KNOWLEDGE COMPLEXITY VERSUS
COMPUTATIONAL COMPLEXITY
AND
THE HARDNESS OF APPROXIMATIONS

Erez Petrank

KNOWLEDGE COMPLEXITY VERSUS
COMPUTATIONAL COMPLEXITY
AND
THE HARDNESS OF APPROXIMATIONS

RESEARCH THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Science

Erez Petrank

Submitted to the Senate of the Technion - Israel Institute of Technology
Iyar 5755 Haifa May 1995

This research was carried out in the faculty of Computer Science under the

supervision of Prof. Oded Goldreich

I wish to thank Oded Goldreich for his invaluable guidance. I consider myself
lucky to have been guided by Oded during my first steps into science and I
hope I have absorbed some of his non-compromising deep search for the truth.
I also thank Oded for his friendship and for his encouragement throughout
this research.

I would like to thank Mihir Bellare, Mike Kearns, Joe Kilian, Seffi Naor,
and Rafi Ostrovsky, with whom I had the opportunity to work closely. Each
of them contributed in his own way to my knowledge and to my percep-
tion of science and research. In particular, I would like to thank Mihir and
Rafi for collaborating with us in the research of knowledge complexity versus
computational complexity (the second chapter in this thesis).

Last, I would like to thank all the people who were always willing to talk
science (and non-science): Hagit Attiya, Amos Beimel, Shai Ben-David, Amir
Ben-Dor, Ran Canetti, Benny Chor, Eli Dichterman, Guy Even, Shimon
Even, Shai Halevi, Hugo Krawczyk, Eyal Kushilevitch, Silvio Micali, and
Leonard Shulman.

To my parents and Yael.

Contents

Abstract L 1
List of Symbols and Abbreviations 3
1 Introduction 4
1.1 Knowledge Complexity 4
1.1.1 The Realtion of Statistical to Perfect Knowledge Complexity 6
1.1.2 Efficient Almost Uniform Generation 7
1.1.3 Motivation for studying KC 8
1.1.4 Remarks o 8
1.2 The Hardness of Approximations 9
1.2.1 Two categories of optimization problems 11
1.2.2 The gap-location parameter 12
1.2.3 Summaryof resultso oo 14
1.2.4 Summary of the motivation for proving hardness at gap-location 1 . . 15
1.2.5 Related results oo 16
1.3 Organization e 17
2 Knowledge Complexity and Computational Complexity 19
2.1 Preliminaries e 19
2.1.1 Interactive proofs 19
2.1.2 Knowledge Complexity oL 20
2.1.3 The simulation based prover 0oL 22
2.2 Universal Almost Uniform Generation 22
2.2.1 Definition and history o0 23
2.2.2 Our result and an overview of the proof 23
2.2.3 The construction oL 24

2.2.4 Application: An Efficient Implementation of the Simulation Based
Prover 28
2.3 The Proof of the Main Result for the Perfect Case 30
2.4 Relating Statistical to Perfect Knowledge Compelxity 34
2.5 Applying our Techniques for Non-Negligible Error Probabilities 48
2.5.1 The perfectcase.o 48

259 The veneral (statistical) case 49

Contents - (Continuation)

2.6 AFlawin [F-89] 51
2.7 Concluding Remarks o oo 55
3 The Hardness of Approximations: Gap Location 56
3.1 The Gap Location Parameter 56
3.2 A Hard Gap for k-COLORABILITY at Gap-Location 1 60
3.3 The Hardness of MAX NAE 3SAT and MAX 3DM 66
3.4 Some More Hard Problems oL 70

Bibliography 73

List of Figures

2.1 Universal Approximate Counting in probabilistic polynomial time with an NP

Oracle

3.1 The gadget in the reduction from 3-SAT to MAX-3-COLORABILITY
3.2 The reduction from 3-SAT to MAX-3-COLORABILITY

Abstract

In this D.Sc. dissertation we consider two areas in Computer Science: Interactive Proofs
and Approximation Algorithms. The fascinating relation between these two areas was dis-
covered in the last four years. However, in this dissertation we do not present results which
regard the connection between the areas, but we study each of them separaely.

First, we study the knowledge complexity of interactive proofs. Our main result con-
cerns the computational complexity of languages which have interactive proofs of logarith-
mic knowledge complexity. We show that all such languages can be recognized in BPPNT.
Prior to this work, for languages with greater-than-zero knowledge complexity (and specifi-
cally, even for knowledge complexity 1) only trivial computational complexity bounds (i.e.,
recognizability in PSPACE = IP) were known.

We recall that BPPV? is contained in the third level of the polynomial-time hierarchy
(PH). It is believed that PH is a proper subset of PSPACE. Thus, assuming PH %
PSPACE, our result yields the first proof that there exist languages in PSPACE which
cannot be proven by an interactive-proof that yields O(logn) bits of knowledge. In other
words, there exist languages which do have interactive proofs but only interactive proofs
with super-logarithmic knowledge-complexity.

Prior to our work, there was no solid indication that would contradict the possibility that
all languages in PSP ACE have interactive-proofs which yield only one bit of knowledge.

In the course of proving this result we have developed two tools which are important
results on their own.

First, we develope a universal almost uniform generator. This is a probabilistic machine
which is given a set S € NP and a positive integer n and the machine samples “almost”
uniformly in S N{0,1}" (almost means that the output distribution has exponentially small
Norm-1 distance from the uniform distribution). We show that this generator can be run by
an efficient machine that has access to an NP oracle.

A second result, which we develope and use in our proof, is a relation between statis-
tical knowledge-complexity and perfect knowledge-complexity; specifically, we show that,

for the honest verifier, these hierarchies coincide, up to a logarithmic additive term (i.e.,

SKC(k(-)) € PRC(K(-) + O(log(+))))-

In the second part of this dissertation, we study the hardness of approximation algo-
rithms. We refine the complexity analysis of approximation problems by relating it to a new
parameter called gap location. Many of the results obtained so far for approximations yield
satisfactory analysis with respect to this refined parameter, but some known results (e.g.,
MAX—]C—COLORABILITY7 MAX 3-DIMENSIONAL MATCHING and MAX NOT-ALL-EQUAL 3SAT)
fall short of doing so. As a second contribution, our work fills the gap in these cases by
presenting new reductions.

Next, we present definitions and hardness results of new approximation versions of some
NP-complete optimization problems. The problems we treat are VERTEX COVER (for which
we define a different optimization problem from the one treated in [PY-91]), k-EDGE COL-

ORING, and SET SPLITTING.

List of Symbols and Abbreviations

Symbol/Abbreviation Meaning

PKC(E(:)) «oovenn.. The class of languages which have perfect knowledge
complexity k(-).

SKC(k(-)) voovnint. The class of languages which have statistical knowledge
complexity k(-).

CKC(k()) covvenn.. The class of languages which have computational knowledge
complexity k(-).

AM oo The class of languages which have a constant round Arthur

Merlin protocols.

IP o The class of languages which can be proven by

an interactive proof.

HP The polynomial time hierarchy
UB] oo The uniform distribution over a finite set B.
Negligible A fraction which is asymptotically smaller than the reciprocal

of any polynomial.

OPT(I) The value of the optimal solution for a problem insance I.

Chapter 1

Introduction

In this dissertation, we present research conducted in two areas in Computer Science: In-
tercative Proofs and the Hardness of Approximations. Originally, the goal of this research
was to explore the properties of languages according to the knowledge complexity of their
interactive proofs. Indeed the first part of this dissertation describes the results we have
obtained in this field. However, the fascinating conncetion recently discovered between in-
teractive proofs and the hardness of approximations, which led to a solution of many long
standing open problems related to the hardness of approximations, enticed us into exploring
the connection between the two areas. Eventually, the results we have achieved in this area
did not concern the connection between interactive proofs and the hardness of approxima-
tions, but were more specific to studying the hardness of approximations. This study appears
in the second part of this dissertation.

Since the two different works are not directly connected, the rest of this dissertation is
practically partitioned into two. In what follows we introduce each of the areas. The con-
nection between the two areas is described while introducing the hardness of approximations

(see Section 1.2).

1.1 Knowledge Complexity

The notion of knowledge-complexity was introduced in the seminal paper of Goldwasser
Micali and Rackoff [GMR-85, GMR-89]. Knowledge-complexity (KC) is intended to measure
the computational advantage gained by interaction. Satisfactory formulations of knowledge-

complexity, for the case that it is not zero, have recently appeared in [GP-91]. A natural

suggestion, made by Goldwasser, Micali and Rackoff, is to classify languages according to
the knowledge-complexity of their interactive-proofs [GMR-89]. We feel that it is worthwhile
to give this suggestion a fair try.

The lowest level of the knowledge-complexity hierarchy is the class of languages having
interactive proofs of knowledge-complexity zero, better known as zero-knowledge. Actually,
there are three hierarchies extending the three standard definitions of zero-knowledge; namely
perfect, statistical and computational. Let us denote the corresponding hierarchies by PKXC(-),
SKC(+), and CKC(-). Assuming the existence of one-way functions, the third hierarchy
collapses, namely CKC(0) = IP = CKC(poly) [GMW-86, IY-87, B+-88]. Put differently,
the zero level of computational knowledge-complexity extends to the maximum possible.
Anyhow, in the rest of this work we will be only interested in the other two hierarchies.

Previous works have provided information only concerning the zero level of these hierar-
chies. Fortnow has pioneered the attempts to investigate the computational complexity of
(perfect/statistical) zero-knowledge [F-89], and was followed by Aiello and Hastad [AH-87].
Their results can be summarized by the following theorem that bounds the computational

complexity of languages having zero-knowledge proofs.

Theorem [F-89, AH-87]:
SKC(0) € AM(co-AM

Hence, languages having statistical zero-knowledge must lie in the second level of the
polynomial-time hierarchy. Needless to say that PKXC(k(:)) C SKC(k(-)), for any function k

and in particular for & = 0.

On the other hand, if we allow polynomial amount of knowledge to be revealed, then every

language in ZP can be proven.
Theorem [LFKN-90, Sha-90]:
PKC(poly(-)) =IP =PSPACE

As indicated in [GP-91], the first equality is a property of an adequate definition (of knowl-

edge complexity) rather than a result.

In this work we study the class of languages that have interactive-proofs with logarith-

mic knowledge-complexity. In particular, we bound the computational complexity of such

languages, showing that they can be recognized by probabilistic polynomial-time machines

with access to an NP oracle.

Main Theorem:

SKC(O(log(-))) C BPPY?

We recall that BPPV? is contained in the third level of the polynomial-time hierarchy
(PH). Tt is believed that PH is a proper subset of PSPACE. Thus, assuming PH %
PSPACE, our result yields the first proof that there exist languages in PSPACE which
cannot be proven by an interactive-proof that yields O(logn) bits of knowledge. In other
words, there exist languages which do have interactive proofs but only interactive proofs
with super-logarithmic knowledge-complexity.

Prior to our work, there was no solid indication that would contradict the possibility that
all languages in PSP ACE have interactive-proofs which yield only one bit of knowledge.

Our proof of the Main Theorem consists of two parts. In the first part, we develope a pro-
cedure for recognizing languages having interactive proofs of logarithmic perfect knowledge
complexity. To this end, we develope a tool called “the universal almost uniform genera-

tor”.

(We elaborate on this notion in Subsection 1.1.2 below). In the second part of our
proof we transform interactive proofs of statistical knowledge complexity k(n) into interac-
tive proofs of perfect knowledge complexity k(n)+ O(log n). This transformation refers only
to knowledge-complexity with respect to the honest verifier, but this suffices since the first

part of our proof applies to the knowledge-complexity with respect to the honest verifier.

Yet, the transformation is interesting for its own sake, and a few words are in place.

1.1.1 The Realtion of Statistical to Perfect Knowledge Complex-
ity
The question of whether statistical zero-knowledge equals perfect zero-knowledge is one of

the better known open problems in this area. The question has been open also for the case

of zero-knowledge with respect to the honest verifier. We show the following.
Theorem: For every poly-time computable function k:N+— N (and in particular for & = 0)
SKC(k(-)) € PRC(k(:) + O(log(-)))

This result may be considered an indication that these two hierarchies may collide.

1.1.2 Efficient Almost Uniform Generation

A technique underlying our main result is to generate almost random elements of a set in
probabilistic, polynomial time with an NP oracle. As this might be of independent interest,
let us describe the result in more detail.

Let S C {0,1}* be a set verifiable in polynomial time (i.e., S € NP), and let 5, =
S N 40,1}". The uniform generation problem is to generate, on input 1", an element of S,
distributed uniformly at random. Jerrum, Valiant, and Vazirani [JVV-86], using results of
Stockmeyer [St-83] on approximate counting, showed that uniform generation can be done
in probabilistic, polynomial time with a X! oracle.

For our applications we would like a lower complexity than PPT with a X' oracle. On
the other hand, we could tolerate a slight deviation from uniform of the output distribution.
Accordingly, we consider the problem of almost uniform generation: on input 1™ and é > 0
generate a random element from a distribution within distance ¢ of the uniform distribution
on S, (the distance between distributions £y and FEj is defined as 37, | Prg, [2] — Prg,[2]]).

If § = n=¢ for some fixed constant ¢ then techniques from Impagliazzo, Levin and Luby
[ILL-89] can be used to do almost uniform generation in probabilistic, polynomial (in n) time
with an NP oracle. However (for applications in this work in particular) we would like to be
able to achieve values of § which are exponentially (in n) small, in the same complexity. We

show that this can be done.

Theorem: Let S € NP. Then there is a probabilistic oracle machine A which on input 1*
and § > 0 runs in time polynomial in n and lg !, and has the property that the distribution
ANP(17§) is within distance § of the uniform distribution on S,,.

The special case in which S is decidable in polynomial time (i.e. S € P) is important on
its own and specifically, in this work we use the almost uniform generator only for sets in P.

In Theorem 2.5 we actually prove something a little stronger: the almost uniform gener-
ation is “universal” (in the sense that A does not depend on S but rather gets a description
of S as an input).

This result is established by combining techniques from Jerrum, Valiant and Vazirani
[JVV-86] and Stockmeyer [St-83] with Carter-Wegman universal hash function [CW-79]
based techniques for estimating set sizes (Sipser [Si-83]). The details are in Section 2.2.1.

1.1.3 Motivation for studying KC

In addition to the self-evident fundamental appeal of knowledge complexity, we wish to point
out some practical motivation for considering knowledge-complexity greater than zero. In
particular, cryptographic protocols that release a small (i.e., logarithmic) amount of knowl-
edge may be of practical value, especially if they are only applied once or if one can obtain
sub-additive bounds on the knowledge complexity of their repeated executions. Note that
typically, a (single application of a) sub-protocol leaking logarithmically many bits (of knowl-
edge) does not compromise the security of the entire protocol. The reason being that these
(logarithmically many) bits can be guessed with non-negligible probability, which in turn
means that any attack due to the “leaked bits” can be simulated with non-negligible proba-
bility without them.

But why use low knowledge-complexity protocols when one can use zero-knowledge ones
(see, [GMW-86, GMW-87])? The reason is that the non-zero-knowledge protocols may be
more efficient and/or may require weaker computational assumptions (see, for example,

[OVY-90]).

1.1.4 Remarks

A remark concerning two definitions. Throughout this work, SKC(k(-)) and PKC(k(-))
denote the classes of knowledge-complexity with respect to the honest verifier. Note that
the Main Theorem is only strengthen by this, whereas the transformation from statistical
to perfect knowledge complexity (mentioned above) is indeed weaker. Furthermore, by an
interactive proof we mean one in which the error probability is negligible (i.e., smaller than

any polynomial fraction). A few words of justification appear in Section 2.1.1.

A remark concerning Fortnow’s paper [F-89]. In course of this research, we found out
that the proof that SKC(0) C co-AM as it appears in [F-89] is not correct. In particular,
there is a flaw in the AM-protocol presented in [F-89] for the complement language (see
Section 2.6). However, the paper of Aiello and Hastad provides all the necessary machinery
for proving Fortnow’s result as well [AH-87, H-94]. Needless to say that the basic approach
presented by Fortnow (i.e., looking at the “simulator-based prover”) is valid and has inspired
all subsequent works (e.g., [AH-87, BMO-90, Ost-91, BP-92a, OW-93]) as well as the current

one.

1.2 The Hardness of Approximations

The importance of approximation algorithms became evident in the early 70’s, when it was
discovered that unless P=NP (which is very unlikely) many important optimization prob-
lems cannot be solved precisely in polynomial time [Coo-71, Kar-72]. The practical need
to solve these problems led researchers to relax the precision requirement and try to find
approximation algorithms to these problems. Let Il be a maximization (resp. minimization)
problem, and let OPT(I) be the precise solution of an instance I. We say that an approxi-
mation algorithm, A, approximates Il to within a ratio of 1 — ¢ (resp. 1+ ¢) if for any input,
I, A outputs a number A([) which satisfies (1 — e)OPT(I) < A(I) < OPT(I) (respectively
OPT(I) < A(I) < (14 ¢)OPT(I) for minimization problems).

It was soon discovered that some problems were easy to approximate. For problems
as BIN PACKING and KNAPSACK it was even possible to construct a polynomial time
approximation scheme (a polynomial time approximation scheme is a family of algorithms,
one for each € > 0, such that A, approximates the optimization problem to within a ratio of
1 — € for maximization problems and 1+ ¢ for minimization problems). For a second class of
problems, like MAX-SAT, VERTEX COVER or metric TRAVELLING SALESMAN, it was
possible to construct a polynomial time algorithm that approximated the correct solution
to within some constant ratio, but no polynomial time approximation scheme was found for
these problems. For the last set of problems, such as MAXIMUM CLIQUE or MINIMUM
GRAPH COLORABILITY, even poor approximation algorithms could not be found.

Lower bounds on the possibility of constructing polynomial time algorithms (even assum-
ing P#NP) were hardly known. Interesting such results concerning GRAPH COLORING,
TRAVELLING SALESMAN (without the triangle inequality) and MAXIMUM CLIQUE
can be found in [GJ-79] and [SG-76]. In a paper, that turned out to be somewhat prophetic,
Papadimitriou and Yannakakis [PY-91] defined a class of optimization problems called MAX-
SNP. They showed that all the problems in this class can be approximated to within some
constant ratio. They also presented some very interesting problems that were hard for this
class. That is, if a MAX-SNP-Hard problem has a polynomial time approximation scheme
then all problems in MAX-SNP have polynomial time approximation schemes. The class
MAX-SNP-Hard contains problems as MAX-35SAT-B, INDEPENDENT-SET-B, VERTEX-
COVER-B, MAX-CUT, MAX-£-COLORABILITY [PY-91], metric TRAVELLING SALES-
MAN [PY-92], STEINER TREE [BP-89] SHORTEST SUPERSTRING[BJLTY-90], MUL-

TIWAY CUTS [DJPSY-92] and bounded 3-DIMENSIONAL MATCHING [Kan-91].

Meanwhile, with no apparent connection, the research in the area of interactive proofs
was making a rapid progress. The research was initiated by Goldwasser Micali and Rackoff
[GMR-89] and Babai [Bab-85]. The extended model of multi-provers interactive proofs was
suggested by Ben-Or, Goldwasser, Kilian, and Wigderson [BGKW-88], and was shown equiv-
alent to the model of transparent proofs [FRS-88]. It was then discovered that the languages,
for which interactive proofs exist, are exactly the languages in PSPACE [LFKN-90, Sha-90]
and that languages, for which multi-provers interactive proofs exist, are exactly the languages
in NEXP-TIME.

Feige, Goldwasser, Lovasz, Safra, and Szegedi [FGLSS-91] were the first to observe the
connection between transparent proofs and the hardness of approximations. They were able
to show that if there exists a polynomial time algorithm which approximates MAXIMUM
CLIQUE to within a factor 2!°8' " then all languages in NP can be determined in almost
polynomial deterministic time. Their result was improved by Arora and Safra [AS-92],
who showed that if there exists a polynomial time algorithm that approximates the clique
problem to within a ratio of 9logn/(loglogm)®™) (1o P=NP. The following work, by Arora,
Lund, Motwani, Sudan, and Szegedi [ALMSS-92], improved over this result by showing that
no polynomial time algorithm can approximate MAXIMUM CLIQUE to within a ratio of
n® for some ¢ > 0 unless P=NP. They were also able to show (using the same techniques)
another important result, namely, that unless P£NP there exists a constant € such that
no polynomial time algorithm can approximate MAX-3SAT to within a ratio of 1 —e. As
this problem is a member of MAX-SNP, this result implies that no problem in MAX-SNP-
Hard has a polynomial time approximation scheme unless P=NP. Lund and Yannakakis have
shown two additional lower bounds. They showed that unless P=NP, no polynomial time
algorithm can approximate MINIMUM GRAPH COLORABILITY to within a ratio of n* for
some constant ¢ > 0, and that unless NPCDTIME[n*?"¥!°¢"] no polynomial time algorithm
approximates SET COVER to within a ratio of clog, N for any constant 0 < ¢ < i (here N
stands for the cardinality of the set that has to be covered). Recently, the second result was
improved by Bellare, Goldwasser, Lund, and Russel [BGLR-93] by reducing the assumption
to NPZDTIME[nloslen],

In this work, we relate the study of approximation algorithms to a new parameter called
the gap location. Let us begin by presenting a partition of the class of optimization problems

into two categories. We later introduce the notion of gap location which refers to the second

10

category.

1.2.1 Two categories of optimization problems

Generally, an optimization problem consists of a set of instances and a function f : {0,1}" x
{0,1}" — IR that assigns, for each instance I and each candidate solution o, a real number
f(I,0) called the value of the solution o. The optimization task is to find a solution o to
a problem instance I such that f(I,0) is the largest possible over all o € {0,1}". We say
that an algorithm A approzimates a maximization (resp. minimization) problem II to within
1 — € (resp. 1 + ¢) if, for every instance [of Il whose optimal solution has value OPT(I),
the output of A on [satisfies (1 — €)OPT(I) < A(I) < OPT(I) (vesp. OPT(I) < A(I) <
(14+€)OPT(I)). Most natural optimization problems are associated with a decision problem
in NP. We have a relation R C {0,1}" x {0,1}" which is checkable in polynomial time (i.e.,
given (1, 0) it is possible to check in time polynomial in |/| whether (I,0) € R), and we call
o a valid solution to an input [if (I,0) € R. The decision problem is whether or not there
exists a valid solution to the input I. Two natural categories of corresponding optimization

problems follow.

1. THE LARGEST SOLUTION.
Here, we associate valid solutions with some natural “size” which we would like to
maximize/minimize. More formally, we are trying to maximize the function
size(o) if (I,0) € R
fl,0)= 7

—00 otherwise

where size(-) is a function which depends on the problem and can be efficiently ex-
tracted from o (usually, size(o) is the number of elements encoded in the solution o).
We replace —oo by +o00 when a minimization problem is involved. Two examples in
this category are MAX CLIQUE, in which we are looking for the size of the largest clique
in the input graph, and MIN COLORING, in which we would like to find the minimum
number of colors required to color the input graph such that no two adjacent vertices

have the same color.

2. THE QUALITY OF THE SOLUTION.
Here, we assume that the condition (/,0) € R contains a large (yet polynomially

bounded) number of natural “sub-conditions” and our task is to find the maximum

11

number of sub-conditions that can be satisfied by a single (i.e., the best) solution. In
this category, we have MAX-SAT, in which we are trying to find the maximum number
of clauses that can be satisfied by an assignment to the input formula, and MAX 3-
COLORABILITY, in which we are trying to find the maximum number of consistent
edges in a 3-coloring of the input graph. (We call an edge in a graph G consistent with
respect to a 3-coloring of ¢ if its two adjacent vertices are assigned different colors.)
Note that, in this setting, the best solution of an instance [is not necessarily a valid
solution, since there are instances that do not have a valid solution. Also, A solution o

is a valid solution of an instance I ((I,0) € R) iff o satisfies all sub-conditions implied

by I.

Approximation problems can be partitioned in the same manner and so can results concerning
the difficulty of approximations. The first category contains problems such as approximating
the size of the biggest clique in the input graph (the hardness of this problem was shown by
[FGLSS-91, AS-92, ALMSS-92]), or the minimum number of colors needed to properly color
the input graph (see [LY-92]). The second category includes problems such as approximating
the maximum number of clauses that can be simultaneously satisfied in an input formula
[ALMSS-92], or approximating the maximum number of consistent edges in a best 3-coloring
of the input graph (Papadimitriou & Yannakakis 1991). (see [PY-91]).

The gap location parameter is a natural measure which arises when analyzing the hard-

ness of approximation problems in the second category.

1.2.2 The gap-location parameter

Practically all researchers in the area noticed the connection between the hardness of approx-
imating a problem and the existence of a “gap” that is hard to differentiate. For example,
the hardness of approximating MAX-SAT was shown by proving that there exists a constant
€0 > 0 such that, unless P=NP, one can not distinguish in polynomial time between formu-
lae for which all clauses can be satisfied and formulae for which only a fraction 1 — ¢y of
clauses can be satisfied [ALMSS-92]. The L-reductions that were used by Papadimitriou &
Yannakakis [PY-91], preserve the existence of such gaps and thus, polynomial time insepa-
rable gaps appear in all MAX-SNP-hard problems. This implies that these problems have no
polynomial time approximation schemes. Loosely speaking, a hard gap for an optimization

problem II consists of two reals 0 < «g,¢p < 1 such that, given an instance [of II, it is

12

NP-hard to tell whether [has a solution that satisfies at least a fraction ag of the sub-
conditions posed by [or whether any solution of [satisfies at most a fraction ag — ¢y of
the sub-conditions posed by [I. Such a hard gap is said to have location . For example,
the hard gap proven for MAX-SAT has location 1. Let us first argue that the “location” of
the hard gap shown for MAX-SAT is the “right” one and then explain why there are some
problems whose proofs of hardness are weaker in this respect.

Our main interest lies in the original question of satisfiability, i.e., in telling whether a
formula ¢ has an assignment that satisfies all its clauses or not. It is therefore interesting
to see that we cannot solve even the easier question of whether all the clauses of ¢ can be
satisfied (simultaneously) or whether any assignment to ¢ satisfies at most a fraction 1 — €y
of its clauses. It would be somewhat artificial (and clearly of lesser interest) to show that it
is impossible to tell whether a formula ¢ has an assignment that satisfies more than 2/3 of
its clauses or whether no assignment to ¢ satisfies more than 2/3 — ¢q of its clauses, although
showing this would still imply the hardness of approximating MAX-SAT (i.e., approximating
the maximum number of simultaneously satisfied clauses). Furthermore, the intuition about
the “right” location of the hard gap coincides with the power of such a result. Namely, for
MAX-SAT, the existence of a hard gap at location 1 implies the existence of a hard gap at any
location 1/2 < o < 1. That is, the fact that one cannot tell in polynomial time whether a
formula has an assignment that satisfies all its clauses or whether all assignments to ¢ satisfy
at most a fraction 1 — ¢y of its clauses implies the fact that one cannot tell in polynomial
time whether a formula has a satisfying assignment that satisfies more than a fraction « of
its clauses or whether any assignment to ¢ satisfies at most a fraction o — €, of its clauses,
where ¢, is a constant that depends only on ¢y and «. (This can be shown by a padding
argument. Namely, use enough new variables yi,...,y; and add the clauses (y;) and (%),
1 <@ <[, to the original formula.) There are no hard gaps at locations 0 < o < 1/2 since
any formula has an assignment that satisfies at least half of its clauses. We conclude that, in
this respect, the proof of the hardness of approximating MAX-SAT is the strongest possible.

We conjecture a generalization of this example. Suppose we have a “natural” optimization
problem that seeks the quality of the best solution. We conjecture that showing a hard gap
at location ap = 1 can be used to prove the existence of hard gaps in all other locations (in
which they exist).

In previous works, hard gaps are not always shown at location oy = 1. For example,

recall that in MAX k-COLORABILITY, we look for the maximum number of consistent edges

13

in a k-coloring of the input graph. The interesting original problem (for & > 3) is to tell
whether a graph G(V, F) is k-colorable or not. Relaxing the precision requirement, we would
like to know if it is easier to tell whether G has a k-coloring, for which all |F| edges in i are
consistent, or whether for all k-colorings of G at most (1 — €)|E| edges are consistent. Can
this relaxation be determined in polynomial time for any constant ¢? This question was not
considered before. Instead, following the gap-preserving L-reductions used by Papadimitriou
& Yannakakis [PY-91], we get that there are constants 0 < ¢y, 9 < 1 such that, unless
P=NP, it is not possible to tell in polynomial time whether a given graph G(V, E) has a
k-coloring with more than ag|F/| consistent edges, or whether for any k-coloring of G at
most (ag — €o)|F| edges are consistent. Using this hard gap we can indeed say that there is
no polynomial time approximation scheme for MAX k-COLORABILITY unless P=NP, but the
hardness of the interesting gap (i.e., ap = 1) remains open.

The importance of the gap at location oy = 1 can also be expressed in terms of the
analogous search problem. The implication of the result of [PY-91] is that given a graph G,
we cannot find a k-coloring of (& that is as close as desired to the optimal solution (unless
P=NP). But, suppose we are given a k-colorable graph and we would like to color it such
that as many edges as possible are consistent. There is no evidence given in [PY-91] to show
that we cannot achieve this task in polynomial time such that the number of consistent edges

is greater than (1 — €)|E| for any constant e.

1.2.3 Summary of results

The hardness of finding a k-coloring that has “almost” as many consistent edges as possible,
for k-colorable graphs, is implied by our showing a hard gap at location 1 for MAX k-
COLORABILITY (for all £ > 3). We thus settle the problem raised in the previous subsection.
In our proof, we use a different reduction than the one in [PY-91]). Two other problems
that were previously shown hard to approximate using a gap location different from 1 are
3-DIMENSIONAL MATCHING [Kan-91] and NOT-ALL-EQUAL-3SAT [PY-91]. We strengthen
these results by showing that these problems indeed possess a hard gap at location 1.

Last, we define new approximation versions of some known NP-complete problems, in
the spirit of approximating the quality of the best solution. In particular, we define approx-

imation versions of:

e VERTEX COVER [Kar-72]. Note that the version that was treated by Papadimitriou &

14

Yannakakis [PY-91] is in the spirit of the largest solution. We treat the version that
seeks the quality of the best solution.

e k-EDGE COLORABILITY (CHROMATIC INDEX) [Hoy-81, LG-83]. In this case, it is not
hard to approximate the size of the smallest solution since there is a polynomial time
algorithm that colors the edges of a graph of degree k with k£ 4 1 colors (Vizing’s
Theorem, see [Ber-73]). Again, we treat the version that seeks the quality of the best
solution (i.e., a best k edge-coloring of a k-degree graph).

e SET SPLITTING [Lov-73].

We show that all these problems possess a hard gap at gap-location 1.

1.2.4 Summary of the motivation for proving hardness at gap-

location 1

To complete the discussion, we summarize the arguments that motivate showing a hard gap

at location 1. We provide four motivating arguments, as follows.

1. The relation to the decision problem. Recall that the original decision problem
was to distinguish between instances for which all subconditions can be satisfied and
instances for which not all subconditions can be satisfied. Showing a hard gap at
location 1 implies the hardness of the relaxation of the original problem in which
we have to distinguish between instances for which all subconditions can be satisfied
and instances for which all solutions are “far from” satisfying all subconditions. This
implication on the relaxation of the original problem does not follow from hard gaps
in other locations. We believe that this implication is fundamental: the approximation
task is initially meant to relax the hardness of the original task, therefore, we would
expect that the hardness of approximation should imply the hardness of the relaxation

of the original task.

2. The relation to the search problem. Suppose we are given instances which satisfy
the original decision problem (i.e., there exists a solution that satisfies all their sub-
conditions), and we would like to find a solution that satisfies as many subconditions
as possible. For example, given a 3-colorable graph G, find a 3-coloring of G with as

many as possible consistent edges. As discussed in Section 1.2.2, a hard gap at location

15

1 implies the NP-hardness of finding a solution which is even “close” to the optimal
solution. A hard gap at any location other than 1 does not imply the hardness of this

search task.

. The hardness of the complementary minimization problem. Consider the
complementary minimization problem in which we try to find the minimum (over all
possible solutions) of the number of subconditions that are not satisfied. A hard gap at
location 1 for our maximization problem implies that it is NP-hard to approximate this
complementary minimization problem to within any ratio. This implication follows
from the fact that it is NP-hard to tell between instances having a minimum of 0
subconditions not satisfied and instances having a minimum of a constant fraction
of the subconditions not satisfied. This strong implication on the hardness of the
complementary problem does not follow from the existence of a hard hard gap at any
other location. (Note that this implication follows also from the NP-hardness of the

decision problem, however, it is not implied by a hard gap at any location other than

1)

. Strength of the result (given our conjecture). We conjecture that for natural
problems, showing a hard gap at location 1 implies a hard gap at all other possible
locations. As will be explained in Section 3.1, the converse is not generally true.
Namely, there exist problems having a hard gap at a location other than 1 which do
not have a hard gap at location 1 at all. Therefore, given our conjecture, showing a

hard gap at location 1 is the strongest possible result in this respect.

1.2.5 Related results

Quadratic equations over the rationals. A related problem possessing a hard gap at

location 1 is MAX-QER: given a set of quadratic equations with rational coefficients, find the

maximum number of equations satisfied, over all rational assignments to the variables. We

include a simple proof of this fact which is due to Bellare & Petrank [BP-92b], Theorem 5.7.

The same problem when the field is GF(p) (p a prime) was considered by Hastad, Phillips,
and Safra [HPS-93]; they showed that if P # NP, then MAX-QE(p) cannot be approximated

to within a factor of

1
p—(1/poly)"

16

k-coloring. Most problems shown as having a hard gap in this paper have related positive
results asserting that it is possible to approximate them to within some constant ratio in
polynomial time. A different kind of positive result was given by Alon et al. [ADLRY-92].
They showed that for any € > 0, there is a polynomial time algorithm that, given k-colorable
graphs having |E| = Q(|V]?), finds a k-coloring in which the number of consistent edges
exceeds (1 — €)|E|. This does not contradict our impossibility result for the general case and
it is interesting to note that the graphs output by our reduction (which shows a hard gap for
MAX k-COLORABILITY) have their number of edges linear in their number of vertices. The
existence of hard gaps (or approximation schemes) for graphs having |F| neither quadratic

nor linear in |V| remains open.

1.3 Organization

The rest of this dissertation goes as follows. In Chapter 2, we present our work on knowledge
complexity. In Chapter 3, we present our work on the hardness of approximations.
Chapter 2: In Section 2.1 we present the preliminary definitions we need for this work. We
follow in Section 2.2 with presenting a basic tool for the proof of our main result: We build
the universal almost uniform generator and show how to use it to build the simulation based
prover. In Section 2.3 we prove our main result for the case of perfect knwoledge complexity.
In Section 2.4 we relate statistical knowledge complexity to perfect knowledge complexity.
In particular, this relation implies the validity of our main result for statistical knowledge
complexity. In Section 2.5 we consider interactive proofs with error probability which is not
negligible. We show how our techniques yield non-trivial results also with respect to such
error probabilities. In the next section (Section 2.6) we explain why the protocol given in
[F-89] is not valid, and we explicitly give a counter example on which the protocol fails.
In the last section of the chapter on knowledge complexity, (Section 2.7) we make some
concluding remarks on the relation of knowledge compelxity to computational complexity
and present a few interesting open problems.

Chapter 3: In Section 3.1 we define the gap location parameter, and follow by a discussion
of its properties. In Section 3.2 we show a hard gap for k~-COLORABILITY at gap location
1. In Section 3.3 we show a hard gap at location 1 for MAX NAE 3SAT and MAX 3DM.

Last, in Section 3.4 we present approximation versions of NP-Hard problems, which were

17

not considered before, and discuss the hardness of approximating them.

18

Chapter 2

Knowledge Complexity and

Computational Complexity

2.1 Preliminaries

Let us state some of the definitions and conventions we use in this part of the dissertation.
Throughout this work we use n to denote the length of the input x. A function f: N — [0, 1]
1

is called negligible if for every polynomial p and all sufficiently large n’s f(n) < Ok

2.1.1 Interactive proofs

Let us recall the concept of interactive proofs, presented by [GMR-89]. For formal defini-
tions and motivating discussions the reader is referred to [GMR-89]. A protocol between a
(computationally unbounded) prover P and a (probabilistic polynomial-time) verifier V con-
stitutes an interactive proof for a language L if there exists a negligible function ¢ : N — [0, 1]

such that

1. Completeness: If x € L then

Pr[(P,V)(x)accepts] > 1 —€(n)
2. Soundness: If « ¢ L then for any prover P*

Pr[(P™,V)(x) accepts] < e(n)

Remark: Usually, the definition of interactive proofs is robust in the sense that setting the

error probability to be bounded away from % does not change their expressive power, since

19

the error probability can be reduced by repetitions. However, this standard procedure is not
applicable when knowledge-complexity is measured, since (even sequential) repetitions may
increase the knowledge-complexity. The question is, thus, what is the right definition. The
definition used above is quite standard and natural; it is certainly less arbitrary then setting
the error to be some favorite constant (e.g.,) or function (e.g., 27"). Yet, our techniques
yield non-trivial results also in case one defines interactive proofs with non-negligible error
probability (e.g., constant error probability). For example, languages having interactive
proofs with error probability 1/4 and perfect knowledge complexity 1 are also in BPPNT.
For more details see Section 2.5. Also note that we have allowed two-sided error probability;

this strengthens our main result but weakens the statistical to perfect transformation?.

2.1.2 Knowledge Complexity

Throughout the rest of the paper, we refer to knowledge-complexity with respect to the honest
verifier; namely, the ability to simulate the (honest) verifier’s view of its interaction with the
prover. (In the stronger definition, one considers the ability to simulate the point of view of
any efficient verifier while interacting with the prover.)

We let (P, V)(x) denote the random variable that represents V’s view of the interaction
with P on common input x. The view contains the verifier’'s random tape as well as the
sequence of messages exchanged between the parties.

We begin by briefly recalling the definitions of perfect and statistical zero-knowledge. A
protocol (P, V) is perfect zero-knowledge (resp., statistical zero-knowledge) over a language L
if there is a probabilistic polynomial time simulator M such that for every & € L the random
variable M () is distributed identically to (P, V')(x) (resp., the statistical difference between
M(x) and (P,V)(x) is a negligible function in |z|).

Next, we present the definitions of perfect (resp., statistical) knowledge-complexity which
we use in the sequel. These definitions extend the definition of perfect (resp., statistical) zero-
knowledge, in the sense that knowledge-complexity zero is exactly zero-knowledge. Actually,
there are two alternative formulations of knowledge-complexity, called the oracle version and

the fraction version. These formulations coincide at the zero level and differ by at most an

!Suppose you had a transformation for the one-sided case. Then, given a two-sided interactive proof
of some statistical knowledge complexity you could have transformed it to a one-sided error proof of the
same knowledge complexity (cf., [GMS-87]). Applying the transformation for the one-sided case would have

yvielded an even better result.

20

additive constant otherwise [GP-91]. For further intuition and motivation see [GP-91]. It
will be convenient to use both definitions in this paper?.
By the oracle formulation, the knowledge-complexity of a protocol (P, V') is the number

of oracle (bit) queries that are needed to simulate the protocol efficiently.

Definition 2.1 (knowledge complexity — oracle version): Let k: N — N. We say that an
interactive proof (P, V') for a language L has perfect (resp., statistical) knowledge complexity
E(n) in the oracle sense if there exists a probabilistic polynomial time oracle machine M and

an oracle A such that:

1. On input x € L, machine M queries the oracle A for at most k(|x|) bits.

1
2/

that M4 halts with an output, M*(z) is identically distributed (resp., statistically close)
to (P,V)(x).

2. For each x € L, machine M* produces an output with probability at least +, and given

In the fraction formulation, the simulator is not given any explicit help. Instead, one
measures the density of the largest subspace of simulator’s executions (i.e., coins) which is

identical (resp., close) to the (P, V') distribution.

Definition 2.2 (knowledge complexity — fraction version): Letp: N — (0,1]. We say that an
interactive proof (P, V') for a language L has perfect (resp., statistical) knowledge-complexity
log,(1/p(n)) in the fraction sense if there exists a probabilistic polynomial-time machine M
with the following “good subspace” property. For any x € L there is a subset of M s possible

random tapes S, such that:

1. The set S, contains at least a p(|x]) fraction of the set of all possible coin tosses of M(x).

2. Conditioned on the event that M(x)’s coins fall in S,, the random variable M(x) is
identically distributed (resp., statistically close) to (P,V)(x). Namely, for the perfect

case this means that for every ¢
Prob(M(z,w)=c|wé€S,) = Prob((P,V)(x)=c¢)

where M (x,w) denotes the output of the simulator M on input x and coin tosses sequence

Ww.

2The analysis of the [BP-92a] procedure is easier when using the fraction version, whereas the transfor-

mation from statistical to perfect is easier when using the oracle version.

21

As mentioned above, these two measures are almost equal.

Theorem [GP-91]: The fraction measure and the oracle measure are equal up to an additive

constant.

Since none of our results is sensitive to a difference of an additive constant in the measure, we

ignore this difference in the subsequent definition as well as in the statement of our results.

Definition 2.3 (knowledge complexity classes):
e PKC(k(-)) = languages having interactive proofs of perfect knowledge complexity k(-).

e SKC(k(+)) = languages having interactive proofs of statistical knowledge complexity k(-).

2.1.3 The simulation based prover

An important ingredient in our proof is the notion of a simulation based prover, introduced
by Fortnow [F-89]. Consider a simulator M that outputs conversations of an interaction
between a prover P and a verifier V. We define a new prover P*, called the simulation based
prover, which selects its messages according to the conditional probabilities induced by the
simulation. Namely, on a partial history h of a conversation, P* outputs a message a with
probability

Prob(P*(h)=a) def Prob(Mpj41=hoa ‘ My =h)

where M; denotes the distribution induced by M on t-long prefixes of conversations. (Here,
the length of a prefix means the number of messages in it.)

It is important to note that the behavior of P* is not necessarily close to the behavior
of the original prover P. Specifically, if the knowledge complexity is greater than 0 and
we consider the simulator guaranteed by the fraction definition, then P* and P might have
quite a different behavior. One of our main objectives will be to show that even in this case
P~ still behaves in a manner from which we can benefit. Another main objective will be to
show that this entity can be implemented by an efficient machine that has access to an NP

oracle. This objective is addressed in the following section.

2.2 Universal Almost Uniform Generation

In this section, we present an important tool in the proof of our main result: the universal

almost uniform generator. We believe that this generator is useful also in other settings, and

22

in fact, it has already been used in papers that followed this work (see [BFK-95, ABV-95]). In

this section, we show an efficient implementation of the universal almost uniform generator.

2.2.1 Definition and history

The generator samples “almost uniformly” from a given set S € NP. The generator is
universal in the sense that it is not built for a specific set 5, but is given a description
of S in the input. The description of S is given to the sampler as an encoding (M) of a
non-deterministic machine M that recognizes S. Alternatively, M is deterministic and has

two inputs (r,w) and the set S is equal to:
{r: Jw s.t. M accepts the input (r,w)}.

For any set S in NP there exists a machine M that runs in time polynomial in |r| and
corresponds to S in the above manner. We denote M, % §1{0,1}" and we denote by U[B]
the uniform distribution over a finite set B. We use M,, for the notation rather than 5,
as we are going to regard the set S in the sequel only by considering the machine M that

recognizes it.

Definition 2.4 A universal almost uniform generator is a (probabilistic) machine A which
has the property that A(1",6,(M)) and U[M,] are §-close (in norm-1), for all n € N, 6 > 0

and Turing machines M.

2.2.2 Our result and an overview of the proof

Our result is the following.

Theorem 2.5 There is a probabilistic, oracle machine U such that UNT is a universal almost

uniform generator, and moreover, the running time of UNY on inputs 17,8, (M) is polynomial

inn,lgd™t and Tar(n).

Here Th(n) denotes the maximum, over all » € {0,1}", w € {0,1}*, of the running time of
M on input (r,w).

A very important property of the procedure of Theorem 2.5 is that its running time is
polynomial in 1g 6! rather than polynomial in 67!, so that in time polynomial in n we can

achieve exponentially small (in n) error.

23

We remark that even the special case in which we sample a set S € P is important,
and in fact, we use Theorem 2.5 throughout this paper only for sets which are decidable in
polynomial time.

The proof of Theorem 2.5 is derived by combining techniques from [JVV-86, St-83, Si-83].
First, we build an approximate counter. The approximate counter of Stockmeyer [St-83] took
polynomial time with a ¥} oracle. We begin by relaxing the requirement on the approximate
counter: we allow it to fail in approximating to within the required bounds with some small
probability. We show that this relaxed version of approximate counting can be implemented
in probabilistic polynomial time with an NP oracle. Our construction uses hashing techniques
similar to the ones used by Sipser [Si-83]. Once we have this approximate counter, we
use the probabilistic polynomial time reduction of Jerrum, Valiant and Vazirani [JVV-86]
from uniform generation to approximate counting. The key observation now is the strength
of the [JVV-86] reduction: it is capable of sampling distributions within an exponentially
small distance from the uniform distribution, when given a primitive for estimating set sizes
(namely approximate counting) that is only accurate to within the reciprocal of a polynomial.
The reason that we do not achieve exactly the uniform distribution is that the approximate

counter fails with some (very small, but greater than 0) probability. The details follow.

2.2.3 The construction

We use universal hash functions [CW-79]. Let Hj; denote the set of all affine transformations
hao:{0,1}F — 10,1} given by ha.(y) = Ay+a where A is a b-by-k matrix over GF[2] and
a is a b-vector over GF[2], and the arithmetic is over GF[2]. The following lemma follows
from Lemma 4.1 in Aiello-Hastad [AH-87], which in turn is based on ideas of Sipser [Si-83]
and Babai [Bab-85].

Lemma 2.6 Let b,k be positive integers, § > 0 and S C {0,1}F. Let | = 161g(2571).
Select uniformly and independently hash functions hy,..., hy € Hyy and sel z L 0b. Let
the random variable X equal the number of indices i for which hi'(2) NS # 0. Then the
probability that X > [is

(1) >1-=6if |S|>4-2)

(2) <§if S| <L 2.

We remark that the choice z = 0° is arbitrary and selecting z to be any constant string in

{0,1}* will do as well. The notion of approximate counting to within a factor (1 + ¢) with

24

success probability at most (1 — §) is as follows (cf. [St-83]).

Definition 2.7 A universal approximate counter is a (probabilistic) machine C which, on
inputs 1",¢ > 0,6 > 0,(M) oulputs an estimate v which, with probability > 1 — &, satisfies

M <0< (14 6)- [M,].

Let us now establish the result on approximate counting that we need.

CNP s a univer-

Theorem 2.8 There exists a probabilistic, oracle machine C such that
sal approzimate counter, and moreover, the running time of CNY on inputs 1", ¢, 8, (M) is

polynomial in n, e~ 1g 671 and Th(n).
Proof: The algorithm C' is given in Figure 2.1. The idea behind it is as follows.

We first look at Lemma 2.6 and derive an algorithm to approximate a set S (given
as (M)) to within a constant factor with success probability of 1 — §. We note that the
computational bottle neck in running this algorithm is having to decide, given z, h, and
(M), whether h7'(2)N S # (. A probabilistic polynomial time machine with an NP oracle
can decide whether h;7'(2) N S # 0 since an NP oracle can determine whether there exists a
pair (r,w) for which h(r) = z and M accepts (r,w). All other steps in the algorithm can be

performed in polynomial time.

Using the setting of Lemma 2.6 the approximation algorithm is as follows. We enumerate
over all possible b = 1,2,...,n, and select the first b for which the experiment defined in
Lemma 2.6 fails. Namely, running the experiment with b—1 yielded the result X > [whereas
running it with b yielded X <. We conclude that with probability at least 1 —n - ¢ it holds
that

2?)—1
— < S| < 4.2 (2.1)

This is true since we make at most n experiments and the error in each of them is at most

J.

Last, we have to improve the quality of the approximation. To this end, we define a
machine N which runs M on t inputs and accepts iff M accepts all the ¢ inputs. The
set defined by the machine N is S* which is also a set in NP. To be done, we note that
approximating the size of S* to within a factor of 8 implies an approximation of the size of
S to within 8"/¢. Thus, we can get an approximation for the size of S to within a factor of

1 + € by setting ¢ to be polynomial in € and applying our constant-factor approximation on

S* (or on the machine N). m

25

CNE(1" ¢, 8, (M))
Choose t such that 8/t < 1+ ¢

Comment ¢ will be polynomial in e*

Let k = nt and let N = M" be the machine defined by N(yy,...,y) =1 iff M(y;) =--- =

M(y:) = 1 and all the y; have the same length.

Comment N, = M!

b+ 0; 1+ 161g(2ké™)

repeat
b+b+1
Pick at random hq,...,hy € Hyp and set z = 0°. Use the NP oracle to determine, for
each i, whether or not h;'(z) N N}, = 0, and let X be the number of indices 7 for which
R (2) N Ny, # 0.

until (X <lorb=Fk)

Comment Pr[2°7!'/4 < |N,| <4-2°]>1-4§

Let o = 2°.

Comment Pr[|Ny|/4 < a < 8|N,|]> 148

Output o'/t

Comment Pr[|M,|/(1+¢) <a<|M,|(1+¢)]>1-0

Figure 2.1: Universal Approximate Counting in probabilistic polynomial time with an NP

Oracle

26

Notice that the estimates from the above theorem are only accurate to within the re-
ciprocal of a polynomial (this is since the running time of the algorithm is polynomial in
e~ !). We now use the reduction of [JVV-86] which is strong enough in this sense. Given an
approximation to within a factor of 1 4+ € (for an e which is a reciprocal of a polynomial)
it samples a distribution which is very close to the uniform distribution. Specifically, they

show the following:

Theorem 2.9 [JVV-86]: If there exists a universal approximate counter to within a factor
of (1 4+ ¢€) for any 0 < € < 1 (that never fails) then there exists a universal (exact) uni-
form generator which, when given access to the approximate counter as an oracle, runs in

polynomial time in n and %

For further reference, let Q(n, %) be a polynomial which bounds the number of oracle
queries that the uniform generator (guaranteed in Theorem 2.9) makes to the approximate
counter. We are going to run this generator with our universal approximate counter. The
problem is that the generator expects an approximation procedure which is always correct,
while our procedure fails to approximate the given set (to within 1 + €) with positive prob-
ability (i.e., bounded by ¢).

We partition the analysis (of running the generator with our approximator) into two
cases: In one case, our approximate counter succeeds in all Q(n, %) queries. This happens
with probability at least 1 — Q(n, %) -0, and in this case, the generator outputs a uniform
element in the set as required. The other possible case, is that the approximate counter
makes an error in one of the queries. In this case, it is not possible to tell which distribution
is output by the generator. However, since the later case happens with probability at most
Q(n, %) - d we get that the distance between the the output distribution of the generator
and the uniform distribution on the set M, is at most Q(n, %) - ¢. Since the running time

of the approximation counter is polynomial in the logarithm of %, then the polynomial

multiplicative factor Q(n, %), has no significant effect on the complexity of the procedure.

Setting ¢’ et Q(s Iy we get:

Corollary 2.10 [f there exists a universal approximate counter to within a factor of (1+¢),
C', which runs in time polynomial in n,1/¢,log 3 and Ty(n), and which fails with probability
at most &', then there exists a universal almost uniform generator, U, which uses C' as an

oracle and which runs in time polynomial in n,Th(n) and log %.

Combining Corollary 2.10 with Theorem 2.8, we get Theorem 2.5 and we are done.

27

2.2.4 Application: An Efficient Implementation of the Simulation

Based Prover

A basic ingredient in our proof is the construction of a new prover based on the simulator
for the protocol, called a simulation based prover. We use the almost uniform generator to
implement it efficiently. The simulation based prover was first used by Fortnow [F-89], and

it was used in many works since [AH-87, BMO-90, Os-91].

Definition 2.11 Let S be a simulator of a g rounds interactive proof with message length [.
Let the output of S on input @ and random tape r, S(x,r), be (R, 101 ... a,0,), where the a’s
are the messages of the verifier, the 3’s are the messages of the prover, and R is the random

tape of the verifier. Then for each t =1,...,g we define Si(x,r) = a1y ... Q1 Bi_10v.

Definition 2.12 Let S be a simulator (of g rounds and message length 1), and let p be the

number of its coin tosses. We denote by P* the probabilistic function whose output (next

message to verifier), on input x (common input), and a1y ...ay (conversation so far), is

given by the following experiment:

(1) Pick at random a string r from the set {r € {0,130 : Sy(x,7) = a1B1...a; } (the sel
of random tapes of the simulator on which the simulator outputs a conversation having
a1y ... op as a prefiz).

(2) Then compute S(x,r) — this has the form
(Ryonfy...aef3y. .. a0

for some Bi,...,a}, 3, €10, 1}
(3) Finally, output the string f3;.

We call P* the simulation based prover for the simulator S.

Intuitively, if S is a (statistical) ZK P-simulator for V, then P* is attempting to find
P’s replies in the interaction of P with V. He does this by imitating the behavior of the
simulator S in the prover steps of the interaction. The properties of P* in case the knowledge
complexity is greater than zero, will be studied in Chapter 2.3.

We will denote the output of P* on input « and a3y ... by P*(x, 0101 ... ay), but keep
in mind the function is probabilistic so that P*(x, 151 ... ay) is actually a distribution on [
bit strings.

The complexity of computing P* is the question we address next.

28

Exact computation of P* is clearly possible in probabilistic polynomial space, and this
is easily improved to probabilistic polynomial time with a ¥} oracle by using the results of
[JVV-86] on uniform generation.

Let us now turn to approximations: we will be interested in computing a distribution
which is d-close to P*. If § = n=° for some constant ¢ then, following [Os-91], this can be
done in probabilistic polynomial time with an NP oracle by using techniques from [ILL-89].
That result will not, however, suffice for the applications in this paper: we need to be able
to achieve values of § which are exponentially small (in n). The following Theorem says we

can do this, still in probabilistic polynomial time with an NP oracle.

Theorem 2.13 Let S be a simulator (of g rounds and message length l). Then there exists a
probabilistic oracle machine T with the following property. Suppose x € {0,1}", oy, B1, ..., a4
are [(n) bit strings (t < g), and § > 0. Then the probability spaces TV (x, 018 ... ay,8) and
P*(z,01031 ...0q) are -close. Moreover, T runs in time polynomial in n and lg§".

Note the running time of T is polynomial in g6~ (rather than §='), which is why we can

achieve exponentially small error.

Proof: The proof of this theorem is as follows (given the implementation of universal almost
uniform generation in probabilistic polynomial time with an NP oracle, i.e., Theorem 2.5):
follow the algorithm of Definition 2.12, using Theorem 2.5 to implement the first step. How-
ever, there is a technicality here that must be addressed. The set in which we would like to
sample in is

Avoiprae = {17 € {0, l}p(”) D SHa,r) =aifr...on)

This finite set doesn’t seem to have a natural characterization as an intersection of {0,1}"
with a language that some machine accepts, unless one considers a machine that accepts only
this finite set. Of course a machine that recognizes a finite set can be made very efficient in
the length of its inputs, but we should require more.

We need to have a fixed polynomial P(-) such that each such machine we build and for
any r, x, and a0 ...y, the machine runs in time bounded by P(|z|). Furthermore, since
the running time of the uniform generator depends on the length of the encoding, we also
demand that the length of the encoding of M, 4,4,. .4, is also bounded by P(|z|). Note that
it is crucial that our machine will have x and a1 ... a; fixed within its description and not
given as inputs, since we do not want to sample = nor a13; ...a;. We only want to sample

an appropriate r.

29

Consider first a machine M that on input (z,7,010; ... o) decides whether the simulator
S on input = and random tape r outputs a conversation which has a13;...a; as a prefix.
This machine has a fixed encoding < m > and it runs in polynomial time in |z|. Now

consider a machine M’

o fy.op, Which on input r runs M on (z,7r, 13 ... a;). Machine M" is

the machine we would like to give to our uniform generator and it can easily be implemented
such that its running time is polynomial in || (which is a constant time with respect to M").
We would like to claim that it is possible to encode such a machine M’ by an encoding which
is also of size polynomial in |x|. A possible implementation of M’ is a machine which writes
(< M > ,x,r,0101...04) on its work tape (where < M >, x, and a10; ... are constant
strings and r is copied from the input tape). Then, machine M’ runs the universal Turing

machine on its work tape. Such a machine M’ has an encoding which is polynomial in |z|.

To summarize this technical discussion, our simulation based prover runs in time poly-
nomial in |z| since it feeds the uniform generator with inputs that make it run in time

polynomial in |z| (given access to an NP-oracle), and we are done. m

2.3 The Proof of the Main Result for the Perfect Case

In this section we prove that the Main Theorem holds for the special case of perfect knowledge
complexity. Combining this result with the transformation (Theorem 2.17) of the subsequent

section, we get the Main Theorem.
Theorem 2.14 PKC(O(logn)) C BPPNF

Suppose that (P, V) is an interactive proof of perfect knowledge complexity k(-) =
O(log n) for the languages L, and let M be the simulator guaranteed by the fraction formu-
lation (i.e., Definition 2.2). We consider the conversations of the original verifier V' with the
simulation-based-prover P* (see definition in Section 2.1.3). We are going to show that the
probability that the interaction (P*,V) is accepting is negligible if ¢ L and greater than
a polynomial fraction if # € L. This separation between the cases @ € L and « € L can
be amplified by sequential repetitions of the protocol (P*, V). So it remains to observe that
we can sample the (P*, V') interactions in probabilistic polynomial-time having access to an
NP oracle. This observation is justified as follows. Clearly, V’s part of the interaction can

be produced in polynomial-time. By Theorem 2.13, we can implement P* by a probabilistic

30

polynomial time machine that has access to an NP oracle. Actually, the implementation
deviates from the simulation based prover by an exponentially small fraction, but this does

not matter. Thus, it remains only to prove the following lemma.

Lemma 2.15

1. If & € L then the probability that (P*,V') outpuls an accepting conversation is at least
1. 9—k
3 27"

2. If x & L then the probability that (P*, V') outputs an accepting conversation is negligible.

proof: The second part of the lemma follows from the soundness property as before. We
thus concentrate on the first part. We fix an arbitrary @ € L for the rest of the proof and
allow ourselves not to mention it in the sequel discussion and notation. Let k = k(|z|) and
g be the number of coin tosses made by M. We denote by () 2 {0,1}? the set of all possible
coin tosses, and by S the “good subspace” of M (i.e., S has density 27 in and for w chosen
uniformly in S the simulator outputs exactly the distribution of the interaction (P, V')).

Consider the conversations that are output by the simulator on w € 5. The probability
to get such a conversation when the simulator is run on w uniformly selected in €2, is at
least 27%. We claim that the probability to get these conversations in the interaction (P*, V')
is also at least 27%. This is not obvious, since the distribution produced by (P*, V) may
not be identical to the distribution produced by M on a uniformly selected w € . Nor is
it necessarily identical to the distribution produced by M on a uniformly selected w € S.
However, the prover’s moves in (P*, V) are distributed as in the case that the simulator
selects w uniformly in €2, whereas the verifier’s moves (in (P*,V')) are distributed as in the
case that the simulator selects w uniformly in S. Thus, it should not be too surprising that
the above claim can be proven.

However, we need more than the above claim: It is not enough that the (P*, V') conver-
sations have an origin in S, they must be accepting as well. (Note that this is not obvious
since M simulates an interactive proof that may have two-sided error.) Again, the density
of the accepting conversations in the “good subspace” of M is high (i.e., > 1 — ¢), yet we
need to show that this is the case also for the (P*, V) interaction. Actually, we will show
that the probability than an (P*, V') conversation is accepting and “has an origin” in S is at

least % L9k,

31

Let us begin the formal argument with some notations. For each possible history of the
interaction, h, we define subsets of the random tapes of the simulator (i.e., subsets of Q)
as follows. €2, is the set of w € @ which cause the simulator to output a conversation with
prefix h. S}, is the subset of w’s in), which are also in S. A, is the set of w’s in S}, which
are also accepting.

Thus, letting M;(w) denote the t-message long prefix output by the simulator M on coins

w, we get
O Yo Mpy(w)=h}
Sy € NS
A, ¥ {ues,: M(w) is accepting}
Let C be a random variable representing the (P*, V') interaction, and x be an indicator so

that x(¢) = 1 if the conversation ¢ is accepting and y(¢) = 0 otherwise. Our aim is to prove

that Prob(x(C)=1)>1 -27%. Note that

Prob(x(C)=1) = ZProb(C:E) -x(€)

JAd
o

> Z Prob(C'=¢)

The above expression is exactly the expectation value of Iéci. Thus, we need to show that:

As 1
Exp, (||Q |) > 5-2* (2.2)

where the expectation is over the possible conversations ¢ as produced by the interaction
(P*,V). Once Equation (2.2) is proven, we are done. Denote the empty history by A. To
prove Equation (2.2) it suffices to prove that

| Al |Ac|) |AN] AN
Exp. . > . 2.3
b (|ﬂc| 51) 7l 18 (23)
since using % > \/g and % > 27 we get
|Ac|) AN AN
Exp. > Al 1A
be (w SENTNRNTN
(@)2.@
5N 12,
> Lo
- 2

32

The proof of Equation (2.3) is by induction on the number of rounds. Namely, for each

round 7, we show that the expected value of % . % over all possible histories h of 7 rounds
(i.e., length ¢) is greater or equal to the expected value of this expression over all histories

h' of i — 1 rounds. In order to show the induction step we consider two cases:

1. the current step is by the prover (i.e., P*); and

2. the current step is by the verifier (i.e., V).

In both cases we show, for any history A,

| Abom| |Ahom|) |An| | An]
Ex . > .
pm(|ﬂhom| Shom]) = 1] TS0

where the expectation is over the possible current moves m, given history h, as produced by

the interaction (P*, V).

(2.4)

Technical Claim

The following technical claim is used for deriving the inequalities in both cases.

Claim 2.16 Let z;, y;, 1 <1 <n be positive reals. Then,

Zn: iy i)
=1

2

Cos (=

4 Dimt Yi
Proof: The Cauchy-Schwartz Inequality asserts:

Y

Setting a; def ; (we can do this since y; 1s positive) and b; def Zi
g Y Y P

X

, and rearranging the terms,

Qq

we get the desired inequality. O

Prover Step — denoted «

Given history h, the prover P* sends « as its next message with probability [hoal | Thus,

|S2h|
11 oa 11 oa &2 oa 11 oa 11 oo

|S2hoa| Lghoa| o |g2h| |S2hoa| Lghoa|
. 1 |f4hoa|
2 Syl
L Ll
Q%] [k

The inequality is justified by using the Technical Claim and noting that 3", |Anea| = |As]
and 3", |Shoa| = |94|-

33

Verifier Step — denoted 3

By the perfectness of the simulation, when restricted to the good subspace S, we know that

given history h, the verifier V' sends 3 as its next message with probability [Shos| Thus,

[Snl -
|11hoﬁ| |11hoﬁ| |Shoﬁ| |11hoﬁ| |11hoﬁ|
X ﬁ(. — E . .

Qos| [Shosl 5 1Skl [Qnosl [Shopl
L Aol
1Sl 5 [2hos]
, Ll L
Q%] [Skl

The inequality is justified by using the Technical Claim and noting that Y5 |Aues| = A4
and Zﬁ |Qhoﬁ| = |Qh|

Having proven Equation (2.4) for both cases, Equation (2.3) follows and so does the lemma.
O

2.4 Relating Statistical to Perfect Knowledge Com-
pelxity

In this section we show how to transform statistical knowledge complexity into perfect knowl-
edge complexity, incurring only a logarithmic additive term. This transformation combined

with Theorem 2.14 yields the Main Theorem.

Theorem 2.17 For every (poly-time computable) k : N +— N,
SKC(k(-)) € PKC (k(-) + O(log(-)))

We stress again that these knowledge complexity classes refer to the honest verifier and that
we don’t know whether such a result holds for the analogous knowledge complexity classes

referring to arbitrary (poly-time) verifiers.

proof: Here we use the oracle formulation of knowledge complexity (see Definition 2.1). We
start with an overview of the proof. Suppose we are given a simulator M which produces
output that is statistically close to the real prover-verifier interaction. We change both the
interactive proof and its simulation so that they produce exactly the same distribution space.

We will take advantage of the fact that the prover in the interactive proof and the oracle that

34

“assists” the simulator are both infinitely powerful. Thus, the modification to the prover’s
program and the augmentation to the oracle need not be efficiently computable. We stress
that the modification to the simulator itself will be efficiently computable. Also, we maintain
the original verifier (of the interactive proof), and thus the resulting interactive proof is still
sound. Furthermore, the resulting interaction will be statistically close to the original one
(on any @ € L) and therefore the completeness property of the original interactive proof is

maintained (although the error probability here may increase by a negligible amount).

Preliminaries

Let L € SKC(k(+)), and (P, V') be the guaranteed interactive proof. Without loss of gener-
ality, we may assume that all messages are of length 1. This message-length convention is
merely a matter of encoding.

Recall that Definition 2.1 only guarantees that the simulator produces output with prob-
ability > % Yet, employing Proposition 3.8 in [GP-91], we get that there exists an oracle
machine M, that after asking k(n) + 2loglogn queries, always produces an output so that
the output is statistically close to the interaction of (P, V). Let A denote the associated or-
acle, and let M’ L M4 and P’ and V' be the simulation-based prover and verifier® induced
by M’ (i.e., (P, V') = M").

In the rest of the presentation, we fix a generic input € L. and omit it from the notation.

notations: Let [A, B]; be a random variable representing the i-message (i-bit) long prefix of
the interaction between A and B (the common input « is implicit in the notation). We denote
by A(h) the random variable representing the message sent by A after interaction-history
h. Thus, if the 7*® message is sent by A, we can write [A, B];_; o A([A, B];_1) = [A, B;. By
X £ Y we denote the fact that the random variables X and Y are statistically close.

Using these notations we may write for every h € {0,1}* and o € {0,1}:

Prob(P'(h) = o) = Prob ([M'])iy1 = hoo|[M']; = h)
and similarly,

Prob(V'(h) = o) = Prob ([M'];iy1 = hoo|[M']; = h).

3A simulator-based verifier is defined analogously to the simulator-based prover. It is a fictitious entity

which does not necessarily coincide with V.

35

Claim 2.18 The distribution induced by (P', V') is statistically close to the distributions
induced by both M' = (P, V') and (P,V).

proof: By definition, the distributions produced by M" = (P’, V') and (P, V') are statistically

close. Thus, we have
[P, V]; = [P, V'];, for every i (2.5)

We prove that [P, V] is statistically close to [P’,V’] by induction on the length of the
interaction. Assuming that [P’ V]; = [P’,V'];, we wish to prove it for i + 1. We distinguish

two cases. In case the 7 + 15 move is by the prover, we get

[Plv V]i-l-l = [Plv V]Z o Pl([Plv V]Z)
= [P Vo P[P, V)
= [Plv V/]i-l-l

(use the induction hypothesis for =). In case the 7 + 13 move is by the verifier, we get

[P V]igr = [P, V]io V([P V])
[P, V)i o V([P',V'];)
[P, V] o V([P,V])

= [P V]in

= [P, V]

[l

[l

1)

where the first = is justified by the induction hypothesis and the two others by Eq. (2.5).
We stress that since the induction hypothesis is used only once in the induction step, the

statistical distance is linear in the number of induction steps (rather than exponential). O

Motivating discussion: Note that the statistical difference between the interaction (P, V') and
the simulation M’' = (P’, V') is due solely to the difference between the proper verifier (i.e.,
V) and the verifier induced by the simulator (i.e., V’). This difference is due to V' putting
too much probability weight on certain moves and thus also too little weight on their sibling
messages (recall that a message in the interaction contains one bit). In what follows we deal
with two cases.

The first case is when this difference between the behavior of V’ (induced by M’) and

the behavior of the verifier V' is “more than tiny”. This case receives most of our attention.

36

We are going to use the oracle in order to move weight from a verifier message 3 that gets
too much weight (after a history h) to its sibling message § & 1 that gets too little weight
(after the history h) in the simulation. Specifically, when the new simulator M" invokes M’
and comes up with a conversation that has h o 3 as a prefix, the simulator M” (with the
help of the oracle) will output (a different) conversation with the prefix h o (3 & 1) instead
of outputting the original conversation. The simulator M"” will do this with probability that
exactly compensates for the difference between V’ and V. This leaves one problem. How
does the new simulator M"” come up with a conversation that has a prefix ho (8@ 1)? The
cost of letting the oracle supply the rest of the conversation (after the known prefix ho(3&1))
is too high. We adopt a “brutal” solution in which we truncate all conversations that have
ho(B@&1) as a prefix. The truncation takes place both in the interaction (P”, V'), where
P" stops the conversation after 3 & 1 (with a special STOP message) and in the simulation
where the oracle recognizes cases in which the simulator M” should output a truncated
conversation. These changes make M” and V behave exactly the same on messages for
which the difference between V' and V' is more than tiny. Naturally, V' immediately rejects
when P” stops the interaction abruptly, so we have to make sure that this change does not
foil the ability of P” to convince V on an input x € L. It turns out that these truncations
happen with negligible probability since such truncation is needed only when the difference
between V and V' is more than tiny. Thus, P"” convinces V on z € L almost with the same
probability as P’ does.

The second possible case is that the difference between the behavior of V' and V' is tiny.
In this case, looking at a full conversation ¢, we get that the tiny differences sum up to a
small difference between the probability of ¢ in the distributions of M’ and in the distribution
of (P', V). We correct these differences by lowering the probabilities of all conversations in
the new simulator. The probability of each conversation is lowered so that its relative weight
(relatively to all other conversations) is equal to its relative weight in the interaction (P”, V).
Technically, this is done by M” not producing an output in certain cases that M’ did produce

an output.

Technical remark: The oracle can be used to allow the simulator to toss bias coins when the

simulator does not “know” the bias. Suppose that the simulator needs to toss a coin so that

it comes-up head with probability 2, where N <2™ and both N and m are integers. The

2ms

simulator supplies the oracle with a uniformly chosen r € {0,1}"™ and the oracle answers

37

head if r is among the first N strings in {0,1}™ and tail otherwise. A similar procedure
is applicable for implementing a lottery with more than two a-priori known values. Using
this procedure, we can get extremely good approximations of probability spaces at a cost
related to an a-priori known upper bound on the size of the support (i.e., the oracle answer
is logarithmic in the size of the support).

def

Definition: Let ¢ = % where ¢ is the number of rounds in the interaction (P, V).

e Let h be a partial history of the interaction and be a possible next move by the verifier.

We say that 3 is weak with respect to h if

Prob(V'(h)=p) < (1 —¢) - Prob(V(h)=p3)

e A conversation ¢ = (cy, ..., ¢;) is i-weak if ¢; is weak with respect to (eq, ..., ¢;—1), otherwise

it is i-good. (Note that a conversation can be i-weak only if the i"" move is a verifier

move.)
e A conversation ¢ = (ey,...,¢;) is i-critical if it is i-weak but j-good for every j < 1.
A conversation ¢ = (¢, ...,¢) is i-co-critical if the conversation obtained from ¢, by

complementing (only) the 7*! bit, is s-critical. (Note that a conversation can be i-critical

only for a single ¢, yet it may be i-co-critical for many ¢’s.)

e A conversation is weak if it is i-weak for some 72, otherwise it is good.
Claim 2.19 (P, V) outputs weak conversations with negligible probability.

proof: Recall that [P’,V] = [P’, V'] and that the same holds also for prefixes of the conver-
sations. Namely, for any 1 <i <¢, [P',V]; = [P',V'];. Let us define a prefix h € {0, 1}i of

a conversation to be bad if either
Prob([P",V']i=h) < (1 —~ %) - Prob ([P, V];=h)

or

Prob([P', V') =h) > (1 + %) Prob([P, V] =h)

The claim follows by combining two facts.

Fact 2.20 The probability that (P',V') outputs a conversation with a bad prefiz is negligible.

38

proof: Define B; to be the set of bad prefixes of length . By the statistical closeness of
[P, V]; and [P, V'];, we get that

AE Y [Prob([P,V];=h) = Prob([P',V'];i=h)| < 4

heB;

for some negligible fraction 7. On the other hand, A can be bounded from bellow by

Prob([P',V'];=h)
Prob([P',V];=h) - ‘1 — 7
h%;i () Prob([P',V];=h)
which by definition of B; is at least

Prob([, V];€ B:) - ‘i%‘
Thus, Prob([P',V];€B;) < 2% and the fact follows. O

Fact 2.21 [f a conversation ¢ = (¢q, ..., ¢;) is weak then it contains a bad prefiz.

proof: Suppose that (3 & cir1 1s weak with respect h & (¢1,...,¢;). If his a bad prefix then
we are done. Otherwise it holds that

Prob([P/, V') = h) < (1 + %) Prob([P!, V] =h)
Using the fact that 3 is weak with respect to h, we get
Prob([P/,V/]ip1=h o 8) < (1 + %) (1= ¢) - Prob([P', V]is1 =h o)
< (1 . %) - Prob([P, V]s1=h o B)
which implies that A o 3 is a bad prefix of & O

Combining Facts 2.20 and 2.21, Claim 2.19 follows. O

Claim 2.22 Suppose that ¢ = (¢, ...,¢;) is a good conversation. Then, the probability that
¢ is output by M' is at least (1 — ¢)[Y/21 . Prob([P',V] = ¢€). Furthermore, for | < k, if
¢ = (c1, .y ¢) is i-good for every i € {I+1,...,k}, then

Prob ([M']s=~|[M');=h) > (1 —)T Prob ([P, V]p=~|[P, V]i=h)

where ’ydéf(cl, ey Cp) and hd:ef(cl, ey €1)

39

proof: To see that this is the case, we write the probabilities step by step conditioned on
the history so far. We note that the prover’s steps happen with equal probabilities in both
sides of the inequality, and therefore can be reduced. Since the relevant verifier’s steps are
not weak, we get the mentioned inequality. The actual proof proceeds by induction on k —{.
Clearly, if £ — [= 0 the claim holds. We note that if £ — [= 1 the claim also holds since
step k in the conversation is either a prover step or a k-good verifier step.

To show the induction step we use the induction hypothesis for & — [— 2. Namely,

Prob ([M'|g—2 = (c1, ... ch2) | [M']: = (c1,. .., 1)) (2.6)
> (1 - 6)[%]_1 -Prob ([P, V]k—e = (c1,. .., cre2) | [P, V]i = (e1, ..., 1))

Steps k — 1 and k include one prover message and one verifier message. Assume, without
loss of generality, that the prover step is & — 1. Since P’ is the simulator based prover, we

get

Prob ([M'x—1 = (c1y .oy i) | [M =2 = (c1y - -+, i) (2.7)
= Prob ([P, V]i—1 = (c1, ..., 1) | [P, V]k—2 = (€1, ., Ch2))

Since step k of the verifier is good, we also have:

Prob ([M'lx = (c1,. .oy er) | [M]g—1 = (c1y- ooy cho1)) (2.8)
> (1 —¢€)-Prob ([P, V] = (c1,y . ek | [P/, V]e—1 = (c1y .oy ch1))

Combining Equations 2.6, 2.7, and 2.8, the induction step follows and we are done. O

Dealing with weak conversations

We start by modifying the prover P’; resulting in a modified prover, denoted P”, that stops
once it gets a verifier message which is weak with respect to the current history; otherwise,

P behaves as P’. Namely,

Definition (modified prover - P”): For any h € {0,1}* and € {0,1},

STOP if B is weak with respect to h.

P"(hoB) =
() P'(h o) Otherwise

We assume that the verifier V' stops and rejects immediately upon receiving an illegal message

from the prover (and in particular upon receiving this STOP message).

40

Next, we modify the simulator so that it outputs either good conversations or truncated
conversations which are originally i-critical. Jumping ahead, we stress that such truncated
i-critical conversations will be generated from both i-critical and -co-critical conversations.
The modified simulator, denoted M”, proceeds as follows*. First, it invokes M’ and obtains
a conversation ¢ = (¢y, ..., ¢;). Next, it queries the augmented oracle on ¢. The oracle answers
probabilistically and its answers are of the form (7,0), where ¢ € {1,...,t} and o € {0,1}.
The probability distribution will be specified below, at this point we only wish to remark

that the oracle only returns pairs (i, o) for which one of the following three conditions holds

1. ¢is good, i =t and o = 0 (if ¢ is good and is not i-co-critical for any i’s then the oracle

always answers this way);
2. ¢ is 1-critical and o = 0;
3. ¢ is 1-co-critical and o = 1.

Finally, the new simulator (M") halts outputting (e1, ..., ¢i—1,¢; & o), which in case o =1 is
not a prefix of ¢. Note that 7 may be smaller than ¢, in which case M"” outputs a truncated
conversation which is always ¢-critical; otherwise, M" outputs a non-truncated conversation.
Note that this oracle message contains at most 1 + logt¢ bits where ¢ is the length of the
interaction between P’ and V. It remains to specify the oracle’s answer distribution.

Let us start by considering two special cases. In the first case, the conversation generated
by M’ is i-critical, for some ¢, but is not j-co-critical for any 7 < 7. In this case the oracle
always answers (i,0) and consequently the simulator always outputs the i-bit long prefix.
However, this prefix is still being output with too low probability. This will be corrected by
the second case hereby described. In this (“second”) case, the conversation ¢ generated by M’
is good and i-co-critical for a single ¢. This means that the i-bit long prefix is given too much
probability weight whereas the prefix obtained by complimenting the i*! bit gets too little
weight. To correct this, the oracle outputs (¢, 1) with probability ¢ and (¢, 0) otherwise, where
g will be specified. What happens is that the M” will output the “i-complimented prefix”
with higher probability than with which it has appeared in M’. The value of ¢ is determined
as follows. Denote p def Prob(V(cy,...,cic1)=¢; & 1) and p def Prob(V'(e1,...,cic1)=c¢ B 1).

p=p'
1—p/

Then, setting ¢ so that p’ + (1 —p')-¢=p (e, qg=) allows the simulator to output
the prefix (eq, ..., ¢i—1,¢; B 1) with the right probability.

In the general case, the conversation generated by M’ may be i-co-critical for many

*We stress that P’ is not necessarily the simulator-based prover of M".

41

i’s as well as j-critical for some (single) j. In case it is j-critical, it can be i-co-critical
only for i < j. Let us consider the sequence of indices, (iy,...,4;), for which the generated
conversation is critical or co-critical (i.e., the conversation is ix-co-critical for all & < [and

is either i-critical or ¢;-co-critical). We consider two cases. In both cases the ¢;’s are set as

in the above example; namely, g, = plk__p]jﬁ“, where py, e Prob(V(ci,...,¢im1) =c¢;, B 1) and
k
def
pl. = Prob(V'(eq,...,ci—1)=c¢i, & 1).
1. The generated conversation, ¢ = (ci,...,¢;), is ig-co-critical for every k& < [and is i

critical. In this case, the distribution of the oracle answers is as follows. For every
k < I, the pair (ix,1) is returned with probability (IT;<x(1 — ¢;)) - qx; whereas the pair
(i1,0) appears with probability [T, (1 —¢;). We stress that no other pair appears in this

distribution.?

2. The generated conversation, ¢ = (1, ..., ¢;), is ig-co-critical for every k < [. In this case,
the distribution of the oracle answers is as follows. For every k& < [, the pair (i, 1)
is returned with probability ([T;cx(1 — ¢;)) - qx; whereas the pair (¢,0) appears with
probability [T;<;(1 — ¢;). Again, no other pair appears in this distribution.

Claim 2.23
1.[P" V] = [P,V];
2. Each conversation of (P", V'), be it a complete (P',V')-conversation or a truncated (i.e.,
critical) one, is output by M" with probability that is at least a (1 — ¢)" > % fraction of
the probability that it appears in [P",V].

proof: The weak conversations are negligible in the output distribution of (P, V) (see
Claim 2.19). The only difference between [P”, V] and [P, V] originates from a different
behavior of P” on weak conversations, specifically P” truncates them while P’ does not.
Yet, the distribution on the good conversations remains unchanged. Therefore the distribu-
tion of [P”, V] is statistically close to the distribution of [P, V], and we are done with Part
(1).

For Part (2) let us start with an intuitive discussion which may help reading through the
formal proof that follows. First, we recall that the behavior of the simulation M’ in prover

steps is identical to the behavior of the interaction (P’, V') in prover’s steps. This follows

®Indeed the reader can easily verify that these probabilities sum up to 1.

42

simply from the fact that P’ is the simulation based prover of M’. We will show that this
property still holds for the new interaction (P”, V) and the new simulation M”. We will do
this by noting two different cases. In one case, the prover step is conducted by P” exactly
as it is done by P’ and then M" behaves exactly as M’'. The second possible case is that the
prover step contains the special message STOP. We shall note that this occurs with exactly
the same probability in the distribution (P”, V') and in the distribution of M".

Next, we consider the verifier steps. In the construction of M"” and P” we considered the
behavior of M’ and V' on verifier steps and made changes when these differences were not
“tiny”. We called a message 3 weak with respect to a history h, if the simulator assigns the
message (3 (after outputting h) a probability which is smaller by a factor of more than (1 —¢)
from the probability that the verifier V' outputs the message 3 on history h. We did not
make changes in messages whose difference in weight (between the simulation M’ and the
interaction (P, V)) were smaller than that. In the proof, we consider two cases. First, the
message (3 is weak with respect to the history h. Clearly, the sibling message 3 &1 is getting
too much weight in the simulation M’. So in the definition of M” we made adjustments to
move weight from the prefix h o (8@ 1) to the prefix ho 3. We will show that this transfer
of weight exactly cancels the difference between the behavior of V' and the behavior of M".
Namely, the weak messages (and their siblings) are assigned exactly the same probability
both in M” and by V. Thus, we show that when a weak step is involved, the behavior of
(P",V) and the behavior of M" are exactly equivalent. It remains to deal with messages for
which the difference between the conditional behavior of V and M’ is “tiny” and was not
considered so far. In this case, M" behaves like M’. However, since the difference is so tiny,
we get that even if we accumulate the differences throughout the conversation, they sum up
to at most the multiplicative factor 3/4 stated in the claim.

Let us begin the formal proof by writing again the probability that (P”, V') outputs ¢ as
the product of the conditional probabilities of the ¢ steps. Namely,

ﬁ Prob ([P",V]iy1i=h; 0 c;ipq1 | [P, V]i=hi)

i=1
where h; & (¢1,...,¢;). We do the same for the probability that M” outputs a conversation
¢. We will show by induction that each step of any conversation is produced by M” with at
least (1 — ¢€) times the probability of the same step in the (P”, V)-interaction. Once we have
shown this, we are done. Clearly this claim holds for the null prefix. To prove the induction

step, we consider the two possibilities for the party making the 7 4+ 1% step.

43

i + 15¢ step is by the prover: Consider the conditional behavior of M" given the history so
far. We will show that this behavior is identical to the behavior of P” on the same partial
history.

A delicate point to note here is that we may talk about the behavior of M"” on a prefix
h; only if this prefix appears with positive probability in the output distribution [M"];.
However, by the induction hypothesis any prefix that is output by [P”,V]; appears with
positive probability in [M"];.

We partition the analysis into two cases.

1. First, we consider the case in which the last message of the verifier is weak with respect
to the history that precedes it. Namely, h = k' o § and [is weak with respect to A'. In
this case, both in the interaction (P”, V) and in the simulation M"”, the next message of

the prover is set to STOP with probability 1. Namely,

Prob (M" =hoSTOP |[M");=h) = 1
= Prob (P"(h) = STOP)

2. The other possible case is that the last message of the verifier is not weak with respect
to its preceding history. In this case, the simulator M"” behaves like M’ and the prover
P” behaves like P’. (Note that the changes in critical and co-critical steps apply only to
verifier steps.) Thus,

Prob ([M");z1 =hoa|[M";=h) = Prob([M'|;z1=hoa|[M];=nh)
= Prob(P'(h) = a)
= Prob (P"(h) = a)

To summarize, the conditional behavior of M” in the prover steps and the conditional

behavior of P” are exactly equal.

i + 15¢ step is by the verifier: Again, we consider the conditional behavior of M” given the
history so far. Let us recall the second modification applied to M’ when deriving M"”. This
modification changes the conditional probability of the verifier steps in the distribution of M’
in order to add weight to steps having low probability in the simulation. We note that this
modification is made only in critical or co-critical steps of the verifier. Consider a history h;
which might appear in the interaction (P”, V) and a possible response 3 of V to h,;. Again,
by the induction hypothesis, h; has a positive probability to be output by the simulation

44

M" and therefore we may consider the conditional behavior of M" on this history h;. There
are three cases to be considered, corresponding to whether either 5 or 3 1 or none is weak
with respect to h;.

We start with the simplest case in which neither 8 nor 8@ 1 is weak (w.r.t. ;). In this
case, the behavior of M" is identical to the behavior of M’ since the oracle never sends the

message (¢ + 1,0) in this case. However, by the fact that 3 is not weak, we get that

(1—¢)-Prob(V(h)=03) < Prob([M')iz1=hof|[M']; =

)
— Prob (M} = ho | [M"); = h)

and we are done with this simple case.

We now turn to the case in which 3 is weak (w.r.t. h;). In this case, given that M" has
produced the prefix h;, it produces h;o03 whenever M’ produces the prefix h;0/3. Furthermore,
with conditional probability ¢ (as defined above), M" produces the prefix h; o 3 also in case
M’ produces the prefix h; o (8@ 1). As above, we define

p = Prob(V(h) =)
P def Prob (V'(h;) = 3)

Since V' is the simulation (M') based verifier, we may also write

p/ = Prob ([M/]i-l—l = hZ 0 ﬁ | [M/]Z = hz) (29)

Also, recall that ¢ was defined as f:zj. Now, using these notations:

Prob ([M”]i-l—l :hi o] ﬁ |[M”]Z:h2) Prob ([M/]i-l—l :hi o] ﬁ |[M/]Z :hz)

o
+ 2L b (M aa=hoo (9 1[IV =h)
Using Equation (2.9), we get
_ / P _p/ /
= P+ (=)
-P
=D

= Prob (V(h) =)

Finally, we turn to the case in which & 1 is weak (w.r.t. h;). Again, this means that (3 is
co-critical in ¢. Given that M"” has produced the prefix h;, it produces h; o 3 only when M’
produces the prefix h; o 3, and furthermore, M" does so only with probability 1 — ¢ (where

45

q is again as defined above). We denote p and p’, with respect to the critical message 3 & 1.
Namely,

I < prob (V(h)=0d1)
P Prob (VI(hi) = 8@ 1)
= Prob([M'liz1 =hio (BB 1)|[M]; = hi)

Thus, recalling that ¢ = f:zj, we get

/

Prob ([M"lim=hio B|[M"i=h;) = (1— =Ly Prob (M) =hi 0 3|[M]:= hy)

I—p
L —p
= (1=
1_p,()

This completes the proof of Claim 2.23. O

Lowering the probability of some simulator outputs

After handling the differences between M’ and (P’, V') which are not tiny, we make the last
modification, in which we deal with tiny differences. We do that by lowering the probability
that the simulator outputs a conversation, in case it outputs this conversation more frequently

than it appears in (P”,V). The modified simulator, denoted M"’, runs M" to obtain a

conversation ¢. (Note that M” always produces output.) Using the further-augmented
oracle, M"" outputs ¢ with probability
aef 3 Prob([P",V]=¢)
Pe = 4 TProb((M"]=¢)
Note that p: < 1 holds due to Part 2 of Claim 2.23.

Claim 2.24

1. M produces output with probabilily %}-

2. The output distribution of M" (i.e., in case it has output) is identical to the distribution
[P, V].

proof: The probability that M" produces an output is exactly:

ZProb ([M"]=¢) - p: = Z

46

As for part (2), we note that the probability that a conversation ¢ is output by M" is exactly
2. Prob ([P",V]=¢). Since the simulator halts with an output with probability exactly 2,
we get that given that M’ halts with an output, it outputs ¢ with probability exactly
Prob ([P”,V]=¢)) and we are done. O

An important point not explicitly addressed so far is whether all the modifications applied to
the simulator preserve its ability to be implemented by a probabilistic polynomial-time with
bounded access to an oracle. Clearly, this is the case with respect to M” (at the expense of
additional 1 + log,t = O(logn) oracle queries). Yet, regarding the last modification there
is a subtle points which needs to be addressed. Specifically, we need to verify that the
definition of M"" is implementable; namely, that M"" can (with help of an augmented oracle)
“sieve” conversations with exactly the desired probability. Note that the method presented
above (in the “technical remark”) may yield exponentially small deviation from the desired
probability. This will get very close to a perfect simulation, but yet will not achieve it.

To this end, we modify the “sieving process” suggested in the technical remark to deal
with the specific case we have here. But first we modify P” so that it makes its random
choices (in case it has any) by flipping a polynomial number of unbiased coins.® This rounding
does change a bit the behavior of P”, but the deviation can be made so small that the above
assertions (specifically Claim 2.23) still hold.

3 a/b

Consider the specific sieving probability we need here. Namely: p; = 3 L

¢ = Prob([P",V]=¢) and § = Prob([M"]=¢). A key observation is that ¢ is the number

where

of coin tosses which lead M” to output ¢ (i.e., using the notation of the previous section,

¢ = |Q:]). Observing that b is the size of probability space for [P”, V] and using the above

modification to P”, we rewrite p; as % . % = =7, where e and f = poly(n) are some

non-negative integers.

We now note, that the oracle can allow the simulator to sieve conversations with prob-
ability ¢ (f = 0), for any 0 < e < ¢ in the following way. M" sends to the oracle the
random tape w that it has tossed for M”, and the oracle sieves only e out of the possible ¢
random tapes which lead M" to output ¢. The general case of p: = 57 is deal by writing

pe = 1+ 5, where ¢ = |¢/2/] and r = e — ¢2/ < 2/. To implement this sieve, M"" supplies

5The implementation of P was not discussed explicitly. It is possible that P” uses an infinite number
of coin tosses to select its next message (either 0 or 1). However, an infinite number of coin tosses is not
really needed since rounding the probabilities so that a polynomial number of coins suffices, causes only

exponentially small rounding errors.

47

the oracle with a uniformly chosen f-bit long string (in addition to w). The oracle sieves out
g random-tapes (of M") as before, and uses the extra bits in order to decide on the sieve in

case w equals a specific (different) random-tape.

Combining Claims 2.18, 2.23 (part 1), and 2.24, we conclude that (P”, V) is an interactive

proof system of perfect knowledge complexity k(n) + O(logn) for L. This completes the
proof of Theorem 2.17. m

2.5 Applying our Techniques for Non-Negligible Error
Probabilities

As explained in Section 2.1.1, the notion of an interactive proof with bounded knowledge
complexity is not robust under changes in the allowed error probability. Throughout this
work, we use the natural definition of interactive proofs in which the error probability is
negligible. However, our techniques yield non-trivial results also in the case one defines
interactive proofs with some specific non-negligible error probability. In this section we
explain how such assertions may be obtained, and state such results for two special cases.
Denote by €.(n) (an upper bound on) the probability that the verifier rejects an input
x although = € L and the prover plays honestly. This is the error probability related to
the completeness condition. Similarly, denote by €5(n) (an upper bound on) the probability
that the verifier accepts @ & L when the prover follows its optimal strategy (not necessarily
following the protocol). This is the error probability related to the soundness condition.
We say that an interactive proof has error probabilities (es, €.) if its error probability in the
soundness condition is bounded by ¢, and its error probability in the completeness condition

is bounded by e..

2.5.1 The perfect case

In this subsection, we consider the more restricted case of perfect knowledge complexity, and
derive Theorem 2.26 which is the analogue of Theorem 2.14 for the case that the error prob-
abilities are not negligible. Following the definitions in Section 2.3, we denote the simulation
based prover by P*.

Let us follows the steps of the proof of our main theorem and observe which assertions

hold for the case of non-negligible error probability. We begin by observing that the following

48

generalization of Lemma 2.15 holds:

Lemma 2.25 Let (P,V) be an interactive proof for L with error probabilities (es(n), e.(n))

and with knowledge complexity k(n), then

1. If & € L then the probability that (P*,V') outpuls an accepting conversation is at least
(1 —e(n)?- 275 where n = |z|.
2. If x € L then the probability that (P*,V) outputs an accepting conversation is at most

€s(n), where n = |x|.

The proof of this lemma is identical to the proof of Lemma 2.15, except that here % =
I —e.(n). As explained in Section 2.3, an efficient machine with access to an NP oracle can
sample conversations in (P*, V). By Lemma 2.25, this would yield an accepting conversation
with probability at most ¢,(n) in the case ¢ L and at least (1 — e.(n))?-27%") when = € L.
In case these two probabilities differ sufficiently (i.e., by more then a polynomial fraction), we
can use standard amplification techniques to get a probabilistic algorithm that determines

whether @ € L with error probability less than 1/3 (or negligible, or 27"). To summarize,

we get the following theorem for perfect knowledge complexity.

Theorem 2.26 If a language L has an interactive proof with perfect knowledge complexity
k(n) and error probabilities (s, ¢.) and if there exists a polynomial p(n) such that
1
1—e(n))?-2750) > e (n)+ —
(1 - e(m))4

then L € BPPVNF.

Examples: Theorem 2.26 implies, for example, that if a language [has an interactive proof
of knowledge complexity 1 and error probability 1/4 (both in the soundness condition and
in the completeness condition), then L is in BPPNP. Another interesting example is the
case of one-sided error (i.e., ¢. = 0). Theorem 2.26 implies that for any polynomial p(-), if a

language L has a one-sided error interactive proof (P, V') of knowledge complexity at most

log, (%l) and error probability ¢, < ﬁ, then L is in BPPVT.

2.5.2 The general (statistical) case

Unfortunately, the analogue result for statistical knowledge complexity is not as clean, and

has various different formulations according to possible properties of the error probabilities.

49

Let us explain how such a result can be obtain, and give a specific example for the special
case in which e. = 0, i.e., the original interaction has one-sided error.

Recall that the proof for the negligible error-probability case uses the transformation from
statistical to perfect knowledge complexity and then uses Theorem 2.14. This transformation
increases the knowledge complexity by a logarithmic additive term. In view of Lemma 2.25,
it is desirable not to increase the knowledge complexity without concurrently decreasing the
error probability. Thus, before applying the transformation, we reduce the error probability
by iterating the protocol as many times as possible while maintaining logarithmic knowledge
complexity.

Specifically, denote the length of the interaction by I(n). Also, fix an input a of length
n, and let [= l(n), k = k(n), ¢, = ¢;(n) and €. = €.(n). The transformation from statis-
tical to perfect knowledge complexity (as described in Section 2.4) increases the knowledge
complexity by 1 4 log,[. We begin by running the original protocol (P, V') sequentially
¢ & [(log, 1)/k] times. These repetitions yield a new protocol (P’, V') whose length is ¢ - [,
its knowledge complexity is bounded by ¢ -k < (k — 1) 4 log, [, and its error probability
decreases. To compute the decrease in the error probabilities, we partition the analysis into
two cases according to whether the original interaction has one sided error or not.

If the original interaction has one sided error, i.e., the verifier always accepts when = € L,
then the new verifier V'’ accepts only if all repetitions of the original protocols end accepting.
The error probabilities in this case decrease from (¢5,0) to (¢!,0). In the case where the
original interactive proof was not one sided, the verifier counts the number of original inter-
actions that end with the original verifier accepting. The new verifier accepts if this number

est(l—¢c) T
=—-—= 1. In order to compute the new error probabilities we may apply

is greater than
the Chernoff bound and get an upper bound on the new error probabilities which depends
on t, on the difference between 1 — ¢, and ¢;, and of-course on ¢, and ¢. themselves.

Next, we apply the transformation of Section 2.4 (“from statistical to perfect knowledge
complexity”) and get a new interactive proof (P”, V") for L which has knowledge complexity
E—1+41logyl 4+ 14 [logy(l-1t)], where the additional 1 + [log,(!-¢)] term comes from the
transformation. Finally, if the resulting parameters of (P”, V") satisfy the conditions stated
in Theorem 2.26, then we get that the language L is in BPPNT . Let us provide full details
for the special (yet important) case of one sided error (i.e., e. = 0).

In the special case of one-sided error, we end up using Theorem 2.26 for an interactive

proof with knowledge complexity k + log, [+ [log,(l - t)] and (one-sided) error probability

50

¢s'. Thus, we get the following theorem for statistical knowledge complexity:

Theorem 2.27 Suppose that a language L has an interactive proof of statistical knowledge
complexity k(n), one-sided error probability e;(n), and with length l(n) so that there exists a
polynomial p(n) for which the following inequality holds

1

EERTRET

1
> e, (n)[tom /RG] 4 L
2 &(n) p(n)

Then L € BPPNP,

2.6 A Flaw in [F-89]

As remarked in the introduction, In course of this research, we found out that the proof that
SKC(0) C co-AM as it appears in [F-89] is not correct. In particular, there is a flaw in the
AM-protocol presented in [F-89] for the complement language. In this section, we explain
the problem in the proof there and present a counter-example.

In [F-89], Fortnow presents a constructive method for proving that SZK & SKC(0) is
contained in co-AM. Given an interactive proof (P, V') for a languages [and a (statistical)
zero-knowledge simulator M (for the honest verifier V), he constructs a two-round protocol
(P',V"). This protocol was claimed to constitute an interactive proof system for L. This
claim, as we are going to show, is wrong. Yet, the result SZK C co-AM does hold, since
the work of Aiello and Hastad contains the necessary refinements which enable to present a
modified AM-protocol for L (see [AH-87, H-94]). Furthermore, Fortnow’s basic approach is
valid, and indeed it was used in subsequent works (e.g., [AH-87, BMO-90, Ost-91, BP-92a,
OW-93]).

Fortnow’s basic approach starts with the observation that the simulator M must behave
differently on x € L and = ¢ L. Clearly, the difference cannot be recognized in polynomial-
time, unless L € BPP. Yet, stronger recognition devices, such as interactive proofs should
be able to tell the difference. Fortnow suggests a characterization of the simulator’s behavior
on x € L and uses this characterization in his protocol for L, yet this characterization is
wrong. Aiello and Hastad present a refinement of Fortnow’s characterization [AH-87], their
characterization is correct and can be used to show that SZK C AM (which is the goal of
their paper) as well as SZK C co-AM.

51

Fortnow’s characterization

Given an interactive proof (P,V) for L and a simulator M, and fixing a common input
x € {0,1}7, the following sets are defined. Let us denote by ¢ the number of random bits
that the verifier V' uses on input =, and by ¢ the number of random bits used by the simulator
M. For every conversation prefix, h, we consider the set of the verifier’s coin tosses which
are consistent with h (the conversation so far). We denote this set by R}. Namely, for
ho= (a1, By i) (o8 b = (a1, By oty By i), 7 € B A Vi, a,ay) = B,
for every j < i, where V(x,r, &) denotes the message sent by V on input = random-tape
r and prover message-sequence . The set R depends only on the verifier V. Next, we
consider sets R} which are subsets of the corresponding R!’s. Specifically, they contain
only r’s that can appear with A in an accepting conversation output by the simulator M.
Namely, r € RE iff r € R} and there exists w € {0,1}? so that M(z,w) is an accepting
conversation with prefix h. (Here M(x,w) denotes the conversation output by M on input

x and simulator-random-tape w.)

Motivation: For simplicity, suppose that the simulation is perfect (i.e., M witnesses that
(P, V) is perfect zero-knowledge) and that (P, V') has one sided error (i.e., “perfect complete-
ness”). Then, for every = € L and every possible h, we must have R} = R} (otherwise the
simulation is not perfect). However, if z € L then there must exist A’s so that R} is much
smaller than R”. Otherwise the simulator-based prover (for M) will always convince V' to
accept x, thus violating the soundness condition of (P, V). The problem with the above di-
chotomy is that it is “too existential” and thus it is not clear how to use it. Instead Fortnow

claimed a dichotomy which is more quantitative.

A False Characterization: Let pref(¢) denote the set of all message-subsequences in the con-

versation c.

o if v € L then
Prob,(Yh € pref(M(x,w)) ‘Rg‘ =~ ‘RH) >

w0

o if v ¢ L then

Prob,(h € pref(M(z,w)) |RY| = |R}|) < i

where the probability (in both cases) is taken uniformly over w € {0,1}?. We did not specify
what is meant by ;. One may substitute a ~; § by a > % -, and a 5 3 by a > i - 0.

The gap between the two is needed for the approximate lower /upper bound protocols.

52

A Counterexample

The mistake is in the second item of the characterization. The false argument given in [F-89]
confuses between the probability distribution of conversations output by the simulator and
the probability distribution of the conversations between a simulator-based prover (denote
P*) and the verifier. These distributions are not necessarily the same (note that we are in
case * ¢ L). Consequently, the probability that “good” conversations (i.e., conversations
for which |Ry| &~ |Ry| for all prefixes) occur in the (P*, V) interaction is not the same as
the probability that the simulator outputs “good” conversations. This point is ignored in
[F-89] and leads there to the false conclusion that the characterization holds. Bellow, we
present an interactive proof (P, V) and a (perfect) zero-knowledge simulator for which the
characterization fails.

The interactive proof that we present is for the empty language ®. This interactive proof
is perfect zero knowledge for the trivial reason that the requirement is vacuous. Yet, we
present a simulator for this interactive proof which, for every z € {0,1}" = ®, outputs

“good” conversation with probability close to 1. Thus, the characterization fails.
The interactive proof (from the verifier’s point of view — input « € {0,1}"):
e The verifier uniformly selects a € {0,1}" and sends a to the prover.
o The verifier waits for the prover’s message 3 € {0,1}".
e Next, the verifier uniformly selects v € {0,1}" and sends ~ to the prover.
o The verifier accepts iff either & = 0" or § = ~.
Regardless of the prover’s strategy, the verifier accepts each x € {0,1}" with negligible

probability; specifically 27" 4 (1 — 27") - 27", Thus, the above protocol indeed constitutes

an interactive proof for the empty language ®.

The simulator operates as follows (on input x € {0,1}"):

e With probability 1 — ¢, the simulator M outputs a conversation uniformly distributed in
0" x {0,1}°". (e is negligible, say ¢ = 27")

e With probability ¢, the simulator M outputs a conversation uniformly distributed in
({0,1}" —0") x {0,1}*".

Claim: In contradiction to the characterization, for every x € {0,1}" = ®,

Prob(Yh € pref(M(x,w)) ‘Rg‘ = ‘RH) >1—c

33

Proof: It suffices to show that every conversation of the form 0”3~ satisfies Ry, = R; for
all its prefixes. First observe that R} = {0,1}*" = R}, since for every ay € {0,1}""
the simulator outputs the accepting conversation oy~ with non-zero probability. Similarly,
RY = 07{0,1}" = RY". Next, for every 3 € {0,1}", we have RY'P = 0"{0,1}" = Ry’ since
for every v € {0,1}" the simulator outputs the accepting conversation 0”3~ with non-zero
probability. (Here we use the fact that the verifier always accepts when o = 0".) Similarly,
R?"ﬁw = 0"y = Rg"ﬁw‘ 0

Conclusion

The source of trouble is that the definition of the sets Rl’s does not take into account the
probability weight assigned by the simulator to w’s that witness the assertion “the simulator
outputs an accepting conversation that starts with A”. Indeed, this is exactly the nature of

the refinement suggested by Aiello and Hastad [AH-87].

54

2.7 Concluding Remarks

We consider our main result as a very first step towards a classification of languages according
to the knowledge complexity of their interactive proof systems. Indeed there is much to be
known. Below we first mention two questions which do not seem too ambitious. The first
is to try to provide evidence that NP-complete languages cannot be proven within low
(say logarithmic or even constant) knowledge complexity. A possible avenue for proving this
conjecture is to show that languages having logarithmic knowledge complexity are in co-AM,
rather than in BPPV? (recall that NP is unlikely to be in co-AM - see also [BHZ-87]). The
second suggestion is to try to provide indications that there are languages in PSP ACE which
do not have interactive proofs of linear (rather than logarithmic) knowledge complexity. The
reader can easily envision more moderate and more ambitious challenges in this direction.

Another interesting question is whether all levels greater then zero of the knowledge-
complexity hierarchy contain strictly more languages than previous levels, or if some partial
collapse occurs. For example, it is open whether constant or even logarithmic knowledge
complexity classes do not collapse to the zero level.

Regarding our transformation of statistical knowledge complexity into perfect knowledge
complexity (i.e., Theorem 2.17), a few interesting questions arise. Firstly, can the cost of
the transformation be reduced to bellow O(log n) bits of knowledge? A result for the special
case of statistical zero-knowledge will be almost as interesting. Secondly, can one present an
analogous transformation that preserves one-sided error probability of the interactive proof?
(Note that our transformation introduces a negligible error probability into the completeness
condition.) Finally, can one present an analogous transformation that applies to knowledge
complexity with respect to arbitrary verifiers? (Our transformation applies only to knowledge

complexity with respect to the honest verifier.)

35

Chapter 3

The Hardness of Approximations:

Gap Location

3.1 The Gap Location Parameter

In this section, we introduce the definitions concerning hard gaps. We follow the definitions
with an informal discussion. Let us make a distinction between optimization problems that
seek the quality of the best solution and optimization problems that seek the size of the
largest solution (see Subsection 1.2.1). We concentrate on the first class of problems, for
which the gap-location parameter is more interesting. However, it should be noted that a
straightforward modification of the definition below makes it suitable for all optimization
problems. Denote by N([7) the number of sub-conditions posed by the instance I. (To make
this notation suitable for all optimization problems, one may interpret N([) as a polynomial
time computable bound on the optimum value of I.) OPT(I) denotes the number of sub-
conditions which are satisfied by the best solution of I (i.e., the solution that maximizes the

number of satisfied sub-conditions).

Definition 3.1 (THE PARAMETERS OF A HARD GAP). Consider an optimization problem

in which we are looking for the quality of the best solution. Suppose that it is NP-hard to tell
whether OPT(I) < ay- N(I) or OPT(I) > oo - N(I). Then we say that there exists a hard
gap for the problem P, at location ag, with width oy — a;.

56

In this work, we are only concerned with gaps of constant width so we omit the width
parameter in what follows. Throughout the paper, we show that problems have hard gaps.

Let us clearly state the implication of hard gaps on the hardness of approximations.

Remark 3.2 [If a maximization (or a minimization) problem P has a hard gap at any lo-
cation 0 < o < 1, then there exists a constant € > 0 such that, unless P=NP, there is no

polynomial time algorithm that approximates P to within 1 — € (or 1 + €), respectively.

The instances of an optimization problem always satisfy 0 < OPT(I) < N(I), but

sometimes the solution interval is more restricted.

Definition 3.3 (THE SOLUTION INTERVAL). Consider an optimization problem P in which

we seek the quality of the best solution. We say that P has solution interval [(y, 33] if

lim inf}7—e0 O]];(TI()I) = (1 and lim SUP| 7|0 %TI()I) = f3,.

Namely, neglecting a finite number of instances, OPT (1) satisfies ;- N(I) < OPT(I) <
B2 - N(I). Usually, 32 = 1 in natural problems.

Informal discussion. Let us restrict the discussion to natural problems that seek the
quality of the best solution and that are hard to approximate (i.e., have a hard gap somewhere
in their solution interval). Also, let the solution interval of P be [Gp,1]. We would like to
state two beliefs we have concerning the issue of gap-location.

The first belief is that if there exists a hard gap at any location in the interval solution,
then there exists hard gaps at all points in the open interval (8p,1). Note that this implies
a difference between proving a hard gap at location 1 and at any other location. A hard gap
at location 1 implies (assuming this conjecture) a hard gap at all locations in the interval
(Bp, 1], whereas a hard gap at any other location does not imply a hard gap at location 1
(even assuming the conjecture). In fact, there exist optimization problems for which there
are hard gaps at all locations in the open interval (p, 1) but not at location 1. We discuss

such problems in what follows, but first, let us state our conjecture.

Informal Conjecture 1 Lel P be some natural optimization problem in which we are trying
to determine the quality of the best solution. Suppose P has a solution interval [3,1], for
some 0 < 3 < 1. Then a hard gap at any location in (3,1] implies hard gaps at all locations
in the open interval (3,1).

In what follows, we assume the validity of Conjecture 1. Conjecture 2 (below) makes a

distinction between problems which possess hard gaps at all locations in the interval (8p, 1]

57

and problems that have hard gaps only in the open interval (Gp,1). Consider the following
decision problem related to an approximation problem P. Given an instance [, determine
whether OPT(I) = N(I). For example, the decision problem related to MAX-SAT is SAT
(i.e., given a formula ¢, determine whether all its clauses can be satisfied). We partition the
optimization problems into two classes according to the difficulty of their related decision
problems. The first class contains optimization problems for which it is NP-hard to determine
whether an input [has OPT(I) = N(I). This class contains problems as MAX-SAT (proven
hard to approximate by Arora et al. [ALMSS-92]) and MAX k-COLORABILITY (for k > 3)
[PY-91] and Section 3.2). The other class contains problems for which it is easy to decide
whether an input [has OPT(I) = N([I). This class contains problems such as MAX-CUT
(which can be also viewed as MAX 2-COLORABILITY), and MAX-2SAT (both shown hard to
approximate by Papadimitriou & Yannakakis [PY-91]). (While doing this partition, we do
not claim that all decision problems are either NP-hard or easy, but practically all known
interesting problems of this form do fall into one of these two categories, and we are interested
only in these natural problems here.) Our second belief is that any natural problem of the
first class has hard gaps at all locations o € (3p,1] and that any natural problem of the
second class has hard gaps at all locations a € (8p,1). Note that we can never have a hard
gap at location fp, since we know that all instances have OPT(I) > 8p- N(I) and none has
OPT(I) < (1—¢€)Bp- N(I), for any € > 0. Conjecture 2 states that a problem P has a hard
gap at location 1 if and only if the corresponding decision problem is NP-hard. The validity

of the two conjectures implies our second belief.

Informal Conjecture 2 Lel P be some natural optimization problem in which we seek the
quality of the best solution. Suppose that P has a hard gap at some location in its solution
interval. Then P has a hard gap at gap-location 1 if and only if it is NP-hard to determine
whether OPT(I) = N(I) (i.e., the original decision problem is NP-hard).

Conjecture 1 can be proven for many known optimization problems using a padding
argument. In these cases, one may use a padding argument to “transfer” the hard gap to
any location in the open interval (,1). This can be demonstrated on the problem MAX-
SAT (as was done in the introduction) and on MAX k-COLORABILITY in the following way.
To lower the gap, add a large enough clique to the graph and do not connect it to any
original vertex. To move the gap up, add a large enough bipartite graph disconnected from
the original nodes of the graph. Note that the solution interval here is [I — L, 1] since any

Lk

38

graph has a k-coloring for which (1 — %) - |E| edges are consistent. Generally, note that this
padding method cannot be used to transfer a hard gap from a location other than 1 to a
hard gap at location 1.

Let us define a class of optimization languages for which the first conjecture can be
proven. This class contains many natural optimization problems such as MAX-SAT, MAX
3-DIMENSIONAL MATCHING, etc. We define the class to contain problems which possess
a “padding property”, which will enable us to prove the conjecture. We will have two
requirements to make of problems in this class. First, we require the existence of an efficiently
computable operation which joins two instances into one. This operation, which we denote
by o, will have a specific way of combining the optimum values of both instances. (We state
this formally in Definition 3.4 below). The second requirement we make is that the problem
has a “substantial” number of instances whose optimum lies at the endpoints of the solution

interval. Formally, we have the following.

Definition 3.4 The class PADDABLE of optimization problems contains all optimization

problems which satisfy the following two requirements:

1. Padding property: There exists a polynomial time computable padding operation,
denoted by o, which operates on any two instances Iy and Iy of P and has the property
thatfor all [1,[2, N([lolz) = N([l)+N([2) and OPT([lolg) = OPT([1)+OPT(]2)

2. Endpoints property: Let (3, 1] be the interval solution of P. There exists a constant

¢ > 0 such that for any n € N it is possible to find in polynomial time two instances

I, Iy such that n < N(I1),N(lz) <n+c, and O]];(Tl(f)l) =0, OJIG(TIEI)’Z) =1.

For this class the conjecture can be stated as a theorem.

Theorem 3.5 Let P € PADDABLE be some optimization problem in which we are try2ing to
determine the quality of the best solution. Suppose P has a solution interval [3,1] for some
0 < B < 1. Then, a hard gap at any location in (3,1] implies hard gaps at all locations in
the open interval (3,1).

SKETCH OF PROOF. Suppose that P has a hard gap at location ag € (3, 1] and consider any
location oy € (,1). Suppose w.l.o.g. that a3 < ag. We show that if, for any ¢ > 0, there
exists a polynomial time algorithm that distinguishes between the case OPT(I)/N(I) <
ay — ¢ and the case OPT(I)/N(I) > ay, then there exists a polynomial time algorithm that

59

distinguishes (for any instance) between the case OPT(I)/N(I) < ap — € and the case
OPT(I)/N(I) > ap. Thus, the NP-hardness of the gap at location «; is implied by the
NP-hardness of the gap at location ay.

Suppose we have an instance [for which we would like to determine whether OPT'(I)/N(I) <
ag— € or OPT(I)/N(I) > ag. We “pad” this instance with an instance I’ such that the

following two relations hold:

OPT(I) OPT(Iol)
— 7 = Qo YT N U]
N(I) N(Iol)
OPT(I) - . OPT(Iol) < ,
NIy =M N{loly) =M°°
for the constant ¢ = ¢/2. The possibility to find such an instance I’ in polynomial time

follows from the second requirement in the definition of PADDABLE. Now, if for any con-

stant € > 0 there is a polynomial time algorithm which distinguishes between the cases

OPT(Iol')/N(Iol) > a and

OPT(Iol")/N(Iol') < a;—¢, then we get a polynomial time algorithm that distinguishes

between the cases OPT(I)/N(I) > ag and OPT(I)/N(I) < ag — €, and we are done. =
The definition of the class PADDABLE is semantic. We consider it an interesting open

problem to find a syntactic definition of a class of optimization problems for which the first

conjecture can be proven.

3.2 A Hard Gap for k-COLORABILITY at Gap-Location
1

Consider the problem of finding a k-coloring of a given graph G such that as many edges as

possible are adjacent to two vertices of different colors.

Definition 3.6 (A CONSISTENT EDGE). Consider a graph G(V, E) and a coloring of its
vertices o : V — {1,2,..,k}. We say that an edge e = (v;,v;) is consistent regarding o if

o(vi) # o(v;).

Definition 3.7 (THE PROBLEM MAX k-COLORABILITY).
Input: A graph G(V, E).
Problem: Find the maximum number of consistent edges in G, over all k-colorings of the

vertices in (.

60

For k > 3, it is NP-hard to tell whether a graph is k-colorable or not. We show that for any
k > 3, there exists a constant €, > 0 such that unless P=NP, there is no polynomial time
algorithm which can determine whether an input graph G(V, E) is k-colorable, or whether
any k-coloring of (G has at most (1 — ¢;)| F| consistent edges.

Theorem 3.8 For any k > 3, MAX k-COLORABILITY possesses a hard gap at location 1.

Proof: We use a reduction from MAX 3SAT-B to MAX 3-COLORABILITY. Next, we can use
techniques from [PY-91] to further reduce MAX 3-COLORABILITY to MAX k-COLORABILITY
for any k > 3. In the reduction, we use a bipartite expander, which helps us to preserve the
hard gap. The use of expanders in preserving gaps was first noticed in [PY-91]. A bipartite
graph on 2 xn nodes is called a bipartite expander with degree d and expansion factor 1+~ if
every subset S of at most n/2 nodes of one side of the graph is adjacent to at least (1++)[5|
nodes on the other side. Bipartite expanders on 2 x n nodes can be efficiently constructed
for any n € IN [Mar-73, GG-81, AJ-87]. Let us first show the reduction, and then show that
if the instance ¢ of MAX 3SAT-B is satisfiable, then the output of the reduction, G¥(V, E),
is 3-colorable (Lemma 3.9 below), while if any assignment to ¢ satisfies at most a fraction
1 — ¢ of the clauses in ¢, then any 3-coloring of G/(V, E) induces at least esgm > c|E¥|

inconsistent edges for some constant ¢ > 0 (Lemma 3.10 below).

The reduction. We are given an instance of MAX 3SAT-B, i.e., a 3-CNF formula ¢ with
n variables and m clauses, such that each variable appears at most B times in the formula
. We use an extension of the standard reduction from 3SAT to 3-COLORABILITY [St-73,
GJS-76]. Let us shortly describe the original reduction, which uses a gadget with nine
vertices and 10 edges (Figure 3.2).

We call the top vertex g, the gadget head, and the three bottom vertices g1, g2, g5 the
gadget legs. The other vertices in the gadget are called the gadget body. The useful property
of this gadget (which will be denoted “P”) is that if the three legs have the same color, then
any consistent 3-coloring of the gadget assigns the gadget head the same color too, while if
the three legs do not have the same color, then for any color assigned to the head, we can
complete the coloring of the body consistently.

The reduction outputs 2n vertices (the literals vertices) labeled 1,71, 22,
Toy.v.y Ty, Ty, two vertices named GROUND and B, and m gadgets, one for each clause.

The edges of the output graph connect z; to z;, ; to GROUND, T; to GROUND for 1 <11 < n,

61

gs

i

g4

\ o / — 92
N

g1

Figure 3.1: The gadget in the reduction from 3-SAT to MAX-3-COLORABILITY

all the gadget heads to B, and B to GROUND. Last, it identifies the three legs of the gadget
of C; with the vertices that correspond to the literals of (.

Our extension proceeds as follows. We duplicate the vertex B m times to get By, By, ..., B,
which are all connected to GROUND, and we connect them to the m gadget heads using a
bipartite expander. Namely, one side of the expander (which we call the upper side) contains
By, By, ..., By, and the other (the lower side) contains the gadget heads. The resulting
graph is illustrated in Figure 3.2.

Note that, for simplicity, we have drawn the vertex GROUND twice in the figure. Note

also that the number of edges in the output graph is O(m).

Lemma 3.9 If ¢ is satisfiable, then G¥ is 3-colorable.

Proof: We use the colors T,F.G. Color the vertex GROUND with the color G. Color each
literal-vertex with T if the corresponding literal is assigned TRUE by the satisfying assignment
7 of o, or with F otherwise. Color By, By, ..., B,, with F and the gadget heads with T. It
remains to color the body vertices of the clauses-gadgets. Recall that each gadget head is
colored T and that since the truth assignment 7 satisfies ¢, then at least one gadget leg must
be colored T (This is the literal-vertex that corresponds to the literal that is assigned TRUE
by 7). By property P of the gadget, we get that it is possible to complete the coloring of all
the gadget-bodies consistently.]

Lemma 3.10 [f there exists a 3-coloring of G¥ which induces dm inconsistent edges, then

there is an assignment to @ that satisfies at least (1 — %%) m clauses in @, where 14~ is the

62

GROUND

1 Ln

GROUND

Figure 3.2: The reduction from 3-SAT to MAX-3-COLORABILITY

63

expansion rate of the polynomial time constructible expander that is used in the construction

of G¥.

Proof: The lemma is trivially valid for § > 1/4, since for any formula there exists an
assignment that satisfies at least half of its clauses. Therefore, we restrict ourselves to
d < 1/4. Given a 3-coloring of ¥, we first select names for the 3 colors and define an
assignment to the variables of ¢. Denote the color of the vertex GROUND by . The
majority color in the heads of all gadgets is denoted T (if there are two candidate colors
appearing the same number of times, select one of them arbitrarily). Note that the color T
is different from G since all the m gadget-heads are connected to the GROUND vertex and
we have less than m/4 inconsistent edges. The third color is denoted F. Now, to fix the
assignment for the variable z;, 1 < ¢ < n, we consider the vertex labeled x;. If it is colored
T, we assign the value TRUE to x;. Otherwise, the assignment for z; is FALSE. We claim
that this assignment satisfies at least (1 — %%) m clauses.

By the property of the gadget, there is no consistent 3-coloring of the vertices of the
gadget such that the head of the gadget is colored T and its three bottom vertices (the three
literal vertices) are colored F. Therefore, if the gadget of the clause C;, 1 < 7 < m, has all
its edges consistent and its head colored T, then one of its literals must be colored T or G.
In other words, if a clause C; = ({;, VI, VI,), 1 < 7 < m, is not satisfied by our assignment,
i.e., all its literals are assigned FALSE by our assignment, then one of the following conditions

must be met:
1. One of the edges in the gadget of C; is inconsistent.
2. The gadget head is not colored T.

3. One of the literals in the clause is assigned FALSE by our assignment, and its vertex is

not colored F.

We show that these three conditions cannot be met “too many times” in the graph G¥
by showing that fulfillment of these conditions implies inconsistent edges. Denote by K, K>
and A3 the number of times that conditions 1, 2, and 3 are met in the graph G¥. Clearly,
the number of clauses that are not satisfied by our assignment is at most K7 + Ky + K3. We

claim that

. . L.
Ky + %[xz + E[xg < om. (3.1)

64

Assuming this (the proof follows) we get that

2B
[(1 + [(2 + [(3 S —(S m
v

and therefore, the number of clauses that are not satisfied by our assignment is at most

%%m, as needed.

It remains to prove Equation (3.1), i.e., to show that there are at least Ky + 2K, + %[(3
inconsistent edges in G¥. We partition the edges in the graph into three disjoint subsets, and
give a lower bound on the number of inconsistent edges in each subset (given Ky, K3, and
K3). Since the subsets are disjoint, we can sum these lower bounds into a single lower bound
on the number of inconsistent edges in the graph. The first subset consists of the edges
inside the gadgets. By the definition of K, we have at least K inconsistent edges in this
subset. Next, we consider all the edges that connect the literal-vertices to each other and to
the vertex GROUND. Recall that each literal appears in at most B clauses and therefore, if
we have K3 clauses connected to literals having the property of condition 3, then there are
at least £ K3 literals that are assigned FALSE by our assignment and whose vertices are not
colored F. We would like to show that for each such literal, there is a unique inconsistent
edge. If the vertex [; or the vertex [; is colored G, then there exists an inconsistent edge
between that vertex and the vertex GROUND and we are done for that literal. So, assume
this is not the case. Since the vertex [; is not colored F and not colored G, then it is colored
T, and since we assigned FALSE to the literal [;, the vertex [; must be colored T also and we
get an inconsistent edge (/;,;). Note that for each vertex that satisfies the above condition
we have a different inconsistent edge. Therefore, we have at least %[(3 inconsistent edges in
the second subset.

The remaining edges consist of the edges of the expander and the edges that connect
the expander to the vertex GROUND. We claim that if K, vertices of the lower side of the
expander are not colored T, then at least K3 edges in this set are inconsistent. Denote
by {1, I3, and [3 the number of vertices in the lower side of the expander that are colored
T, F, and G correspondingly. Recall that Ky = [y + I3 is the number of expander lower
vertices (which are gadget-head vertices) that are not colored T. We show that the number

of inconsistent edges in this last set of edges is at least
Y-
max(lg,’ylg) Z 5]&3.

Clearly, there are at least [3 inconsistent edges in this set because there are [5 different edges

that connect the vertex GROUND, which is colored G, to gadget-head vertices with the same

65

color. On the other hand, consider the [; expander lower vertices that are colored F. By
definition of the color names, [5 is smaller than half the number of the vertices in the lower
side of the expander. Using the expansion property of the expander, these nodes have a set
of (1 + 7)ls neighbors in the upper side of the expander. Denote this set of neighbors by S.
We cannot use the expansion property again on the set S since we are not sure that it is
small enough. However, we know that S is adjacent to at least |S| vertices on the lower side.
Furthermore, we can associate with each vertex in S a unique neighbor on the lower side.
(This holds for all known expander constructions. Yet, this property can be simply achieved
(without foiling the expander) by adding m edges that connect each vertex ¢ on one side
to vertex ¢ on the other side.) Now, only [y of the vertices in S can have their associated
neighbors in the lower side colored F. The other vl3 members of .S have their /5 twin vertices
on the lower side colored G or T'. Putting it all together, we have at least vl vertices in S
which, on one hand, are connected to a vertex colored F' (by the definition of the set 5), and
on the other hand, are connected to unique lower vertices that are not colored F. Consider
such a vertex in S. If it is colored F. then we have a unique inconsistent edge between this
vertex and an F-colored lower vertex. If it is colored G, then we get a unique inconsistent
edge between this vertex and the vertex GROUND. The last possibility is that this vertex is
colored T. If its twin vertex is also colored T, then we have an inconsistent edge between
them. Otherwise, the unique neighbor is colored G (since we know that it is not F), and
we also end up with a unique inconsistent edge between the lower neighbor and the vertex

GROUND. This completes the proof of Lemma 3.10, and of Theorem 3.8. m

3.3 The Hardness of MAX NAE 3SAT and MAX 3DM

Two more problems were shown to have a hard gap at locations less than 1 although it is
NP-hard to decide if an instance has its best solution at location 1. These are MAX NOT-
ALL-EQUAL 3SAT [PY-91] and MAX 3-DIMENSIONAL MATCHING [Kan-91]. In this section,
we show that these problems have a hard gap at the gap location 1. Let us begin with
defining the problems.

Definition 3.11 (THE PROBLEM MAX NOT-ALL-EQUAL 3SAT).
Input: A 3-CNF formula .
Problem: Find the maximum number of clauses that contain at least one true literal and at

least one false literal, over all truth assignments to the variables of .

66

Definition 3.12 (THE PROBLEM MAX 3-DIMENSIONAL MATCHING-B).
Input: A set M CW xY x Z, where W, Y, and Z are disjoint finite sets and each element
in WUY U Z appears in the triplets of M at most B times.

Problem: Find the mazimum number of elements in W UY U Z which appear exactly once

in the triplets of M', over all M'" C M.

Theorem 3.13 The problem MAX NOT-ALL-EQUAL 3SAT possesses a hard gap at location
1.

Proof: We first reduce 3SAT to NOT-ALL-EQUAL 4SAT, and then reduce NOT-ALL-EQUAL
4SAT to NOT-ALL-EQUAL 3SAT. In the first reduction, we simply add a new variable to all
clauses. Note that for the NOT-ALL-EQUAL problem, the number of “satisfied” clauses does
not change if we use an assignment o or its complement & (the complement of an assignment
is an assignment that gives the opposite value to each of the variables in the formula).
Therefore, we can fix the new variable to always be assigned FALSE without changing the
solution to this optimization problem, and the maximum number of clauses that can be
satisfied in the input formula (to the reduction) is exactly the number of clauses that can
have both a false and a TRUE literal simultaneously in the output formula. In the second
reduction, we treat each clause C; = (I;, VI, VI;, V ;) that contains four literals by adding
a new variable y; and replacing C; with the two clauses: (I;, VI, Vy;) A (g7 V 1, VI,). Tt
is easy to verify that there exists an assignment to the variables of the original formula, in
Ly Lyl

which at least one of the literals [; is TRUE and at least one is false iff there exists

1o bgze bias b
an assignment to the variables of the new formula such that both sets of literals {l;,,1;,,y;}
and {7j,1;,,1;,} contain at least one TRUE literal and at least one false literal. Hence, the
hard gap at location 1 is preserved. Note that the width of the new hard gap is at least
half the width of the original gap. This is because the number of clauses is at most twice
the number of clauses of the original formula, and the number of clauses that can not be

satisfied does not decrease.

Theorem 3.14 For any B > 3, MAX 3-DIMENSIONAL MATCHING-B possesses a hard gap

at location 1.

Proof: A slight modification of the original reduction from SAT to 3-DIMENSIONAL MATCH-

ING [Kar-72] works as a gap preserving reduction from MAX-SAT-B to MAX 3-DIMENSIONAL

67

MATCHING-3. We shortly describe the reduction, following the presentation of Garey &
Johnson (1979). [GJ-79]. Given a formula ¢ with n variables and m clauses in which each
variable appears at most B times, we construct three disjoint sets W% Y¥ 7% and a set of
triplets M¥ C W¥ xY¥ x Z¢. The triplets in M¥ consist of n truth-setting components (one
for each variable), m satisfaction-testing components (one for each clause), and a “garbage
collection” mechanism.

Let z; be a variable that appears d; times in the formula. The truth-setting component of
z; involves “internal” elements a;[k] € W¥¢, b;[k] € Y and “external” elements z,[k], T;[k] €
Z%¢ for 1 <k <d;. We call the a;[k]’s and the b;[k]’s internal because they appear only inside
their truth-setting component. The external x,;[k]’s and T;[k]’s appear in their truth-setting
components as well as in other components (which we describe later). The triplets making

up the truth-setting component can be divided into two sets:

T = {(milk], ailk], bk]) : 1 <k < di},

K3

K3

The property of this component is that any matching that covers all internal elements
a;[k],b[k], 1 < k < d;, exactly once contains either exactly all triplets in 7! or exactly
all triplets in 77. Thus, we get that either all elements z;[k] are covered and all elements
T;[k] are not (we associate this with assigning FALSE to x;), or all elements 7;[k] are covered
and all elements x;[k] are not (this is associated with assigning TRUE to x;). Note that the
number of elements produced so far is O(n) since each variable appears at most B times in
@. (We remark that the original reduction produced O(nm) elements, having m external
elements for each variable).

The satisfaction-testing component that stands for the clause C; (1 < 7 < m) contains
two internal elements s1[j] € W% and s3[j] € V¥, and at most three external elements from
the truth-setting components that correspond to the literals in C;. If C; contains the k-th
appearance of the variable ; then we add the triplet (z;[k], s1[j], s2[j]) if 2; appears positively
in C; or the triplet (%;[k], s1[j], s2[y]) if @; appears negated in C;. These components add
2m elements to the output. So far, each internal element appears in at most three triplets
of M¥ and each external element appears at most twice.

Note that a matching that covers all internal elements exactly once and which does not
use an external element more than once corresponds to a truth assignment that satisfies .

Given an assignment 7 that satisfies ¢, we select the triplets of T! to be in the matching

68

if ; is assigned TRUE by 7 or the triplets of 7/ otherwise. This leaves all elements ;K]
(1 <k < d;) uncovered if x; is assigned TRUE by 7 or all elements T;[k] uncovered otherwise.
For each clause C;, we select a literal that is assigned TRUE (such a literal must exist since
T satisfies). The element that corresponds to the appearance of this literal in C; is not
covered, since its literal is assigned TRUE. Thus, we may choose the triplet that contains
this element to cover si[j] and s3[j].

In order to cover the remaining uncovered external elements, we use a garbage collection
mechanism. The original mechanism is too big (it contains O(nm) elements) and does
not meet the demand that each element appears in at most three triplets. We present an
appropriate garbage collecting mechanism later.

Consider the other direction, in which we are given a good matching and we would like
to build a satisfying assignment to . In order to show a hard gap in MAX 3-DIMENSIONAL
MATCHING-B, we shall show that if there are “only few” violations in the given matching,
then there is a truth assignment that satisfies “almost all” clauses in . More formally, if
there exists a matching M’ for which the number of internal elements which appear more
than once or none at all plus the number of external elements that appear more then once
is at most dm, then there exists an assignment that satisfies more than (1 — dB)m clauses.

To fix an assignment for x;, consider the truth-setting component of x;. We assign TRUE
to x; if the M’ contains a triplet in T?. Otherwise, x; is assigned FALSE. Note that if this

truth assignment does not satisfy a clause C;, then one of the following conditions must be

met.
1. The internal elements s1[j] and s3[j] do not appear in the matching M’.

2. The elements s1[j] and s,[j] appear in a triplet that contains a literal which was

assigned FALSE by our assignment.

Suppose condition (1) is met K times and condition (2) is met Ky times in M’. The number
of clauses in ¢ that are not satisfied by our assignment is at most K; + K,. To conclude,
we show that the number of violations in the matching M’ is at least 2K + %Kz. Clearly,
each time condition (1) is met, we have two unique internal elements that are not covered
by M'. If condition (2) is met K, times in M’, then there are at least %[(2 literals that
are assigned FALSE and that have an associated external element covered by a satisfaction-
testing component. We claim that the truth-setting component of this literal has either an

internal element that does not appear uniquely in the matching M’, or an external element

69

that appears more than once. Suppose all internal elements appear exactly once. By the
property of the truth-setting component, we know that all external elements associated
with the literal that was assigned FALSE by our assignment are covered by the truth-setting
component. Thus, the external element appears in M’ at least twice.

It remains to show how to do garbage collection with O(m) elements such that no element
appears in more than three triplets. Note that the existence of a hard gap is already proven,
but we must show a garbage collection mechanism in order to place the hard gap at location
1. An elegant way to solve both problems of the original garbage collection mechanism is
due to Garey and Johnson (private communications). Create three independent copies of the
construction described, with the roles of W%, Y¥ and Z¥ cyclically permuted between the
three copies. Now, for each external element x;[k] and T;[k] (currently included in just two
triplets), add a single triplet including the three copies (one from each copy of the overall
construction). This method shrinks the width of the gap by a constant factor (at location

1), and therefore is sufficient to prove the theorem.

3.4 Some More Hard Problems

In the introduction, we discussed the difference between optimization problems in which we
seek the value of the largest solution and optimization problems in which we seek the quality
of the best solution. In this section, we consider three optimization problems that seek the
quality of the best solution, and which were considered before only in the largest solution
version. We believe that these new optimization problems are interesting and so we give their
definitions and investigate their hardness properties. Specifically, we treat approximation
versions of VERTEX COVER, SET SPLITTING, and EDGE COLORING (CHROMATIC INDEX).

Let us start with the definitions. We say that an edge (v;,v;) in a graph G(V, E) is
covered by a subset V/ CV ifv; € V' or v; € V.

Definition 3.15 (THE PROBLEM MAX VERTEX COVER-B).
Input: A graph G(V, E) with degree at most B and an integer K.
Problem: Find the mazimum number of edges in G that V' covers, over all subsets V! CV

of cardinality K.

Note the difference between this problem and the optimization problem MIN VERTEX COVER

treated in [PY-91]. Their problem was to minimize the size of the vertex cover (which covers

70

all edges). In MAX VERTEX COVER, we are given the size of the cover, K, in the input, and

we are trying to maximize the number of edges that are covered.

Definition 3.16 (THE PROBLEM MAX SET SPLITTING).
Input: A collection C' of subsets of a finite set S.
Problem: Find the mazimum number of subsets in C that are not entirely contained in either

Sy or Sy, over all partitions of S into two subsets S; and Ss.

We say that a vertex v € V' is consistent regarding an edge-coloring of a graph G(V, E)

if no two edges of the same color are adjacent to v.

Definition 3.17 (THE PROBLEM MAX k-EDGE COLORABILITY).
Input: A graph G(V, E) of degree k.
Problem: Find the mazimum number of consistent vertices, over all edge-colorings of G with

k colors.

Theorem 3.18 The following problems possess a hard gap at location 1:

1. MAX VERTEX COVER-B
2. MAX k-EDGE COLORABILITY (CHROMATIC INDEX)
3. MAX SET SPLITTING

PROOF:

1. We use the identity reduction from MIN VERTEX COVER-B (a problem that was shown
hard in [PY-91]). If there is a vertex cover of (¢ of cardinality K that covers at least
(1 —¢)|F| edges in (7, then there is a cover of all edges with at most K + ¢| F| vertices.
Note that |E| < |V]- B/2, and recall that the hard gap for MIN VERTEX COVER-B was
shown hard for K = O(|V]).

2. Use the original reduction of MAX-SAT to k-EDGE COLORABILITY [Hoy-81, LG-83]) only
let the domain of the reduction be MAX 3SAT-B (shown hard in [PY-91]). Clearly, if
there is a satisfying assignment to the input formula, then there is an edge-coloring of
the output graph with k colors such that all the vertices are consistent. It is left to show
that if there is a k-coloring of the edges with a small number of inconsistent vertices,
then there is an assignment that satisfies almost all clauses in the input formula. This

can be done using an accountancy similar to the one of Lemma 3.10.

71

3. The trivial reduction from MAX NOT-ALL-EQUAL 3SAT works. ®

Remark 3.19 The approrximation of MAX SET SPLITTING remains hard even if all subsets

in C are of cardinality less than or equal to 3 (see the proof).

We follow by defining the problem MAX-QER.

Definition 3.20 (THE PROBLEM MAX-QER: MAX QUADRATIC EQUATIONS OVER THE
RATIONALS).

Input: A set of quadratic equations over the rational field in the variables xy, ..., x,.
Problem: Find the maximum number of equations that are satisfied, over all assignments of

rational numbers to xy,...,x,.

Theorem 3.21 MAX-QER has a hard gap at location 1.

Proof: Reduce MAX-3SAT-B to MAX-QER in the following way. For each variable =, add

the equation z?

= 2. For each clause C; = (@ Vy V z) add a new variable ¢; and produce
two equations. First, write ¢; = xy, and then use it to reduce the degree of the equation
(1 —2)(1 —y)(1 —2z) =0 to 2, by substituting each appearance of xy with ¢;.

Note that the same proof is valid over the field of real numbers as well.

72

Bibliography

[ABV-95]

[AH-87]

[AJ-87]

W. AIELLO, M. BELLARE, AND R. VENEKATESAN . Knowledge on the Aver-
age — Perfect, Statistical and Logarithmic. Proceedings of the 27rd Annual ACM
Symposium on the Theory of Computing, ACM (1995).

W. AIELLO AND J. HASTAD. Perfect Zero-Knowledge can be Recognized in
Two Rounds. Proceedings of the 28th Annual IEEFE Symposium on the Founda-
tions of Computer Science, IEEE (1987).

M. Ajtai. Recursive Construction for 3-Regular Expanders. In Proc. 28th IEFE
Symp. on Foundations of Computer Science, pages 295-304, 1987.

[ADLRY-92] N. AronN, R.A. Duke, H. LEFMANN, V. RoDL, AND R. YUSTER, The

Algorithmic Aspects of the Regularity Lemma. In Proc. 33th Ann. Symp. Found.
Comput. Sci., 1992, 473-482.

[ALMSS-92] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, “Proof Verification and

[AS-92]

[Bab-85]

[BFL-90]

[BBFG-91]

Intractability of Approximation Problems.” 33st FOCS, 1992.

S. Arora and S. Safra. Probabilistic Checking of Proofs: A New Characterization
of NP. In Proc. 33rd IEEE Symp. on Foundations of Computer Science, 1992.

L. Babai. Trading group theory for randomness. In Proc. 17th ACM Symp. on
Theory of Computing, pages 421-420, 1985.

L. Babai, L. Fortnow, and C. Lund, “Non-Deterministic Exponential Time Has

Two-Prover Interactive Protocols,” 31st FOCS, 1990, pp. 16-25.

R. BEIGEL, M. BELLARE, J. FEIGENBAUM AND S. GOLDWASSER. Languages
that are Easier than their Proofs. Proceedings of the 32nd Annual IEFE Sym-
posium on the Foundations of Computer Science, IEEE (1991).

73

[B-92]

[BFK-95]

[BGLR-93]

[BMO-90]

[BP-92a]

[BP-92b]

[B+-88]

[BR-92]

M. BELLARE. Interactive Proofs and Approximations. Research Report 17969
(#78973), IBM research Division, T.J. Watson Research Center, Yorktown
Heights, NY 10598. 1992.

M. BELLARE, U. FEIGE, J. KILIAN. “ On the Role of Shared Randomness
in Two Proof Systems”, In Proceedings of the Third Israel Symposium on the
Theory of Computing and Systems, pp. 199-208, 1995.

M. BELLARE, S. GOLDWASSER, C. LUND, AND K. RUSSEL. “Efficient Prob-

abilistically Checkable Proofs: Applications to Approximation”, Proceedings of
the 25rd Annual ACM Symposium on the Theory of Computing, ACM (1993).

M. BELLARE, S. MicALl AND R. OSTROVSKY. The (True) Complexity of
Statistical Zero-Knowledge. Proceedings of the 22nd Annual ACM Symposium
on the Theory of Computing, ACM (1990).

M. BELLARE AND E. PETRANK. Making Zero-Knowledge Provers Efficient.
Proceedings of the 24rd Annual ACM Symposium on the Theory of Computing,
ACM (1992).

M. BELLARE AND E. PETRANK. Quadratic Equations Over the Rationals.

private communication, 1992.

M. BEN-OR, S. GOLDWASSER, O. GOLDREICH, J. HASTAD, J. KILIAN,
S. MicaLl AND P. RoOGAWAY. Everything Provable is Provable in Zero-
Knowledge. Advances in Cryptology — Proceedings of CRYPTO 88, Lecture
Notes in Computer Science 403, Springer-Verlag (1989). S. Goldwasser, ed.

M. Bellare and P. Rogaway. The Complexity of Approximating a Nonlinear
Program. Research Report 17831 (#78493) IBM Research Division, T.J. Watson
Research Center, Yorktown Heights, NY 10598. 1992.

[BGKW-88] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-prover interactive

[Ber-73]
[BMT-T8]

proofs: How to remove intractability. In Proc. 20th ACM Symp. on Theory of
Computing, pages 113-131, 1988.

C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.

E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg. On the Inherent
Intractability of Certain Coding Problems. [IEEFE Trans. Information Theory,
1978.

74

[BP-89)]

[BJLTY-90]

[BK-89]

[BHZ-87]

[CW-79]

[Coo-T1]

[DJPSY-92]

[DL-81]

[Fe-87]

[FGLSS-91]

[F-89]

[FRS-88]

M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2.
Information Processing Letters, vol. 32, pages 171-176, 1989.

A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear Approximation
of Shortest Superstrings. Proc. 31st Symp. on Foundations of Comp. Sc., pages
554-562, 1990.

M. BLuMm AND S. KANNAN. Designing Programs that Check their Work. Pro-
ceedings of the 21st Annual ACM Sympostum on the Theory of Computing, ACM
(1989).

R. BOPPANA, J. HASTAD AND S. ZACHOS. Does co-N P Have Short Interactive
Proofs”. Information Processing Letters, Vol 25 (1987), No. 2, pp 127-132.

L. CARTER AND M. WEGMAN. Universal Classes of Hash Functions. J. Com-
puter and System Sciences 18, 143-154 (1979).

S. A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd ACM
Symp. on Theory of Computing, pages 151-158, 1971.

E. Dahlhaus, D. S. Johnson, C. H. Papaditriou, P. D. Seymour and M. Yan-
nakakis. The complexity of multiway cuts. In Proc. 2/th ACM Symp. on Theory
of Computing, pages 241-251, 1992.

W. Fernandez de la Vega and G.S. Lueker. Bin Packing can be solved within
1 + € in Linear Time. Combinatorica, vol. 1, pages 349-355, 1981.

U. FEIGE. Interactive Proofs. M.Sc Thesis, Weizmann Institute of Science. Au-

gust 1987.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating
clique is almost NP-complete. In Proc. 32nd IEEE Symp. on Foundations of
Computer Science, pages 2—12, 1991.

L. FortNOoW. The Complexity of Perfect Zero-Knowledge. Advances in Com-
puting Research (ed. S. Micali) Vol. 18 (1989).

L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interactive
protocols. In Proc. 3rd IEEFE Symp. on Structure in Complexity Theory, pages
156-161, 1988.

75

[GG-81]

[GJ-76]

[GJ-79]

[GJS-76]

[GK-90]

[GMS-87]

[GMW-86]

[GMW-87]

[GO-89]

[GOP-94]

[GP-91]

[GMR-85]

O. Gabber and Z. Galil. Explicit Construction of linear sized superconcentrators.

J. of Comp. and Seci., vol 22, pages 407-420, 1981.

M.R. Garey and D.S. Johnson. The complexity of near-optimal graph coloring.
J. of the ACM, vol 23, pages 43-49, 1976.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

M.R. Garey, D.S. Johnson and L.J. Stockmeyer Some Simplified NP-Complete
Graph Problems. Theor. Comput. Sci., Vol 1, pages 237-267, 1976.

O. GOLDREICH AND H. KRAWCZYK. On the Composition of Zero-Knowledge
Proof Systems. Proceedings of ICALP 90.

O. GOLDREICH, Y. MANSOUR AND M. SIPSER. Interactive Proof Systems:

Provers that never Fail and Random Selection. Proceedings of the 25th Annual
IEEE Symposium on the Foundations of Computer Science, IEEE (1987).

O. GOLDREICH, S. MICALI, AND A. WIGDERSON, “Proofs that Yield Nothing

But their Validity and a Methodology of Cryptographic Protocol Design”, Proc.
27th FOCS 86, See also Jour. of ACM. Vol 38, No 1, July 1991, pp. 691-729.

O. GOLDREICH, S. MICALI, AND A. WIGDERSON, “How to Play any Mental

Game or a Completeness Theorems for Protocols of Honest Majority”, STOCST.

O. GOLDREICH AND Y. OREN. Definitions and Properties of Zero-Knowledge
Proof Systems. Technical Report #570, Technion (1989).

O. GoLDREICH, R. OSTROVSKY, AND E. PETRANK. Computational Com-
plexity and Knowledge Complexity. Proceedings of the 26rd Annual ACM Sym-
posium on the Theory of Computing, ACM (1994).

O. GOLDREICH AND E. PETRANK. Quantifying Knowledge Complexity. Pro-
ceedings of the 32nd Annual IEEE Symposium on the Foundations of Computer

Science, IEEE (1991). Technical Report 683, Computer Science Dept., Technion
- Israel Institue of Technology.

S. GOLDWASSER, S. MICALI, AND C. RACKOFF. The Knowledge Complexity
of Interactive Proofs. Proceedings of the 17th Annual ACM Symposium on the
Theory of Computing, ACM (1985).

76

[GMR-89]

[GS-89]

[11-94]

[HPS-93]

[Hoy-81]

[ILe-90]

[ILL-89]

[ILu-90]

[1Y-87]

[JVV-86]

[Kan-91]

[Kar-72]

S. GOLDWASSER, S. MICALI, AND C. RACKOFF. The Knowledge Complexity
of Interactive Proofs. STAM J. Comput. 18 (1), 186-208 (February 1989).

S. GOLDWASSER, AND M. SIPSER, Private Coins vs. Public Coins in Interactive
Proof Systems, Advances in Computing Research (ed. S. Micali), 1989, Vol. 5,
pp- 73-90.

J. HASTAD. Perfect Zero-Knowledge in AM N co-AM. Unpublished 2-page
manuscript explaining the underlying ideas behind [AH-87]. 1994.

J. HASTAD, S. PHILLIPS, AND S. SAFRA, A well Characterized Approximation

Problem. In Proceedings of the 2nd Israel Symposium on Theory of Computing
and Systems, 1993, 261-265.

[. Hoyler. The NP-Competeness of Edge Coloring. SIAM J. of Computation,
vol. 10, pages 718-720, 1981.

R. IMPAGLIAZZO AND L.A. LEVIN, No Better Ways to Generate Hard NP
Instances than Picking Uniformly at Random, $1st FOCS, pp. 812-821, 1990.

R. ImMpPAGLIAZZO, L. LEVIN AND M. LUBY. Pseudo-Random Generation from
One-Way Functions. Proceedings of the 21st Annual ACM Symposium on the
Theory of Computing, ACM (1989).

R. IMPAGLIAZZO AND M. LUBY, One-Way Functions are Essential for Com-
plexity Based Cryptography, 30th FOCS, pp. 230-235, 1990.

R. IMPAGLIAZZO AND M. YUNG. Direct Minimum-Knowledge computations.
Advances in Cryptology — Proceedings of CRYPTO 87, Lecture Notes in Com-
puter Science 293, Springer-Verlag (1987).

M. JERRUM, L. VALIANT AND V. VAZIRANI. Random Generation of Combi-

natorial Structures from a Uniform Distribution. Theoretical Computer Science

43, 169-188 (1936).

V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete.
Information Processing Letters, vol. 37, pages 27-35, 1991.

R.M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller
and James W. Thatcher, editors, Complexity of Computer Computations, pages
85-103. Plenum Press, 1972.

77

[KMR-92]

[KK-82]

[LG-83]

[Lev-73]

[LFKN-90]

[Ost-91]

[OVY-91]

[OW-93]

[Lov-73]

[LY-92]

[MS-81]

D. Karger, R. Motwani and G. D. 5. Ramkumar. On Approximating the Longest
Path in a Graph. Manuscript, 1992.

N. Karmakar and R.M. Karp. An Efficient Approximation Scheme For The One-
Dimensional Bin Packing Problem. In Proc. 23rd IEEFE Symp. on Foundations
of Computer Science, pages 312-320, 1982.

D. Leven and 7. Galil. NP-completness of finding the chromatic index of regular
graphs. J. of Algorithms 4, pages 35-44, 1983.

L. Levin. Universal'nyie perebornyie zadachi (Universal search problems, in
Russian), In Problemy Peredachi Informatsii, vol. 9, pages 265-266, 1973. A
corrected English translation appears in an appendix to Trakhtenbrot [Tra-84]

C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive
proof systems. In Proc. 22nd ACM Symp. on Theory of Computing, pages 2—10,
1990.

R. OSTROVSKY. One-Way Functions, Hard on Average Problems, and Statis-

tical Zero-Knowledge Proofs. Structures 1991.

R. OSTROVSKY, R. VENKATESAN AND M. YUNG. Fair Games Against an
All-Powerful Adversary. AMS DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. Vol 13. (Jin-Yi Cai ed.) pp. 155-169.

R. OSTROVSKY AND A. WIGDERSON. One-Way Functions are Essential For

Non-Trivial Zero-Knowledge, Proc. 2nd Israeli Symp. on Theory of Computing
and Systems, 1993.

L. Lovasz. Coverings and Colorings of Hypergraphs. Proc. J-th Southern Con-
ference on Combinatorics, Graph Theory, and Computing, Utilitas Mathematica
Publishing, Winnipeg 3-12, 1973.

C. Lund and M. Yannakakis. On the Hardness of Approximating Minimization
Problems. Proceedings of the 25rd Annual ACM Symposium on the Theory of
Computing, ACM (1993).

F. MacWilliams and N. Sloane. The Theory of Error-Correcting Codes. North-
Holland, 1981.

78

[Mar-73]

[Mot-92]

[Or-87]

[Os-91]

[OVY-90]

[PY-91]

[PY-92]

[P-92]

[SG-76]

[Sha-90]

[Si-83]

[St-73]

G.A. Margulis. Explicit Constructions of Concentrators. Prob. Per. Infor. vol.
9, pages 71-80, 1973. (English translation in Problems of Infor. Trans., pages
325-332, 1975).

R. Motwani. Lecture Notes on Approximation Algorithms. Technical Report,
Dept. of Computer Science, Stanford University (1992).

Y. OREN. On The Cunning Power of Cheating Verifiers: Some Observations
About Zero Knowledge Proofs. Proceedings of the 25th Annual IEEE Symposium
on the Foundations of Computer Science, IEEE (1987).

R. OSTROVSKY. One-Way Functions, Hard on Average Problems, and Statis-

tical Zero-Knowledge Proofs. Structures 1991.

R. OSTROVSKY, R. VENKATESAN AND M. YUNG. On the Complexity of

Asymmetric Games. Manuscript (1990).

C. H. Papadimitriou and M. Yannakakis. Optimization, Approximation, and
Complexity Classes. Journal of Computer and System Sciences, vol. 43, pages
425440, 1991.

C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with

distances one and two, Mathematics of Operations Research, to appear.

E. Petrank. The Hardness of Approximation : Gap Location. Computational
Complexity, Vol. 4, 1994. pp. 133-157.

A preliminary version of this paper appeared in the Second IEFEE Israel Symp.
on Theory of Computation and Systems, June 1993, pp. 275-284.

S. Sahni and T. Gonzalez. P-complete approximation problems. JACM, vol. 23,
pages 555-565, 1976.

A. Shamir. IP=PSPACE. In Proc. 22nd ACM Symp. on Theory of Computing,
pages 11-15, 1990.

M. SipSER. A Complexity Theoretic Approach to Randomness. Proceedings of
the 15th Annual ACM Symposium on the Theory of Computing, ACM (1983).

L.J. Stockmeyer, Planar 3-Colorability is NP-Complete In SIGACT News, Vol
5(3), pages 19-25, 1973.

79

[St-83] L. STOCKMEYER. The Complexity of Approximate Counting. Proceedings of
the 15th Annual ACM Symposium on the Theory of Computing, ACM (1983).

[TW-87] M. Tompa AND H. WoLL. Random Self-Reducibility and Zero-Knowledge
Proofs of Possession of Information. Proceedings of the 28th Annual IEEE Sym-
posium on the Foundations of Computer Science, IEEE (1987).

[Tra-84] B. A. Trakhtenbrot. A survey of Russian approaches to Perebor (brute-force
search) algorithms. In Annals of the History of Computing vol. 6, pages 384—
400, 1984.

[Yan-92] M. Yannakakis. On the Approximation of Maximum Satisfiability. In Proc. 3rd
Annual ACM-SIAM Symp. on Discrete Algorithms, pages 1-9, 1992.

[7-92] D. Zuckerman. NP-Complete Problems Have a Version That’s Hard to Approx-
imate. Unpublished Manuscript. 1992.

80

