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1 The Easy Cylinders ConjetureManindra Agrawal and OsamuWatanabe [2, Se. 4℄ have reently suggested the following interestingonjeture. The onjeture refers to the notion of an easy ylinder, de�ned next, and asserts thatevery 1-1 and length-inreasing funtion in P=poly has easy ylinders.De�nition 1 (easy ylinders, simpli�ed1): A length funtion ` :N!N is admissible if the mappingn 7! `(n) an be omputed in poly(n)-time and there exists a onstant � > 0 suh that `(n) 2[n�; n � n�℄. A funtion f has easy ylinders if for some admissible length funtion ` there existsmappings �1; �2 : f0; 1g� ! f0; 1g� suh that the following onditions hold:1. For every x, it holds that j�1(x)j = `(jxj) and j�2(x)j = jxj � `(jxj).2. The funtion �(x) = (�1(x); �2(x)) is 1-1, polynomial-time omputable and polynomial-timeinvertible. The ylinders de�ned by �1 onsists of the olletion of sets f��11 (x0)jn : x0 2f0; 1g`(n)gn2N where ��11 (x0)jn def= fx 2 f0; 1gn : �1(x) = x0g.3. For every n 2 N and x0 2 f0; 1g`(n), there exists a poly(n)-size iruit C = Cx0 suh that forevery x 2 ��11 (x0)jn it holds that C(f(x)) = �2(x).That is, when restrited to any suh ylinder, the funtion f is easy to invert.Needless to say, the existene of easy ylinders is interesting only in the ase that f is notpolynomial-time invertible. Agrawal and Watanabe noted that all popular andidates one-wayfuntions have easy ylinders. Generalizing their observations (and going somewhat beyond them),we �rst present four lasses of funtions that are onjetured to be one-way and still have easyylinders. Next (in Setion 3), we present our andidate ounterexample.2 Four Classes of Funtions that have Easy CylindersThe �rst lass generalizes the multipliation funtion (i.e., (x0; x00) 7! x0 � x00). This lass onsists of(polynomial-time omputable) funtions f having the form f(x) = g(�1(x); �2(x)), where the �i'ssatisfy the �rst two onditions in De�nition 1 and the mapping (x0; x00) 7! (x0; g(x0; x00)) is easy toinvert (by an eÆient algorithm I). Clearly, the ylinders de�ned by �1 are easy (sine we an haveC�1(x)(f(x)) = I(�1(x); f(x))).The seond lass onsists of funtions that are derived from olletions of �nite one-way funtionshaving a dense index set and dense domains.2 For example, onsider the DLP-based olletion thatonsists of the funtions ffp;g : Zp ! Zpg(p;g), where p is prime, g is a generator of the multipliativegroup modulo p, and fp;g(z) = gz mod p. For simpliity, we onsider olletions of the formff� : f0; 1gj�j ! f0; 1gj�jg�2I , where the index set I is dense (i.e., jI \ f0; 1gnj > 2n=poly(n)).The one-wayness ondition means that, for a typial � 2 I, the funtion f� is hard to invert,and so the \natural" ylinders de�ned by �1(�; z) = � are not easy. Nevertheless, the funtionF (�; z) = (�; f�(z)), whih is (weakly) one-way, has easy ylinders that are de�ned by �1(�; z) = z;1Our formulation is a speial ase of the formulation in [2℄, but we believe that our andidate ounterexample alsoholds for the de�nition in [2℄.2Indeed, we onsider a restrited ase of [4, Def. 2.4.3℄. On the other hand, note that any olletion of �niteone-way funtions with dense domains an be onverted into a olletion of �nite one-way funtions over the set ofall strings of a �xed length. Thus, we may freely use the latter.1



spei�ally, by virtue of the iruits Cz that (easily) extrat � = �2(�; z) from F (�; z) (sineF (�; z) = (�; f�(z))).The third lass onsists of funtions that are derived from olletions of trapdoor one-waypermutations. Here it is essential to have an non-trivial index-sampling algorithm, denoted I,that samples the index set along with orresponding trapdoors; that is, the oins used to sample anindex-trapdoor pair annot be used as the index (beause the trapdoor must be hard to reover fromthe index). Let I1(r) denote the index sampled on oins r, and let I2(r) denote the orrespondingtrapdoor (and suppose that the domains are dense as before, whih indeed restrits [4, Def. 2.4.4℄).Then, the funtion F (r; z) = (I1(r); fI1(r)(z)) is (weakly) one-way, but it has easy ylinders that arede�ned by �1(r; z) = r (using the iruit Cr(F (r; z)) = f�1I1(r)(z), whih in turn uses the trapdoorI2(r) that orresponds to the index I1(r)).The last lass onsists of all funtions that omputable in NC0; that is, funtions in whih eahoutput bit depends on a onstant number of input bits. Reall that this lass is widely onjeturedto ontain one-way funtions (f., the elebrated work of Applebaum, Ishai, and Kushilevitz [1℄).For every suh funtion f : f0; 1gn ! f0; 1gn, letting �1 be the projetion of the n-bit input onn� n1=3 random oordinates, with high probability, we obtain easy ylinders.3 The reason is that,with high probability, no output bit of the funtion is inuened by more than one of the n1=3remaining oordinates (and so the residual funtion f(x) obtained after �xing the value of �1(x) isessentially a projetion).3 Our Candidate Counterexample to the ConjetureWe note that the last lass of funtions (i.e., NC0) ontains the andidate one-way funtion sug-gested by us [3℄. However, we believe that iterating this funtion for a polynomial (or even linear)number of times yields a funtion that has no easy ylinders. For sake of self-ontainment, we reallthe proposal of [3℄, hereafter referred to as the basi funtion.The basi funtion. We onsider a olletion of funtions ffn : f0; 1gn ! f0; 1gngn2N suhthat fn is based a olletion of d(n)-subsets, S1; :::; Sn � [n℄ def= f1; :::; ng, and a prediate P :f0; 1gd(n) ! f0; 1g (as follows).1. The funtion d is relatively small; that is, d = O(log n) or even d = O(1), but d > 2.2. The prediate P : f0; 1gd ! f0; 1g should be thought of as being a random prediate. Thatis, it will be randomly seleted, �xed, and \hard-wired" into the funtion. For sure, P shouldnot be linear, nor depend on few of its bit loations.3. The olletion S1; :::; Sn should be expanding: spei�ally, for some k, the union of every ksubsets should over at least k+
(n) elements of [n℄ (i.e., for every I � [n℄ of size k it holdsthat jSi2I Sij � k + 
(n)). Spei�ally, it is suggested to have Si be the set of neighbors ofthe ith vertex in a d-regular expander graph.3In fat, the argument remain intat as long as `(n) = n� o(n1=2) (rather than `(n) = n� n1=3). Atually, usingn � o(n2=3) random oordinates would work too, sine then (w.h.p.) no output bit of the funtion is inuened bymore than two of the o(n2=3) remaining oordinates (and so a 2SAT solver an invert the residual funtion on eahof the individual ylinders).
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For x = x1 � � � xn 2 f0; 1gn and S � [n℄, where S = fi1; i2; :::; itg and ij < ij+1, we denote by xSthe projetion of x on S; that is, xS = xi1xi2 � � � xit . Fixing P and S1; :::; Sn as above, we de�nefn(x) def= P (xS1)P (xS2) � � �P (xSn): (1)Note that we think of d as being relatively small (i.e., d = O(log n)), and hope that the omplexityof inverting fn is related to 2n=O(1). Indeed, the hardness of inverting fn annot be due to thehardness of inverting P , but is rather supposed to arise from the ombinatorial properties of theolletion of sets fS1; :::; Sng (as well as from the ombinatorial properties of prediate P ). Ingeneral, the onjeture is that the omplexity of the inversion problem (for fn onstruted basedon suh a olletion) is exponential in the \net expansion" of the olletion (i.e., the ardinality ofthe union minus the number of subsets).We note that a non-uniform omplexity version of this basi funtion (or rather the sequeneof fn's) may use possibly di�erent prediates (i.e., di�erent Pi's) for the di�erent n appliations ofP in Eq. 1.The iterated funtion { the vanilla version. The andidate ounterexample, F , is de�nedby F (x) = fp(jxj)jxj (x), where p is some �xed polynomial (e.g., p(n) = n) and f i+1n (x) = fn(f in(x))(and f1n(x) = fn(x)). We onjeture that this funtion has no easy ylinders.The iterated funtion, revisited. One possible objetion to the foregoing funtion F as aounterexample to the easy ylinder onjeture is that F is unlikely to be 1-1. Although webelieve that the essene of the easy ylinder onjeture is unrelated to the 1-1 property, we pointout that this property may be obtained by suitable modi�ations. One possible modi�ationthat may yield a 1-1 funtion is obtained by prepending the appliation of F with an adequateexpanding funtion (e.g., a funtion that strethes n-bit long strings to m(n)-bit long strings,where m is a polynomial or even a linear funtion). Spei�ally, for a funtion m :N!N suh thatm(n) 2 [2n;poly(n)℄, we de�ne gn : f0; 1gn ! f0; 1gm(n) analogously to Eq. 1 (i.e., here we use anexpanding olletion of m(n) subsets), and let F 0(x) = F (gjxj(x)); that is, for every x 2 f0; 1gn, wehave F 0(x) = fp(m(n))m(n) (gn(x)).4 ConlusionStarting with the aforementioned non-uniform omplexity version of the basi funtion fn, andapplying di�erent inarnations of this funtion in the di�erent iterations, we atually obtain a rathergeneri ounterexample. Alternatively, we may diretly onsider funtions Fn : f0; 1gn ! f0; 1gm(n)suh that the funtion Fn has a poly(n)-sized iruit. Note that suh a iruit may be viewedas a omposition of polynomially many iruits in NC0, whih in tern may be viewed as basifuntions. Furthermore, a random poly(n)-sized iruit is likely to be deomposed to NC0 iruitsthat orrespond to basi funtions in whih the olletion of sets (of input bits that inueneindividual output bits) are expanding. Needless to say, we believe that generi polynomial-sizeiruits have no easy ylinders.It seems that the existene of easy ylinders in all popular andidate one-way funtions is dueto the strutured nature of these andidates. Suh a struture will not exist in the generi ase,and so we onjeture that the Easy Cylinders Conjeture is false.3



Referenes[1℄ B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SICOMP, Vol. 36 (4),pages 845{888, 2006.[2℄ M. Agrawal and O. Watanabe. One-Way Funtions and the Isomorphism ConjetureECCC, TR09-019, 2009.[3℄ O. Goldreih. Candidate One-Way Funtions Based on Expander Graphs. ECCC, TR00-090, 2000.[4℄ O. Goldreih. Foundation of Cryptography: Basi Tools. Cambridge University Press,2001.

4


