
The Bright Side of Hardness:Relating Computational Complexity and Cryptography(notes for an overview talk)Oded GoldreichDepartment of Computer ScienceWeizmann Institute of Science, Israel.oded.goldreich@weizmann.ac.ilJuly 12, 2008This document contains preparation notes for a 45-minute talk on the relation between compu-tational di�culty and cryptography. References and further details can be found in the author'stexts (e.g., a primer [4] and two-volume book [3]).Contents1 (title page) 12 Background: The P versus NP Question 13 One-Way Functions 14 Applications to Cryptography 15 Amplifying Hardness 16 The Existence of a Hardcore 27 1st Application: Pseudoerandom Generators 28 Pseudoerandom Generators (form.) 29 PRG i� OWF (\Hardness vs Randomness") 210 Pseudoerandom Functions 311 Cryptography: private-key encryption (based on PRF) 312 Cryptography: message authentication (based on PRF) 313 More Cryptography: Sign and Commit 314 A generic cryptographic task: forcing parties to follow presecribed instructions 415 Zero-Knowledge Proof Systems 416 Universal Results: general secure multi-party computations 4Selected Bibliography 5



1 (title page)This is my 1st ever PowerPoint presentation. I hope I'll manage it.2 Background: The P versus NP QuestionI want to start from the basics, which is the fundamental P versus NP Question.Note that P 6= NP means that hfirst two lines on the slidei.Philosophically, this guarantees the meaningfulness of the notion of a problem and of the notion ofa proof.Real-life implications: the bad news (dark side), and the good news (bright side).3 One-Way FunctionsThe good/bad news depend on typical (i.e., average-case) hardness, since rare cases of hardness areirrelevant to real-life.Actually, for the good news we need slightly more: we need the ability to generate hard instancescoupled with solutions (known to us but not to others). This leads to the de�nition of one-wayfunctions (where the problem instance is the image, and a solution is a preimage).On the notion of negligible: robust under a feasible number of repeations. (Actually, de�ned so.)Mention: the MULTiplication example.4 Applications to Cryptography(This is a kind of preview to the rest of the talk.)� The classical tasks �!� A major modern task �!�� A major modern task �!� A general result (of amazingly wide scope) �!5 Amplifying HardnessIn order to obtain these applications, we need to amplify hardness.Note that, by def., a OWF does NOT necessarily hide any part of the preimage in a perfect manner,but rather frustrates the reconstruction of the entire preimage (via feasible methods). In contrast,a hardcore is a \part of the preimage" that is perfectly hidden (w.r.t feasible methods).N.B.: Any predicate can be easily guesses with success probability 1=2. A hardcore predicatecannot be (feasiblly) guessed signi�cantly better.N.B.: In the special case of 1-1 function f , having a hardcore implies that f is hard to invert(otherwise guessing is feasble via inverting f and evaluating b).1



6 The Existence of a HardcoreNote: f 0 is a slight modi�cation of f .Re the warm-up: We'll just prove that b is hard to guess w.p. at least 0:76 (rather than at least0:51). Assuming towards the contradiction that b can be guessed with error probability at most0:24, we show how to guess each bit of the preimage with error probability at most 0:48 (and wecan get negligible error via repetitions and ruling by majority, which allows inverting f 0).7 1st Application: Pseudoerandom GeneratorsThe application of hardness is hinted in the THM.As we shall see in a few slides, pseudoerandom generators are central to Cryptography. But theyare also of independent interest (i.e., beyond Crypto.).The elements of this notion are: (1) e�cient evaluation, (2) stretch, and (3) computational indis-tinguishability from true randomness.(formal de�nition { in next slide)8 Pseudoerandom Generators (form.)Highlight: Any (reasonable) stretch is equivalent (w.r.t existence of such PRGs) to minimal stretch.That is, all (reasonable) stretches are equivalent (w.r.t existence of such PRGs).Highlight/THM: there exist PRGs i� there exist OWFs. (see next slide)9 PRG i� OWF (\Hardness vs Randomness")Highlight: the \Hardness vs (Pseudo)Randomness" trading. By de�nition, pseudorandomnessrefers to distributions that are statistically far apart but are infeasible to tell apart. Furthermore,the THM (via its e�ective proof) shows how hardness (i.e., OWF) can be converted to the generationof (pseudo)randomness, and vice versa.Explain (PRG implies OWF): Inverting f is feasible on G's output (by contra. hypo.), but invertingf is not possible (except w. negl. prob.) on random strings (because these are not in f 's image).Explain (OWP1 implies PRG): For each bit position, the next bit in G's output is hard to predict(by triviality if i < jsj and by hardcode if i = jsj).Explain (re stretch): maximal stretch means the maximal output length that allows merely printingthe output within feasible time. That is, printing jG(s)j-many ones should be feasible (in order toallow meaningful talk of e�ecting s 7! G(s)).1OWF that is 1-1 (and length preserving).
2



10 Pseudoerandom FunctionsBy PRF we mean a collection of functions, sharing an evaluation algorithm (as in item 1) andfailing \Turing's Test of Randomness" (as in item 2).Historical comments (see also extra slide): Item 2 is called \Turing's Test of Randomness" inanalogy to \Turing's Test of Intelligence": distinguishing a computer program from a Human viaan Q&A interaction. Yet, even more related to Turing is the following quote from Turing's work(1950): I have set up on a Manchester computer a small programme using only 1000 units ofstorage, whereby the machine supplied with one sixteen �gure number replies with another withintwo seconds. I would defy anyone to learn from these replies su�cient about the programme to beable to predict any replies to untried values.THM: Can build PRF based on any PRG.11 Cryptography: private-key encryption (based on PRF)The problem: Alice and Bob wish to communicate in privacy over a communication channel thatmay be tapped by an adversary. They must know something that the adversary does not know,which is called a key. Bob transforms the messages he want to send to Alice by using an encryptionalgorithm (using their shared key), resulting in ciphertexts sent over the channel. Alice reconstructsthe messages by using a decryption algorithm (with the same key), but the adversary reading theciphertexts should learn nothing about the original messages.The solution: encrypt the message by XORing it with the value of the PRF evaluated at a randompoint, which is also placed in the ciphertext. In fact, it su�ces to use a di�erent evaluation pointin each encryption.12 Cryptography: message authentication (based on PRF)The problem: Forget about privacy, here Alice wants to be sure that the message she receives wasactually sent by Bob (rather than injected on the channel by an adversary). Again, Alice and Bobmust share a key, which the adversary does not know. Bob appends to his messages a suitable\authentication tag" which can be veri�ed by Alice, where the parties use suitable signing andverifying algorithms (and their shared key). The adversary reading prior message{tag pairs shouldnot be able to generate a new valid message{tag pair (i.e., a new pair that passes veri�cation).The solution: generate and verify tags by applying a PRF to the message.13 More Cryptography: Sign and CommitSignature schemes are like message authentication except that they allow universal veri�cation (byparties not holding the signing key, but rather having access to public veri�cation keys).Commitment schemes (to be used in the sequel...) are two-party protocols consisting of two phasessuch that after the �rst phase (\commit phase") the sender is \committed" to a value (which can berevealed later) but the receiver remains oblivious of that value. (These schemes satisfy con
ictinghiding and binding properties.)THM: OWF (equiv., PRG) imply both Signature and Commitment schemes.3



14 A generic cryptographic task: forcing parties to follow pres-ecribed instructionsNote: forcing parties to follow presecribed instructions makes sense \only" in cryptographic settings,and it presumes that such actions depend on private information (or else others can e�ect themand veri�cation is trivial...).Also note that it makes no sense to ask whether the party has used its \true" input (which is in itshead); what makes sense is (e.g.,) requiring that the message sent is consistent with some privateinput.Clearly, the above can be proved by revealing the private input, but this eliminates the entire pointof cryptography (of protecting the privacy of party's inputs).What we wish is to prove that such an input x exists without revealing anything else about it. The\idea" is that such proof systems, called zero-knowledge, can be (formally de�ned and) constructed.THM: Commitment schemes imply zero-knowledge proofs for every such (er�cient) predeterminedcomputation.15 Zero-Knowledge Proof SystemsE.g., for graph 3-colorability (which is NP-complete).Task: prove that a graph is 3-colorable without revealing anything else (beyond what follows easilyfrom this fact).The protocol uses commitments to possible colors (i.e., ternary values) of the various vertices.Argue about (1) completeness, (2) soundness, and (3) zero-knowledge.THM: Commitment schemes imply zero-knowledge proofs for 3-colorability (and any other problemin NP).16 Universal Results: general secure multi-party computationsOutrageous claim: any desired multi-party functionality can be implemented securly. This claimrepresents a vaiety of THMs that relate to various models, some rely on computational assumptions(e.g., OWF or rather TDP).What do I mean by a multi-party functionality? Any (e�cient) probabilistic process that mapsm-ary sequences of local inputs to m-ary sequences of local outputs is such a (desired) function-ality. Restricted to deterministic functionalities, this means a sequence of functions f1; :::; fm thatdetermine the desired local output of each party as a function of all local inputs (i.e., the ith partyshould obtain the output fi(x), where x = (x1; :::; xm) and xj denotes the input of Party j).In other words, we can obtain the same e�ect as when each party sends its private input toan imaginary trusted party, which computes and properly distrubted the corresponding outputs.Indeed, the e�ect of an imaginary trusted party can be securely emulated by the mutually distrustfulparties.
4



References[1] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits.SICOMP, Vol. 13, pages 850{864, 1984. Preliminary version in 23rd FOCS, 1982.[2] W. Di�e, and M.E. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory,IT-22 (Nov. 1976), pages 644{654.[3] O. Goldreich. Foundation of Cryptography, in two volumes: Basic Tools and Basic Applications. CambridgeUniversity Press, 2001 and 2004.[4] O. Goldreich. Foundations of Cryptography { A Primer. Foundations and Trends in Theoretical ComputerScience, Volume 1, Issue 1, 2005.[5] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University Press, 2008.[6] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal of the ACM,Vol. 33, No. 4, pages 792{807, 1986.[7] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st STOC, pages 25{32,1989.[8] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity or All Languagesin NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol. 38, No. 3, pages 691{729, 1991.Preliminary version in 27th FOCS, 1986.[9] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game { A Completeness Theorem forProtocols with Honest Majority. In 19th ACM Symposium on the Theory of Computing, pages 218{229,1987.[10] S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2, pages 270{299, 1984. Prelim-inary version in 14th STOC, 1982.[11] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive Proof Systems. SIAMJournal on Computing, Vol. 18, pages 186{208, 1989. Preliminary version in 17th ACM Symposium on theTheory of Computing, 1985. Earlier versions date to 1982.[12] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing, April 1988, pages 281{308.[13] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator from any One-wayFunction. SICOMP, Vol. 28, No. 4, pages 1364{1396, 1999. Preliminary versions by Impagliazzo et. al. in21st STOC (1989) and H�astad in 22nd STOC (1990).[14] M. Naor. Bit Commitment using Pseudorandom Generators. Journal of Cryptology, Vol. 4, pages 151{158,1991.[15] R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public Key Cryp-tosystems. CACM, Vol. 21, Feb. 1978, pages 120{126.[16] J. Rompel. One-way Functions are Necessary and Su�cient for Secure Signatures. In 22nd ACM Symposiumon the Theory of Computing, 1990, pages 387{394.[17] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80{91, 1982.

5


