q, all su�ciently large n's and all v; u 2 f0; 1gp(n) and every distinguishing circuit Dof size q(n), jPr[D(C(1n; v)) = 1] � Pr[D(C(1n; u)) = 1]j < 1q(n)(Perfect) Binding: For every v; u of equal poly(n)-length, the random variables C(1n; v) andC(1n; u) have disjoint support. That is, for every v; u and �, if Pr[C(1n; v) = �] andPr[C(1n; u) = �] are both positive then u = v.The way such a commitment scheme is used should be clear: To commit to a string v, under securityparameter n, the sender invokes C(1n; v) and sends the result as its commitment. The randomnessused by C during this computation, is to be recorded and can latter be used as a decommitment.A commitment scheme as above can be constructed based on any one-way permutation: Looselyspeaking, given a permutation f : D ! D with a hard-core predicate b (cf., [27]), one commits toa bit � by uniformly selecting x 2 D, and sending (f(x); b(x)� �) as a commitment.A strong version of the standard commitment scheme requires computational-secrecy to holdalso with respect to sub-exponential-size circuits (i.e., replace the polynomial q above by a functionf of the form f(n) = 2n� , for some �xed � > 0). This is analogous to the strong computational-binding feature discussed below. The Strong DLP Assumption implies the existence of such strongcomputational-secrecy commitment schemes.B.3 Perfectly-hiding Commitment SchemesWe start by de�ning two-round perfectly-hiding commitment schemes. In such schemes the party'sstrategies may be represented by two algorithms, denoted (S;R), for sender and receiver. Thesender has a secret input v 2 f0; 1g� and both parties share a security parameter n. Thus, the �rstmessage sent (by an honest receiver) is R(1n), and the response by a sender wishing to committo a value v (of length bounded by a polynomial in n) is S(1n; v; msg), where msg is the messagereceived in the �rst round. To \de-commit" to a value v, the sender may provide the coin tossesused by S when committing to this value, and the receiver may easily verify the correctness of thede-committed value.De�nition 23 (perfectly-hiding two-round commitment scheme): A perfectly-hiding two-roundcommitment scheme is a pair of probabilistic polynomial-time algorithms, denoted (S;R) satisfy-ing:(Perfect) Secrecy: For every mapping R� (representing a computationally-unbounded cheatingreceiver), and for every v; u of equal poly(n)-length, the random variables S(1n; v; R�(1n)) andS(1n; u;R�(1n)) are statistically close. That is, for every two polynomials p; q, all su�cientlylarge n's and all v; u 2 f0; 1gp(n)X� jPr[S(1n; v; R�(1n)) = �]� Pr[S(1n; u;R�(1n)) = �] j < 1q(n)(Computational) Binding: Loosely speaking, it should be infeasible for the sender, given themessage sent by the honest receiver, to answer in a way allowing it to later de-commit in twodi�erent ways. 57



In order to formulate the above, we rewrite the honest sender move, S(1n; v; msg), as con-sisting of uniformly selecting s 2 f0; 1gpoly(n;jvj), and computing a polynomial-time functionS0(1n; v; s; msg), where msg is the receiver's message. A cheating sender tries, given a receivermessage msg, to �nd two pairs (v; s) and (v0; s0) so that v 6= v0 and yet S0(1n; v; s; msg) =S0(1n; v0; s0; msg). This should be infeasible; that is, we require that for every polynomial-sizecircuit S� (representing a cheating sender invoked as part of a larger protocol), for everypolynomial p, all su�ciently large n'sPr[Vn 6= V 0n & S0(1n; Vn; Sn; R(1n)) = S0(1n; V 0n; S0n; R(1n)) ] < 1q(n)where (Vn; Sn; V 0n; S0n) = S�(1n; R(1n)).A perfectly-hiding two-round commitment scheme can be constructed using any claw-free collection(cf., [25]). In particular, it can be constructed based on the standard assumption regarding theintractability of DLP (as the latter yields a claw-free collection). Combing the two constructions, weget the following perfectly-hiding two-round commitment scheme: On input a security parametern, the receiver selects uniformly an n-bit prime p so that q def= (p � 1)=2 is prime, a element g oforder q in Z�p, and z in the multiplicative subgroup of Z�p formed by g, and sends the triple (p; g; z)over. To commit to a bit �, the sender �rst checks that (p; g; z) is of the right form (otherwise ithalts announcing that the receiver is cheating39), uniformly selects s 2 Zq, and sends gsz� mod pas its commitment.Additional features: The additional requirements assumed of the perfectly-hiding commitmentschemes in Section 6.3 can be easily formulated. The strong computational binding feature is formu-lated by extending the Computational Binding Property (of Def. 23) to hold for sub-exponentialcircuits S�. Again, the Strong DLP Assumption yields such a stronger binding feature. The trap-door feature requires the existence of a probabilistic polynomial-time algorithm R that outputs pairsof strings so that the �rst string is distributed as in R (above), whereas the second string allowsarbitrary decommitting. That is, there exists a polynomial-time algorithm A so that for every(msg; aux) in the range of R(1n), every v; u 2 f0; 1gpoly(n), and every s 2 f0; 1gpoly(n;jvj), satis�esS0(1n; v; s; msg) = S0(1n; u; A(aux; (v; s); u); msg)That is, a = A(aux; (v; s); u) is a valid decommit of the value u to the sender's commitment tothe value v (i.e., the message S0(1n; v; s; msg)). Thus, one may generate random commitments c(by uniformly selecting s and computing S0(1n; 0poly(n); s; msg)) so that later, with knowledge ofaux, one can decommit to any value u of its choice (by computing a = A(aux; (0poly(n); s); u)).The DLP construction (of above) can be easily modi�ed to satisfy the trapdoor feature: Actually,the known implementation for the random selection of z (in the subgroup generated by g) is toselect r uniformly in Z�q and set z = gr mod p. But in this case r is the trapdoor we need, sincegszv � gs+(v�u)rzu (mod p), and so we may decommit to u by presenting s+ (v � u)r mod q.C Blum's Proof of KnowledgeFor sake of self-containment, we �rst recall the de�nition of a proof of knowledge. The followingtext is reproduced from [22].39Actually, to �t the de�nition, the sender should commit via a special symbol which allows arbitrary decommit.Surely, such a commitment-decommit pair will be rejected by the honest receiver, which never cheats.58



C.1 Proofs of KnowledgePreliminariesLet R � f0; 1g� � f0; 1g� be a binary relation. Then R(x) def= fs : (x; s) 2 Rg and LR def= fx :9s s.t. (x; s) 2 Rg. If (x; s) 2 R then we call s a solution for x. We say that R is polynomiallybounded if there exists a polynomial p such that jsj � p(jxj) for all (x; s) 2 R. We say that Ris an NP relation if R is polynomially bounded and, in addition, there exists a polynomial-timealgorithm for deciding membership in R (i.e., LR 2 NP). In the sequel, we con�ne ourselves topolynomially bounded relations.We wish to be able to consider in a uniform manner all potential (knowledge) provers, withoutmaking distinction based on their running-time, internal structure, etc. Yet, we observe that theseinteractive machine can be given an auxiliary-input which enables them to \know" and to provemore. Likewise, they may be lucky to select a random-input which enables more than another.Hence, statements concerning the knowledge of the prover refer not only to the prover's programbut also to the speci�c auxiliary and random inputs it has. Hence, we �x an interactive machineand all inputs (i.e., the common-input, the auxiliary-input, and the random-input) to this machine,and consider both the corresponding accepting probability (of the veri�er) and the usage of this(prover+inputs) template as an oracle to a \knowledge extractor". This motivates the followingde�nition.De�nition 24 (message speci�cation function): Denote by Px;y;r(m) the message sent by machineP on common-input x, auxiliary-input y, and random input r, after receiving messages m. Thefunction Px;y;r is called the message speci�cation function of machine P with common-input x,auxiliary-input y, and random input r.An oracle machine with access to the function Px;y;r will represent the knowledge of machine P oncommon-input x, auxiliary-input y, and random input r. This oracle machine, called the knowledgeextractor, will try to �nd a solution to x (i.e., an s 2 R(x)). (As postulated below, the running timeof the extractor is inversely related to the corresponding accepting probability (of the veri�er).)Knowledge veri�ersNow that all the machinery is ready, we present the de�nition of a system for proofs of knowledge.At �rst reading, the reader may set the function � to be identically zero.De�nition 25 (System of proofs of knowledge): Let R be a binary relation, and � : N ! [0; 1].We say that an interactive machine V is a knowledge veri�er for the relation R with knowledge error� if the following two conditions hold.� Non-triviality: There exists an interactive machine P so that for every (x; y) 2 R all possibleinteractions of V with P on common-input x and auxiliary-input y are accepting.� Validity (with error �): There exists a probabilistic oracle machine K such that for everyinteractive machine P , every x 2 LR and every y; r 2 f0; 1g�, on input x and access to Px;y;rmachine K �nds a solution s 2 R(x) within expected time inversely proportional to p��(jxj),where p is the probability that V accepts x when interacting with Px;y;r. More precisely:Denote by p(x; y; r) the probability that the interactive machine V accepts, on input x, wheninteracting with the prover speci�ed by Px;y;r. Then if p(x; y; r) > �(jxj) then, on input x and59



access to oracle Px;y;r, machine K outputs a solution s2R(x) within an expected number ofsteps bounded above by poly(jxj)p(x; y; r)� �(jxj)The oracle machine K is called a universal knowledge extractor.When �(�) is identically zero, we just say that V is a knowledge veri�er for the relation R. Aninteractive pair (P; V ) so that V is a knowledge veri�er for a relation R and P is a machinesatisfying the non-triviality condition (with respect to V and R) is called a system for proofs ofknowledge for the relation R.C.2 Blum's ProtocolIn the main text, we consider k parallel repetitions of the following basic proof system for the Hamil-tonian Cycle (HC) problem which is NP-complete (and thus get proof systems for any language inNP). We consider directed graphs (and the existence of directed Hamiltonian cycles).Construction 26 (Basic proof system for HC):� Common Input: a directed graph G = (V;E) with n def= jV j.� Auxiliary Input to Prover: a directed Hamiltonian Cycle, C � E, in G.� Prover's �rst step (P1): The prover selects a random permutation, �, of the vertices V , andcommits to the entries of the adjacency matrix of the resulting permuted graph. That is, itsends an n-by-n matrix of commitments so that the (�(i); �(j))th entry is a commitment to1 if (i; j) 2 E, and is a commitment to 0 otherwise.� Veri�er's �rst step (V1): The veri�er uniformly selects � 2 f0; 1g and sends it to the prover.� Prover's second step (P2): If � = 0 then the prover sends � to the veri�er along with therevealing (i.e., preimages) of all commitments. Otherwise, the prover reveals to the veri�eronly the commitments to entries (�(i); �(j)) with (i; j) 2 C. In both cases the prover alsosupplies the corresponding decommitments.� Veri�er's second step (V2): If � = 0 then the veri�er checks that the revealed graph is indeedisomorphic, via �, to G. Otherwise, the veri�er just checks that all revealed values are 1 andthat the corresponding entries form a simple n-cycle. In both cases the veri�er checks that thedecommitments are proper (i.e., that they �ts the corresponding commitments). The veri�eraccepts if and only if the corresponding condition holds.We stress that the above protocol uses a standard commitment scheme.Proposition 27 The protocol which results by k parallel repetitions of Construction 26 is a proof ofknowledge of Hamiltonicity with knowledge error 2�k. Furthermore if, for every positive polynomialp, the commitment scheme used in Step (P1) maintain secrecy with respect to circuits of size p(n)�23kand distinguishing gap of 2�3k=p(n) then, for every positive polynomial q, the interaction can besimulated in time poly(n) �2k so that no circuit of size q(n) �22k can distinguish the simulation fromthe real interaction with gap of 2�2k=q(n) or more.60


