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1 IntroductionZero-Knowledge proofs, introduced by Goldwasser, Micali and Racko� [22, 23], are fascinatingand extremely useful constructs. Their fascinating nature is due to their seemingly contradictoryde�nition: they are both convincing and yet yield nothing beyond the validity of the assertionbeing proven. Their applicability in the domain of cryptography is vast: they are typically usedto force malicious parties to behave according to a predetermined protocol (which requires partiesto provide proofs of the correctness of their secret-based actions without revealing these secrets).Such applications are based on the fact, proven by Goldreich, Micali and Wigderson [19], that anylanguage in NP has a zero-knowledge proof system, provided that commitment schemes exist.1The related notion of a zero-knowledge argument was suggested (and implemented) by Brassard,Chaum and Cr�epeau [7], where the di�erence between proofs and arguments is that in the latterthe soundness condition refers only to computationally-bounded cheating provers.1.1 Composition of zero-knowledge protocolsA natural question regarding zero-knowledge proofs (and arguments) is whether the zero-knowledgecondition is preserved under a variety of composition operations. Three types of compositionoperation were considered in the literature, and we brie
y summarize what is known about them:1. Sequential composition: Here the protocol is invoked (polynomially) many times, where eachinvocation follows the termination of the previous one. At the very least, security (e.g., zero-knowledge) should be preserved under sequential composition, or else the applicability of theprotocol is highly limited (because one cannot safely use it more than once).Although the basic de�nition of zero-knowledge (as in the preliminary version of Goldwasseret. al. [22]) is not closed under sequential composition (cf. [18]), a minor augmentation of it (byauxiliary inputs) is closed under sequential composition (cf. [20]). Indeed, this augmentationwas adopted in all subsequent works (as well as in the �nal version of Goldwasser et. al. [23]).2. Parallel composition: Here (polynomially) many instances of the protocol are invoked atthe same time and proceed at the same pace. That is, we assume a synchronous model ofcommunication, and consider (polynomially) many executions that are totally synchronizedso that the ith round message in all instances is sent exactly (or approximately) at the sametime.Goldreich and Krawczyk presented a simple protocol that is zero-knowledge (in a strongsense), but is not closed under parallel composition (even in a very weak sense) [18]. Atthe time, their result was interpreted mainly in the context of round-e�cient error reduction;that is, the construction of full-
edge zero-knowledge proofs (of negligible soundness error) bycomposing (in parallel) a basic zero-knowledge protocol of high (but bounded away from 1)soundness error. Since alternative ways of constructing constant-round zero-knowledge proofs(and arguments) were found (cf. [17, 15, 8]), interest in parallel composition (of zero-knowledgeprotocols) has died. In retrospect, as we argue below, this was a conceptual mistake.We comment that parallel composition is problematic also in the context of reducing thesoundness error of arguments (cf. [3]), but our focus here is on the zero-knowledge aspect ofprotocols regardless if they are proofs, arguments or neither.1Or, equivalently [27, 24], that one-way functions exist.2



3. Concurrent composition: This notion generalizes both the previous ones. Here (polynomially)many instances of the protocol are invoked at arbitrary times and proceed at arbitrary pace.That is, we assume an asynchronous (rather than synchronous) model of communication.In the 1990's, when extensive two-party (and multi-party) computations became a reality(rather than a vision), it became clear that it is (at least) desirable that cryptographic pro-tocols maintain their security under concurrent composition (cf. [12]). In the context ofzero-knowledge, concurrent composition was �rst considered by Dwork, Naor, and Sahai [13].Their actual suggestions refer to a model of naturally-limited asynchronousness (which cer-tainly covers the case of parallel composition). Essentially, they assume that each party holdsa local clock such that the relative clock rates are bounded by an a-priori known constant,and consider protocols that employ time-driven operations (i.e., time-out in-coming mes-sages and delay out-going messages). This timing model is the main focus of the currentpaper.2 The previously known main results for this model were (cf. [13]):� Assuming the existence of one-way functions, every language inNP has a constant-roundconcurrent zero-knowledge argument.� Assuming the existence of two-round perfectly-hiding commitment schemes (which inturn imply one-way functions), every language in NP has a constant-round concur-rent �-knowledge proof, where �-knowledge means that (for every noticeable function� : N ! (0; 1]) a simulator working in time poly(n=�(n)) can produce output that is�-indistinguishable from the one of a real interaction.3Thus, no constant-round proofs forNP were previously known to be concurrent zero-knowledge(under the timing model).1.2 Our resultsOur main result closes the gap mentioned above, by showing that a known constant-round zero-knowledge proof for NP is actually concurrent zero-knowledge under the timing model. That is,we prove thatTheorem 1.1 The (�ve-round) zero-knowledge proof system for NP of Goldreich and Kahan [17]is concurrent zero-knowledge under the timing model.Thus, the zero-knowledge property of the proof system (of [17]) is preserved under any concurrentcomposition that satis�es the timing model. In particular, the zero-knowledge property is preservedunder parallel composition, a result we consider of independent interest.Recall that the proof system of [17] relies on the existence of two-round perfectly-hiding com-mitment schemes (which is implied by the existence of claw-free pairs of functions and implies theexistence of one-way functions). Thus, we get:Theorem 1.2 Assuming the existence of two-round perfectly-hiding commitment schemes, thereexists a (constant-round) proof system for NP that is concurrent zero-knowledge under the timingmodel.2We shortly discuss the pure asynchronous model below.3For further discussion of �-knowledge, see Section 1.5.3



Using the same techniques, we can show that several other known (constant-round) zero-knowledge protocols remain secure under the concurrent timing-model. Examples include the(constant-round) zero-knowledge arguments of Fiege and Shamir [15] and of Bellare, Jakobssonand Yung [4]. The latter protocol (referred to as the BJY-protocol) is of special interest since it isa four-round argument for NP that relies only on the existence of one-way functions. The aboveprotocols are simpler (and use fewer rounds) than the argument systems previously shown (in [13])to be concurrent zero-knowledge (under the timing-model), alas their security (under this model)is established by a more complex simulator. (See further details in the appendix.)1.3 Discussion of some issuesWe stress that when we talk of composition of protocols (or proof systems) we mean that the honestusers are supposed to follow the prescribed program (speci�ed in the protocol description) that refersto a single execution. That is, the actions of honest parties in each execution are independent of themessages they received in other executions. The adversary, however, may coordinate the actions ittakes in the various executions, and in particular its actions in one execution may depend also onmessages it received in other executions.Let us motivate the asymmetry between the independence of executions assumed of honestparties but not of the adversary. Coordinating actions in di�erent executions is typically di�cultbut not impossible. Thus, it is desirable to use composition (as de�ned above) rather than to useprotocols that include inter-execution coordination-actions, which require users to keep track ofall executions that they perform. Actually, trying to coordinate honest executions is even moreproblematic, because one may need to coordinate executions of di�erent honest parties (e.g., allemployees of a big cooperation or an agency under attack), which in many cases is highly unrealistic.On the other hand, the adversary attacking the system may be willing to go into the extra troubleof coordinating its attack on the various executions of the protocol.Auxiliary inputs and non-uniformity: As mentioned above, almost all work on zero-knowledgeactually refer to zero-knowledge with respect to (non-uniform) auxiliary inputs. This work is noexception, but (as in most other work) the reference to auxiliary inputs is typically omitted. Wecomment that zero-knowledge with respect to auxiliary inputs \comes for free" whenever zero-knowledge is demonstrated (like in this work) via a black-box simulator (see below). The onlything to bear in mind is that allowing the adversary (non-uniform) auxiliary inputs means thatthe computational assumption that are used need to be non-uniform ones. For example, when wetalk of computational-binding (resp., computational-hiding) commitment schemes we mean thatthe binding (resp., hiding) property holds with respect to any family of polynomial-size circuits(rather than with respect to any probabilistic polynomial-time algorithm).Expected polynomial-time simulators: With the exception of the recent (constant-round)zero-knowledge argument of Barak [1], all previous constant-round arguments (or proofs) utilizean expected polynomial-time simulator (rather than a strict polynomial-time simulator). (Indeedour work inherits this \feature" of [17].) As recently shown by Barak and Lindell [2], this is nocoincidence, because all the above (with the exception of [1]) utilize black-box simulators, whereasno strict polynomial-time black-box simulator can demonstrate the zero-knowledge property of aconstant-round argument system for a language out of BPP .
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Black-box simulation: The de�nition of zero-knowledge (only) requires that the interaction ofthe prover with any cheating (probabilistic polynomial-time) veri�er be simulateable by an ordinaryprobabilistic polynomial-time machine (which interacts with no one). A black-box simulator is onethat can simulate the interaction of the prover with any such veri�er when given oracle access tothe strategy of that veri�er. All previous zero-knowledge arguments (or proofs), with the exceptionof the recent (constant-round) zero-knowledge argument of Barak [1], are established using a black-box simulator, and our work is no exception (i.e., we also use a black-box simulator). Indeed, Barakdemonstrated that (contrary to previous beliefs) non-black-box simulators may exist in cases whereblack-box ones do not exist [1]. However, black-box simulators, whenever they exist, are preferableto non-black-box ones, because the former o�ers greater security: Firstly, as mentioned above,black-box simulators imply zero-knowledge with respect to auxiliary inputs.4 Secondly, black-boxsimulators imply polynomial bounds on the knowledge tightness, where knowledge tightness is the(inverse) ratio of the running-time of any cheating veri�er and the running-time of the correspondingsimulation [16, Sec. 4.4.4.2].5Perspective: the pure asynchronous model. Regarding the pure asynchronous model, thecurrent state of the art is as follows:� Black-box simulator cannot demonstrated the concurrent zero-knowledge property of non-trivial proofs (or arguments) having signi�cantly less than logarithmically many rounds (cf.Canetti et. al. [10]).6� Every language in NP has a concurrent zero-knowledge proof with poly-logarithmically manyrounds, and this can be demonstrated using a black-box simulator (cf. Kilian and Petrank [25]building upon [28]).� Recently, Barak [1] demonstrated that the \black-box simulation barrier" can be bypassed.With respect to concurrent zero-knowledge he only obtains partial results: constant-roundzero-knowledge arguments (rather than proofs) for NP that maintain security as long as ana-priori bounded (polynomial) number of executions take place concurrently. (The length ofthe messages in his protocol grows linearly with this a-priori bound.)7Thus, it is currently unknown whether constant-round arguments for NP may be concurrent zero-knowledge (in the pure asynchronous model).On the timing model: The timing model consists of the assumption that talking about theactual timing of events is meaningful (at least in a weak sense) and of the introduction of time-driven operations. The timing assumption amounts to postulating that each party holds a local clock4In contrast, whether or not a non-black-box simulator implies zero-knowledge with respect to auxiliary inputs,depends on the speci�c simulator: In fact, in [1], Barak �rst presents (as a warm-up) a protocol with a non-black-boxsimulator that cannot handle auxiliary inputs, and next uses a more sophisticated construction to handle auxiliaryinputs.5That is, a protocol is said to have knowledge tightness k :N!R if for some polynomial p and every probabilisticpolynomial-time veri�er V � the interaction of V � with the prover can be simulated within time k(n) � TV �(n) + p(n),where TV � denotes the time complexity of V �. In fact, the running-time of the simulator constructed by Barak [1] ispolynomial in TV � , and so the knowledge tightness of his protocol is not bounded by any polynomial.6By non-trivial proof systems we mean ones for languages outside BPP, whereas by signi�cantly less than loga-rithmic we mean any function f :N!N satisfying f(n) = o(log n= log log n).7We are quite sure that Barak's arguments remain zero-knowledge under concurrent executions that satisfy thetiming model. But since these are arguments (rather than proofs) such a result will not improve upon the previouslyknown result of [13] (which uses black-box simulations). 5



and knows a global bound, denoted � � 1, on the relative rates of the local clocks.8 Furthermore,it is postulated that the parties know a (pessimistic) bound, denoted �, on the message-deliverytime (which also includes the local computation and handling times). In our opinion, these timingassumptions are most reasonable, and are unlikely to restrict the scope of applications for whichconcurrent zero-knowledge is relevant. We are more concerned about the e�ect of the time-drivenoperations introduced in the timing model. Recall that these operations are the time-out of in-coming messages and the delay of out-going messages. Furthermore, typically (and in fact alsoin our work), the delay period is at least as long as the time-out period, which in turn is at least� (i.e., the time-out period must be at least as long as the pessimistic bound on message-deliverytime so not to disrupt the proper operation of the protocol). This means that the use of these time-driven operations yields slowing down the execution of the protocol (i.e., running it at the rate ofthe pessimistic message-delivery time rather than at the rate of the actual message-delivery time,which is typically much faster). Still, in absence of more appealing alternatives (i.e., a constant-round concurrent zero-knowledge protocol for the pure asynchronous model), the use of the timingmodel may be considered reasonable. (We comment than other alternatives to the timing-modelinclude various set-up assumptions; cf. [9, 11].)On parallel composition: Given our opinion about the timing model, it is not surprising thatwe consider the problem of parallel composition almost as important as the problem of concurrentcomposition in the timing model. Firstly, it is quite reasonable to assume that the parties' localclocks have approximately the same rate, and that drifting is corrected by occasional clock synchro-nization. Thus, it is reasonable to assume that the parties have approximately-good estimate ofsome global time. Furthermore, the global time may be partitioned into phases, each consisting ofa constant (e.g., 5) number of rounds, so that each party wishing to execute the protocol just delaysits invocation to the beginning of the next phase. Thus, concurrent execution of (constant-round)protocols in this setting amounts to a sequence of (time-disjoint) almost-parallel executions of theprotocol. Consequently proving that the protocol is parallel zero-knowledge su�ces for concurrentcomposition in this setting.1.4 TechniquesTo discuss our techniques, let us �x a timing assumption (i.e., a-priori bound on local clock rates)and consider a c-round protocol that utilizes appropriately selected time-out and delay mecha-nisms (which depend on the above bound as well as on a bound on normal message-delivery time).The reader may think of the bound on local clock rates as being close to 1 (or even just 1; i.e.,equal rates), and of c as being a constant (in fact, we will use c = 5). Furthermore, suppose thatall prover's actions in the protocol are time-driven (by the time-out and delay mechanisms).A key observation underlying our work is that a concurrent scheduling (of such protocol in-stances) under the timing model can be decomposed into a sequence of parallel executions (orblocks) such that the number of simultaneously active parallel blocks is bounded by O(c), wherethe constant in the O-notation depends on the a-priori known bound on the relative clock rates.(Indeed, it is instructive to consider a �xed scheduling, but the observation extends to schedulingsthat are dynamically-chosen by the adversary.) This (simple) observation applies whenever thetiming model is used (and is not restricted to the context of zero-knowledge), and it may be usefultowards the analysis of the concurrent execution of any set of protocols under the timing model.8The rate should be computed with respect to reasonable intervals of time; for example, for � as de�ned below, onemay assume that a time period of � units is measured as �0 units of time on the local clock, where �=� � �0 � ��.6



Let us restate the above observation in concrete terms, assuming (for sake of simplicity) thatthe clock rates are all equal, that the prover utilizes equal delays between its messages, and thatthese delays are four times the length of the time-out period: Then, any scheduling of executions(of protocol instances) that respect this timing model can be decomposed into sub-schedules suchthat the following hold:91. Each sub-schedule consists of an almost-parallel execution of instances of the protocol. Thatis, each sub-schedule can be partitioned into c disjoint time intervals such that round i in eachinstance take place within the ith time-interval. (Here we allow to arbitrary delay messagessent by the veri�er (as long as the time-out condition is not violated), since this only increasesthe adversary's power.)2. The number of sub-schedules that are active (i.e., have some active protocol instance) at anygiven time is at most 8c.In view of the above, it is quite natural to conclude that in order to handle the concurrent timingmodel it su�ces to deal with two extreme schedulings: the parallel scheduling and the bounded-simultaneity scheduling. Indeed, this conclusion is essentially correct in our case.Handling parallel composition. At �rst glance, one may be tempted to say that the techniquesused for proving that the Goldreich{Kahan (GK) protocol is zero-knowledge [17] extend to showingthat it remains zero-knowledge under parallel composition. This would have been true if we werehandling coordinated parallel executions of the GK-protocol (where the prover would abort allcopies if the veri�er decommits improperly in any of them). However, this is not what we arehandling here (i.e., parallel composition refers to uncoordinated parallel execution of many copiesof the protocol). Consequently, a couple of new techniques are introduced in order to deal withthe parallel composition of the GK-protocol. We consider these simulation techniques to be ofindependent interest.Handling bounded-simultaneity concurrent composition. Experts in the area may not �ndit surprising that the GK-protocol remains zero-knowledge under bounded-simultaneity concurrentcomposition. In fact, previous work (e.g., [13]) suggest that the di�culty in simulating concurrentexecutions of the GK-protocol arises from the case in which a large number of instances is executedin a \nested" (and in particular simultaneous) manner.10 Furthermore, the work of Richardson9For example, we can place protocol instances in sub-schedules according to their invocation time. Speci�cally,let us consider the length of the time-out period as one time unit (and so the delays have length 4). Next, consider(consecutive and non-overlapping) time-intervals having unit length, and place an instance in the ith sub-schedule ifit is invoked during the ith time-interval. Clearly, the ith and jth sub-schedules are simultaneously active (at sometime) only if ji�jj < 4c, and so Condition 2 holds. Observe that the ith sub-schedule can be partitioned to c intervalssuch that Condition 1 holds: Suppose (as is the case in our protocol) that the prover sends the �rst message and thatc = 2d+ 1. Observe that, for any instance placed in the ith sub-schedule and k = 1; :::; d, the k + 1st prover message(coming after k delays) is sent at time t+ 4k, where t 2 [i; i + 1) is the invocation time of the instance, and so it issent within the time interval [i + 4k; i + 4k + 1). By virtue of the time-out mechanism, the k + 1th veri�er messageis received during the time interval [t+ 4k; t+ 4k + 1) � [i+ 4k; i+ 4k+ 2), and by some delaying we may assume itoccurs within the time interval [i + 4k + 2; i + 4k + 3). Thus, a partition as in Condition 1 is obtained. Notice thatthe above analysis extends to the case that the clock rates are within a factor of 1 + (1=2c) of one another, becausethe clock drift accumulated during the execution of one protocol instance is less than one time unit.10In fact, even if each level of nesting only multiplies the simulation time by a factor of 2, we get an exponentialblow-up. 7



and Kilian [28] suggests that certain (related) protocols may be zero-knowledge under bounded-simultaneity concurrent composition. Still, to the best of own knowledge, such a technically-appealing result has not been proven before. We prove the result by using a rather straightforwardapproach, which nevertheless requires careful implementation. We stress that not every zero-knowledge protocol remains zero-knowledge under bounded-simultaneity concurrent composition:Goldreich and Krawczyk presented a simple (constant-round) protocol that is zero-knowledge, butparallel execution of two instances of it is not zero-knowledge [18].Combining the two techniques, we show that the GK-protocol is concurrent zero-knowledgeunder the timing model. This is shown by using the abovementioned decomposition, and ap-plying the bounded-simultaneity simulator to the sub-schedules while incorporating the parallel-composition simulator inside of it. Note that the bounded-simultaneity simulator handles thespecial case in which each sub-schedule contains a single copy, and does so by employing the single-copy simulator. Capitalizing on the high-level similarity of the parallel-composition simulator andthe single-copy simulator, we just need to extend the bounded-simultaneity simulator by incorpo-rating the former simulator in it. (Our presentation of the bounded-simultaneity simulator usesterminology that makes this extension quite easy.)1.5 Zero-knowledge versus �-knowledgeRecall that �-knowledge means that for every noticeable function (i.e., a reciprocal of a positivepolynomial) � : N ! (0; 1] there exists a simulator working in time poly(n=�(n)) that producesoutput that is �-indistinguishable from the one of a real interaction, where �-indistinguishability ofthe ensembles fX�g and fY�g, means that for every e�cient procedure (e.g., a polynomial-timealgorithm) D, jPr[D(�;X�)=1]� Pr[D(�; Y�)=1]j < �(j�j) + �(j�j)where � is a negligible function.11Indeed, as mentioned in [13], �-knowledge does provide some level of security. However, thislevel of security is lower than the one o�ered by the standard notion of zero-knowledge, and moreso when compared to simulators with bounded knowledge tightness (as discussed above; cf. [16,Sec. 4.4.4.2]). Furthermore, unlike zero-knowledge, the notion of �-knowledge is not closed undersequential composition (i.e., t sequential executions of a �-knowledge protocol yield a t ��-knowledge(rather than �-knowledge) protocol).Expected polynomial-time simulators versus �-knowledge. The above discussion appliesalso to the comparison of �-knowledge and zero-knowledge via expected polynomial-time simula-tors (rather than via strict polynomial-time simulators). Furthermore, simulation by an expectedpolynomial-time simulator implies �-knowledge simulator (running in strict time inversely pro-portional to �).12 The converse does not hold (e.g., consider a prover that, for i = 1; 2:::, withprobability 2�i sends the result of a BPTime(22i)-complete computation).11Indeed, the standard notion of computational indistinguishability [21, 29] is a special case obtained by setting� � 0.12This can be seen by truncating all runs of the original simulator that exceed its expected running-time by a factorof 1=� (or so).
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1.6 OrganizationIn Section 2, we recall some basic notions as well as review the GK-protocol (i.e., the �ve-roundzero-knowledge proof system of Goldreich and Kahan [17]). In Section 3 we prove that the GK-protocol remains zero-knowledge under parallel composition. In Section 4 we prove that the GK-protocol remains zero-knowledge under bounded-simultaneity concurrent composition. In Section 5,we augment the GK-protocol with adequate time-out and delay mechanisms, and prove that theresulting protocol is concurrent zero-knowledge under the timing model. We conclude (cf. Section 6)with an attempt to de�ne a class of protocols to which our techniques can be applied.2 BackgroundRecall that an interactive proof system for a language L is a (randomized) protocol for two par-ties, called veri�er and prover, allowing the prover to convince the veri�er to accept any commoninput in L (completeness), while guaranteeing that no prover strategy may fool the veri�er toaccept inputs not in L (soundness), except than with negligible probability. The prescribed ver-i�er strategy is always required to be probabilistic polynomial-time. Furthermore, like in otherapplication-oriented works, we focus on prescribed prover strategies that can be implemented inprobabilistic polynomial-time given adequate auxiliary input (e.g., an NP-witness in case of NP-languages). Recall that the latter refers to the prover prescribed for the completeness condition,whereas (unlike in argument systems [7]) soundness must hold no matter how powerful the cheat-ing prover is. Zero-knowledge is a property of some prover-strategies. Loosely speaking, it meansthat anything that is feasibly computable by (possibly improperly) interacting with the prover, canbe feasibly computable without interacting with the prover. That is, the most basic de�nition ofzero-knowledge (of a prover P w.r.t L) requires that, for every feasible veri�er strategy V �, thereexists a feasible simulator M� so that the following two probability ensembles are computationallyindistinguishable:1. fhP; V �i(x)gx2L def= the output of V � when interacting with P on common input x 2 L; and2. fM�(x)gx2L def= the output of M� on input x 2 L.2.1 Expected polynomial-time simulation and black-box simulationAs discussed in the introduction, we allow the simulator to run in expected probabilistic polynomial-time (rather than strict probabilistic polynomial-time), but require it to be implemented by auniversal machine that get oracle access to the strategy V �. See [16, Sec. 4.3.1.6] (resp., [16,Sec. 4.5.4.2] and [1]) for further discussion of the �rst (resp., second) issue.De�nition 2.1 (black-box zero-knowledge):� Next message function: Let B be an interactive Turing machine, and x; z; r be strings rep-resenting a common-input, auxiliary-input, and random-input, respectively. Consider thefunction Bx;z;r(�) describing the messages sent by machine B so that Bx;z;r(m) denotes themessage sent by B on common-input x, auxiliary-input z, random-input r, and sequence ofincoming messages m. For simplicity, we assume that the output of B appears as its lastmessage.� Black-box simulator: We say that an expected probabilistic polynomial-time oracle machineM is a black-box simulator for the prover P and the language L if for every polynomial-time interactive machine B, every probabilistic polynomial-time oracle machine D, every9



polynomial p(�), all su�ciently large x 2 L, and every z; r 2 f0; 1g�:���Pr hDBx;z;r(hP;Br(z)i(x))=1i � Pr hDBx;z;r(MBx;z;r(x))=1i��� < 1p(jxj)where Br(z) denotes the interaction of machine B with auxiliary-input z and random-input r.� We say that P is black-box zero knowledge if it has a black-box simulator.As discussed by Canetti et. al. [10], the above de�nition is too restrictive for de�nition of (un-bounded) composition, where the adversary B may invoke a (polynomial) number of sessions withP but this polynomial is not a-priori known. One solution is to consider for each polynomial a dif-ferent universal simulator that can handle all adversaries that invoke at most a number of sessions(with B) that is bounded by that polynomial. For simplicity, we adopt this solution here.2.2 Parallel and concurrent zero-knowledge and the timing modelThe de�nition of parallel and concurrent zero-knowledge are derived from De�nition 2.1 by con-sidering appropriate adversaries (i.e., adversarial veri�ers). In case of parallel zero-knowledge, weconsider adversaries that simultaneously initiate a polynomial number of copies of P and inter-act with this multitude of copies in a synchronized way (i.e., send their ith message to all copiesat the same time). In case of concurrent zero-knowledge, we consider adversaries that initiate apolynomial number of copies of P and interleave their interaction with this multitude of copies inan arbitrary way. In case of concurrent zero-knowledge under the timing model, the interleavingof executions by the adversary must satisfying the timing model. (Without loss of generality wemay assume that the adversary never violates the time-out condition; it may instead send an illegalmessage at the latest possible adequate time.) Furthermore, without loss of generality, we mayassume that all the adversary's messages are delivered at the latest possible adequate time.132.3 The Goldreich{Kahan (GK) protocol [17]Loosely speaking, the Goldreich{Kahan (GK) proof system for Graph 3-Colorability (G3C) pro-ceeds in four steps:1. The veri�er commits to a challenge (i.e., sequence of edges).2. The prover commits to a sequence of values (i.e., the colors of each vertex under severalrandom relabelings of a 3-coloring of the graph).3. The veri�er decommits (to the edge-sequence).4. If the veri�er has properly decommits then the prover decommits to a subset of the values asindicated by the decommitted challenge. Otherwise the prover sends nothing.(Speci�cally, the query is a sequence of edges each associated with an independently selected3-coloring of the graph, and the prover decommits to the values corresponding to the end-points of the ith edge with respect to the ith committed coloring.)13In general, the prover may be modi�ed so that a time-out condition applied to the veri�er's message is alwaysfollowed by at least an similar delay of the next prover message. (Indeed, this may slow down some executions inwhich the veri�er is honest, but never slows them down by more than can be caused by a cheating veri�er.) Wecomment that this modi�cation is unnecessary in our protocol (of Section 5), since it already satis�es the aboveconvention. 10



The speci�c details of each of these steps are not important to our analysis. Still, for sake of clarity,we reproduced these details in Construction 2.2 (below). We highlight a couple of points that arerelevant to the analysis: Firstly, the prover's commitment is via a commitment scheme that is(only) computationally-hiding, and so commitments to di�erent values are (only) computationally-indistinguishable (which considerably complicates the analysis; cf. [17]). Secondly, the veri�er'scommitment is via a commitment scheme that is (only) computationally-binding, and so it is(only) infeasible for it to properly decommits in two di�erent way (which slightly complicates theanalysis).Implementation Details: The Goldreich{Kahan protocol [17] utilizes two \dual" commitmentscheme (see terminology in [16, Sec. 4.8.2]). The �rst commitment scheme, denoted C, is usedby the prover and has a perfect-binding property. For simplicity, we assume that this scheme isnon-interactive, and denote by C(v) a random variable representing the output of C on input v(i.e., a commitment to value v).14 The second commitment scheme, denoted C, is used by theveri�er and has a perfect-hiding property. Such a scheme must be interactive, and we assumethat it consists of the receiver sending a random index, denoted �, and the committer respondsby applying the randomized process C� to the value it wishes to commit to (i.e., C�(v) = C(�; v)represents a commitment to v relative to the receiver's message �). Consequently, Step 1 in thehigh-level description is implemented by Steps P0 and V1 below.Construction 2.2 (The GK zero-knowledge proof for G3C):Common Input: A simple (3-colorable) graph G=(V;E).Let n def= jV j, V = f1; :::; ng, and t def= 2n � jEj.Auxiliary Input to the Prover: A 3-coloring of G, denoted  .Prover's preliminary step (P0): The prover invokes the commit phase of the perfectly-hiding com-mitment scheme, which results in sending to the veri�er a message �.Veri�er's commitment to a challenge (V1): The veri�er uniformly and independently selects a se-quence of t edges, e def= ((u1; v1); :::; (ut; vt)) 2 Et, and sends to the prover a random com-mitment to these edges. Namely, the veri�er uniformly selects s 2 f0; 1gpoly(n), and sendsc def= C�(e; s) to the prover.Motivating Remark: At this point the veri�er is committed to a sequence of t edges. (Thiscommitment is of perfect secrecy.)Prover's commitment step (P1): The prover uniformly and independently selects a sequence of trandom relabeling of the 3-coloring  , and sends the veri�er commitments to the color ofeach vertex under each of these colorings. That is, the prover uniformly and independentlyselects t permutations, �1; :::; �t, over f1; 2; 3g, and sets �j(v) def= �j( (v)), for each v 2 Vand 1 � j � t. It uses the perfectly-binding commitment scheme to commit itself to thecolors of each of the vertices according to each 3-coloring. Namely, the prover uniformly andindependently selects r1;1; :::; rn;t 2 f0; 1gn, computes ci;j = C(�j(i); ri;j), for each i 2 V and1�j� t, and sends c1;1; :::; cn;t to the veri�er.14Non-interactive perfectly-binding commitment schemes can be constructed using any one-way permutation. Incase one wishes to rely here only on the existence of one-way functions, one may need to use Naor's two-roundperfectly-binding commitment scheme [27]. This calls for minor modi�cation of the description below.11



Veri�er's decommitment step (V2): The veri�er decommits the sequence e = ((u1; v1); :::; (ut; vt))to the prover. Namely, the veri�er send (s; e) to the prover.Motivating Remark: At this point the entire commitment of the veri�er is revealed. Theveri�er now expects to receive, for each j, the colors assigned by the jth coloring to verticesuj and vj (the endpoints of the jth edge in e).Prover's partial decommitment step (P2): The prover checks that the message just received fromthe veri�er is indeed a valid revealing of the commitment c made by the veri�er at Step (V1)(i.e., it checks that c = C�(e; s) indeed holds). Otherwise the prover halts immediately. Letus denote the sequence of t edges, just revealed, by (u1; v1); :::; (ut; vt). The prover reveals(to the veri�er), for each j, the jth coloring of vertices uj and vj, along with appropriatedecommitment information. Namely, the prover sends to the veri�er the sequence of four-tuples (ru1;1; �1(u1); rv1;1; �1(v1)); :::; (rut;t; �t(ut); rvt;t; �t(vt))Veri�er's local decision step (V3): The veri�er checks whether, for each j, the values in the jthfour-tuple constitute a correct revealing of the commitments cuj ;j and cvj ;j, and whether thecorresponding values are di�erent. Namely, upon receiving (r1; �1; r01; �1) through (rt; �t; r0t; �t),the veri�er checks whether for each j, it holds that cuj ;j = C(�j; rj), cvj ;j = C(�j; r0j), and�j 6= �j (and both are in f1; 2; 3g). If all conditions hold then the veri�er accepts. Otherwiseit rejects.Goldreich and Kahan proved that Construction 2.2 constitute a (constant-round) zero-knowledgeinteractive proof for Graph 3-Colorability [17]. (We brie
y review their simulator below.) Our�rst goal is to show that the zero-knowledge property (of Construction 2.2) is preserved underparallel composition. We later extend the result to yield concurrent zero-knowledge under thetiming-model.High level description of the simulator used in [17]. The simulator (using oracle access tothe veri�er's strategy) proceeds in three main steps:The Scan Step: The simulator emulates Steps (P0){(V2), by using commitments to dummy valuesin Step (P1), and obtained the veri�er's decommitment for Step (V2), which may be eitherproper or not. In case of improper decommitment the simulator outputs the partial transcriptjust generated and halts.The Approximation Step: For technical reasons (discussed in [17]), the simulator next approxi-mates the probability that the �rst scan ended with a proper decommitment. (This is doneby repeated trials, each as in the �rst scan, until some polynomial number of proper decom-mitments is found.)The Generation Step: Using the (proper) decommitment information, obtained in the �rst scan,the simulator repeatedly tries to generate a full transcript by emulating Steps (P0){(P2), usingcommitments to \pseudo-colorings" that do not \violate the coloring conditions imposed bythe decommitted edges". The number of trials is inversely proportional to the probabilityestimated in the approximation step.
12



3 Simulator for the Parallel CaseRecall that the GK-protocol proceeds in four (abstract) steps:1. The veri�er commits to a challenge.(The actual implementation is by two rounds/messages.)2. The prover commits to a sequence of values.(The challenge speci�es a subset of these values.)3. The veri�er decommits (either properly or not).4. Pending on the veri�er's proper decommitment, the prover decommits to the correspondingvalues.The basic approach towards simulating this protocol (without being able to answer a randomchallenge) is to �rst run the �rst three steps with prover-commitments to arbitrary (dummy) values,obtaining the challenge, and then rewind to Step 2 and make a prover-commitment that passes thisspeci�c challenge (alas no other challenge). In case the veri�er always decommits properly, thisallows to easily simulate a full run of the protocol. In case the veri�er always decommits improperly,things are even easier since in this case we only need to simulate Steps 1{3. The general case iswhen the veri�er decommits with some probability. Intuitively, this can be handled by outputtingthe initial transcript of Steps 1{3 in case it contains an improper decommitment, and repeatedlytrying to produce a full passing transcript (as in the �rst case) otherwise. Di�culties arise in casethe probability of proper veri�er decommitment is small but not negligible and furthermore whenit depends (in a negligible way) on whether the prover commits to dummy or to \passing" values.Indeed, the focus of [17] is on resolving this problem (and their basic approach is to approximatethe probability of proper decommitment in case of dummy values, and keep trying to produce afull passing transcript for at most a number of times that is inversely proportional to the latterprobability).The problem we face here is more di�cult: several (say n) copies of the protocol are executedin parallel and the veri�er may properly decommit in some of them but not in others. Thus,there are 2n possible con�gurations of proper/improper decommitment in these n copies, and wecertainly cannot insist on rewinding until we obtain again the same con�guration (e.g., they maybe all equally likely). Instead, referring to the n probabilities corresponding to each of the ncopies performing proper decommitment, we add additional rewinding in which we try to obtaina proper decommit from all copies that have at least as high a probability as the copies thatactually performed proper-decommitment in the initial simulated run. Once this is obtained, wetry to generate a parallel run in which only copies having at least as high a probability (but notnecessarily all of them!) properly decommit. Furthermore, in order not to skew the distribution(towards high proper-decommitment probabilities), we insist on having at least one copy with acorresponding probability as low as some copy in the initial run. As one may expect, the problemis to pick thresholds such that the above discussion may be e�ciently implemented. We start byclarifying the above discussion.3.1 A high level descriptionAs is clear from the above discussion, the following basic notions are central to our analysis:An execution of a copy is said to properly decommit if the veri�er message in Step 3 is a validdecommitment to its (i.e., the veri�er's) commitment in Step 1. In the �rst part of the simulation, weuse prover's commitments to arbitrary values, which are referred to as commitment to dummy values.13



Later we use commitments to values that will pass for a certain challenge (which is understoodfrom the context). These are called commitment to passing values.15 In addition, we also refer tothe following more complex notions and notations:� Let pi denote the probability that the veri�er properly decommits in the ith copy of theparallel run, when Step 2 is played with commitment to dummy values. (When using othercommitments (e.g., passing commitments) the probability of proper decommitment may bep0i such that jp0i � pij is negligible.)� We use a sequence of thresholds, denoted t1; :::; tn, that will be determined (probabilistically)on the 
y such that1. tj 2 (2�(j+1); 2�j),2. no pi lies in the interval [tj � (1=9n) � 2�j ].Such tj 's exist and tj can be found when given approximations of all pi's up-to (1=9n) � 2�j(or so). We also de�ne t0 def= 1, and so pi � t0 for all i. (We assume for simplicity that everypi is greater than 2�n, and so every pi lies in one of the intervals (tj; tj�1].)� For such tj 's, de�ne Tj = fi : pi > tjg. (Indeed, T0 = ; and Tn = f1; :::; ng.)Membership in Tj can be determined in time poly(n)�2j , since tj was selected to be su�cientlyfar-away from all the pi's (i.e., jtj � pij = 
(2�j=n)).� Let Ej denote the event that the veri�er properly decommits to some copy in Tj n Tj�1 butto no copy outside Tj , and let qj = Pr[Ej ]. Note that qj � n � tj�1 (since Ej mandates oneof jTj n Tj�1j � n events, each occuring with probability at most tj�1). However, qj may bemuch smaller than tj < tj�1.Since f1; :::; ng = Tn � Tn�1 � � � � � � � T1 � T0 = ;, whenever the veri�er properly decommitsin some copy, one of the events Ej (for j � 1) must hold. Otherwise (i.e., whenever theveri�er decommits improperly in all copies), we say that event E0 holds.We now turn to the simulator, which generalizes the one in [17]. All approximations referredto below are quite good w.v.h.p. (i.e., with 1 � 2�n each approximation is within a factor of(1 + (1=poly(n)) of the corresponding value). Loosely speaking, after �xing the veri�er's coins (atrandom), the simulator proceeds as follows (while using the residual veri�er strategy as a black-box):Step S0: Obtain the veri�er's commitments (of Step 1) in the n parallel copies.Step S1: The purpose of this step is to generate an index j 2 f0; 1; :::; ng with distribution corre-sponding the probability that event Ej holds for a random parallel execution of the protocol,as well as to determine the sets Tj and Tj�1. This will allow to determine (in subsequentsteps) whether or not event Ej holds.The above goal is achieved by �rst simulating Steps 2{3 of the (parallel execution of the)protocol, while using (in Step 2) commitments to dummy values. Based on the veri�er'sdecommitments in Step 3 (of the parallel execution), we determine the set I � [n] of copies15Recall that in the actual implementation, challenges correspond to sequences of t edges (over the vertex-setf1; 2:::; ng), and the prover commits to a sequence of t � n values in f1; 2; 3g (i.e., a block of n values per each edge).For a given edge sequence (i.e., a challenge), a passing sequence of values is one in which (for every i) the valuesassigned to the ith block are such that the endpoints of the ith edge (in the challenge) are assigned a random pair ofdistinct elements. 14



in which the veri�er has properly decommitted. Next, we determine an appropriate sequencet1; :::; tj of thresholds such that event Ej holds. Finally, using tj�1 and tj, we determine foreach i whether or not pi > tj (i.e., i 2 Tj) and whether or not pi > tj�1 (i.e., i 2 Tj�1).Indeed, the above description (especially of the second part) is way too laconic. We need(and will) describe (below) how to implement it within time poly(n) � 2j .Step S2: For each copy i 2 Tj , we wish to obtain the challenge committed to in Step 1, whileworking within time poly(n) � 2j . This is done by rewinding and re-simulating Steps 2{3 forat most poly(n) � 2j times, while again using (in Step 2) commitments to dummy values.Step S3: For technical reasons, analogously to [17], we next obtain a good (i.e., constant factor)approximation of qj = Pr[Ej ]. This approximation, denoted ~qj, will be obtained withinexpected time poly(n)=qj by repeated rewinding and re-simulating Steps 2{3. (Speci�cally,we continue till we see some �xed polynomial number (say n5) of occurrences of the eventEj .)Step S4: We now try to generate a simulation of Steps 2{3 in which event Ej occurs. However,unlike in previous simulations, here we use (in Step 2) commitments to values that pass thechallenges that we have obtained. This will allow us to simulate also Step 4, and completethe entire simulation.Speci�cally, we make at most poly(n)=~qj tries to rewind and re-simulate Steps 2{3, whileusing (in Step 2 of each copy in Tj) commitments to values that pass the correspondingchallenge (which we obtained in Step S2). If the veri�er answers (for Step 3) �t event Ej thenwe proceed to simulate Step 4 in the obvious manner. Otherwise, we rewind and try again(but never try more than poly(n)=~qj times).Pending on the ability to properly implement Step S1, we observe that:1. The (overall) expected running time is polynomial, because each attempt (in Steps S2, S3,and S4) is repeated for a number of times that is inversely proportional to the probabilityof entering this repeated-attempts step. Speci�cally, each of these steps is repeated at most(poly(n)=~qj) � (poly(n)=qj) times (use qj = O(n � 2�j) for Step S2), whereas j is selectedwith probability qj.2. The computational-binding property of C implies that we rarely get into trouble in Step S4;that is, only with negligible probability will it happen that in Step S4 the veri�er properlydecommit to a value di�erent from the one to which it has properly decommitted in Step S2.3. Since the probabilities of veri�er's proper-decommitment (in Step 3) are almost una�ected bythe prover's commitments (of Step 2) and since passing commitments look like commitmentsto truly valid values, the simulated interaction is computationally indistinguishable (cf. [21,29]) from the real one.3.2 Setting the thresholds and implementing Step S1One naive approach is to try to use �xed thresholds such as tj = 2�j . However, this may not allowto determine (for a given i) with high probability and within time poly(n) � 2j whether or not pi issmaller than tj. (The reason being that pi may be very close to 2�j ; e.g., jpi � 2�j j = 2�2n.)Instead, the tj 's will be selected in a more sophisticated way so that they are approximately asabove (i.e., tj � 2�j) but also far enough (i.e., at distance at least 2�j=9n) from each pi. This will15



allow to determine (with high probability) and within time poly(n) � 2j whether or not pi is smallerthan tj. The question is how to set the tj's so that they are appropriately far from all pi's. Sincethe pi's are unknown probabilities (which we can only approximate), it seems infeasible to come-upwith a deterministic setting of the tj's. Indeed, we will settle for a probabilistic setting of the tj's(provided that this setting is independent of other events).Recall that Step S1 calls for the setting of t1; :::; tj such that event Ej holds, where whetheror not event Ej holds depends on tj and tj�1. Furthermore, it is important that the setting oftj�1 in case event Ej holds be the same as the setting of tj�1 in case event Ej�1 holds. Moreover,recalling that the setting of tj must be performed in time poly(n) � 2j , we cannot a�ord to set alltk's whenever we set a speci�c tj. Still, we provide below an adequate threshold-setting process.We start with the following key procedure.Procedure T (j; n), returns tj 2 ((3=4) � (1=4)) � 2�j � (2�(j+1); 2�j):1. Approximate each pi up-to (1=9n) � 2�j (with error probability at most 2�n=n). Actually, forlarge pi's (e.g., pi > 2�j+2) we only approximate pi up-to a factor of 2 of its true value. Thisis done by poly(n) � 2j rewindings and re-simulations of Steps 2{3 of the protocol.16 Call theresulting approximations, ai's.2. Determine K  fk 2 f�n=2; :::;+n=2g : (8i) ai =2 ((3=4) + (k=2n) � (1=4n)) � 2�jg. Notethat K is not empty, because each ai can rule out at most one element of K (whereasjf�n=2; :::;+n=2gj = n+ 1 and they are only n values of i).3. Select an arbitrary (say at random or the �rst) k 2 K. Output tj = ((3=4) + (k=2n)) � 2�j .By construction, jtj � aij � (1=4n) � 2�j , for all i's. For each i, if pi > 2�j+1 then (using tj < 2�j)de�nitely pi > tj + 2�j holds, and so jpi � tj j > 2�j follows. Otherwise (i.e., pi � 2�j+1 for this i),with probability at least 1� 2�n�log2 n, we have jai � pij � (1=9n) � 2�j . In this (high probability)case, pi does not fall in the interval tj � (1=9n) � 2�j , because jpi � tjj � jai � tjj � jai � pij �((1=4n) � (1=9n)) � 2�j > (1=9n) � 2�j . We conclude that, with probability at least 1� 2�n, no pifalls in the interval tj � (1=9n) � 2�j .Implementation of Step S1: Recall that the purpose of Step S1 is to generate an index j 2f0; 1; :::; ng with distribution corresponding the probability that event Ej holds (for a randomparallel run of the protocol), as well to determine the thresholds t1; :::; tj , and using these todetermine for every i = 1; :::; n, whether or not i 2 Tj and whether or not i 2 Tj�1. We thus startby generating a random run, and next determine all necessary objects with respect to it.1. Generating a reference run: Simulate Steps 2{3 of the (parallel execution of the) protocol,while using (in Step 2) commitments to dummy values. Based on the veri�er's decommitmentsin Step 3 (of the parallel execution), determine the set I � [n] of copies in which the veri�erhas properly decommitted.2. Determining the event Ej occuring in the reference run, as well as the sets Tj and Tj�1:Case of empty I: Set j = 0 and Tj = Tj�1 = ;.16Note that in such a number of attempts, we can �rst distinguish w.v.h.p between the case pi > 2�j+2 and thecase pi < 2�j+1. In the former case we approximate pi up-to a factor of 2, in the latter case we approximate it up-toan additive deviation of (1=9n) � 2�j , and in the intermediate case any of these will do. Recall that approximating aprobability p to within factor 2 can be done in a number of trials proportional to 1=p (which for p = 
(2�j) meansO(2j) trials). Similarly, approximating a probability p up-to an additive deviation of q can be done in a number oftrials proportional to p=q2 (which for p = O(2�j) and q = 
(2�j=n) means O(2jn2) trials).16



Case of non-empty I: Set t0 = 1 and T0 = ;. For j = 1; :::; n do(a) tj  T (j; n). (We stress that the value of tj is set obliviously of I.)(b) Determine the set Tj by determining, for each i, whether or not pi > tj. We useapproximations to each pi (as in procedure T (j; n) above), and rely on jpi � tj j >(1=9n) � 2�j.(c) Decide whether or not event Ej holds for the reference run, by using Tj�1 (of theprevious iteration) and Tj (just computed). Recall that event Ej holds if I � Tjbut I 6� Tj�1.(d) If event Ej holds then exit the loop with the current value of j as well as with thevalues of Tj and Tj�1. Otherwise, proceed to the next iteration.Since we have assumed that (8i) pi > 2�n, some event Ej must hold.17A key point in the analysis is that the values of the Tk's, as determined by Step S1 (i.e., T0; :::; Tj),are independent of the value of j. Of course, which of the Tk's were determined does depend onthe value of j. Thus, we may think of Step S1 as of an e�cient implementation of the mentalexperiment in which all Tk's are determined, next j is determined accordingly (analogously to theabove), and �nally one outputs Tj and Tj�1 for subsequent use.3.3 A detailed description of the simulatorFor sake of clarity we present a detailed description of the simulator, before turning to its analysis.Recall that we start by selecting and �xing the veri�er's coins at random.Step S0: We simulate the parallel execution of Step 1 (i.e., Steps P0 and V1 of Construction 2.2) asfollows. First, acting as the real prover in Step P0, we randomly generate messages �1; :::; �n(one per each copy). Invoking the veri�er (as per Step V1), while feeding it with �1; :::; �n,we obtain its n commitments, c1; :::; cn, for the n copies.Step S1: As explained in Section 3.2, we determine (for a random reference run) the index jfor which Ej holds, as well as the sets Tj and Tj�1. Recall that this (and speci�cally pro-cedure T (�; �)) involves poly(n) � 2j rewindings and re-simulations of Steps 2{3, while usingcommitments to dummy values. Each rewinding is performed as in Step S2 below.In case j = 0, we may skip all subsequent steps, and just output the reference run producedin the current step.Step S2: For each copy i 2 Tj, we wish to obtain the challenge (edge-sequence) committed to inStep 1, while working within time poly(n) � 2j . This is done by rewinding and re-simulatingSteps 2{3 (i.e., Steps P1 and V2 of Construction 2.2) for poly(n) � 2j times, while usingcommitments to dummy values. (Actually, we may as well do the same for all i's (regardlesswhether i 2 Tj or not), but we are guaranteed to succeed only for i's in Tj . Furthermore, wemay work on all i's concurrently.)Speci�cally, each rewinding attempt proceeds as follows:1. Generate n sequences of random commitments to the dummy value 0. That is, forevery (copy) i = 1; :::; n, select uniformly ri1;1; :::; rin;t 2 f0; 1gn, and compute ci def=(ci1;1; :::; cin;t), where cik;` = C(0; rik;`).17Removing this assumption enables the situation that no event Ej occurs. This may happen only if pi � tn < 2�n,for every i2I. But the probability that the reference run corresponds to such a set I is at mostPi:pi<2�n pi < n�2�n.17



2. Feeding the veri�er with (the n prover commitments) c1; :::; cn, obtain the veri�er's n(Step 3) responses, denoted (s1; e1); :::; (sn; en).3. For every properly decommitted copy (i.e., i such that ci = C�i(si; ei)), store the corre-sponding challenge (i.e., the edge sequence ei).(Note that it is unlikely that we will obtain two con
icting proper decommitments to thesame veri�er commitment ci.)Step S3: For technical reasons, analogously to [17], we next obtain a good approximation of qj =Pr[Ej ]. This approximation, denoted ~qj, will be obtained within expected time poly(n)=~qj byrepeated rewinding and re-simulating Steps 2{3 (i.e., Steps P1 and V2 of Construction 2.2).Speci�cally, we repeat the following steps until we obtain n5 occurrences of event Ej .1. Perform Items 1 and 2 as in Step S2.2. Let I 0 = fi : C�i(si; ei) = cig. If I 0 �ts event Ej (i.e., I 0 � Tj and I 0 6� Tj�1) thenincrement the \success counter" by one unit. (We proceed to the next iteration only ifthe \success counter" is still smaller than n5.)Suppose we have obtained n5 successes while making � trials. Then we set ~qj = n5=� .Step S4: We now try to generate a simulation of Steps 2{3 (i.e., Steps P1 and V2 of Construc-tion 2.2) in which event Ej occurs. However, unlike in previous simulations, here we use (inStep 2) commitments to values that pass the challenges that we have obtained. This willallow us to simulate also Step 4, and complete the entire simulation. Speci�cally, we makeat most poly(n)=~qj tries to rewind and re-simulate Steps 2{3, while using (in Step 2 of eachcopy in Tj) commitments to values that pass the corresponding challenge (which we obtainedin Step S2). Each attempt proceed as follows:1. Generate n sequences of random commitments to passing values (for copies in Tj anddummy values otherwise). Speci�cally, suppose that i 2 Tj (or more generally that wehave obtained (in Step S2) a proper decommitment to ci), and denote by ((ui1; vi1); :::; (uit; vit))the value of the decommitted challenge (edge sequence). Then, for every ` = 1; :::; t,select uniformly ri1;`; :::; rin;` 2 f0; 1gn and aì 6= bì 2 f1; 2; 3g, and compute ciuì ;` =C(aì ; riuì ;`), civì;` = C(bì ; rivì ;`), and cik;` = C(0; rik;`) for k =2 fuì ; vìg. Let ci def= (ci1;1; :::; cin;t).For i =2 Tj (or for i's for which we failed in Step S2), we produce ci def= (ci1;1; :::; cin;t) asin (Item 1 of) Step S2.2. Feeding the veri�er with (the prover's commitments) c1; :::; cn, obtain the veri�er's n(Step 3) responses, denoted (s1; e1); :::; (sn; en). Let I 0 = fi : C�i(si; ei) = cig denote theset of copies that have properly decommitted (in the current attempt). If I 0 does not �tevent Ej (i.e., I 0 6� Tj or I 0 � Tj�1) then we abort this attempt. That is, we proceedonly if I 0 �ts event Ej.3. For every properly decommitted copy (i.e., i 2 I 0), we provide a proper decommitment(as per Step 4). This complete a full simulation of such a copy, whereas improperlycommitted copies are simulated by their transcript so far. Speci�cally, ignoring the rarecase of con
icting proper decommitments, a proper decommitment to copy i 2 I 0 � Tjmust use the same challenge (edge sequence) as (found in Step S2 and) used in Item 1(of the current attempt). Then, for every i 2 I 0 and ` = 1; :::; t, we merely providethe 4-tuple (riuì ;`; aì ; rivì ;`; bì), where ((ui1; vi1); :::; (uit; vit)) is the corresponding challenge.18



Indeed, this answer (like the prover's answer in Step 4) passes the veri�er's check (sinceaì 6= bì 2 f1; 2; 3g, ciuì ;` = C(aì ; riuì ;`), and civì ;` = C(bì ; rivì ;`)).In the rare case in which a con
icting proper decommitment is received, we proceed just asin case event Ej does not occur.For technical reasons, we modify the above simulation procedure by never allowing it to run morethan 2n steps. (This is easily done by introducing an appropriate step-count (which is implementedin linear or almost-linear time and so does not a�ect our running-time analysis).)3.4 A detailed analysis of the simulatorLemma 3.1 (Simulator's running-time): The simulator runs in expected polynomial-time.Proof: The key observation is that each repeated attempt to produce something is repeated for anumber of times that is inversely proportional to the probability that we try this attempt at all.This reasoning is applied with respect to each of the main steps (i.e., Steps S1, S2, S3 and S4).Speci�cally:� For Step S1: Recall that event Ej occurs in the reference run (generated at the onset ofStep S1), with probability qj . Letting Q def= Tj n Tj�1, we have qj � jQj � maxi2Qfpig �n � tj�1 < n � 2�(j�1). Also, with probability at least 1� 2�n, Step S1 correctly determines j.Pending on the latter (overwhelmingly high probability) event, the expected number of stepsconducted in Step S1 isnXj=0 qj � (poly(n) � 2j) < nXj=0(n � 2�(j�1)) � (poly(n) � 2j) = poly(n) (1)Relaying on the fact that the simulator never runs for more than 2n steps, we cover also thehighly unlikely case (in which Step S1 determines a wrong j).The same reasoning applies to Step S2. That is, again assuming that Step S1 correctlydetermines j, the expected number of steps made in Step S2 is as in Eq. (1).� For Step S3: Assuming that ~qj = �(qj), the expected number of steps made in Step S3is Pnj=0 qj � (poly(n)=~qj) = poly(n). The above assumption holds with probability at least1 � 2�n, and otherwise we relay on the fact that the simulator never runs for more than 2nsteps. The same reasoning applies to Step S4.Thus, the overall expected running-time is polynomial (and this is proven without relying on anysecurity properties of the commitment schemes).Lemma 3.2 (Simulator's output distribution): Assuming that the veri�er's commitment scheme(i.e., C) is computationally-binding and that the prover's commitment scheme (i.e., C) is computationally-hiding, the output of the simulator is computationally indistinguishable from the real parallel inter-action.Recall that the assumption that C is perfect-hiding and C is perfectly-binding is used in establishingthe soundness of the GK-protocol (as a proof system).19



Proof: For sake of clarity of the analysis, one may consider an imaginary simulator that goes onto determine all tj's (rather than determining only part of them as in Item 2 of Step S1). We mayassume that all approximations made by the simulator are su�ciently good; that is, in Step S1the simulator correctly determines j as well as Tj and Tj�1, and in Step S3 it obtains ~qj = �(qj).(Indeed, the assumption holds with probability at least 1� 2�n.)Next, we consider three unlikely events in the simulation:1. In Step S2, the simulator fails to obtain a proper decommitment of some i 2 Tj . This mayhappen only with exponentially vanishing probability, because we keep trying for poly(n) � 2jtimes and each time a proper decommitment (for i) occurs with probability pi > tj � 2�(j+1).2. In Step S4, the simulator fails to generate a simulation in which event Ej holds. This mayhappen only with negligible probability, because in order for this to happen event Ej shouldoccur in Step S1 and then we should fail to obtain it in Step S4 although we try poly(n)=~qj =O(poly(n)=qj) times and each time event Ej occurs with probability q0j that is negligibllyclose to qj (because C is computationally-hiding; cf. [17, Clm. 3]). (Note that qj refers to theprobability that event Ej occurs for a dummy commitment, whereas q0j refers to its probabilityfor a \passing" commitment.) Thus, the probability of this failure is bounded above bynXj=0 qj � (1� q0j)poly(n)=qj (2)Letting �j def= qj � q0j, we consider two cases (cf. [17, Clm. 2]): in case �j � qj=2, thecorresponding term is exponentially vanishing, whereas in case �j � qj=2 we simply boundthe corresponding term by qj � 2�j . Thus, in both cases, we obtain that each term in Eq. (2)is negligible.183. In Step S4, the simulator obtains a proper decommit to some copy that is di�erent from theproper decommitment obtained for the same copy in Step S2. (In such a case, the simulator'soutput will de�nitely look wrong.) However, the hypothesis that C is computationally-bindingimplies that this bad event occurs only with negligible probability.We conclude that, except with negligible probability, the simulator produces an output that lookssyntactically �ne. Finally, the hypothesis that C is computationally-hiding is used to demonstratethat the simulator's output is computationally indistinguishable from a random transcript of thereal interaction. The details are analogous to the proof of [17, Clm. 4]: First we prove thatthe probabilities of each Ej event is about the same (i.e., di�er by a negligible amount) in thesimulation's output and in the real interaction. Next we focus on each likely Ej event and provethat the conditional spaces for it are indistinguishable. We capitalize on the fact that a non-negligible di�erence in the unconditional space must translates to a non-negligible di�erence onsome likely Ej, and that for likely Ej the simulation runs in strict polynomial-time.19Combining Lemmas 3.1 and 3.2, we obtainTheorem 3.3 The (constant-round) GK-protocol is zero-knowledge under parallel composition.18In the �rst case, we have (1 � q0j)n=qj � (1 � (qj=2))n=qj � exp(�n=2). Thus, Eq. (2) is upper-bounded byPnj=0max(2�j ; exp(�n=2)), which is a negligible function.19An alternative approach may be to derive, in the contradiction argument, an expected polynomial-time algorithmthat violates the hiding property of C, and to derive from it (via truncating long runs) a strict polynomial-timealgorithm that violates the hypothesis that C is computationally-hiding.20



Recall that the GK-protocol is a proof system for NP (with exponentially vanishing soundnesserror) [17].3.5 An ExtensionWe relax the parallel execution condition to concurrent execution of polynomially-many copies thatsatisfy the following two conditions:C1: No copy enters Step 2 before all copies complete Step 1.C2: No copy enters Step 4 before all copies complete Step 3.In other words, the concurrent execution proceeds in three phases:Phase 1: All copies perform Step 1 (in arbitrary order).Phase 2: All copies perform Steps 2 and 3 (in arbitrary order except for the obvious local timingcondition (i.e., each copy performs Step 3 after it has completed Step 2)).Phase 3: All copies perform Step 4 (in arbitrary order).Our treatment of parallel executions extends to the above (concurrent) case. The reason being thatthe simulator treats Steps 2{3 as one unit, and so the fact that these steps may be interleavingamong copies is of no importance. Speci�cally, Step S0 of the extended simulator refers to Phase 1(rather than to Step 1), its Steps S1{S3 refer to Phase 2 (rather than to Steps 2{3), and its Step S4refers to Phases 2{3 (rather than to Steps 2{4).4 Simulator for the case of Bounded-SimultaneityRecall that the GK-protocol proceeds in four steps:1. The veri�er commits to a challenge.2. The prover commits to a sequence of values.3. The veri�er decommits (either properly or not).4. Pending on the veri�er's proper decommitment, the prover decommits to the correspondingvalues.Here we consider concurrent executions in which up-to w copies of the GK-protocol run simulta-neously at any given time, where w may be any �xed constant.4.1 MotivationThe case of w = 1 corresponds to sequential composition, and it is well-known that any zero-knowledge protocol maintains its security in this case. So let us turn (as a warm-up) to the caseof w = 2. Trying to use the single-session simulator of [17] in this case, we encounter the followingproblem: when we try to deal with the simulation of one copy, the veri�er may invoke anothercopy. A natural thing to do is to suspend our dealing of the �rst copy, and apply the single-sessionsimulator to the second copy. The good news are that the veri�er cannot initiate yet another copy(before it terminates either the �rst or second ones, since this would have violated the bounded-simultaneity condition (for w = 2)). Instead, one of two things will happen (eventually20):20Actually, in a few steps. 21



1. The veri�er may execute Step 3 in the second copy, in which case we make progress on treatingthe second copy (and will eventually complete a simulation of it, which would put us back inthe one-session case).2. The veri�er may execute Step 3 in the �rst copy, in which case we make progress on treatingthe �rst copy. For example, if we were trying to get the decommitment value for the �rstcopy and we just got it, we may abandon the treatment of the second copy and proceed byrewinding the �rst copy.Thus, in each of these cases, we make progress. Intuitively, the cost of dealing with two simultaneouscopies is that we have to invoke the single-session simulator (for the second copy) per each operationof the single-session simulator (for the �rst copy). It is not surprising that we can similarly dealwith any constant number of simultaneous copies, and do so within time T (n)w, where T (n) is thetime complexity of the single-session simulator and w is the bound on simultaneity.4.2 The actual simulationIndeed, although appealing, the above suggestion requires careful implementation.In correspondence to the three main steps of the single-copy simulator (cf. Section 2.3), weintroduce three recursive procedures: Scan, Approx and Generate. Each of these procedures triesto handle a single copy (just as done by the corresponding step of the single-copy simulator), whilemaking recursive calls when encountering a Step 2 message of some other copy.21 The recursivecall will take place before execution this Step 2, and execution of this Step 2 will be the �rstthing that the invoked procedure will do. The three procedure maintain (and pass along) thestate of currently handled copies as well as related auxiliary information. In particular, h willdenote a partial transcript of the (concurrent) execution, and a will denote a list of currently activecopies together with auxiliary information regarding each of them (e.g., decommitment informationobtained in previous related runs). For sake of clarity, although the following is implicit in h, wewill also pass explicitly the identity of the copy that is responsible for the current procedure call(i.e., the copy that encountered Step 2). The (simulator's) main program merely consists of aspecial invocation of Generate with empty history (i.e., h = a = �) and a �ctitious copy index.Throughout the rest of the description we �x the (deterministic) adversarial veri�er (although weonly use black-box access to it).4.2.1 The speci�cation of the proceduresLet us �rst elaborate on the structure of the auxiliary information a, which consists of records, eachcorresponding to some encountered copy of the protocol. Each record consists of three �elds:1. The veri�er decommitment �eld indicates whether (among related runs) the �rst encounter ofStep 3 (i.e., the veri�er's decommitment) of this copy was proper or improper (i.e., the type ofdecommitment), and in the former case the �eld includes also the value of the decommitment.That is, if non-empty, the �eld stores a pair (X; v), where X 2 fproper; improperg is adecommitment type and v is a decommitment value (which is meaningful only in case X =proper). This �eld (of the record of the ith copy) is �lled-up according to the answer returnedby some invocation of Scan(h; �; i).2. The decommitment probability �eld holds an approximation of the probability that an invo-cation with parameters as the one that �lled-up the �rst �eld, actually turns out returning21This is no typo; we do mean Step 2, not Step 1. 22



exactly this information. That is, suppose that the �rst �eld of record i (i.e., the record ofthe ith copy) was �lled-up according to the answer returned by Scan(h; a; i), which resultedwith a decommitment of type X 2 fproper; improperg. Then the second �eld of record ishould hold an approximation of the probability that Scan(h; a; i) returns with an answer thatencodes the same type of decommitment of copy i. (Jumping ahead, we hint that Scan(h; a; i)may return with a decommitment to some other copy, and so the sum of the two probabilitiescorresponding to the two types is not necessarily 1.)3. The prover decommitment �eld encodes the decommitment information corresponding to theprover's commitment in Step 2. This �eld (of the record of the ith copy) is �lled-up at theup-front of the execution of Generate(h; a0; i), which follows the invocation of Scan(h; a; i),where a0 is a augmented by the veri�er decommitment information of copy i and the prover'scommitment is performed so to passed the latter.As hinted above, the �elds are �lled-up in the order they appear above (i.e., the veri�er decommit-ment �eld is �lled-up �rst). In reading the following speci�cations, it may be instructive to considerthe special case of a single copy (in which case failure never occurs and j = i always holds).Speci�cation of Scan(h; a; i): This call produces a pre�x of a \pseudorandom" execution tran-script that extends the pre�x h, and returns some related information. The transcript is pseu-dorandom in the sense that it is computationally indistinguishable from a (pre�x of a random)real continuation of h (by the adversary interacting with copies of the prover).22 The extendedtranscript is truncated (i.e., the extended pre�x ends) at the �rst point where one of the followingholds:1. Progress: This is a case where the (extended) execution reaches Step 3 of some copy j (possiblybut not necessarily j = i) so that the �rst �eld of record j is empty. In this case, the procedureshould return the index j as well as the decommitment information (provided in the currentexecution of Step 3 of copy j). That is, the answer is a pair (j; y), where j is a index of acopy and y is a decommitment information (which may be either proper or improper).2. Failure: This is a case where the (extended) execution reaches Step 3 of some copy j so thatthe �rst �eld of record j encodes a decommitment type di�erent than the one occuring inthe current extension. That is, the �rst �eld of record j encodes decommitment type X 2fproper; improperg, whereas in the current execution Step 3 of copy j has a decommitmenttype di�erent from X (i.e., opposite to X). (In fact j 6= i will always hold.) In this case, theprocedure should return a special failure symbol.Speci�cation of Approx(h; a;X; i): Always returns an approximation of the probability thatScan(h; a; i) answers with a pair (i; y) such that y has type X 2 fproper; improperg. The approx-imation is required to be correct to within a factor of 2 with probability at least 1� 2�n.Speci�cation of Generate(h; a; i): This call produces a pre�x of a pseudorandom executiontranscript that extends the pre�x h, and returns either this extension or related information. Thenotion of pseudorandom is the same as in case of Scan, and the extended transcript is truncatedat the �rst point where one of the following holds:22The reader may wonder as to what will happen in case h itself is not consistent with any pre�x of such a realinteraction. The answer is that the extended execution will always be truncated before this fact becomes evident(i.e., we never perform Step 4 of a copy unless Step 2 of that copy was performed in a passing manner).23



1. Failure: Exactly as in the speci�cation of Scan, except that here j = i is possible too.2. Progress: Here there are a few sub-cases:(a) This is a case where the (extended) execution reaches Step 3 of some copy j so that the�rst �eld of record j is empty. This sub-case is handled exactly as the Progress Case ofScan. (Unlike in Scan, here j = i cannot not possibly hold.)(b) This is a case where the (extended) execution reaches Step 4 of copy i. In this case, theprocedure returns the currently extended transcript (including the execution of Step 4of copy i), along with a corresponding update to the auxiliary information a.(We comment that this sub-case is not really necessary; we choose to add it in order tomake the description and the analysis slightly easier.)(c) The execution reaches its end (i.e., the adversary terminates). In this sub-case, we actexactly as in the previous one.Note that we did not specify (above) with what probability Generate (or Scan) should makeprogress. In fact, unlike in the presentation of the basic simulator, here Generate does not makeprogress almost always (not even in the case of a single copy), but rather makes progress withprobability that is close to the one approximated by the corresponding Approx-call. Thus, Generateis actually a generation-attempt, and the repetition of this attempt is made by the higher levelinvocator (rather than in the procedure itself).4.2.2 The implementation of the proceduresWe refer to the notion of passing, as de�ned and used in Section 3. Recall that a passing commitmentis a sequence of (prover's) commitments to values that pass for the corresponding challenge (encodedin the �rst �eld of the corresponding copy): see Footnote 15.We start with the description of Generate (although Generate(�; �; i) is invoked after Scan(�; �; i)).We note that Generate(h; a; i) is always invoked when the �rst �eld in the ith record in a is notempty (but rather encodes some decommitment, of arbitrary proper/improper type), and the third�eld is empty (and will be �lled-up at the very beginning of the execution).Procedure Generate(h; a; i): Initializes h0 = h and a0 = a, generates a passing commitment for(Step 2 of) copy i, and augments h0 and a0 accordingly. Speci�cally:1. The procedure generates a random sequence of values, denoted v, that pass the challengedescribed in the �rst �eld of the ith record of a. That is, v may be arbitrary if the said �eldencodes an improper decommitment; but in case of proper decommitment, v must pass withrespect to the challenge value encoded in that �eld.2. The procedure generates a random sequence of (prover's) commitments, denoted c, to v,augments h0 by c, and augments a0 by placing the corresponding decommitment informationin the third �eld of the ith record.Next, the procedure proceeds in iterations according to the following cases that refer to the nextstep taken in the concurrent execution.Step 1 by some (new) copy: Just augment h0 accordingly (and proceed to the next iteration).Step 2 by some copy j (certainly j 6= i): We consider two cases depending on whether or nota0 contains the veri�er's decommitment information for copy j (i.e., whether or not the �rst�eld of the jth record is non-empty). 24



1. In case a0 does contain such information, we generate a corresponding passing commit-ment (i.e., a prover commitment to values that pass w.r.t challenge encoded in the �rst�eld of the jth record), augment h0 and a0 accordingly, and proceed to the next iteration.(Speci�cally, analogously to the up-front activity for (Step 2 of) the ith copy, the third�eld in the jth record of a0 is augmented by the decommitment information correspondingto this prover commitment, and h0 is augmented by the commitment itself.)2. In case a0 does not contain such information (i.e., the �rst �eld of the jth record isempty), we proceed as follows:(a) Invoke Scan(h0; a0; j), and consider its answer, which is either failure or a progresspair (k; y). In case of progress, determine the type X 2 fproper; improperg of thedecommitment information y (with respect to the corresponding Step 1 commitmentin h0).(b) If either the answer is failure or (it is a progress pair (k; y) with) k 6= j thenreturn with the very same answer (k; y).(Here, in case of progress, k 6= i must hold.)(c) If the above answer is (a progress pair (k; y)) with k = j (and y is a decommitmentof type X), then we let ~q  Approx(h0; a0;X; j), and update the jth record of a0placing (X; y) in the �rst �eld and ~q in the second �eld. (Actually, it su�ces toplace (X; v) in the �rst �eld, where v is the decommitment value included in thedecommitment information y.)(We comment that in case X = improper, we could have skipped all subsequent sub-steps, and used instead the extended transcript generated by the above invocation ofScan, provided that Scan were modi�ed to return this information as well. However,avoiding this natural modi�cation makes the extension in Section 5 more smooth.)(d) Next, repeatedly invoke Generate(h0; a0; j) until getting a progress, but not morethan poly(n)=~q times. (We will show that only with negligible probability can ithappen that all calls return failure.) If all attempts have returned failure thenreturn failure, otherwise act according to the sub-cases of the (�rst) progressanswer:i. If the \progress answer" provides a pair (k0; y0) (certainly k0 6= j as well ask0 6= i), then (analogously to sub-step 2b) return with the very same answer(k0; y0).ii. If the \progress answer" provides an updated history h00 (together with updatedauxiliary information a00) such that h00 is not terminating (i.e., but rather endswith execution of Step 4 of copy j), then update h0 and a0 (i.e., h0  h00 anda0  a00), and proceed to the next iteration.iii. If the \progress answer" provides an updated history h00 (together with updatedauxiliary information a00) such that h00 is terminating (i.e., h00 ends with theveri�er halting), then return with the very same answer.The handling of this case (i.e., Step 2 for a copy for which the �rst �eld is empty) is thethe most involved part of the procedure.Step 3 by copy i: Just as the �rst sub-case in the next case (i.e., Step 3 by some copy j 6= i witha non-empty �rst �eld). 25



Step 3 by some copy j 6= i: We consider two cases depending on whether or not a0 contains theveri�er's decommitment information for copy j (i.e., the �rst �eld of the jth copy is notempty).1. In case a0 does contain such information, we consider sub-cases according to the relationof the contents of the the �rst �eld of the jth copy, denoted (X; �), and the current answerof the veri�er.(a) If the decommitment type of the current Step 3 (of the jth copy) �ts X then we justaugment h0 accordingly (and proceed to the next iteration).(b) Otherwise (i.e., the decommitment type of the current Step 3 does not �tX), returnfailure.2. In case a0 does not contain such information (i.e., the �rst �eld of the jth copy is empty),obtain the relevant decommitment information from the adversary (it may be eitheran improper or proper decommitment), and return (as progress) with this informationonly. That is, return with (j; y), where y encodes the decommitment information justobtained from the adversary.Step 4 by some copy j (possibly j = i): We will show that this case may happen only in casethe corresponding (Step 2) prover commitment is passing and a0 contains the correspondingdecommitment (in the third �eld of the jth record). Using the latter prover's decommitmentinformation, we emulate Step 4 in the straightforward manner (and augment h0 accordingly).In case j = i, return with the current h0 and a0 (otherwise proceed to the next iteration).Note that Step 2 of copy i is handled up-front. In case of a single copy i, the above proceduredegenerates to the basic handling of Steps 2{4 of copy i. In the �ctitious invocation of Generate(i.e., with empty h and a �ctitious i), only the handlings of Steps 2{4 for copies j 6= i are activated(whereas, in handling Step 2, sub-steps 2b and 2(d)i are never activated). We now turn to procedureScan, which is similar to Generate, except for its handling of the steps of copy i.Procedure Scan(h; a; i): Initializes h0 = h and a0 = a, generates a dummy commitment for(Step 2 of) copy i, and augments h0 accordingly. (Speci�cally, the procedure generates a randomsequence of commitments, c, to dummy values, and augments h0 by c.) Next, the procedure proceedsin iterations according to the following cases that refer to the next step taken in the concurrentexecution.Step 1 by some (new) copy: As in Generate.Step 2 by some copy j (certainly j 6= i): As in Generate.(We comment that unlike in sub-step 2b of Generate, here k = i is possible. Also, heresub-case 2(d)iii cannot occur in sub-step 2d.)Step 3 by copy i: Obtain the relevant decommitment information from the adversary (it may beeither an improper or proper decommitment), and return (as progress) with this information.That is, return with (i; y), where y encodes the decommitment information just obtainedfrom the adversary.Step 3 by some copy j 6= i: As in Generate.Step 4 by some copy j 6= i: As in Generate.Note that we never reach Step 4 of copy i (and that Step 2 of copy i is handled up-front).26



Procedure Approx(h; a;X; i): This procedure merely invokes Scan(h; a; i) until it obtains m =poly(n) invocations that return a pair that is a decommitment of type X for copy i, and returnsthe fraction of m over the number of tries. Speci�cally, the procedure proceeds as follows:Set cnttotal = cntsucc = 0.Until cntsucc = m doincrement cnttotal (unconditionally),(j; y) Scan(h; a; i),increment cntsucc if and only if j = i and y is of type X.Output: m=cnttotal.4.2.3 Comments about the analysisIt is quite straightforward to show that the procedure Approx satis�es its speci�cation. Ignoring theexponentially vanishing probability that any single approximation (by the procedure Approx) is o�by more than a factor of 2, we may bound the total expected running-time by using the recursivestructure of the simulation. (We start with bounding the running-time, because we will have touse this bound in analyzing the output of the simulator.) Towards the running-time analysis,it is useful to pass among the procedures also the corresponding path in the tree of recursivecalls. For example, instead of saying that Scan(h; a; i) invokes Generate(h0; a0; j), we may say thatScan(h; a; i; p) invokes Generate(h0; a0; j; (p; i)). Bounded-simultaneity implies that the depth ofthe recursive tree is at most w, which is the key to the entire analysis of the running-time.Running-time analysis. Considering oracle calls to the adversary's strategy as atomic steps, theexpected running-time of Scan(h; a; i; p) (resp., Generate(h; a; i; p)) is dominated by the time spentby the recursive calls invoked by Scan(h; a; i; p) (resp., Generate(h; a; i; p)). Such calls are madeonly when handling Step 2 of a copy with no veri�er decommitment information. Each of thesehandlings consists of �rst invoking Scan(h0; a0; j; (p; i)) and, pending on its not returning failure,invoking Approx and Generate on the same input. Speci�cally, the latter are invoked only ifScan(h0; a0; j; (p; i)) = (j; �). In particular, Approx(h0; a0;X; j; (p; i)) invokes Scan(h0; a0; j; (p; i)) foran expected number of times that is inversely proportional to the probability that Scan(h0; a0; j; (p; i))answers with a type X decommitment to copy j, and Generate(h0; a0; j; (p; i)) is invoked for thesame (absolute) number of times. That is, letting Scan0(h0; a0; j) def= (k;X) if Scan(h0; a0; j) answerswith a type X decommitment to copy k, we conclude that the expected number of recursive callsmade by Scan(h; a; i; p) (resp., Generate(h; a; i; p)) when handling a Step 2 message of Copy j isXX2fproper;impropergPr[Scan0(h0; a0; j) = (j;X)] � poly(n)Pr[Scan0(h0; a0; j) = (j;X)] = poly(n) (3)The key point is that all these recursive calls (of, say, Scan(h; a; i; p)) have the longer path (p; i).Thus, each node in the (depth w) tree of recursive-calls has an expected polynomial number ofchildren, and so the expected size of the tree is upper-bounded by poly(n)w. It follows that, forprobabilistic polynomial-time adversaries and constant w, the simulation terminates in expectedpolynomial-time.Output distribution analysis. We start the analysis (of the output) by justifying the discardingof the (remote) possibility that during the (polynomial-time) simulation we ever get two con
icting27



proper decommitments to the same veri�er commitment. (In fact, the above functional descrip-tion suggests this assumption, although formally it is not needed in the functional description.)Here the polynomial bound on the expected running-time is used to derive a contradiction to thecomputational-binding property of the veri�er's commitment.Next, we establish that in sub-step 2d of the handling of a Step 2 message, it rarely happens thatall invocations of Generate return failure (i.e., this bad event occurs with negligible probability).Here the polynomial bound on the expected running-time is used to bound the number of bad eventsin a union bound, where each event (i.e., failure in sub-step 2d) occurs with negligible probability.At this point, we get to the straightforward but tedious task of establishing that the mainprocedures (i.e, Scan and Generate) satisfy their corresponding speci�cations. This is proven byinduction on the recursive execution. Once this is established, we look at the initial (�ctitious)invocation of Generate, which cannot possibly return with failure, and conclude that the sim-ulator's output is computational indistinguishable from a real interaction of the cheating veri�erwith copies of the prover.5 Simulation under the Timing ModelRecall that the timing assumptions refer to two constants, � and �, such that � is an upperbound on the message handling-and-delivery time, and � � 1 is a bound on the relative rates ofthe local clocks. Speci�cally, each real-time period of � units elapses �0 units of time on thelocal clock, where �=� � �0 � ��. For simplicity, we may assume without loss of generality that�=� � �0 � � (i.e., that all clocks are at least as slow as the real time).235.1 The Time-Augmented GK-protocolRecall that the GK-protocol proceeds in four abstract steps, but the actual implementation of the�rst step consists of the prover sending a preliminary message that is used as basis of the veri�eractual commitment. Thus, the GK-protocol is actually a 5-round protocol starting with a provermessage. We augment this protocol with the following time-driven instructions, where all timesare measured according to the prover's clock starting at the time of the invocation of the prover'sprogram:1. The prover time-outs Step 1 after �1 def= 2� units of time (as measured on its clock).(By the timing assumption, this does not disrupt honest operation, because 2� real units oftime su�ce for the delivery of a message from the prover to the veri�er and back.)2. The prover delays its execution of Step 2 to time �2 def= � � �1 + �. That is, it sends itsmessage exactly when its clock shows that �2 units of time have elapsed.3. The prover time-outs Step 3 after �3 def= �2 + 2� units of time.(Note that �3 = (2�+ 3) ��.)4. The prover delays its execution of Step 4 to time �4 def= � ��3 +�.We comment that, compared to Dwork et. al. [13], we are making a slightly more extensive use ofthe time-out and delay mechanisms: Speci�cally, they only used the last two items and did so whilesetting �3 = 4� and �4 = ��3. On the other hand, our use of the time-out and delay mechanismsis less extensive than the one suggested by Section 1.4: We only guarantee that for two copies that23We comment that although our formulation looks di�erent than the one in [13], it is in fact equivalent to it.28



start at the same time, Step 2 (resp., Step 4) in each copy starts after Step 1 (resp., Step 3) iscompleted in the other copy, but we do not guarantee anything about the relative timing of Steps 2and 3. Relying on special properties of the GK-protocol (as analyzed in Section 3.5), we can a�orddoing so, whereas the description in Section 1.4 is generic and refers to any c-round protocol.(However, in the typical case where � � 1, the di�erence between the various time-augmentationsof the GK-protocol is quite small.)Comment: A more general treatment can be derived by introducing an auxiliary parameter,denoted � > 0, which above is set to equal �. In the general treatment Step 2 uses delay �2 def=� � �1 + �, whereas Step 4 uses �4 def= � � �3 + �, where �3 def= �2 + 2� (as above). In thedecomposition (below), we partition time to intervals of length � (rather than �). For � = 1, thenumber of overlapping blocks in Claim 5.1 changes by a factor of (3�+�)=4�, whereas the executiontime of the protocol changes by a factor of (4� + 2�)=6�. Observe that we do not gain much (inexecution time) by setting � � �, whereas the e�ect on the simulation time is devastating (becuaseit depends exponentially on the number of overlapping blocks). On the other hand, setting � � �does not make the simulation signi�cantly easier, whereas it delays the execution considerablly.5.2 The SimulationAs mentioned in the introduction, the simulation relies on a decomposition of any schedule thatsatis�es the timing model into sub-schedules such that each sub-schedule resembles parallel compo-sition, whereas the relations among the sub-schedules resembles bounded-simultaneity concurrentcomposition. In fact, we can prove something stronger:Claim 5.1 Consider an arbitrary scheduling of concurrent sessions of the time-augmented GK-protocol that satisfy the timing assumption. Place a session in block i if it is invoked within thereal-time interval ((i� 1) ��; i ��]. Then, for every i:1. Each session in block i terminates Step 1 by real-time i ��+��1, starts Step 2 after real-timei � � + ��1, terminates Step 3 by real-time i � � + ��3, and starts Step 4 after real-timei ��+ ��3.2. The number of blocks that have a session that overlaps with some session in block i is at most16�3. That is, the number of j 6= i such that there exists a time t, a session s in block i, anda session s0 in block j such that s and s0 are both active at time t is at most 16�3.The �rst item corresponds to Conditions C1 and C2 in Section 3.5, and the second item correspondsto bounded-simultaneity.24Proof: The latest and slowest possible session in block i is invoked by real-time i ��, and takes ��units of real-time to measure � local-time units. It follows that such a session terminates Step 1(resp., Step 3) by real-time i � � + � � �1 (resp., i � � + � � �3). On the other hand, the earliestand fastest possible session in block i is invoked after real-time (i � 1) � �, and takes � units ofreal-time to measure � local-time units. It follows that such a session starts Step 2 (resp., Step 4)after real-time (i� 1) ��+�2 = i ��+ ��1 (resp., (i� 1) ��+�4 = i ��+ ��3). The �rst itemfollows.24The second item is actually stronger than bounded-simultaneity, because it upper-bounds the total number ofblocks that overlap with a given block (rather than upper-bounding the number of blocks that are (simultaneously)active at any given time). 29



For the second item, note that the earliest possible session in block i is invoked after real-time (i � 1) ��, whereas the latest and slowest possible session in block i terminates by real-timei ��+ ��4 +� = (i + 1) ��+ � � (2�2 + 3� + 1) ��. Thus, each block resides in a time intervalof length (2�3 + 3�2 + �+ 2) ��, and therefore may overlap at most 2 � (2�3 + 3�2 + �+ 2) � 16�3other blocks.5.2.1 Combining the simulation techniques { the perfect caseGiven the above claim, we extend the simulation of Section 4 by showing how that simulator canhandle blocks of \practically parallel" sessions rather than single copies (which may be viewed as\singleton blocks"). To motivate the �nal construction, we consider �rst the special case in whicheach block is a perfect parallel composition of some sessions.The key to the extension is to realize that all that changes is the types of veri�er decommitmentevents (corresponding to Step 3). Recall that in case of a single session, there were two possibleevents (i.e., proper and improper decommitment), and these were the two decommitment typeswe have considered. Here, for m parallel copies (of some block), we may have 2m possible eventscorresponding to whether each of the m copies is proper or improper. However, the decommitmenttypes we consider here are (not these 2m events but rather) the n+1 events considered in Section 3:the events E0; E1; :::; En, where event Ej holds if all the properly decommitting sessions (in thecurrent run) have proper-decommitment probability above the threshold tj � 2�j but not all thesesessions have proper-decommitment probability above the threshold tj�1 � 2�(j�1). Indeed, E0 isthe event that all sessions have improperly decommitted in the current run. (It is important thatthe number of decommitment types is bounded by a polynomial; this will be re
ected when tryingto extend the analysis captured in Eq. (3).)Given the new notion of decommitment types, the three procedures of Section 4 (Scan, Approxand Generate) are extended by using the corresponding operations in Section 3. We stress that,in case of progress, Scan (as well as the �rst progress case in Generate) returns the decommitmentinformation, which includes the indication of whether each session has properly decommitted,but not the decommitment type. The latter will be determined as in Section 3 (which is farmore complex than the trivial case handled in Section 4, where decommitment type equals thedecommitment indicator bit). The decommitment type (rather than the sequence of decommitmentindicators) is what matters in much of the rest of the activities of the modi�ed procedures.We focus on the most interesting modi�cations to the main procedures (Scan and Generate),and ignore straightforward extensions (which apply also to other steps):1. The handling of Step 2 messages by a block j with a non-empty �rst information �eld isanalogous to the treatment in the original procedure, and we merely wish to clarify what thismeans here. The point is that the �rst �eld of block j encodes a decommitment type Ek aswell as decommitment information for all sessions that properly decommit with probabilityat least tk � 2�k. The prover commitment produced here is designed to pass with respect tothese decommitment values. (The same applies to the initial actions in Generate.)2. The handling of Step 2 messages by a block j with an empty �rst information �eld (i.e., theonly case that invokes recursive calls). The following sub-steps correspond to the sub-stepsin the original procedures (Scan and Generate):(a) We invoke Scan with a block index j (rather than with a copy index), and consider itsanswer which is either failure or a progress pair (k; y), where k is a block index, and30



y is a list of decommitments corresponding to the various copies of block k. We referto the above invocation of Scan as to the initial one, and note that many additionalinvocations (with the same parameters) will take place in handling the current step.If (the initial invocation of) Scan returned with a progress pair (k; y) such that k = j,then we turn to the complex task of determining the decommitment type E` (which holdswith respect to y) as well as the corresponding sets T` and T`�1. This is done analogouslyto the main part of Step S1 (of Section 3), which needs to be implemented in the currentcontext. In particular, the implementation of Step S1 calls for the approximation ofthe probabilities (denoted pi's in Section 3) each of the sessions properly decommits.This, in turn, amounts to multiple executions of Steps 2{3 of these sessions, which inour case should be handled by multiple invocation of Scan(�; �; j). (If k 6= j then thefollowing activity will not be conducted here, but rather be conducted by the instancethat invoked Scan(�; �; k).)Let I � [n] denote the set of sessions in which the veri�er has properly decommitted iny. (Recall we are in the case where the initial invocation of Scan(h0; a0; j) has returnedthe progress pair (j; y).) Our objective is to determine the corresponding event index `as well as the sets T` and T`�1. We consider the following cases (w.r.t I):Case of empty I: Set ` = 0 and T` = T`�1 = ;.Case of non-empty I: Set t0 = 1 and T0 = ;. We determine ` � 1 (as well as T`), byiteratively considering ` = 1; :::; n (as in Section 3.2). That is, for ` = 1; :::; n doi. We obtain t` by invoking a procedure analogous to T (`; n) (of Section 3.2).Speci�cally, we approximate each of the ps's by poly(n) � 2` invocations ofScan(h0; a0; j). Recall that each call of Scan(h0; a0; j) speci�es whether eachsession in Block j has properly decommitted, and approximations to the ps's,denoted as's, are determined accordingly. We stress that ps is the probabilitythat Scan(h0; a0; j) returns a progress pair (j; y0) such that Session s properlydecommits in y0 (e.g., ps is upper bounded by the probability that Scan(h0; a0; j)returns a progress pair (j; �)). Once all as's are determined, we determine t` justas in the second step of T (`; n).ii. Determine the set T` by determining, for each s, whether or not ps > t`. We usethe above approximations to each ps and rely on jps � t`j > (1=9n)2�`.iii. Decide if event E` holds for y by using T`�1 (of the previous iteration) and T`(just computed). Recall that event E` holds for y if I � T` but I 6� T`�1.iv. If event E` holds then exit the loop with the current value of ` as well as withthe values of T` and T`�1. Otherwise, proceed to the next iteration (i.e., thenext value of `).In both cases (of I), we have determined the commitment type X = E` with respect toy (as obtained in the initial invocation of Scan) as well as the corresponding sets T` andT`�1.(This corresponds to Step S1 of the simulator of Section 3.)(b) Exactly as in the original sub-step 2b. (That is, if either the initial answer is failureor (is a progress pair (k; y) with) k 6= j then return with the very same answer (k; y).)(c) Recall that we reach this sub-step only if the answer of the initial invocation of Scan isa progress pair (j; y), and that we have already determined the event E` that holds (fory). By poly(n) � 2` additional invocations of Scan (with the same parameters as above),31



we may obtain progress pairs of the form (j; �) several times. In all cases the secondcomponent consists of a list of proper decommitment values. With overwhelminglyhigh probability, for each s 2 T`, we will obtain (from at least one of these lists) aproper decommitment for Session s (because ps > 2`). Ignoring the question of whatdecommitment types hold in these lists,25 we combine all these lists to a list v of allproper decommitment values (obtained in any of these lists). This list v together withT` and T`�1 (as obtained in sub-step 2a) forms a new information string z = (v; T`; T`�1),which will be used below (i.e., recorded in a0 for future use). (This corresponds to Step S2of the simulator of Section 3.)Next, analogously to the original sub-step 2c, we obtain an approximation to the prob-ability that Scan(h0; a0; j) = (j; y) such that E` holds in y. Speci�cally, we let ~q  Approx(h0; a0; (E`; T`; T`�1); j), where procedure Approx uses T` and T`�1 in order to de-termine whether the event E` holds in each of invocations of Scan(h0; a0; j). We updatethe jth record of a0 by placing (E`; z) in the �rst �eld and ~q in the second �eld. (Thiscorresponds to Step S3 of the simulator of Section 3.)(d) Finally, analogously to the original sub-step 2d, we invoke Generate(h0; a0; j) up-topoly(n)=~q times and deal with the outcomes as in the original sub-step 2d. (This corre-sponds to Step S4 of the simulator of Section 3.)3. The handling of Step 3 messages by a block j (possibly j = i) is analogous to the treatmentin the original procedure, and we merely wish to spell out what this means: We consider twocases depending on whether or not a0 contains the veri�er's decommitment information forblock j (i.e., the �rst �eld of the jth block is not empty).(a) In case a0 does contain such information, we consider sub-cases according to the relationof the contents of the the �rst �eld of the jth block, denoted (E`; z), and the currentanswer of the veri�er. Speci�cally, we check whether the veri�er's current answer is oftype E`. We note that the type of the current veri�er decommitment is determinedusing the sets T` and T`�1 provided in z (i.e., z = (v; T`; T`�1), where v is a sequence ofdecommitment values not used here). The sub-cases (�t versus non-�t) are handled asin the original procedure.(b) In case a0 does not contain such information (i.e., the �rst �eld of the jth block is empty),we obtain the relevant decommitment information (i.e, a sequence of decommitments)from the adversary, and return (as progress) with this information only.This completes the description of the modi�cation to the main procedures for the current setting (ofbounded-simultaneity of blocks of parallel sessions). We stress that here (unlike in Section 3) theevents E` regarding the decommitment to block j are not the only things that may happen whenwe invoke Scan with block index j (which corresponds to Step S1 in Section 3). As in Section 4, theanswer may be failure or progress with respect to a di�erent block. Indeed, the latter may notoccur in case there is only one block, in which case the above treatment reduces to the treatmentin Section 3. It is also instructive to note that when each block consists of a single copy, the abovemodi�ed procedures degenerate to the original one (as in Section 4).To analyze the current setting (of bounded-simultaneity of blocks of parallel sessions), we plugthe analysis of Section 3 into the analysis of Section 4. The only point of concern is that we have25In particular, we do not care if the decommitment event happens to be of type E` or not. Furthermore, we mayignore y itself and not use it below (although we may also use y if we please).32



introduced additional recursive calls (i.e., in the handling of Step 2, speci�cally in the handlingsub-step 2a). However, as shown in Section 3, the expected number of these calls is bounded aboveby a polynomial (i.e., it is Pǹ=0 Pr[E`] � 2`poly(n), whereas Pr[E`] = O(n � 2�`)). Thus, again, thetree of recursive calls has expected poly(n) branching and depth at most w. Consequently, again,the expected running-time is bounded by poly(n)w.5.2.2 Combining the simulation techniques { the real caseIn the real case the execution decomposes into blocks of almost parallel sessions (rather thanperfectly parallel ones) such that (again) bounded-simultaneity holds with respect to the blocks.In view of the extension in Section 3.5, the non-perfect parallelism within each block does not raiseany problems (as far as a single block is concerned). What becomes problematic is the relationbetween the (non-perfectly parallel) blocks, and in particular our references to the ordering of stepstaken by the di�erent blocks. That is, our treatment of the perfect-parallelism case treats theparallel steps of each block as an atom. Consequently we have related to an ordering of these stepssuch that if one \block step" comes before another then all sessions in the the �rst block takethe said step before any session of the other block takes the other step. However, in general, wecannot treat the parallel steps of each block as an atom, and the following problem arises: whatif one session of block i takes Step A, next one session of block j 6= i takes Step B, and then adi�erent session of block i takes Step A. This problem seems particularly annoying if handling therelevant steps requires passing control between recursive calls. In general, the problem is resolvedby treating di�erently the �rst (resp., last) session and other sessions of each block that reacha certain step. Loosely speaking, the �rst (or last) such session will be handled similarly to theatomic case, whereas in some cases other sessions (of the block) will be handled di�erently (in amuch simpler manner). In particular, recursive calls are made only by the �rst session, and controlis returned only by either the �rst or last such sessions. For sake of clarity, we present belowthe modi�cation to the procedure Generate(h; a; i). Note that this procedure is invoked when theimmediate extension of h calls for execution of Step 2 by the �rst session in block i (i.e., h containsno Step 2 by any session that belongs to block i).Initialization (upon invocation) step: Initializes h0 = h and a0 = a, generates a passing com-mitment for (Step 2 of) the current (i.e., �rst) session of block i, and augments h0 and a0accordingly. Speci�cally, the commitment is generated so that it passes the challenge cor-responding to the current session (as recorded in the �rst �eld of record i), and only thecorresponding part of the third �eld of the ith record (in a0) is updated.In all the following cases, h0 and a0 denote the current history pre�x and auxiliary information,respectively. (The following cases refer to the next message to be handled by the procedure,which handles such messages until it returns.)Step 1 by some (new) session: Exactly as in the atomic case (i.e., augment h0 and proceed tothe next iteration).Step 2 by the �rst session in block j (certainly j 6= i): Analogous to the atomic case (see Sec-tion 5.2.1). Speci�cally, the handling depends on whether or not a0 contains the veri�er'sdecommitment information for copy j (i.e., whether or not the �rst �eld of the jth record isnon-empty). 33



1. In case a0 does contain such information, we just generate a corresponding passing com-mitment (i.e., passing w.r.t the �rst �eld of the jth record), augment h0 and a0 accordingly,and proceed to the next iteration.2. In case a0 does not contain such information (i.e., the �rst �eld of the jth record isempty), we try to obtain such information. This is done analogously to the atomic case(see Section 5.2.1). We stress that this activity will yield the necessary information forall sessions in the jth block, and not merely for the current (�rst) session in the block.Recall that the handling of this sub-case involves making recursive calls to the threeprocedures (with parameters (h0; a0; j)).Step 2 by a non-�rst session in block j (here j = i may hold): We consider two cases depend-ing on whether or not a0 contains the veri�er's decommitment information for copy j (i.e.,whether or not the �rst �eld of the jth record is non-empty).1. In case a0 does contain such information, we just generate a corresponding passing com-mitment, augment h0 and a0 accordingly, and proceed to the next iteration.(This is exactly as in the corresponding treatment of the �rst session of block j to reachStep 2.)2. In case a0 does not contain such information (i.e., the �rst �eld of the jth record isempty), we generate a dummy commitment, augment h0 accordingly, and proceed to thenext iteration. (Recall that we count on the �rst session in the jth block to �nd out thenecessary information (for all sessions in the block).)(This is very di�erent from the treatment of the �rst session of block j to reach Step 2.)Step 3 by a non-last session of block j (possibly j = i): Just augment h0 accordingly (and pro-ceed to the next iteration).(This is very di�erent from the treatment of the last session of block j to reach Step 3.)Step 3 by the last session of block j (possibly j = i): Analogous to the atomic case. We con-sider two cases depending on whether or not a0 contains the veri�er's decommitment infor-mation for block j (i.e., the �rst �eld of the jth block is not empty).1. In case a0 does contain such information, we consider sub-cases according to the relationof the contents of the the �rst �eld of the jth block, denoted (E`; z), and the Step 3 answerof the veri�er (for all sessions in the jth block). Speci�cally, we should consider theanswers to previous sessions in the jth block as recorded in h0 and the answer to the lastsession in the block as just obtained. Recall that the type of the veri�er decommitments(for the sessions in the jth block) is determined using the sets T` and T`�1 provided inthe �rst �eld of the jth block. The sub-cases (�t versus non-�t) are handled as in theoriginal procedure. That is:(a) If the decommitment type of the Step 3 answers (of the jth block) �ts E` then wejust augment h0 accordingly (and proceed to the next iteration).(b) Otherwise (i.e., the decommitment type of the current Step 3 does not �t E`),return failure.(As in the atomic setting this case must hold if j = i.)34



2. In case a0 does not contain such information (i.e., the �rst �eld of the jth block is empty),we obtain the relevant decommitment information as in the previous case, and return(as progress) with this information only. Speci�cally, the decommitment information forthe previous sessions of the jth block is recorded in h0, whereas the the decommitmentinformation for the last session has just been obtained (from the adversary).Step 4 by a session of block j (possibly j = i): Using the prover's decommitment information(as recorded in the third �eld of the jth record), we emulate Step 4 in the straightforwardmanner (and augment h0 accordingly). If this is the last session of block j and j = i, thenreturn with the current h0 and a0 (otherwise proceed to the next iteration).The modi�cations to procedure Scan are analogous. We stress that although the above descriptiontreats the schedule as if it is �xed, the treatment actually extends to a dynamic schedule where themembership of sessions in blocks is determined on-the-
y (i.e., upon their execution of Step 1).26The analysis of the perfect case can now be applied to the real case, and Theorem 1.1 follows.6 ConclusionsAs stated in Section 1.2, our techniques are applicable also to several well-known protocols thathave a structure similar to the GK-protocol. Notable examples include the (constant-round) zero-knowledge arguments of [15] and [4] as well as the perfect (constant-round) zero-knowledge proofof [5]. In fact, our techniques are applicable also to protocols with less apparent similarity to theGK-protocol. One such example is provided by the protocols that result from the transformationof Bellare, Micali and Ostrovsky [6]. In this section, we describe a general class of protocols towhich our techniques are applicable. These protocols proceed in four main abstract steps:1. The veri�er \commits" to some secret information. Indeed, this \commitment" may be (asin the case of the GK-protocol) the result of applying a commitment protocol to the saidinformation.2. Some initial sub-protocol takes place such that its execution can be easily simulated by acomputationally-bounded party that is only given the public information (i.e., the commoninput and the trascript of Step 1).In the GK-protocol, this step consists of the prover's commitment to a sequence of 3-coloringsand can be simulated by producing commitments to dummy values. In other cases (e.g., [6]),this step may be vacuous.3. The veri�er proves knowledge of the secret information it has committed to in Step 1.In the GK-protocol, this step amounts to performing the corresponding decommitment step.4. Pending on the prover being convinced, some residual sub-protocol takes place. The two sub-protocols (of Steps 2 and 4) are such that they can be easily simulated by a computationally-bounded party that is given the veri�er's secret (as well as the the public information).In the GK-protocol, these two steps can be simulated by �rst sending commitments to corre-sponding \pseudo-colorings" and next performing the corresponding decommitments.26Recall that by our assumption that the veri�er never violates the time-out condition (cf. Sec. 2.2), the \lastsession in a block to reach a certain step" can be determined as well.
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The single-session simulation of the above abstract protocol is similar to the simulator we have usedin the previous sections. Speci�cally, the simulator starts by performing Step 1, and then performsSteps 2{3 (by using the corresponding guarantee regarding Step 2). In case the transcript isunacceptable by the prover, the simulator halts outputting the truncated transcript. Otherwise, thesimulator invokes the knowledge-extractor that is guaranteed for Step 3, and obtains the veri�er'ssecret information.27 Once the simulator has this secret information, it can simulate Steps 2{4 (bythe corresponding guarantee). We warn that indeed the actual implementation of the simulationprocedure is more complex than the above description (e.g., in some cases an approximation sub-step needs to be added, as in [17]). Still, the interested reader may verify that the techniquesapplied in Sections 3{5 extend to the above (abstract) simulation scheme. We conclude that everyprotocol of the above type is concurrent zero-knowledge under the timing model.AcknowledgmentsWe are grateful to Uri Feige and Alon Rosen for useful discussions. We thank Ra� Ostrovsky forpointing out that that our techniques can be applied to the protocols in [5, 6].

27Actually, the simulator uses a knowledge-extractor that corresponds to Steps 2{3. Observe that if Step 3 is aproof-of-knowledge then so are Steps 2{3. 36
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Appendix: Application to the BJY-protocolWe start by brie
y recalling the BJY-protocol (due to Bellare, Jakobsson and Yung [4], which inturn builds upon the work of Feige and Shamir [15]). Their protocol uses an adequate three-roundwitness indistinguishable proof system (e.g., parallel repetition of the basic zero-knowledge proofof [19].). Speci�cally, we consider a three-round witness indistinguishable proof systems (e.g., forG3C) of the form:Step WI1: The prover commits to a sequence of values (e.g., the colors of each vertex underseveral 3-colorings of the graph).Step WI2: The veri�er send a random challenge (e.g., a random sequence of edges).Step WI3: The prover decommits to the corresponding values.(The implementation details are as in Construction 2.2.)28 For technical reasons, it is actuallypreferable to use protocols for which demonstrating a \proof of knowledge" property is easier (e.g.,parallel execution of Blum's basic protocol; cf. [16, Sec. 4.7.6.3] and [16, Chap. 4, Exer. 28]). Thecommitment scheme used above is perfectly-binding (and non-interactive; see Footnote 14). Giventhe above, the (four-round) BJY-protocol (for any language L 2 NP) proceeds as follows:1. The veri�er sends many hard \puzzles", which are unrelated to the common input x. Thesepuzzles are random images of a one-way function f , and their solutions are correspondingpreimages. In fact, the veri�er selects these puzzles by uniformly selecting preimages of f ,and applying f to obtain the corresponding images. Thus, the veri�er knows solutions to allpuzzles he has sent.In the rest of the protocol, the prover will prove (in a witness indistinguishable manner) thateither it knows a solution to one of (a random subset of) these puzzles or x 2 L. The latterproof is by reduction to some instance of an NP-complete language.2. The prover performs Step WI1 in parallel to asking to see a random subset of the solutions tothe above puzzles. Speci�cally, the puzzles are paired, and the prover asks to see a solutionto one (randomly selected) puzzle in each pair. Furthermore, in executing Step WI1, theprover refers to a statement derived from the reduction of the assertion x 2 L or some of thenon-selected puzzles has a solution.3. The veri�er performs Step WI2 in parallel to sending the required solutions (to the selectedpuzzles).4. The prover veri�es the correctness of the solutions provided by the veri�er, and in case allsolutions are correct it performs Step WI3.As shown in [4], the BJY-protocol is a four-round zero-knowledge argument system for L. Thesimulator is similar to the one presented for the GK-protocol. Speci�cally, it starts by executingSteps 1{3, while using dummy commitments (in Step 2). Such a partial execution is called properif the adversary has revealed all solutions to the selected puzzles (and is called improper otherwise).In case the partial execution is improper, the simulator halts while outputting it. Otherwise, thesimulator moves to generating a full execution transcript by repeatedly rewinding to Step 2 andtrying to emulate Steps 2{4 using the fact that (unless it selects the same set of puzzles again(which is highly unlikely)) it already knows a solution to one of the puzzles not selected (by it) in28Speci�cally, the prover commits to the colors of each vertex under t random relabelings of a 3-colorings of thegraph, the challenge is a sequence of t edges, and the prover decommits to the values corresponding to the end-pointsof the ith edge with respect to the ith committed coloring.39



the current execution (but rather selected in the initial execution of Steps 1{3). As in the simulationof the GK-protocol (cf. [17]), the number of repetitions must be bounded by the reciprocal of theprobability of a proper (initial) execution (as approximated by an auxiliary intermediate step).29Given the similarity of the two simulators (i.e., the one here and the one for the GK-protocol),it is evident that our treatment of concurrent composition of the GK-protocol applies also to theBJY-protocol.

29Unfortunately, this technical issue is avoided by Bellare et. al. [4], but it arises here (i.e., in [4]) similarly to theway it arises in [17], and it can be resolved in exactly the same manner. (The issue is that the prover commitmentsin the initial scan are distributed di�erently (but computational-indistinguishablly) than its commitments in thegeneration process.) 40


