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tWe present a 
andidate 
ounterexample to the easy 
ylinders 
onje
ture, whi
h was re
entlysuggested by Manindra Agrawal and Osamu Watanabe (see ECCC, TR09-019). Loosely speak-ing, the 
onje
ture asserts that any 1-1 fun
tion in P=poly 
an be de
omposed into \
ylinders"of sub-exponential size that 
an ea
h be inverted by some polynomial-size 
ir
uit. Although allpopular one-way fun
tions have su
h easy (to invert) 
ylinders, we suggest a possible 
ounterex-ample. Our suggestion builds on the 
andidate one-way fun
tion based on expander graphs (seeECCC, TR00-090), and essentially 
onsists of iterating this fun
tion polynomially many times.
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1 The Easy Cylinders Conje
tureManindra Agrawal and OsamuWatanabe [2, Se
. 4℄ have re
ently suggested the following interesting
onje
ture. The 
onje
ture refers to the notion of an easy 
ylinder, de�ned next, and asserts thatevery 1-1 and length-in
reasing fun
tion in P=poly has easy 
ylinders.De�nition 1 (easy 
ylinders, simpli�ed1): A length fun
tion ` :N!N is admissible if the mappingn 7! `(n) 
an be 
omputed in poly(n)-time and there exists a 
onstant � > 0 su
h that `(n) 2[n�; n � n�℄. A fun
tion f has easy 
ylinders if for some admissible length fun
tion ` there existsmappings �1; �2 : f0; 1g� ! f0; 1g� su
h that the following 
onditions hold:1. For every x, it holds that j�1(x)j = `(jxj) and j�2(x)j = jxj � `(jxj).2. The fun
tion �(x) = (�1(x); �2(x)) is 1-1, polynomial-time 
omputable and polynomial-timeinvertible. The 
ylinders de�ned by �1 
onsists of the 
olle
tion of sets f��11 (x0)jn : x0 2f0; 1g`(n)gn2N where ��11 (x0)jn def= fx 2 f0; 1gn : �1(x) = x0g.3. For every n 2 N and x0 2 f0; 1g`(n), there exists a poly(n)-size 
ir
uit C = Cx0 su
h that forevery x 2 ��11 (x0)jn it holds that C(f(x)) = �2(x).That is, when restri
ted to any su
h 
ylinder, the fun
tion f is easy to invert.Needless to say, the existen
e of easy 
ylinders is interesting only in the 
ase that f is notpolynomial-time invertible. Agrawal and Watanabe noted that all popular 
andidates one-wayfun
tions have easy 
ylinders. Generalizing their observations (and going somewhat beyond them),we �rst present four 
lasses of fun
tions that are 
onje
tured to be one-way and still have easy
ylinders. Next (in Se
tion 3), we present our 
andidate 
ounterexample.2 Four Classes of Fun
tions that have Easy CylindersThe �rst 
lass generalizes the multipli
ation fun
tion (i.e., (x0; x00) 7! x0 � x00). This 
lass 
onsists of(polynomial-time 
omputable) fun
tions f having the form f(x) = g(�1(x); �2(x)), where the �i'ssatisfy the �rst two 
onditions in De�nition 1 and the mapping (x0; x00) 7! (x0; g(x0; x00)) is easy toinvert (by an eÆ
ient algorithm I). Clearly, the 
ylinders de�ned by �1 are easy (sin
e we 
an haveC�1(x)(f(x)) = I(�1(x); f(x))).The se
ond 
lass 
onsists of fun
tions that are derived from 
olle
tions of �nite one-way fun
tionshaving a dense index set and dense domains.2 For example, 
onsider the DLP-based 
olle
tion that
onsists of the fun
tions ffp;g : Zp ! Zpg(p;g), where p is prime, g is a generator of the multipli
ativegroup modulo p, and fp;g(z) = gz mod p. For simpli
ity, we 
onsider 
olle
tions of the formff� : f0; 1gj�j ! f0; 1gj�jg�2I , where the index set I is dense (i.e., jI \ f0; 1gnj > 2n=poly(n)).The one-wayness 
ondition means that, for a typi
al � 2 I, the fun
tion f� is hard to invert,and so the \natural" 
ylinders de�ned by �1(�; z) = � are not easy. Nevertheless, the fun
tionF (�; z) = (�; f�(z)), whi
h is (weakly) one-way, has easy 
ylinders that are de�ned by �1(�; z) = z;1Our formulation is a spe
ial 
ase of the formulation in [2℄, but we believe that our 
andidate 
ounterexample alsoholds for the de�nition in [2℄.2Indeed, we 
onsider a restri
ted 
ase of [4, Def. 2.4.3℄. On the other hand, note that any 
olle
tion of �niteone-way fun
tions with dense domains 
an be 
onverted into a 
olle
tion of �nite one-way fun
tions over the set ofall strings of a �xed length. Thus, we may freely use the latter.1



spe
i�
ally, by virtue of the 
ir
uits Cz that (easily) extra
t � = �2(�; z) from F (�; z) (sin
eF (�; z) = (�; f�(z))).The third 
lass 
onsists of fun
tions that are derived from 
olle
tions of trapdoor one-waypermutations. Here it is essential to have an non-trivial index-sampling algorithm, denoted I,that samples the index set along with 
orresponding trapdoors; that is, the 
oins used to sample anindex-trapdoor pair 
annot be used as the index (be
ause the trapdoor must be hard to re
over fromthe index). Let I1(r) denote the index sampled on 
oins r, and let I2(r) denote the 
orrespondingtrapdoor (and suppose that the domains are dense as before, whi
h indeed restri
ts [4, Def. 2.4.4℄).Then, the fun
tion F (r; z) = (I1(r); fI1(r)(z)) is (weakly) one-way, but it has easy 
ylinders that arede�ned by �1(r; z) = r (using the 
ir
uit Cr(F (r; z)) = f�1I1(r)(z), whi
h in turn uses the trapdoorI2(r) that 
orresponds to the index I1(r)).The last 
lass 
onsists of all fun
tions that 
omputable in NC0; that is, fun
tions in whi
h ea
houtput bit depends on a 
onstant number of input bits. Re
all that this 
lass is widely 
onje
turedto 
ontain one-way fun
tions (
f., the 
elebrated work of Applebaum, Ishai, and Kushilevitz [1℄).For every su
h fun
tion f : f0; 1gn ! f0; 1gn, letting �1 be the proje
tion of the n-bit input onn� n1=3 random 
oordinates, with high probability, we obtain easy 
ylinders.3 The reason is that,with high probability, no output bit of the fun
tion is in
uen
ed by more than one of the n1=3remaining 
oordinates (and so the residual fun
tion f(x) obtained after �xing the value of �1(x) isessentially a proje
tion).3 Our Candidate Counterexample to the Conje
tureWe note that the last 
lass of fun
tions (i.e., NC0) 
ontains the 
andidate one-way fun
tion sug-gested by us [3℄. However, we believe that iterating this fun
tion for a polynomial (or even linear)number of times yields a fun
tion that has no easy 
ylinders. For sake of self-
ontainment, we re
allthe proposal of [3℄, hereafter referred to as the basi
 fun
tion.The basi
 fun
tion. We 
onsider a 
olle
tion of fun
tions ffn : f0; 1gn ! f0; 1gngn2N su
hthat fn is based a 
olle
tion of d(n)-subsets, S1; :::; Sn � [n℄ def= f1; :::; ng, and a predi
ate P :f0; 1gd(n) ! f0; 1g (as follows).1. The fun
tion d is relatively small; that is, d = O(log n) or even d = O(1), but d > 2.2. The predi
ate P : f0; 1gd ! f0; 1g should be thought of as being a random predi
ate. Thatis, it will be randomly sele
ted, �xed, and \hard-wired" into the fun
tion. For sure, P shouldnot be linear, nor depend on few of its bit lo
ations.3. The 
olle
tion S1; :::; Sn should be expanding: spe
i�
ally, for some k, the union of every ksubsets should 
over at least k+
(n) elements of [n℄ (i.e., for every I � [n℄ of size k it holdsthat jSi2I Sij � k + 
(n)). Spe
i�
ally, it is suggested to have Si be the set of neighbors ofthe ith vertex in a d-regular expander graph.3In fa
t, the argument remain inta
t as long as `(n) = n� o(n1=2) (rather than `(n) = n� n1=3). A
tually, usingn � o(n2=3) random 
oordinates would work too, sin
e then (w.h.p.) no output bit of the fun
tion is in
uen
ed bymore than two of the o(n2=3) remaining 
oordinates (and so a 2SAT solver 
an invert the residual fun
tion on ea
hof the individual 
ylinders).
2



For x = x1 � � � xn 2 f0; 1gn and S � [n℄, where S = fi1; i2; :::; itg and ij < ij+1, we denote by xSthe proje
tion of x on S; that is, xS = xi1xi2 � � � xit . Fixing P and S1; :::; Sn as above, we de�nefn(x) def= P (xS1)P (xS2) � � �P (xSn): (1)Note that we think of d as being relatively small (i.e., d = O(log n)), and hope that the 
omplexityof inverting fn is related to 2n=O(1). Indeed, the hardness of inverting fn 
annot be due to thehardness of inverting P , but is rather supposed to arise from the 
ombinatorial properties of the
olle
tion of sets fS1; :::; Sng (as well as from the 
ombinatorial properties of predi
ate P ). Ingeneral, the 
onje
ture is that the 
omplexity of the inversion problem (for fn 
onstru
ted basedon su
h a 
olle
tion) is exponential in the \net expansion" of the 
olle
tion (i.e., the 
ardinality ofthe union minus the number of subsets).We note that a non-uniform 
omplexity version of this basi
 fun
tion (or rather the sequen
eof fn's) may use possibly di�erent predi
ates (i.e., di�erent Pi's) for the di�erent n appli
ations ofP in Eq. 1.The iterated fun
tion { the vanilla version. The 
andidate 
ounterexample, F , is de�nedby F (x) = fp(jxj)jxj (x), where p is some �xed polynomial (e.g., p(n) = n) and f i+1n (x) = fn(f in(x))(and f1n(x) = fn(x)). We 
onje
ture that this fun
tion has no easy 
ylinders.The iterated fun
tion, revisited. One possible obje
tion to the foregoing fun
tion F as a
ounterexample to the easy 
ylinder 
onje
ture is that F is unlikely to be 1-1. Although webelieve that the essen
e of the easy 
ylinder 
onje
ture is unrelated to the 1-1 property, we pointout that this property may be obtained by suitable modi�
ations. One possible modi�
ationthat may yield a 1-1 fun
tion is obtained by prepending the appli
ation of F with an adequateexpanding fun
tion (e.g., a fun
tion that stret
hes n-bit long strings to m(n)-bit long strings,where m is a polynomial or even a linear fun
tion). Spe
i�
ally, for a fun
tion m :N!N su
h thatm(n) 2 [2n;poly(n)℄, we de�ne gn : f0; 1gn ! f0; 1gm(n) analogously to Eq. 1 (i.e., here we use anexpanding 
olle
tion of m(n) subsets), and let F 0(x) = F (gjxj(x)); that is, for every x 2 f0; 1gn, wehave F 0(x) = fp(m(n))m(n) (gn(x)).4 Con
lusionStarting with the aforementioned non-uniform 
omplexity version of the basi
 fun
tion fn, andapplying di�erent in
arnations of this fun
tion in the di�erent iterations, we a
tually obtain a rathergeneri
 
ounterexample. Alternatively, we may dire
tly 
onsider fun
tions Fn : f0; 1gn ! f0; 1gm(n)su
h that the fun
tion Fn has a poly(n)-sized 
ir
uit. Note that su
h a 
ir
uit may be viewedas a 
omposition of polynomially many 
ir
uits in NC0, whi
h in tern may be viewed as basi
fun
tions. Furthermore, a random poly(n)-sized 
ir
uit is likely to be de
omposed to NC0 
ir
uitsthat 
orrespond to basi
 fun
tions in whi
h the 
olle
tion of sets (of input bits that in
uen
eindividual output bits) are expanding. Needless to say, we believe that generi
 polynomial-size
ir
uits have no easy 
ylinders.It seems that the existen
e of easy 
ylinders in all popular 
andidate one-way fun
tions is dueto the stru
tured nature of these 
andidates. Su
h a stru
ture will not exist in the generi
 
ase,and so we 
onje
ture that the Easy Cylinders Conje
ture is false.3
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