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1 IntroductionZero-Knowledge proofs, introduced by Goldwasser, Micali and Racko� [22, 23], are fascinatingand extremely useful constructs. Their fascinating nature is due to their seemingly contradictoryde�nition: they are both convincing and yet yield nothing beyond the validity of the assertionbeing proven. Their applicability in the domain of cryptography is vast: they are typically usedto force malicious parties to behave according to a predetermined protocol (which requires partiesto provide proofs of the correctness of their secret-based actions without revealing these secrets).Such applications are based on the fact, proven by Goldreich, Micali and Wigderson [19], that anylanguage in NP has a zero-knowledge proof system, provided that commitment schemes exist.1The related notion of a zero-knowledge argument was suggested (and implemented) by Brassard,Chaum and Cr�epeau [7], where the di�erence between proofs and arguments is that in the latterthe soundness condition refers only to computationally-bounded cheating provers.In this work we consider the preservation of zero-knowledge under restricted types of concur-rent composition. Speci�cally, we consider multiple executions of a protocol under a naturallylimited model of asynchronous computation (which covers synchronous computation as an impor-tant special case). We start by recalling the basic notion of zero-knowledge and providing a widerperspective on the question of its preservation under various forms of composition.1.1 Zero-knowledge protocolsRecall that an interactive proof system for a language L is a (randomized) protocol for two parties,called veri�er and prover, allowing the prover to convince the veri�er to accept any common input inL, while guaranteeing that no prover strategy may fool the veri�er to accept inputs not in L, exceptthan with negligible probability. The �rst property is called completeness, and the second is calledsoundness. The prescribed veri�er strategy is always required to be probabilistic polynomial-time.Furthermore, like in other application-oriented works, we focus on prescribed prover strategies thatcan be implemented in probabilistic polynomial-time given adequate auxiliary input (e.g., an NP-witness in case of NP-languages). Recall that the latter refers to the prover prescribed for thecompleteness condition, whereas (unlike in argument systems [7]) soundness must hold no matterhow powerful the cheating prover is.Zero-knowledge is a property of some prover-strategies. Loosely speaking, these strategies yieldnothing to the veri�er, beyond the fact that the input is in the prescribed language L. The factthat \nothing is gained by the interaction" is captured by stating that whatever the veri�er cane�ciently compute after interacting with the (zero-knowledge) prover on a speci�c common input,can be e�ciently computed from the assertion itself, without interacting with anyone. Thus, theformulation of the zero-knowledge condition considers two ensembles of probability distributions,each ensemble associates a probability distribution to each input in L: The �rst ensemble representsthe output distribution of the veri�er after interacting with the speci�ed prover strategy P , wherethe veri�er is using an arbitrary e�cient (i.e., probabilistic polynomial-time) strategy, not neces-sarily the one speci�ed by the protocol. The second ensemble represents the output distributionof some probabilistic polynomial-time algorithm (which does not interact with anyone). The basicparadigm of zero-knowledge asserts that for every ensemble of the �rst type there exist a \similar"ensemble of the second type. The speci�c variants di�er by the interpretation given to the notionof `similarity', and in this work (as in most of the literature) we focus on the most liberal inter-pretation. Under this (liberal) interpretation, similarity means computational indistinguishability1Or, equivalently [27, 24], that one-way functions exist.2



(i.e., failure of any e�cient procedure to tell the two ensembles apart). The ensembles fX�g andfY�g are said to be computationally indistinguishable if, for every e�cient procedure D (and every�), it holds that jPr[D(�;X�)=1]� Pr[D(�; Y�)=1]j < �(j�j)where � is a negligible function (i.e., a function vanishing faster than the reciprocal of any positivepolynomial).1.2 Composition of zero-knowledge protocolsA fundamental question regarding zero-knowledge proofs (and arguments) is whether the zero-knowledge condition is preserved under a variety of composition operations. Three types of com-position operations were considered in the literature, and we briey review these operations andwhat is known about the preservation of the zero-knowledge condition under each of them.1.2.1 Sequential compositionHere the protocol is invoked (polynomially) many times, where each invocation follows the termi-nation of the previous one. At the very least, security (e.g., zero-knowledge) should be preservedunder sequential composition, otherwise the applicability of the protocol is severely limited (becauseone cannot safely use it more than once).Although the basic de�nition of zero-knowledge (as in the preliminary version of Goldwasseret. al. [22]) is not closed under sequential composition (cf. [18]), a minor augmentation of it (byauxiliary inputs) is closed under sequential composition (cf. [20]). Indeed, this augmentation wasadopted in all subsequent works (as well as in the �nal version of Goldwasser et. al. [23]).1.2.2 Parallel compositionHere (polynomially) many instances of the protocol are invoked at the same time and proceed at thesame pace. That is, we assume a synchronous model of communication, and consider (polynomially)many executions that are totally synchronized such that the ith round message in all instances issent exactly (or approximately) at the same time.Goldreich and Krawczyk presented a simple protocol that is zero-knowledge (in a strong sense),but is not closed under parallel composition (even in a very weak sense) [18]. At the time, their resultwas interpreted mainly in the context of round-e�cient error reduction; that is, the construction offull-edge zero-knowledge proofs (of negligible soundness error) by composing (in parallel) a basiczero-knowledge protocol of high (but bounded away from 1) soundness error. Since alternative waysof constructing constant-round zero-knowledge proofs (and arguments) were found (cf. [17, 15, 8]),interest in parallel composition (of zero-knowledge protocols) has died. In retrospect, as we arguein x1.4.3, this was a conceptual mistake.We comment that parallel composition is problematic also in the context of reducing the sound-ness error of arguments (cf. [3]), but our focus here is on the zero-knowledge aspect of protocolsregardless if they are proofs, arguments or neither.1.2.3 Concurrent compositionThis notion of concurrent composition generalizes both the notions of sequential composition andparallel composition. Here (polynomially) many instances of the protocol are invoked at arbitrary3



times and proceed at arbitrary pace. That is, we assume an asynchronous (rather than synchronous)model of communication.In the 1990's, when extensive two-party (and multi-party) computations became a reality (ratherthan a vision), it became clear that it is (at least) desirable that cryptographic protocols maintaintheir security under concurrent composition (cf. [12]). In the context of zero-knowledge, concurrentcomposition was �rst considered by Dwork, Naor, and Sahai [13]. Their actual suggestions refer to amodel of naturally-limited asynchronicity (which certainly covers the case of parallel composition).Essentially, they assumed that each party holds a local clock such that the relative clock ratesas well as the message-delivery time are bounded by a-priori known constants, and consideredprotocols that employ time-driven operations (i.e., time-out in-coming messages and delay out-going messages). This timing model is the main focus of the current paper (and we shortly discussthe pure asynchronous model in x1.4.3). The previously known main results for the timing modelare (cf. [13]):� Assuming the existence of one-way functions, every language in NP has a constant-roundconcurrent zero-knowledge argument.� Assuming the existence of two-round perfectly-hiding commitment schemes (which in turnimply one-way functions), every language inNP has a constant-round concurrent �-knowledgeproof, where �-knowledge means that (for every noticeable function � :N!(0; 1]) a simulatorworking in time poly(n=�(n)) can produce output that is �-indistinguishable from the one ofa real interaction. (For further discussion of �-knowledge, see Section 1.6.)Thus, no constant-round proofs for NP were previously known to be concurrent zero-knowledge(under the timing model). We comment that proof with non-constant number of rounds wereknown to be concurrent zero-knowledge (even in the pure asynchronous model; cf. x1.4.3).1.3 Our resultsOur main result closes the gap mentioned above, by showing that a (known) constant-round zero-knowledge proof for NP is actually concurrent zero-knowledge under the timing model. That is,we prove:Theorem 1.1 The (�ve-round) zero-knowledge proof system for NP of Goldreich and Kahan [17]is concurrent zero-knowledge under the timing model.Thus, the zero-knowledge property of the proof system (of [17]) is preserved under any concurrentcomposition that satis�es the timing model. In particular, the zero-knowledge property is preservedunder parallel composition, a result we consider of independent interest.Recall that the proof system of [17] relies on the existence of two-round perfectly-hiding com-mitment schemes (which is implied by the existence of claw-free pairs of functions and implies theexistence of one-way functions). Thus, we get:Theorem 1.2 Assuming the existence of two-round perfectly-hiding commitment schemes, thereexists a (constant-round) proof system for NP that is concurrent zero-knowledge under the timingmodel.Using the same techniques, we can show that several other known (constant-round) zero-knowledge protocols remain secure under the concurrent timing-model. Examples include the4



(constant-round) zero-knowledge arguments of Feige and Shamir [15] and of Bellare, Jakobssonand Yung [4]. The latter protocol (referred to as the BJY-protocol) is of special interest because itis a four-round argument for NP that relies only on the existence of one-way functions. The aboveprotocols are simpler (and use fewer rounds) than the argument systems previously shown (in [13])to be concurrent zero-knowledge (under the timing-model), alas their security (under this model)is established by a more complex simulator. (See further details in Section 6.1.)1.4 Discussion of some issuesWe clarify some issues that underly our study. Some of these issues were mentioned explicitlyabove.1.4.1 The meaning of compositionWe stress that when we talk of composition of protocols (or proof systems) we mean that the honestusers are supposed to follow the prescribed program (speci�ed in the protocol description) that refersto a single execution. That is, the actions of honest parties in each execution are independent of themessages they received in other executions. The adversary, however, may coordinate the actions ittakes in the various executions, and in particular its actions in one execution may depend also onmessages it received in other executions.Let us motivate the asymmetry between the independence of executions assumed of honestparties but not of the adversary. Coordinating actions in di�erent executions is typically di�cultbut not impossible. Thus, it is desirable to use composition (as de�ned above) rather than to useprotocols that include inter-execution coordination-actions, which require users to keep track ofall executions that they perform. Actually, trying to coordinate honest executions is even moreproblematic, because one may need to coordinate executions of di�erent honest parties (e.g., allemployees of a big cooperation or an agency under attack), which in many cases is highly unrealistic.On the other hand, the adversary attacking the system may be willing to go into the extra troubleof coordinating its attack on the various executions of the protocol.1.4.2 Important zero-knowledge technicalitiesWe shortly discuss seemingly technical but actually fundamental variants on the basic de�nition ofzero-knowledge. In particular, these variants play an important role in our work.Auxiliary inputs and non-uniformity: As mentioned above, almost all work on zero-knowledgeactually refer to zero-knowledge with respect to (non-uniform) auxiliary inputs. This work is noexception, but (as in most other work) the reference to auxiliary inputs is typically omitted. Wecomment that zero-knowledge with respect to auxiliary inputs \comes for free" whenever zero-knowledge is demonstrated (like in this work) via a black-box simulator (see below). The onlything to bear in mind is that allowing the adversary (non-uniform) auxiliary inputs means thatthe computational assumptions that are used need to be non-uniform ones. For example, when wetalk of computational-binding (resp., computational-hiding) commitment schemes we mean thatthe binding (resp., hiding) property holds with respect to any family of polynomial-size circuits(rather than with respect to any probabilistic polynomial-time algorithm).Black-box simulation: The de�nition of zero-knowledge (only) requires that the interaction ofthe prover with any cheating (probabilistic polynomial-time) veri�er be simulateable by an ordinary5



probabilistic polynomial-time machine (which interacts with no one). A black-box simulator is onethat can simulate the interaction of the prover with any such veri�er when given oracle access tothe strategy of that veri�er. All previous zero-knowledge arguments (or proofs), with the exceptionof the recent (constant-round) zero-knowledge argument of Barak [1], are established using a black-box simulator, and our work is no exception (i.e., we also use a black-box simulator). Indeed, Barakdemonstrated that (contrary to previous beliefs) non-black-box simulators may exist in cases whereblack-box ones do not exist [1]. However, black-box simulators, whenever they exist, are preferableto non-black-box ones, because the former o�ers greater security: Firstly, as mentioned above,black-box simulators imply zero-knowledge with respect to auxiliary inputs.2 Secondly, black-boxsimulators imply polynomial bounds on the knowledge tightness, where knowledge tightness is the(inverse) ratio of the running-time of any cheating veri�er and the running-time of the correspondingsimulation [16, Sec. 4.4.4.2].3Expected polynomial-time simulators: With the exception of the recent (constant-round)zero-knowledge argument of Barak [1], all previous constant-round arguments (or proofs) utilizean expected polynomial-time simulator (rather than a strict polynomial-time simulator). (Indeedour work inherits this \feature" of [17].) As recently shown by Barak and Lindell [2], this is nocoincidence, because all the above (with the exception of [1]) utilize black-box simulators, whereasno strict polynomial-time black-box simulator can demonstrate the zero-knowledge property of aconstant-round argument system for a language out of BPP .1.4.3 Types of concurrent compositionWe shortly discuss various types of asynchronous concurrent composition, starting with the pureasynchronous model and ending with the synchronous (or parallel) model.Perspective: the pure asynchronous model. Regarding the pure asynchronous model, thecurrent state of the art is as follows:� Black-box simulator cannot demonstrated the concurrent zero-knowledge property of non-trivial proofs (or arguments) having signi�cantly less than logarithmically many rounds (cf.Canetti et. al. [10]). By non-trivial proof systems we mean ones for languages outside BPP ,whereas by signi�cantly less than logarithmic we mean any function f : N ! N satisfyingf(n) = o(log n= log log n).� Every language in NP has a concurrent zero-knowledge proof with almost-logarithmicallymany rounds, and this can be demonstrated using a black-box simulator (cf. [28], buildingupon [25], which in turn builds upon [29]).� Recently, Barak [1] demonstrated that the \black-box simulation barrier" can be bypassed.With respect to concurrent zero-knowledge he only obtains partial results: constant-roundzero-knowledge arguments (rather than proofs) for NP that maintain security as long as an2In contrast, whether or not a non-black-box simulator implies zero-knowledge with respect to auxiliary inputs,depends on the speci�c simulator: In fact, in [1], Barak �rst presents (as a warm-up) a protocol with a non-black-boxsimulator that cannot handle auxiliary inputs, and next uses a more sophisticated construction to handle auxiliaryinputs.3That is, a protocol is said to have knowledge tightness k :N!R if for some polynomial p and every probabilisticpolynomial-time veri�er V � the interaction of V � with the prover can be simulated within time k(n) � TV �(n) + p(n),where TV � denotes the time complexity of V �. In fact, the running-time of the simulator constructed by Barak [1] ispolynomial in TV � , and so the knowledge tightness of his protocol is not bounded by any polynomial.6



a-priori bounded (polynomial) number of executions take place concurrently. (The length ofthe messages in his protocol grows linearly with this a-priori bound.)4Thus, it is currently unknown whether constant-round arguments for NP may be concurrent zero-knowledge (in the pure asynchronous model).On the timing model: The timing model consists of the assumption that talking about theactual timing of events is meaningful (at least in a weak sense) and of the introduction of time-drivenoperations. The timing assumptions amount to postulating that each party holds a local clock andknows a global bound, denoted � � 1, on the relative rates of the local clocks.5 Furthermore,it is postulated that the parties know a (pessimistic) bound, denoted �, on the message-deliverytime (which also includes the local computation and handling times). In our opinion, these timingassumptions are most reasonable, and are unlikely to restrict the scope of applications for whichconcurrent zero-knowledge is relevant. We are more concerned about the e�ect of the time-drivenoperations introduced in the timing model. Recall that these operations are the time-out of in-coming messages and the delay of out-going messages. Furthermore, typically (and in fact also inour work), the delay period is at least as long as the time-out period,6 which in turn is at least� (i.e., the time-out period must be at least as long as the pessimistic bound on message-deliverytime so not to disrupt the proper operation of the protocol). This means that the use of these time-driven operations yields slowing down the execution of the protocol (i.e., running it at the rate ofthe pessimistic message-delivery time rather than at the rate of the actual message-delivery time,which is typically much faster). Still, in absence of more appealing alternatives (i.e., a constant-round concurrent zero-knowledge protocol for the pure asynchronous model), the use of the timingmodel may be considered reasonable. (We comment that other alternatives to the timing-modelinclude various set-up assumptions; cf. [9, 11].)On parallel composition: Given our opinion about the timing model, it is not surprising thatwe consider the problem of parallel composition almost as important as the problem of concurrentcomposition in the timing model. Firstly, it is quite reasonable to assume that the parties' localclocks have approximately the same rate, and that clock drifting is corrected by occasional clocksynchronization. Thus, it is reasonable to assume that the parties have approximately-good es-timates of some global time. Furthermore, the global time may be partitioned into phases, eachconsisting of a constant (e.g., 5) number of rounds, so that each party wishing to execute the pro-tocol just delays its invocation to the beginning of the next phase. Thus, concurrent execution of4We are quite sure that Barak's arguments remain zero-knowledge under concurrent executions that satisfy thetiming model. But since these are arguments (rather than proofs) such a result will not improve upon the previouslyknown result of [13] (which uses black-box simulations).5De�ning the rate of a clock is less straightforward than one may think. Firstly, clocks (or rather their reading)are typically discrete, and thus their relative rate is a ratio between pairs of reading (i.e., initial reading and �nalreading). Thus, rate must be computed with respect to su�ciently long time intervals. In particular, these intervalsshould be long enough such that the e�ect of a single change in the clock reading (i.e., a single \clock tick") can beneglected. Secondly, the clock rate may change with time, and so the aforementioned time intervals should not betoo long. In the context of the current work, it is reasonable to measure the clock rate with respect to time intervalsof length �. Thus, when we say that the relative rate of two clocks is � we mean that a time period of � units onone clock is measured as at least �=� (and at most ��) units on the other clock.6Following the conference presentation of this work, Barak and Micciancio raised the possibility of using a delayperiod that is smaller and yet linearly related to the time-out period. It seems plausible that, following their approach,security will deteriorate exponentially with the constant of the said proportion. We stress that so far their approachwas not proved to work, but it does indicate that the common practice (of using a delay period that is at least aslong as the time-out period) may not be inherent to the model.7



(constant-round) protocols in this setting amounts to a sequence of (time-disjoint) almost-parallelexecutions of the protocol. Consequently, proving that the protocol is parallel zero-knowledgesu�ces for concurrent composition in this setting.1.5 TechniquesTo discuss our techniques, let us �x a timing assumption (i.e., an a-priori bound � on the local clockrates and a bound � on the message-delivery time) and consider a c-round protocol that utilizesappropriately selected time-out and delay mechanisms (which depend on the above bounds; e.g.,timing-out in-coming messages after � time units). The reader may think of the bound on therelative rates of local clock as being close to 1 (or even just 1; i.e., equal rates), and of c as being aconstant (in fact, we will use c = 5). Furthermore, suppose that all prover's actions in the protocolare time-driven (by the time-out and delay mechanisms).A key observation underlying our work is that a concurrent scheduling (of such protocol in-stances) under the timing model can be decomposed into a sequence of parallel executions, calledblocks, such that the number of simultaneously active blocks is bounded by O(c). That is, eachblock consists of protocol instances that are executed almost in parallel, and the number of blocksthat are (pairwise) active at the same time is O(c), where two blocks are said to be active at thesame time if for some time t each block has a protocol instance that is active at time t. Theconstant in the O-notation depends on the a-priori known bound on the relative clock rates. Thisdecomposition applies whenever the timing model is used (and is not restricted to the context ofzero-knowledge), and it may be useful towards the analysis of the concurrent execution of any setof protocols under the timing model.Let us clarify the above observation by providing a proof for a special (simple) case. Our �rstsimplifying assumption is that the clock rates are all equal. We further assume that the proverutilizes equal delays between its messages, and that these delays are four times the length of thetime-out period, which is de�ned as our basic time unit. Considering an arbitrary scheduling ofprotocol instances, under the aforementioned timing model, we place a protocol instance in the ithblock if it is invoked during the ith time-interval (i.e., the time interval (i� 1; i]). Then, each blockconsists of an almost-parallel execution of instances of the protocol (i.e., the (j + 1)-st message inany instance of block i is supposed to be sent at time t+ 4j > i� 1 + 4j and is timed-out at timet+ 4j + 1 < i+ 4j + 1, where t 2 (i� 1; i] is the invocation time of this instance). Clearly, the ithand jth blocks are simultaneously active (at some time) only if ji� jj < 4c, where c is the numberof rounds in the protocol. Thus, at most 8c+ 1 blocks are simultaneously active.In view of the above, it is quite natural to conjecture that in order to analyze the concurrentcomposition of protocols under the timing model it su�ces to deal with two extreme schedulings: theparallel scheduling and the bounded-simultaneity scheduling. Indeed, this conjecture is essentiallycorrect in the cases considered in this work (i.e., for certain zero-knowledge proofs).Handling parallel composition. At �rst glance, one may be tempted to say that the tech-niques used for proving that the Goldreich{Kahan (GK) protocol is zero-knowledge (cf. [17] andSection 2.3) extend to showing that it remains zero-knowledge under parallel composition. Thiswould have been true if we were handling coordinated parallel executions of the GK-protocol (wherethe prover would abort all copies if the veri�er decommits improperly in any of them). However,this is not what we are handling here (i.e., parallel composition refers to uncoordinated parallelexecution of many copies of the protocol). Consequently, a couple of new techniques are introducedin order to deal with the parallel composition of the GK-protocol. We consider these simulation8



techniques to be of independent interest.Handling bounded-simultaneity concurrent composition. Experts in the area may not�nd it surprising that the GK-protocol remains zero-knowledge under bounded-simultaneity con-current composition. In fact, previous works (e.g., [13]) suggest that the di�culty in simulatingconcurrent executions of the GK-protocol arises from the case in which a large number of instancesis executed in a \nested" (and in particular simultaneous) manner.7 Furthermore, the work ofRichardson and Kilian [29] suggests that certain (related) protocols may be zero-knowledge un-der bounded-simultaneity concurrent composition. Still, to the best of our knowledge, such atechnically-appealing result has not been proven before. We prove the result by using a ratherstraightforward approach, which nevertheless requires careful implementation. We stress thatnot every zero-knowledge protocol remains zero-knowledge under bounded-simultaneity concur-rent composition (e.g., Goldreich and Krawczyk presented a simple (constant-round) protocol thatis zero-knowledge, but parallel execution of two instances of it is not zero-knowledge [18]).Handling the general case. Combining the techniques employed in handling the two extremecases, we show that (augmented with suitable timing mechanisms) the GK-protocol is concurrentzero-knowledge under the timing model. This is shown by using the abovementioned decomposition,and applying the bounded-simultaneity simulator to the blocks while incorporating the parallel-composition simulator inside of it (i.e., to the individual blocks). Note that, by de�nition, thebounded-simultaneity simulator handles the special case in which each block contains a singlecopy, and does so by employing the single-copy simulator. Capitalizing on the high-level similarityof the parallel-composition simulator and the single-copy simulator, we just need to extend thebounded-simultaneity simulator by incorporating the former simulator in it. (Our presentation ofthe bounded-simultaneity simulator uses terminology that makes this extension quite easy.)1.6 Zero-knowledge versus �-knowledgeRecall that �-knowledge means that for every noticeable function (i.e., a reciprocal of some positivepolynomial) � : N ! (0; 1] there exists a simulator working in time poly(n=�(n)) that producesoutput that is �-indistinguishable from the one of a real interaction, where n denotes the length ofthe input and the ensembles fX�g and fY�g are said to be �-indistinguishable if for every e�cientprocedure (e.g., a polynomial-time algorithm) D, it holds thatjPr[D(�;X�)=1]� Pr[D(�; Y�)=1]j < �(j�j) + �(j�j)where � is a negligible function. (Indeed, the standard notion of computational indistinguishabil-ity [21, 31] is a special case obtained by setting � � 0.)Indeed, as mentioned in [13], �-knowledge does provide some level of security. However, thislevel of security is lower than the one o�ered by the standard notion of zero-knowledge, and moreso when compared to simulators with bounded knowledge tightness (as discussed above; cf. [16,Sec. 4.4.4.2]). Furthermore, unlike zero-knowledge, the notion of �-knowledge is not closed undersequential composition (i.e., t sequential executions of a �-knowledge protocol yield a t ��-knowledge(rather than �-knowledge) protocol).7In fact, even if each level of nesting only multiplies the simulation time by a factor of 2, we get an exponentialblow-up. 9



Expected polynomial-time simulators versus �-knowledge. The above discussion appliesalso to the comparison of �-knowledge and zero-knowledge via expected polynomial-time simula-tors (rather than via strict polynomial-time simulators). Furthermore, simulation by an expectedpolynomial-time simulator implies �-knowledge simulator (running in strict time inversely propor-tional to �).8 The converse does not hold (e.g., consider a prover that, for i = 1; 2:::, with probability2�i sends the result of a BPTime(22i)-complete computation).We comment that even a stronger notion of �-knowledge, by which the simulator's running-timeis linear (rather than polynomial) in 1=� does not seem to imply zero-knowledge (via an expectedpolynomial-time simulator). Note that the naive attempt (of converting the former simulator intoone that establishes zero-knowledge) fails.91.7 Relation to Shimon Even (a personal comment)This work grew out of my sudden realization that the question of parallel composition of zero-knowledge protocols has not received the attention that it deserves. Speci�cally, when asked fora protocol that preserves zero-knowledge under parallel composition, one would have referred tothe preservation of zero-knowledge under concurrent composition (possibly in the timing model).Thus, a potentially easier problem was reduced to a harder problem, which is not the `right' way togo. Things were even worst because, as argued in x1.4.3, the preservation of zero-knowledge underparallel composition is a natural and important problem.Readers that were fortunate to know Shimon well will immediately associate the mood of theprevious paragraph with him. Indeed, the moment I reached the conclusion stated above, I gotreminded of Shimon.I then asked myself whether I already know of a simple protocol that preserve zero-knowledgeunder parallel composition, and my immediate conjecture was that this should be true of theGK-protocol. Once I proved this conjecture, which turned out to be harder to establish thanI've originally thought, I asked myself whether this argument can be extended further (i.e., toconcurrent composition under the timing model). Thus, I have established results similar to thoseknown before, using a di�erent approach that goes from a natural special case to the general case.This entire development reminds me again of Shimon.Finally, I wish to recall another connection to Shimon. In 1978, as an undergraduate, I attendedhis course Graph Algorithms. At some point, one student was annoyed at Shimon's \untraditional"way of analyzing algorithms and asked whether Shimon's arguments constituted a proof and if sowhat is a proof. Shimon answer was immediate, short and clear: A proof is whatever convinces me.A few years later, when �rst seeing the de�nition of interactive proofs, I was reminded of Shimon'sanswer. I think that interactive proofs are a perfect formalization of Shimon's intuition: interactiveproofs are indeed convincing, and essentially any convincing argument is actually an interactiveproof.1.8 OrganizationIn Section 2, we recall some basic notions as well as review the GK-protocol (i.e., the �ve-roundzero-knowledge proof system of Goldreich and Kahan [17]). In Section 3 we prove that the GK-protocol remains zero-knowledge under parallel composition. In Section 4 we prove that the GK-8This can be seen by truncating all runs of the original simulator that exceed its expected running-time by a factorof 1=� (or so).9That is, selecting i with probability 2�i and invoking the former simulator with � = 2�i does yield an expectedpolynomial-time simulator, but its output may not be computationally indistinguishable from the real interaction.10



protocol remains zero-knowledge under bounded-simultaneity concurrent composition. The lattertwo sections can be read independently of one another, and are believed to be of independentinterest.In Section 5, we augment the GK-protocol with adequate time-out and delay mechanisms,and prove that the resulting protocol is concurrent zero-knowledge under the timing model. Thisis done by extending the simulator presented in Section 4, where the extension relies on the ideasunderlying the simulator presented in Section 3. We conclude (cf. Section 6) by applying ourtechniques to the zero-knowledge argument system of Bellare, Jakobsson and Yung [4] and bypresenting a class of protocols to which our techniques can be applied.2 BackgroundZero-knowledge is a property of some prover-strategies. Loosely speaking, it means that any-thing that is feasibly computable by (possibly improperly) interacting with the prover, can befeasibly computable without interacting with the prover. That is, the most basic de�nition ofzero-knowledge (of a prover P w.r.t a language L) requires that, for every probabilistic polynomial-time veri�er strategy V �, there exists a probabilistic polynomial-time simulator M� such that thefollowing two probability ensembles are computationally indistinguishable:1. fhP; V �i(x)gx2L def= the output of V � when interacting with P on common input x 2 L; and2. fM�(x)gx2L def= the output of M� on input x 2 L.(The formulation can be easily extended to allow for auxiliary inputs to V �; cf. De�nition 2.1.)Recall that the ensembles fX�g�2S and fY�g�2S are said to be computationally indistinguishable if,for every e�cient procedure D, it holds thatjPr[D(�;X�)=1]� Pr[D(�; Y�)=1]j < �(j�j)where � is a negligible function. Recall that � : N ! [0; 1] is called negligible if it vanishesfaster than the reciprocal of any positive polynomial (i.e., for every positive polynomial p and allsu�ciently large n, it holds that �(n) < 1=p(n)). We say that an event occurs with overwhelminglyhigh probability if it occurs with probability that is negligibly close to 1 (i.e., the event occurs withprobability 1 � �, where � is a negligible function). Indeed, our entire treatment will refer toexecutions that are parameterized by some parameter, denoted n, which is polynomially related tothe length of some relevant input.2.1 Expected polynomial-time simulation and black-box simulationAs discussed in the introduction, we use two variants of the above de�nition (or de�nitional schema):One one hand, we allow the simulator to run in expected probabilistic polynomial-time (ratherthan strict probabilistic polynomial-time). On the other hand, we require the simulator to beimplementable by a universal machine that gets oracle access to the (veri�er) strategy V �. See [16,Sec. 4.3.1.6] (resp., [16, Sec. 4.5.4.2] and [1]) for further discussion of the �rst (resp., second) issue.De�nition 2.1 (black-box zero-knowledge):Next message function: Let B be an interactive Turing machine, and x; z; r be strings represent-ing a common-input, auxiliary-input, and random-input, respectively. Consider the functionBx;z;r(�) describing the messages sent by machine B such that Bx;z;r(m) denotes the messagesent by B on common-input x, auxiliary-input z, random-input r, and sequence of incomingmessages m. For simplicity, we assume that the output of B appears as its last message.11



Black-box simulator: We say that an expected probabilistic polynomial-time oracle machine Mis a black-box simulator for the prover P and the language L if for every polynomial-timeinteractive machine B, every probabilistic polynomial-time oracle machine D, every positivepolynomial p(�), all su�ciently large x 2 L, and every z; r 2 f0; 1g�:���Pr hDBx;z;r(hP;Br(z)i(x))=1i � Pr hDBx;z;r(MBx;z;r(x))=1i��� < 1p(jxj)where Bx;z;r is the next-message function de�ne above, and Br(z) denotes the interactionof machine B with auxiliary-input z and random-input r. That is, hP;Br(z)i(x) denotesthe output of B, having auxiliary-input z and random-input r, when interacting with P oncommon input x.We say that P is black-box zero knowledge if it has a black-box simulator.Note that an auxiliary-input for the veri�er is explicitly incorporated in De�nition 2.1, whereasan auxiliary input for the prover is only implicit in it. Speci�cally, P may be a probabilisticpolynomial-time that is given an adequate additional information regarding the common input xas an auxiliary input (e.g., an NP-witness that x 2 L, in case L is in NP).2.2 Parallel and concurrent zero-knowledge and the timing modelThe de�nition of parallel and concurrent zero-knowledge are derived from De�nition 2.1 by consid-ering appropriate adversaries (i.e., adversarial veri�ers) that invoke multiple copies of the (basic)protocol. For simplicity, we will assume throughout this work that all copies are invoked on thesame (common) input. Each execution of such an individual copy is called a session. In case ofparallel zero-knowledge, we consider adversaries that simultaneously invoke a polynomial number ofcopies (or sessions) of the protocol, and interact with this multitude of copies in a synchronized way(i.e., send their ith message in all copies at the same time). In case of concurrent zero-knowledge,we consider adversaries that invoke a polynomial number of copies (or sessions), and interleave theirinteraction with this multitude of copies in an arbitrary way. In case of concurrent zero-knowledgeunder the timing model, the interleaving of executions by the adversary must satisfying the timingmodel. (Without loss of generality, we may assume that the adversary never violates the time-outcondition; it may instead send an illegal message at the latest possible adequate time.)10An important technicality. As discussed by Canetti et. al. [10], De�nition 2.1 is too restrictivefor serving as a basis for a de�nition of (unbounded) composition, where the adversary B may invokea (polynomial) number of sessions with P but this polynomial is not a-priori known. The problemis that the universal (black-box) simulator may invoke (the next message function associated with)B only for an (expected) polynomial number of times, whereas B may describe a strategy thatinitiates a larger number of sessions with P . One solution is to consider for each polynomiala di�erent universal simulator that can handle all adversaries that invoke at most a number ofsessions (with P ) that is bounded by that polynomial. For simplicity, we adopt this solution here.10Furthermore, without loss of generality, we may assume that all the adversary's messages are delivered at thelatest possible adequate time. The latter assumption is justi�ed by noting that the prescribed prover strategy maybe modi�ed such that a time-out condition applied to the veri�er's message is always followed by at least a similardelay of the next prover message. (Indeed, this may slow down some executions in which the veri�er is honest, butnever slows them down by more than can be caused by a cheating veri�er.) We comment that this modi�cation isunnecessary in our protocol (of Section 5), since it already satis�es the above convention.12



2.3 The Goldreich{Kahan (GK) ProtocolLoosely speaking, the Goldreich{Kahan (GK) proof system for Graph 3-Colorability (G3C) pro-ceeds in four steps:1. The veri�er commits to a challenge (i.e., sequence of edges in the input graph).2. The prover commits to a sequence of values (i.e., the colors of each vertex under severalrandom relabelings of a �xed 3-coloring of the graph). This sequence is partitioned intosubsequences, each corresponding to a di�erent random relabeling of the coloring of thegraph.3. The veri�er decommits (to the edge-sequence).4. If the veri�er has properly decommits then the prover decommits to a subset of the values asindicated by the decommitted challenge. Otherwise the prover sends nothing.Speci�cally, the challenge is a sequence of edges, each associated with an independentlyselected 3-coloring of the graph, and the prover responses to the ith edge by decommitting tothe values in the ith committed coloring that correspond to the end-points of the ith edge.A detailed description of the above protocol is provided in Construction 2.2 (below). We note thatmany of the speci�c details are not important to our analysis, and are provided merely for sake ofclarity. We highlight a couple of points that are relevant to the analysis: Firstly, the prover's com-mitment is via a commitment scheme that is (perfectly-binding but only) computationally-hiding,and so commitments to di�erent values are (only) computationally-indistinguishable (which consid-erably complicates the analysis; cf. [17]). Secondly, the veri�er's commitment is via a commitmentscheme that is (perfectly-hiding but only) computationally-binding, and so it is (only) infeasiblefor it to properly decommits in two di�erent way (which slightly complicates the analysis).Implementation Details: The Goldreich{Kahan protocol [17] utilizes two \dual" commitmentscheme (see terminology in [16, Sec. 4.8.2]). The �rst commitment scheme, denoted C, is usedby the prover and has a perfect-binding property. For simplicity, we assume that this scheme isnon-interactive, and denote by C(v) a random variable representing the output of C on input v(i.e., a commitment to value v).11 The second commitment scheme, denoted C, is used by theveri�er and has a perfect-hiding property. Such a scheme must be interactive, and we assumethat it consists of the receiver sending a random index, denoted �, and the committer respondsby applying the randomized process C� to the value it wishes to commit to (i.e., C�(v) = C(�; v)represents a commitment to v relative to the receiver's message �). Consequently, Step 1 in thehigh-level description is implemented by Steps P0 and V1 below.Construction 2.2 (The GK zero-knowledge proof for G3C):Common Input: A simple (3-colorable) graph G=(V;E).Let n def= jV j, V = f1; :::; ng, and t def= 2n � jEj.Auxiliary Input to the Prover: A 3-coloring of G, denoted  .Prover's preliminary step (P0): The prover invokes the commit phase of the perfectly-hiding com-mitment scheme, which results in sending to the veri�er a message �.11Non-interactive perfectly-binding commitment schemes can be constructed using any one-way permutation. Incase one wishes to rely here only on the existence of one-way functions, one may need to use Naor's two-roundperfectly-binding commitment scheme [27]. This calls for a minor modi�cation of the description below.13



Veri�er's commitment to a challenge (V1): The veri�er uniformly and independently selects a se-quence of t edges, e def= ((u1; v1); :::; (ut; vt)) 2 Et, and sends to the prover a random com-mitment to these edges. Namely, the veri�er uniformly selects s 2 f0; 1gpoly(n), and sendsc def= C�(e; s) to the prover.Motivating Remark: At this point the veri�er is e�ectively committed to a sequence of t edges.(This commitment is of perfect secrecy.)Prover's commitment step (P1): The prover uniformly and independently selects a sequence of trandom relabeling of the 3-coloring  , and sends the veri�er commitments to the color ofeach vertex under each of these colorings. That is, the prover uniformly and independentlyselects t permutations, �1; :::; �t, over f1; 2; 3g, and sets �j(v) def= �j( (v)), for each v 2 Vand 1 � j � t. It uses the perfectly-binding commitment scheme to commit itself to thecolors of each of the vertices according to each 3-coloring. Namely, the prover uniformly andindependently selects r1;1; :::; rn;t 2 f0; 1gn, computes ci;j = C(�j(i); ri;j), for each i 2 V and1�j� t, and sends c1;1; :::; cn;t to the veri�er.Veri�er's decommitment step (V2): The veri�er decommits the sequence e = ((u1; v1); :::; (ut; vt))to the prover. Namely, the veri�er send (s; e) to the prover.Motivating Remark: At this point the entire commitment of the veri�er is revealed. Theveri�er now expects to receive, for each j, the colors assigned by the jth coloring to verticesuj and vj (i.e., the endpoints of the jth edge in e).Prover's partial decommitment step (P2): The prover checks that the message just received fromthe veri�er is indeed a valid revealing of the commitment c made by the veri�er at Step (V1)(i.e., it checks that c = C�(e; s) indeed holds). Otherwise the prover halts immediately. Letus denote the sequence of t edges, just revealed, by (u1; v1); :::; (ut; vt). The prover reveals(to the veri�er), for each j, the jth coloring of vertices uj and vj, along with appropriatedecommitment information. Namely, the prover sends to the veri�er the sequence of four-tuples (ru1;1; �1(u1); rv1;1; �1(v1)); :::; (rut;t; �t(ut); rvt;t; �t(vt))Veri�er's local decision step (V3): The veri�er checks whether, for each j, the values in the jthfour-tuple constitute a correct revealing of the commitments cuj ;j and cvj ;j, and whether thecorresponding values are di�erent. Namely, upon receiving (r1; �1; r01; �1) through (rt; �t; r0t; �t),the veri�er checks whether for each j, it holds that cuj ;j = C(�j; rj), cvj ;j = C(�j; r0j), and�j 6= �j (and both are in f1; 2; 3g). If all conditions hold then the veri�er accepts. Otherwiseit rejects.Goldreich and Kahan proved that Construction 2.2 constitute a (constant-round) zero-knowledgeinteractive proof for Graph 3-Colorability [17]. (We briey review their simulator below.) Our �rstgoal, undertaken in Section 3, is to show that the zero-knowledge property (of Construction 2.2) ispreserved under parallel composition. We later extend the result to yield concurrent zero-knowledgeunder the timing-model.High level description of the simulator used in [17]. The simulator (using oracle access tothe veri�er's strategy) proceeds in three main steps:The Scan Step: The simulator emulates Steps (P0){(V2), by using commitments to dummy valuesin Step (P1), and obtains the veri�er's decommitment for Step (V2), which may be either14



proper or not. In case of improper decommitment the simulator outputs the partial transcriptjust generated and halts. Otherwise, it records the sequence (u1; v1); :::; (ut; vt), just revealed,and proceeds as follows.The Approximation Step: For technical reasons (discussed below), the simulator next approximatesthe probability that the �rst scan ended with a proper decommitment. (This is done byrepeated trials, each as in the �rst scan, until some polynomial number of proper decommit-ments is found.)The Generation Step: Using the (proper) decommitment information (i.e., the edge sequence (u1; v1); :::; (ut; vt)),obtained in the �rst scan, the simulator repeatedly tries to generate a full transcript by em-ulating Steps (P1){(V2), using commitments to \pseudo-colorings" that do not \violate thecoloring conditions imposed by the decommitted edges". That is, in each trial, the simulatorsets ci;j to be a commitment to a dummy value if i 62 fuj ; vjg, and sets cuj ;j and cvj ;j to becommitments to two di�erent random values in f1; 2; 3g. The number of trials is inverselyproportional to the probability estimated in the approximation step.This completes the (high level) description of the simulator used in [17]. We conclude this sectionwith a discussion of the purpose of the Approximation Step.The purpose of the Approximation Step. The foregoing simulation procedure is a variantof the more natural (and in fact naive) procedure in which the Approximation Step is omitted andthe Generation Step is repeated (inde�nitely) untill a full transcript is generated. The problemwith the naive variant is that the probability (denoted p) of proper veri�er decommitment duringthe Scan Step is not identical to the probability (denoted p0) of a proper veri�er decommitmentduring the Generation Step. The di�erence is due to the fact that in the Scan Step we feed theveri�er with commitments to dummy values, whereas in the Generation Step we feed the veri�erwith commitments to \pseudo-colorings". Indeed, the hiding property of commitment schemesguarantees that jp� p0j is negligible (in n), but this does not mean that p=p0 is upper-bounded bya polynomial in n (e.g., p = 2�n=3 and p0 = 2�n=2). Thus, the expected running-time of the naivesimulation procedure (i.e., (p=p0) � poly(n)) is not necessarily polynomial. This problem is resolvedby the actual simulation procedure of [17] outlined above, whose running time is p � poly(n)~p , whereep = �(p) is the approximation of p (obtained in the Approximation Step, and ep = �(p) holds withprobability 1� 2�poly(n)).An alternative approach. An alternative way of coping with the aforementioned problem isto use a di�erent protocol that allows for the Scan Step to use the same distribution as in theGeneration Step. This approach was recently pursued by Rosen [30], who suggested an alternativeconstant-round zero-knowledge proof for NP (by adapting the protocol of [29]). Rosen's protocolcould be applied in the context of the current paper and yield a noticeable simpli�cation of theproof of our main results (of Sections 3{5), but this will not allow to obtain the secondary resultspresented in Section 6 (which refer to protocols that do not satisfy the stronger property statedabove). Furthermore, using Rosen's protocol avoids a natural problem that we would like to treatin the current paper, because this problem is likely to arise in future work (where, like in Section 6,it may not be avoided).3 Simulator for the Parallel CaseRecall that the GK-protocol proceeds in four (abstract) steps:15



1. The veri�er commits to a challenge.(The actual implementation is by two rounds/messages.)2. The prover commits to a sequence of values.(The challenge speci�es a subset of the locations in the latter sequence.)3. The veri�er decommits to its challenge (either properly or not).4. Pending on the veri�er's proper decommitment, the prover decommits to the correspondingvalues.The basic approach towards simulating this protocol (without being able to answer a randomchallenge) is to �rst run the �rst three steps with prover-commitments to arbitrary (dummy) values,obtaining the challenge, and then rewind to Step 2 and make a prover-commitment that passes thisspeci�c challenge (alas no other challenge). In case the veri�er always decommits properly, thisallows to easily simulate a full run of the protocol. In case the veri�er always decommits improperly,things are even easier because in this case we only need to simulate Steps 1{3. The general case iswhen the veri�er decommits with some probability. Intuitively, this can be handled by outputtingthe initial transcript of Steps 1{3 in case it contains an improper decommitment, and repeatedlytrying to produce a full passing transcript (as in the �rst case) otherwise. Di�culties arise in casethe probability of proper veri�er decommitment is small but not negligible and furthermore whenit depends (in a negligible way) on whether the prover commits to dummy or to \passing" values.Indeed, the focus of [17] is on resolving this problem (and their basic approach is to approximatethe probability of proper decommitment in case of dummy values, and keep trying to produce afull passing transcript for at most a number of times that is inversely proportional to the latterprobability).The problem we face here is more di�cult: several (say n) copies of the protocol are executed inparallel and the veri�er may properly decommit in some of them but not in others. Furthermore,the veri�er decision regarding in which copies it properly decommits may depend on the prover'smessages in all copies. That is, in the general case, each (parallel) execution of Steps 1-3 mayyield a di�erent con�guration (out of 2n possible ones) of proper/improper decommitment in the ncopies. Still, we need to simulate a transcript of all steps in copies in which the veri�er commitsproperly. Thus, the naive generalization of the case n = 1 (which consists of insisting on generatingthe same con�guration as in the initial run) will not work.12 Instead, referring to the n probabilitiesthat correspond to proper decommitment in each of the n copies, we add additional rewindings inwhich we try to obtain a proper decommit from all copies that have at least as high a probabilityas the copies that actually performed proper-decommitment in the initial simulated run. That is,letting p denote the minimum probability of proper-decommitment taken only over the copies thathave proper-decommitted in the initial run, we try to obtain the challenges of all copies havingproper-decommitment probability at least p. Once these challenges are obtained, we try to generatea parallel run in which only copies having at least as high a probability (but not necessarily allof them!) properly decommit. Furthermore, in order not to skew the distribution (towards highproper-decommitment probabilities), we insist on having at least one copy with a correspondingprobability as low as some copy in the initial run. That is, we try to generate a parallel run inwhich only copies having proper-decommitment probability at least p perform proper-decommit,12We refer to a procedure that obtains some challenges via an initial \dummy" execution of Steps 1-3, and next triesto produce an adequate simulation by repeatedly rewinding Steps 2-4 until one obtains again the same con�guration.This may fail because all 2n con�gurations may be equally likely, in which case the simulation is expected to make2n trials. 16



while insisting that at least one copy having proper-decommitment probability approximately pperforms proper-decommit.One obvious problem with the above description is that we do not know the relevant proper-decommitment probabilities. Indeed, we may obtain good (multiplicative) approximation of them,but using these approximations in a straightforward manner will not do (because such approxima-tions do not allow to rank the actual probabilities).13 Instead, we cluster the n copies according tothe probability that each of them properly decommits, and try to obtain a proper decommit fromall the copies that are in the same (or heavier) cluster as the copies that properly decommit in theinitial simulated run. Once this is obtained, we try to generate a parallel run in which only copiesthat belong to the above (or heavier) cluster (but not necessarily all of them) properly decommit.As one may expect, clusters are de�ned according to threshold probabilities, but picking thesethresholds naively (e.g., as �xed quantities) is going to fail. Below, we will pick these thresholds atrandom from �xed intervals.3.1 A high level descriptionRecall that our aim is to analyze the parallel execution of the GK-protocol. Speci�cally, we willconsider n copies of the protocol, being executed in parallel under the coordinated attack of anadversary (called a veri�er) that plays the role of the veri�er in all copies. The parameter n ispolynomially related to the length of the input to each of these copies, and thus we deal with thegeneral case of parallel composition (of the GK-protocol). When we say that some quantities arenegligible or overwhelmingly high we refer to these quantities as a function of the parameter n.The following basic notions are central to our analysis (of the parallel execution of the GK-protocol): An execution of a copy (of the GK-protocol) is said to properly decommit if the veri�ermessage in Step 3 is a valid decommitment to its (i.e., the veri�er's) commitment in Step 1. In the�rst part of the simulation, we use prover's commitments to arbitrary values, which are referred toas commitment to dummy values. Later (in the simulation) we use commitments to values that willpass for a certain challenge (which is understood from the context). These are called commitmentto passing values.14 In addition, we also refer to the following more complex notions and notations:� Let pi denote the probability that the veri�er properly decommits in the ith copy of theparallel run, when Step 2 is played with commitment to dummy values.(When using other commitments (e.g., passing commitments) the probability of proper de-commitment may be any p0i such that jp0i � pij is negligible.)� We will use a sequence of thresholds, denoted t1; :::; tn, that will be determined (probabilisti-cally) on the y such that with overwhelmingly high probability it holds that1. tj 2 (2�(j+1); 2�j),2. no pi lies in the interval [tj � (1=9n) � 2�j ].13Consider, for example, the case that each of the copies properly decommits with probability (1=2)��(n) for somenegligible function � or even for �(n) = 1=t(n), where t(n) is the running time of our approximation procedure.14Recall that in the actual implementation (of the GK-protocol), challenges correspond to sequences of t edges(over the vertex-set f1; 2:::; ng), and the prover commits to a sequence of t � n values in f1; 2; 3g (i.e., a block of nvalues per each of the t edges). For a given edge sequence (i.e., a challenge), a passing sequence of values is one inwhich (for every i) the values assigned to the ith block are such that the endpoints of the ith edge (in the challenge)are assigned a (random) pair of distinct elements.
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Such tj 's exist and tj can be found when given approximations of all pi's up-to (1=9n) � 2�j(or so). We also de�ne t0 def= 1, and so pi � t0 for all i. We assume, without loss of generality,that for every i it holds that pi > 2�n, and so each pi lies in one of the intervals (tj ; tj�1].� For such tj's, de�ne Tj = fi : pi > tjg. (Indeed, T0 = ;, Tj�1 � Tj for all j, and Tn =f1; :::; ng.)Membership in Tj can be determined (probabilistically with negligible error probability) intime poly(n) � 2j , since tj was selected to be su�ciently far-away from all the pi's (i.e.,jtj � pij = 
(2�j=n)).� Referring to a speci�c run of the parallel execution, we denote by Ej the event that the veri�erproperly decommits to some copy in Tj nTj�1 but to no copy outside Tj . That is, we considerthe set of copies in which the veri�er properly decommits in the speci�c run (of the parallelexecution), and say that Ej holds if j is the minimum integer such that the said set containsan element of Tj. (Equivalently, j is the minimum integer such that the said set contains anelement of Tj n Tj�1.)Let qj = Pr[Ej ], when Ej refers to a random run with dummy values. Note that qj � n � tj�1(because Ej mandates that the veri�er properly decommits to some copy in Tj n Tj�1, whichimplies one of jTj n Tj�1j � n events, each occuring with probability at most tj�1). However,qj may be much smaller than tj < tj�1, because the event Ej refers to n possibly dependentevents (occurring in n sessions).Since f1; :::; ng = Tn � Tn�1 � � � � � � � T1 � T0 = ;, whenever the veri�er properly decommitsin some copy, one of the events Ej (for j � 1) must hold. Otherwise (i.e., whenever theveri�er decommits improperly in all copies), we say that event E0 holds.We now turn to the simulator, which generalizes the one in [17]. All approximations referredto below are quite good w.v.h.p. (i.e., with 1 � 2�n each approximation is within a factor of(1 + (1=poly(n)) of the corresponding value). Loosely speaking, after �xing the veri�er's coins (atrandom), the simulator proceeds as follows (while using the residual veri�er strategy as a black-box):Step S0: Obtain the veri�er's commitments (of Step 1) in the n parallel copies.Step S1: The purpose of this step is to generate an index j 2 f0; 1; :::; ng with distribution corre-sponding the probability that event Ej holds for a random parallel execution of the protocol,as well as to determine the sets Tj and Tj�1 (as de�ned above, based on adequate thresholdstj and tj�1, which will be selected too). This has to be done in expected polynomial time.Recalling that event Ej occurs with probability O(n=2j), when we select a speci�c j, we mayuse poly(n) � 2j steps.We stress that we only determine the sets Tj and Tj�1, for the speci�c j that is selected, ratherthan determine all sets (i.e., T1; :::; Tn). The sets Tj and Tj�1 will allow us to determine (insubsequent steps) whether or not event Ej holds for other random parallel executions of theprotocol.The selection of j as well as the determination (or construction) of the sets Tj and Tj�1 isachieved as follows:1. First we simulate Steps 2{3 of the (parallel execution of the) protocol, while using (inStep 2) commitments to dummy values. Based on the veri�er's decommitments in Step 3(of the parallel execution), we determine the set I � [n] of copies in which the veri�erhas properly decommitted. 18



2. Next, we determine an appropriate sequence t1; :::; tj of thresholds such that event Ejholds for the simulated run. Speci�cally, we determine the tj 's on the y, starting witht1, until we see that Ej holds. Thus, we stop without determining tj+1; :::; tn.3. Finally, using tj�1 and tj , we determine for each i 2 f1; 2; :::; ng whether or not pi > tj(i.e., i 2 Tj) and whether or not pi > tj�1 (i.e., i 2 Tj�1). (Actually, this is done forevery i 2 I during the prior sub-step, since the values of I \ Tj and I \ Tj�1 are used todetermine that Ej holds.)Indeed, the above description (especially of the second sub-step) does not specify how thecorresponding actions are performed (let alone within time poly(n)�2j). We defer these crucialdetails to Section 3.2, where we show how to actually implement the current step within timepoly(n) � 2j .Step S2: For each copy i 2 Tj , we wish to obtain the challenge committed to in Step 1, whileworking within time poly(n) � 2j . This is done by rewinding and re-simulating Steps 2{3 forat most poly(n) � 2j times, while again using (in Step 2) commitments to dummy values.Step S3: For technical reasons15, analogously to [17], we next obtain a good (i.e., constant factor)approximation of qj = Pr[Ej ]. This approximation, denoted ~qj, will be obtained withinexpected time poly(n)=qj by repeated rewinding and re-simulating Steps 2{3. (Speci�cally,we continue till we see some �xed polynomial number (say n5) of runs in which event Ejholds.)Step S4: We now try to generate a simulation of Steps 2{3 in which event Ej occurs. However,unlike in previous simulations, here we use (in Step 2) commitments to values that pass thechallenges that we have obtained. This will allow us to simulate also Step 4, and completethe entire simulation.Speci�cally, we make at most poly(n)=~qj trials to rewind and re-simulate Steps 2{3, whileusing (in Step 2 of each copy in Tj) commitments to values that pass the correspondingchallenge (which we obtained in Step S2). If the veri�er answers (for Step 3) �t event Ej thenwe proceed to simulate Step 4 in the obvious manner. Otherwise, we rewind and try again(but never try more than poly(n)=~qj times).A more detailed description of the above steps is provided in Sections 3.2 and 3.3. A detailedanalysis of the simulator is provided in Section 3.4, relying on the following observations:1. Pending on the ability to properly implement Step S1, the (overall) expected running timeof the simulation is some �xed polynomial, because each attempt (in Steps S2, S3, andS4) is repeated for a number of times that is inversely proportional to the probability ofentering this repeated-attempts step. Speci�cally, each of these steps is repeated at most(poly(n)=~qj) � (poly(n)=qj) times (use qj = O(n � 2�j) for Step S2), whereas j is selectedwith probability qj.2. The computational-binding property of C implies that we rarely get into trouble in Step S4;that is, only with negligible probability will it happen that in Step S4 the veri�er properlydecommits to a value di�erent from the one to which it has properly decommitted in Step S2.15We refer the reader to the end of Section 2.3 for a discussion of the purpose of the approximation step. Notethat this step could have been eliminated if we had follows Rosen's alternative approach (also discussed at the endof Section 2.3). 19



3. Since the probabilities of veri�er's proper-decommitment (in Step 3) are almost una�ected bythe prover's commitments (of Step 2) and since passing commitments look like commitmentsto truly valid values, the simulated interaction is computationally indistinguishable (cf. [21,31]) from the real one.3.2 Setting the thresholds and implementing Step S1One naive approach is to try to use �xed thresholds such as tj = 2�j . However, this may not allowto determine (for a given i), with high probability and within time poly(n) � 2j , whether or not piis smaller than tj . (The reason being that pi may be very close to 2�j; e.g., jpi � 2�j j = 2�2n.)Instead, the tj 's will be selected in a more sophisticated way such that they are approximatelyas above (i.e., tj � 2�j) but also far enough (i.e., at distance at least 2�j=9n) from each pi. Thiswill allow us to determine, with high probability and within time poly(n) � 2j , whether or not pi issmaller than tj. The question is how to set the tj 's such that they are appropriately far from allpi's. Since the pi's are unknown probabilities (which we can only approximate), it seems infeasibleto come-up with a deterministic setting of the tj's. Indeed, we will settle for a probabilistic settingof the tj's (provided that this setting is independent of other events).Recall that Step S1 calls for the setting of t1; :::; tj such that event Ej holds (for a randomrun), where whether or not event Ej holds depends on tj and tj�1. Furthermore, it is importantthat the setting of tj�1 in case event Ej holds be the same as the setting of tj�1 in case eventEj�1 holds. Moreover, recalling that the setting of tj must be performed in time poly(n) � 2j , wecannot a�ord to set all tk's whenever we set a speci�c tj. Still, we provide below an adequatethreshold-setting process. We start with the following key procedure, which selects tj � 2�j suchthat with overwhelmingly high probability jpi � tjj > 2�j=9n for every i. We stress that thefollowing procedure (has to run and indeed) runs in time poly(n) � 2j, which requires a slightlynon-straightforward implementation.16Procedure T (j; n), returns tj 2 [(3=4) � (1=8)] � 2�j � (2�(j+1); 2�j): The procedure �rst ap-proximates all pi's su�ciently well, and then sets tj in the desired interval such that tj is su�cientlyfar from all the approximated values of the pi's. A speci�c implementation follows.1. For i = 1; :::; n, the procedure approximates pi su�ciently well (in the following sense, whichis motivated in Footnote 16). Speci�cally, with overwhelmingly high probability, the approx-imated value, denoted ai, should satisfy:(a) If pi < 2�j�2 then ai < 2�j�1.(b) If pi > 2�j+1 then ai > 2�j .(c) If 2�j�2 � pi � 2�j+1 then jai � pij < (1=19n) � 2�j .Each approximation is produced in time poly(n) � 2j as follows. First, we decide whether ornot pi � 2�j�2. Actually, we distinguish with overwhelmingly high probability, between thecase pi � 2�j�2 and (say) the case pi < 2�j�3, where in the intermediate range any decision isadmissible. Likewise, we decide whether or not pi � 2�j+1 (i.e., distinguish between the casepi � 2�j+1 and the case pi > 2�j+2). These decisions can be made using poly(n) � 2j trials.16The straightforward approach is to approximate each pi up to an additive deviation of �(2�j=n). The problem isthat, in general, this requires 
((2�j=n)�2) samples. However, for pi � 2�j , such an additive approximation translatesto a multiplicative approximation of 1 � �(1=n), which can be obtained based on a sample of size poly(n)=pi =poly(n) � 2j . We note that, for pi 62 [2�j�2; 2�j+1], a more crude approximation su�ces, and can be obtained usinga sample of size poly(n) � 2j . 20



In case we decided that pi 2 [2�j�2; 2�j+1], we approximate pi up-to an additive deviationof (1=19n) � 2�j, which can be implemented using poly(n) � 2j trials (because it calls for anapproximation to within a factor of 1 � �(1=n)). Otherwise, we output the threshold value(i.e., ai = 2�j�2 if we decided that pi < 2�j�2 and ai = 2�j+1 if we decided that pi > 2�j+1).Note that if pi < 2�j�2 (and even if pi < 2�j�3) then both ai = 2�j�2 and ai = pi� 2�j=19nsatisfy ai < 2�j�1. Similarly, if pi > 2�j+1 then both ai = 2�j+1 and ai = pi � 2�j=19nsatisfy ai > 2�j . Finally, if 2�j�2 � pi � 2�j+1 then we decided that pi 2 [2�j�2; 2�j+1] andproduced ai = pi � 2�j=19n as required.2. Starting from a set of evenly spaced points in the desired interval (i.e., f(5=8); (5=8) +(1=4n); :::; (5=8) + (n=4n)g), we discard all points that are close to one of the ai's obtained inStep 1. Speci�cally, the procedure determinesK  �k 2 f0; 1; :::; ng : (8i) ai =2 �58 + k4n � 18n� � 2�j� : (1)That is, ai rules out the value k if ai 2 (5n + 2k � 1) � 2�j=8n. Note that K is not empty,because each ai can rule out at most one element of K (whereas jf0; 1; :::; ngj = n + 1 andthey are only n values of i).Select an arbitrary (say at random or the �rst) k 2 K. Output tj = ((5=8) + (k=4n)) � 2�j .By construction, jtj�aij � (1=8n)�2�j , for all i's. If pi 2 [2�j�2; 2�j+1] then jai�pij � (1=19n)�2�j(with overwhelming probability), and it follows that pi does not fall in the interval tj � (1=9n) � 2�j(because jpi� tjj � jai� tjj � jai� pij � ((1=8n)� (1=19n)) � 2�j > (1=9n) � 2�j). Otherwise (i.e., ifeither pi < 2�j�2 or pi > 2�j+1), pi does not fall in the interval tj � (1=9n) � 2�j � (2�j�2; 2�j+1)(simply by the case hypothesis). We conclude that, with overwhelming probability, no pi falls inthe interval tj � (1=9n) � 2�j .Implementation of Step S1: Recall that the purpose of Step S1 is to generate an index j 2f0; 1; :::; ng with distribution corresponding the probability that event Ej holds (for a randomparallel run of the protocol), as well to determine the thresholds t1; :::; tj , and using these todetermine for every i = 1; :::; n, whether or not i 2 Tj and whether or not i 2 Tj�1. We thus startby generating a random run, and next determine all necessary objects with respect to it.1. Generating a reference run: Simulate Steps 2{3 of the (parallel execution of the) protocol, whileusing (in Step 2) commitments to dummy values. Based on the veri�er's decommitments inStep 3 (of the parallel execution), determine the set I � [n] of copies in which the veri�er hasproperly decommitted.2. Determining the event Ej occuring in the reference run, as well as the sets Tj and Tj�1:Case of empty I: Set j = 0 and Tj = Tj�1 = ;.Case of non-empty I: Set t0 = 1 and T0 = ;. For j = 1; :::; n do(a) tj  T (j; n). (We stress that the value of tj is set obliviously of I.)(b) Determine the set Tj by determining, for each i, whether or not pi > tj. Weuse approximations to each pi (as computed in procedure T (j; n)), and rely onjpi � tjj > (1=9n) � 2�j . Recall that for each i, we obtain an approximation ai suchthat jai � pij < (1=9n) � 2�j if 2�j�2 � pi � 2�j+1 and ai < 2�j�1 � tj (resp.,ai > 2�j � tj) if pi < 2�j�2 < tj (resp., if pi > 2�j+1 > tj). Thus, we may decidethat pi > tj if and only if ai > tj .21



(c) Decide whether or not event Ej holds for the reference run, by using Tj�1 (of theprevious iteration) and Tj (just computed). Recall that event Ej holds (for thereference run) if and only if both I � Tj and I 6� Tj�1 hold.(d) If event Ej holds then exit the loop with the current value of j as well as with thevalues of Tj and Tj�1. Otherwise, proceed to the next iteration.Since we have assumed that (8i) pi > 2�n, some event Ej must hold.17A key point in the analysis is that the values of the Tk's, as determined by Step S1 (i.e., T0; :::; Tj),are independent of the value of j. Of course, which of the Tk's were determined does depend onthe value of j. Thus, we may think of Step S1 as of an e�cient implementation of the mentalexperiment in which all Tk's are determined, next j is determined accordingly (analogously to theabove), and �nally one outputs Tj and Tj�1 for subsequent use.3.3 A detailed description of the simulatorFor sake of clarity we present a detailed description of the simulator, before turning to its analysis.Recall that our aim is to simulate a parallel execution of n copies of the GK-protocol. We start byselecting and �xing the veri�er's coins at random. With respect to these �xed coins, we simulatethe interaction of the residual deterministic veri�er (with copies of the predetermined prover) asfollows:Step S0: We simulate the parallel execution of Step 1 (i.e., Steps P0 and V1 of Construction 2.2) asfollows. First, acting as the real prover in Step P0, we randomly generate messages �1; :::; �n(one per each copy). Invoking the veri�er (as per Step V1), while feeding it with �1; :::; �n,we obtain its n commitments, c1; :::; cn, for the n copies.Step S1: As explained in Section 3.2, we determine (for a random reference run)18 the indexj for which Ej holds, as well as the sets Tj and Tj�1. Recall that this (and speci�callyprocedure T (�; �)) involves poly(n) �2j rewindings and re-simulations of Steps 2{3, while usingcommitments to dummy values. Each rewinding is performed as in Step S2 below.In case j = 0, we may skip all subsequent steps, and just output the reference run producedin the current step.Step S2: For each copy i 2 Tj, we wish to obtain the challenge (edge-sequence) committed to inStep 1, while working within time poly(n) � 2j . This is done by rewinding and re-simulatingSteps 2{3 (i.e., Steps P1 and V2 of Construction 2.2) for poly(n) � 2j times, while usingcommitments to dummy values. (Actually, we may as well do the same for all i's (regardlesswhether i 2 Tj or not), but we are guaranteed to succeed only for i's in Tj . Furthermore, wemay work on all i's concurrently.)Speci�cally, each rewinding attempt proceeds as follows:17Removing this assumption enables the situation that no event Ej occurs. This may happen only if pi � tn < 2�n,for every i2I. But the probability that the reference run corresponds to such a set I is at mostPi:pi<2�n pi < n�2�n,and we may ignore this rare event. Alternatively, we may modify the veri�er such that pi > 2�n holds for all i, bymaking it properly decommit to all copies with probability 2�n+1, and note that the execution of the modi�ed veri�eris indistinguishable from the execution of the original veri�er.18Here and in the sequel, when referring to runs and steps of the protocol, we actually means steps in the parallelexecution of the protocol. 22



1. Generate n sequences of random (prover) commitments to the dummy value 0. Thatis, for every (copy) i = 1; :::; n, select uniformly ri1;1; :::; rin;t 2 f0; 1gn, and computeci def= (ci1;1; :::; cin;t), where cik;` = C(0; rik;`).2. Feeding the veri�er with (the n prover commitments) c1; :::; cn, obtain the veri�er's n(Step 3) responses, denoted (s1; e1); :::; (sn; en).3. For every properly decommitted copy (i.e., i such that ci = C�i(si; ei)), store the corre-sponding challenge (i.e., the edge sequence ei).(Note that it is unlikely that we will obtain two conicting proper decommitments to thesame veri�er commitment ci.)Step S3: For technical reasons, analogously to [17], we next obtain a good approximation of qj =Pr[Ej ]. This approximation, denoted ~qj, will be obtained within expected time poly(n)=~qj byrepeated rewinding and re-simulating Steps 2{3 (i.e., Steps P1 and V2 of Construction 2.2).Speci�cally, we repeat the following steps until we obtain n5 runs in which event Ej holds.1. Perform Items 1 and 2 as in Step S2. Let I 0 denote the set of copies in which the veri�erhas properly decommitted.2. If I 0 �ts event Ej (i.e., I 0 � Tj and I 0 6� Tj�1) then increment the \success counter" byone unit. (We proceed to the next iteration only if the \success counter" is still smallerthan n5.)Suppose we have obtained n5 successes while making � trials. Then we set ~qj = n5=� .Step S4: We now try to generate a simulation of Steps 2{3 of the protocol (i.e., Steps P1 and V2 ofConstruction 2.2) in which event Ej occurs. However, unlike in previous simulations, here weuse (in Step 2) prover-commitments to values that pass the challenges that we have obtained.This will allow us to simulate also Step 4, and complete the entire simulation. Speci�cally,we make at most poly(n)=~qj trials to rewind and re-simulate Steps 2{3, while using (in Step 2of each copy in Tj) commitments to values that pass the corresponding challenge (which weobtained in Step S2). Each attempt proceeds as follows:1. Generate n sequences of random commitments to passing values (for copies in Tj ,and dummy values otherwise). Speci�cally, suppose that i 2 Tj (or more generallythat we have obtained (in Step S2) a proper decommitment to ci), and denote by((ui1; vi1); :::; (uit; vit)) the value of the decommitted challenge (edge sequence ei). Then,for every ` = 1; :::; t, select uniformly ri1;`; :::; rin;` 2 f0; 1gn and aì 6= bì 2 f1; 2; 3g, andcompute ciuì ;` = C(aì ; riuì ;`), civì ;` = C(bì ; rivì ;`), and cik;` = C(0; rik;`) for k =2 fuì ; vìg. Letci def= (ci1;1; :::; cin;t). For i =2 Tj (or for i's for which we failed in Step S2), we produceci def= (ci1;1; :::; cin;t) as in (Item 1 of) Step S2.2. Feeding the veri�er with (the prover's commitments) c1; :::; cn, obtain the veri�er's n(Step 3) responses, denoted (s1; e1); :::; (sn; en). Let I 0 = fi : C�i(si; ei) = cig denote theset of copies that have properly decommitted (in the current attempt). If I 0 does not �tevent Ej (i.e., I 0 6� Tj or I 0 � Tj�1) then we abort this attempt. That is, we proceedonly if I 0 �ts event Ej.3. For every properly decommitted copy (i.e., i 2 I 0), we provide a proper decommitment(as in Step 4 of the protocol). This complete a full simulation of such a copy, whereasimproperly committed copies are simulated by their transcript so far.23



Speci�cally, ignoring the rare case of conicting proper decommitments, a proper de-commitment to copy i 2 I 0 � Tj must use the same challenge (edge sequence) as (foundin Step S2 and) used in Item 1 (of the current attempt). Then, for every i 2 I 0 and` = 1; :::; t, we merely provide the 4-tuple (riuì ;`; aì ; rivì;`; bì), where ((ui1; vi1); :::; (uit; vit))is the corresponding challenge. Indeed, this answer (like the prover's answer in Step 4of the protocol) passes the veri�er's check (since aì 6= bì 2 f1; 2; 3g, ciuì ;` = C(aì ; riuì ;`),and civì ;` = C(bì ; rivì ;`)).In the rare case in which a conicting proper decommitment is received, we proceed just asin case event Ej does not occur. If all poly(n)=~qj trials fail then we output a special failuresymbol.For technical reasons, we modify the above simulation procedure by never allowing it to run morethan 2n steps. (This is easily done by introducing an appropriate step-count (which is implementedin linear or almost-linear time and so does not a�ect our running-time analysis).)3.4 A detailed analysis of the simulatorLemma 3.1 (Simulator's running-time): The simulator runs in expected polynomial-time.Proof: The key observation is that each repeated attempt to produce something is repeated for anumber of times that is inversely proportional to the probability that we try this attempt at all.This reasoning is applied with respect to each of the main steps (i.e., Steps S1, S2, S3 and S4).Speci�cally:� For Step S1: Recall that event Ej occurs in the reference run (generated at the onset ofStep S1), with probability qj . Letting Q def= Tj n Tj�1, we have qj � jQj � maxi2Qfpig �n � tj�1 < n � 2�(j�1). Also, with probability at least 1� 2�n, Step S1 correctly determines j.Pending on the latter (overwhelmingly high probability) event, the expected number of stepsconducted in Step S1 isnXj=0 qj � (poly(n) � 2j) < nXj=0(n � 2�(j�1)) � (poly(n) � 2j) = poly(n) (2)Relaying on the fact that the simulator never runs for more than 2n steps, we cover also thehighly unlikely case (in which Step S1 determines a wrong j).The same reasoning applies to Step S2. That is, again assuming that Step S1 correctlydetermines j, the expected number of steps made in Step S2 is as in Eq. (2).� For Step S3: Assuming that ~qj = �(qj), the expected number of steps made in Step S3is Pnj=0 qj � (poly(n)=~qj) = poly(n). The above assumption holds with probability at least1 � 2�n, and otherwise we relay on the fact that the simulator never runs for more than 2nsteps. The same reasoning applies to Step S4.Thus, the overall expected running-time is polynomial (and this is proven without relying on anysecurity properties of the commitment schemes).24



Lemma 3.2 (Simulator's output distribution): Assuming that the veri�er's commitment scheme(i.e., C) is computationally-binding and that the prover's commitment scheme (i.e., C) is computationally-hiding, the output of the simulator is computationally indistinguishable from the real parallel inter-action.Recall that the assumption that C is perfectly-hiding and C is perfectly-binding is used in estab-lishing (cf. [17, Sec. 4]) the soundness of the GK-protocol (as a proof system).Proof: For sake of clarity of the analysis, one may consider an imaginary simulator that goes onto determine all tj's (rather than determining only part of them as in Item 2 of Step S1). We mayassume that all approximations made by the simulator are su�ciently good; that is, in Step S1the simulator correctly determines j as well as Tj and Tj�1, and in Step S3 it obtains ~qj = �(qj).(Indeed, the assumption holds with probability at least 1� 2�n.)Next, we consider three unlikely events in the simulation:1. In Step S2, the simulator fails to obtain a proper decommitment of some i 2 Tj . This mayhappen only with exponentially vanishing probability, because we keep trying for poly(n) � 2jtimes and each time a proper decommitment (for i) occurs with probability pi > tj � 2�(j+1).2. In Step S4, the simulator fails to generate a simulation in which event Ej holds. We willshow that this failure may happen only with negligible probability. Note that in order forthis failure to occur, it must be that event Ej occurs in Step S1 but does not occur in thepoly(n)=~qj = O(poly(n)=qj) trials conducted in Step S4, although event Ej may occur ineach such trial with probability q0j that is negligibly close to qj. (Recall that qj refers to theprobability that event Ej occurs for a dummy commitment, whereas q0j refers to its probabilityfor a \passing" commitment, and jqj � q0jj is negligible because C is computationally-hiding(cf. [17, Clm. 3]).) Thus, the probability of this failure is upper-bounded bynXj=0 qj � (1� q0j)poly(n)=qj (3)Letting �j def= jqj � q0jj, we consider two cases (cf. [17, Clm. 2]): in case �j � qj=2, thecorresponding term is exponentially vanishing (because q0j � qj=2 and (1 � (qj=2))2n=qj <exp(�n)), whereas in case �j � qj=2 we simply bound the corresponding term by qj � 2�j .Thus, in both cases, we obtain that each term in Eq. (3) is negligible (because it is upper-bounded by max(2�j ; exp(�n))). Noting that Eq. (3) refers to the sum of n+ 1 such terms,the claim follows.3. In Step S4, the simulator obtains a proper decommitment to some copy such that the decom-mitted value is di�erent from the one obtained for the same copy in Step S2. (In such a case,the simulator's may end-up outputting a failure symbol.) However, the hypothesis that C iscomputationally-binding implies that this bad event occurs only with negligible probability.We conclude that, except with negligible probability, the simulator produces an output that lookssyntactically �ne. Finally, the hypothesis that C is computationally-hiding is used to demonstratethat the simulator's output is computationally indistinguishable from a random transcript of thereal interaction. The details are analogous to the proof of [17, Clm. 4]: First we prove thatthe probabilities of each Ej event is about the same (i.e., di�er by a negligible amount) in thesimulation's output and in the real interaction. Next we focus on each \likely" Ej event, andprove that the conditional spaces for it are indistinguishable. We capitalize on the fact that a25



non-negligible di�erence in the unconditional space must translate to a non-negligible di�erence onsome likely Ej, and that for likely Ej the simulation runs in strict polynomial-time.19Combining Lemmas 3.1 and 3.2, we obtainTheorem 3.3 The (constant-round) GK-protocol is zero-knowledge under parallel composition.Recall that the GK-protocol is a proof system for NP (with exponentially vanishing soundnesserror) [17].3.5 An ExtensionWe relax the parallel execution condition to concurrent execution of polynomially-many copies (ofthe GK-protocol) that satisfy the following two conditions:C1: No copy enters Step 2 before all copies complete Step 1.C2: No copy enters Step 4 before all copies complete Step 3.In other words, the concurrent execution proceeds in three phases:Phase 1: All copies perform Step 1 (in arbitrary order).Phase 2: All copies perform Steps 2 and 3 (in arbitrary order except for the obvious local timingcondition (i.e., each copy performs Step 3 after it has completed Step 2)).Phase 3: All copies perform Step 4 (in arbitrary order).Our treatment of parallel executions extends to the above (concurrent) case. The reason being thatthe simulator treats Steps 2{3 as one unit, and so the fact that these steps may be interleavingamong copies is of no importance. Speci�cally, Step S0 of the extended simulator refers to Phase 1(rather than to Step 1 of the protocol), its Steps S1{S3 refer to Phase 2 (rather than to Steps 2{3),and its Step S4 refers to Phases 2{3 (rather than to Steps 2{4).4 Simulator for the case of Bounded-SimultaneityRecall that the GK-protocol proceeds in four (abstract) steps:1. The veri�er commits to a challenge (i.e., Steps (P0) and (V1) in the protocol).2. The prover commits to a sequence of values (i.e., Step (P1) in the protocol).3. (Step (V2):) The veri�er decommits (either properly or not).4. (Step (P2):) Pending on the veri�er's proper decommitment, the prover decommits to thecorresponding values.Here we consider (say n) concurrent executions in which up-to w copies of the GK-protocol runsimultaneously at any given time, where w may be any �xed constant.19An alternative approach may be to derive, in the contradiction argument, an expected polynomial-time algorithmthat violates the hiding property of C, and to derive from it (via truncating long runs) a strict polynomial-timealgorithm that violates the hypothesis that C is computationally-hiding.
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4.1 MotivationThe case of w = 1 corresponds to sequential composition, and it is well-known that any zero-knowledge protocol maintains its security in this case. So let us turn (as a warm-up) to the caseof w = 2. Trying to use the single-session simulator of [17] in this case, we encounter the followingproblem: when we try to deal with the simulation of one copy (by using the single-session simulator),the veri�er may invoke another copy. A natural thing to do is to apply the single-session simulatoralso to the second copy. The good news is that the veri�er cannot initiate yet another copy (beforeit terminates either the �rst or second copy, because this would violate the bounded-simultaneitycondition (for w = 2)). Instead, eventually (actually, in a few steps), one of two things will happen(�rst):1. The veri�er may execute Step 3 in the second copy, in which case we make progress ontreating the second copy (towards completing a simulation of it, which would put us back inthe one-session case).2. Alternatively, the veri�er may execute Step 3 in the �rst copy, in which case we make progresson treating the �rst copy. For example, if we were trying to get the decommitment value forthe �rst copy and we just got it, then we may abandon the treatment of the second copyand proceed by rewinding the �rst copy. (Note that in this case we lost all work done in thecurrent simulation of the second copy.) Similarly, if we were trying to simulate the full run ofthe �rst copy then we just obtained one additional trial at a proper decommitment for Step 3(which eventually will allow us to complete the simulation of the �rst copy).Thus, in each of these cases, we make progress. Intuitively, the cost of dealing with two simultaneouscopies is that we may have to invoke the single-session simulator (for the second copy) per eachoperation of the single-session simulator (for the �rst copy). As will be shown below, the aboveintuition remains valid also when we handle polynomially-many copies such that at most two arerunning simultaneously. Furthermore, it extends also to the case that at most w copies are runningsimultaneously, where w is any �xed constant. In that case, at most w copies of the single-sessionsimulator will be active at any point during the simulation. Speci�cally, each operation in theemulation of the i-th copy will require to invoke the single-session simulator (for simulating thei+1st copy). Thus, the time-complexity of the simulation will be exponential in w, where the baseof the exponent is the time-complexity of the case where w = 1.4.2 The actual simulationWe start with a high level description of the simulation, next provide detailed speci�cation andimplementation of the procedures used by the simulator, and �nally analyze them. Throughoutthe rest of the description we �x a (deterministic) adversarial veri�er (and use black-box access toit).4.2.1 A high level descriptionIn correspondence to the three main steps of the single-copy simulator (cf. Section 2.3), we introducethree recursive procedures: Scan, Approx and Generate. Each of these procedures tries to handlea single copy (just as done by the corresponding step of the single-copy simulator), while makingrecursive calls when encountering a Step 2 message of some other copy.20 The recursive call willtake place before executing this Step 2, and the execution of this Step 2 will be the �rst thing that20This is no typo; we do mean Step 2, not Step 1. 27



the invoked procedure will do. (Other steps of other copies may be handled by these proceduresthemselves.)Before proceeding, let us recall the main steps of the single-copy simulator, and slightly modifythem to provide a more convenient basis for our generalization. In particular, in this modi�ca-tion, Step 1 (of the protocol) is simulated separately (rather than as part of the Scan Step), andthe Generation Step is used also in case the Scan encountered an improper decommitment. Theresulting simulation steps are as follows:A straightforward simulation of Step 1: The simulator emulates Step 1 of the protocol by obtain-ing the veri�er's commitment (of Step (V1), after emulating Step (P0) in a straightforwardmanner).The Scan Step: The simulator emulates Steps 2{3 of the protocol by using commitments to dummyvalues in Step 2, and obtains the veri�er's decommitment for Step 3, which may be eitherproper or improper. We call this proper/improper bit the type of the decommitment. Thesimulator records the type of the decommitment as well as the decommitment information incase of proper decommitment.The Approximation Step: The simulator approximates the probability that a single scan (as per-forms in the Scan Step) ends with a decommitment of the recorded type. (This is done byrepeated trials, each as in the Scan Step, until some polynomial number of decommitmentsof the recorded type is encountered.)The Generation Step: Using the decommitment information obtained in the Scan Step, the simu-lator repeatedly tries to generate a full transcript of the same type as encountered in theScan Step. It does so by emulating Steps 2{4, using commitments to \pseudo-colorings"that do not \violate the coloring conditions imposed by the decommitted edges" (in case theScan Step ended with a proper decommitment, and using commitments to dummy valuesotherwise). The number of trials is inversely proportional to the probability estimated in theapproximation step, and if all fail then the simulator outputs a special failure symbol.Analogously, the recursive procedures Scan, Approx and Generate, operate as follows, where thestraightforward simulation of Step 1 (of each copy) is performed \en route" (by one of these pro-cedures, while handling a di�erent copy):The Scan procedure is invoked to emulate Steps 2{3 of a certain copy that is scheduled to performStep 2 at the current point (i.e., just following the current \simulation transcript"), providedthat the current \simulation record" contains no trace of a prior handling of Step 2 of thiscopy. The procedure �rst emulates Step 2 of the said copy by using commitments to dummyvalues, and the hope is that it will reach Step 3 of the current copy and obtain the veri�er'sdecommitment for this copy, which may be either proper or improper. When this happens, theprocedure returns the relevant information (i.e., the decommitment value in case of properdecommitment and a special symbol in case of improper decommitment). However, otherthings may happen (due to the other copies):� The procedure may encounter Step 1 of some other copy, in which case it emulates itin a straightforward manner (which results in augmenting the simulation transcript).Next, the procedure continues handling the current copy.� The procedure may encounter Step 2 of some other copy, in which case it invokes eitherGenerate or Scan to handle this other copy, depending on whether or not our currentsimulation record contains a trace of a prior handling of Step 2 of that copy. We stressthat the invoked procedure may return an answer that refers to a copy that is not the one28



for which the procedure was invoked (i.e., the copy to which the currently encounteredStep 2 belongs). Following is a description of what the procedure does with the answerprovided to it by the procedure it invokes, which indeed depends on which procedurewas invoked.{ When encountering a Step 2 of another copy (denoted j) that was not handledbefore, we invoke Scan, and handle the answer (of Scan) according to whether ornot it refers to copy j. In the case that the answer relates to copy k 6= j (whichincludes the case that k equals the current copy) we return the relevant information(as when we encounter Step 3 of the current copy), otherwise (i.e., k = j) we recordthe information and continue (as when handling other steps of other copies). Inthe latter case, we will next execute the following sub-case (which refers to the verysame Step 2 (i.e., of copy j)). We stress that, regardless of the answer of Scan, we donot extend the simulation transcript in the current sub-case (and thus an executionof the following sub-case referring to copy j will necessarily follow the execution ofthe current sub-case).{ When encountering a Step 2 of another copy that was already handled before, werepeatedly invoke Generate, until it either succeeds or an adequate number of tri-als was performed, and handle the answer (of Generate) as follows. If the answerprovides an extension of the simulation transcript, we continue handling the cur-rent copy using that transcript. Otherwise (e.g., the answer is a decommitmentinformation of yet some other copy) then we terminate returning this very answer.(Indeed, Generate corresponds to a single trial of the Generation Step, and the repeatedattempts are done by the procedure that invokes it.)� The procedure may encounter Step 3 of some other copy, which may happen whenStep 2 of that copy was handled by an invocation that preceded the current one in therecursion path. Again, the action depends on whether or not our current simulationrecord contains information regarding a prior handling of Step 3 of that copy.{ If no such prior handling exists (for this copy) then the procedure returns the cor-responding decommitment information (although it is not the copy for which thecurrent execution was invoked).{ If such prior handling exists and the current emulation of Step 3 �ts its type then theprocedure augments the simulation transcript and continues handling the currentcopy. If the type does not �t then the procedure returns a special failure symbol.� The procedure may encounter Step 4 of some other copy, which may happen whenStep 2 of that copy was handled by an invocation that preceded the current one in therecursion path. Furthermore, in that case the recorded information allows to emulatethis step in a straightforward manner, and Scan continues handling the current copy(after augmenting the simulation transcript).Indeed, two key notions referred to above are the simulation transcript and the simulation record.The former is a pre�x of a full transcript (of an execution) being generated by the simulator,and the latter provides auxiliary information regarding that (partial) transcript. In particular,the record contains information regarding copies that appear in the transcript, where thisinformation was obtained in previous invocations of various procedures on pre�xes of thistranscript. For example, a successful Scan returns information regarding the decommitmentof a certain copy. 29



The Approx procedure is invoked to approximate the probability that a certain invocation of Scanreturns a certain value (i.e., the identity of the decommitting copy and the type (i.e., properor improper) of that decommitment). This is done by repeated trials, where in each trial theprocedure behaves similarly to Scan, until a su�cient number of trials return the value ofinterest.The Generate procedure is invoked to emulate Steps 2{4 of a certain copy that is scheduled toperform Step 2 at the current point, provided that the current \simulation record" containsinformation regarding a prior handling of Step 2 of this copy (i.e., by Scan). The procedurebehaves like Scan except that it emulates Step 2 using commitments to passing values (i.e.,values that would pass w.r.t the corresponding proper decommitment, or arbitrary valuesin case the corresponding decommitment is improper). The hope is that the procedure willreach Step 4 of the current copy, and that the veri�er's behavior at the corresponding Step 3�ts the recorded information. When this happens, the procedure emulates these steps in astraightforward manner (relying on the fact that a proper decommitment yields a challengethat can be met by the \passing values" used in emulating Step 2). Once the emulation ofStep 4 is completed, the procedure returns the corresponding simulation transcript. However,as in case of Scan, other things may happen:� The procedure may encounter steps of other copies. These are handled as in Scan.� In addition, it may happen that Step 3 of the current copy decommits di�erently thanin the simulation record (i.e., di�erently with respect to the proper/improper bit). Inthis case, the procedure returns a special failure symbol.As mentioned above, the three procedures maintain (and pass along) the state of the currentlyhandled copies as well as related auxiliary information. In particular, h will denote a partialtranscript of the (concurrent) execution, and a will denote a corresponding list of currently activecopies together with auxiliary information regarding each of them (e.g., decommitment informationobtained in previous related runs). For sake of clarity, although the the identity of the copy thatis responsible for the current procedure call (i.e., the copy that encountered Step 2) is implicit inh, we pass this identity explicitly. The (simulator's) main program merely consists of a specialinvocation of Generate with empty history (i.e., h = a = �).4.2.2 The speci�cation of the proceduresLet us �rst elaborate on the structure of the auxiliary information a, which consists of records,each corresponding to some encountered copy of the protocol. The record corresponding to copy iconsists of three �elds:1. The veri�er decommitment �eld (of copy i) indicates whether the �rst encounter of Step 3 (i.e.,the veri�er's decommitment) of copy i was proper or improper (i.e., the type of decommit-ment), and in the former case the �eld includes also the value of the decommitment. That is,if non-empty, the �eld stores a pair (X; v), where X 2 fproper; improperg is a decommit-ment type and v is a decommitment value (which is meaningful only in case X = proper).This �eld (of the record of the ith copy) is �lled-up according to the answer returned by someinvocation of Scan(h; �; i).2. The decommitment probability �eld (of copy i) holds an approximation of the probability thatan invocation (with parameters as the one that �lled-up the �rst �eld) actually turns out30



returning same type. That is, suppose that the �rst �eld of record i (i.e., the record ofthe ith copy) was �lled-up according to the answer returned by Scan(h; a; i), which resultedwith a decommitment of type X 2 fproper; improperg. Then the second �eld of record ishould hold an approximation of the probability that Scan(h; a; i) returns with an answer thatencodes the same type of decommitment of copy i. (Jumping ahead, we hint that Scan(h; a; i)may return with a decommitment to some other copy, and so the sum of the two probabilitiescorresponding to the two types is not necessarily 1.)3. The prover decommitment �eld (of copy i) encodes the decommitment information corre-sponding to the prover's commitment in Step 2. This �eld (of the record of the ith copy) is�lled-up at the up-front of the execution of Generate(h; a0; i), which follows the invocationof Scan(h; a; i), where a0 is a augmented by the veri�er decommitment information of copy iand the prover's commitment is performed so to passed the latter.As hinted above, the �elds are �lled-up in the order they appear above (i.e., the veri�er decommit-ment �eld is �lled-up �rst). In reading the following speci�cations, it may be instructive to considerthe special case of a single copy (in which case failure never occurs and j = i always holds).Speci�cation of Scan(h; a; i): This call produces a pre�x of a \pseudorandom" execution tran-script that extends the pre�x h, and returns some related information. The transcript is pseu-dorandom in the sense that it is computationally indistinguishable from a (pre�x of a random)real continuation of h (by the adversary interacting with copies of the prover).21 The extendedtranscript is truncated (i.e., the extended pre�x ends) at the �rst point where one of the followingholds:1. Progress: This is a case where the (extended) execution reaches Step 3 of some copy j (possiblybut not necessarily j = i) such that the �rst �eld of record j is empty. In this case, theprocedure should return the index j as well as the decommitment information (provided inthe current execution of Step 3 of copy j). That is, the answer is a pair (j; y), where jis a index of a copy and y is a decommitment information (which may be either proper orimproper).2. Failure: This is a case where the (extended) execution reaches Step 3 of some copy j 6= isuch that the �rst �eld of record j encodes a decommitment type di�erent than the oneoccuring in the current extension. That is, the �rst �eld of record j encodes decommitmenttype X 2 fproper; improperg, whereas in the current execution Step 3 of copy j has adecommitment type di�erent from X (i.e., opposite to X). In this case, the procedure cannotcontinue (and should return a special failure symbol).(In contrast, in case the execution reaches Step 3 of some copy j 6= i such that the �rst �eld ofrecord j encodes a decommitment type that equals the one occuring in the current execution,the procedure may continue handling copy i.)Furthermore, Scan should make progress with overwhelmingly high probability (equivalently, shouldfail only with negligible probability).21The reader may wonder as to what will happen in case h itself is not consistent with any pre�x of such a realinteraction. The answer is that the extended execution will always be truncated before this fact becomes evident(i.e., we never perform Step 4 of a copy unless Step 2 of that copy was performed in a passing manner).31



Speci�cation of Approx(h; a;X; i): Always returns an approximation of the probability thatScan(h; a; i) answers with a pair (i; y) such that y has type X 2 fproper; improperg. The approx-imation is required to be correct to within a factor of 2, with probability at least 1� 2�n.Speci�cation of Generate(h; a; i): This call produces a pre�x of a pseudorandom executiontranscript that extends the pre�x h, and returns either this extension or related information. Thenotion of pseudorandom is the same as in case of Scan, and the extended transcript is truncatedat the �rst point where one of the following holds:1. Failure: Exactly as in the speci�cation of Scan, except that here j = i is possible too.2. Progress: Here there are two sub-cases:(a) This is a case where the (extended) execution reaches Step 3 of some copy j such thatthe �rst �eld of record j is empty. This sub-case is handled exactly as the Progress Caseof Scan. (Unlike in Scan, here j = i cannot not possibly hold.)(b) This is a case where the (extended) execution reaches Step 4 of copy i. In this case, theprocedure returns the currently extended transcript (including the execution of Step 4of copy i), along with a corresponding update to the auxiliary information a.Furthermore, Generate should make progress with probability that is at most negligibly smallerthan the probability approximated by the corresponding Approx-call. Thus, unlike in the pre-sentation of the single-copy simulator, here Generate does not make progress almost always (noteven in the case of a single copy), but rather makes progress with probability that is close to theone approximated by the corresponding Approx-call. That is, Generate is actually a generation-attempt, and the repetition of this attempt is made by the higher level invocation (rather than inthe procedure itself).4.2.3 The implementation of the proceduresWe refer to the notion of a passing commitment as de�ned and used in Section 3. Recall that a pass-ing commitment is a sequence of (prover's) commitments to values that pass for the correspondingchallenge (encoded in the �rst �eld of the corresponding copy): See Footnote 14.We start with the description of Generate (although Generate(�; �; i) is invoked after Scan(�; �; i)).We note that Generate(h; a; i) is always invoked when the �rst �eld in the ith record in a is notempty (but rather encodes some decommitment, of arbitrary proper/improper type), and the third�eld is empty (and will be �lled-up at the very beginning of the execution).Procedure Generate(h; a; i): Initializes h0 = h and a0 = a, generates a passing commitment for(Step 2 of) copy i, and augments h0 and a0 accordingly. Speci�cally:1. The procedure generates a random sequence of values, denoted v, that pass the challengedescribed in the �rst �eld of the ith record of a. That is, v may be arbitrary if the said �eldencodes an improper decommitment; but in case of proper decommitment, v must pass withrespect to the challenge value encoded in that �eld.2. The procedure generates a random sequence of (prover's) commitments, denoted c, to v,augments h0 by c, and augments a0 by placing the corresponding decommitment informationin the third �eld of the ith record. 32



Next, the procedure proceeds in iterations according to the following cases that refer to the nextstep taken in the concurrent execution.Step 1 by some (new) copy: Just augment h0 accordingly (and proceed to the next iteration).Step 2 by some copy j (certainly j 6= i): We consider two cases depending on whether or nota0 contains the veri�er's decommitment information for copy j (i.e., whether or not the �rst�eld of the jth record is non-empty).1. In case a0 does contain such information, we generate a corresponding passing commit-ment (i.e., a prover commitment to values that pass w.r.t challenge encoded in the �rst�eld of the jth record), augment h0 and a0 accordingly, and proceed to the next iteration.(Speci�cally, analogously to the up-front activity for (Step 2 of) the ith copy, the third�eld in the jth record of a0 is augmented by the decommitment information correspondingto this prover commitment, and h0 is augmented by the commitment itself.)2. The case in which a0 does not contain such information (i.e., the �rst �eld of the jthrecord is empty (and certainly j 6= i)), is the most involved part of the procedure. Inthis case, we proceed as follows:(a) We invoke Scan(h0; a0; j), and consider its answer, which is either failure or aprogress pair (k; y). In case of progress, we determine the typeX 2 fproper; impropergof the decommitment information y (with respect to the corresponding Step 1 com-mitment in h0).(b) If the answer is either failure or is a progress pair (k; y) with k 6= j then we returnwith the very same answer (i.e., either failure or (k; y)).(Here, in case of progress, k 6= i must hold.)(c) We reach this step only if the answer obtained from Scan is a progress pair (k; y) withk = j. Letting X be the type of y, we let ~q  Approx(h0; a0;X; j), and update thejth record of a0 placing (X; y) in the �rst �eld and ~q in the second �eld. (Actually, itsu�ces to place (X; v) in the �rst �eld, where v is the decommitment value includedin the decommitment information y.)(We comment that in case X = improper, we could have skipped all subsequent sub-steps, and used instead the extended transcript generated by the above invocation ofScan, provided that Scan were modi�ed to return this information as well. However,avoiding this natural modi�cation makes the extension in Section 5 more smooth.)(d) Next, we repeatedly invoke Generate(h0; a0; j) until getting a progress, but not morethan poly(n)=~q times. (We will show that only with negligible probability can ithappen that all calls return failure.) If all attempts have returned failure then wereturn failure, otherwise we act according to the sub-cases of the (�rst) progressanswer (of Generate(h0; a0; j)), where the progress may be either a decommitmentpair or an extended transcript:i. If the progress answer (of Generate(h0; a0; j)) provides a pair (k0; y0) (wherecertainly k0 6= j as well as k0 6= i), then (analogously to sub-step 2b) we returnwith the very same answer (k0; y0).ii. If the progress answer (of Generate(h0; a0; j)) provides an updated history h00(together with updated auxiliary information a00) then update h0 and a0 (i.e.,h0  h00 and a0  a00), and proceed to the next iteration. (Note that in this caseh00 ends with execution of Step 4 of copy j.)33



Note that in handling this case, we provide a full handling of copy j, invoking all threeprocedures. Indeed, this handling is analogous to the single-copy simulator.Step 3 by copy i: Just as the �rst sub-case in the next case (i.e., Step 3 by some copy j 6= i witha non-empty �rst �eld).Step 3 by some copy j 6= i: We consider two cases depending on whether or not a0 contains theveri�er's decommitment information for copy j (i.e., the �rst �eld of the jth copy is notempty).1. In case a0 does contain such information, we consider sub-cases according to the relationof the contents of the the �rst �eld of the jth copy, denoted (X; �), and the current answerof the veri�er.(a) If the decommitment type of the current Step 3 (of the jth copy) �ts X then we justaugment h0 accordingly (and proceed to the next iteration).(b) Otherwise (i.e., the decommitment type of the current Step 3 does not �tX), returnfailure.2. In case a0 does not contain such information (i.e., the �rst �eld of the jth copy is empty),obtain the relevant decommitment information from the adversary (it may be eitheran improper or proper decommitment), and return (as progress) with this informationonly. That is, return with (j; y), where y encodes the decommitment information justobtained from the adversary.Step 4 by some copy j (possibly j = i): We will show that this case may happen only in casethe corresponding (Step 2) prover commitment is passing and a0 contains the correspondingdecommitment (in the third �eld of the jth record). Using the latter prover's decommitmentinformation, we emulate Step 4 in the straightforward manner (and augment h0 accordingly).In case j = i, return with the current h0 and a0 (otherwise proceed to the next iteration).Note that Step 2 of copy i is handled up-front. In case of a single copy i, the above proceduredegenerates to the basic handling of Steps 2{4 of copy i. In the �ctitious invocation of Generate bythe main program (i.e., with empty h and a �ctitious i), only the handlings of Steps 2{4 for copiesj 6= i are activated (whereas, in handling Step 2, sub-steps 2b and 2(d)i are never activated). Wenow turn to procedure Scan, which is similar to Generate, except for its handling of the steps ofcopy i.Procedure Scan(h; a; i): Initializes h0 = h and a0 = a, generates a dummy commitment for(Step 2 of) copy i, and augments h0 accordingly. (Speci�cally, the procedure generates a randomsequence of commitments, c, to dummy values, and augments h0 by c.) Next, the procedure proceedsin iterations according to the following cases that refer to the next step taken in the concurrentexecution.Step 1 by some (new) copy: As in Generate.Step 2 by some copy j (certainly j 6= i): As in Generate.(We comment that unlike in sub-step 2b of Generate, here k = i is possible.)
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Step 3 by copy i: Obtain the relevant decommitment information from the adversary (it may beeither an improper or proper decommitment), and return (as progress) with this information.That is, return with (i; y), where y encodes the decommitment information just obtainedfrom the adversary.Step 3 by some copy j 6= i: As in Generate.Step 4 by some copy j 6= i: As in Generate.Note that we never reach Step 4 of copy i (and that Step 2 of copy i is handled up-front).Procedure Approx(h; a;X; i): This procedure merely invokes Scan(h; a; i) until it obtains m =poly(n) invocations that return a pair that is a decommitment of type X for copy i, and returnsthe fraction of m over the number of trials. Speci�cally, the procedure proceeds as follows:Set cnttotal = cntsucc = 0.Until cntsucc = m doincrement cnttotal (unconditionally),(j; y) Scan(h; a; i),increment cntsucc if and only if j = i and y is of type X.Output: m=cnttotal.4.2.4 Analysis of the simulationIt is quite straightforward to show that the procedure Approx satis�es its speci�cation. Ignoringthe exponentially vanishing probability that any single approximation (by the procedure Approx)is o� by more than a factor of 2, we may bound the total expected running-time by using therecursive structure of the simulation. (We start with bounding the running-time, because we willhave to use this bound in analyzing the output of the simulator.)Running-time analysis. Towards the running-time analysis, it is useful to pass among the pro-cedures also the corresponding path in the tree of recursive calls. For example, instead of saying thatScan(h; a; i) invokes Generate(h0; a0; j), we may say that Scan(h; a; i; p) invokes Generate(h0; a0; j; (p; i)),where p denotes the path of recursive calls leading to the calling invocation (i.e., Scan(h; a; i; p)).Bounded-simultaneity implies that the depth of the recursive tree is a constant (i.e., equals thesimultaneity bound w), because whenever a procedure is invoked with path p it must be the casethat the copies with indices in p are still active (i.e., the corresponding transcript does not containtheir last message). The fact that the depth of the recursive tree is a constant is the key to theanalysis of the running-time of the simulation.Considering oracle calls to the adversary's strategy as atomic steps, the expected running-time of Scan(h; a; i; p) (resp., Generate(h; a; i; p)) is dominated by the time spent by the recur-sive calls invoked by Scan(h; a; i; p) (resp., Generate(h; a; i; p)). Such calls are made only whenhandling Step 2 of a copy with no veri�er decommitment information. Each of these handlingsconsists of �rst invoking Scan(h0; a0; j; (p; i)), where h0 is the current extension of the transcripth, and, pending on its not returning failure, invoking Approx and Generate on (h0; �; j; (p; i)).(Speci�cally, the latter procedures are invoked only if Scan(h0; a0; j; (p; i)) = (j; �).) In particu-lar, Approx(h0; a0;X; j; (p; i)) invokes Scan(h0; a0; j; (p; i)) for an expected number of times that isinversely proportional to the probability that Scan(h0; a0; j; (p; i)) answers with a type X decom-mitment to copy j, and Generate(h0; a0; j; (p; i)) is invoked for the at most the same (absolute)35



number of times. That is, letting Scan0(h0; a0; j) def= (k;X) if Scan(h0; a0; j) answers with a typeX decommitment to copy k, we conclude that the expected number of recursive calls made byScan(h; a; i; p) (resp., Generate(h; a; i; p)) when handling a Step 2 message of Copy j isXX2fproper;impropergPr[Scan0(h0; a0; j) = (j;X)] � poly(n)Pr[Scan0(h0; a0; j) = (j;X)] = poly(n) (4)The key point is that all these recursive calls (invoked by, say, Scan(h; a; i; p)) have the longerpath (p; i). Furthermore, these calls refer to transcripts that are pre�xes of one another (i.e., eachrecursive call refers either to the same transcript as the previous call or to an extension of it). Thus,each node in the (depth w) tree of recursive-calls has an expected polynomial number of children,and so the expected size of the tree is upper-bounded by poly(n)w. It follows that, the simulationterminates in expected polynomial-time. That is:Claim 4.1 For any polynomial-time adversary and any constant w that bounds the number ofsimultaneously active copies, the simulation terminates in expected polynomial-time.Output distribution analysis. We start the analysis (of the output distribution) by justifyingthe discarding of the (remote) possibility that during the (polynomial-time) simulation we everget two conicting proper decommitments to the same veri�er commitment. (In fact, the abovefunctional description suggests this assumption, although formally it is not needed in the func-tional description.) The justi�cation is that the polynomial bound on the expected running-timeimplies that the computational-binding property of the veri�er's commitment is violated duringthe simulation with negligible probability.Next, we establish that the implementations of the various procedures satisfy the correspondingspeci�cation, by using backward induction on the depth of the recursive call. First, we establishthat in sub-step 2d of the handling of a Step 2 message, it rarely happens that all invocations ofGenerate return failure (i.e., this bad event occurs with negligible probability). This is due tothe speci�cation of the procedures invoked at the current stage (assumed in the induction step orto the fact that no procedure is invoked in the base case of the induction). (Speci�cally, Generateis invoked for a number of times that is inversely proportional to the probability it succeeds.) Thisholds for a single handling of a Step 2 message, and we infer the same for all handlings that takeplace in the recursion tree by using a union bound and relying on the polynomial bound on theexpected number of handlings (implied by Claim 4.1). The analysis of the other sub-steps in thehandling of a Step 2 message is straightforward (from the code and speci�cation). The analysis ofthe handling of Step 3 messages is similar, and the analysis of other handlings is straightforward.Thus, we obtain:Claim 4.2 For any polynomial-time adversary and any constant w that bounds the number of si-multaneously active copies, the invocation of any procedure during the simulation behaves accordingto the corresponding speci�cation.Once Claim 4.2 is established, we look at the initial (�ctitious) invocation of Generate, whichcannot possibly return with failure, and conclude that the simulator's output is computationalindistinguishable from a real interaction of the cheating veri�er with copies of the prover. Thus,we getTheorem 4.3 The (constant-round) GK-protocol is zero-knowledge under concurrent compositionof bounded-simultaneity. 36



5 Simulation under the Timing ModelRecall that the timing assumptions refer to two constants, � and �, such that � is an upperbound on the message handling-and-delivery time, and � � 1 is a bound on the relative rates ofthe local clocks. Speci�cally, each real-time period of � units elapses �0 units of time on thelocal clock, where �=� � �0 � ��. For simplicity, we may assume without loss of generality that�=� � �0 � � (i.e., that all clocks are at least as slow as the real time).225.1 The Time-Augmented GK-protocolRecall that the GK-protocol proceeds in four abstract steps, but the actual implementation of the�rst step consists of the prover sending a preliminary message that is used as basis to the veri�er'sactual commitment. Thus, the GK-protocol is actually a 5-round protocol starting with a provermessage. We augment this protocol with the following time-driven instructions, where all timesare measured according to the prover's clock starting at the time of the invocation of the prover'sprogram:1. The prover time-outs Step 1 after �1 def= 2� units of time (as measured on its clock).(By the timing assumption, this does not disrupt honest operation, because 2� real units oftime su�ce for the delivery of a message from the prover to the veri�er and back.)2. The prover delays its execution of Step 2 to time �2 def= � � �1 + �. That is, it sends itsmessage exactly when its clock shows that �2 units of time have elapsed.3. The prover time-outs Step 3 after �3 def= �2 + 2� units of time.(Note that �3 = (2�+ 3) ��.)4. The prover delays its execution of Step 4 to time �4 def= � ��3 +�.We comment that, compared to Dwork et. al. [13], we are making a slightly more extensive useof the time-out and delay mechanisms: Speci�cally, they only used the last two items and did sowhile setting �3 = 4� and �4 = ��3. On the other hand, our use of the time-out and delaymechanisms is less extensive than the one suggested by Section 1.5: We only guarantee that fortwo copies that start at the same time, Step 2 (resp., Step 4) in one copy starts after Step 1 (resp.,Step 3) is completed in the other copy, but we do not guarantee anything about the relative timingof Steps 2 and 3 (of di�erent copies). Relying on special properties of the GK-protocol (as analyzedin Section 3.5), we can a�ord doing so, whereas the description in Section 1.5 is generic and refersto any c-round protocol. (However, in the typical case where � � 1, the di�erence between thevarious time-augmentations of the GK-protocol is quite small.)Comment: A more general treatment can be derived by introducing an auxiliary parameter,denoted � > 0, which (in the description above) we have set to equal �. In the general treatment,Step 2 uses delay �2 def= � � �1 + �, whereas Step 4 uses �4 def= � � �3 + �, where �1 def= 2� and�3 def= �2 + 2� (as above). Doing so, in the decomposition, one may partition time to intervals oflength � (rather than length �). For � = 1, the number of overlapping blocks in Claim 5.1 changesby a factor of (3�+ �)=4� > 1=4, whereas the execution time of the protocol changes by a factor of(4� + 2�)=6� > 2=3. Observe that we do not gain much by setting � 6= �. Speci�cally, by setting� � � we may reduce the the execution time by not more than a factor of 2=3, whereas the e�ect22We comment that although our formulation looks di�erent than the one in [13], it is in fact equivalent to it.37



on the simulation time is devastating (because the latter depends exponentially on the number ofoverlapping blocks, which in turn grows by a factor of approximately 3�=4� for � � �). On theother hand, setting � � � does not make the simulation signi�cantly faster, whereas it delays theexecution time considerably (i.e., by a factor of approximately �=3� for � � �). Thus, we choseto set � = �.5.2 The SimulationAs mentioned in the introduction, the simulation relies on a decomposition of any schedule thatsatis�es the timing model into sub-schedules such that each sub-schedule resembles parallel compo-sition, whereas the relations among the sub-schedules resembles bounded-simultaneity concurrentcomposition. In fact, we can prove something stronger:Claim 5.1 Consider an arbitrary scheduling of concurrent sessions of the time-augmented GK-protocol that satisfy the timing assumption. Place a session in block i if it is invoked within thereal-time interval ((i� 1) ��; i ��]. Then, for every i:1. Each session in block i terminates Step 1 by real-time i ��+��1, starts Step 2 after real-timei � � + ��1, terminates Step 3 by real-time i � � + ��3, and starts Step 4 after real-timei ��+ ��3.2. The number of blocks that have a session that overlaps with some session in block i is at most16�3. That is, the number of j 6= i such that there exists a time t, a session s in block i, anda session s0 in block j such that s and s0 are both active at time t is at most 16�3.The �rst item corresponds to Conditions C1 and C2 in Section 3.5, and the second item correspondsto bounded-simultaneity.23Proof: The latest and slowest possible session in block i is invoked by real-time i ��, and takes ��units of real-time to measure � local-time units. It follows that such a session terminates Step 1(resp., Step 3) by real-time i � � + � � �1 (resp., i � � + � � �3). On the other hand, the earliestand fastest possible session in block i is invoked after real-time (i � 1) � �, and takes � units ofreal-time to measure � local-time units. It follows that such a session starts Step 2 (resp., Step 4)after real-time (i� 1) ��+�2 = i ��+ ��1 (resp., (i� 1) ��+�4 = i ��+ ��3). The �rst itemfollows.For the second item, note that the earliest possible session in block i is invoked after real-time (i � 1) ��, whereas the latest and slowest possible session in block i terminates by real-timei � � + ��4 +� = (i + 1) � �+ � � (2�2 + 3� + 1) � �. Thus, all sessions of each block are activeduring a time interval of length (2�3 + 3�2 + � + 2) � �, and therefore these sessions may overlapsessions of at most 2 � (2�3 + 3�2 + �+ 2) � 16�3 other blocks.5.2.1 Combining the simulation techniques { the perfect caseGiven Claim 5.1, we extend the simulation strategy of Section 4 by showing how to handle blocksof \practically parallel" sessions rather than single sessions (which may be viewed as \singletonblocks"). To motivate the �nal construction, we consider �rst the special case in which each blockis a perfect parallel composition of some sessions.23The second item is actually stronger than bounded-simultaneity, because it upper-bounds the total number ofblocks that overlap with a given block (rather than upper-bounding the number of blocks that are (simultaneously)active at any given time). 38



The key to the extension is to realize that all that changes is the types of veri�er decommitmentevents (corresponding to Step 3 messages). Recall that in case of a single session, there were twopossible events (i.e., proper and improper decommitment), and these were the two decommitmenttypes we have considered. Here, for m parallel copies (of some block), we may have 2m possibleevents corresponding to whether each of the m copies is proper or improper. However, the decom-mitment types we consider here are (not these 2m events but rather) the n+1 events considered inSection 3: the events E0; E1; :::; En, where event Ej holds if all the properly decommitting sessions(in the current run) have proper-decommitment probability above the threshold tj � 2�j but not allthese sessions have proper-decommitment probability above the threshold tj�1 � 2�(j�1). Indeed,E0 is the event that all sessions have improperly decommitted in the current run. (It is importantthat the number of decommitment types is bounded by a polynomial; this will be reected whentrying to extend the analysis captured in Eq. (4).)Given the new notion of decommitment types, the three procedures of Section 4 (Scan, Approxand Generate) are extended by using the corresponding operations in Section 3. We stress that,in case of progress, the extended Scan (as well as the �rst progress case in the extended Generate)returns the decommitment information, which includes the indication of whether each session hasproperly decommitted, but not the decommitment type. The latter will be determined as inSection 3 (which is far more complex than the trivial case handled in Section 4, where decommitmenttype equals the decommitment indicator bit). The decommitment type (rather than the sequenceof decommitment indicators) is what matters in much of the rest of the activities of the modi�edprocedures.We focus on the most interesting modi�cations to the main procedures (Scan and Generate),and ignore straightforward extensions (which apply also to other steps):1. The handling of Step 2 messages by a block j with a non-empty �rst information �eld isanalogous to the treatment in the original procedure, and we merely wish to clarify what thismeans here. The point is that the �rst �eld of block j encodes a decommitment type Ek aswell as decommitment information for all sessions that properly decommit with probabilityat least tk � 2�k. The prover commitment produced here is designed to pass with respect tothese decommitment values. (The same applies to the initial actions in Generate.)2. The handling of Step 2 messages by a block j with an empty �rst information �eld (i.e., theonly case that invokes recursive calls). The following sub-steps correspond to the sub-stepsin the original procedures (Scan and Generate):(a) We invoke Scan with a block index j (rather than with a copy index), and consider itsanswer which is either failure or a progress pair (k; y), where k is a block index, andy is a list of decommitments corresponding to the various copies of block k. We referto the above invocation of Scan as to the initial one, and note that many additionalinvocations (with the same parameters) will take place in handling the current step.If (the initial invocation of) Scan returned with a progress pair (k; y) such that k = j,then we turn to the complex task of determining the decommitment type E` (whichholds with respect to y) as well as the corresponding sets T` and T`�1. (If k 6= j then thefollowing activity will not be conducted here, but rather be conducted by the instancethat invoked Scan(�; �; k).) The decommitment type E` as well as the corresponding setsT` and T`�1 are determined analogously to the main part of Step S1 (of Section 3), whichneeds to be implemented in the current context. In particular, the implementation ofStep S1 calls for the approximation of the probabilities (denoted pi's in Section 3) that39



each of the sessions properly decommits. This, in turn, amounts to multiple executionsof Steps 2{3 of these sessions, which in our case should be handled by multiple invocationof Scan(�; �; j). Details follow.Let I � [n] denote the set of sessions in which the veri�er has properly decommitted iny. (Recall we are in the case where the initial invocation of Scan(h0; a0; j) has returnedthe progress pair (j; y).) Our objective is to determine the corresponding event index `as well as the sets T` and T`�1. We consider the following cases (w.r.t I):Case of empty I: Set ` = 0 and T` = T`�1 = ;.Case of non-empty I: Set t0 = 1 and T0 = ;. We determine ` � 1 (as well as T`), byiteratively considering ` = 1; :::; n (as in Section 3.2). That is, for ` = 1; :::; n doi. We obtain t` by invoking a procedure analogous to T (`; n) (of Section 3.2).Speci�cally, we approximate each of the ps's by poly(n) � 2` invocations ofScan(h0; a0; j). Recall that each call of Scan(h0; a0; j) speci�es whether eachsession in Block j has properly decommitted, and approximations to the ps's,denoted as's, are determined accordingly. We stress that ps is the probabilitythat Scan(h0; a0; j) returns a progress pair (j; y0) such that Session s properlydecommits in y0 (e.g., ps is upper bounded by the probability that Scan(h0; a0; j)returns a progress pair (j; �)). Once all as's are determined, we determine t` justas in the second step of T (`; n).ii. Determine the set T` by determining, for each s, whether or not ps > t`. We usethe above approximations to each ps and rely on jps � t`j > (1=9n)2�`.iii. Decide if event E` holds for y by using T`�1 (of the previous iteration) and T`(just computed). Recall that event E` holds for y if I � T` but I 6� T`�1.iv. If event E` holds then exit the loop with the current value of ` as well as withthe values of T` and T`�1. Otherwise, proceed to the next iteration (i.e., thenext value of `).In both cases (of I), we have determined the commitment type X = E` with respect toy (as obtained in the initial invocation of Scan) as well as the corresponding sets T` andT`�1.(This corresponds to Step S1 of the simulator of Section 3.)(b) Exactly as in the original sub-step 2b. (That is, if the initial answer is either a failureor is a progress pair (k; y) with k 6= j then return with the very same answer.)(c) Recall that we reach this sub-step only if the answer of the initial invocation of Scanis a progress pair (j; y), and that we have already determined the event E` that holds(for y). By poly(n) � 2` additional invocations of Scan (with the same parameters asabove), we may obtain progress pairs of the form (j; �) several times. In each of thesecases, the second component consists of a list of proper decommitment values. Withoverwhelmingly high probability, for each s 2 T`, we will obtain (from at least one ofthese lists) a proper decommitment for Session s (because ps > 2�`). Ignoring thequestion of what decommitment types hold in these lists,24 we combine all these lists toa list v of all proper decommitment values (obtained in any of these lists). This list vtogether with T` and T`�1 (as obtained in sub-step 2a) forms a new information string24In particular, we do not care if the decommitment event happens to be of type E` or not. Furthermore, we mayignore y itself and not use it below (although we may also use y if we please).40



z = (v; T`; T`�1), which will be used below (i.e., recorded in a0 for future use). (Thiscorresponds to Step S2 of the simulator of Section 3.)Next, analogously to the original sub-step 2c, we obtain an approximation to the prob-ability that Scan(h0; a0; j) = (j; y) such that E` holds in y. Speci�cally, we let ~q  Approx(h0; a0; (E`; T`; T`�1); j), where procedure Approx uses T` and T`�1 in order to de-termine whether the event E` holds in each of invocations of Scan(h0; a0; j). We updatethe jth record of a0 by placing (E`; z) in the �rst �eld and ~q in the second �eld. (Thiscorresponds to Step S3 of the simulator of Section 3.)(d) Finally, analogously to the original sub-step 2d, we invoke Generate(h0; a0; j) up-topoly(n)=~q times and deal with the outcomes as in the original sub-step 2d. (This corre-sponds to Step S4 of the simulator of Section 3.)3. The handling of Step 3 messages by a block j (possibly j = i) is analogous to the treatmentin the original procedure, and we merely wish to spell out what this means: We consider twocases depending on whether or not a0 contains the veri�er's decommitment information forblock j (i.e., the �rst �eld of the jth block is not empty).(a) In case a0 does contain such information, we consider sub-cases according to the relationof the contents of the the �rst �eld of the jth block, denoted (E`; z), and the currentanswer of the veri�er. Speci�cally, we check whether the veri�er's current answer is oftype E`. We note that the type of the current veri�er decommitment is determinedusing the sets T` and T`�1 provided in z (i.e., z = (v; T`; T`�1), where v is a sequence ofdecommitment values not used here). The sub-cases (�t versus non-�t) are handled asin the original procedure.(b) In case a0 does not contain such information (i.e., the �rst �eld of the jth block is empty),we obtain the relevant decommitment information (i.e, a sequence of decommitments)from the adversary, and return (as progress) with this information only.This completes the description of the modi�cation to the main procedures for the current setting (ofbounded-simultaneity of blocks of parallel sessions). We stress that here (unlike in Section 3) theevents E` regarding the decommitment to block j are not the only things that may happen whenwe invoke Scan with block index j (which corresponds to Step S1 in Section 3). As in Section 4, theanswer may be failure or progress with respect to a di�erent block. Indeed, the latter may notoccur in case there is only one block, in which case the above treatment reduces to the treatmentin Section 3. It is also instructive to note that when each block consists of a single copy, the abovemodi�ed procedures degenerate to the original one (i.e., in Section 4).To analyze the current setting (of bounded-simultaneity of blocks of parallel sessions), we plugthe analysis of Section 3 into the analysis of Section 4. The only point of concern is that we haveintroduced additional recursive calls (i.e., in the handling of Step 2, speci�cally in the handlingsub-step 2a). However, as shown in Section 3, the expected number of these calls is bounded aboveby a polynomial (i.e., it is Pǹ=0 Pr[E`] � 2`poly(n), whereas Pr[E`] = O(n � 2�`)). Thus, again, thetree of recursive calls has expected poly(n) branching and depth at most w. Consequently, again,the expected running-time is bounded by poly(n)w.5.2.2 Combining the simulation techniques { the real caseIn the real case the execution decomposes into blocks of almost parallel sessions (rather thanperfectly parallel ones) such that (again) bounded-simultaneity holds with respect to the blocks. In41



view of the extension in Section 3.5, the non-perfect parallelism within each block does not raise anyproblems (as far as a single block is concerned). What becomes problematic is the relation betweenthe (non-perfectly parallel) blocks, and in particular our references to the ordering of steps takenby the di�erent blocks. That is, our treatment of the perfect-parallelism case treats the parallelsteps of each block as an atom. Consequently we have related to an ordering of these steps suchthat if one \block step" comes before another then all sessions in the the �rst block take the saidstep before any session of the other block takes the other step. However, in general, we cannot treatthe parallel steps of each block as an atom, and the following problem arises: what if one sessionof block i takes Step A, next one session of block j 6= i takes Step B, and then a di�erent sessionof block i takes Step A. This problem seems particularly annoying if handling the relevant stepsrequires passing control between recursive calls. In general, the problem is resolved by treatingdi�erently the �rst (resp., last) session and other sessions of each block that reach a certain step.Loosely speaking, the �rst (or last) such session will be handled similarly to the atomic case (i.e.,as in Section 5.2.1), whereas in some cases other sessions (of the block) will be handled di�erently(in a much simpler manner). In particular, recursive calls are made only by the �rst session, andcontrol is returned only by either the �rst or last such sessions. For sake of clarity, we present belowthe modi�cation to the procedure Generate(h; a; i). Note that this procedure is invoked when theimmediate extension of h calls for execution of Step 2 by the �rst session in block i (i.e., h containsno Step 2 by any session that belongs to block i).Initialization (upon invocation) step: Initializes h0 = h and a0 = a, generates a passing com-mitment for (Step 2 of) the current (i.e., �rst) session of block i, and augments h0 and a0accordingly. Speci�cally, the commitment is generated so that it passes the challenge cor-responding to the current session (as recorded in the �rst �eld of record i), and only thecorresponding part of the third �eld of the ith record (in a0) is updated.In all the following cases, h0 and a0 denote the current history pre�x and auxiliary information,respectively. (The following cases refer to the next message to be handled by the procedure,which handles such messages until it returns.)Step 1 by some (new) session: Exactly as in the atomic case (i.e., augment h0 and proceed tothe next iteration).Step 2 by the �rst session in block j (certainly j 6= i): Analogous to the atomic case (see Sec-tion 5.2.1). Speci�cally, the handling depends on whether or not a0 contains the veri�er'sdecommitment information for copy j (i.e., whether or not the �rst �eld of the jth record isnon-empty).1. In case a0 does contain such information, we just generate a corresponding passing com-mitment (i.e., passing w.r.t the �rst �eld of the jth record), augment h0 and a0 accordingly,and proceed to the next iteration.2. In case a0 does not contain such information (i.e., the �rst �eld of the jth record isempty), we try to obtain such information. This is done analogously to the atomic case(see Section 5.2.1). We stress that this activity will yield the necessary information forall sessions in the jth block, and not merely for the current (�rst) session in the block.Recall that the handling of this sub-case involves making recursive calls to the threeprocedures (with parameters (h0; a0; j)).42



Step 2 by a non-�rst session in block j (here j = i may hold): We consider two cases depend-ing on whether or not a0 contains the veri�er's decommitment information for copy j (i.e.,whether or not the �rst �eld of the jth record is non-empty).1. In case a0 does contain such information, we just generate a corresponding passing com-mitment, augment h0 and a0 accordingly, and proceed to the next iteration.(This is exactly as in the corresponding treatment of the �rst session of block j to reachStep 2.)2. In case a0 does not contain such information (i.e., the �rst �eld of the jth record isempty), we generate a dummy commitment, augment h0 accordingly, and proceed to thenext iteration. (Recall that we count on the �rst session in the jth block to �nd out thenecessary information (for all sessions in the block).)(This is very di�erent from the treatment of the �rst session of block j to reach Step 2.)Step 3 by a non-last session of block j (possibly j = i): Just augment h0 accordingly (and pro-ceed to the next iteration).(This is very di�erent from the treatment of the last session of block j to reach Step 3.)Step 3 by the last session of block j (possibly j = i): Analogous to the atomic case. We con-sider two cases depending on whether or not a0 contains the veri�er's decommitment infor-mation for block j (i.e., the �rst �eld of the jth block is not empty).1. In case a0 does contain such information, we consider sub-cases according to the relationof the contents of the the �rst �eld of the jth block, denoted (E`; z), and the Step 3 answerof the veri�er (for all sessions in the jth block). Speci�cally, we should consider theanswers to previous sessions in the jth block as recorded in h0 and the answer to the lastsession in the block as just obtained. Recall that the type of the veri�er decommitments(for the sessions in the jth block) is determined using the sets T` and T`�1 provided inthe �rst �eld of the jth block. The sub-cases (�t versus non-�t) are handled as in theoriginal procedure. That is:(a) If the decommitment type of the Step 3 answers (of the jth block) �ts E` then wejust augment h0 accordingly (and proceed to the next iteration).(b) Otherwise (i.e., the decommitment type of the current Step 3 does not �t E`),return failure.(As in the atomic setting this case must hold if j = i.)2. In case a0 does not contain such information (i.e., the �rst �eld of the jth block is empty),we obtain the relevant decommitment information as in the previous case, and return(as progress) with this information only. Speci�cally, the decommitment information forthe previous sessions of the jth block is recorded in h0, whereas the the decommitmentinformation for the last session has just been obtained (from the adversary).Step 4 by a session of block j (possibly j = i): Using the prover's decommitment information(as recorded in the third �eld of the jth record), we emulate Step 4 in the straightforwardmanner (and augment h0 accordingly). If this is the last session of block j and j = i, thenreturn with the current h0 and a0 (otherwise proceed to the next iteration).43



The modi�cations to procedure Scan are analogous. We stress that although the above descriptiontreats the schedule as if it is �xed, the treatment actually extends to a dynamic schedule where themembership of sessions in blocks is determined on-the-y (i.e., upon their execution of Step 1).25The analysis of the perfect case can now be applied to the real case, and Theorem 1.1 follows. Thatis:Theorem 5.2 The Time-Augmented GK-protocol is concurrent zero-knowledge under the timingmodel.6 Other applications of our techniquesAs stated in Section 1.3, our techniques are applicable also to several well-known protocols thathave a structure similar to the GK-protocol. Notable examples include the (constant-round) zero-knowledge arguments of [15] and [4] as well as the perfect (constant-round) zero-knowledge proofof [5]. In fact, our techniques are applicable also to protocols with less apparent similarity to theGK-protocol. One such example is provided by the protocols that result from the transformationof Bellare, Micali and Ostrovsky [6].In Section 6.1, we show that our techniques can be applied to the four-round argument systemof Bellare, Jakobsson and Yung [4]. In Section 6.2, we describe a general class of protocols to whichour techniques are applicable.6.1 Application to the BJY-protocolWe start by briey recalling the BJY-protocol (due to Bellare, Jakobsson and Yung [4], which inturn builds upon the work of Feige and Shamir [15]). Their protocol uses an adequate three-roundwitness indistinguishable proof system (e.g., parallel repetition of the basic zero-knowledge proofof [19]). Speci�cally, we consider a three-round witness indistinguishable proof system (e.g., forG3C) of the form:Step WI1: The prover commits to a sequence of values (e.g., the colors of each vertex under several3-colorings of the graph). This commitment scheme is perfectly-binding (and non-interactive;see Footnote 11).Step WI2: The veri�er send a random challenge (e.g., a random sequence of edges).Step WI3: The prover decommits to the corresponding values.(The implementation details are as in Construction 2.2.) For technical reasons, it is actuallypreferable to use protocols for which demonstrating a \proof of knowledge" property is easier (e.g.,parallel execution of Blum's basic protocol; cf. [16, Sec. 4.7.6.3] and [16, Chap. 4, Exer. 28]). Giventhe above, the (four-round) BJY-protocol (for any language L 2 NP) proceeds as follows:1. The veri�er sends many hard \puzzles", which are unrelated to the common input x. Thesepuzzles are random images of a one-way function f , and their solutions are correspondingpreimages. In fact, the veri�er selects these puzzles by uniformly selecting preimages of f ,and applying f to obtain the corresponding images. Thus, the veri�er knows solutions to allpuzzles he has sent.In the rest of the protocol, the prover will prove (in a witness indistinguishable manner) thateither it knows a solution to one of (a random subset of) these puzzles or x 2 L. The latterproof is by reduction to some instance of an NP-complete language.25Recall that by our assumption that the veri�er never violates the time-out condition (cf. Sec. 2.2), the \lastsession in a block to reach a certain step" can be determined as well.44



2. The prover performs Step WI1 in parallel to asking to see a random subset of the solutions tothe above puzzles. Speci�cally, the puzzles are paired, and the prover asks to see a solutionto one (randomly selected) puzzle in each pair. Furthermore, in executing Step WI1, theprover refers to a statement derived from the reduction of the assertion x 2 L or some of thenon-selected puzzles has a solution.3. The veri�er performs Step WI2 in parallel to sending the required solutions (to the selectedpuzzles).4. The prover veri�es the correctness of the solutions provided by the veri�er, and in case allsolutions are correct it performs Step WI3.As shown in [4], the BJY-protocol is a four-round zero-knowledge argument system for L. Thesimulator is similar to the one presented for the GK-protocol. Speci�cally, it starts by executingSteps 1{3, while using dummy commitments (in Step 2). Such a partial execution is called properif the adversary has revealed all solutions to the selected puzzles (and is called improper otherwise).In case the partial execution is improper, the simulator halts while outputting it. Otherwise, thesimulator moves to generating a full execution transcript by repeatedly rewinding to Step 2 andtrying to emulate Steps 2{4 using the fact that (unless it selects the same set of puzzles again(which is highly unlikely)) it already knows a solution to one of the puzzles not selected (by it)in the current execution (but rather selected in the initial execution of Steps 1{3). Using sucha solution, which yields an NP-witness to the reduced instance, the simulator can emulate theWI proof. As in the simulation of the GK-protocol (cf. [17]), the number of repetitions must bebounded by the reciprocal of the probability of a proper (initial) execution (as approximated by anauxiliary intermediate step).26Given the similarity of the two simulators (i.e., the one here and the one for the GK-protocol),it is evident that our treatment of concurrent composition of the GK-protocol applies also to theBJY-protocol. Thus, recalling that the BJY-protocol is only based on one-way functions, we obtain:Theorem 6.1 Assuming the existence of one-way function, there exists a (four-round) argumentsystem for NP that is concurrent zero-knowledge under the timing model.6.2 Application to a general class of protocolsIn this section, we describe a general class of protocols to which our techniques are applicable.These protocols proceed in four main abstract steps:1. The veri�er \commits" to some secret information. Indeed, this \commitment" may be (asin the case of the GK-protocol) the result of applying a commitment protocol to the saidinformation, but need not be so (cf., e.g., the BJY-protocol).2. Some initial sub-protocol takes place such that its execution can be easily simulated by acomputationally-bounded party that is only given the public information (i.e., the commoninput and the transcript of Step 1).In the GK-protocol, this step consists of the prover's commitment to a sequence of 3-coloringsand can be simulated by producing commitments to dummy values. In other cases (e.g., [6]),this step may be vacuous.26Unfortunately, this technical issue is avoided by Bellare et. al. [4], but it arises here (i.e., in [4]) similarly to theway it arises in [17], and it can be resolved in exactly the same manner. (The issue is that the prover commitmentsin the initial scan are distributed di�erently (but computational-indistinguishably) than its commitments in thegeneration process.) 45



3. The veri�er proves knowledge of the secret information it has committed to in Step 1.In the GK-protocol, this step amounts to performing the corresponding decommitment step.4. Pending on the prover being convinced, some residual sub-protocol takes place. The two sub-protocols (of Steps 2 and 4) are such that they can be easily simulated by a computationally-bounded party that is given the veri�er's secret (as well as the the public information).In the GK-protocol, these two steps can be simulated by �rst sending commitments to corre-sponding \pseudo-colorings" and next performing the corresponding decommitments.The single-session simulation of the above abstract protocol is similar to the simulator we have usedin the previous sections. Speci�cally, the simulator starts by performing Step 1, and then performsSteps 2{3 (by using the corresponding guarantee regarding Step 2). In case the transcript is un-acceptable by the prover, the simulator halts outputting the truncated transcript. Otherwise, thesimulator invokes the knowledge-extractor that is guaranteed for Step 3, and obtains the veri�er'ssecret information.27 Once the simulator has this secret information, it can simulate Steps 2{4 (bythe corresponding guarantee). We warn that indeed the actual implementation of the simulationprocedure is more complex than the above description (e.g., as in [17], in some cases an approx-imation sub-step needs to be added). Still, the interested reader may verify that the techniquesapplied in Sections 3{5 extend to the above (abstract) simulation scheme. We conclude that everyprotocol of the above type is concurrent zero-knowledge under the timing model.AcknowledgmentsWe are grateful to Uri Feige and Alon Rosen for helpful discussions at the initial stages of thisresearch. We also wish to thank Ra� Ostrovsky for pointing out that that our techniques can beapplied to the protocols in [5, 6], Boaz Barak and Daniele Micciancio for interesting discussionsregarding the use of time-driven operations (see Footnote 6), and the anonymous referees for theirvaluable comments. Our research was partially supported by the Minerva Foundation, Germany.

27Actually, the simulator uses a knowledge-extractor that corresponds to Steps 2{3. Observe that if Step 3 is aproof-of-knowledge then so are Steps 2{3. 46
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