
Adaptively Secure Multi-party Computation

Ran Canetti� Uri Feigey Oded Goldreichz Moni Naorx
November 8, 1995

Abstract

A fundamental problem in the area of secure multi-party computation is how to deal with adaptive adversaries
(i.e., adversaries that may choose the corrupted parties during the course of the computation), in a setting where the
channels are insecure and secure communication is achieved by cryptographic primitives.

It turns out that the power of an adaptive adversary is greatly affected by the amount of information gathered upon
the corruption of a party. This amount of information is, in turn, intimately related to the extent to which uncorrupted
parties carry out instructions that cannot be externally verified, such as erasing records of past configurations. It has
been shown that if the parties are trusted to erase such records, then adaptively secure computation can be carried
out using known primitives. However, this total trust in parties may be unrealistic in many scenarios. An important
question, open since 1986, is whether adaptively secure multi-party computation can be carried out in this setting, even
if no party in thoroughly trusted.

Our main result is an affirmative resolution of this question, for the case where uncorrupted parties follow their
protocols with the exception that all records of past configurations are kept. We first propose a novel property of
encryption protocols and show that if an encryption protocol enjoying this property is used, instead of a standard
encryption scheme, then known constructions become adaptively secure. Next we construct, based on the standard
RSA assumption, an encryption protocol that enjoys this property.

�LCS, MIT. Supported by a Rothschild post-doctoral fellowship. canetti@theory.lcs.mit.edu.yDepartment of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
feige@wisdom.weizmann.ac.il.zDepartment of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel. Currently visiting LCS, MIT.
oded@wisdom.weizmann.ac.il.xDepartment of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
naor@wisdom.weizmann.ac.il.

0

1 Introduction

Consider a set of parties who do not trust each other, nor the channels by which they communicate. Still, the parties wish
to correctly compute some common function of their local inputs, while keeping their local data as private as possible.
This, in a nutshell, is the problem of secure multi-party computation. The parties’ distrust in each other and in the
network is usually modeled via an adversary that corrupts some of the parties. Once a party is corrupted it follows the
instructions of the adversary. In particular, all the information known to this party becomes known to the adversary.

An important parameter, which is the focus of this work, is the way in which the corrupted parties are chosen. In the
case of non-adaptive adversaries, the set of corrupted parties is arbitrary, but fixed before the computation starts. (Still,
the uncorrupted parties do not know the identities of the corrupted parties.) A more general case is where the adversary
chooses to corrupt parties during the course of the computation, based on the information gathered so far. We call such
adversaries adaptive.

The difference between adaptive and non-adaptive adversaries may be best demonstrated via an example. Consider
the following secret sharing protocol, run in the presence of an adversary that may corrupt t = O(n) out of the n parties:
A dealer D chooses at random a small set S of m = pt parties, and shares its secret among these parties using an m-
out-of-m sharing scheme. In addition D publicizes the set S. Intuitively, this scheme lacks in security since S is public
and jSj � t. Indeed, an adaptive adversary can easily find D’s secret, without corrupting D, by corrupting the parties
in S. However, any non-adaptive adversary that does not corrupt D learns D’s secret only if S happens to be identical
to the pre-defined set of corrupted parties. This happens only with exponentially small probability. Consequently, this
protocol is secure in the presence of non-adaptive adversaries.

Protocols for securely computing any function, in several computation models, have been known for a while:
Goldreich, Micali and Wigderson have shown how to securely compute any function in the computational setting
[GMW]. (In the computational setting all the communication between the parties is seen by the adversary. All parties,
as well as the adversary, are restricted to probabilistic polynomial time). Ben-Or, Goldwasser and Wigderson, and
independently Chaum, Crepeau and Damgard, have shown how to securely compute any function in the secure channels

setting [BGW, CCD]. (In the secure channels setting the adversary cannot eavesdrop on the communication between
uncorrupted parties, and is allowed unlimited computational power.) These protocols can be shown secure in the presence
of non-adaptive adversaries. In contrary to folklore beliefs, problems are encountered when attempting to prove adaptive
security of protocols, even in the secure channels setting. Additional problems are encountered in the computational
setting. Demonstrating, clarifying, and (partially) solving these problems is the focus of this work.

We first pose the following question: To what extent can uncorrupted parties be trusted to carry out instructions
that cannot be externally verified, such as erasing local data, or making random choices? This question is intimately
related to the power of an adaptive adversary, in both of the above settings, since the adversary may gather additional
information when corrupting parties that have locally deviated from the protocol (say, by not erasing data that is supposed
to be erased). If uncorrupted parties are trusted to carry out even unverifiable instructions such as erasing local data then
adaptively secure computation can be carried out using known primitives [BH]. However, this trust may be unrealistic in
many scenarios. We thus consider parties that, even when uncorrupted, internally deviate slightly from their protocols.
We call such parties semi-honest. Several degrees of internal deviation from the protocol are examined with the main
focus on parties which follow their protocol with the exception that they keep record of the entire computation. We seek
protocols that are secure even if the uncorrupted parties are semi-honest rather than honest.

We present the problems encountered in the secure channels setting, and state the amount of internal deviation from
the protocol under which adaptively secure protocols are known to exist. (In particular, under these conditions the
[BGW, CCD] protocols can be proven adaptively secure.)

1

Finally we concentrate on the computational setting, and on semi-honest parties that follow their protocols with the
exception that no internal data is ever erased. Is adaptively secure computation possible in this scenario? This question
has remained open since the result of [GMW].

We answer this question in the affirmative. The problems encountered, and our solution, are presented via the
following transformation. It is a folklore belief that any secure protocol in the secure channels setting can be transformed
into a secure protocol in the computational setting, by encrypting each message using a standard (semantically) secure
encryption scheme. This belief can indeed be turned into a proof, provided that only non-adaptive adversaries are
considered. Major difficulties are encountered when trying to prove this belief in the presence of adaptive adversaries.
We show how these difficulties are overcome if a novel protocol for transmission of encrypted data is used, instead
of standard encryption. We call such encryption protocols non-committing. (Standard encryption schemes are not non-
committing.) We also construct a non-committing encryption protocol, based on the existence of a primitive called
common domain trapdoor systems. This primitive exists under the RSA assumption.

Non-committing encryption can be roughly described as follows. Traditional encryption schemes have the extra
property that the ciphertext may serve as a commitment of the sender to the encrypted data. That is, suppose that after
seeing the ciphertext, a third party requests the sender to reveal the encrypted data, and show how it was encrypted and
decrypted. Using traditional encryption schemes it may be infeasible (or even impossible) for the sender to demonstrate
that the encrypted data was any different than what was indeed transmitted. (In fact, many times encryption is explicitly
or implicitly used for commitment.) In a non-committing encryption scheme the ciphertext cannot be used to commit
the sender (or the receiver) to the transmitted data. That is, a non-committing encryption protocol allows a simulator to
generate dummy ciphertexts that look like genuine ones, and can be later “opened” as encryptions of either 1 or 0, at wish.
We note that communication over absolutely secure channels is trivially non-committing, since the third party sees no
“ciphertext”.

Our construction of non-committing data transmission requires all parties to participate in the secure transmission of
information between two parties. For benefit of other possible applications, we note that our construction can be carried
out in two stages; the first stage, which requires the participation of all parties, does not depend on the data to be delivered
(which may even be undetermined at this stage), whereas the second stage consists of a single message transmission
from the data-sender to the receiver. Our scheme is resilient as long as at least one party remains uncorrupted.

Organization. In Section 2 we discuss the problem of adaptive security and our solution to it in more detail. We keep
the presentation informal throughout this section. Precise definitions are given in Appendix B. Our constructions for the
non-erasing and honest-looking cases are presented in Sections 3 and 4, respectively.

2 Semi-honesty and adaptive security: Informal presentation

In Subsection 2.1 we discuss the question of what can be expected from an honest party, and present several notions of
semi-honest parties. In Subsection 2.2 we describe the problems encountered when trying to prove adaptive security
of protocols in the secure channels setting, and state existing solutions. In Subsection 2.3 we present the additional
problems encountered when trying to prove adaptive security of protocols in the computational setting, and sketch our
solution.

2.1 Semi-honest parties

The problem of adaptively secure computation is intimately related to the following question: To what extent can
uncorrupted parties be trusted to carry out instructions that cannot be externally verified, such as erasing local data, or

2

using randomness as instructed? Honest parties internally deviate from their protocol in many real-life scenarios, such
as users that keep record of their passwords, stock-market brokers that keep records of their clients’ orders, operating

systems that “free” old memory instead of erasing or take periodic snapshots of the memory (for error recovery purposes),
and computers that use pseudorandom generators as their source of randomness instead of truly random bits. Consider
for example a protocol in which party A is instructed to choose a random number r for party B, hand r to B, and then
to erase r from its own memory. Can B be certain that A no longer knows r? Furthermore, can A now convince a third
party (or an adversary that later decides to corrupt A) that he no longer knows r?

To address this issue we introduce the notion of a semi-honest party. Such a party “appears as honest” (i.e., seems
to be following its protocol) from the point of view of an outside observer; however, internally it may somewhat deviate
from the protocol. For instance, a semi-honest party may fail to erase some internal data, or use randomness not as
instructed. (However, semi-honest parties do not collaborate.) We wish to have protocols that are secure even when
parties are not thoroughly trusted, or in other words when the uncorrupted parties are semi-honest rather than honest. We
say that a protocol �0 is a semi-honest protocol for a protocol � if a party running �0 “appears as” an honest party running�. We want the requirements from � to be satisfied even if the uncorrupted parties are running any semi-honest protocol
for �. (In the sequel we use the terms ‘semi-honest parties’ and ‘semi-honest protocols’ interchangeably.)

The difference between computations in the presence of totally honest parties and computations in the presence of
semi-honest parties becomes evident in the presence of adaptive adversaries. Consider a party just corrupted by the
adversary, during the course of the computation. If the party is totally honest, then the adversary will see exactly the
data specified in the protocol (in particular, any data that was supposed to be erased will not be seen). If the party is
semi-honest then the adversary may see a great deal of other data, such as all the past random choices of the party and
all the messages the party ever received and sent. Therefore, the adversary may be much more powerful in the presence
of semi-honest parties. We elaborate on this crucial point in the sequel.

We distinguish three types of semi-honest behavior. The slightest deviation from the protocol is refraining from
erasing data. We call such parties honest-but-non-erasing, or in short non-erasing. Non-erasing behavior is a very simple
deviation from the protocol, that is very hard to prevent. Even if the protocol is somehow protected against modifications,
it is always possible to add an external device that copies all memory locations accessed by the protocol to a “safe”
memory. This way a record of the entire execution is kept. Such an external device requires no understanding of the
internal structure or of the behavior of the protocol. Furthermore, failure to erase data may occur even without intension
of the honest party (see the operating system examples above).

A more severe deviation by a semi-honest party consists of executing some arbitrary protocol other than the specified
one, with the restriction that no external test can distinguish between such a behavior and a truly honest behavior. We
call parties that deviate in this way honest-looking. Honest-looking parties represent “sophisticated” parties that internally
deviate from the protocol in an arbitrary way, but are not willing to take any chance that they will ever be uncovered (say,
by an unexpected audit). Note that honest-looking parties can do other “harmful” things, on top of not erasing data. For
instance, assume that some one-way permutation f : D 1-17! D is known to all parties. When instructed to choose a valuer at random from D, an honest-looking party can instead choose s at random from D and let r = f(s). Thus, the party
cannot be trusted to not know f�1(r). (Other, more ‘disturbing’ deviations from the protocols are possible, we elaborate
in the sequel.)

An even more permissive approach allows a semi-honest party to deviate arbitrarily from the protocol, as long as
its behavior appears honest to parties executing the protocol. We stress that other external tests, not specified in the
protocol, may be able to detect such a party as cheating. We call such semi-honest parties weakly-honest. Weakly-honest
parties represent the most general internal deviation from the protocol that remains undetected by other parties running
the protocol.

3

The focus of our work is mainly on adaptive security in the presence of non-erasing parties. This coincides with
the common interpretation of the problem of adaptive security. To the best of our knowledge, honest-looking and
weakly-honest parties were not considered before.

2.2 Adaptive security in the secure channels setting

Although the emphasis of this paper is on the computational setting, we first present the state of knowledge, and sketch
the problems involved, in the secure channels setting.

The state-of-the-art with respect to adaptive computation in the secure channels setting can be briefly summarized
as follows. Adaptively secure protocols for computing any function exist in the presence of non-erasing parties (e.g.,
[BGW, CCD]). However, in contrast with popular belief, not every non-adaptively secure protocol is also adaptively
secure in the presence of non-erasing parties. Furthermore, current techniques are insufficient for proving adaptive
security of any protocol for computing a non-trivial function in the presence of honest-looking parties.

In order to present the extra difficulty in constructing adaptively secure protocols, we roughly sketch the standard
definition of secure multi-party computation. Our presentation follows [MR, B, GwL, C], while incorporating the notion
of semi-honest parties in the definition. The definition follows the same outline in the secure channels setting and in the
computational settings.

Background: How is security defined. First an ideal model for secure multi-party computation is formulated. A
computation in this ideal model captures “the highest level of security we can expect from a multi-party computation”.
Next we require that executing a secure protocol � for evaluating some function f of the parties’ inputs in the actual
real-life setting is “equivalent” to evaluating f in the ideal model, where the meaning of this “equivalence” is explained
below.

A computation in the ideal model proceeds as follows. First an ideal-model-adversary chooses to corrupt a set of
parties (either adaptively or non-adaptively), learns their input, and possibly modifies it. Next all parties hand their
(possibly modified) inputs to an incorruptible trusted party. The trusted party then computes the expected output (i.e., the
function value) and hands it back to all parties. At this stage an adaptive adversary can choose to corrupt more parties.
Finally, the uncorrupted parties output the value received from the trusted party whereas the corrupted parties output
some arbitrary function of the information gathered during the computation.

In the real-life model there exists no trusted party and the parties must interact with one another using some protocol
in order to compute any “non-trivial” function. We say that the execution of a protocol � for evaluating f is “equivalent”
to evaluating f in the ideal model, if for any adversary A in the real-life model, there exists an ideal-model-adversaryS that has the same effect on the computation as A, even though S operates in the ideal model. That is, on any input,
the outputs of the parties after running � in the real-life model in the presence of A should be distributed equally to the
outputs of parties evaluating f in the ideal model in the presence of S. Furthermore, this condition should hold for any

semi-honest protocol �0 for � (according to either of the above notions of semi-honesty).

We require that the complexity of S be comparable to (i.e., polynomial in) the complexity of A. This requirement
can be motivated as follows. Machine S represents “what could have been learned in the ideal model”. Thus, security
of a protocol can be interpreted as the following statement: “whatever A can learn in the real-life model, could have
been learned in the ideal model within comparable complexity”. A much weaker (and arguably unsatisfactory) notion of
security emerges if the complexity of S does not depend on that of A. (This holds even in the non-adaptive case; see
Appendix A.1.)

Problems with proving adaptive security. A standard construction of an ideal-model-adversary, S, operates via black-
box interaction with the real-life adversary A. (The exact “mechanics” of the black-box representing A are specified

4

in the sequel.) More specifically, let �0 be a semi-honest protocol for �. S runs the black-box representing A on a
simulated interaction with a set of parties running �0. S corrupts (in the ideal model) the same parties that A corrupts in
the simulated interaction, and outputs whatever A outputs. From the point of view of A, the interaction simulated by S
should be distributed identically to an authentic interaction with parties running �0. It is crucial that S be able to run a
successful simulation based only on the information available to it in the ideal model, and in particular without knowing
the inputs of uncorrupted parties. We restrict our presentation to this methodology of proving security of protocols,
where S is restricted to probabilistic polynomial time. We remark that no other proof method is known in this context.
In the sequel we often call the ideal-model-adversary S a simulator.

Following the above methodology, the simulator that we construct has to generate simulated messages from the
uncorrupted parties to the corrupted parties. In the non-adaptive case the set of corrupted parties is fixed and known
to the simulator. Thus the simulator can corrupt these parties, in the ideal model, before the simulation starts. In the
adaptive case the corrupted parties are chosen by the simulated adversary A as the computation unfolds. Here the
simulator corrupts a party, in the ideal model, only when the simulated adversary decides on corrupting that party. Thus
the following extra problem is encountered. Consider a currently uncorrupted party P . Since S does not know the input
of P , it may not know which messages should be sent by P to the corrupted parties. Still, S has to generate some
dummy messages to be sent by the simulated P to corrupted parties. When the simulated adversary A later corrupts P it
expects to see P ’s internal data. The simulator should now be able to present internal data for P that is consistent withP ’s newly-learned input and with the messages previously sent by P , according to the particular semi-honest protocol�0 run by P . It turns out that this can be done for the [BGW] protocols for computing any function in the presence
of non-erasing parties. Thus, the [BGW] protocols are adaptively secure in the presence of non-erasing parties. We
stress, however, that not every protocol which is secure against non-adaptive adversaries is also secure against adaptive
adversaries.1
In face of honest-looking parties. Even more severe problems are encountered when honest-looking parties are allowed,
as demonstrated by the following example. Consider a protocol � that instructs each party, on private input �, to just
publicize a uniformly and independently chosen value r in some domainD and terminate. Let f0; f1 be a claw-free pair of
permutations over D. Then, on input � 2 f0; 1g, an honest-looking party can ‘commit’ to its input by publicizing f�(r)
instead of publicizing r. Now, if this honest-looking variant of � is shown secure via an efficient black-box simulation
as described above, then the constructed simulator can be used to find claws between f0 and f1. Similar honest-looking
protocols can be constructed for the [BGW, CCD] protocols. Consequently, if claw-free pairs of permutations exist
then adaptive security of the [BGW, CCD] protocols, in the presence of honest-looking parties, cannot be proven via
black-box simulation.

2.3 Adaptive security in the computational setting

In this subsection we sketch the extra difficulty encountered in constructing adaptively secure protocols in the com-
putational setting, and outline our solution for non-erasing parties. Consider the following folklore methodology for
constructing secure protocols in the computational setting. Start with an adaptively secure protocol � resilient against
non-erasing parties in the secure channels setting, and construct a protocol ~� by encrypting each message using a
standard encryption scheme. We investigate the security of ~� in the computational setting.

Proving that ~� is non-adaptively secure. We first sketch how ~� can be shown non-adaptively secure in the computational
setting, assuming that � is non-adaptively secure in the secure channels setting. Let S be the ideal-model-adversary
(simulator) associated with � in the secure channels setting. (We assume that S operates via “black-box simulation” of1 See example in the third paragraph of the Introduction.

5

the real-life adversary A as described above.) We wish to construct, in the computational setting, a simulator ~S for ~�.
The simulator ~S operates just like S, with the following exception. In the computational setting the real-life adversary
expects to see the ciphertexts sent between uncorrupted parties. (In the secure channels setting the adversary does not see
the communication between uncorrupted parties.) Furthermore, the real-life adversary expects that the messages sent to
corrupted parties be encrypted. ~S will imitate this situation as follows. First each message sent to a corrupted party will
be appropriately encrypted. Next, the simulated uncorrupted parties will exchange dummy ciphertexts. (These dummy
ciphertexts can be generated as, say, encryptions of the value ‘0’.) The validity of simulator ~S can be shown to follow,
in a straightforward way, from the validity of S and the security of the encryption scheme in use.

Problems with proving adaptive security. When adaptive adversaries are considered, the construction of a simulator ~S
in the computational setting encounters the following problem which is a more severe version of the problem encountered
in the secure channels setting. Consider an uncorrupted party P . Since ~S does not know the input of P , it does not know
which messages should be sent by P to other uncorrupted parties.2 Still, ~S has to generate dummy ciphertexts to be
sent by the simulated P to uncorrupted parties. These dummy ciphertexts are seen by the simulated adaptive adversary.
When the simulated adversary later corrupts P , it expects to see all of P ’s internal data, as specified by the semi-honest
protocol �0. Certainly, this data may include the cleartexts of all the ciphertexts sent and received by P in the past,
including the random bits used for encryption and decryption, respectively. Thus, it may be the case that some specific
dummy ciphertext c was generated as an encryption of ‘0’, and the simulated P now needs to “convince” the adversary
that c is in fact an encryption of ‘1’ (or vice versa). This task is impossible if a standard encryption scheme (i.e., an
encryption scheme where no ciphertext can be a legal encryption of both ‘1’ and ‘0’) is used.

We remark that Beaver and Haber [BH] have suggested to solve this problem as follows. Instruct each party to
erase (say, at the end of each round) all the information involved with encrypting and decrypting of messages. If the
parties indeed erase this data, then the adversary will no longer see, upon corrupting a party, how past messages were
encrypted and decrypted. Thus the problem of convincing the adversary in the authenticity of past ciphertexts no longer
exists. Consequently, such “erasing” protocols can be shown adaptively secure in the computational setting. However,
this approach is clearly not valid in the presence of semi-honest parties. In particular, it is not known whether the [BH]
protocols (or any other previous protocols) are secure in the presence of non-erasing parties.

Sketch of our solution. We solve this problem by constructing, in the multi-party computational setting, an encryption
protocol that serves as an alternative to standard encryption schemes, and enjoys an additional property roughly described
as follows. The additional property is that one can efficiently generate dummy ciphertexts that can later be “opened”
as encryptions of either ‘0’ or ‘1’, at wish. (Here the word ‘ciphertext’ is used to denote all the information seen by
the adversary during the execution of the protocol.) These dummy ciphertexts are different and yet computationally
indistinguishable from the valid encryptions of ‘0’ (or ‘1’) produced in a real communication. We call such encryption
protocols non-committing.3

Let E (0) (resp., E (1)) denote the distribution of encryptions of the value 0 (resp., 1) in a public-key encryption scheme.
For simplicity, suppose that each of these distributions is generated by applying an efficient deterministic algorithm,
denoted A(0) (resp., A(1)), to a uniformly selected n-bit string.4 In a traditional encryption scheme (with no decryption
errors) the supports of E (0) and E (1) are disjoint (alas E (0) and E (1) are computationally indistinguishable). In a non-2 There is also the easier problem of generating the messages sent by P to corrupted parties. This was the problem discussed in the previous
subsection. However, our hypothesis that S is a simulator for the secure channel model means that S is able to generate these cleartext messages.
Thus, all that ~S needs to do is encrypt the messages it has obtained from S .3 This “non-committing property” is reminiscent of the “Chameleon blobs” of [BCC]. Those are commitment schemes where the recipient of
a commitment c can generate by himself de-commitments of c to both 0 and 1. Here we consider encryption schemes where an adversary can
generate by himself ciphertexts which can be opened both as encryptions of 1 and as encryptions of 0.4 This is an over simplification. Actually, each of these algorithms is also given an n-bit encryption key.

6

committing encryption scheme, the supports of E (0) and E (1) are not disjoint but the probability that an encryption (of
either ‘0’ or ‘1’) resides in their intersection, denoted I , is negligible. Thus, decryption errors occur only with negligible
probability. However, it is possible to efficiently generate a distribution Eamb which assumes values in I so that this
distribution is computational indistinguishable from both E (0) and E (1).5 Furthermore, each “ambiguous ciphertext”c 2 I is generated together with two random looking n-bit strings, denoted r0 and r1, so that A(0)(r0) = A(1)(r1) = c.
That is, the string r0 (resp., r1) may serve as a witness to the claim that c is an encryption of ‘0’ (resp., ‘1’). See
Appendix B.4 for a definition of non-commiting encryption protocols.

Using a non-committing encryption protocol, we resolve the simulation problems which were described above.
Firstly, when transforming � into ~�, we replace every bit transmission of � by an invocation of the non-committing
encryption protocol. This allows us to generate dummy ciphertexts for messages sent between uncorrupted parties so that
at a later stage we can substantiate for each such ciphertext both the claim that it is an encryption of ‘0’ and the claim that it
is an encryption of ‘1’. We stress that although dummy ciphertexts appear with negligible probability in a real execution,
they are computationally indistinguishable from a uniformly generated encryption of either ‘0’ or ‘1’. Thus, using a
non-committing encryption protocol we construct adaptively secure protocols for computing any (recursive) function
in the computational model in the presence of non-erasing parties. Finally, we construct a non-committing encryption
protocol based on the intractability of inverting the RSA, or more generally based on the existence of common-domain

trapdoor systems (see Definition C.1). Thus, we get

Theorem 2.1 If common-domain trapdoor systems exist, then there exist secure protocols for computing any (recursive)

function in the computational setting, in the presence of non-erasing parties and adaptive adversaries that corrupt less
than a third of the parties.

We remark that, using standard constructs (e.g., [RB]), our protocols can be modified to withstand adversaries that corrupt
less than half of the parties.

Dealing with honest-looking parties. We also sketch a solution for the case of honest-looking parties, assuming, in
addition to the above, also the existence of a “trusted dealer” at a pre-computation stage. The dealer hands each partyP a truly random string rP , to be used as random input. Next, the dealer hands the other parties shares of rP , so that a
coalition of all parties other than P can reconstruct rP . These shares enable us to “force” each party to send messages
according to the specification of the protocol. We stress that this result does not hold if an initial (trusted) set-up is not
allowed.

3 A solution for non-erasing parties

We show that any function can be securely computed in the computational setting, in the presence of adaptive adversaries
and non-erasing parties. In Subsection 3.1 we show how, using a non-committing encryption protocol, a simulatable
protocol for computing some function f in the computational setting can be constructed from any simulatable protocol for
computing f in the secure channels setting. In Subsection 3.2 we present our construction of non-committing encryption.
We use the following result, attributed to [BGW, CCD], as our starting point:6
Theorem 3.1 The [BGW, CCD] protocols for computing any function of n inputs are (dn3 e � 1)-securely computable

in a simulatable way, in the secure channels setting, in the presence of non-erasing parties and adaptive adversaries.5 Consequently, it must be that E(0) and E(1) are computationally indistinguishable. Thus, a non-committing encryption scheme is also a secure
encryption scheme in the traditional sense.6 A proof of this result can be extracted from [C, Chap. 3], which deals with the more involved asynchronous model.

7

3.1 Adaptively secure computation given non-committing encryption

The following theorem formalizes the discussion in Section 2.3.

Theorem 3.2 Let f be an n-ary function, t < n and � be a protocol that t-securely computes f in a simulatable way
in the secure channels setting, in the presence of non-erasing parties and adaptive adversaries. Suppose that "s;r is a t-
resilient non-committing encryption protocol, resilient to non-erasing parties and adaptive adversaries, for transmission
from Ps to Pr . Let ~� be the protocol constructed from � as follows. For each bit � transmitted by � from party Ps to

party Pr , protocol ~� invokes a copy of a "s;r for transmitting �. Then ~� t-securely computes f , in a simulatable way in

the computational setting, in the presence of non-erasing parties and adaptive adversaries.

Proof (sketch): See Appendix D.1. 2
3.2 Constructing non-committing encryption

Before describing our non-committing encryption protocol, let us note that one-time-pad is a valid non-committing
encryption protocol.7 The drawback of this trivial solution is that it requires an initial set-up in which each pair of parties
share a random string of length at least the number of bits they need to exchange. We remark that the above solution
does not seem to extend to the case one uses pseudorandom sequences (instead of random ones) as one-time pads. In
any case, an initial set-up in which parties share secret information is not desirable in practice and does not resolve the
theoretically important problem of dealing with a setting in which no secret information is shared a-priori.

Our scheme consists of two stages. The first stage, in which all parties participate, consists of key generation
and distribution. This stage is independent of the bit to be transmitted (and can be performed before this bit is even
determined). The second stage, in which the actual transmission takes place, consists of only one message from the
sender to the receiver. The scheme uses a collection of trapdoor permutations together with a corresponding hard-core
predicate [BM, Y, GrL]. Actually, we need a collection of trapdoor permutation with the additional property that they
are many permutations over the same domain. Furthermore, we assume that given a permutation f over a domain D
(but not f ’s trapdoor), one can efficiently generate at random another permutation over D together with a corresponding
trapdoor. We stress that the ability to generate a new permutation (together with a corresponding trapdoor) over the
same domain should not interfere with the hypothesis that the given permutation is hard to invert (without the trapdoor).
Such a collection is called a common-domain trapdoor system, and is formally defined in Appendix C. Popular trapdoor
permutations can be formulated in a way which essentially meets the requirements of a common-domain trapdoor system.
A specific implementation based on the RSA is given in Appendix C.

In the sequel we refer to common-domain trapdoor systems in a less formal way. We say that two one-way
permutations, fa and fb, are a pair if they are both permutations over the same domain (i.e., a = (�; �1) and b = (�; �2),
where the domain is D�). We associate the permutations with their descriptions (and the corresponding inverse
permutations with their trapdoors). Finally, as stated above, we augment any common-domain trapdoor system with a
hard-core predicate, denoted B. (That is, B is polynomial-time computable, but given (fa and) fa(x) is it infeasible to
predict B(x) with non-negligible advantage over 1=2.)

Outline of our scheme. In our encryption scheme, the (public) encryption key is a pair (fa; fb) of one-way permutations.
The (private) decryption key is f�1r (i.e, the trapdoor of fr), where r is uniformly distributed in fa; bg. The simulator
will know both f�1a and f�1b , and will generate dummy ciphertexts that ‘look kosher’ as long as only one of f�1a ; f�1b is
known. The simulator will be able to open these dummy ciphertexts as either ‘0’ or ‘1’ by claiming that the description
key held by the receiver is either f�1a or f�1b . The correspondence between f0; 1g and fa; bg will be chosen at random7 See Appendix A.2.

8

by the simulator (and never revealed). We first present, in Subsection 3.2.1, the encryption and decryption algorithms
as well as observations that will be instrumental for the simulation. In Subsection 3.2.2 we present the key generation
protocol. Finally we show that these together constitute the desired non-committing encryption protocol.

3.2.1 Encryption and decryption

Throughout this section we assume that fa and fb are randomly selected permutations over the domain D. Recall that B
is a hard-core predicate associated with them. The scheme uses a security parameter, k, which can be thought to equallog2 jDj.
Encryption: to encrypt a bit � 2 f0; 1gwith encryption key (fa; fb), the sender proceeds as follows:
First it chooses x1; : : : ; x8k at random from D, so that B(xi) = � for i = 1; :::; 5k and B(xi) = 1� � otherwise (i.e.,
for i = 5k + 1; :::; 8k). For each xi it computes yi = fa(xi). These xi’s (and yi’s) are associated with fa (or with a).
Next, it repeats the process with respect to fb. That is, x8k+1; : : : ; x16k are chosen at random fromD, so thatB(xi) = �
for i = 8k + 1; :::; 13k and B(xi) = 1 � � otherwise, and yi = fb(xi) for i = 8k + 1; :::; 16k. The latter xi’s (andyi’s) are associated with fb (or with b). Finally, apply a random re-ordering (i.e., permutation) � : [16k] ! [16k] toy1; : : : ; y16k and send the resulting vector, y�(1); : : : ; y�(16k), to the receiver.

Decryption: upon receiving the ciphertext y1; : : : ; y16k, when having private key f�1r (where r 2 fa; bg), the receiver
computes B(f�1r (y1)); : : : ; B(f�1r (y16k)), and outputs the majority value among these bits.

Correctness of decryption. Let us first state a simple technical claim.

Claim 3.3 For all but a negligible fraction of the �’s and all but a negligible fraction of permutation pairs fa and fb
over D�, jProb(B(f�1b (fa(x))) = B(x))� 12 j is negligible (1)

where the probability is taken uniformly over the choices of x 2 D�.

Proof: See Appendix D.2 2
From this point on, we assume that the pair (fa; fb) satisfies Eq. (1).

Lemma 3.4 Let ~y = y1; : : : ; y16k be an encryption of a bit �. Then with probability 1� 2�
(k) the bit decrypted from~y is �.

Proof: See Appendix D.3 2
Simulation assuming knowledge of both trapdoors. In Lemma 3.5 (below) we show how the simulator, knowing
the trapdoors of both fa and fb, can generate “dummy ciphertexts” ~z = z1; : : : ; z16k that can be later “opened” as
encryptions of both 0 and 1. Essentially, the values B(f�1a (zi)) and B(f�1b (zi)) for each zi are carefully chosen so that
this “cheating” is possible. We use the following notations. Fix an encryption key (fa; fb). Let the random variable�� = (�; ~x; �; ~y; r; f�1r) describe a legal encryption and decryption process of the bit �. That is:� ~x = x1; : : : ; x16k is a vector of domain elements chosen as specified in the encryption algorithm (i.e., x1; : : : ; x5k

and x8k+1; : : : ; x13k satisfy B(xi) = �, and x5k+1; : : : ; x8k and x13k+1; : : : ; x16k satisfy B(xi) = 1� �).� � is a random permutation on [16k].� ~y = y1; : : : ; y16k is generated from ~x and � as specified in the encryption algorithm (i.e., y�(i) = fa(xi) for1 � i � 8k, and y�(i) = fb(xi) for 8k < i � 16k).� r is uniformly chosen in fa; bg and f�1r is the inverse of fr . (Note that the decrypted bit is defined by the majority
of the bits B(f�1r (yi).)

9

We remark that the information seen by the adversary, after the sender and receiver are corrupted, includes either �0 or�1 (but not both).

Lemma 3.5 Let (fa; fb) be the public key, and assume that both f�1a and f�1b are known. Then it is possible to efficiently
generate ~z; ~x(0); ~x(1); �(0); �(1); r(0); r(1), such that:

1. (0; ~x(0); �(0); ~z; r(0); f�1r(0)) c� �0.
2. (1; ~x(1); �(1); ~z; r(1); f�1r(1)) c� �1.

Note that the same dummy ciphertext, ~z, appears in both (1) and (2).

Proof: See Appendix D.4 2
3.2.2 Key generation

In Figure 1 we describe our key generation protocol. This protocol is valid as long as at least one party remains
uncorrupted. Our protocol uses a particular implementation of Oblivious Transfer described in [GMW] (which in turn
originates in [EGL]). For self containment we sketch this implementation in Appendix E. This implementation has an
additional property, discussed in Appendix E, that is useful in our construction. Loosely speaking, Oblivious Transfer
(OT) [R, EGL] is a two-party protocol for a sender S having inputs s1 and s2, and a receiver R with input � 2 f1; 2g.
After executing OT, the receiver should know s� , and learn nothing else. The sender S should learn nothing from
participating in the protocol. In particular S should not know whether R got s1 or s2. We are only concerned with the
case where R is uncorrupted and non-erasing.

key-generation ("G)

For generating an encryption key (fa; fb) known to the sender, and a decryption key f�1r known only to the receiver (R),
where r is uniformly distributed in fa; bg.

1. The receiver generates a common domain D� and sends � to all parties.

2. Each party Pi generates two trapdoor permutations over D�, denoted fai and fbi , and sends (fai ; fbi) to R. The
trapdoors of fai and fbi are kept secret by Pi.

3. The receiver R chooses uniformly � 2 f1; 2g and invokes the OT protocol with each party Pi for a number of times
equal to the length of the description of the trapdoor of a permutation over �. In all invocations the receiver uses input� . In the jth invocation of OT, party Pi acting as sender uses input (�1; �2), where �1 (resp., �2) is the jth bit of
the trapdoor of fai (resp., fbi). (Here we use the convention by which, without loss of generality, the trapdoor may
contain all random choices made by G2 when generating the permutation. This allows R to verify the validity of the
data received from Pi.)

4. Let H be the set of parties with which all the OT’s were completed successfully. Let fa be the composition of the
permutations fai ’s for Pi 2 H, in some canonical order, and let fb be defined analogously (e.g., a is the concatenation
of the ai with i 2 H). Let r = a if � = 1 and r = b otherwise. The trapdoor to fr is known only to R (it is the
concatenation of the trapdoors obtained in Step 3).

5. R now sends the public key (fa; fb) to the sender.

Figure 1: The key generation protocol

10

3.2.3 Simulation (Adaptive security of the encryption protocol)

Let " denote the combined encryption and decryption protocols, preceded by the key generation protocol.

Theorem 3.6 Protocol " is an (n � 1)-resilient non-committing encryption protocol for n parties, in the presence of

non-erasing parties.

Proof (sketch): See Appendix D.5. 2
Theorem 2.1 follows from Theorems 3.1, 3.2 and 3.6.

4 Honest-looking parties

Our construction for honest-looking parties assumes the existence of a “trusted dealer” at a pre-computation stage. The
dealer chooses, for each party P , a truly random string rP , and hands rP to P , to be used as random input. (We callrP a certified random input for P .) Next, the dealer generates n � 1 shares of rP , so that rP can be reconstructed from
all n� 1 shares, but any subset of n� 2 shares are independent of rP . Finally the dealer hands one share to each party
other than P .

Now, all parties are able to jointly reconstruct rP , and thus verify whether P follows its protocol. Consequently, if
party P is honest-looking (i.e., P does not take any chance of being caught cheating), then it is forced to use rP exactly
as instructed in the protocol. Party P is now limited to non-erasing behavior, and the construction of Section 3 applies.
(We note that the use of certified random inputs does not limit the simulator. That is, upon corruption of party P , the
simulator can still compute some convenient value r0P to be used as P ’s random input, and then “convince” the adversary
that the certified random input of P was r0P . The adversary will not notice anything wrong since it will never have all
the shares of the certified random input.)

11

References

[B] D. Beaver, “Foundations of Secure Interactive Computing”, CRYPTO, 1991.

[BH] D. Beaver and S. Haber, “Cryptographic Protocols Provably secure Against Dynamic Adversaries”, Eurocrypt, 1992.

[BCG] M. Ben-Or, R. Canetti and O. Goldreich, “Asynchronous Secure Computation”, 25th STOC, 1993.

[BGW] M. Ben-Or, S. Goldwasser and A. Wigderson, “ Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed
Computation”, 20th STOC, pp. 1-10, 1988.

[BM] M. Blum, and S. Micali, “How to generate Cryptographically strong sequences of pseudo-random bits”, em SIAM J. on
Computing, Vol. 13, 1984, pp. 850-864.

[BCC] G. Brassard, D. Chaum and C. Crepeau, “Minimum Disclosure Proofs of Knowledge”, Journal of Computing and System
Sciences, Vol. 37, No. 2, 1988, pp. 156-189.

[C] R. Canetti, “Studies in Secure Multi-Party Computation and Applications”, Ph.D. Thesis, Department of Computer Science
and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, June 1995.

[CCD] D. Chaum, C. Crepeau and I Damgard, “Multi-party unconditionally secure protocols”, 20th STOC, pp. 11-19, 1988.

[CK] B. Chor and E. Kushilevitz, “A Zero-One Law for Boolean Privacy”, SIAM J. on Disc. Math., Vol. 4, no. 1, pp. 36-47, 1991.

[EGL] S. Even, O. Goldreich and A. Lempel, “A randomized protocol for signing contracts”, CACM, vol. 28, No. 6, 1985, pp.
637-647.

[GGL] O. Goldreich, S. Goldwasser, and N. Linial, “Fault-Tolerant Computation in the Full Information Model”, 32nd FOCS, pp.
447-457, 1991.

[GILVZ] O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan and D. Zuckerman, “Security Preserving Amplification of Hard-
ness”, FOCS 1990, pp. 318–326.

[GrL] O. Goldreich and L. Levin, “A Hard-Core Predicate to any One-Way Function”, 21st STOC, 1989, pp. 25-32.

[GMW] O. Goldreich, S. Micali and A. Wigderson, “How to Play any Mental Game”, 19th STOC, pp. 218-229, 1987.

[GwL] S. Goldwasser and L. Levin, “Fair Computation of General Functions in Presence of Immoral Majority”, CRYPTO, 1990.

[GMR] S. Goldwasser , S. Micali and C. Rackoff, “The Knowledge Complexity of Interactive Proof Systems”, SIAM Journal on
Comput., Vol. 18, No. 1, 1989, pp. 186-208.

[MR] S. Micali and P. Rogaway, “Secure Computation”, CRYPTO, 1991.

[R] M. Rabin, “How to exchange secrets by oblivious transfer”, Tech. Memo TR-81, Aiken Computation Laboratory, Harvard
U., 1981.

[RB] T. Rabin and M. Ben-Or, “Verifiable Secret Sharing and Multi-party Protocols with Honest Majority”, 21st STOC, 1989, pp.
73-85.

[RSA] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public Key Cryptosystems”, CACM,
Vol. 21, Feb. 1978, pp. 120–126.

[Y] A. Yao, “Theory and applications of trapdoor functions”, 23rd FOCS, 1982, pp. 80-91.

12

A Various remarks

A.1 The importance of comparable complexity

We illustrate the importance of requiring that the simulator’s complexity is related to the adversary’s complexity via
the following example. Let f(x; y) = g(x � y) where g is a one-way permutation and � denotes bitwise exclusive
or. Assume that parties A and B have inputs x and y respectively, and consider the following protocol for computingf : Party A announces x, party B announces y, and both parties compute f(x; y). Our intuition is that this protocol is
insecure against adversaries that may corrupt one party (sayB): it “gives away for free” both x and y, whereas computingx given y and f(x; y), may take the adversary a large amount of time. Indeed, if the ideal-model adversary S is limited
to probabilistic polynomial time (and one way permutations exist), then this protocol is insecure against adversaries that
corrupt one party. However, under the model allowing S unlimited computational power regardless of A’s complexity,
this protocol is considered secure since S can invert g.

A.2 One-time pads are non-committing

Assume that each pair of parties share a sufficiently long secret random string, and each message is encrypted by bitwise
xor-ing it with a new segment of the shared random string. Then Definition B.10 is satisfied in a straightforward way.
Specifically, the simulated message from the sender to the receiver (i.e., the dummy ciphertext), denoted c, can be
uniformly chosen in f0; 1g. When either the sender or the receiver are corrupted, and the simulator has to demonstrate
that c is an encryption of a bit �, the simulator claims that the corresponding shared random bit was r = c� �. Clearlyr is uniformly distributed, regardless of the value of �.

B Definitions

In Section B.1 we define semi-honest protocols (with respect to the three variants discussed in Section 2.1). This notion
underlies all our subsequent definitions. In Sections B.2 and B.3 we define adaptively secure multi-party computation in
the secure channels and the computational settings, respectively. Although the focus of this work is the computational
setting, we state this definition also in the secure channels setting. This will enable us to discuss our results as a
general transformation from adaptively secure protocols in the secure channels setting into adaptively secure protocols
in the computational setting, without getting into details of specific protocols. In Section B.4 we define our main tool,
non-committing encryption protocols. Throughout Appendix B we assume that the reader has acquired the intuition
provided in Section 2.

Let us first recall the standard definition of computational indistinguishability of distributions.

Definition B.1 LetA = fAxgx2f0;1g� andB = fBxgx2f0;1g� be two ensembles of probability distributions. We say thatA and B are computationally indistinguishable if for every positive polynomial p, for every probabilistic polynomial-time
algorithm D and for all sufficiently long x’s,jProb(D(Ax) = 1)� Prob(D(Bx) = 1)j < 1p(jxj):
We colloquially say that “Ax and Bx are computationally indistinguishable”, or “Ax c� Bx”.

13

B.1 Semi-honest protocols

We define semi-honest parties (or, equivalently, semi-honest protocols) for the three alternative notions of semi-honesty
discussed in Section 2.1. First we define honest-but-non-erasing (or in short non-erasing) protocols. Informally, a protocol�0 is non-erasing for a protocol �, if �0 is identical to � with the exception that �0 may omit instructions to erase data.
Actually, it suffices to consider a non-erasing protocol which keeps a record of the entire history of the computation.

Definition B.2 Let � and �0 be n-party protocols. We say that �0 is a non-erasing protocol for � if �0 is identical to� with the exception that, in addition to the instructions of �, protocol �0 copies the contents of each memory location
accessed by � to a special record tape (inaccessible by �).

Next we define honest-looking protocols. Informally, a party is honest-looking if its behavior is indistinguishable
from the behavior of an honest party by any external test. (Internally the party may arbitrarily deviate from the protocol.)
More formally, let COM�(~x;~r) denote the communication among n parties running � on input ~x and random input ~r (xi
and ri for party Pi). Let COM�(~x) denote the random variable describing COM�(~x;~r) when ~r is uniformly chosen. Forn-party protocols � and � and an index i 2 [n], let �=(i;�) denote the protocol where party Pi executes � and all the other
parties execute �.

Definition B.3 Let � and �0 be n-party protocols. We say that �0 is a perfectly honest-looking protocol for � if for any

input ~x, for any n-party “test” protocol �, and for any index i 2 [n], we have

COM�=(i;�)(~x) d= COM�=(i;�0)(~x)
(where

d= stands for “identically distributed”). If the test protocol � is restricted to probabilistic polynomial time, and

COM�=(i;�)(~x) c� COM�=(i;�0)(~x), then we say that �0 is a computationally honest-looking protocol for �.

Here the “test” protocol � represents a collaboration of all parties in order to test whether Pi is honest.

Next we define weakly-honest protocols. Here we require that Definition B.3 is satisfied only with respect to the
original protocol �, rather than with respect to any test protocol �.

Definition B.4 Let � and �0 be n-party protocols. We say that �0 is a perfectly weakly-honest protocol for � if for any

input ~x and for any index i 2 [n], we have

COM�(~x) d= COM�=(i;�0)(~x)
If� is restricted to probabilistic polynomial time, and if COM�(~x) c� COM�=(i;�0)(~x), then we say that�0 is a computationally

weakly-honest protocol for �.

B.2 Adaptively secure computation in the secure channels setting

We define adaptively secure multi-party computation in the secure channels setting. That is, we consider a synchronous
network where every two parties are connected via a secure communication link (i.e., the adversary does not see, nor
alter, messages sent between uncorrupted parties). The adversary is computationally unlimited.

We use the standard methodology presented in Section 2.2. That is, the execution of a protocol for computing some
function is compared to evaluating the function in an ideal model, where a trusted party is used. We substantiate the
definition in three steps. First, we give an exact definition of this ideal model. Next, we formulate our (high level) notion
of ‘real-life’ protocol execution. Finally, we describe and formalize the method of comparing computations.

The computation in the ideal model, in the presence of an ideal-model-adversary S, proceeds as follows. The parties
have inputs ~x = x1 : : : xn 2 Dn (party Pi has input xi) and wish to compute f(x1; : : : ; xn), where f is a predetermined

14

function.8 The adversary S has no initial input, and is parameterized by t, the maximum number of parties it may corrupt.

First corruption stage: First, S proceeds in up to t iterations. In each iteration S may decide to corrupt some party,
based on S’s random input and the information gathered so far. Once a party is corrupted its internal data (that
is, its input) becomes known to S. A corrupted party remains corrupted for the rest of the computation. Let B
denote the set of corrupted parties at the end of this stage.

Input substitution stage: S may alter the inputs of the corrupted parties; however, this is done without any knowledge
of the inputs of the good parties. Let~b be the jBj-vector of the altered inputs of the corrupted parties, and let ~y be
the n-vector constructed from the input ~x by substituting the entries of the corrupted parties by the corresponding
entries in~b.

Computation stage: The parties hand ~y to the trusted party (party Pi hands yi), and receive f(~y) from the trusted
party.9

Second corruption stage: Now that the output of the computation is known, S proceeds in another sequence of up tot � jBj iterations, where in each iteration S may decide to corrupt some additional party, based on S’s random
input and the information gathered so far (this information now includes the value received from the trusted party
by parties in B). We stress that S may corrupt at most t parties in the entire computation.

Output stage: The uncorrupted parties output f(~y), and the corrupted parties output some arbitrary function, computed
by the adversary, of the information gathered by the adversary (i.e.,~b and f(~y)). We let the n-vector IDEALf;S(~x) =
IDEALf;S(~x)1 : : : IDEALf;S(~x)n denote the outputs of the parties on input ~x, trusted party for computing f , and
adversary S (party Pi outputs IDEALf;S(~x)i).

For the benefit of extremely formalistic readers we further formalize the above discussion (in Definitions B.5 through
B.7). Other readers are advised to skip a page up to the paragraph discussing the computation in the real-life setting.

First, we need two technical notations.� For a vector ~x = x1 : : : xn and a set B � [n], let ~xB denote the vector ~x, projected on the indices in B.� For an n-vector ~x = x1 : : : xn, a set B � [n], and a jBj-vector ~b = b1 : : : bjBj, let ~x=(B;~b) denote the vector

constructed from vector ~x by substituting the entries whose indices are in B by the corresponding entries from ~b.
Definition B.5 Let D be the domain of possible inputs of the parties, and letR be the domain of possible random inputs.
A t-limited ideal-model-adversary is a quadruple S = (t; b; h; O), where:� t is the maximum number of corrupted parties.� b : [n]��D��R! [n][f?g is the selection function for corrupting parties (the value ? is interpreted as “no

more parties to corrupt at this stage”)� h : [n]� �D� �R ! D� is the input substitution function� O : D� �R! f0; 1g� is an output function for the bad parties.8 A more general formulation allows different parties to compute a different functions of the input. Specifically, in this case the range of f is an-fold Cartesian product and the interpretation is that the ith party should get the ith component of f(~x).9 In the case where each party computes a different function of the inputs, as discussed in the previous footnote, the trusted party will hand each
party its specified output.

15

The set of corrupted parties is now defined as follows.

Definition B.6 Let D be the domain of possible inputs of the parties, and let S = (t; b; h; O)be a t-limited ideal-model-
adversary. Let ~x 2 Dn be an input vector, and let r 2 R be a random input for S. The ith set of faulty parties in the ideal

model B(i)(~x; r), is defined as follows.� B(0)(~x; r) = �� Let bi 4= b(B(i)(~x; r); ~xB(i)(~x;r); r). For 0 � i < t, and as long as bi 6=?, letB(i+1)(~x; r) 4= B(i)(~x; r)[fbig� Let i� be the minimum between t and the first i such that bi =?. Let bfi 4= b(B(i)(~x; r); ~xB(i)(~x;r); f(~y); r), where~y is the substituted input vector for the trusted party. That is, ~y 4= ~x=(B(i�)(~x;r);h(B(i�)(~x;r);~xB(i�)(~x;r);r)).
For i� � i < t, let B(i+1)(~x; r) 4= B(i)(~x; r) [bfi :

In Definition B.7 we use B(i) instead of B(i)(~x; r).
Definition B.7 Let f : Dn ! D0 for some sets D;D0 be the computed function, and let ~x 2 Dn be an input vector.

The output of computing function f in the ideal model with adversary S = (t; b; h; O), on input ~x and random input r, is
an n-vector IDEALf;S(~x) = IDEALf;S(~x)1 : : : IDEALf;S(~x)n of random variables, satisfying for every 1 � i � n:

IDEALf;S(~x)i = (f(~y) if i =2 B(t)O(~xB(t) ; f(~y); r) if i 2 B(t)
where B(t) is the tth set of faulty parties, r is the random input of S, and ~y = ~x=(B(t);h(B(t) ;~xB(t) ;r)) is the substituted
input vector for the trusted party.

Computation in the real-life setting. Next we describe the execution of a protocol � in the real-life scenario. The
parties engage in a synchronous computation in the secure channels setting, running a semi-honest protocol �0 for �
(according to any one of the notions of semi-honesty defined above). A computationally unbounded t-limited real-life

adversary may choose to corrupt parties at any point during the computation, based on the information known to the
previously corrupted parties, and as long as at most t parties are corrupted altogether. Once a party is corrupted the
current contents of its memory (as determined by the semi-honest protocol �0) becomes available to the adversary. From
this point on, the corrupted party follows the instructions of the adversary. Once the computation is completed, each
uncorrupted party outputs whatever it has computed to be the function value. Without loss of generality, we use the
convention by which the corrupted parties output their entire view on the computation. The view consists of all the
information gathered by the adversary during the computation. Specifically, the view includes the inputs and random
inputs of the corrupted parties and all the communication seen by the corrupted parties.

We use the following notation. Let VIEW�;A(~x;~r) denote the view of the adversary A when interacting with parties
running protocol � on input ~x and random input ~r (xi and ri for party Pi), as described above. Let EXEC�;A(~x;~r)i
denote the output of party Pi after running protocol � on input ~x = x1 : : : xn and random input ~r = r1 : : : rn, and
with a real life adversary A. (By the above convention, we have EXEC�;A(~x;~r)i = VIEW�;A(~x;~r) for corrupted
parties Pi.) Let EXEC�;A(~x)i denote the random variable describing EXEC�;A(~x;~r)i where ~r is uniformly chosen. Let
EXEC�;A(~x) = EXEC�;A(~x)1 : : :EXEC�;A(~x)n.

Comparing computations. Finally we require that executing a secure protocol � for evaluating a function f be equivalent
to evaluating f in the ideal model, in the following sense.

16

Definition B.8 Let f be an n-ary function, � be a protocol for n parties and T a type of semi-honest behavior (i.e.,
as in any of the Definitions B.2 through B.4). We say that � t-securely computes f in the secure channels setting, in the

presence of T -semi-honest parties and adaptive adversaries, if for any T -semi-honest protocol �0 for � and for anyt-limited real-life (adaptive) adversary A, there exists a t-limited ideal-model-adversary S, such that the complexity ofS is polynomial in the complexity of A, and for every input vector ~x we have

IDEALf;S(~x) d= EXEC�0;A(~x)
Remark: Definition B.8 is stated for a single value of n. In order to discuss asymptotic complexity (in n), we assume
that the function f , the protocol �, the simulator S and the adversary A are Turing machines that have n, the number of
parties, as part of their inputs.

Black-box simulation. In the sequel we use a more restricted notion of equivalence of computations, where the ideal-
model adversary is limited to black-box simulation of the real-life setting. That is, for any semi-honest protocol �0
for � there should exist a ideal-model adversary S with oracle (or black-box) access to a real-life adversary. This
black-box represents the input-output relations of the real-life adversary described above. For concreteness, we present
the following description of the “mechanics” of this black-box, representing a real-life adversary. The black-box has
a random tape, where the black-box expects to find its random input, and an input-output tape. Once a special start
input is given on the input-output tape, the interaction on this tape proceeds in iterations, as follows. Initially, no party
is corrupted. In each iteration l, first the black-box expects to receive the information gathered in the lth round. (In the
secure channels setting this information consists of the messages sent by the uncorrupted parties to the corrupted parties.)
Next black-box outputs the messages to be sent by the corrupted parties in the lth round. Next, the black-box may issue
several ‘corrupt Pi’ requests. Such a request should be answered by the internal data of Pi, according to protocol�0. Also, from this point on Pi is corrupted. At the end of the interaction, the output of the real-life adversary is defined
as the contents of the random tape succeeded by the history of the contents of the input-output tape during the entire
interaction. We let SA denote the ideal-model adversary S with black-box access to a real-life adversary A.

The simulator is restricted to probabilistic polynomial time (where each invocation of the black-box is counted as
one operation).10 Furthermore, we limit the operation of the simulator as follows. We require that the start message
is sent only once, and that no party is corrupted in the ideal model unless a request to corrupt this party is issued by the
black-box.

If Definition B.8 is satisfied by an ideal-model adversary limited to black-box simulation as described above, then we
say that � t-securely computes f in a simulatable way. In this case we call the ideal-model adversary a black-box simulator,
or in short a simulator.

We remark that the only purpose of the technical restrictions imposed on the operation of the simulator is to facilitate
proving composition theorems (such as Theorem 3.2). We stress that the security of known protocols (e.g., [BGW]) can
be shown via simulators that obey these restrictions.

B.3 Adaptively secure computation in the computational setting

We now turn to define adaptively secure multi-party computation in the computational setting. Here the communication
links between parties are insecure; that is, all messages sent on all links are seen by the adversary. 11 All parties, as10For simplicity, we assume that the computed function is polynomially computable. Alternatively, the simulator is polynomial in the complexity
of the function.11For simplicity we assume that the links are authenticated, namely the adversary cannot alter the communication. Authenticity can be achieved
via standard primitives.

17

well as the adversary, are restricted to probabilistic polynomial time. Furthermore, we introduce a security parameter,

determining ‘how close’ a real-life computation is to a computation in the ideal model. All parties are polynomial also
in the security parameter. For simplicity of presentation, we identify the security parameter and the length of the inputs
with the number of parties, denoted n.

The framework of defining adaptively secure multi-party computation in this setting is the same as in the secure
channels setting (Section B.2). That is, we compare the real life computation with a computation in the same ideal model.
Since the real-life adversary is restricted to probabilistic polynomial time, so is the ideal-model adversary. The execution
of a protocol � in the real-life scenario (of the computational setting), as well as the notation EXEC�;A(~x), are the same
as in the secure channels setting, with the exception that the real-life adversary sees all the communication between the
uncorrupted parties. Needless to say that the ideal model is the same in both settings.

We define equivalence of a real-life computation to an ideal-model computation in the same way, with the exception
that here we only require that the corresponding distributions are computationally indistinguishable. Black-box simulation
is defined as in the secure channels setting, with the exception that the information gathered by the adversary in each
round includes the communication between all parties.

Definition B.9 Let f be an n-ary function, � be a protocol for n parties and T a type of semi-honest behavior (i.e., as in

any of the Definitions B.2 through B.4). We say that � t-securely computes f in the computational setting, in the presence
of T -semi-honest parties and adaptive adversaries, if for any T -semi-honest protocol �0 for � and for any t-limited
real-life (adaptive) adversary A, there exists a t-limited ideal-model-adversary S, such that for every input vector ~x we

have
IDEALf;S(~x) c� EXEC�0 ;A(~x):

If S is restricted to black-box simulation of real-life adversaries, as described above, then we say that � t-securely

computes f in a simulatable way in the computational scenario.

B.4 Non-committing encryption

We present a concise definition of a non-committing encryption protocol in our multi-party scenario. First define the bit

transmission function BTR : f0; 1;?gn ! f0; 1;?gn. This function is parameterized by two identities of parties (i.e.,
indices s; r 2 [n]), with the following interpretation. BTRs;r describes the secure transmission of a bit from party Ps (the
sender) to party Pr (the receiver). That is, for ~x = x1; : : : ; xn 2 f0; 1;?gn let

BTRs;r(~x)i = (xs if i = r? otherwise
where BTRs;r(~x)i is the ith component of the vector BTRs;r(~x). We are interested in input vectors ~x where xs (i.e., the
senders input) is in f0; 1g. All other inputs are assumed to be ?.

Definition B.10 Let s; r 2 [n] and s 6= r. A protocol " is a t-resilient (in the presence of T -semi-honest parties and

adaptive adversaries), non-committing encryption protocol (fromPs to Pr) if " t-securely computes BTRs;r, in a simulatable
way, in the computational model, in the presence T -semi-honest parties and an adaptive adversary.

It may not be immediately evident how Definition B.10 corresponds to the informal description of non-committing
encryptions, presented in Section 2.3. A closer look, however, will show that the requirements from the simulator
associated with a non-committing encryption protocol (according to Definition B.10) imply these informal descriptions.
In particular, in the case where the simulated adversary corrupts the sender and receiver only after the last communication
round, the simulator has to first generate some simulated communication between the parties, without knowing the

18

transmitted bit. (This communication serves as the “dummy ciphertext”.) When the sender and/or the receiver are later
corrupted, the simulator has to generate internal data that correspond to any value of the transmitted bit.

C Common-domain trapdoor systems

Definition C.1 A common-domain trapdoor system is an infinite set of finite permutations ff�;� : D� 1-17! Dag�;�2P ,
where P � f0; 1g�� f0; 1g�, so that� domain selection: There exists a probabilistic polynomial-time algorithm G1 so that on input 1n, algorithm G1

outputs a description � 2 f0; 1gn of domain D�.� function selection: There exists a probabilistic polynomial-time algorithm G2 so that on input �, algorithm G2
outputs a pair (�; t(�)) so that (�; �) 2 P . (� is a description of a permutation over D� and t(�) is the
corresponding trapdoor.)� domain sampling: There exists a probabilistic polynomial-time algorithm S that on input �, uniformly selects an
element of Da.� function evaluation: There exists a polynomial-time F that on inputs (�; �) 2 P and x 2 D� returns f�;�(x).� function inversion: There exists a polynomial-time I that on inputs (�; t(�)) and y 2 D�, where (�; �) 2 P ,

returns f�1�;�(y).� one-wayness: For any probabilistic polynomial-time algorithm A, the probability that on input (�; �) 2 P andy = f�;�(x), algorithm A outputs x is negligible (in n), where the probability distribution is over the random
choices of � = G1(1n), � = G2(�), x = S(�) and the coin tosses of algorithm A.

The standard definition of trapdoor permutations can be derived from the above by replacing the two selection algorithms,G1 and G2, by a single algorithm G that on input 1n generates a pair (�; t(�)) so that � specifies a domain D� as
well as a permutation f� over this domain (and t(�) is f�’s trapdoor). Thus, the standard definition does not guarantee
any structural resemblance among domains of different permutations. Furthermore, it does not allow to generate a new
permutation with corresponding trapdoor for a given domain (or given permutation). Nevertheless some popular trapdoor
permutations can be formulated in a way which essentially meets the requirements of a common-domain trapdoor system.
We describe a specific implementation based on the RSA.

A common-domain trapdoor system based on the RSA. On input 1n, algorithm G1 outputs � 2 f0; 1gn which
represents an integer, i(�), uniformly selected in [2n=2]. On input �, algorithm G2 uniformly selects two primes, P
and Q, so that their product, N , resides in the interval [2n + i(�) � 2n=2; 2n + (i(�) + 1) � 2n=2] and a pair of integers(e; d) so that e � d � 1 (mod �(N)), where �(N) = (P � 1) � (Q � 1). The corresponding domain D� equals[2n+ i(�) � 2n=2], which is a subset containing all but a negligible fraction of ZN . The permutation and its trapdoor are

defined as usual (i.e., � = (N; e), t(�) = (N; d) and f�;�(x) def= xe mod N). Indeed this is not a permutation overD�, but rather a 1-1 mapping of D� to some setR�, however the symmetric difference between D� andR� is negligible
and can be ignored. In particular, its effect on our constructions is negligible.

An alternative construction of common-domain trapdoor system. Here we use an arbitrary family of trapdoor
permutations, ff�;D� 1-17! D�g, with the extra property that the domain of any permutation, generated on input 1n, has
non-negligible density inside f0; 1gn (i.e., jD�j � 1poly(j�j) � 2j�j). We construct a common-domain family where the
domain is f0; 1gn and the permutations are natural extentions of the given permutations. That is, we let G1(1n) = 1n,

19

G2(1n) = G(1n) and extend f� into g� so that g�(x) = f�(x) if x 2 D� and g�(x) = x otherwise. This yields a
collection of “common-domain” permutations, fg�; f0; 1gj�j 1-17! f0; 1gj�jg, which are weakly one-way. Employing the
construction of [GILVZ] we obtain a proper common-domain system (of comparable security).

D Proofs

D.1 Sketch of proof of Theorem 3.2

Let �0 be a non-erasing protocol for � and let S be a simulator for �0 in the secure channels setting. For simplicity
we assume that in protocol �, as well as in the interaction generated by S, each party sends on bit to each other party
in each round. Let � be the (computational-model) simulator that corresponds to the non-erasing protocol "0 for the
non-committing encryption protocol ". Given these two different simulators, we construct a simulator ~S for protocol ~�
in the computational setting. The simulator ~S will be a modification of S and will use several copies of � as subroutines.

Recall that S is supposed to interact with a black-box representing a real-life adversary in the secure channels setting.
That is, at each round S generates all the messages sent from uncorrupted parties to corrupted parties. Furthermore,
whenever the black-box decides to corrupt some party P , machine S generates internal data for P which is consistent
with P ’s input and with the messages previously sent by P to corrupted parties.

The simulator ~S, interacts with a black box representing an arbitrary real-life adversary in the computational setting,
denoted ~A. The simulator ~S is identical to S with the exception that for each bit sent in the interaction simulated byS, the
simulator ~S invokes a copy of � and ~S incorporates the outputs of the various copies of � in its (i.e., ~S’s) communication
with ~A. Likewise, ~S extracts the transmitted bits from the invocations of � corresponding to message transmissions from
corrupted parties to uncoruppted ones. (The way ~S handles these invocation will be discussed below.) At this point we
stress that ~A is the only adversary that ~S needs to simulate and to this end it “emulates” real-life adversaries of its choice
for the copies of �. In particular, when S asks to corrupt some party P , the simulator ~S corrupts the same party P . WhenS generates P ’s view in the secure channel setting, ~S will complete this view into P ’s view in the computational setting

by using the various copies of �.

We describe how ~S handles the various copies of �. As stated above, ~S emulates a real-life adversary for each
copy of � using the communication tapes by which this copy is supposed to interact with its black-box/adversary. The
information that � expects to receive form its black box is extracted, in the obvious manner, from the information that ~S
receives from ~A. That is, ~S hands � the messages, sent by the corrupted parties, that are relevant to the corresponding
invocation of "0. Furthermore, all the past and current requests for corrupting parties (issued by ~A) are handed over to �.
The partial view received from each copy of � is used in the emulation of the corresponding black-box (of this �-copy)
as well as incorporated in the information handed by ~S to ~A. When ~A asks to corrupt some party P , the simulator ~S
emulates a ‘corrupt P ’ request to each copy of � and obtains the internal data of P in the corresponding sub-protocol" which it (i.e., ~S) hands to ~A (along with the information obtained by S – the secure channel simulator). Finally,
observe that � = �s;r (where Ps and Pr are the designated sender and receiver) also expects to interact with parties in the
ideal-model. This interaction consists of issuing ‘corrupt’ requests and obtaining the internal data (of the ideal model).
This interaction is (also) emulated by ~S as follows. Whenever � wishes to corrupt a party P which is either Ps or Pr ,
the simulator ~S finds out which bit, �, was supposed to be sent in this invocation of "0r;s and passes � to �r;s. We stress
that � is available to ~S since at this point in time P has already been corrupted and furthermore ~S (which mimics S) has
already obtained P ’s view in the secure channel setting. (Here we use Definitions B.9 and B.10 which guarantee that �
corrupts a party only if this party is already corrupted by �’s black box. We also use the fact that ~S is playing �’s black
box and is issuing a ‘corrupt P ’ request only after receiving such a request from ~A and having simulated this corruption

20

as S.) In case P is neither Ps not Pr the simulator ~S passes ? (as P ’s input) to �.

Let ~�0 be a non-erasing protocol for ~� and ~A be as above (i.e., an arbitrary real-life adversary in the computational
setting). We claim that ~S ~A (i.e., the ideal-model adversary ~S with black-box access to ~A) properly simulates the
execution of ~�0. We need to show that for any adversary ~A and for any input ~x we have

IDEALf; ~S ~A(~x) c� EXEC~�0 ; ~A(~x):
Here we present only a rough sketch of the proof of this claim. The plan is to construct a real-life adversary A in the
secure channels setting, and prove the following sequence of equalities by which the above claim follows:

IDEALf; ~S ~A(~x) d= IDEALf;SA(~x) d= EXEC�0;A(~x) c� EXEC~�0; ~A(~x) (2)

Regardless of what A is, the second equality follows immediately from the hypothesis that S is a simulator for �0 (the
non-erasing protocol for �) in the secure channels setting. It remains to construct A so that the other two equalities hold.

The real-life adversary A of the secure channel setting will operate via a simulation of ~A (the real-life adversary of
the computational setting), imitating the simulation carried out by ~S. That is, for each bit communicated by �, machineA
will invoke a copy of � while emulating an adversary in accordance with ~A. In particular, ~A will be given all ciphertexts
sent in the open as well as all internal data of corrupted parties (regardless if these parties were corrupted before, during
or after the ‘real’ transmission). Furthermore, when ~A corrupts a party P , machine A corrupts P and hands ~A the
internal data of P , along with the outputs of the relevant copies �, just as ~S does. At the end of the computation A
outputs whatever ~A outputs (that is,A outputs ~A’s view of the computation). It follows from the definition of A that the
execution of S, with black-box access to A, is in fact identical to the execution of ~S with black-box access to ~A. Thus,
IDEALf; ~S ~A (~x) d= IDEALf;SA(~x) which establishes the first equality in Eq. (2).

It remains to show that EXEC�0 ;A(~x) c� EXEC~�0; ~A(~x). Essentially the difference between these two executions is that
EXEC�0;A(~x) is a real-life execution in the secure channel setting which is augmented by invocations of � (performed byA), whereas EXEC~�0; ~A(~x) is a real-life execution in the computational setting in which honest parties use the encryption
protocol "0. However, the security of " means that invocations of � are indistinguishable from executions by "0 (both
in presence of adaptive adversaries). Using induction on the number of rounds, one thus establishes the last equality of
Eq. (2).

D.2 Proof of Claim 3.3

Assume for contradiction that the claim does not hold. Then, without loss of generality, there exists a positive polynomialp so that for infinitely many n’s, we have

Prob
�jfy 2 D� : B(f�1b (y)) = B(f�1a (y))gj > (12 + 1p(n)) � jD�j� > 1p(n)

when fa and fb are independently generated from � = G1(1n). This means that for these (�; a; b)’sB(f�1a (y)) gives a
non-trivial prediction for B(f�1b (y)). Intuitively this cannot be the case and indeed this lead to contradiction as follows.

Given a = (�; �) 2 P and y 2 D� we may predict B(f�1a (y)) as follows. First we randomly generate a new
permutation. fb, over D�, together with its trapdoor. Next we test to see if indeed B(f�1a (z)) is correlated withB(f�1b (z)). (The testing is done by uniformly selecting polynomially many xi’s in D�, computing zi = fa(xi), and
comparingB(f�1a (zi)) = B(xi)withB(f�1b (zi)).) If a non-negligible correlation is detected then we outputB(f�1b (y)
(as our prediction for B(f�1a (y))). Otherwise we output a uniformly selected bit. (Note that jProb(B(x) = 1) � 12 j
must be negligible otherwise a constant function contradicts the hard-core hypothesis.)

21

D.3 Proof of Lemma 3.4

Assume without loss of generality that the private key is f�1a . Then, the receiver outputs the majority value of the bitsB(f�1a (y1)); : : : ; B(f�1a (y16k)). Recall that 8k of the yi’s are associated with fa. Out of them, 5k (of the yi’s) satisfyB(f�1a (yi)) = B(xi) = �, and 3k satisfy B(f�1a (yi)) = B(xi) = 1� �. Thus, the receiver outputs 1 � � only if at
least 5k out of the rest of the yi’s (that is, the yi’s associated with fb) satisfy B(f�1a (yi)) = 1 � �. However, Eq. (1)
implies that jProb(B(f�1a (yi) = �)� 12 j is negligible for each yi associated with fb. Thus only an expected 4k of theyi’s associated with fb satisfy B(f�1a (yi)) = 1 � �. Using a large deviation bound, it follows that decryption errors
occur with probability 2�
(k).
D.4 Proof of Lemma 3.5

Let us first prove a simple technical claim, that will help us in proving Lemma 3.5. Let BINm denote the binomial
distribution over [m].
Claim D.1 There exists an efficiently samplable distribution � over f0; 1; :::; 4kg so that the distribution ~� constructed

by sampling an integer from � and adding 2k is statistically close to BIN8k. That is, the statistical distance between ~�
and BIN8k is 2�
(k).
Proof: Let BIN8k(i) denote the probability of i under BIN8k (i.e., BIN8k(i) = �8ki � �2�8k). We construct the distribution �
(over f0; 1; :::; 4kg) so that Prob(�= i) = BIN8k(i+ 2k) for i = 1; :::; 4n and Prob(�=0) equals the remaining mass
of BIN8k (i.e., it equals

P2ki=0 BIN8k(i) +P8ki=6k+1 BIN8k(i)).
It can be easily seen that each i 2 f2k+1; :::; 6kg occurs under ~� with exactly the same probability as under BIN8k.

Integers i such that i < 2k or i > 6k have probability 0 under ~� (whereas 2k is more likely to occur under ~� than under
BIN8k). Thus, the statistical distance between ~� and BIN8k equals the probability, under BIN8k, that i is smaller than 2k
or larger than 6k. This probability is bounded by 2�
(k). 2

Before describing how the dummy ciphertext ~z and the rest of the data are constructed, we summarize, in Figure 2,
the distribution of the hard-core bits, B(f�1a (y1)); :::;B(f�1a (y16k)) and B(f�1b (y1)); :::; B(f�1b (y16k)), with respect
to a real encryption y�(1); : : : ; y�(16k) of the bit � = 0. Here ~b~i~n8k denotes the distribution of the number of ‘1’s inB(f�1b (yi)) for i = 1; :::; 8k. Eq. (1) implies that the statistical difference between BIN8k and ~b~i~n8k is negligible.
The distribution of B(f�1a (yi)) for i = 8k + 1; :::; 16k is similar. Given only �0 (or only �1), only three-quartersI = f1; :::; 8kg I = f8k + 1; :::; 16kg8i 2 I yi = fa(xi) yi = fb(xi)Pi2I B(f�1a (yi)) = 3k ~b~i~n8kPi2I B(f�1b (yi)) = ~b~i~n8k 3k
Figure 2: The distribution of the B(f�1s (yi))’s with respect to �0, where s 2 fa; bg. (The case of �1 is similar, with the
exception that 5k is replaced for 3k.)

of the B(f�1s (yi))’s, i 2 [16k] and s 2 fa; bg, are known. Specifically, consider �� = (�; ~x; �; ~y; r; f�1r), and
suppose that r = a. Then all the B(f�1a (yi))’s can be computed using f�1a . In addition, for i = 8k + 1; :::; 16k,B(f�1b (yi)) = B(xi) is known too. However, for i 2 [8k], B(f�1b (yi)) = B(f�1b fa(xi))) is not known and in fact it
is (computationally) unpredictable (from ��). A similar analysis holds for r = b; in this case the unpredictable bits areB(f�1a (yi)) = B(f�1a fb(xi))) for i = 8k + 1; :::; 16k.

22

INITIAL CONSTRUCTION AND CONDITIONS: Keeping the structure of �� in mind, we construct ~z, along with ~x(0), ~x(1),�(0), �(1), r(0) and r(1), as follows. First, we select uniformly a bijection, �, of f0; 1g to fa; bg (i.e., either �(0) = a
and �(1) = b or the other way around) and set r(0) = �(0) and r(1) = �(1). Next, we choose, in the way described
below, two binary vectors ~(0) = (0)1 ; : : : ; (0)16k and ~(1) = (1)1 ; : : : ; (1)16k. We choose random values v1; : : : ; v16k such
that (0)i = B(f�1�(0)(vi)) and (1)i = B(f�1�(1)(vi)), for each i 2 [16k]. We uniformly select a permutation over [16k]
and let the permuted vector v (1); : : : ; v (16k) be the dummy ciphertext ~z = (z1; :::; z16k). It remains to determine �(0)
and �(1), which in turn determine ~x(0) and ~x(1) so that x(�)i = f�1a (z(�(�))�1(i)) for i 2 [8k] and x(�)i = f�1b (z�(�)(i))
otherwise. This should be done so that both permutations �(0) and �(1) are uniformly (but not necessarily independently)
distributed and so that the known B(f�1s (y(�)i))’s match the distribution seen in a legitimate encryption of �. We stress
that (�; ~x(�); �(�); ~z; r(�); f�1r(�)) should appear as a valid encryption of �. In particular, for each � 2 f0; 1g there should
exist a permutation (�) (= (�(�))�1 � �) over [16k] so that12

1. (��1(a)) (�)(i) = B(f�1a (v (�)(i))) = B(f�1a (z�(�)(i))) = B(x(�)i) = �, for i = 1; :::; 5k.

(E.g., if �(0) = a this means (0) (�)(i) = �.)

2. (��1(a)) (�)(i) = B(f�1a (v (�)(i))) = B(f�1a (z�(�)(i))) = B(x(�)i) = 1� �, for i = 5k+ 1; :::; 8k.

(E.g., if �(0) = a this means (0) (�)(i) = 1� �.)

3. (��1(b)) (�)(i) = B(f�1b (v (�)(i))) = B(f�1b (z�(�)(i))) = B(x(�)i) = �, for i = 8k + 1; :::; 13k.

(E.g., if �(0) = a this means (1) (�)(i) = �.)

4. (��1(b)) (�)(i) = B(f�1b (v (�)(i))) = B(f�1b (z�(�)(i))) = B(x(�)i) = 1� �, for i = 13k + 1; :::; 16k.

(E.g., if �(0) = a this means (1) (�)(i) = 1� �.)

5. Let I = [8k] if �(�) = b and I = f8k + 1; :::; 16kg otherwise. Then, (�) (�)(i) = B(f�1�(�)(v (�)(i))) =B(f�1�(�)(z�(�)(i))) = B(f�1�(�)(f�(1��)(x(�)i))) equals � with probability negligibly close to 12 , for i 2 I .

(E.g., for �(0) = a and � = 0 we have Prob((0) (�)(i) = 1) � 12 for i = 8k + 1; :::; 16k, whereas for �(0) = a
and � = 1 we have Prob((1) (�)(i) = 1) � 12 for i = 1; :::; 8k.)

This allows setting �(�) = � ((�))�1 so that x(�)�(�)(i) is “mapped” to zi while �(�) is uniformly distributed (i.e.,x(�)i = f�1a (v (�)(i)) = f�1a (z �1(�(�)(i))) = f�1a (z(�(�))�1(i)) for i 2 [8k] and x(�)i = f�1b (z�(�)(i)) otherwise).

INITIAL SETTING OF ~(0), ~(1), (0) AND (1): The key issue is how to select ~(0) and ~(1) so that the five condition stated
above hold (for both � = 0 and � = 1). As a first step towards this goal we consider the four sumsS�1 def= 8kXi=1 (��1(a)) (�)(i) ; S�2 def= 16kXi=8k+1(��1(b)) (�)(i) ; S�3 def= 8kXi=1 (��1(b)) (�)(i) ; S�4 def= 16kXi=8k+1(��1(a)) (�)(i)
The above conditions imply S�1 = S�2 = 5k � � + 3k � (1� �) = 3k + 2k� as well as S�3 d= ~b~i~n8k if �(�) = b andS�4 d= ~b~i~n8k otherwise. (Note that S�3 ; S�4 and ~b~i~n8k are random variables.)12 In each of the following five conditions, the first equality is by the construction of the vi’s, the second equality is by the definition of thezi’s, and the third equality represents the relation between ~x(�), ~z and �(�) that holds in a valid encryption (of �). In conditions (1) through (4),
the last equality represents the relation between ~x(�) and � that holds in a valid encryption of �. In condition (5), the last equality represents the
information computable from ~z using (the trapdoor) f�1r(�) . Here we refer to the inverses of the zi’s which are not x(�)i ’s. The hard-core value of

these inverses should be uniformly distributed.

23

To satisfy the above summation conditions we partition [16k] into 4 equal sized subsets denoted I1; I2; I3; I4 (e.g.,I1 = [4k], I2 = f4k+1; :::; 8kg,I3 = f8k+1; :::; 12kg and I4 = f12k+1; :::; 16kg). This partition induces a similar
partition on the (0)i ’s and the (1)i ’s. The (0)i ’s and the (1)i ’s in each set are chosen using four different distributions
which satisfy the conditions summarized in Figure 3. Suppose �(0) = a. Then, we may set (0)([8k]) = I1 [I2I = I1 I = I2 I = I3 I = I4Pi2I (0)i d= 3k 0 2k �Pi2I (1)i d= � 4k 2k k

Figure 3: The distribution of the (0)’s and (1)’s. (� is as in Claim D.1.)

and (0)(f8k + 1; :::; 16kg) = I3 [I4, and (1)([8k]) = I1 [I3 and (1)(f8k + 1; :::; 16kg) = I2 [I4, where�(I) = J means that the permutation � maps the elements of the set I onto the set J . (It would have been more natural
but less convenient to write ((1))�1(I1 [I3) = [8k] and ((1))�1(I2 [I4) = f8k + 1; 16kg.) We claim that, for
each � 2 f0; 1g, the above setting satisfies the three relevant summation conditions. Consider, for example, the case� = 0 (depicted in Figure 4). Then, S01 = P8ki=1 (0)i = 3k and S02 = P16ki=8k+1 (1)i = 3k as required. ConsideringI = f1; :::; 8kg= ((0))�1(I1 [I2) I = f8k+ 1; :::; 16kg= ((0))�1(I3 [I4)Pi2I (0)i = S01 = 3k + 0 = 3k S04 = 2k + � d= ~b~i~n8kPi2I (1)i = no condition S02 = 2k + k = 3k

Figure 4: Using (0) the (0)i ’s and (1)i ’s satisfy the summation conditions S01 , S02 and S04 .S04 = P16ki=8k+1 (0)i we observe that it is distributed as 2k + � = ~� (of Claim D.1) which in turn is statistically close
to ~b~i~n8k. We stress that the above argument holds for any way of setting the (�)’s as long as they obey the equalities
specified (e.g., for any bijection � : I1[I2 1-17! I1[I3, we are allowed to set (1)(i) = �(i) for all i 2 I1[I2). The case� = 1 follows similarly; here S11 =Pi2I1[I3 (0)i = 5k, S12 =Pi2I2[I4 (1)i = 5k and S13 =Pi2I1[I3 (1)i = �+ 2k
(see Figure 5). In case �(0) = b we set (0)([8k]) = I3 [I4, (0)(f8k+ 1; :::; 16kg) = I1 [I2, (1)([8k]) = I2 [I4I = f1; :::; 8kg= ((1))�1(I1 [I3) I = f8k+ 1; :::; 16kg= ((1))�1(I2 [I4)Pi2I (0)i = S11 = 3k + 2k = 5k no conditionPi2I (1)i = S13 = �+ 2k d= ~b~i~n8k S12 = 4k + k = 5k

Figure 5: Using (1) the (0)i ’s and (1)i ’s satisfy the summation conditions S11 , S12 and S13 .

and (1)(f8k+1; :::; 16kg) = I1[I3. The claim that, for each � 2 f0; 1g, the above setting satisfies the three relevant
summation conditions, is shown analogously.

REFINEMENT OF ~(0), ~(1), (0) AND (1): However, the above summation conditions do not guarantee satisfaction of
all the five conditions. In particular, we must use permutations (�) which guarantee the correct positioning visible bits
within the 8k-bit long block. That is, we must have((��1(a)) (�)(1) ; :::; (��1(a)) (�)(8k)) = (�5k; (1� �)3k)((��1(a)) (�)(8k+1); :::; (��1(a)) (�)(16k)) = (�5k; (1� �)3k)

24

that is, equality between the sequences and not merely equality in the number of 1’s. Clearly there is no problem to set
the (�)’s so that these equalities hold and thus Conditions (1) through (4) are satisfied. It is left to satisfy Condition (5).

Suppose that �(�) = a. In this case the third summation requirement guarantees
P16ki=8k+1 (�) (�)(i) d= ~b~i~n8k. This is

indeed consistent with the requirement that these (�) (�)(i)’s are almost uniformly and independently distributed. But this

is not sufficient. In particular, we also need
Pi2J (�) (�)(i) d= ~b~i~n3k, where J = f8k < i � 16k : (1��) (�)(i) = 1� �g and

furthermore the above sum needs to be independent of
Pi2f8k+1;:::;16kg�J (�) (�)(i) (which in turn should be statistically

close to BIN5k). Let us start with the case � = 0. In this case we needXi2J (0)i d= ~b~i~n3k; (3)

where J = fi 2 I3 [I4 : (1)i = 1g, and this sum needs to be independent of
Pi2I3[I4�J (0)i . By Figure 3 we

have jJ \ I3j = 2k. We further restrict the distributions (0)i ’s and (1)i ’s so that in part I3 the four possible outcomes
of the pairs ((0)i ; (1)i) are equally likely (e.g., for exactly k integers i 2 I3 we have ((0)i ; (1)i) = (0; 0)). ConsiderJ 0 = J \ I4 (note jJ 0j = k). To satisfy Eq. (3) we construct a random variable �0 2 f0; 1; :::; kg (analogously to

Claim D.1) so that pj def= Prob(�0 = j) = BIN3k(k + j) for j 2 [k] (with the rest of the mass on �0 = 0) and constrain
the (0)i ’s to satisfy Prob(Pi2J 0 (0)i = j) = pj. We get

Pi2J (0)i = k + �0 d= ~b~i~n3k (analogously to Claim D.1).
A minor problem occurs: the new restriction on the (0)i ’s conditions

Pi2I4�J 0 (0)i which we want to be distributed

as some �00 d= BIN5k � 2k and independently of �0 (the reason being that �0 + �00 should be distributed equally to �).
However this condition has a negligible effect since we can sample �0 and � and set the (0)i ’s accordingly, getting into
trouble only in case � < �0 which happens with negligible probability (since Prob(� < �0) < Prob(� < k) = 2�
(k)).

The case � = 1 gives rise to the requirement Xi2J (1)i d= ~b~i~n3k; (4)

where J = fi 2 I1 [I3 : (0)i = 0g, and this sum needs to be independent of
Pi2I1[I3�J (1)i . To satisfy Eq. (4) we

restrict the (1)i ’s in J 0 def= J \ I1 analogously to satisfy
Pi2J 0 (1)i = �0. Finally, we observe that generating the (0)i ’s

and (1)i ’s at random so that they satisfy the above requirements makes them satisfy Condition (5).

BEYOND THE FIVE CONDITIONS. In the above construction we have explicitly dealt with conditions which obviously have
to hold for the construction to be valid. We now show that indeed this suffices. Namely, we claim that(�; ~x(�); �(�); ~z; r(�); f�1r(�)) c� �� = (�; ~x; �; ~y; r; f�1r): (5)

Consider the case � = 0. Both r(0) and r are uniformly chosen in fa; bg and so we consider, w.l.o.g., r = r(0) = a.
Furthermore, �(0) is a random permutation and fa(x(0)i) = z�(0) for i = 1; :::; 8k, and fb(x(0)i) = z�(0) fori = 8k+1; :::; 16k, which matches the situation w.r.t �, ~x and ~y. It remains to compare the distributions of B(f�1s (�))’s,s 2 fa; bg, with respect to ~x(0) and with respect to ~x. By the above analysis we know that the entries correspond-
ing to s = a and to (s = b) ^ (i � 8k) are distributed similarly in the two cases. Thus, we need to compareB(f�1b (fa(x(0)1))); :::; B(f�1b (fa(x(0)8k))) and B(f�1b (fa(x1))); :::;B(f�1b (fa(x8k))). Recall that the xi’s are selected
at random subject to B(xi) = 0 for i = 1; :::; 5k and B(xi) = 1 for i = 5k + 1; :::; 8k. An analogous condition
is imposed on the x(0)i ’s but in addition we also have B(f�1b (fa(x(0)i))) = 1 for i = 1; :::; 4k, and some complicated
conditions on B(f�1b (fa(x(0)i))) = 1, for i = 4k + 1; :::; 8k (i.e., the distribution of 1’s here is governed by � and
furthermore in the first k elements the number of 1’s is distributed identically to �0). Thus, distinguishing ~x from ~x(0)
amounts to distinguishing, given fa; fb : D 7! D and the trapdoor for fa (but not for fb), between the two distributions

25

1. (u1; :::; u8k), where the ui’s are independently selected so that B(ui) = 0 if i 2 [5k] and B(ui) = 1 otherwise;
and

2. (w1; :::; w8k), where the wi’s are uniformly selected under the conditions� B(wi) = 0 if i 2 [5k] and B(ui) = 1 otherwise,� B(f�1b (fa(wi))) = 1 for i 2 [4k],� P5ki=4k+1B(f�1b (fa(wi))) = �0, and� P8ki=5k+1B(f�1b (fa(wi))) = �00, for some �00 d= �� �0.
We claim that distinguishing these two distributions yields a contradiction to the security of the hard-core predicate B.
Suppose, on the contrary that an efficient algorithm A can distinguish these two distributions. Using a hybrid argument
we construct an algorithm A0 which distinguishes the the uniform distribution over D0 def= fx 2 D : B(x) = �g
and a distribution over D0 that is uniform over both D00 def= fx 2 D0 : B(f�1b (fa(x))) = 0g and D01 def= fx 2 D0 :B(f�1b (fa(x))) = 1g, where � is a bit which can be efficiently determined. (We stress that the latter distribution is not
uniform on D0 but rather uniform on each of its two parts.) Without loss of generality, we assume � = 0. It follows
that A0 must distinguish inputs uniformly distributed in D00 from inputs uniformly distributed in D01. We now transformA0 into an algorithm, A00, that distinguishes a uniform distribution over fy 2 D : B(f�1b (y)) = 0g from a uniform
distribution over fy 2 D : B(f�1b (y)) = 1g. On input y 2 D� and fb : D 7! D, algorithm A00 first generates another
permutation fa, over D, together with the trapdoor for fa. Next, it computes x = f�1a (y) and stop (outputting 0) ifB(x) = 1 (i.e., x 62 D0). Otherwise,A00, invokesA0 on x and outputsA0(x). In this caseB(f�1b (fa(x))) = B(f�1b (y))
(and B(x) = 0) so the output will be significantly different in case B(f�1b (y))) = 0 and in case B(f�1b (y))) = 1. We
observe that Prob(B(x) = 0) � 12 (otherwise a constant function violates the security of B), and conclude that one can
a random y with B(f�1b (y)) = 0 from a random y with B(f�1b (y)) = 1 (which contradicts the security of B).

D.5 Sketch of proof of Theorem 3.6

Let Pr be the sender and let Ps be the receiver. Recall that a non-committing encryption protocol is a protocol that
securely computes the bit transmission function, BTRs;r, in a simulatable way. Let "0 be a non-erasing protocol for ". We
construct a simulator S such that IDEALBTRs;r;SA(�) d= EXEC"0;A(�), for any (n� 1)-limited adversary A and for any
input � 2 f0; 1g of Ps.

The simulator S proceeds as follows. First an invocation of the key generation protocol "G is simulated, in such a
way that S knows both trapdoors f�1a and f�1b . (This can be done using the additional property of the [GMW] Oblivious
Transfer protocol, as described above.) For each party P that A corrupts during this stage, S hands A the internal data
held by P in the simulated interaction. We stress that as long as at least one party remains uncorrupted, the adversary
knows at most one of f�1a ; f�1b . Furthermore, as long as Pr remains uncorrupted, the adversary view of the computation
is independent of whether Pr has f�1a or f�1b .

Once the simulation of the key generation protocol is completed, S instructs the trusted party in the ideal model to
notify Pr of the function value. (This value is Ps’s input, �.) If at this point either Ps or Pr is corrupted, then S gets
to know the encrypted bit. In this case S generates a true encryption of the bit �, according to the protocol. If neitherPs nor Pr are corrupted, then S generates the values ~z; ~x(0); ~x(1)�(0); �(1); r(0); r(1) as in Lemma 3.5, and lets ~z be the
ciphertext that Ps sends to Pr in the simulated interaction.

If at this stage A corrupts some party P which is not the sender or the receiver, then S handsA the internal data held
by P in the simulated interaction. IfA corrupts Ps, then S corrupts Ps in the ideal model and learns �. Next S hands A

26

the values ~x(�); �(�) for Ps’s internal data. If A corrupts Pr , then S corrupts Pr in the ideal model, learns �, and handsA the value f�1r(�) for Ps’s internal data.

The validity of the simulation follows from Lemma 3.5 and from the properties of the [GMW] Oblivious Transfer
protocol.

E The Oblivious Transfer protocol

The following OT protocol is taken from [GMW].

Oblivious Transfer (OT)

The parties proceed as follows, using a trapdoor-permutations generator and the associated hard-core predicate B().
1. On input �1; �2 2 f0; 1g, the sender generates a one-way trapdoor permutation f : D ! D with its trapdoor f�1, and

sends f to the receiver.

2. On input � 2 f1; 2g, the receiver uniformly selects x1; x2 2 D, computes y� = f(x�), sets y3�� = x3�� , and sends(y1; y2) to the sender.

3. Upon receiving (y1; y2), the sender sends the pair (�1 �B(f�1(y1)); �2 �B(f�1(y2))) to the receiver.

4. Having received (b1; b2), the receiver outputs s� = b� � B(x�) (as the message received).

Figure 6: The [GMW] Oblivious Transfer protocol

It can be easily verified that the receiver outputs the correct value of �� in Step 4. Also, if the receiver is semi-honest
in the non-erasing sense, then it cannot predict �3�� with more than negligible advantage over 12 . 13 The sender view of
the interaction is uncorrelated with the value of � 2 f1; 2g. Thus it learns nothing from participating in the protocol.

An important additional property of this protocol is that, in a simulated execution of the protocol, the simulator
can learn both �1 and �2 by uniformly selecting z1; z2 2 D, and having the receiver R send f(z1); f(z2) (in Step 2).
Furthermore, if R is later corrupted, then the simulator can “convince” the adversary that R received either �1 or �2, at
wish, by claiming that in Step 2 party R chose either (x1; x2) = (z1; f(z2)) or (x1; x2) = (f(z1); z2), respectively.

13This statement does not hold ifR is semi-honest only in the honest-looking sense. Ironically, this ‘flaw’ is related to the useful (non-committing)
feature discussed below.

27

