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AbstractIn this D.Sc. dissertation we consider two areas in Computer Science: Interactive Proofsand Approximation Algorithms. The fascinating relation between these two areas was dis-covered in the last four years. However, in this dissertation we do not present results whichregard the connection between the areas, but we study each of them separaely.First, we study the knowledge complexity of interactive proofs. Our main result con-cerns the computational complexity of languages which have interactive proofs of logarith-mic knowledge complexity. We show that all such languages can be recognized in BPPNP.Prior to this work, for languages with greater-than-zero knowledge complexity (and speci�-cally, even for knowledge complexity 1) only trivial computational complexity bounds (i.e.,recognizability in PSPACE = IP) were known.We recall that BPPNP is contained in the third level of the polynomial-time hierarchy(PH). It is believed that PH is a proper subset of PSPACE. Thus, assuming PH �6=PSPACE, our result yields the �rst proof that there exist languages in PSPACE whichcannot be proven by an interactive-proof that yields O(log n) bits of knowledge. In otherwords, there exist languages which do have interactive proofs but only interactive proofswith super-logarithmic knowledge-complexity.Prior to our work, there was no solid indication that would contradict the possibility thatall languages in PSPACE have interactive-proofs which yield only one bit of knowledge.In the course of proving this result we have developed two tools which are importantresults on their own.First, we develope a universal almost uniform generator. This is a probabilistic machinewhich is given a set S 2 NP and a positive integer n and the machine samples \almost"uniformly in S \ f0; 1gn (almost means that the output distribution has exponentially smallNorm-1 distance from the uniform distribution). We show that this generator can be run byan e�cient machine that has access to an NP oracle.A second result, which we develope and use in our proof, is a relation between statis-tical knowledge-complexity and perfect knowledge-complexity; speci�cally, we show that,for the honest veri�er, these hierarchies coincide, up to a logarithmic additive term (i.e.,SKC(k(�)) � PKC(k(�) +O(log(�)))). 1



In the second part of this dissertation, we study the hardness of approximation algo-rithms. We re�ne the complexity analysis of approximation problems by relating it to a newparameter called gap location. Many of the results obtained so far for approximations yieldsatisfactory analysis with respect to this re�ned parameter, but some known results (e.g.,max-k-colorability, max 3-dimensional matching and max not-all-equal 3sat)fall short of doing so. As a second contribution, our work �lls the gap in these cases bypresenting new reductions.Next, we present de�nitions and hardness results of new approximation versions of someNP-complete optimization problems. The problems we treat are vertex cover (for whichwe de�ne a di�erent optimization problem from the one treated in [PY-91]), k-edge col-oring, and set splitting.
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List of Symbols and AbbreviationsSymbol/Abbreviation MeaningPKC(k(�)) : : : : : : : : : The class of languages which have perfect knowledgecomplexity k(�).SKC(k(�)) : : : : : : : : : The class of languages which have statistical knowledgecomplexity k(�).CKC(k(�)) : : : : : : : : : The class of languages which have computational knowledgecomplexity k(�).AM : : : : : : : : : : : : : : : The class of languages which have a constant round ArthurMerlin protocols.IP : : : : : : : : : : : : : : : : : The class of languages which can be proven byan interactive proof.HP : : : : : : : : : : : : : : : : The polynomial time hierarchyU [B] : : : : : : : : : : : : : : : The uniform distribution over a �nite set B.Negligible : : : : : : : : : : A fraction which is asymptotically smaller than the reciprocalof any polynomial.OPT (I) : : : : : : : : : : : : The value of the optimal solution for a problem insance I.
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Chapter 1IntroductionIn this dissertation, we present research conducted in two areas in Computer Science: In-tercative Proofs and the Hardness of Approximations. Originally, the goal of this researchwas to explore the properties of languages according to the knowledge complexity of theirinteractive proofs. Indeed the �rst part of this dissertation describes the results we haveobtained in this �eld. However, the fascinating conncetion recently discovered between in-teractive proofs and the hardness of approximations, which led to a solution of many longstanding open problems related to the hardness of approximations, enticed us into exploringthe connection between the two areas. Eventually, the results we have achieved in this areadid not concern the connection between interactive proofs and the hardness of approxima-tions, but were more speci�c to studying the hardness of approximations. This study appearsin the second part of this dissertation.Since the two di�erent works are not directly connected, the rest of this dissertation ispractically partitioned into two. In what follows we introduce each of the areas. The con-nection between the two areas is described while introducing the hardness of approximations(see Section 1.2).1.1 Knowledge ComplexityThe notion of knowledge-complexity was introduced in the seminal paper of GoldwasserMicali and Racko� [GMR-85, GMR-89]. Knowledge-complexity (KC) is intended to measurethe computational advantage gained by interaction. Satisfactory formulations of knowledge-complexity, for the case that it is not zero, have recently appeared in [GP-91]. A natural4



suggestion, made by Goldwasser, Micali and Racko�, is to classify languages according tothe knowledge-complexity of their interactive-proofs [GMR-89]. We feel that it is worthwhileto give this suggestion a fair try.The lowest level of the knowledge-complexity hierarchy is the class of languages havinginteractive proofs of knowledge-complexity zero, better known as zero-knowledge. Actually,there are three hierarchies extending the three standard de�nitions of zero-knowledge; namelyperfect, statistical and computational. Let us denote the corresponding hierarchies by PKC(�),SKC(�), and CKC(�). Assuming the existence of one-way functions, the third hierarchycollapses, namely CKC(0) = IP = CKC(poly) [GMW-86, IY-87, B+-88]. Put di�erently,the zero level of computational knowledge-complexity extends to the maximum possible.Anyhow, in the rest of this work we will be only interested in the other two hierarchies.Previous works have provided information only concerning the zero level of these hierar-chies. Fortnow has pioneered the attempts to investigate the computational complexity of(perfect/statistical) zero-knowledge [F-89], and was followed by Aiello and Hastad [AH-87].Their results can be summarized by the following theorem that bounds the computationalcomplexity of languages having zero-knowledge proofs.Theorem [F-89, AH-87]: SKC(0) � AM\ co-AMHence, languages having statistical zero-knowledge must lie in the second level of thepolynomial-time hierarchy. Needless to say that PKC(k(�)) � SKC(k(�)), for any function kand in particular for k � 0.On the other hand, if we allow polynomial amount of knowledge to be revealed, then everylanguage in IP can be proven.Theorem [LFKN-90, Sha-90]:PKC(poly(�)) = IP = PSPACEAs indicated in [GP-91], the �rst equality is a property of an adequate de�nition (of knowl-edge complexity) rather than a result.In this work we study the class of languages that have interactive-proofs with logarith-mic knowledge-complexity. In particular, we bound the computational complexity of such5



languages, showing that they can be recognized by probabilistic polynomial-time machineswith access to an NP oracle.Main Theorem: SKC(O(log(�))) � BPPNPWe recall that BPPNP is contained in the third level of the polynomial-time hierarchy(PH). It is believed that PH is a proper subset of PSPACE. Thus, assuming PH �6=PSPACE, our result yields the �rst proof that there exist languages in PSPACE whichcannot be proven by an interactive-proof that yields O(log n) bits of knowledge. In otherwords, there exist languages which do have interactive proofs but only interactive proofswith super-logarithmic knowledge-complexity.Prior to our work, there was no solid indication that would contradict the possibility thatall languages in PSPACE have interactive-proofs which yield only one bit of knowledge.Our proof of the Main Theorem consists of two parts. In the �rst part, we develope a pro-cedure for recognizing languages having interactive proofs of logarithmic perfect knowledgecomplexity. To this end, we develope a tool called \the universal almost uniform genera-tor". (We elaborate on this notion in Subsection 1.1.2 below). In the second part of ourproof we transform interactive proofs of statistical knowledge complexity k(n) into interac-tive proofs of perfect knowledge complexity k(n)+O(log n). This transformation refers onlyto knowledge-complexity with respect to the honest veri�er, but this su�ces since the �rstpart of our proof applies to the knowledge-complexity with respect to the honest veri�er.Yet, the transformation is interesting for its own sake, and a few words are in place.1.1.1 The Realtion of Statistical to Perfect Knowledge Complex-ityThe question of whether statistical zero-knowledge equals perfect zero-knowledge is one ofthe better known open problems in this area. The question has been open also for the caseof zero-knowledge with respect to the honest veri�er. We show the following.Theorem: For every poly-time computable function k :N 7!N (and in particular for k � 0)SKC(k(�)) � PKC(k(�) +O(log(�)))This result may be considered an indication that these two hierarchies may collide.6



1.1.2 E�cient Almost Uniform GenerationA technique underlying our main result is to generate almost random elements of a set inprobabilistic, polynomial time with an NP oracle. As this might be of independent interest,let us describe the result in more detail.Let S � f0; 1g� be a set veri�able in polynomial time (i.e., S 2 NP), and let Sn =S \ f0; 1gn. The uniform generation problem is to generate, on input 1n, an element of Sndistributed uniformly at random. Jerrum, Valiant, and Vazirani [JVV-86], using results ofStockmeyer [St-83] on approximate counting, showed that uniform generation can be donein probabilistic, polynomial time with a �P2 oracle.For our applications we would like a lower complexity than PPT with a �P2 oracle. Onthe other hand, we could tolerate a slight deviation from uniform of the output distribution.Accordingly, we consider the problem of almost uniform generation: on input 1n and � > 0generate a random element from a distribution within distance � of the uniform distributionon Sn (the distance between distributions E1 and E2 is de�ned as 12 Px jPrE1[x]�PrE2[x]j).If � = n�c for some �xed constant c then techniques from Impagliazzo, Levin and Luby[ILL-89] can be used to do almost uniform generation in probabilistic, polynomial (in n) timewith an NP oracle. However (for applications in this work in particular) we would like to beable to achieve values of � which are exponentially (in n) small, in the same complexity. Weshow that this can be done.Theorem: Let S 2 NP. Then there is a probabilistic oracle machine A which on input 1nand � > 0 runs in time polynomial in n and lg ��1, and has the property that the distributionANP (1n; �) is within distance � of the uniform distribution on Sn.The special case in which S is decidable in polynomial time (i.e. S 2 P) is important onits own and speci�cally, in this work we use the almost uniform generator only for sets in P.In Theorem 2.5 we actually prove something a little stronger: the almost uniform gener-ation is \universal" (in the sense that A does not depend on S but rather gets a descriptionof S as an input).This result is established by combining techniques from Jerrum, Valiant and Vazirani[JVV-86] and Stockmeyer [St-83] with Carter-Wegman universal hash function [CW-79]based techniques for estimating set sizes (Sipser [Si-83]). The details are in Section 2.2.1.7



1.1.3 Motivation for studying KCIn addition to the self-evident fundamental appeal of knowledge complexity, we wish to pointout some practical motivation for considering knowledge-complexity greater than zero. Inparticular, cryptographic protocols that release a small (i.e., logarithmic) amount of knowl-edge may be of practical value, especially if they are only applied once or if one can obtainsub-additive bounds on the knowledge complexity of their repeated executions. Note thattypically, a (single application of a) sub-protocol leaking logarithmically many bits (of knowl-edge) does not compromise the security of the entire protocol. The reason being that these(logarithmically many) bits can be guessed with non-negligible probability, which in turnmeans that any attack due to the \leaked bits" can be simulated with non-negligible proba-bility without them.But why use low knowledge-complexity protocols when one can use zero-knowledge ones(see, [GMW-86, GMW-87])? The reason is that the non-zero-knowledge protocols may bemore e�cient and/or may require weaker computational assumptions (see, for example,[OVY-90]).1.1.4 RemarksA remark concerning two de�nitions. Throughout this work, SKC(k(�)) and PKC(k(�))denote the classes of knowledge-complexity with respect to the honest veri�er. Note thatthe Main Theorem is only strengthen by this, whereas the transformation from statisticalto perfect knowledge complexity (mentioned above) is indeed weaker. Furthermore, by aninteractive proof we mean one in which the error probability is negligible (i.e., smaller thanany polynomial fraction). A few words of justi�cation appear in Section 2.1.1.A remark concerning Fortnow's paper [F-89]. In course of this research, we found outthat the proof that SKC(0) � co-AM as it appears in [F-89] is not correct. In particular,there is a 
aw in the AM-protocol presented in [F-89] for the complement language (seeSection 2.6). However, the paper of Aiello and Hastad provides all the necessary machineryfor proving Fortnow's result as well [AH-87, H-94]. Needless to say that the basic approachpresented by Fortnow (i.e., looking at the \simulator-based prover") is valid and has inspiredall subsequent works (e.g., [AH-87, BMO-90, Ost-91, BP-92a, OW-93]) as well as the currentone. 8



1.2 The Hardness of ApproximationsThe importance of approximation algorithms became evident in the early 70's, when it wasdiscovered that unless P=NP (which is very unlikely) many important optimization prob-lems cannot be solved precisely in polynomial time [Coo-71, Kar-72]. The practical needto solve these problems led researchers to relax the precision requirement and try to �ndapproximation algorithms to these problems. Let � be a maximization (resp. minimization)problem, and let OPT (I) be the precise solution of an instance I. We say that an approxi-mation algorithm, A, approximates � to within a ratio of 1� � (resp. 1+ �) if for any input,I, A outputs a number A(I) which satis�es (1� �)OPT (I) � A(I) � OPT (I) (respectivelyOPT (I) � A(I) � (1 + �)OPT (I) for minimization problems).It was soon discovered that some problems were easy to approximate. For problemsas BIN PACKING and KNAPSACK it was even possible to construct a polynomial timeapproximation scheme (a polynomial time approximation scheme is a family of algorithms,one for each � > 0, such that A� approximates the optimization problem to within a ratio of1� � for maximization problems and 1+ � for minimization problems). For a second class ofproblems, like MAX-SAT, VERTEX COVER or metric TRAVELLING SALESMAN, it waspossible to construct a polynomial time algorithm that approximated the correct solutionto within some constant ratio, but no polynomial time approximation scheme was found forthese problems. For the last set of problems, such as MAXIMUM CLIQUE or MINIMUMGRAPH COLORABILITY, even poor approximation algorithms could not be found.Lower bounds on the possibility of constructing polynomial time algorithms (even assum-ing P6=NP) were hardly known. Interesting such results concerning GRAPH COLORING,TRAVELLING SALESMAN (without the triangle inequality) and MAXIMUM CLIQUEcan be found in [GJ-79] and [SG-76]. In a paper, that turned out to be somewhat prophetic,Papadimitriou and Yannakakis [PY-91] de�ned a class of optimization problems called MAX-SNP. They showed that all the problems in this class can be approximated to within someconstant ratio. They also presented some very interesting problems that were hard for thisclass. That is, if a MAX-SNP-Hard problem has a polynomial time approximation schemethen all problems in MAX-SNP have polynomial time approximation schemes. The classMAX-SNP-Hard contains problems as MAX-3SAT-B, INDEPENDENT-SET-B, VERTEX-COVER-B, MAX-CUT, MAX-k-COLORABILITY [PY-91], metric TRAVELLING SALES-MAN [PY-92], STEINER TREE [BP-89] SHORTEST SUPERSTRING[BJLTY-90], MUL-9



TIWAY CUTS [DJPSY-92] and bounded 3-DIMENSIONAL MATCHING [Kan-91].Meanwhile, with no apparent connection, the research in the area of interactive proofswas making a rapid progress. The research was initiated by Goldwasser Micali and Racko�[GMR-89] and Babai [Bab-85]. The extended model of multi-provers interactive proofs wassuggested by Ben-Or, Goldwasser, Kilian, and Wigderson [BGKW-88], and was shown equiv-alent to the model of transparent proofs [FRS-88]. It was then discovered that the languages,for which interactive proofs exist, are exactly the languages in PSPACE [LFKN-90, Sha-90]and that languages, for which multi-provers interactive proofs exist, are exactly the languagesin NEXP-TIME.Feige, Goldwasser, Lovasz, Safra, and Szegedi [FGLSS-91] were the �rst to observe theconnection between transparent proofs and the hardness of approximations. They were ableto show that if there exists a polynomial time algorithm which approximates MAXIMUMCLIQUE to within a factor 2log1�� n then all languages in NP can be determined in almostpolynomial deterministic time. Their result was improved by Arora and Safra [AS-92],who showed that if there exists a polynomial time algorithm that approximates the cliqueproblem to within a ratio of 2logn=(log logn)O(1) then P=NP. The following work, by Arora,Lund, Motwani, Sudan, and Szegedi [ALMSS-92], improved over this result by showing thatno polynomial time algorithm can approximate MAXIMUM CLIQUE to within a ratio ofn� for some � > 0 unless P=NP. They were also able to show (using the same techniques)another important result, namely, that unless P6=NP there exists a constant � such thatno polynomial time algorithm can approximate MAX-3SAT to within a ratio of 1 � �. Asthis problem is a member of MAX-SNP, this result implies that no problem in MAX-SNP-Hard has a polynomial time approximation scheme unless P=NP. Lund and Yannakakis haveshown two additional lower bounds. They showed that unless P=NP, no polynomial timealgorithm can approximate MINIMUMGRAPH COLORABILITY to within a ratio of n� forsome constant � > 0, and that unless NP�DTIME[npoly logn], no polynomial time algorithmapproximates SET COVER to within a ratio of c log2N for any constant 0 < c < 14 (here Nstands for the cardinality of the set that has to be covered). Recently, the second result wasimproved by Bellare, Goldwasser, Lund, and Russel [BGLR-93] by reducing the assumptionto NP6�DTIME[nlog logn].In this work, we relate the study of approximation algorithms to a new parameter calledthe gap location. Let us begin by presenting a partition of the class of optimization problemsinto two categories. We later introduce the notion of gap location which refers to the second10



category.1.2.1 Two categories of optimization problemsGenerally, an optimization problem consists of a set of instances and a function f : f0; 1g��f0; 1g� ! IR that assigns, for each instance I and each candidate solution �, a real numberf(I; �) called the value of the solution �. The optimization task is to �nd a solution � toa problem instance I such that f(I; �) is the largest possible over all � 2 f0; 1g�. We saythat an algorithm A approximates a maximization (resp. minimization) problem � to within1 � � (resp. 1 + �) if, for every instance I of � whose optimal solution has value OPT (I),the output of A on I satis�es (1 � �)OPT (I) � A(I) � OPT (I) (resp. OPT (I) � A(I) �(1+ �)OPT (I)). Most natural optimization problems are associated with a decision problemin NP. We have a relation R � f0; 1g� � f0; 1g� which is checkable in polynomial time (i.e.,given (I; �) it is possible to check in time polynomial in jIj whether (I; �) 2 R), and we call� a valid solution to an input I if (I; �) 2 R. The decision problem is whether or not thereexists a valid solution to the input I. Two natural categories of corresponding optimizationproblems follow.1. The Largest Solution.Here, we associate valid solutions with some natural \size" which we would like tomaximize/minimize. More formally, we are trying to maximize the functionf(I; �) = 8><>: size(�) if (I; �) 2 R�1 otherwisewhere size(�) is a function which depends on the problem and can be e�ciently ex-tracted from � (usually, size(�) is the number of elements encoded in the solution �).We replace �1 by +1 when a minimization problem is involved. Two examples inthis category are max clique, in which we are looking for the size of the largest cliquein the input graph, and min coloring, in which we would like to �nd the minimumnumber of colors required to color the input graph such that no two adjacent verticeshave the same color.2. The Quality of the Solution.Here, we assume that the condition (I; �) 2 R contains a large (yet polynomiallybounded) number of natural \sub-conditions" and our task is to �nd the maximum11



number of sub-conditions that can be satis�ed by a single (i.e., the best) solution. Inthis category, we have max-sat, in which we are trying to �nd the maximum numberof clauses that can be satis�ed by an assignment to the input formula, and max 3-colorability, in which we are trying to �nd the maximum number of consistentedges in a 3-coloring of the input graph. (We call an edge in a graph G consistent withrespect to a 3-coloring of G if its two adjacent vertices are assigned di�erent colors.)Note that, in this setting, the best solution of an instance I is not necessarily a validsolution, since there are instances that do not have a valid solution. Also, A solution �is a valid solution of an instance I ((I; �) 2 R) i� � satis�es all sub-conditions impliedby I.Approximation problems can be partitioned in the samemanner and so can results concerningthe di�culty of approximations. The �rst category contains problems such as approximatingthe size of the biggest clique in the input graph (the hardness of this problem was shown by[FGLSS-91, AS-92, ALMSS-92]), or the minimum number of colors needed to properly colorthe input graph (see [LY-92]). The second category includes problems such as approximatingthe maximum number of clauses that can be simultaneously satis�ed in an input formula[ALMSS-92], or approximating the maximumnumber of consistent edges in a best 3-coloringof the input graph (Papadimitriou & Yannakakis 1991). (see [PY-91]).The gap location parameter is a natural measure which arises when analyzing the hard-ness of approximation problems in the second category.1.2.2 The gap-location parameterPractically all researchers in the area noticed the connection between the hardness of approx-imating a problem and the existence of a \gap" that is hard to di�erentiate. For example,the hardness of approximating max-sat was shown by proving that there exists a constant�0 > 0 such that, unless P=NP, one can not distinguish in polynomial time between formu-lae for which all clauses can be satis�ed and formulae for which only a fraction 1 � �0 ofclauses can be satis�ed [ALMSS-92]. The L-reductions that were used by Papadimitriou &Yannakakis [PY-91], preserve the existence of such gaps and thus, polynomial time insepa-rable gaps appear in all max-snp-hard problems. This implies that these problems have nopolynomial time approximation schemes. Loosely speaking, a hard gap for an optimizationproblem � consists of two reals 0 � �0; �0 � 1 such that, given an instance I of �, it is12



NP-hard to tell whether I has a solution that satis�es at least a fraction �0 of the sub-conditions posed by I or whether any solution of I satis�es at most a fraction �0 � �0 ofthe sub-conditions posed by I. Such a hard gap is said to have location �0. For example,the hard gap proven for max-sat has location 1. Let us �rst argue that the \location" ofthe hard gap shown for max-sat is the \right" one and then explain why there are someproblems whose proofs of hardness are weaker in this respect.Our main interest lies in the original question of satis�ability, i.e., in telling whether aformula ' has an assignment that satis�es all its clauses or not. It is therefore interestingto see that we cannot solve even the easier question of whether all the clauses of ' can besatis�ed (simultaneously) or whether any assignment to ' satis�es at most a fraction 1� �0of its clauses. It would be somewhat arti�cial (and clearly of lesser interest) to show that itis impossible to tell whether a formula ' has an assignment that satis�es more than 2=3 ofits clauses or whether no assignment to ' satis�es more than 2=3��0 of its clauses, althoughshowing this would still imply the hardness of approximating max-sat (i.e., approximatingthe maximum number of simultaneously satis�ed clauses). Furthermore, the intuition aboutthe \right" location of the hard gap coincides with the power of such a result. Namely, formax-sat, the existence of a hard gap at location 1 implies the existence of a hard gap at anylocation 1=2 < � � 1. That is, the fact that one cannot tell in polynomial time whether aformula has an assignment that satis�es all its clauses or whether all assignments to ' satisfyat most a fraction 1 � �0 of its clauses implies the fact that one cannot tell in polynomialtime whether a formula has a satisfying assignment that satis�es more than a fraction � ofits clauses or whether any assignment to ' satis�es at most a fraction � � �� of its clauses,where �� is a constant that depends only on �0 and �. (This can be shown by a paddingargument. Namely, use enough new variables y1; : : : ; yl and add the clauses (yi) and (yi),1 � i � l, to the original formula.) There are no hard gaps at locations 0 � � � 1=2 sinceany formula has an assignment that satis�es at least half of its clauses. We conclude that, inthis respect, the proof of the hardness of approximating max-sat is the strongest possible.We conjecture a generalization of this example. Suppose we have a \natural" optimizationproblem that seeks the quality of the best solution. We conjecture that showing a hard gapat location �0 = 1 can be used to prove the existence of hard gaps in all other locations (inwhich they exist).In previous works, hard gaps are not always shown at location �0 = 1. For example,recall that in max k-colorability, we look for the maximum number of consistent edges13



in a k-coloring of the input graph. The interesting original problem (for k � 3) is to tellwhether a graph G(V;E) is k-colorable or not. Relaxing the precision requirement, we wouldlike to know if it is easier to tell whether G has a k-coloring, for which all jEj edges in G areconsistent, or whether for all k-colorings of G at most (1 � �)jEj edges are consistent. Canthis relaxation be determined in polynomial time for any constant �? This question was notconsidered before. Instead, following the gap-preserving L-reductions used by Papadimitriou& Yannakakis [PY-91], we get that there are constants 0 < �0; �0 < 1 such that, unlessP=NP, it is not possible to tell in polynomial time whether a given graph G(V;E) has ak-coloring with more than �0jEj consistent edges, or whether for any k-coloring of G atmost (�0 � �0)jEj edges are consistent. Using this hard gap we can indeed say that there isno polynomial time approximation scheme for max k-colorability unless P=NP, but thehardness of the interesting gap (i.e., �0 = 1) remains open.The importance of the gap at location �0 = 1 can also be expressed in terms of theanalogous search problem. The implication of the result of [PY-91] is that given a graph G,we cannot �nd a k-coloring of G that is as close as desired to the optimal solution (unlessP=NP). But, suppose we are given a k-colorable graph and we would like to color it suchthat as many edges as possible are consistent. There is no evidence given in [PY-91] to showthat we cannot achieve this task in polynomial time such that the number of consistent edgesis greater than (1 � �)jEj for any constant �.1.2.3 Summary of resultsThe hardness of �nding a k-coloring that has \almost" as many consistent edges as possible,for k-colorable graphs, is implied by our showing a hard gap at location 1 for max k-colorability (for all k � 3). We thus settle the problem raised in the previous subsection.In our proof, we use a di�erent reduction than the one in [PY-91]). Two other problemsthat were previously shown hard to approximate using a gap location di�erent from 1 are3-dimensional matching [Kan-91] and not-all-equal-3sat [PY-91]. We strengthenthese results by showing that these problems indeed possess a hard gap at location 1.Last, we de�ne new approximation versions of some known NP-complete problems, inthe spirit of approximating the quality of the best solution. In particular, we de�ne approx-imation versions of:� vertex cover [Kar-72]. Note that the version that was treated by Papadimitriou &14



Yannakakis [PY-91] is in the spirit of the largest solution. We treat the version thatseeks the quality of the best solution.� k-edge colorability (chromatic index) [Hoy-81, LG-83]. In this case, it is nothard to approximate the size of the smallest solution since there is a polynomial timealgorithm that colors the edges of a graph of degree k with k + 1 colors (Vizing'sTheorem, see [Ber-73]). Again, we treat the version that seeks the quality of the bestsolution (i.e., a best k edge-coloring of a k-degree graph).� set splitting [Lov-73].We show that all these problems possess a hard gap at gap-location 1.1.2.4 Summary of the motivation for proving hardness at gap-location 1To complete the discussion, we summarize the arguments that motivate showing a hard gapat location 1. We provide four motivating arguments, as follows.1. The relation to the decision problem. Recall that the original decision problemwas to distinguish between instances for which all subconditions can be satis�ed andinstances for which not all subconditions can be satis�ed. Showing a hard gap atlocation 1 implies the hardness of the relaxation of the original problem in whichwe have to distinguish between instances for which all subconditions can be satis�edand instances for which all solutions are \far from" satisfying all subconditions. Thisimplication on the relaxation of the original problem does not follow from hard gapsin other locations. We believe that this implication is fundamental: the approximationtask is initially meant to relax the hardness of the original task, therefore, we wouldexpect that the hardness of approximation should imply the hardness of the relaxationof the original task.2. The relation to the search problem. Suppose we are given instances which satisfythe original decision problem (i.e., there exists a solution that satis�es all their sub-conditions), and we would like to �nd a solution that satis�es as many subconditionsas possible. For example, given a 3-colorable graph G, �nd a 3-coloring of G with asmany as possible consistent edges. As discussed in Section 1.2.2, a hard gap at location15



1 implies the NP-hardness of �nding a solution which is even \close" to the optimalsolution. A hard gap at any location other than 1 does not imply the hardness of thissearch task.3. The hardness of the complementary minimization problem. Consider thecomplementary minimization problem in which we try to �nd the minimum (over allpossible solutions) of the number of subconditions that are not satis�ed. A hard gap atlocation 1 for our maximization problem implies that it is NP-hard to approximate thiscomplementary minimization problem to within any ratio. This implication followsfrom the fact that it is NP-hard to tell between instances having a minimum of 0subconditions not satis�ed and instances having a minimum of a constant fractionof the subconditions not satis�ed. This strong implication on the hardness of thecomplementary problem does not follow from the existence of a hard hard gap at anyother location. (Note that this implication follows also from the NP-hardness of thedecision problem, however, it is not implied by a hard gap at any location other than1.)4. Strength of the result (given our conjecture). We conjecture that for naturalproblems, showing a hard gap at location 1 implies a hard gap at all other possiblelocations. As will be explained in Section 3.1, the converse is not generally true.Namely, there exist problems having a hard gap at a location other than 1 which donot have a hard gap at location 1 at all. Therefore, given our conjecture, showing ahard gap at location 1 is the strongest possible result in this respect.1.2.5 Related resultsQuadratic equations over the rationals. A related problem possessing a hard gap atlocation 1 is max-qer: given a set of quadratic equations with rational coe�cients, �nd themaximum number of equations satis�ed, over all rational assignments to the variables. Weinclude a simple proof of this fact which is due to Bellare & Petrank [BP-92b], Theorem 5.7.The same problem when the �eld is GF (p) (p a prime) was considered by H�astad, Phillips,and Safra [HPS-93]; they showed that if P 6= NP, then max-qe(p) cannot be approximatedto within a factor of 1p�(1=poly). 16



k-coloring. Most problems shown as having a hard gap in this paper have related positiveresults asserting that it is possible to approximate them to within some constant ratio inpolynomial time. A di�erent kind of positive result was given by Alon et al. [ADLRY-92].They showed that for any � > 0, there is a polynomial time algorithm that, given k-colorablegraphs having jEj = 
(jV j2), �nds a k-coloring in which the number of consistent edgesexceeds (1� �)jEj. This does not contradict our impossibility result for the general case andit is interesting to note that the graphs output by our reduction (which shows a hard gap formax k-colorability) have their number of edges linear in their number of vertices. Theexistence of hard gaps (or approximation schemes) for graphs having jEj neither quadraticnor linear in jV j remains open.1.3 OrganizationThe rest of this dissertation goes as follows. In Chapter 2, we present our work on knowledgecomplexity. In Chapter 3, we present our work on the hardness of approximations.Chapter 2: In Section 2.1 we present the preliminary de�nitions we need for this work. Wefollow in Section 2.2 with presenting a basic tool for the proof of our main result: We buildthe universal almost uniform generator and show how to use it to build the simulation basedprover. In Section 2.3 we prove our main result for the case of perfect knwoledge complexity.In Section 2.4 we relate statistical knowledge complexity to perfect knowledge complexity.In particular, this relation implies the validity of our main result for statistical knowledgecomplexity. In Section 2.5 we consider interactive proofs with error probability which is notnegligible. We show how our techniques yield non-trivial results also with respect to sucherror probabilities. In the next section (Section 2.6) we explain why the protocol given in[F-89] is not valid, and we explicitly give a counter example on which the protocol fails.In the last section of the chapter on knowledge complexity, (Section 2.7) we make someconcluding remarks on the relation of knowledge compelxity to computational complexityand present a few interesting open problems.Chapter 3: In Section 3.1 we de�ne the gap location parameter, and follow by a discussionof its properties. In Section 3.2 we show a hard gap for k-colorability at gap location1. In Section 3.3 we show a hard gap at location 1 for max nae 3sat and max 3dm.Last, in Section 3.4 we present approximation versions of NP-Hard problems, which were17



not considered before, and discuss the hardness of approximating them.
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Chapter 2Knowledge Complexity andComputational Complexity2.1 PreliminariesLet us state some of the de�nitions and conventions we use in this part of the dissertation.Throughout this work we use n to denote the length of the input x. A function f : N! [0; 1]is called negligible if for every polynomial p and all su�ciently large n's f(n) < 1p(n) .2.1.1 Interactive proofsLet us recall the concept of interactive proofs, presented by [GMR-89]. For formal de�ni-tions and motivating discussions the reader is referred to [GMR-89]. A protocol between a(computationally unbounded) prover P and a (probabilistic polynomial-time) veri�er V con-stitutes an interactive proof for a language L if there exists a negligible function � : N! [0; 1]such that1. Completeness: If x 2 L thenPr [(P; V )(x) accepts ] � 1� �(n)2. Soundness: If x 62 L then for any prover P �Pr [(P �; V )(x) accepts ] � �(n)Remark: Usually, the de�nition of interactive proofs is robust in the sense that setting theerror probability to be bounded away from 12 does not change their expressive power, since19



the error probability can be reduced by repetitions. However, this standard procedure is notapplicable when knowledge-complexity is measured, since (even sequential) repetitions mayincrease the knowledge-complexity. The question is, thus, what is the right de�nition. Thede�nition used above is quite standard and natural; it is certainly less arbitrary then settingthe error to be some favorite constant (e.g., 13) or function (e.g., 2�n). Yet, our techniquesyield non-trivial results also in case one de�nes interactive proofs with non-negligible errorprobability (e.g., constant error probability). For example, languages having interactiveproofs with error probability 1=4 and perfect knowledge complexity 1 are also in BPPNP.For more details see Section 2.5. Also note that we have allowed two-sided error probability;this strengthens our main result but weakens the statistical to perfect transformation1.2.1.2 Knowledge ComplexityThroughout the rest of the paper, we refer to knowledge-complexitywith respect to the honestveri�er; namely, the ability to simulate the (honest) veri�er's view of its interaction with theprover. (In the stronger de�nition, one considers the ability to simulate the point of view ofany e�cient veri�er while interacting with the prover.)We let (P; V )(x) denote the random variable that represents V 's view of the interactionwith P on common input x. The view contains the veri�er's random tape as well as thesequence of messages exchanged between the parties.We begin by brie
y recalling the de�nitions of perfect and statistical zero-knowledge. Aprotocol (P; V ) is perfect zero-knowledge (resp., statistical zero-knowledge) over a language Lif there is a probabilistic polynomial time simulatorM such that for every x 2 L the randomvariableM(x) is distributed identically to (P; V )(x) (resp., the statistical di�erence betweenM(x) and (P; V )(x) is a negligible function in jxj).Next, we present the de�nitions of perfect (resp., statistical) knowledge-complexity whichwe use in the sequel. These de�nitions extend the de�nition of perfect (resp., statistical) zero-knowledge, in the sense that knowledge-complexity zero is exactly zero-knowledge. Actually,there are two alternative formulations of knowledge-complexity, called the oracle version andthe fraction version. These formulations coincide at the zero level and di�er by at most an1Suppose you had a transformation for the one-sided case. Then, given a two-sided interactive proofof some statistical knowledge complexity you could have transformed it to a one-sided error proof of thesame knowledge complexity (cf., [GMS-87]). Applying the transformation for the one-sided case would haveyielded an even better result. 20



additive constant otherwise [GP-91]. For further intuition and motivation see [GP-91]. Itwill be convenient to use both de�nitions in this paper2.By the oracle formulation, the knowledge-complexity of a protocol (P; V ) is the numberof oracle (bit) queries that are needed to simulate the protocol e�ciently.De�nition 2.1 (knowledge complexity | oracle version): Let k: N ! N. We say that aninteractive proof (P; V ) for a language L has perfect (resp., statistical) knowledge complexityk(n) in the oracle sense if there exists a probabilistic polynomial time oracle machine M andan oracle A such that:1. On input x 2 L, machine M queries the oracle A for at most k(jxj) bits.2. For each x 2 L, machine MA produces an output with probability at least 12 , and giventhat MA halts with an output, MA(x) is identically distributed (resp., statistically close)to (P; V )(x).In the fraction formulation, the simulator is not given any explicit help. Instead, onemeasures the density of the largest subspace of simulator's executions (i.e., coins) which isidentical (resp., close) to the (P; V ) distribution.De�nition 2.2 (knowledge complexity | fraction version): Let �: N! (0; 1]. We say that aninteractive proof (P; V ) for a language L has perfect (resp., statistical) knowledge-complexitylog2(1=�(n)) in the fraction sense if there exists a probabilistic polynomial-time machine Mwith the following \good subspace" property. For any x 2 L there is a subset of M 's possiblerandom tapes Sx, such that:1. The set Sx contains at least a �(jxj) fraction of the set of all possible coin tosses of M(x).2. Conditioned on the event that M(x)'s coins fall in Sx, the random variable M(x) isidentically distributed (resp., statistically close) to (P; V )(x). Namely, for the perfectcase this means that for every �cProb(M(x; !)=�c j!2Sx) = Prob((P; V )(x)=�c)where M(x; !) denotes the output of the simulator M on input x and coin tosses sequence!.2The analysis of the [BP-92a] procedure is easier when using the fraction version, whereas the transfor-mation from statistical to perfect is easier when using the oracle version.21



As mentioned above, these two measures are almost equal.Theorem [GP-91]: The fraction measure and the oracle measure are equal up to an additiveconstant.Since none of our results is sensitive to a di�erence of an additive constant in the measure, weignore this di�erence in the subsequent de�nition as well as in the statement of our results.De�nition 2.3 (knowledge complexity classes):� PKC(k(�)) = languages having interactive proofs of perfect knowledge complexity k(�).� SKC(k(�)) = languages having interactive proofs of statistical knowledge complexity k(�).2.1.3 The simulation based proverAn important ingredient in our proof is the notion of a simulation based prover, introducedby Fortnow [F-89]. Consider a simulator M that outputs conversations of an interactionbetween a prover P and a veri�er V . We de�ne a new prover P �, called the simulation basedprover, which selects its messages according to the conditional probabilities induced by thesimulation. Namely, on a partial history h of a conversation, P � outputs a message � withprobability Prob(P �(h)=�) def= Prob(Mjhj+1=h�� ���Mjhj=h)where Mt denotes the distribution induced by M on t-long pre�xes of conversations. (Here,the length of a pre�x means the number of messages in it.)It is important to note that the behavior of P � is not necessarily close to the behaviorof the original prover P . Speci�cally, if the knowledge complexity is greater than 0 andwe consider the simulator guaranteed by the fraction de�nition, then P � and P might havequite a di�erent behavior. One of our main objectives will be to show that even in this caseP � still behaves in a manner from which we can bene�t. Another main objective will be toshow that this entity can be implemented by an e�cient machine that has access to an NPoracle. This objective is addressed in the following section.2.2 Universal Almost Uniform GenerationIn this section, we present an important tool in the proof of our main result: the universalalmost uniform generator. We believe that this generator is useful also in other settings, and22



in fact, it has already been used in papers that followed this work (see [BFK-95, ABV-95]). Inthis section, we show an e�cient implementation of the universal almost uniform generator.2.2.1 De�nition and historyThe generator samples \almost uniformly" from a given set S 2 NP. The generator isuniversal in the sense that it is not built for a speci�c set S, but is given a descriptionof S in the input. The description of S is given to the sampler as an encoding hMi of anon-deterministic machine M that recognizes S. Alternatively, M is deterministic and hastwo inputs (r; w) and the set S is equal to:fr : 9w s.t. M accepts the input (r; w)g :For any set S in NP there exists a machine M that runs in time polynomial in jrj andcorresponds to S in the above manner. We denote Mn def= S \f0; 1gn and we denote by U [B]the uniform distribution over a �nite set B. We use Mn for the notation rather than Snas we are going to regard the set S in the sequel only by considering the machine M thatrecognizes it.De�nition 2.4 A universal almost uniform generator is a (probabilistic) machine A whichhas the property that A(1n; �; hMi) and U [Mn] are �-close (in norm-1), for all n 2 N; � > 0and Turing machines M .2.2.2 Our result and an overview of the proofOur result is the following.Theorem 2.5 There is a probabilistic, oracle machine U such that UNP is a universal almostuniform generator, and moreover, the running time of UNP on inputs 1n; �; hMi is polynomialin n; lg ��1 and TM(n).Here TM(n) denotes the maximum, over all r 2 f0; 1gn; w 2 f0; 1g�, of the running time ofM on input (r; w).A very important property of the procedure of Theorem 2.5 is that its running time ispolynomial in lg ��1 rather than polynomial in ��1, so that in time polynomial in n we canachieve exponentially small (in n) error. 23



We remark that even the special case in which we sample a set S 2 P is important,and in fact, we use Theorem 2.5 throughout this paper only for sets which are decidable inpolynomial time.The proof of Theorem 2.5 is derived by combining techniques from [JVV-86, St-83, Si-83].First, we build an approximate counter. The approximate counter of Stockmeyer [St-83] tookpolynomial time with a �P2 oracle. We begin by relaxing the requirement on the approximatecounter: we allow it to fail in approximating to within the required bounds with some smallprobability. We show that this relaxed version of approximate counting can be implementedin probabilistic polynomial timewith an NP oracle. Our construction uses hashing techniquessimilar to the ones used by Sipser [Si-83]. Once we have this approximate counter, weuse the probabilistic polynomial time reduction of Jerrum, Valiant and Vazirani [JVV-86]from uniform generation to approximate counting. The key observation now is the strengthof the [JVV-86] reduction: it is capable of sampling distributions within an exponentiallysmall distance from the uniform distribution, when given a primitive for estimating set sizes(namely approximate counting) that is only accurate to within the reciprocal of a polynomial.The reason that we do not achieve exactly the uniform distribution is that the approximatecounter fails with some (very small, but greater than 0) probability. The details follow.2.2.3 The constructionWe use universal hash functions [CW-79]. Let Hk;b denote the set of all a�ne transformationshA;� : f0; 1gk ! f0; 1gb given by hA;�(y) = Ay+� where A is a b-by-k matrix over GF[2] and� is a b-vector over GF[2], and the arithmetic is over GF[2]. The following lemma followsfrom Lemma 4.1 in Aiello-H�astad [AH-87], which in turn is based on ideas of Sipser [Si-83]and Babai [Bab-85].Lemma 2.6 Let b; k be positive integers, � > 0 and S � f0; 1gk. Let l = 16 lg(2��1).Select uniformly and independently hash functions h1; : : : ; h2l 2 Hk;b and set z def= 0b. Letthe random variable X equal the number of indices i for which h�1i (z) \ S 6= ;. Then theprobability that X > l is(1) � 1� � if jSj � 4 � 2b(2) � � if jSj � 14 � 2b.We remark that the choice z = 0b is arbitrary and selecting z to be any constant string inf0; 1gb will do as well. The notion of approximate counting to within a factor (1 + �) with24



success probability at most (1� �) is as follows (cf. [St-83]).De�nition 2.7 A universal approximate counter is a (probabilistic) machine C which, oninputs 1n; � > 0; � > 0; hMi outputs an estimate v which, with probability � 1 � �, satis�es11+� � jMnj � v � (1 + �) � jMnj.Let us now establish the result on approximate counting that we need.Theorem 2.8 There exists a probabilistic, oracle machine C such that CNP is a univer-sal approximate counter, and moreover, the running time of CNP on inputs 1n; �; �; hMi ispolynomial in n; ��1; lg ��1 and TM(n).Proof: The algorithm C is given in Figure 2.1. The idea behind it is as follows.We �rst look at Lemma 2.6 and derive an algorithm to approximate a set S (givenas hMi) to within a constant factor with success probability of 1 � �. We note that thecomputational bottle neck in running this algorithm is having to decide, given z; h; andhMi, whether h�1i (z) \ S 6= ;. A probabilistic polynomial time machine with an NP oraclecan decide whether h�1i (z)\ S 6= ; since an NP oracle can determine whether there exists apair (r; w) for which h(r) = z and M accepts (r; w). All other steps in the algorithm can beperformed in polynomial time.Using the setting of Lemma 2.6 the approximation algorithm is as follows. We enumerateover all possible b = 1; 2; : : : ; n, and select the �rst b for which the experiment de�ned inLemma 2.6 fails. Namely, running the experiment with b�1 yielded the result X > l whereasrunning it with b yielded X � l. We conclude that with probability at least 1�n � � it holdsthat 2b�14 � jSj � 4 � 2b: (2.1)This is true since we make at most n experiments and the error in each of them is at most�. Last, we have to improve the quality of the approximation. To this end, we de�ne amachine N which runs M on t inputs and accepts i� M accepts all the t inputs. Theset de�ned by the machine N is St which is also a set in NP. To be done, we note thatapproximating the size of St to within a factor of 8 implies an approximation of the size ofS to within 81=t. Thus, we can get an approximation for the size of S to within a factor of1 + � by setting t to be polynomial in � and applying our constant-factor approximation onSt (or on the machine N). 25



CNP (1n; �; �; hMi)Choose t such that 81=t � 1 + �Comment t will be polynomial in ��1Let k = nt and let N = M t be the machine de�ned by N(y1; : : : ; yt) = 1 i� M(y1) = � � � =M(yt) = 1 and all the yi have the same length.Comment Nk =M tnb 0 ; l 16 lg(2k��1)repeatb b+ 1Pick at random h1; : : : ; h2l 2 Hk;b and set z = 0b. Use the NP oracle to determine, foreach i, whether or not h�1i (z) \Nk = ;, and let X be the number of indices i for whichh�1i (z) \Nk 6= ;.until (X � l or b = k)Comment Pr[2b�1=4 < jNkj < 4 � 2b] � 1� �Let � = 2b.Comment Pr[jNkj=4 < � < 8jNkj] � 1� �Output �1=tComment Pr[jMnj=(1+ �) < � < jMnj(1 + �)] � 1� �Figure 2.1: Universal Approximate Counting in probabilistic polynomial time with an NPOracle
26



Notice that the estimates from the above theorem are only accurate to within the re-ciprocal of a polynomial (this is since the running time of the algorithm is polynomial in��1). We now use the reduction of [JVV-86] which is strong enough in this sense. Given anapproximation to within a factor of 1 + � (for an � which is a reciprocal of a polynomial)it samples a distribution which is very close to the uniform distribution. Speci�cally, theyshow the following:Theorem 2.9 [JVV-86]: If there exists a universal approximate counter to within a factorof (1 + �) for any 0 < � < 1 (that never fails) then there exists a universal (exact) uni-form generator which, when given access to the approximate counter as an oracle, runs inpolynomial time in n and 1� .For further reference, let Q(n; 1� ) be a polynomial which bounds the number of oraclequeries that the uniform generator (guaranteed in Theorem 2.9) makes to the approximatecounter. We are going to run this generator with our universal approximate counter. Theproblem is that the generator expects an approximation procedure which is always correct,while our procedure fails to approximate the given set (to within 1 + �) with positive prob-ability (i.e., bounded by �).We partition the analysis (of running the generator with our approximator) into twocases: In one case, our approximate counter succeeds in all Q(n; 1� ) queries. This happenswith probability at least 1 � Q(n; 1� ) � �, and in this case, the generator outputs a uniformelement in the set as required. The other possible case, is that the approximate countermakes an error in one of the queries. In this case, it is not possible to tell which distributionis output by the generator. However, since the later case happens with probability at mostQ(n; 1� ) � � we get that the distance between the the output distribution of the generatorand the uniform distribution on the set Mn is at most Q(n; 1� ) � �. Since the running timeof the approximation counter is polynomial in the logarithm of 1� , then the polynomialmultiplicative factor Q(n; 1� ), has no signi�cant e�ect on the complexity of the procedure.Setting �0 def= �Q(n; 1� ) we get:Corollary 2.10 If there exists a universal approximate counter to within a factor of (1+ �),C, which runs in time polynomial in n; 1=�; log 1�0 and TM(n), and which fails with probabilityat most �0, then there exists a universal almost uniform generator, U , which uses C as anoracle and which runs in time polynomial in n; TM(n) and log 1�0 .Combining Corollary 2.10 with Theorem 2.8, we get Theorem 2.5 and we are done.27



2.2.4 Application: An E�cient Implementation of the SimulationBased ProverA basic ingredient in our proof is the construction of a new prover based on the simulatorfor the protocol, called a simulation based prover. We use the almost uniform generator toimplement it e�ciently. The simulation based prover was �rst used by Fortnow [F-89], andit was used in many works since [AH-87, BMO-90, Os-91].De�nition 2.11 Let S be a simulator of a g rounds interactive proof with message length l.Let the output of S on input x and random tape r, S(x; r), be (R;�1�1 : : : �g�g), where the �'sare the messages of the veri�er, the �'s are the messages of the prover, and R is the randomtape of the veri�er. Then for each t = 1; : : : ; g we de�ne St(x; r) = �1�1 : : : �t�1�t�1�t.De�nition 2.12 Let S be a simulator (of g rounds and message length l), and let p be thenumber of its coin tosses. We denote by P � the probabilistic function whose output (nextmessage to veri�er), on input x (common input), and �1�1 : : : �t (conversation so far), isgiven by the following experiment:(1) Pick at random a string r from the set f r 2 f0; 1gp(n) : St(x; r) = �1�1 : : : �t g (the setof random tapes of the simulator on which the simulator outputs a conversation having�1�1 : : : �t as a pre�x).(2) Then compute S(x; r) | this has the form(R;�1�1 : : : �t�0t : : : �0g�0g)for some � 0t; : : : ; �0g; � 0g 2 f0; 1gl(3) Finally, output the string � 0t.We call P � the simulation based prover for the simulator S.Intuitively, if S is a (statistical) ZK P -simulator for V , then P � is attempting to �ndP 's replies in the interaction of P with V . He does this by imitating the behavior of thesimulator S in the prover steps of the interaction. The properties of P � in case the knowledgecomplexity is greater than zero, will be studied in Chapter 2.3.We will denote the output of P � on input x and �1�1 : : : �t by P �(x; �1�1 : : : �t), but keepin mind the function is probabilistic so that P �(x; �1�1 : : : �t) is actually a distribution on lbit strings.The complexity of computing P � is the question we address next.28



Exact computation of P � is clearly possible in probabilistic polynomial space, and thisis easily improved to probabilistic polynomial time with a �P2 oracle by using the results of[JVV-86] on uniform generation.Let us now turn to approximations: we will be interested in computing a distributionwhich is �-close to P �. If � = n�c for some constant c then, following [Os-91], this can bedone in probabilistic polynomial time with an NP oracle by using techniques from [ILL-89].That result will not, however, su�ce for the applications in this paper: we need to be ableto achieve values of � which are exponentially small (in n). The following Theorem says wecan do this, still in probabilistic polynomial time with an NP oracle.Theorem 2.13 Let S be a simulator (of g rounds and message length l). Then there exists aprobabilistic oracle machine T with the following property. Suppose x 2 f0; 1gn, �1; �1; : : : ; �tare l(n) bit strings (t � g), and � > 0. Then the probability spaces TNP (x; �1�1 : : : �t; �) andP �(x; �1�1 : : : �t) are �-close. Moreover, T runs in time polynomial in n and lg ��1.Note the running time of T is polynomial in lg ��1 (rather than ��1), which is why we canachieve exponentially small error.Proof: The proof of this theorem is as follows (given the implementation of universal almostuniform generation in probabilistic polynomial time with an NP oracle, i.e., Theorem 2.5):follow the algorithm of De�nition 2.12, using Theorem 2.5 to implement the �rst step. How-ever, there is a technicality here that must be addressed. The set in which we would like tosample in is Ax;�1�1:::�t = f r 2 f0; 1gp(n) : St(x; r) = �1�1 : : : �t gThis �nite set doesn't seem to have a natural characterization as an intersection of f0; 1gnwith a language that some machine accepts, unless one considers a machine that accepts onlythis �nite set. Of course a machine that recognizes a �nite set can be made very e�cient inthe length of its inputs, but we should require more.We need to have a �xed polynomial P (�) such that each such machine we build and forany r; x, and �1�1 : : : �t, the machine runs in time bounded by P (jxj). Furthermore, sincethe running time of the uniform generator depends on the length of the encoding, we alsodemand that the length of the encoding of Mx;�1�1:::�t is also bounded by P (jxj). Note thatit is crucial that our machine will have x and �1�1 : : : �t �xed within its description and notgiven as inputs, since we do not want to sample x nor �1�1 : : : �t. We only want to samplean appropriate r. 29



Consider �rst a machineM that on input (x; r; �1�1 : : : �t) decides whether the simulatorS on input x and random tape r outputs a conversation which has �1�1 : : : �t as a pre�x.This machine has a �xed encoding < m > and it runs in polynomial time in jxj. Nowconsider a machineM 0x;�1�1:::�t which on input r runs M on (x; r; �1�1 : : : �t). MachineM 0 isthe machine we would like to give to our uniform generator and it can easily be implementedsuch that its running time is polynomial in jxj (which is a constant time with respect toM 0).We would like to claim that it is possible to encode such a machineM 0 by an encoding whichis also of size polynomial in jxj. A possible implementation of M 0 is a machine which writes(< M >;x; r; �1�1 : : : �t) on its work tape (where < M >;x; and �1�1 : : : �t are constantstrings and r is copied from the input tape). Then, machine M 0 runs the universal Turingmachine on its work tape. Such a machineM 0 has an encoding which is polynomial in jxj.To summarize this technical discussion, our simulation based prover runs in time poly-nomial in jxj since it feeds the uniform generator with inputs that make it run in timepolynomial in jxj (given access to an NP-oracle), and we are done.2.3 The Proof of the Main Result for the Perfect CaseIn this section we prove that the Main Theorem holds for the special case of perfect knowledgecomplexity. Combining this result with the transformation (Theorem 2.17) of the subsequentsection, we get the Main Theorem.Theorem 2.14 PKC(O(log n)) � BPPNPSuppose that (P; V ) is an interactive proof of perfect knowledge complexity k(�) =O(log n) for the languages L, and let M be the simulator guaranteed by the fraction formu-lation (i.e., De�nition 2.2). We consider the conversations of the original veri�er V with thesimulation-based-prover P � (see de�nition in Section 2.1.3). We are going to show that theprobability that the interaction (P �; V ) is accepting is negligible if x 62 L and greater thana polynomial fraction if x 2 L. This separation between the cases x 62 L and x 2 L canbe ampli�ed by sequential repetitions of the protocol (P �; V ). So it remains to observe thatwe can sample the (P �; V ) interactions in probabilistic polynomial-time having access to anNP oracle. This observation is justi�ed as follows. Clearly, V 's part of the interaction canbe produced in polynomial-time. By Theorem 2.13, we can implement P � by a probabilistic30



polynomial time machine that has access to an NP oracle. Actually, the implementationdeviates from the simulation based prover by an exponentially small fraction, but this doesnot matter. Thus, it remains only to prove the following lemma.Lemma 2.151. If x 2 L then the probability that (P �; V ) outputs an accepting conversation is at least12 � 2�k.2. If x 62 L then the probability that (P �; V ) outputs an accepting conversation is negligible.proof: The second part of the lemma follows from the soundness property as before. Wethus concentrate on the �rst part. We �x an arbitrary x 2 L for the rest of the proof andallow ourselves not to mention it in the sequel discussion and notation. Let k = k(jxj) andq be the number of coin tosses made byM . We denote by 
 def= f0; 1gq the set of all possiblecoin tosses, and by S the \good subspace" ofM (i.e., S has density 2�k in 
 and for ! chosenuniformly in S the simulator outputs exactly the distribution of the interaction (P; V )).Consider the conversations that are output by the simulator on ! 2 S. The probabilityto get such a conversation when the simulator is run on ! uniformly selected in 
, is atleast 2�k. We claim that the probability to get these conversations in the interaction (P �; V )is also at least 2�k. This is not obvious, since the distribution produced by (P �; V ) maynot be identical to the distribution produced by M on a uniformly selected ! 2 
. Nor isit necessarily identical to the distribution produced by M on a uniformly selected ! 2 S.However, the prover's moves in (P �; V ) are distributed as in the case that the simulatorselects ! uniformly in 
, whereas the veri�er's moves (in (P �; V )) are distributed as in thecase that the simulator selects ! uniformly in S. Thus, it should not be too surprising thatthe above claim can be proven.However, we need more than the above claim: It is not enough that the (P �; V ) conver-sations have an origin in S, they must be accepting as well. (Note that this is not obvioussince M simulates an interactive proof that may have two-sided error.) Again, the densityof the accepting conversations in the \good subspace" of M is high (i.e., � 1 � �), yet weneed to show that this is the case also for the (P �; V ) interaction. Actually, we will showthat the probability than an (P �; V ) conversation is accepting and \has an origin" in S is atleast 12 � 2�k. 31



Let us begin the formal argument with some notations. For each possible history of theinteraction, h, we de�ne subsets of the random tapes of the simulator (i.e., subsets of 
)as follows. 
h is the set of ! 2 
 which cause the simulator to output a conversation withpre�x h. Sh is the subset of !'s in 
h which are also in S. Ah is the set of !'s in Sh whichare also accepting.Thus, lettingMt(!) denote the t-message long pre�x output by the simulatorM on coins!, we get 
h def= f! :Mjhj(!)=hgSh def= 
h \ SAh def= f! 2 Sh :M(!) is acceptinggLet C be a random variable representing the (P �; V ) interaction, and � be an indicator sothat �(�c) = 1 if the conversation �c is accepting and �(�c) = 0 otherwise. Our aim is to provethat Prob(�(C) = 1) � 12 � 2�k. Note thatProb(�(C) = 1) = X�c Prob(C=�c) � �(�c)� X�c Prob(C=�c) � jA�cjj
�cjThe above expression is exactly the expectation value of jAcjj
cj . Thus, we need to show that:Exp�c  jA�cjj
�cj! > 12 � 2�k (2.2)where the expectation is over the possible conversations �c as produced by the interaction(P �; V ). Once Equation (2.2) is proven, we are done. Denote the empty history by �. Toprove Equation (2.2) it su�ces to prove thatExp�c  jA�cjj
�cj � jA�cjjS�cj! � jA�jj
�j � jA�jjS�j (2.3)since using jA� jjS�j > q12 and jS�jj
�j � 2�k, we getExp�c  jA�cjj
�cj! � jA�jj
�j � jA�jjS�j=  jA�jjS�j!2 � jS�jj
�j� 12 � 2�k32



The proof of Equation (2.3) is by induction on the number of rounds. Namely, for eachround i, we show that the expected value of jAhjj
hj � jAhjjShj over all possible histories h of i rounds(i.e., length i) is greater or equal to the expected value of this expression over all historiesh0 of i� 1 rounds. In order to show the induction step we consider two cases:1. the current step is by the prover (i.e., P �); and2. the current step is by the veri�er (i.e., V ).In both cases we show, for any history h,Expm  jAh�mjj
h�mj � jAh�mjjSh�mj! � jAhjj
hj � jAhjjShj (2.4)where the expectation is over the possible current moves m, given history h, as produced bythe interaction (P �; V ).Technical ClaimThe following technical claim is used for deriving the inequalities in both cases.Claim 2.16 Let xi, yi, 1 � i � n be positive reals. Then,nXi=1 xi2yi � (Pni=1 xi)2Pni=1 yiProof: The Cauchy-Schwartz Inequality asserts: nXi=1 ai2! �  nXi=1 bi2! �  nXi=1 ai � bi!2Setting ai def= pyi (we can do this since yi is positive) and bi def= xiai , and rearranging the terms,we get the desired inequality. 2Prover Step { denoted �Given history h, the prover P � sends � as its next message with probability j
h��jj
hj . Thus,Exp�  jAh��jj
h��j � jAh��jjSh��j! = X� j
h��jj
hj � jAh��jj
h��j � jAh��jjSh��j= 1j
hj �X� jAh��j2jSh��j� jAhjj
hj � jAhjjShjThe inequality is justi�ed by using the Technical Claim and noting that P� jAh��j = jAhjand P� jSh��j = jShj. 33



Veri�er Step { denoted �By the perfectness of the simulation, when restricted to the good subspace S, we know thatgiven history h, the veri�er V sends � as its next message with probability jSh�� jjShj . Thus,Exp�  jAh��jj
h��j � jAh��jjSh��j! = X� jSh��jjShj � jAh��jj
h��j � jAh��jjSh��j= 1jShj �X� jAh��j2j
h��j� jAhjj
hj � jAhjjShjThe inequality is justi�ed by using the Technical Claim and noting that P� jAh��j = jAhjand P� j
h��j = j
hj.Having proven Equation (2.4) for both cases, Equation (2.3) follows and so does the lemma.22.4 Relating Statistical to Perfect Knowledge Com-pelxityIn this section we show how to transform statistical knowledge complexity into perfect knowl-edge complexity, incurring only a logarithmic additive term. This transformation combinedwith Theorem 2.14 yields the Main Theorem.Theorem 2.17 For every (poly-time computable) k : N 7! N,SKC (k(�)) � PKC (k(�) +O(log(�)))We stress again that these knowledge complexity classes refer to the honest veri�er and thatwe don't know whether such a result holds for the analogous knowledge complexity classesreferring to arbitrary (poly-time) veri�ers.proof: Here we use the oracle formulation of knowledge complexity (see De�nition 2.1). Westart with an overview of the proof. Suppose we are given a simulator M which producesoutput that is statistically close to the real prover-veri�er interaction. We change both theinteractive proof and its simulation so that they produce exactly the same distribution space.We will take advantage of the fact that the prover in the interactive proof and the oracle that34



\assists" the simulator are both in�nitely powerful. Thus, the modi�cation to the prover'sprogram and the augmentation to the oracle need not be e�ciently computable. We stressthat the modi�cation to the simulator itself will be e�ciently computable. Also, we maintainthe original veri�er (of the interactive proof), and thus the resulting interactive proof is stillsound. Furthermore, the resulting interaction will be statistically close to the original one(on any x 2 L) and therefore the completeness property of the original interactive proof ismaintained (although the error probability here may increase by a negligible amount).PreliminariesLet L 2 SKC(k(�)), and (P; V ) be the guaranteed interactive proof. Without loss of gener-ality, we may assume that all messages are of length 1. This message-length convention ismerely a matter of encoding.Recall that De�nition 2.1 only guarantees that the simulator produces output with prob-ability � 12 . Yet, employing Proposition 3.8 in [GP-91], we get that there exists an oraclemachine M , that after asking k(n) + 2 log log n queries, always produces an output so thatthe output is statistically close to the interaction of (P; V ). Let A denote the associated or-acle, and let M 0 def= MA and P 0 and V 0 be the simulation-based prover and veri�er3 inducedby M 0 (i.e., (P 0; V 0) =M 0).In the rest of the presentation, we �x a generic input x 2 L and omit it from the notation.notations: Let [A;B]i be a random variable representing the i-message (i-bit) long pre�x ofthe interaction betweenA and B (the common input x is implicit in the notation). We denoteby A(h) the random variable representing the message sent by A after interaction-historyh. Thus, if the ith message is sent by A, we can write [A;B]i�1 �A([A;B]i�1) = [A;B]i. ByX s= Y we denote the fact that the random variables X and Y are statistically close.Using these notations we may write for every h 2 f0; 1gi and � 2 f0; 1g:Prob(P 0(h) = �) = Prob ([M 0]i+1 = h � �j[M 0]i = h)and similarly, Prob(V 0(h) = �) = Prob ([M 0]i+1 = h � �j[M 0]i = h) :3A simulator-based veri�er is de�ned analogously to the simulator-based prover. It is a �ctitious entitywhich does not necessarily coincide with V . 35



Claim 2.18 The distribution induced by (P 0; V ) is statistically close to the distributionsinduced by both M 0 = (P 0; V 0) and (P; V ).proof: By de�nition, the distributions produced byM 0 = (P 0; V 0) and (P; V ) are statisticallyclose. Thus, we have [P; V ]i s= [P 0; V 0]i; for every i (2.5)We prove that [P 0; V ] is statistically close to [P 0; V 0] by induction on the length of theinteraction. Assuming that [P 0; V ]i s= [P 0; V 0]i, we wish to prove it for i+ 1. We distinguishtwo cases. In case the i+ 1st move is by the prover, we get[P 0; V ]i+1 = [P 0; V ]i � P 0([P 0; V ]i)s= [P 0; V 0]i � P 0([P 0; V 0]i)= [P 0; V 0]i+1(use the induction hypothesis for s=). In case the i+ 1st move is by the veri�er, we get[P 0; V ]i+1 = [P 0; V ]i � V ([P 0; V ]i)s= [P 0; V 0]i � V ([P 0; V 0]i)s= [P; V ]i � V ([P; V ]i)= [P; V ]i+1s= [P 0; V 0]i+1where the �rst s= is justi�ed by the induction hypothesis and the two others by Eq. (2.5).We stress that since the induction hypothesis is used only once in the induction step, thestatistical distance is linear in the number of induction steps (rather than exponential). 2Motivating discussion: Note that the statistical di�erence between the interaction (P 0; V ) andthe simulationM 0 = (P 0; V 0) is due solely to the di�erence between the proper veri�er (i.e.,V ) and the veri�er induced by the simulator (i.e., V 0). This di�erence is due to V 0 puttingtoo much probability weight on certain moves and thus also too little weight on their siblingmessages (recall that a message in the interaction contains one bit). In what follows we dealwith two cases.The �rst case is when this di�erence between the behavior of V 0 (induced by M 0) andthe behavior of the veri�er V is \more than tiny". This case receives most of our attention.36



We are going to use the oracle in order to move weight from a veri�er message � that getstoo much weight (after a history h) to its sibling message � � 1 that gets too little weight(after the history h) in the simulation. Speci�cally, when the new simulatorM 00 invokesM 0and comes up with a conversation that has h � � as a pre�x, the simulator M 00 (with thehelp of the oracle) will output (a di�erent) conversation with the pre�x h � (� � 1) insteadof outputting the original conversation. The simulatorM 00 will do this with probability thatexactly compensates for the di�erence between V 0 and V . This leaves one problem. Howdoes the new simulatorM 00 come up with a conversation that has a pre�x h � (� � 1)? Thecost of letting the oracle supply the rest of the conversation (after the known pre�x h�(��1))is too high. We adopt a \brutal" solution in which we truncate all conversations that haveh � (� � 1) as a pre�x. The truncation takes place both in the interaction (P 00; V ), whereP 00 stops the conversation after � � 1 (with a special STOP message) and in the simulationwhere the oracle recognizes cases in which the simulator M 00 should output a truncatedconversation. These changes make M 00 and V behave exactly the same on messages forwhich the di�erence between V 0 and V is more than tiny. Naturally, V immediately rejectswhen P 00 stops the interaction abruptly, so we have to make sure that this change does notfoil the ability of P 00 to convince V on an input x 2 L. It turns out that these truncationshappen with negligible probability since such truncation is needed only when the di�erencebetween V and V 0 is more than tiny. Thus, P 00 convinces V on x 2 L almost with the sameprobability as P 0 does.The second possible case is that the di�erence between the behavior of V and V 0 is tiny.In this case, looking at a full conversation �c, we get that the tiny di�erences sum up to asmall di�erence between the probability of �c in the distributions ofM 0 and in the distributionof (P 0; V ). We correct these di�erences by lowering the probabilities of all conversations inthe new simulator. The probability of each conversation is lowered so that its relative weight(relatively to all other conversations) is equal to its relative weight in the interaction (P 00; V ).Technically, this is done byM 00 not producing an output in certain cases thatM 0 did producean output.Technical remark: The oracle can be used to allow the simulator to toss bias coins when thesimulator does not \know" the bias. Suppose that the simulator needs to toss a coin so thatit comes-up head with probability N2m , where N < 2m and both N and m are integers. Thesimulator supplies the oracle with a uniformly chosen r 2 f0; 1gm and the oracle answers37



head if r is among the �rst N strings in f0; 1gm and tail otherwise. A similar procedureis applicable for implementing a lottery with more than two a-priori known values. Usingthis procedure, we can get extremely good approximations of probability spaces at a costrelated to an a-priori known upper bound on the size of the support (i.e., the oracle answeris logarithmic in the size of the support).De�nition: Let � def= 1O(t) where t is the number of rounds in the interaction (P; V ).� Let h be a partial history of the interaction and � be a possible next move by the veri�er.We say that � is weak with respect to h ifProb(V 0(h)=�) < (1� �) � Prob(V (h)=�)� A conversation �c = (c1; :::; ct) is i-weak if ci is weak with respect to (c1; :::; ci�1), otherwiseit is i-good. (Note that a conversation can be i-weak only if the ith move is a veri�ermove.)� A conversation �c = (c1; :::; ct) is i-critical if it is i-weak but j-good for every j < i.A conversation �c = (c1; :::; ct) is i-co-critical if the conversation obtained from �c, bycomplementing (only) the ith bit, is i-critical. (Note that a conversation can be i-criticalonly for a single i, yet it may be i-co-critical for many i's.)� A conversation is weak if it is i-weak for some i, otherwise it is good.Claim 2.19 (P 0; V ) outputs weak conversations with negligible probability.proof: Recall that [P 0; V ] s= [P 0; V 0] and that the same holds also for pre�xes of the conver-sations. Namely, for any 1 � i � t, [P 0; V ]i s= [P 0; V 0]i. Let us de�ne a pre�x h 2 f0; 1gi ofa conversation to be bad if eitherProb([P 0; V 0]i=h) < �1� �2� � Prob([P 0; V ]i=h)or Prob([P 0; V 0]i=h) > �1 + �2� � Prob([P 0; V ]i=h)The claim follows by combining two facts.Fact 2.20 The probability that (P 0; V ) outputs a conversation with a bad pre�x is negligible.38



proof: De�ne Bi to be the set of bad pre�xes of length i. By the statistical closeness of[P 0; V ]i and [P 0; V 0]i, we get that� def= Xh2Bi jProb([P 0; V ]i=h)� Prob([P 0; V 0]i=h)j � 
for some negligible fraction 
. On the other hand, � can be bounded from bellow byXh2Bi Prob([P 0; V ]i=h) � �����1� Prob([P 0; V 0]i=h)Prob([P 0; V ]i=h) �����which by de�nition of Bi is at leastProb([P 0; V ]i2Bi) � ����� �2 ����Thus, Prob([P 0; V ]i2Bi) � 2
� and the fact follows. 2Fact 2.21 If a conversation �c = (c1; :::; ct) is weak then it contains a bad pre�x.proof: Suppose that � def= ci+1 is weak with respect h def= (c1; :::; ci). If h is a bad pre�x thenwe are done. Otherwise it holds thatProb([P 0; V 0]i=h) < �1 + �2� � Prob([P 0; V ]i=h)Using the fact that � is weak with respect to h, we getProb([P 0; V 0]i+1=h � �) < �1 + �2� � (1� �) � Prob([P 0; V ]i+1=h � �)< �1 � �2� � Prob([P 0; V ]i+1=h � �)which implies that h � � is a bad pre�x of �c. 2Combining Facts 2.20 and 2.21, Claim 2.19 follows. 2Claim 2.22 Suppose that �c = (c1; :::; ct) is a good conversation. Then, the probability that�c is output by M 0 is at least (1 � �)dt=2e � Prob([P 0; V ] = �c). Furthermore, for l < k, if�c = (c1; :::; ct) is i-good for every i 2 fl + 1; :::; kg, thenProb ([M 0]k=
 j [M 0]l=h) � (1� �)d k�l2 e � Prob ([P 0; V ]k=
 j [P 0; V ]l=h)where 
 def= (c1; :::; ck) and h def= (c1; :::; cl) 39



proof: To see that this is the case, we write the probabilities step by step conditioned onthe history so far. We note that the prover's steps happen with equal probabilities in bothsides of the inequality, and therefore can be reduced. Since the relevant veri�er's steps arenot weak, we get the mentioned inequality. The actual proof proceeds by induction on k� l.Clearly, if k � l = 0 the claim holds. We note that if k � l = 1 the claim also holds sincestep k in the conversation is either a prover step or a k-good veri�er step.To show the induction step we use the induction hypothesis for k � l � 2. Namely,Prob ([M 0]k�2 = (c1; : : : ; ck�2) j [M 0]l = (c1; : : : ; cl)) (2.6)� (1 � �)d k�l2 e�1 � Prob ([P 0; V ]k�2 = (c1; : : : ; ck�2) j [P 0; V ]l = (c1; : : : ; cl))Steps k � 1 and k include one prover message and one veri�er message. Assume, withoutloss of generality, that the prover step is k � 1. Since P 0 is the simulator based prover, weget Prob ([M 0]k�1 = (c1; : : : ; ck�1) j [M 0]k�2 = (c1; : : : ; ck�2)) (2.7)= Prob ([P 0; V ]k�1 = (c1; : : : ; ck�1) j [P 0; V ]k�2 = (c1; : : : ; ck�2))Since step k of the veri�er is good, we also have:Prob ([M 0]k = (c1; : : : ; ck) j [M 0]k�1 = (c1; : : : ; ck�1)) (2.8)� (1 � �) � Prob ([P 0; V ]k = (c1; : : : ; ck j [P 0; V ]k�1 = (c1; : : : ; ck�1))Combining Equations 2.6, 2.7, and 2.8, the induction step follows and we are done. 2Dealing with weak conversationsWe start by modifying the prover P 0, resulting in a modi�ed prover, denoted P 00, that stopsonce it gets a veri�er message which is weak with respect to the current history; otherwise,P 00 behaves as P 0. Namely,De�nition (modi�ed prover - P 00): For any h 2 f0; 1g� and � 2 f0; 1g,P 00(h � �) = 8><>: STOP if � is weak with respect to h:P 0(h � �) OtherwiseWe assume that the veri�er V stops and rejects immediately upon receiving an illegal messagefrom the prover (and in particular upon receiving this STOP message).40



Next, we modify the simulator so that it outputs either good conversations or truncatedconversations which are originally i-critical. Jumping ahead, we stress that such truncatedi-critical conversations will be generated from both i-critical and i-co-critical conversations.The modi�ed simulator, denoted M 00, proceeds as follows4. First, it invokesM 0 and obtainsa conversation �c = (c1; :::; ct). Next, it queries the augmented oracle on �c. The oracle answersprobabilistically and its answers are of the form (i; �), where i 2 f1; :::; tg and � 2 f0; 1g.The probability distribution will be speci�ed below, at this point we only wish to remarkthat the oracle only returns pairs (i; �) for which one of the following three conditions holds1. �c is good, i = t and � = 0 (if �c is good and is not i-co-critical for any i's then the oraclealways answers this way);2. �c is i-critical and � = 0;3. �c is i-co-critical and � = 1.Finally, the new simulator (M 00) halts outputting (c1; :::; ci�1; ci � �), which in case � = 1 isnot a pre�x of �c. Note that i may be smaller than t, in which case M 00 outputs a truncatedconversation which is always i-critical; otherwise,M 00 outputs a non-truncated conversation.Note that this oracle message contains at most 1 + log t bits where t is the length of theinteraction between P 0 and V . It remains to specify the oracle's answer distribution.Let us start by considering two special cases. In the �rst case, the conversation generatedby M 0 is i-critical, for some i, but is not j-co-critical for any j < i. In this case the oraclealways answers (i; 0) and consequently the simulator always outputs the i-bit long pre�x.However, this pre�x is still being output with too low probability. This will be corrected bythe second case hereby described. In this (\second") case, the conversation �c generated byM 0is good and i-co-critical for a single i. This means that the i-bit long pre�x is given too muchprobability weight whereas the pre�x obtained by complimenting the ith bit gets too littleweight. To correct this, the oracle outputs (i; 1) with probability q and (t; 0) otherwise, whereq will be speci�ed. What happens is that the M 00 will output the \i-complimented pre�x"with higher probability than with which it has appeared inM 0. The value of q is determinedas follows. Denote p def= Prob(V (c1; :::; ci�1)=ci � 1) and p0 def= Prob(V 0(c1; :::; ci�1)=ci � 1).Then, setting q so that p0 + (1 � p0) � q = p (i.e., q = p�p01�p0 ) allows the simulator to outputthe pre�x (c1; :::; ci�1; ci � 1) with the right probability.In the general case, the conversation generated by M 0 may be i-co-critical for many4We stress that P 00 is not necessarily the simulator-based prover of M 00.41



i's as well as j-critical for some (single) j. In case it is j-critical, it can be i-co-criticalonly for i < j. Let us consider the sequence of indices, (i1; :::; il), for which the generatedconversation is critical or co-critical (i.e., the conversation is ik-co-critical for all k < l andis either il-critical or il-co-critical). We consider two cases. In both cases the qk's are set asin the above example; namely, qk = pk�p0k1�p0k , where pk def= Prob(V (c1; :::; cik�1) = cik � 1) andp0k def= Prob(V 0(c1; :::; cik�1)=cik � 1).1. The generated conversation, �c = (c1; :::; ct), is ik-co-critical for every k < l and is il-critical. In this case, the distribution of the oracle answers is as follows. For everyk < l, the pair (ik; 1) is returned with probability (Qj<k(1 � qj)) � qk; whereas the pair(il; 0) appears with probability Qj<l(1� qj). We stress that no other pair appears in thisdistribution.52. The generated conversation, �c = (c1; :::; ct), is ik-co-critical for every k � l. In this case,the distribution of the oracle answers is as follows. For every k � l, the pair (ik; 1)is returned with probability (Qj<k(1 � qj)) � qk; whereas the pair (t; 0) appears withprobability Qj�l(1 � qj). Again, no other pair appears in this distribution.Claim 2.231. [P 00; V ] s= [P 0; V ];2. Each conversation of (P 00; V ), be it a complete (P 0; V )-conversation or a truncated (i.e.,critical) one, is output by M 00 with probability that is at least a (1 � �)t > 34 fraction ofthe probability that it appears in [P 00; V ].proof: The weak conversations are negligible in the output distribution of (P 0; V ) (seeClaim 2.19). The only di�erence between [P 00; V ] and [P 0; V ] originates from a di�erentbehavior of P 00 on weak conversations, speci�cally P 00 truncates them while P 0 does not.Yet, the distribution on the good conversations remains unchanged. Therefore the distribu-tion of [P 00; V ] is statistically close to the distribution of [P 0; V ], and we are done with Part(1).For Part (2) let us start with an intuitive discussion which may help reading through theformal proof that follows. First, we recall that the behavior of the simulation M 0 in proversteps is identical to the behavior of the interaction (P 0; V ) in prover's steps. This follows5Indeed the reader can easily verify that these probabilities sum up to 1.42



simply from the fact that P 0 is the simulation based prover of M 0. We will show that thisproperty still holds for the new interaction (P 00; V ) and the new simulationM 00. We will dothis by noting two di�erent cases. In one case, the prover step is conducted by P 00 exactlyas it is done by P 0 and thenM 00 behaves exactly as M 0. The second possible case is that theprover step contains the special message STOP. We shall note that this occurs with exactlythe same probability in the distribution (P 00; V ) and in the distribution of M 00.Next, we consider the veri�er steps. In the construction of M 00 and P 00 we considered thebehavior of M 0 and V on veri�er steps and made changes when these di�erences were not\tiny". We called a message � weak with respect to a history h, if the simulator assigns themessage � (after outputting h) a probability which is smaller by a factor of more than (1��)from the probability that the veri�er V outputs the message � on history h. We did notmake changes in messages whose di�erence in weight (between the simulation M 0 and theinteraction (P 0; V )) were smaller than that. In the proof, we consider two cases. First, themessage � is weak with respect to the history h. Clearly, the sibling message ��1 is gettingtoo much weight in the simulation M 0. So in the de�nition of M 00 we made adjustments tomove weight from the pre�x h � (� � 1) to the pre�x h � �. We will show that this transferof weight exactly cancels the di�erence between the behavior of V and the behavior of M 0.Namely, the weak messages (and their siblings) are assigned exactly the same probabilityboth in M 00 and by V . Thus, we show that when a weak step is involved, the behavior of(P 00; V ) and the behavior of M 00 are exactly equivalent. It remains to deal with messages forwhich the di�erence between the conditional behavior of V and M 0 is \tiny" and was notconsidered so far. In this case, M 00 behaves likeM 0. However, since the di�erence is so tiny,we get that even if we accumulate the di�erences throughout the conversation, they sum upto at most the multiplicative factor 3=4 stated in the claim.Let us begin the formal proof by writing again the probability that (P 00; V ) outputs �c asthe product of the conditional probabilities of the t steps. Namely,tYi=1Prob ([P 00; V ]i+1=hi � ci+1 j [P 00; V ]i=hi )where hi def= (c1; :::; ci). We do the same for the probability that M 00 outputs a conversation�c. We will show by induction that each step of any conversation is produced by M 00 with atleast (1� �) times the probability of the same step in the (P 00; V )-interaction. Once we haveshown this, we are done. Clearly this claim holds for the null pre�x. To prove the inductionstep, we consider the two possibilities for the party making the i+ 1st step.43



i + 1st step is by the prover: Consider the conditional behavior of M 00 given the history sofar. We will show that this behavior is identical to the behavior of P 00 on the same partialhistory.A delicate point to note here is that we may talk about the behavior of M 00 on a pre�xhi only if this pre�x appears with positive probability in the output distribution [M 00]i.However, by the induction hypothesis any pre�x that is output by [P 00; V ]i appears withpositive probability in [M 00]i.We partition the analysis into two cases.1. First, we consider the case in which the last message of the veri�er is weak with respectto the history that precedes it. Namely, h = h0 � � and � is weak with respect to h0. Inthis case, both in the interaction (P 00; V ) and in the simulationM 00, the next message ofthe prover is set to STOP with probability 1. Namely,Prob (M 00 = h � STOP j [M 00]i = h) = 1= Prob (P 00(h) = STOP)2. The other possible case is that the last message of the veri�er is not weak with respectto its preceding history. In this case, the simulator M 00 behaves like M 0 and the proverP 00 behaves like P 0. (Note that the changes in critical and co-critical steps apply only toveri�er steps.) Thus,Prob ([M 00]i+1 = h � � j [M 00]i = h) = Prob ([M 0]i+1 = h � � j [M 0]i = h)= Prob (P 0(h) = �)= Prob (P 00(h) = �)To summarize, the conditional behavior of M 00 in the prover steps and the conditionalbehavior of P 00 are exactly equal.i + 1st step is by the veri�er: Again, we consider the conditional behavior of M 00 given thehistory so far. Let us recall the second modi�cation applied to M 0 when deriving M 00. Thismodi�cation changes the conditional probability of the veri�er steps in the distribution ofM 0in order to add weight to steps having low probability in the simulation. We note that thismodi�cation is made only in critical or co-critical steps of the veri�er. Consider a history hiwhich might appear in the interaction (P 00; V ) and a possible response � of V to hi. Again,by the induction hypothesis, hi has a positive probability to be output by the simulation44



M 00 and therefore we may consider the conditional behavior of M 00 on this history hi. Thereare three cases to be considered, corresponding to whether either � or �� 1 or none is weakwith respect to hi.We start with the simplest case in which neither � nor � � 1 is weak (w.r.t. hi). In thiscase, the behavior of M 00 is identical to the behavior of M 0 since the oracle never sends themessage (i+ 1; �) in this case. However, by the fact that � is not weak, we get that(1� �) � Prob(V (h) = �) � Prob ([M 0]i+1 = h � � j [M 0]i = h)= Prob ([M 00]i+1 = h � � j [M 00]i = h)and we are done with this simple case.We now turn to the case in which � is weak (w.r.t. hi). In this case, given that M 00 hasproduced the pre�x hi, it produces hi�� wheneverM 0 produces the pre�x hi��. Furthermore,with conditional probability q (as de�ned above), M 00 produces the pre�x hi � � also in caseM 0 produces the pre�x hi � (� � 1). As above, we de�nep def= Prob (V (hi) = �)p0 def= Prob (V 0(hi) = �)Since V 0 is the simulation (M 0) based veri�er, we may also writep0 = Prob ([M 0]i+1 = hi � � j [M 0]i = hi) (2.9)Also, recall that q was de�ned as p�p01�p0 . Now, using these notations:Prob ([M 00]i+1=hi � � j[M 00]i=hi ) = Prob ([M 0]i+1=hi � � j[M 0]i=hi )+ p � p01� p0 � Prob ([M 0]i+1=hi � (� � 1) j[M 0]i=hi )Using Equation (2.9), we get = p0 + p � p01 � p0 � (1� p0)= p= Prob (V (h) = �)Finally, we turn to the case in which ��1 is weak (w.r.t. hi). Again, this means that � isco-critical in �c. Given that M 00 has produced the pre�x hi, it produces hi � � only when M 0produces the pre�x hi � �, and furthermore, M 00 does so only with probability 1 � q (where45



q is again as de�ned above). We denote p and p0, with respect to the critical message � � 1.Namely, p def= Prob (V (hi) = � � 1)p0 def= Prob (V 0(hi) = � � 1)= Prob ([M 0]i+1 = hi � (� � 1) j [M 0]i = hi)Thus, recalling that q = p�p01�p0 , we getProb ([M 00]i+1=hi � � j[M 00]i=hi ) = (1� p� p01� p0 ) � Prob ([M 0]i+1=hi � � j[M 0]i=hi )= 1 � p1� p0 � (1� p0)= 1� p= Prob (V (hi) = �)This completes the proof of Claim 2.23. 2Lowering the probability of some simulator outputsAfter handling the di�erences between M 0 and (P 0; V ) which are not tiny, we make the lastmodi�cation, in which we deal with tiny di�erences. We do that by lowering the probabilitythat the simulator outputs a conversation, in case it outputs this conversation more frequentlythan it appears in (P 00; V ). The modi�ed simulator, denoted M 000, runs M 00 to obtain aconversation �c. (Note that M 00 always produces output.) Using the further-augmentedoracle, M 000 outputs �c with probabilityp�c def= 34 � Prob([P 00; V ]=�c)Prob([M 00]=�c)Note that p�c � 1 holds due to Part 2 of Claim 2.23.Claim 2.241. M 000 produces output with probability 34 ;2. The output distribution of M 000 (i.e., in case it has output) is identical to the distribution[P 00; V ].proof: The probability that M 000 produces an output is exactly:X�c Prob ([M 00]=�c) � p�c = 3446



As for part (2), we note that the probability that a conversation �c is output byM 000 is exactly34 � Prob ([P 00; V ]=�c). Since the simulator halts with an output with probability exactly 34,we get that given that M 000 halts with an output, it outputs �c with probability exactlyProb ([P 00; V ]=�c)) and we are done. 2An important point not explicitly addressed so far is whether all the modi�cations applied tothe simulator preserve its ability to be implemented by a probabilistic polynomial-time withbounded access to an oracle. Clearly, this is the case with respect to M 00 (at the expense ofadditional 1 + log2 t = O(log n) oracle queries). Yet, regarding the last modi�cation thereis a subtle points which needs to be addressed. Speci�cally, we need to verify that thede�nition ofM 000 is implementable; namely, thatM 000 can (with help of an augmented oracle)\sieve" conversations with exactly the desired probability. Note that the method presentedabove (in the \technical remark") may yield exponentially small deviation from the desiredprobability. This will get very close to a perfect simulation, but yet will not achieve it.To this end, we modify the \sieving process" suggested in the technical remark to dealwith the speci�c case we have here. But �rst we modify P 00 so that it makes its randomchoices (in case it has any) by 
ipping a polynomial number of unbiased coins.6 This roundingdoes change a bit the behavior of P 00, but the deviation can be made so small that the aboveassertions (speci�cally Claim 2.23) still hold.Consider the speci�c sieving probability we need here. Namely: p�c = 34 � a=bc=d , whereab = Prob([P 00; V ] = �c) and cd = Prob([M 00]=�c). A key observation is that c is the numberof coin tosses which lead M 00 to output �c (i.e., using the notation of the previous section,c = j
�cj). Observing that b is the size of probability space for [P 00; V ] and using the abovemodi�cation to P 00, we rewrite p�c as 3ad4b � 1c = ec2f , where e and f = poly(n) are somenon-negative integers.We now note, that the oracle can allow the simulator to sieve conversations with prob-ability ec (f = 0), for any 0 � e � c in the following way. M 000 sends to the oracle therandom tape ! that it has tossed for M 00, and the oracle sieves only e out of the possible crandom tapes which lead M 00 to output �c. The general case of p�c = ec2f is deal by writingp�c = qc + rc2f , where q = be=2fc and r = e� q2f < 2f . To implement this sieve,M 000 supplies6The implementation of P 00 was not discussed explicitly. It is possible that P 00 uses an in�nite numberof coin tosses to select its next message (either 0 or 1). However, an in�nite number of coin tosses is notreally needed since rounding the probabilities so that a polynomial number of coins su�ces, causes onlyexponentially small rounding errors. 47



the oracle with a uniformly chosen f -bit long string (in addition to !). The oracle sieves outq random-tapes (of M 00) as before, and uses the extra bits in order to decide on the sieve incase ! equals a speci�c (di�erent) random-tape.Combining Claims 2.18, 2.23 (part 1), and 2.24, we conclude that (P 00; V ) is an interactiveproof system of perfect knowledge complexity k(n) + O(log n) for L. This completes theproof of Theorem 2.17.2.5 Applying our Techniques for Non-Negligible ErrorProbabilitiesAs explained in Section 2.1.1, the notion of an interactive proof with bounded knowledgecomplexity is not robust under changes in the allowed error probability. Throughout thiswork, we use the natural de�nition of interactive proofs in which the error probability isnegligible. However, our techniques yield non-trivial results also in the case one de�nesinteractive proofs with some speci�c non-negligible error probability. In this section weexplain how such assertions may be obtained, and state such results for two special cases.Denote by �c(n) (an upper bound on) the probability that the veri�er rejects an inputx although x 2 L and the prover plays honestly. This is the error probability related tothe completeness condition. Similarly, denote by �s(n) (an upper bound on) the probabilitythat the veri�er accepts x 62 L when the prover follows its optimal strategy (not necessarilyfollowing the protocol). This is the error probability related to the soundness condition.We say that an interactive proof has error probabilities (�s; �c) if its error probability in thesoundness condition is bounded by �s and its error probability in the completeness conditionis bounded by �c.2.5.1 The perfect caseIn this subsection, we consider the more restricted case of perfect knowledge complexity, andderive Theorem 2.26 which is the analogue of Theorem 2.14 for the case that the error prob-abilities are not negligible. Following the de�nitions in Section 2.3, we denote the simulationbased prover by P �.Let us follows the steps of the proof of our main theorem and observe which assertionshold for the case of non-negligible error probability. We begin by observing that the following48



generalization of Lemma 2.15 holds:Lemma 2.25 Let (P; V ) be an interactive proof for L with error probabilities (�s(n); �c(n))and with knowledge complexity k(n), then1. If x 2 L then the probability that (P �; V ) outputs an accepting conversation is at least(1� �c(n))2 � 2�k(n), where n = jxj.2. If x 62 L then the probability that (P �; V ) outputs an accepting conversation is at most�s(n), where n = jxj.The proof of this lemma is identical to the proof of Lemma 2.15, except that here jA�jjS�j =1� �c(n). As explained in Section 2.3, an e�cient machine with access to an NP oracle cansample conversations in (P �; V ). By Lemma 2.25, this would yield an accepting conversationwith probability at most �s(n) in the case x 62 L and at least (1� �c(n))2 �2�k(n) when x 2 L.In case these two probabilities di�er su�ciently (i.e., by more then a polynomial fraction), wecan use standard ampli�cation techniques to get a probabilistic algorithm that determineswhether x 2 L with error probability less than 1=3 (or negligible, or 2�n). To summarize,we get the following theorem for perfect knowledge complexity.Theorem 2.26 If a language L has an interactive proof with perfect knowledge complexityk(n) and error probabilities (�s; �c) and if there exists a polynomial p(n) such that(1 � �c(n))2 � 2�k(n) > �s(n) + 1p(n)then L 2 BPPNP.Examples: Theorem 2.26 implies, for example, that if a language L has an interactive proofof knowledge complexity 1 and error probability 1=4 (both in the soundness condition andin the completeness condition), then L is in BPPNP. Another interesting example is thecase of one-sided error (i.e., �c = 0). Theorem 2.26 implies that for any polynomial p(�), if alanguage L has a one-sided error interactive proof (P; V ) of knowledge complexity at mostlog2 �p(�)2 � and error probability �s � 1p(�), then L is in BPPNP.2.5.2 The general (statistical) caseUnfortunately, the analogue result for statistical knowledge complexity is not as clean, andhas various di�erent formulations according to possible properties of the error probabilities.49



Let us explain how such a result can be obtain, and give a speci�c example for the specialcase in which �c = 0, i.e., the original interaction has one-sided error.Recall that the proof for the negligible error-probability case uses the transformation fromstatistical to perfect knowledge complexity and then uses Theorem 2.14. This transformationincreases the knowledge complexity by a logarithmic additive term. In view of Lemma 2.25,it is desirable not to increase the knowledge complexity without concurrently decreasing theerror probability. Thus, before applying the transformation, we reduce the error probabilityby iterating the protocol as many times as possible while maintaining logarithmic knowledgecomplexity.Speci�cally, denote the length of the interaction by l(n). Also, �x an input x of lengthn, and let l = l(n), k = k(n), �s = �s(n) and �c = �c(n). The transformation from statis-tical to perfect knowledge complexity (as described in Section 2.4) increases the knowledgecomplexity by 1 + log2 l. We begin by running the original protocol (P; V ) sequentiallyt def= d(log2 l)=ke times. These repetitions yield a new protocol (P 0; V 0) whose length is t � l,its knowledge complexity is bounded by t � k < (k � 1) + log2 l, and its error probabilitydecreases. To compute the decrease in the error probabilities, we partition the analysis intotwo cases according to whether the original interaction has one sided error or not.If the original interaction has one sided error, i.e., the veri�er always accepts when x 2 L,then the new veri�er V 0 accepts only if all repetitions of the original protocols end accepting.The error probabilities in this case decrease from (�s; 0) to (�ts; 0). In the case where theoriginal interactive proof was not one sided, the veri�er counts the number of original inter-actions that end with the original veri�er accepting. The new veri�er accepts if this numberis greater than �s+(1��c)2 � t. In order to compute the new error probabilities we may applythe Cherno� bound and get an upper bound on the new error probabilities which dependson t, on the di�erence between 1 � �c and �s, and of-course on �s and �c themselves.Next, we apply the transformation of Section 2.4 (\from statistical to perfect knowledgecomplexity") and get a new interactive proof (P 00; V 00) for L which has knowledge complexityk � 1 + log2 l + 1 + dlog2(l � t)e, where the additional 1 + dlog2(l � t)e term comes from thetransformation. Finally, if the resulting parameters of (P 00; V 00) satisfy the conditions statedin Theorem 2.26, then we get that the language L is in BPPNP. Let us provide full detailsfor the special (yet important) case of one sided error (i.e., �c = 0).In the special case of one-sided error, we end up using Theorem 2.26 for an interactiveproof with knowledge complexity k + log2 l + dlog2(l � t)e and (one-sided) error probability50



�st. Thus, we get the following theorem for statistical knowledge complexity:Theorem 2.27 Suppose that a language L has an interactive proof of statistical knowledgecomplexity k(n), one-sided error probability �s(n), and with length l(n) so that there exists apolynomial p(n) for which the following inequality holds12 � 2k(n) � l(n)2 � l log2 l(n)k(n) m � �s(n)d(log2 l(n))=k(n)e + 1p(n)Then L 2 BPPNP.2.6 A Flaw in [F-89]As remarked in the introduction, In course of this research, we found out that the proof thatSKC(0) � co-AM as it appears in [F-89] is not correct. In particular, there is a 
aw in theAM-protocol presented in [F-89] for the complement language. In this section, we explainthe problem in the proof there and present a counter-example.In [F-89], Fortnow presents a constructive method for proving that SZK def= SKC(0) iscontained in co-AM. Given an interactive proof (P; V ) for a languages L and a (statistical)zero-knowledge simulator M (for the honest veri�er V ), he constructs a two-round protocol(P 0; V 0). This protocol was claimed to constitute an interactive proof system for L. Thisclaim, as we are going to show, is wrong. Yet, the result SZK � co-AM does hold, sincethe work of Aiello and Hastad contains the necessary re�nements which enable to present amodi�ed AM-protocol for L (see [AH-87, H-94]). Furthermore, Fortnow's basic approach isvalid, and indeed it was used in subsequent works (e.g., [AH-87, BMO-90, Ost-91, BP-92a,OW-93]).Fortnow's basic approach starts with the observation that the simulatorM must behavedi�erently on x 2 L and x 62 L. Clearly, the di�erence cannot be recognized in polynomial-time, unless L 2 BPP. Yet, stronger recognition devices, such as interactive proofs shouldbe able to tell the di�erence. Fortnow suggests a characterization of the simulator's behavioron x 2 L and uses this characterization in his protocol for L, yet this characterization iswrong. Aiello and Hastad present a re�nement of Fortnow's characterization [AH-87], theircharacterization is correct and can be used to show that SZK � AM (which is the goal oftheir paper) as well as SZK � co-AM. 51



Fortnow's characterizationGiven an interactive proof (P; V ) for L and a simulator M , and �xing a common inputx 2 f0; 1g�, the following sets are de�ned. Let us denote by t the number of random bitsthat the veri�er V uses on input x, and by q the number of random bits used by the simulatorM . For every conversation pre�x, h, we consider the set of the veri�er's coin tosses whichare consistent with h (the conversation so far). We denote this set by Rh1 . Namely, forh = (�1; �1; :::; �i; �i) (or h = (�1; �1; :::; �i; �i; �i+1)), r 2 Rh1 i� V (x; r; �1; :::; �j) = �jfor every j � i, where V (x; r; ��) denotes the message sent by V on input x random-taper and prover message-sequence ��. The set Rh1 depends only on the veri�er V . Next, weconsider sets Rh2 which are subsets of the corresponding Rh1 's. Speci�cally, they containonly r's that can appear with h in an accepting conversation output by the simulator M .Namely, r 2 Rh2 i� r 2 Rh1 and there exists ! 2 f0; 1gq so that M(x; !) is an acceptingconversation with pre�x h. (Here M(x; !) denotes the conversation output by M on inputx and simulator-random-tape !.)Motivation: For simplicity, suppose that the simulation is perfect (i.e., M witnesses that(P; V ) is perfect zero-knowledge) and that (P; V ) has one sided error (i.e., \perfect complete-ness"). Then, for every x 2 L and every possible h, we must have Rh2 = Rh1 (otherwise thesimulation is not perfect). However, if x 62 L then there must exist h's so that Rh2 is muchsmaller than Rh1 . Otherwise the simulator-based prover (for M) will always convince V toaccept x, thus violating the soundness condition of (P; V ). The problem with the above di-chotomy is that it is \too existential" and thus it is not clear how to use it. Instead Fortnowclaimed a dichotomy which is more quantitative.A False Characterization: Let pref(�c) denote the set of all message-subsequences in the con-versation �c.� if x 2 L then Prob!(8h 2 pref(M(x; !)) ���Rh2��� �1 ���Rh1 ���) > 34� if x 62 L then Prob!(8h 2 pref(M(x; !)) ���Rh2��� �2 ���Rh1 ���) < 14where the probability (in both cases) is taken uniformly over ! 2 f0; 1gq. We did not specifywhat is meant by �i. One may substitute � �1 � by � � 12 � �, and � �2 � by � � 14 � �.The gap between the two is needed for the approximate lower/upper bound protocols.52



A CounterexampleThe mistake is in the second item of the characterization. The false argument given in [F-89]confuses between the probability distribution of conversations output by the simulator andthe probability distribution of the conversations between a simulator-based prover (denoteP �) and the veri�er. These distributions are not necessarily the same (note that we are incase x 62 L). Consequently, the probability that \good" conversations (i.e., conversationsfor which jR2j � jR1j for all pre�xes) occur in the (P �; V ) interaction is not the same asthe probability that the simulator outputs \good" conversations. This point is ignored in[F-89] and leads there to the false conclusion that the characterization holds. Bellow, wepresent an interactive proof (P; V ) and a (perfect) zero-knowledge simulator for which thecharacterization fails.The interactive proof that we present is for the empty language �. This interactive proofis perfect zero knowledge for the trivial reason that the requirement is vacuous. Yet, wepresent a simulator for this interactive proof which, for every x 2 f0; 1g� = �, outputs\good" conversation with probability close to 1. Thus, the characterization fails.The interactive proof (from the veri�er's point of view { input x 2 f0; 1gn):� The veri�er uniformly selects � 2 f0; 1gn and sends � to the prover.� The veri�er waits for the prover's message � 2 f0; 1gn.� Next, the veri�er uniformly selects 
 2 f0; 1gn and sends 
 to the prover.� The veri�er accepts i� either � = 0n or � = 
.Regardless of the prover's strategy, the veri�er accepts each x 2 f0; 1gn with negligibleprobability; speci�cally 2�n + (1 � 2�n) � 2�n. Thus, the above protocol indeed constitutesan interactive proof for the empty language �.The simulator operates as follows (on input x 2 f0; 1gn):� With probability 1� �, the simulatorM outputs a conversation uniformly distributed in0n � f0; 1g2n. (� is negligible, say � = 2�n)� With probability �, the simulator M outputs a conversation uniformly distributed in(f0; 1gn � 0n)� f0; 1g2n.Claim: In contradiction to the characterization, for every x 2 f0; 1g� = �,Prob!(8h 2 pref(M(x; !)) ���Rh2 ��� = ���Rh1 ���) � 1� �53



Proof: It su�ces to show that every conversation of the form 0n�
 satis�es R2 = R1 forall its pre�xes. First observe that R�1 = f0; 1g2n = R�2 , since for every �
 2 f0; 1g2nthe simulator outputs the accepting conversation �

 with non-zero probability. Similarly,R0n1 = 0nf0; 1gn = R0n2 . Next, for every � 2 f0; 1gn, we have R0n�1 = 0nf0; 1gn = R0n�2 , sincefor every 
 2 f0; 1gn the simulator outputs the accepting conversation 0n�
 with non-zeroprobability. (Here we use the fact that the veri�er always accepts when � = 0n.) Similarly,R0n�
1 = 0n
 = R0n�
2 . 2ConclusionThe source of trouble is that the de�nition of the sets Rh2 's does not take into account theprobability weight assigned by the simulator to !'s that witness the assertion \the simulatoroutputs an accepting conversation that starts with h". Indeed, this is exactly the nature ofthe re�nement suggested by Aiello and Hastad [AH-87].
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2.7 Concluding RemarksWe consider our main result as a very �rst step towards a classi�cation of languages accordingto the knowledge complexity of their interactive proof systems. Indeed there is much to beknown. Below we �rst mention two questions which do not seem too ambitious. The �rstis to try to provide evidence that NP-complete languages cannot be proven within low(say logarithmic or even constant) knowledge complexity. A possible avenue for proving thisconjecture is to show that languages having logarithmic knowledge complexity are in co-AM,rather than in BPPNP (recall that NP is unlikely to be in co-AM - see also [BHZ-87]). Thesecond suggestion is to try to provide indications that there are languages in PSPACE whichdo not have interactive proofs of linear (rather than logarithmic) knowledge complexity. Thereader can easily envision more moderate and more ambitious challenges in this direction.Another interesting question is whether all levels greater then zero of the knowledge-complexity hierarchy contain strictly more languages than previous levels, or if some partialcollapse occurs. For example, it is open whether constant or even logarithmic knowledgecomplexity classes do not collapse to the zero level.Regarding our transformation of statistical knowledge complexity into perfect knowledgecomplexity (i.e., Theorem 2.17), a few interesting questions arise. Firstly, can the cost ofthe transformation be reduced to bellow O(log n) bits of knowledge? A result for the specialcase of statistical zero-knowledge will be almost as interesting. Secondly, can one present ananalogous transformation that preserves one-sided error probability of the interactive proof?(Note that our transformation introduces a negligible error probability into the completenesscondition.) Finally, can one present an analogous transformation that applies to knowledgecomplexitywith respect to arbitrary veri�ers? (Our transformation applies only to knowledgecomplexity with respect to the honest veri�er.)
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Chapter 3The Hardness of Approximations:Gap Location3.1 The Gap Location ParameterIn this section, we introduce the de�nitions concerning hard gaps. We follow the de�nitionswith an informal discussion. Let us make a distinction between optimization problems thatseek the quality of the best solution and optimization problems that seek the size of thelargest solution (see Subsection 1.2.1). We concentrate on the �rst class of problems, forwhich the gap-location parameter is more interesting. However, it should be noted that astraightforward modi�cation of the de�nition below makes it suitable for all optimizationproblems. Denote by N(I) the number of sub-conditions posed by the instance I. (To makethis notation suitable for all optimization problems, one may interpret N(I) as a polynomialtime computable bound on the optimum value of I.) OPT (I) denotes the number of sub-conditions which are satis�ed by the best solution of I (i.e., the solution that maximizes thenumber of satis�ed sub-conditions).De�nition 3.1 (The parameters of a hard gap). Consider an optimization problemin which we are looking for the quality of the best solution. Suppose that it is NP-hard to tellwhether OPT (I) � �1 �N(I) or OPT (I) � �0 �N(I). Then we say that there exists a hardgap for the problem P , at location �0, with width �0 � �1.56



In this work, we are only concerned with gaps of constant width so we omit the widthparameter in what follows. Throughout the paper, we show that problems have hard gaps.Let us clearly state the implication of hard gaps on the hardness of approximations.Remark 3.2 If a maximization (or a minimization) problem P has a hard gap at any lo-cation 0 < � � 1, then there exists a constant � > 0 such that, unless P=NP, there is nopolynomial time algorithm that approximates P to within 1 � � (or 1 + �), respectively.The instances of an optimization problem always satisfy 0 � OPT (I) � N(I), butsometimes the solution interval is more restricted.De�nition 3.3 (The solution interval). Consider an optimization problem P in whichwe seek the quality of the best solution. We say that P has solution interval [�1; �2] iflim infjIj!1 OPT (I)N(I) = �1 and lim supjIj!1 OPT (I)N(I) = �2.Namely, neglecting a �nite number of instances, OPT (I) satis�es �1 � N(I) � OPT (I) ��2 �N(I). Usually, �2 = 1 in natural problems.Informal discussion. Let us restrict the discussion to natural problems that seek thequality of the best solution and that are hard to approximate (i.e., have a hard gap somewherein their solution interval). Also, let the solution interval of P be [�P ; 1]. We would like tostate two beliefs we have concerning the issue of gap-location.The �rst belief is that if there exists a hard gap at any location in the interval solution,then there exists hard gaps at all points in the open interval (�P ; 1). Note that this impliesa di�erence between proving a hard gap at location 1 and at any other location. A hard gapat location 1 implies (assuming this conjecture) a hard gap at all locations in the interval(�P ; 1], whereas a hard gap at any other location does not imply a hard gap at location 1(even assuming the conjecture). In fact, there exist optimization problems for which thereare hard gaps at all locations in the open interval (�P ; 1) but not at location 1. We discusssuch problems in what follows, but �rst, let us state our conjecture.Informal Conjecture 1 Let P be some natural optimization problem in which we are tryingto determine the quality of the best solution. Suppose P has a solution interval [�; 1], forsome 0 � � < 1. Then a hard gap at any location in (�; 1] implies hard gaps at all locationsin the open interval (�; 1).In what follows, we assume the validity of Conjecture 1. Conjecture 2 (below) makes adistinction between problems which possess hard gaps at all locations in the interval (�P ; 1]57



and problems that have hard gaps only in the open interval (�P ; 1). Consider the followingdecision problem related to an approximation problem P . Given an instance I, determinewhether OPT (I) = N(I). For example, the decision problem related to max-sat is sat(i.e., given a formula ', determine whether all its clauses can be satis�ed). We partition theoptimization problems into two classes according to the di�culty of their related decisionproblems. The �rst class contains optimization problems for which it is NP-hard to determinewhether an input I has OPT (I) = N(I). This class contains problems as max-sat (provenhard to approximate by Arora et al. [ALMSS-92]) and max k-colorability (for k � 3)[PY-91] and Section 3.2). The other class contains problems for which it is easy to decidewhether an input I has OPT (I) = N(I). This class contains problems such as max-cut(which can be also viewed as max 2-colorability), and max-2sat (both shown hard toapproximate by Papadimitriou & Yannakakis [PY-91]). (While doing this partition, we donot claim that all decision problems are either NP-hard or easy, but practically all knowninteresting problems of this form do fall into one of these two categories, and we are interestedonly in these natural problems here.) Our second belief is that any natural problem of the�rst class has hard gaps at all locations � 2 (�P ; 1] and that any natural problem of thesecond class has hard gaps at all locations � 2 (�P ; 1). Note that we can never have a hardgap at location �P , since we know that all instances have OPT (I) � �P �N(I) and none hasOPT (I) � (1� �)�P �N(I), for any � > 0. Conjecture 2 states that a problem P has a hardgap at location 1 if and only if the corresponding decision problem is NP-hard. The validityof the two conjectures implies our second belief.Informal Conjecture 2 Let P be some natural optimization problem in which we seek thequality of the best solution. Suppose that P has a hard gap at some location in its solutioninterval. Then P has a hard gap at gap-location 1 if and only if it is NP-hard to determinewhether OPT (I) = N(I) (i.e., the original decision problem is NP-hard).Conjecture 1 can be proven for many known optimization problems using a paddingargument. In these cases, one may use a padding argument to \transfer" the hard gap toany location in the open interval (�; 1). This can be demonstrated on the problem max-sat (as was done in the introduction) and on max k-colorability in the following way.To lower the gap, add a large enough clique to the graph and do not connect it to anyoriginal vertex. To move the gap up, add a large enough bipartite graph disconnected fromthe original nodes of the graph. Note that the solution interval here is [1 � 1k ; 1] since any58



graph has a k-coloring for which �1 � 1k� � jEj edges are consistent. Generally, note that thispadding method cannot be used to transfer a hard gap from a location other than 1 to ahard gap at location 1.Let us de�ne a class of optimization languages for which the �rst conjecture can beproven. This class contains many natural optimization problems such as max-sat, max3-dimensional matching, etc. We de�ne the class to contain problems which possessa \padding property", which will enable us to prove the conjecture. We will have tworequirements to make of problems in this class. First, we require the existence of an e�cientlycomputable operation which joins two instances into one. This operation, which we denoteby �, will have a speci�c way of combining the optimum values of both instances. (We statethis formally in De�nition 3.4 below). The second requirement we make is that the problemhas a \substantial" number of instances whose optimum lies at the endpoints of the solutioninterval. Formally, we have the following.De�nition 3.4 The class paddable of optimization problems contains all optimizationproblems which satisfy the following two requirements:1. Padding property: There exists a polynomial time computable padding operation,denoted by �, which operates on any two instances I1 and I2 of P and has the propertythat for all I1; I2, N(I1�I2) = N(I1)+N(I2) and OPT (I1�I2) = OPT (I1)+OPT (I2).2. Endpoints property: Let (�; 1] be the interval solution of P . There exists a constantc > 0 such that for any n 2 N it is possible to �nd in polynomial time two instancesI1; I2 such that n � N(I1); N(I2) � n+ c , and OPT (I1)N(I1) = �, OPT (I2)N(I2) = 1.For this class the conjecture can be stated as a theorem.Theorem 3.5 Let P 2 paddable be some optimization problem in which we are try2ing todetermine the quality of the best solution. Suppose P has a solution interval [�; 1] for some0 � � < 1. Then, a hard gap at any location in (�; 1] implies hard gaps at all locations inthe open interval (�; 1).Sketch of proof. Suppose that P has a hard gap at location �0 2 (�; 1] and consider anylocation �1 2 (�; 1). Suppose w.l.o.g. that �1 < �0. We show that if, for any �0 > 0, thereexists a polynomial time algorithm that distinguishes between the case OPT (I)=N(I) ��1� �0 and the case OPT (I)=N(I) � �1, then there exists a polynomial time algorithm that59



distinguishes (for any instance I) between the case OPT (I)=N(I) � �0 � � and the caseOPT (I)=N(I) � �0. Thus, the NP-hardness of the gap at location �1 is implied by theNP-hardness of the gap at location �0.Suppose we have an instance I for which we would like to determinewhetherOPT (I)=N(I) ��0 � � or OPT (I)=N(I) � �0. We \pad" this instance with an instance I 0 such that thefollowing two relations hold:OPT (I)N(I) � �0 =) OPT (I � I 0)N(I � I 0) � �1OPT (I)N(I) � �0 � � =) OPT (I � I 0)N(I � I 0) � �1 � �0for the constant �0 = �=2. The possibility to �nd such an instance I 0 in polynomial timefollows from the second requirement in the de�nition of paddable. Now, if for any con-stant �0 > 0 there is a polynomial time algorithm which distinguishes between the casesOPT (I � I 0)=N(I � I 0) � �1 andOPT (I � I 0)=N(I � I 0) � �1��0, then we get a polynomial time algorithm that distinguishesbetween the cases OPT (I)=N(I) � �0 and OPT (I)=N(I) � �0 � �, and we are done.The de�nition of the class paddable is semantic. We consider it an interesting openproblem to �nd a syntactic de�nition of a class of optimization problems for which the �rstconjecture can be proven.3.2 A Hard Gap for k-colorability at Gap-Location1Consider the problem of �nding a k-coloring of a given graph G such that as many edges aspossible are adjacent to two vertices of di�erent colors.De�nition 3.6 (A consistent edge). Consider a graph G(V;E) and a coloring of itsvertices � : V ! f1; 2; :::; kg. We say that an edge e = (vi; vj) is consistent regarding � if�(vi) 6= �(vj).De�nition 3.7 (The problem max k-colorability).Input: A graph G(V;E).Problem: Find the maximum number of consistent edges in G, over all k-colorings of thevertices in G. 60



For k � 3, it is NP-hard to tell whether a graph is k-colorable or not. We show that for anyk � 3, there exists a constant �k > 0 such that unless P=NP, there is no polynomial timealgorithm which can determine whether an input graph G(V;E) is k-colorable, or whetherany k-coloring of G has at most (1� �k)jEj consistent edges.Theorem 3.8 For any k � 3, max k-colorability possesses a hard gap at location 1.Proof: We use a reduction from max 3sat-B to max 3-colorability. Next, we can usetechniques from [PY-91] to further reduce max 3-colorability to max k-colorabilityfor any k > 3. In the reduction, we use a bipartite expander, which helps us to preserve thehard gap. The use of expanders in preserving gaps was �rst noticed in [PY-91]. A bipartitegraph on 2�n nodes is called a bipartite expander with degree d and expansion factor 1+
 ifevery subset S of at most n=2 nodes of one side of the graph is adjacent to at least (1+
)jSjnodes on the other side. Bipartite expanders on 2 � n nodes can be e�ciently constructedfor any n 2 IN [Mar-73, GG-81, AJ-87]. Let us �rst show the reduction, and then show thatif the instance ' of max 3sat-B is satis�able, then the output of the reduction, G'(V;E),is 3-colorable (Lemma 3.9 below), while if any assignment to ' satis�es at most a fraction1 � � of the clauses in ', then any 3-coloring of G(V;E) induces at least � 
2Bm � cjE'jinconsistent edges for some constant c > 0 (Lemma 3.10 below).The reduction. We are given an instance of max 3sat-B, i.e., a 3-cnf formula ' withn variables and m clauses, such that each variable appears at most B times in the formula'. We use an extension of the standard reduction from 3sat to 3-colorability [St-73,GJS-76]. Let us shortly describe the original reduction, which uses a gadget with ninevertices and 10 edges (Figure 3.2).We call the top vertex g4 the gadget head, and the three bottom vertices g1; g2; g3 thegadget legs. The other vertices in the gadget are called the gadget body. The useful propertyof this gadget (which will be denoted \P") is that if the three legs have the same color, thenany consistent 3-coloring of the gadget assigns the gadget head the same color too, while ifthe three legs do not have the same color, then for any color assigned to the head, we cancomplete the coloring of the body consistently.The reduction outputs 2n vertices (the literals vertices) labeled x1; x1; x2;x2; : : : ; xn; xn, two vertices named ground and B, and m gadgets, one for each clause.The edges of the output graph connect xi to xi, xi to ground, xi to ground for 1 � i � n,61



g4 g3g2g1Figure 3.1: The gadget in the reduction from 3-sat to max-3-colorabilityall the gadget heads to B, and B to ground. Last, it identi�es the three legs of the gadgetof Ci with the vertices that correspond to the literals of Ci.Our extension proceeds as follows. We duplicate the vertex Bm times to getB1; B2; : : : ; Bm,which are all connected to ground, and we connect them to the m gadget heads using abipartite expander. Namely, one side of the expander (which we call the upper side) containsB1; B2; : : : ; Bm, and the other (the lower side) contains the gadget heads. The resultinggraph is illustrated in Figure 3.2.Note that, for simplicity, we have drawn the vertex ground twice in the �gure. Notealso that the number of edges in the output graph is O(m).Lemma 3.9 If ' is satis�able, then G' is 3-colorable.Proof: We use the colors T,F,G. Color the vertex ground with the color G. Color eachliteral-vertex with T if the corresponding literal is assigned true by the satisfying assignment� of ', or with F otherwise. Color B1; B2; : : : ; Bm with F and the gadget heads with T. Itremains to color the body vertices of the clauses-gadgets. Recall that each gadget head iscolored T and that since the truth assignment � satis�es ', then at least one gadget leg mustbe colored T (This is the literal-vertex that corresponds to the literal that is assigned trueby � ). By property P of the gadget, we get that it is possible to complete the coloring of allthe gadget-bodies consistently.Lemma 3.10 If there exists a 3-coloring of G' which induces �m inconsistent edges, thenthere is an assignment to ' that satis�es at least �1� 2B�
 �m clauses in ', where 1+
 is the62
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GROUND
GROUNDx1 x2 x3 xnFigure 3.2: The reduction from 3-sat to max-3-colorability
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expansion rate of the polynomial time constructible expander that is used in the constructionof G'.Proof: The lemma is trivially valid for � � 1=4, since for any formula there exists anassignment that satis�es at least half of its clauses. Therefore, we restrict ourselves to� < 1=4. Given a 3-coloring of G', we �rst select names for the 3 colors and de�ne anassignment to the variables of '. Denote the color of the vertex ground by G. Themajority color in the heads of all gadgets is denoted T (if there are two candidate colorsappearing the same number of times, select one of them arbitrarily). Note that the color Tis di�erent from G since all the m gadget-heads are connected to the ground vertex andwe have less than m=4 inconsistent edges. The third color is denoted F. Now, to �x theassignment for the variable xi, 1 � i � n, we consider the vertex labeled xi. If it is coloredT, we assign the value true to xi. Otherwise, the assignment for xi is false. We claimthat this assignment satis�es at least �1 � 2B�
 �m clauses.By the property of the gadget, there is no consistent 3-coloring of the vertices of thegadget such that the head of the gadget is colored T and its three bottom vertices (the threeliteral vertices) are colored F. Therefore, if the gadget of the clause Cj , 1 � j � m, has allits edges consistent and its head colored T, then one of its literals must be colored T or G.In other words, if a clause Cj = (lj1 _ lj2 _ lj3), 1 � j � m, is not satis�ed by our assignment,i.e., all its literals are assigned false by our assignment, then one of the following conditionsmust be met:1. One of the edges in the gadget of Cj is inconsistent.2. The gadget head is not colored T.3. One of the literals in the clause is assigned false by our assignment, and its vertex isnot colored F.We show that these three conditions cannot be met \too many times" in the graph G'by showing that ful�llment of these conditions implies inconsistent edges. Denote by K1;K2and K3 the number of times that conditions 1, 2, and 3 are met in the graph G'. Clearly,the number of clauses that are not satis�ed by our assignment is at most K1+K2+K3. Weclaim that K1 + 
2K2 + 1BK3 < �m: (3.1)64



Assuming this (the proof follows) we get thatK1 +K2 +K3 � 2B
 �mand therefore, the number of clauses that are not satis�ed by our assignment is at most2B�
 m, as needed.It remains to prove Equation (3.1), i.e., to show that there are at least K1+ 
2K2+ 1BK3inconsistent edges in G'. We partition the edges in the graph into three disjoint subsets, andgive a lower bound on the number of inconsistent edges in each subset (given K1;K2, andK3). Since the subsets are disjoint, we can sum these lower bounds into a single lower boundon the number of inconsistent edges in the graph. The �rst subset consists of the edgesinside the gadgets. By the de�nition of K1, we have at least K1 inconsistent edges in thissubset. Next, we consider all the edges that connect the literal-vertices to each other and tothe vertex ground. Recall that each literal appears in at most B clauses and therefore, ifwe have K3 clauses connected to literals having the property of condition 3, then there areat least 1BK3 literals that are assigned false by our assignment and whose vertices are notcolored F. We would like to show that for each such literal, there is a unique inconsistentedge. If the vertex li or the vertex li is colored G, then there exists an inconsistent edgebetween that vertex and the vertex ground and we are done for that literal. So, assumethis is not the case. Since the vertex li is not colored F and not colored G, then it is coloredT, and since we assigned false to the literal li, the vertex li must be colored T also and weget an inconsistent edge (li; li). Note that for each vertex that satis�es the above conditionwe have a di�erent inconsistent edge. Therefore, we have at least 1BK3 inconsistent edges inthe second subset.The remaining edges consist of the edges of the expander and the edges that connectthe expander to the vertex ground. We claim that if K2 vertices of the lower side of theexpander are not colored T, then at least 
2K2 edges in this set are inconsistent. Denoteby l1, l2, and l3 the number of vertices in the lower side of the expander that are coloredT, F, and G correspondingly. Recall that K2 = l2 + l3 is the number of expander lowervertices (which are gadget-head vertices) that are not colored T. We show that the numberof inconsistent edges in this last set of edges is at leastmax(l3; 
l2) � 
2K3:Clearly, there are at least l3 inconsistent edges in this set because there are l3 di�erent edgesthat connect the vertex ground, which is colored G, to gadget-head vertices with the same65



color. On the other hand, consider the l2 expander lower vertices that are colored F. Byde�nition of the color names, l2 is smaller than half the number of the vertices in the lowerside of the expander. Using the expansion property of the expander, these nodes have a setof (1 + 
)l2 neighbors in the upper side of the expander. Denote this set of neighbors by S.We cannot use the expansion property again on the set S since we are not sure that it issmall enough. However, we know that S is adjacent to at least jSj vertices on the lower side.Furthermore, we can associate with each vertex in S a unique neighbor on the lower side.(This holds for all known expander constructions. Yet, this property can be simply achieved(without foiling the expander) by adding m edges that connect each vertex i on one sideto vertex i on the other side.) Now, only l2 of the vertices in S can have their associatedneighbors in the lower side colored F. The other 
l2 members of S have their 
l2 twin verticeson the lower side colored G or T . Putting it all together, we have at least 
l2 vertices in Swhich, on one hand, are connected to a vertex colored F (by the de�nition of the set S), andon the other hand, are connected to unique lower vertices that are not colored F. Considersuch a vertex in S. If it is colored F, then we have a unique inconsistent edge between thisvertex and an F-colored lower vertex. If it is colored G, then we get a unique inconsistentedge between this vertex and the vertex ground. The last possibility is that this vertex iscolored T. If its twin vertex is also colored T, then we have an inconsistent edge betweenthem. Otherwise, the unique neighbor is colored G (since we know that it is not F), andwe also end up with a unique inconsistent edge between the lower neighbor and the vertexground. This completes the proof of Lemma 3.10, and of Theorem 3.8.3.3 The Hardness of max nae 3sat and max 3dmTwo more problems were shown to have a hard gap at locations less than 1 although it isNP-hard to decide if an instance has its best solution at location 1. These are max not-all-equal 3sat [PY-91] and max 3-dimensional matching [Kan-91]. In this section,we show that these problems have a hard gap at the gap location 1. Let us begin withde�ning the problems.De�nition 3.11 (The problem max not-all-equal 3sat).Input: A 3-CNF formula '.Problem: Find the maximum number of clauses that contain at least one true literal and atleast one false literal, over all truth assignments to the variables of '.66



De�nition 3.12 (The problem max 3-dimensional matching-B).Input: A set M �W � Y �Z, where W; Y , and Z are disjoint �nite sets and each elementin W [ Y [ Z appears in the triplets of M at most B times.Problem: Find the maximum number of elements in W [ Y [ Z which appear exactly oncein the triplets of M 0, over all M 0 �M .Theorem 3.13 The problem max not-all-equal 3sat possesses a hard gap at location1.Proof: We �rst reduce 3sat to not-all-equal 4sat, and then reduce not-all-equal4sat to not-all-equal 3sat. In the �rst reduction, we simply add a new variable to allclauses. Note that for the not-all-equal problem, the number of \satis�ed" clauses doesnot change if we use an assignment � or its complement � (the complement of an assignmentis an assignment that gives the opposite value to each of the variables in the formula).Therefore, we can �x the new variable to always be assigned false without changing thesolution to this optimization problem, and the maximum number of clauses that can besatis�ed in the input formula (to the reduction) is exactly the number of clauses that canhave both a false and a true literal simultaneously in the output formula. In the secondreduction, we treat each clause Cj = (lj1 _ lj2 _ lj3 _ lj4) that contains four literals by addinga new variable yj and replacing Cj with the two clauses: (lj1 _ lj2 _ yj) ^ (yj _ lj3 _ lj4). Itis easy to verify that there exists an assignment to the variables of the original formula, inwhich at least one of the literals lj1; lj2; lj3; lj4 is true and at least one is false i� there existsan assignment to the variables of the new formula such that both sets of literals flj1; lj2; yjgand fyj; lj3; lj4g contain at least one true literal and at least one false literal. Hence, thehard gap at location 1 is preserved. Note that the width of the new hard gap is at leasthalf the width of the original gap. This is because the number of clauses is at most twicethe number of clauses of the original formula, and the number of clauses that can not besatis�ed does not decrease.Theorem 3.14 For any B � 3, max 3-dimensional matching-B possesses a hard gapat location 1.Proof: A slight modi�cation of the original reduction from sat to 3-dimensional match-ing [Kar-72] works as a gap preserving reduction from max-sat-B to max 3-dimensional67



matching-3. We shortly describe the reduction, following the presentation of Garey &Johnson (1979). [GJ-79]. Given a formula ' with n variables and m clauses in which eachvariable appears at most B times, we construct three disjoint sets W '; Y '; Z' and a set oftripletsM' �W '�Y '�Z'. The triplets inM' consist of n truth-setting components (onefor each variable), m satisfaction-testing components (one for each clause), and a \garbagecollection" mechanism.Let xi be a variable that appears di times in the formula. The truth-setting component ofxi involves \internal" elements ai[k] 2 W ', bi[k] 2 Y ' and \external" elements xi[k]; xi[k] 2Z', for 1 � k � di. We call the ai[k]'s and the bi[k]'s internal because they appear only insidetheir truth-setting component. The external xi[k]'s and xi[k]'s appear in their truth-settingcomponents as well as in other components (which we describe later). The triplets makingup the truth-setting component can be divided into two sets:T ti = f(xi[k]; ai[k]; bi[k]) : 1 � k � dig ;T fi = f(xi[k]; ai[k + 1]; bi[k]) : 1 � k < dig [ f(xi[di]; ai[1]; bi[di])g :The property of this component is that any matching that covers all internal elementsai[k]; bi[k], 1 � k � di, exactly once contains either exactly all triplets in T ti or exactlyall triplets in T fi . Thus, we get that either all elements xi[k] are covered and all elementsxi[k] are not (we associate this with assigning false to xi), or all elements xi[k] are coveredand all elements xi[k] are not (this is associated with assigning true to xi). Note that thenumber of elements produced so far is O(n) since each variable appears at most B times in'. (We remark that the original reduction produced O(nm) elements, having m externalelements for each variable).The satisfaction-testing component that stands for the clause Cj (1 � j � m) containstwo internal elements s1[j] 2 W ' and s2[j] 2 Y ', and at most three external elements fromthe truth-setting components that correspond to the literals in Cj. If Cj contains the k-thappearance of the variable xi then we add the triplet (xi[k]; s1[j]; s2[j]) if xi appears positivelyin Cj or the triplet (xi[k]; s1[j]; s2[j]) if xi appears negated in Cj. These components add2m elements to the output. So far, each internal element appears in at most three tripletsof M' and each external element appears at most twice.Note that a matching that covers all internal elements exactly once and which does notuse an external element more than once corresponds to a truth assignment that satis�es '.Given an assignment � that satis�es ', we select the triplets of T ti to be in the matching68



if xi is assigned true by � or the triplets of T fi otherwise. This leaves all elements xi[k](1 � k � di) uncovered if xi is assigned true by � or all elements xi[k] uncovered otherwise.For each clause Cj, we select a literal that is assigned true (such a literal must exist since� satis�es '). The element that corresponds to the appearance of this literal in Cj is notcovered, since its literal is assigned true. Thus, we may choose the triplet that containsthis element to cover s1[j] and s2[j].In order to cover the remaining uncovered external elements, we use a garbage collectionmechanism. The original mechanism is too big (it contains O(nm) elements) and doesnot meet the demand that each element appears in at most three triplets. We present anappropriate garbage collecting mechanism later.Consider the other direction, in which we are given a good matching and we would liketo build a satisfying assignment to '. In order to show a hard gap in max 3-dimensionalmatching-B, we shall show that if there are \only few" violations in the given matching,then there is a truth assignment that satis�es \almost all" clauses in '. More formally, ifthere exists a matching M 0 for which the number of internal elements which appear morethan once or none at all plus the number of external elements that appear more then onceis at most �m, then there exists an assignment that satis�es more than (1� �B)m clauses.To �x an assignment for xi, consider the truth-setting component of xi. We assign trueto xi if the M 0 contains a triplet in T ti . Otherwise, xi is assigned false. Note that if thistruth assignment does not satisfy a clause Cj, then one of the following conditions must bemet.1. The internal elements s1[j] and s2[j] do not appear in the matching M 0.2. The elements s1[j] and s2[j] appear in a triplet that contains a literal which wasassigned false by our assignment.Suppose condition (1) is metK1 times and condition (2) is metK2 times inM 0. The numberof clauses in ' that are not satis�ed by our assignment is at most K1 + K2. To conclude,we show that the number of violations in the matching M 0 is at least 2K1 + 1BK2. Clearly,each time condition (1) is met, we have two unique internal elements that are not coveredby M 0. If condition (2) is met K2 times in M 0, then there are at least 1BK2 literals thatare assigned false and that have an associated external element covered by a satisfaction-testing component. We claim that the truth-setting component of this literal has either aninternal element that does not appear uniquely in the matching M 0, or an external element69



that appears more than once. Suppose all internal elements appear exactly once. By theproperty of the truth-setting component, we know that all external elements associatedwith the literal that was assigned false by our assignment are covered by the truth-settingcomponent. Thus, the external element appears in M 0 at least twice.It remains to show how to do garbage collection with O(m) elements such that no elementappears in more than three triplets. Note that the existence of a hard gap is already proven,but we must show a garbage collection mechanism in order to place the hard gap at location1. An elegant way to solve both problems of the original garbage collection mechanism isdue to Garey and Johnson (private communications). Create three independent copies of theconstruction described, with the roles of W ', Y ', and Z' cyclically permuted between thethree copies. Now, for each external element xi[k] and xi[k] (currently included in just twotriplets), add a single triplet including the three copies (one from each copy of the overallconstruction). This method shrinks the width of the gap by a constant factor (at location1), and therefore is su�cient to prove the theorem.3.4 Some More Hard ProblemsIn the introduction, we discussed the di�erence between optimization problems in which weseek the value of the largest solution and optimization problems in which we seek the qualityof the best solution. In this section, we consider three optimization problems that seek thequality of the best solution, and which were considered before only in the largest solutionversion. We believe that these new optimization problems are interesting and so we give theirde�nitions and investigate their hardness properties. Speci�cally, we treat approximationversions of vertex cover, set splitting, and edge coloring (chromatic index).Let us start with the de�nitions. We say that an edge (vi; vj) in a graph G(V;E) iscovered by a subset V 0 � V if vi 2 V 0 or vj 2 V 0.De�nition 3.15 (The problem max vertex cover-B).Input: A graph G(V;E) with degree at most B and an integer K.Problem: Find the maximum number of edges in G that V 0 covers, over all subsets V 0 � Vof cardinality K.Note the di�erence between this problem and the optimization problemmin vertex covertreated in [PY-91]. Their problem was to minimize the size of the vertex cover (which covers70



all edges). In max vertex cover, we are given the size of the cover, K, in the input, andwe are trying to maximize the number of edges that are covered.De�nition 3.16 (The problem max set splitting).Input: A collection C of subsets of a �nite set S.Problem: Find the maximum number of subsets in C that are not entirely contained in eitherS1 or S2, over all partitions of S into two subsets S1 and S2.We say that a vertex v 2 V is consistent regarding an edge-coloring of a graph G(V;E)if no two edges of the same color are adjacent to v.De�nition 3.17 (The problem max k-edge colorability).Input: A graph G(V;E) of degree k.Problem: Find the maximum number of consistent vertices, over all edge-colorings of G withk colors.Theorem 3.18 The following problems possess a hard gap at location 1:1. max vertex cover-B2. max k-edge colorability (chromatic index)3. max set splittingProof:1. We use the identity reduction from min vertex cover-B (a problem that was shownhard in [PY-91]). If there is a vertex cover of G of cardinality K that covers at least(1� �)jEj edges in G, then there is a cover of all edges with at most K + �jEj vertices.Note that jEj � jV j �B=2, and recall that the hard gap for min vertex cover-B wasshown hard for K = �(jV j).2. Use the original reduction ofmax-sat to k-edge colorability [Hoy-81, LG-83]) onlylet the domain of the reduction be max 3sat-B (shown hard in [PY-91]). Clearly, ifthere is a satisfying assignment to the input formula, then there is an edge-coloring ofthe output graph with k colors such that all the vertices are consistent. It is left to showthat if there is a k-coloring of the edges with a small number of inconsistent vertices,then there is an assignment that satis�es almost all clauses in the input formula. Thiscan be done using an accountancy similar to the one of Lemma 3.10.71



3. The trivial reduction from max not-all-equal 3sat works.Remark 3.19 The approximation of max set splitting remains hard even if all subsetsin C are of cardinality less than or equal to 3 (see the proof).We follow by de�ning the problem max-qer.De�nition 3.20 (The problem max-qer: Max Quadratic Equations over theRationals).Input: A set of quadratic equations over the rational �eld in the variables x1; : : : ; xn.Problem: Find the maximum number of equations that are satis�ed, over all assignments ofrational numbers to x1; : : : ; xn.Theorem 3.21 max-qer has a hard gap at location 1.Proof: Reduce max-3sat-B to max-qer in the following way. For each variable x, addthe equation x2 = x. For each clause Ci = (x _ y _ z) add a new variable ci and producetwo equations. First, write ci = xy, and then use it to reduce the degree of the equation(1� x)(1� y)(1� z) = 0 to 2, by substituting each appearance of xy with ci.Note that the same proof is valid over the �eld of real numbers as well.

72



Bibliography[ABV-95] W. Aiello, M. Bellare, and R. Venekatesan . Knowledge on the Aver-age { Perfect, Statistical and Logarithmic. Proceedings of the 27rd Annual ACMSymposium on the Theory of Computing, ACM (1995).[AH-87] W. Aiello and J. H�astad. Perfect Zero-Knowledge can be Recognized inTwo Rounds. Proceedings of the 28th Annual IEEE Symposium on the Founda-tions of Computer Science, IEEE (1987).[AJ-87] M. Ajtai. Recursive Construction for 3-Regular Expanders. In Proc. 28th IEEESymp. on Foundations of Computer Science, pages 295-304, 1987.[ADLRY-92] N. Alon, R.A. Duke, H. Lefmann, V. R�odl, and R. Yuster, TheAlgorithmic Aspects of the Regularity Lemma. In Proc. 33th Ann. Symp. Found.Comput. Sci., 1992, 473{482.[ALMSS-92] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, \Proof Veri�cation andIntractability of Approximation Problems." 33st FOCS, 1992.[AS-92] S. Arora and S. Safra. Probabilistic Checking of Proofs: A New Characterizationof NP. In Proc. 33rd IEEE Symp. on Foundations of Computer Science, 1992.[Bab-85] L. Babai. Trading group theory for randomness. In Proc. 17th ACM Symp. onTheory of Computing, pages 421{420, 1985.[BFL-90] L. Babai, L. Fortnow, and C. Lund, \Non-Deterministic Exponential Time HasTwo-Prover Interactive Protocols," 31st FOCS, 1990, pp. 16-25.[BBFG-91] R. Beigel, M. Bellare, J. Feigenbaum and S. Goldwasser. Languagesthat are Easier than their Proofs. Proceedings of the 32nd Annual IEEE Sym-posium on the Foundations of Computer Science, IEEE (1991).73



[B-92] M. Bellare. Interactive Proofs and Approximations. Research Report 17969(#78973), IBM research Division, T.J. Watson Research Center, YorktownHeights, NY 10598. 1992.[BFK-95] M. Bellare, U. Feige, J. Kilian. \ On the Role of Shared Randomnessin Two Proof Systems", In Proceedings of the Third Israel Symposium on theTheory of Computing and Systems, pp. 199-208, 1995.[BGLR-93] M. Bellare, S. Goldwasser, C. Lund, and K. Russel. \E�cient Prob-abilistically Checkable Proofs: Applications to Approximation", Proceedings ofthe 25rd Annual ACM Symposium on the Theory of Computing, ACM (1993).[BMO-90] M. Bellare, S. Micali and R. Ostrovsky. The (True) Complexity ofStatistical Zero-Knowledge. Proceedings of the 22nd Annual ACM Symposiumon the Theory of Computing, ACM (1990).[BP-92a] M. Bellare and E. Petrank. Making Zero-Knowledge Provers E�cient.Proceedings of the 24rd Annual ACM Symposium on the Theory of Computing,ACM (1992).[BP-92b] M. Bellare and E. Petrank. Quadratic Equations Over the Rationals.private communication, 1992.[B+-88] M. Ben-Or, S. Goldwasser, O. Goldreich, J. H�astad, J. Kilian,S. Micali and P. Rogaway. Everything Provable is Provable in Zero-Knowledge. Advances in Cryptology | Proceedings of CRYPTO 88, LectureNotes in Computer Science 403, Springer-Verlag (1989). S. Goldwasser, ed.[BR-92] M. Bellare and P. Rogaway. The Complexity of Approximating a NonlinearProgram. Research Report 17831 (#78493) IBMResearch Division, T.J. WatsonResearch Center, Yorktown Heights, NY 10598. 1992.[BGKW-88] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-prover interactiveproofs: How to remove intractability. In Proc. 20th ACM Symp. on Theory ofComputing, pages 113{131, 1988.[Ber-73] C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.[BMT-78] E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg. On the InherentIntractability of Certain Coding Problems. IEEE Trans. Information Theory,1978. 74



[BP-89] M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2.Information Processing Letters, vol. 32, pages 171{176, 1989.[BJLTY-90] A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear Approximationof Shortest Superstrings. Proc. 31st Symp. on Foundations of Comp. Sc., pages554-562, 1990.[BK-89] M. Blum and S. Kannan. Designing Programs that Check their Work. Pro-ceedings of the 21st Annual ACM Symposium on the Theory of Computing, ACM(1989).[BHZ-87] R. Boppana, J. H�astad and S. Zachos. Does co-NP Have Short InteractiveProofs". Information Processing Letters, Vol 25 (1987), No. 2, pp 127{132.[CW-79] L. Carter and M. Wegman. Universal Classes of Hash Functions. J. Com-puter and System Sciences 18, 143{154 (1979).[Coo-71] S. A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd ACMSymp. on Theory of Computing, pages 151{158, 1971.[DJPSY-92] E. Dahlhaus, D. S. Johnson, C. H. Papaditriou, P. D. Seymour and M. Yan-nakakis. The complexity of multiway cuts. In Proc. 24th ACM Symp. on Theoryof Computing, pages 241{251, 1992.[DL-81] W. Fernandez de la Vega and G.S. Lueker. Bin Packing can be solved within1 + � in Linear Time. Combinatorica, vol. 1, pages 349{355, 1981.[Fe-87] U. Feige. Interactive Proofs. M.Sc Thesis, Weizmann Institute of Science. Au-gust 1987.[FGLSS-91] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximatingclique is almost NP-complete. In Proc. 32nd IEEE Symp. on Foundations ofComputer Science, pages 2{12, 1991.[F-89] L. Fortnow. The Complexity of Perfect Zero-Knowledge. Advances in Com-puting Research (ed. S. Micali) Vol. 18 (1989).[FRS-88] L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interactiveprotocols. In Proc. 3rd IEEE Symp. on Structure in Complexity Theory, pages156{161, 1988. 75



[GG-81] O. Gabber and Z. Galil. Explicit Construction of linear sized superconcentrators.J. of Comp. and Sci., vol 22, pages 407-420, 1981.[GJ-76] M.R. Garey and D.S. Johnson. The complexity of near-optimal graph coloring.J. of the ACM, vol 23, pages 43-49, 1976.[GJ-79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to theTheory of NP-Completeness. W. H. Freeman, 1979.[GJS-76] M.R. Garey, D.S. Johnson and L.J. Stockmeyer Some Simpli�ed NP-CompleteGraph Problems. Theor. Comput. Sci., Vol 1, pages 237-267, 1976.[GK-90] O. Goldreich and H. Krawczyk. On the Composition of Zero-KnowledgeProof Systems. Proceedings of ICALP 90 .[GMS-87] O. Goldreich, Y. Mansour and M. Sipser. Interactive Proof Systems:Provers that never Fail and Random Selection. Proceedings of the 28th AnnualIEEE Symposium on the Foundations of Computer Science, IEEE (1987).[GMW-86] O. Goldreich, S. Micali, and A. Wigderson, \Proofs that Yield NothingBut their Validity and a Methodology of Cryptographic Protocol Design", Proc.27th FOCS 86, See also Jour. of ACM. Vol 38, No 1, July 1991, pp. 691{729.[GMW-87] O. Goldreich, S. Micali, and A. Wigderson, \How to Play any MentalGame or a Completeness Theorems for Protocols of Honest Majority", STOC87.[GO-89] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-KnowledgeProof Systems. Technical Report #570, Technion (1989).[GOP-94] O. Goldreich, R. Ostrovsky, and E. Petrank. Computational Com-plexity and Knowledge Complexity. Proceedings of the 26rd Annual ACM Sym-posium on the Theory of Computing, ACM (1994).[GP-91] O. Goldreich and E. Petrank. Quantifying Knowledge Complexity. Pro-ceedings of the 32nd Annual IEEE Symposium on the Foundations of ComputerScience, IEEE (1991). Technical Report 683, Computer Science Dept., Technion- Israel Institue of Technology.[GMR-85] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexityof Interactive Proofs. Proceedings of the 17th Annual ACM Symposium on theTheory of Computing, ACM (1985).76



[GMR-89] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexityof Interactive Proofs. SIAM J. Comput. 18 (1), 186-208 (February 1989).[GS-89] S. Goldwasser, and M. Sipser, Private Coins vs. Public Coins in InteractiveProof Systems, Advances in Computing Research (ed. S. Micali), 1989, Vol. 5,pp. 73-90.[H-94] J. H�astad. Perfect Zero-Knowledge in AM \ co-AM. Unpublished 2-pagemanuscript explaining the underlying ideas behind [AH-87]. 1994.[HPS-93] J. Hastad, S. Phillips, and S. Safra, A well Characterized ApproximationProblem. In Proceedings of the 2nd Israel Symposium on Theory of Computingand Systems, 1993, 261{265.[Hoy-81] I. Hoyler. The NP-Competeness of Edge Coloring. SIAM J. of Computation,vol. 10, pages 718{720, 1981.[ILe-90] R. Impagliazzo and L.A. Levin, No Better Ways to Generate Hard NPInstances than Picking Uniformly at Random, 31st FOCS, pp. 812-821, 1990.[ILL-89] R. Impagliazzo, L. Levin and M. Luby. Pseudo-Random Generation fromOne-Way Functions. Proceedings of the 21st Annual ACM Symposium on theTheory of Computing, ACM (1989).[ILu-90] R. Impagliazzo and M. Luby, One-Way Functions are Essential for Com-plexity Based Cryptography, 30th FOCS, pp. 230{235, 1990.[IY-87] R. Impagliazzo and M. Yung. Direct Minimum-Knowledge computations.Advances in Cryptology | Proceedings of CRYPTO 87, Lecture Notes in Com-puter Science 293, Springer-Verlag (1987).[JVV-86] M. Jerrum, L. Valiant and V. Vazirani. Random Generation of Combi-natorial Structures from a Uniform Distribution. Theoretical Computer Science43, 169-188 (1986).[Kan-91] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete.Information Processing Letters, vol. 37, pages 27-35, 1991.[Kar-72] R.M. Karp. Reducibility among combinatorial problems. In Raymond E. Millerand James W. Thatcher, editors, Complexity of Computer Computations, pages85{103. Plenum Press, 1972. 77



[KMR-92] D. Karger, R. Motwani and G. D. S. Ramkumar. On Approximating the LongestPath in a Graph. Manuscript, 1992.[KK-82] N. Karmakar and R.M. Karp. An E�cient Approximation Scheme For The One-Dimensional Bin Packing Problem. In Proc. 23rd IEEE Symp. on Foundationsof Computer Science, pages 312{320, 1982.[LG-83] D. Leven and Z. Galil. NP-completness of �nding the chromatic index of regulargraphs. J. of Algorithms 4, pages 35-44, 1983.[Lev-73] L. Levin. Universal'ny��e pereborny��e zadachi (Universal search problems, inRussian), In Problemy Peredachi Informatsii, vol. 9, pages 265{266, 1973. Acorrected English translation appears in an appendix to Trakhtenbrot [Tra-84][LFKN-90] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic methods for interactiveproof systems. In Proc. 22nd ACM Symp. on Theory of Computing, pages 2{10,1990.[Ost-91] R. Ostrovsky. One-Way Functions, Hard on Average Problems, and Statis-tical Zero-Knowledge Proofs. Structures 1991.[OVY-91] R. Ostrovsky, R. Venkatesan and M. Yung. Fair Games Against anAll-Powerful Adversary. AMS DIMACS Series in Discrete Mathematics andTheoretical Computer Science. Vol 13. (Jin-Yi Cai ed.) pp. 155-169.[OW-93] R. Ostrovsky and A. Wigderson. One-Way Functions are Essential ForNon-Trivial Zero-Knowledge, Proc. 2nd Israeli Symp. on Theory of Computingand Systems, 1993.[Lov-73] L. Lov�asz. Coverings and Colorings of Hypergraphs. Proc. 4-th Southern Con-ference on Combinatorics, Graph Theory, and Computing, Utilitas MathematicaPublishing, Winnipeg 3-12, 1973.[LY-92] C. Lund and M. Yannakakis. On the Hardness of Approximating MinimizationProblems. Proceedings of the 25rd Annual ACM Symposium on the Theory ofComputing, ACM (1993).[MS-81] F. MacWilliams and N. Sloane. The Theory of Error-Correcting Codes. North-Holland, 1981. 78



[Mar-73] G.A. Margulis. Explicit Constructions of Concentrators. Prob. Per. Infor. vol.9, pages 71-80, 1973. (English translation in Problems of Infor. Trans., pages325-332, 1975).[Mot-92] R. Motwani. Lecture Notes on Approximation Algorithms. Technical Report,Dept. of Computer Science, Stanford University (1992).[Or-87] Y. Oren. On The Cunning Power of Cheating Veri�ers: Some ObservationsAbout Zero Knowledge Proofs. Proceedings of the 28th Annual IEEE Symposiumon the Foundations of Computer Science, IEEE (1987).[Os-91] R. Ostrovsky. One-Way Functions, Hard on Average Problems, and Statis-tical Zero-Knowledge Proofs. Structures 1991.[OVY-90] R. Ostrovsky, R. Venkatesan and M. Yung. On the Complexity ofAsymmetric Games. Manuscript (1990).[PY-91] C. H. Papadimitriou and M. Yannakakis. Optimization, Approximation, andComplexity Classes. Journal of Computer and System Sciences, vol. 43, pages425{440, 1991.[PY-92] C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem withdistances one and two, Mathematics of Operations Research, to appear.[P-92] E. Petrank. The Hardness of Approximation : Gap Location. ComputationalComplexity, Vol. 4, 1994. pp. 133-157.A preliminary version of this paper appeared in the Second IEEE Israel Symp.on Theory of Computation and Systems, June 1993, pp. 275-284.[SG-76] S. Sahni and T. Gonzalez. P-complete approximation problems. JACM, vol. 23,pages 555{565, 1976.[Sha-90] A. Shamir. IP=PSPACE. In Proc. 22nd ACM Symp. on Theory of Computing,pages 11{15, 1990.[Si-83] M. Sipser. A Complexity Theoretic Approach to Randomness. Proceedings ofthe 15th Annual ACM Symposium on the Theory of Computing, ACM (1983).[St-73] L.J. Stockmeyer, Planar 3-Colorability is NP-Complete In SIGACT News, Vol5(3), pages 19{25, 1973. 79



[St-83] L. Stockmeyer. The Complexity of Approximate Counting. Proceedings ofthe 15th Annual ACM Symposium on the Theory of Computing, ACM (1983).[TW-87] M. Tompa and H. Woll. Random Self-Reducibility and Zero-KnowledgeProofs of Possession of Information. Proceedings of the 28th Annual IEEE Sym-posium on the Foundations of Computer Science, IEEE (1987).[Tra-84] B. A. Trakhtenbrot. A survey of Russian approaches to Perebor (brute-forcesearch) algorithms. In Annals of the History of Computing vol. 6, pages 384{400, 1984.[Yan-92] M. Yannakakis. On the Approximation of Maximum Satis�ability. In Proc. 3rdAnnual ACM-SIAM Symp. on Discrete Algorithms, pages 1{9, 1992.[Z-92] D. Zuckerman. NP-Complete Problems Have a Version That's Hard to Approx-imate. Unpublished Manuscript. 1992.

80


