
Contemplations on Testing Graph PropertiesOded GoldreichDepartment of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded.goldreich@weizmann.ac.ilAugust 1, 2005AbstractThis note documents two programmatic comments regarding testing graph properties, whichI made during the Dagstuhl workshop on Sublinear-Time Algorithms (July 2005). The �rstcomment advocates paying more attention to the dependence of the tester's complexity on theproximity parameter. The second comment advocates paying more attention to the questionof testing general graphs (rather than dense or bounded-degree ones). In addition, this noteincludes a suggestion to view property testing within the framework of promise problems.We assume that the reader is familiar with the basic models underlying testing graph properties(see surveys [14, 25]).1 Complexity as a function of the proximity parameterIt is indeed an amazing fact that many properties can be tested within (query) complexity that onlydepends on the proximity parameter (rather than also on the size of the object being tested). Thisamazing statement seems to put in shadow the question of what is the form of the aforementioneddependence, and blurs the di�erence between a reasonable dependence (e.g., a polynomial relation)and prohibiting one (e.g., a tower-function relation). We claim that, as in the context of standardapproximation problems (cf. [22]), the dependence of the complexity on the approximation (orproximity) parameter is a key issue.For the sake of simplicity we focus on the query complexity of testers, and assume that it onlydepends on the proximity parameter �. We highlight the di�erence between the following typesof dependencies, where �-testing refers to distinguishing objects having the property from objectsthat are �-far from having the property:1. The query complexity is linearly related to the proximity parameter; that is, �-testing can beachieved by using O(1=�) queries.We note that, for any non-trivial graph property, the query complexity of �-testing in theadjacency matrix model is
(p1=�), and we conjecture that a lower-bound of
(1=�) actuallyholds in this case. (A lower-bound of
(1=�) is easy to establish in the bounded-degreeincidence list model.)2. The query complexity is polynomially related to the proximity parameter; that is, �-testingcan be achieved by using poly(1=�) queries.1

For example, all graph property testers in [16] have query complexity poly(1=�). We note,however, that some of these testers (e.g., the one for 3-colorability) have time complexity thatis exponential in the proximity parameter �, and this seems unavoidable assuming that NPdoes not have sub-exponential time algorithms. We wish to praise [3, 9] for further studyingthe query complexity of testing k-colorability, and in particular for determining the querycomplexity of non-adaptively testing bipartiteness (up to a polylogarithmic factor).1A natural problem that is �-testable within query complexity that only depends on �, butrequires a super-polynomial dependency on 1=� was pointed out by Alon [1]. He proved that�-testing triangle-freeness requires at least (1=�)
(log(1=�)) queries. We comment that this isquite far from the known upper-bound (mentioned in Item 4).3. The query complexity is exponentially related to the proximity parameter; that is, �-testingcan be achieved by using exp(1=�) queries.We are not aware of any natural testing problem having this query complexity.4. The query complexity is related to the proximity parameter via a function that grows tremen-dously fast. A notorious example is the tower function tf de�ned inductively by tf(n) =exp(tf(n� 1)) with tf(1) = 2. (Indeed, tf is the inverse of the log� function.)Starting in [2], many positive results regarding testing graph properties in the adjacencymatrix model establish such a query complexity; that is, they establish �-testers of querycomplexity tf(poly(1=�)) (and sometimes even tf(tf(poly(1=�)))). In particular, �-testingtriangle freeness is known only when using tf(poly(1=�)) queries. This dependence is anartifact of these results' application of the Regularity Lemma (or stronger variants of it).We wish to stress that we do value the impressive results of [2, 4, 5, 13], which refer to graphtesters having query complexity that is independent of the graph size but depend prohibitingly onthe proximity parameter. We view such results as an impressive �rst step, which called for furtherinvestigation directed at determining the actual dependency of the complexity on the proximityparameter.2 Models of testing graph propertiesThe bulk of algorithmic research regarding graphs refers to general graphs. Of special interestare graphs that are neither very dense nor have a bounded-degree. In contrast, research in testingproperties of graphs started (in [16]) with the study of dense graphs, next (starting in [17]) bounded-degree graphs were considered, and general graphs were considered only in [24, 23]. This evolutionhas historical reasons to be reviewed �rst.Testing graph properties was initially conceived (in [16]) as a special case of the framework oftesting properties of functions (cf. [26]). Thus, graphs had to be represented by functions, and twostandard representations of graphs seemed most �tting in this context:1. The adjacency matrix representation [16]: That is, a graph G = (V;E) is represented by afunction g : V � V ! f0; 1g such that g(u; v) = 1 if and only if fu; vg 2 E. This representa-tion corresponds to the so-called adjacency queries, and suggests that the (relative) distance1Alon and Krivelevich [3] presented an �-tester that inspects the subgraph induced by eO(1=�) randomly chosenvertices (thus making eO(1=�2) non-adaptive queries), whereas Bogdanov and Trevisan [9] prove a lower-bound of
(1=�2) non-adaptive queries (and
(1=�3=2) adaptive queries).2

between graphs be measured as the fraction of vertex-pairs on which the corresponding ad-jacency matrices di�er.Needless to say, when considering �-testing, this model is interesting mostly for �-dense graphs(i.e., graphs G = (V;E) such that 2jEj > �jV j2).(A partial list of the works done in this model includes [1, 2, 3, 4, 5, 6, 9, 13, 16, 21].)2. The (bounded-degree) incidence list representation [17]: Speci�cally, for a �xed integer d, thegraph G = (V;E) is represented by a function g : V � [d]! V [f?g such that g(u; i) = v ifv is the ith neighbor of u and g(u; i) = ? if u has less than i neighbors. This representationcorresponds to the so-called neighbor queries, and suggests that the (relative) distance betweengraphs be measured as the fraction of vertex-index pairs on which the corresponding incidencelists di�er.Needless to say, this model can only be applied to graphs of maximum degree d. Indeed, wemay take d to be arbitrary large, but in this case the model is interesting mostly for �-testinggraphs than having average degree at least �d.(Work done in this model includes [8, 17, 18, 19].)The reader may note that both models were formulated in a way that identi�es the graphs with aspeci�c functional representation, which in turn de�nes the type of queries allowed to the tester aswell as the notion of fractional distance (which underlies the performance guarantee).The identi�cation of graphs with any speci�c functional representation was abandoned by Par-nas and Ron [24] who developed a more general model by decoupling the type of queries allowedto the tester from the distance measure: Whatever is the mechanism of accessing the graph, thedistance between graphs is de�ned as the number of edges in their symmetric di�erence (ratherthan the number of di�erent entries with respect to some speci�c functional representation). Fur-thermore, the relative distance may be de�ned as the size of the symmetric di�erence divided bythe actual (total) number of edges in both graphs (rather than divided by some (possibly non-tight)upper-bound on the latter quantity). As advocated by Kaufman et. al. [23], it may be reasonableto allow the tester to perform both adjacency and neighbor queries (and indeed each type of querymay be useful in a di�erent range of edge densities). Needless to say, this model seems adequate forthe study of testing properties of arbitrary graphs, and it strictly generalizes the positive aspects ofthe two prior models (i.e., the models based on the adjacency matrix and bounded-degree incidencelist representations).We wish to advocate further study of the latter model. We believe that this model, whichallows for a meaningful treatment of property testing of general graphs, is the one that is mostrelevant to computer science applications. Furthermore, it seems that designing testers in thismodel requires the development of algorithmic techniques that may be applicable also in otherareas of algorithmic research. As an example, we mention that techniques in [23] that underly theaverage degree approximation of [20]. (Likewise techniques of [17] underly the minimum spanningtree weight approximation of [10]; indeed, as noted next, the bonuded-degree incidence list modelis also more algorithmic oriented than the adjacency matrix model.)Let us focus on the algorithmic contents of property testing of graphs. We �rst note that,ignoring a quadratic blow-up in the query complexity, property testing in the adjacency matrixrepresentation reduces to sheer combinatorics: To �-test if G has property P, it su�ces to checkwhether a random induced graph (of adequate size) of G has some \related" property P0 (see [21])2.2We note that the transformation of [21] may increase the query complexity in a quadratic manner. It is conceivable3

In contrast, property testing in the incidence list representation employs some non-trivial algo-rithmic techniques such local search (cf. [17]) and random walks (cf. [18]). Testers in the general(\
exible") graph models seem to require even more algorithmic ideas (cf. [23]).To summarize, we advocate further study of the model of [24, 23] for two reasons. The �rstreason is that we believe in the greater relevance of this model to computer science applications.The second reason is that we believe in the greater potential of this model to have cross fertilizationwith other branches of algorithmic research.A parenthetical comment: We seize the opportunity to call attention also to the study oftesting properties of directed graphs, initiated in [7].3 Property testing as a type of a promise problemWe advocate viewing property testing within the framework of promise problems, a frameworkintroduced in [11] (see recent survey [15]). Formally, a promise problem is a partition of the set ofall strings into three subsets:1. The set of strings representing yes-instances.2. The set of strings representing no-instances.3. The set of disallowed strings (which represent neither yes-instances nor no-instances).The algorithm (or process) that is supposed to solve the promise problem is required to distinguishyes-instances from no-instances, and is allowed arbitrary behavior on inputs that are neither yes-instances nor no-instances. Intuitively, this algorithm (or rather its designer) is \promised" thatthe input is either a yes-instance or a no-instance, and is only required to distinguish these twocases. This generalizes the standard notion of a decision problem, in which each string is either ayes-instances or a no-instance.Gap problems constitute a special type of promise problems in which instances are partitionedaccording to some metric leaving a \gap" between yes-instances and no-instances. Standardapproximation problems refer to one such type of metric in which instances are positioned accordingto the value of the best corresponding \solution" (with respect to some predetermined objectivefunction). Property testing refer to a second type of metric in which instances are positionedaccording to their distance from the set of objects that satisfy some predetermined property.Indeed, property testing is a relaxation of decision problems, where this relaxation leaves a gapbetween instances that should be accepted (with high probability) and instances that should berejected (with high probability). The former contain all instances that have the predeterminedproperty, whereas the latter contain all instances that are \far from having the property" (i.e.,being at large distance from any instance in the former set). Typically, the distance (or proximity)parameter is given as input to the tester, which makes the positive results stronger and moreappealing (especially in light of a separation recently shown in [6]). In contrast, negative resultstypically refer to a �xed value of the distance parameter.Thus, for any property P and any distance function (e.g., Hamming distance between bit strings),two natural types of promise problems emerge:that an adaptive tester (which is less dull from an algorithmic perspective) may perform better than the canonicaltester of [21] (which merely examines a random induced subgraph).4

1. Testing w.r.t variable distance: Here instances are pairs (x; �), where x is a description ofan object and � is a distance parameter. The yes-instances are pairs (x; �) such that x hasproperty P, whereas (x; �) is a no-instance if x is �-far from any x0 that has property P.2. Testing w.r.t a �xed distance: Here we �x the distance parameter �, and so the instances aremerely descriptions of objects, and the partition to yes and no instances is as above.For example, for some �xed integer d, consider the following promise problem, denoted BPGd,regarding bipartiteness of bounded-degree graphs. The yes-instance are pairs (G; �) such that G isa bipartite graph of maximum degree d, whereas (G; �) is a no-instance if G is an N -vertex graphof maximum degree d such that more than � � dN=2 edges must be omitted from G in order toobtain a bipartite graph. Similarly, for �xed integer d and � > 0, the promise problem BPGd;� hasyes-instances that are bipartite graphs of maximum degree d and no-instances that are N -vertexgraphs of maximum degree d such that more than � � dN=2 edges must be omitted from the graphin order to obtain a bipartite graph. In [17] it was shown that any tester for BPG3; 0:01 must make
(pN) neighbor queries. In contrast, for every d and �, the tester presented in [18] decides BPGd;�in time eO(pN=poly(�)). In fact, this algorithm decides BPGd in time eO(pN=poly(�)), where Nand � are explicitly given parameters.The formulation typically used in the literature. Indeed, all research on property testingrefers to the two aforementioned types of promise problems, where typically positive results referto the �rst type and negative results refer to the second type. However, most works do not providea strictly formal statement of their results (see further discussion below), because the formulationis rather cumbersome and straightforward. Furthermore, in light of the greater focus on positiveresults (and in accordance with the traditions of algorithmic research), such a formal statement isbelieved to be unnecessary.3 Let us consider what is required for a formal statement of propertytesting results.� The starting point is a speci�cation of a property and a distance function, the combinationof which yields a promise problem (of the �rst type).[Needless to say, the starting point is common to all property testing work, but the fact thatit constitutes a promise problem is rarely stated.]� The �rst step is to postulate that the potential \solvers" (i.e., property testers) are proba-bilistic oracle machines that are given oracle access to the \primary" input (i.e., the objectin the aforementioned problem types).[Indeed, this step need to be taken and is taken in all works in the area.]� Secondly, for a formal asymptotic complexity statement, one needs to specify the \secondary"(explicit) inputs, which consist of various problem-dependent parameters (e.g., N and d inthe above examples) and the distance parameter � (in case of BPGd and any other problem ofthe �rst aforementioned type).[This step is rarely done explicitly in the literature. The importance of this step is highlightedin [5, 6], which explicitly distinguish testers that decide obliviously of N from general testers3Needless to say, a higher level of rigor is typically required in negative statements. Indeed, property testing ispositioned between algorithmic research and complexity theory, and seems to be more in
uenced by the mind-frameof algorithmic research. (We comment that the positioning of a discipline is determined both by its contents and bysociology-of-science factors.) 5

the decision of which may depend on N even in case their query complexity is independentof N .]� Finally, one should state the complexity of the tester in terms of these explicit inputs.[Needless to say, this is always done...]Thus, the only step that is acutely missing in typical works is a rigorous de�nition of the relevantexplicit inputs (especially, the various problem-dependent parameters). Regardless of whether ornot one explicitly uses the promise problem formulation, we suggest to be more careful aboutspecifying the (problem-dependent) explicit inputs given to the tester.References[1] N. Alon. Testing subgraphs of large graphs. Random Structures and Algorithms, Vol. 21,pages 359{370, 2002.[2] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy. E�cient Testing of Large Graphs.Combinatorica, Vol. 20, pages 451{476, 2000.[3] N. Alon and M. Krivelevich. Testing k-Colorability. SIAM Journal on Disc. Math.,Vol. 15 (2), pages 211-227, 2002.[4] N. Alon and A. Shapira. Every Monotone Graph Property is Testable. In 37th STOC,pages 128{137, 2005.[5] N. Alon and A. Shapira. A Characterization of the (natural) Graph Properties Testablewith One-Sided. In 46th FOCS, to appear, 2005.[6] N. Alon and A. Shapira. A Separation Theorem in Property Testing. Unpublishedmanuscript, 2004.[7] M. Bender and D. Ron. Testing acyclicity of directed graphs in sublinear time. RandomStructures and Algorithms, pages 184{205, 2002.[8] A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-colorability inbounded-degree graphs. In 43rd FOCS, pages 93{102, 2002.[9] A. Bogdanov and L. Trevisan. Lower Bounds for Testing Bipartiteness in Dense Graphs.In IEEE Conference on Computational Complexity, pages 75{81, 2004.[10] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning treeweight in sublinear time. In 19th ICALP, pages 190{200, 2001.[11] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Ap-plications to Public-Key Cryptography. Inform. and Control, Vol. 61, pages 159{173,1984.[12] E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletin of theEuropean Association for Theoretical Computer Science, Vol. 75, pages 97{126, 2001.[13] E. Fischer and I. Newman. Testing versus estimation of graph properties. In 37th STOC,pages 138{146, 2005. 6

[14] O. Goldreich. Combinatorial Property Testing { A Survey. In DIMACS Series in Disc.Math. and Theoretical Computer Science, Vol. 43 (Randomization Methods in AlgorithmDesign), pages 45{59, 1998.[15] O. Goldreich. On Promise Problems: In memory of Shimon Even (1935{2004). ECCC,TR05-018, January 2005.[16] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learningand approximation. Journal of the ACM, pages 653{750, July 1998.[17] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica, pages302{343, 2002.[18] O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs. Com-binatorica, Vol. 19 (3), pages 335{373, 1999.[19] O. Goldreich and D. Ron. On Testing Expansion in Bounded-Degree Graphs. ECCC,TR00-020, March 2000.[20] O. Goldreich and D. Ron. Approximating Average Parameters of Graphs. ECCC, TR05-073, July 2005.[21] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. RandomStructures and Algorithms, Vol. 23 (1), pages 23{57, August 2003.[22] D. Hochbaum (ed.). Approximation Algorithms for NP-Hard Problems. PWS, 1996.[23] T. Kaufman, M. Krivelevich, and D. Ron. Tight Bounds for Testing Bipartiteness inGeneral Graphs. SIAM Journal on Computing , Vol. 33 (6), pages 1441{1483, 2004.[24] M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures and Algo-rithms, Vol. 20 (2), pages 165{183, 2002.[25] D. Ron. Property testing. In Handbook on Randomization, Volume II, pages 597{649,2001. (Editors: S. Rajasekaran, P.M. Pardalos, J.H. Reif and J.D.P. Rolim.)[26] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications toprogram testing. SIAM Journal on Computing, 25(2), pages 252{271, 1996.

7

