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1 An Opinionated IntroductionThe title of this introduction and the use of �rst person singular are meant to indicate that this in-troduction is more opinionated than is customary in our �eld. Nevertheless, I will try to distinguishfacts from my opinions by use of adequate phrases.In my opinion, the �rst question that should be asked when suggesting and/or reviewing ade�nition is what is the purpose of the de�nition. When reviewing an existing de�nition, a goodway to start is to look into the history of the de�nition, since the purpose may be more transparentin the initial works than in follow-up ones.Before turning to the history and beyond, let me state that I assume that the reader is fa-miliar with the notion of zero-knowledge and the underlying simulation paradigm (see, e.g., [G01,Sec. 4.3.1]). In fact, some familiarity with general secure multi-party computation (e.g., at theoverview level of [G04, Sec. 7.1]) is also useful. Indeed, this paper is not intended for the novice: itdeals with subtle issues that the novice may (or even should) ignore.1.1 The history of related de�nitionsTo the best of my recall, the �rst appearance in cryptography of the notion of expected (ratherthan strict) probabilistic polynomial-time was in the seminal work of Goldwasser, Micali, andRacko� [GMR]. The reason was that the simulators presented in that paper (for the QuadraticResiduosity and the Quadratic Non-Residuosity interactive proofs) were only shown to run inexpected probabilistic polynomial-time.1 Recall that these simulators were used in order to simulatethe interaction of arbitrary strict probabilistic polynomial-time (adversarial) veri�ers with thehonest prover.At �rst, the discrepancy between the expected probabilistic polynomial-time allowed to thesimulator and the restriction of the adversary to strict probabilistic polynomial-time did not botheranybody. One reason for this lack of concern seems to be that everybody was overwhelmed by thenew fascinating notion of zero-knowledge proofs, its mere feasibility and its wide applicability(as demonstrated by [GMR, GMW]). But as time passed, some researchers became botheredby this discrepancy, which seemed to violate (at least to some extent) the intuition underlyingthe de�nition of zero-knowledge. Speci�cally, relating the complexity of the simulation to thecomplexity of the adversary is the essence of the simulation paradigm and the key to the conclusionthat the adversary gains noting by the interaction (since it can obtain the same, essentially as easily,without any interaction). But may we consider expected polynomial-time and strict (probabilistic)polynomial-time as being the same complexity?The original feeling was that the discrepancy between strict and expected polynomial-time isnot very signi�cant, and I do hold this view to this very day. After all, everybody seems quitehappy with replacing one polynomial (bound of the running time) by another, at least as a very�rst approximation of the intuitive notion of similar complexity.2 Still, I cannot deny that there1Note that while a small de�nitional variation (cf. [G01, Sec. 4.3.1.1] versus [G01, Sec. 4.3.1.6]) su�ces forobtaining a strict probabilistic polynomial-time (perfect) simulation for the QR protocol, this does not seem to bethe case when the QNR protocol is concerned. The same dichotomy is manifested between the Graph Isomorphismand Graph 3-Colorability protocols (of [GMW]) on one hand and the constant-round zero-knowledge proof of [GK96]on the other hand. The dichotomy arises from two di�erent simulation techniques; the �rst is tailored for \challenge-response" protocols, while the second refers to the use of \proofs-of-knowledge" (which may be implicit and trivial(as in [GK96])).2It is telling that my advocacy of knowledge tightness [G01, Sec. 4.4.4.2], a notion aimed at quantitatively boundingthe ratio of the running times of the simulator and adversary, has never gain much attention. (And yes, I am awareof the recent work of Micali and Pass [MP06] that introduces and advocates an even more re�ned notion.)2



is something unpleasing about this discrepancy. Following [KL05], let me refer to this issue as anaesthetic consideration.Jumping ahead in time, let me mention a more acute consideration articulated in [KL05]: A dif-ferent handling of adversaries and simulations (e.g., the discrepancy between expected polynomial-time and strict probabilistic polynomial-time) raises technical di�culties and, in particular, standsin the way of various desired composition theorems (e.g., of the type presented in [GO94, C00]).But let me get back to the story.Faced with the aforementioned aesthetic consideration, a few researchers suggested a simplesolution: extending the treatment of adversaries to ones running in expected polynomial-time. Thissuggestion raised a few problems, the �rst being how to de�ne expected polynomial-time interactivemachines? (In addition, there are other problems, which I will discussed later.)Feige's proposal [F90] was to consider the running-time of the adversary when it interacts withthe honest party that it attacks, and require that the adversary runs in expected polynomial-time(in such a random interaction). My own proposal was to allow only adversaries that run in expectedpolynomial-time regardless with whom they interact; that is, the adversary is required to run inexpected polynomial-time when interacting with any other strategy. Feige objected to my proposalsaying that it unduly restricts the adversary, which is designed to attack a speci�c strategy andthus should be e�cient only when attacking this strategy. My own feeling was that it is far moreimportant to maintain a coherent theory by using a \stand-alone" notion of expected polynomial-time; that is, a notion that categorizes strategies regardless of their aim (e.g., without reference towhether or not these strategies model adversaries (and which strategies these adversaries attack)).The rationale underlying this feeling is discussed in Section 1.2. (Furthermore, Feige's de�nitionalso extends the standard de�nition of strict probabilistic polynomial-time adversaries by allowingadversaries that may not even halt when interacting with strategies other the those they weredesigned to attack (see proof of Proposition 5).)In any case, a major problem regarding the suggestion of extending the treatment of adversariesto ones running in expected polynomial-time is whether such an extension is at all possible. Onespeci�c key question is whether known simulators can handle expected polynomial-time adversaries.As pointed out in [KL05], in some cases (e.g., the simulator of [GK96]), the answer is negativeeven if one uses the more restricted notion of expected polynomial-time adversaries (which refersto interaction with any possible strategy). Another important question is whether compositiontheorems that are known to hold for strict probabilistic polynomial-time (strategies and simulators)can be extended to the case of expected polynomial-time (strategies and simulators).Indeed, the \question of composition" became a major concern in the 1990's and motivated are-examination of many aspects of the theory of cryptography. Here I refer speci�cally to the Se-quential Composition Theorem of Canetti [C00], which supports modular construction of protocols,and to the Concurrent Composition Theorem of Canetti [C01], which is aimed at preserving securityin settings where numerous executions of arbitrary protocols are taking place concurrently. Thesecomposition results were obtained when modeling adversaries as strict probabilistic polynomial-time strategies and allowing only strict probabilistic polynomial-time simulators. One consequenceof the lack of analogous results for the case of expected polynomial-time was that the modularconstruction of secure protocol had to avoid protocols that were only known to be simulateable inexpected polynomial-time.3Recently, Katz and Lindell [KL05] initiated a study of the possibility of simulating expectedpolynomial-time adversaries and/or obtaining composition theorems (or su�ciently good alterna-3For example, relatively e�cient proofs-of-knowledge (which only guarantee expected polynomial-time extraction)were avoided (e.g., in [G04, Sec. 7.4.1.3]) and strong proofs-of-knowledge (cf. [G01, Sec. 4.7.6]) were used instead.3



tives) for the expected polynomial-time case. They showed that in some cases (e.g., when thesimulator satis�es some additional properties and/or under some super-polynomial intractabilityassumptions) such partial results can be obtained.4 These results do not provide a \free" transfor-mation from the strict probabilistic polynomial-time model to the expected polynomial-time model,where \free" means without referring to additional assumptions. In my opinion, as long as this isthe state of a�airs, one better look for alternative directions.1.2 Towards new de�nitionsMy starting point (or thesis) is that we should not care about expected polynomial-time adversariesper se. As hinted by my historical account, researchers were perfectly happy with strict probabilisticpolynomial-time adversaries and would have probably remained so if it were not for the introductionof expected polynomial-time simulators. Indeed, at the end of the day, the user (especially a non-sophisticated one) should care about what an adversary can obtained within a speci�c time (orvarious possible amounts of work), where the term `obtain' incorporates also a quanti�cation of thesuccess probability. I claim that our goal as researchers is to provide such statements (or rathertechniques for providing such statements), and that expected polynomial-time machines may appearin the analysis only as intermediate steps (or mental experiments).My thesis is further enforced by the confusing and unintuitive nature of expected running-timeespecially when applied in the context of cryptography5 and by numerous annoying phenomena re-lated to expected-time complexity. In particular, note that, unlike strict polynomial-time, expectedpolynomial-time is a highly non-robust notion that is not preserved under changes of computationalmodel and standard algorithmic compositions.6 These \features" are an artifact of the \bad in-teraction" between the expectation operator and many non-linear operators: for example, for arandom variable X, we cannot upper-bound E[X2] as a function of E[X]. Thus, if X is a randomvariable that represents the running-time of some process � (where the probability space is that ofthe internal coin tosses of �), then we cannot bound the expected running-time of various modestvariants of � (e.g., which square its running-time) in terms of the expected running-time of �. (SeeFootnote 26, which refers to a natural case in which this problem arises.)The foregoing reservations regarding expected polynomial-time are of lesser concern when ex-pected running-time is only used as an intermediate step (rather than as a �nal statement). Takingthis approach to its extreme, I claim that for this purpose (of an intermediate step) it is legitimateto use any (reasonable) de�nition of expected polynomial-time strategies, and that among suchpossibilities we better select a de�nition that supports the desired results (e.g., simulation of cor-responding adversaries and composition theorems). Thus, we should seek a de�nition of expected4Roughly speaking, one of their results provides a transformation of some simulators that handle strict probabilis-tic polynomial-time adversaries into simulators that handle expected polynomial-time adversaries, while assumingthat the original simulator's queries are strongly indistinguishable from the messages of the real protocol. Anotherresult provides a composition theorem for expected polynomial-time simulators (which handle strict probabilisticpolynomial-time adversaries), while relying on strongly pseudorandom functions. In both cases, the term strongrefers to versions of computational indistinguishability that are required to hold with respect to super-polynomial-time observers. This means that for obtaining (ordinary) computational security, somewhere along the way, one needsto make a super-polynomial-time intractability assumption. Also note that the simulators constructed in [KL05] usethe corresponding adversaries in a \slightly non-black-box" manner in the sense that they terminate executions (ofthese adversaries) that exceed a speci�c number of steps.5Indeed, things become even worse if we bear in mind the need to keep track of both the running-time and thesuccess probability (which should be calculated with respect to various strict time bounds). That is, I claim thatproviding only the expected running-time and the overall success probability is quite meaningless, since the successis likely to be correlated with the running-time.6See analogous discussion of average-case complexity in [G97].4



polynomial-time strategies that enjoys the following properties:1. The de�nition should include all strict probabilistic polynomial-time strategies (but shouldnot extend \much beyond that"; e.g., super-polynomial-time computations may only occurwith negligible probability).2. When applied to non-interactive strategies (i.e., stand-alone algorithms) the de�nition ofexpected polynomial-time strategies should yield the standard notion of expected polynomial-time.This property is not only a matter of aesthetic considerations but is rather important forcomposition theorems (as desired in Property 3b). Furthermore, when applied to the contextof zero-knowledge, the current property implies that expected polynomial-time simulators aredeemed admissible by this de�nition.73. The de�nition should allow to derive the results that we seek:(a) Known simulators that handle strict probabilistic polynomial-time adversaries shouldalso handle adversaries that satisfy the de�nition.8(b) The de�nition should support natural composition theorems (e.g., of the type proven byCanetti [C00]).With the foregoing properties in mind, let me suggest a couple of new de�nitions of expectedpolynomial-time strategies. These de�nitions will be more restrictive than the existing de�nitionsof this notion (which were reviewed in Section 1.1).1.3 The new de�nitionsLooking at the problem of simulating an \expected polynomial-time" adversary (cf. [KL05]), itbecomes evident that the source of trouble is the fact that the bound on the running-time ofthe adversary (w.r.t any real interaction) is no longer guaranteed when the adversary is invokedby a simulator. The point being that the queries made by the simulator may have a di�erentdistribution than the messages sent in any real interaction (especially, since some of these queriesmay not appear in the transcript output by the simulator). Furthermore, the simulator is resettingthe adversary, which may allow it to �nd queries that are correlated to the adversary's internalcoin tosses in ways that are unlikely to happen in any real interaction (see examples in [KL05] andin the proof of Proposition 5). Such queries may cause the adversary to run for a number of stepsthat is not polynomial on the average. Indeed, this problem does not occur in the case of strictprobabilistic polynomial-time adversaries because in that case we have an absolute bound on thenumber of steps taken by the adversary, regardless of which messages it receives.Let me stress that assuming that the adversary runs in expected polynomial-time when inter-acting with any other party does not solve the problem, because the distribution of the simulator'squeries may not correspond to the distribution of an interaction with any standard interactivemachine. The simulator's queries correspond to a \reset attack" on the adversary, where resetattack are as de�ned in [CGGM] (except that here they are applied on the adversary's strategy7In fact, we should strengthen Property 2 by requiring that also in the context of secure multi-party computation(where the simulators are themselves interactive machines) the known \expected polynomial-time" simulators (ofstrict probabilistic polynomial-time) are deemed admissible by the selected de�nition.8Actually, we may relax this condition by allowing a modi�cation of the simulator but not of the protocol and/orthe underlying intractability assumptions. 5



rather than on the honest party's strategy). Speci�cally, in a reset attack, the internal coin tossesof the strategy are �xed (to a random value) and the attacker may interact several times with theresulting residual (deterministic) strategy.The forgoing discussion suggests a simple �x to the problem. Just de�ne expected polynomial-time strategies as ones that run in expected polynomial-time under any reset attack that interactwith them for a polynomial number of times. Actually, we should allow attacks that interact withthese strategies for an expected polynomial number of times.9 (See De�nition 3.)It seems that any (black-box) simulator that handles strict probabilistic polynomial-time ad-versaries can also handle adversaries that run in expected polynomial-time under the foregoingde�nition. After all, this de�nition was designed to support such a result. However, I was notable to prove this result without further restricting the class of simulators (in a natural way). Fordetails, see Section 1.4.But before turning to the results, let me suggest an even more restricted notion of expectedpolynomial-time strategies. I suggest to consider strategies that run in expected polynomial-timewhen interacting with any (\magical") machine that receives the strategy's internal coin tosses asside information. Arguably, this is the most restricted (natural) notion of expected polynomial-timestrategies (which, when applied to non-interactive machines, coincides with the standard de�nitionof expected polynomial-time). Needless to say, this de�nition (which is more restrictive than theaforementioned resetting de�nition) also supports the extension of simulators that handle strictprobabilistic polynomial-time adversaries to handle adversaries satisfying the current de�nition.Clearly, both de�nitions satisfy the �rst two desirable properties stated in Section 1.2. As forthe third desirable property, it at the focus of the next subsection.1.4 The main resultsThe main results establish the third desirable property for both de�nitions, while assuming thatthe provided simulators (i.e., the simulators provided by the corresponding hypothesis) belong toa natural subclass of black-box simulators. Indeed, one could hope that these results would holdfor all (universal) simulators or at least for all black-box simulators.10The issue at hand is the de�nition of e�cient black-box simulators. Since black-box simulatorsare typically given oracle access to an e�cient strategy, some texts only refer to what happensin such a case (and mandate that the overall simulation be e�cient, where one also accounts forthe steps of the strategy). A more natural and robust de�nition mandates that the number ofsteps performed by the black-box simulator itself be feasible, when the simulator is given oracleaccess to any strategy. Speci�cally, I consider black-box simulators that, make an expected numberof steps that is upper-bounded by a polynomial in the length of the input, where each oraclecall is counted as a single step, and call such a simulator normal. Indeed, the known (black-box)simulations including those that run in expected polynomial-time (e.g., [GK96]) are normal. Forfurther discussion see the beginning of Section 3.As stated in Section 1.3, the new de�nitions (or actually the \resetting-based" one) were de-vised to support the �rst main result (stated in Theorem 10). This result asserts that any normalblack-box simulator that handles strict probabilistic polynomial-time adversaries can also handle ad-versaries that run in expected polynomial-time under the new de�nition(s). In particular, it implies9When measuring the expected number of interactions, I refer to a variant of Feige's notion of expected complexitywith respect to the designated machine. Indeed, this widens the class of possible (reset) attackers, which furtherlimits the class of admissible strategies (i.e., those that are expected polynomial-time under such attackers).10Recall that a universal simulator is a universal machine that is given that the code of the adversary that itsimulates. In contrast, a black-box simulator is only given oracle access to the corresponding strategy.6



that normal black-box zero-knowledge protocols remain simulateable when attacked by adversariesthat satisfy the new de�nition(s) of expected polynomial-time. This applies, in particular, to theproof system of [GK96], for which analogous (\free") results were not known under the previousde�nitions of expected polynomial-time.11Note that the fact that the aforementioned (normal black-box) simulations run in expectedpolynomial-time also when given access to any expected polynomial-time adversary is quite obviousfrom the new de�nition(s). This follows from the fact that normal black-box simulators invokethe adversary strategy for an expected polynomial number of times, while the \resetting-basedde�nition" upper-bounds the total expected time consumed by the adversary in such invocations.What should be shown is that, also in this case, the corresponding simulation produces goodoutput (i.e., indistinguishable from the real interaction). This can be shown by using a ratherstraightforward \truncation" argument.12Let us now turn to the question of composition, starting with the sequential composition of zero-knowledge protocols. The known result (of [GO94]) refers to strict probabilistic polynomial-timeadversaries (and holds both with respect to strict and expected polynomial-time simulation).13However, the known argument does not extend to expected polynomial-time adversaries. Recallthat the said argument transforms any adversary that attacks the composed protocol into a resid-ual adversary that attacks the basic protocol. The source of trouble is that the fact that the formeradversary is expected polynomial-time (under any de�nition) does not imply that the latter adver-sary is expected polynomial-time (under this de�nition). See the proof of Theorem 9 for details.Fortunately, there is an alternative way: just note that the simulator obtained by [GO94], whichrefers to strict probabilistic polynomial-time adversaries, can handle expected polynomial-time ad-versaries (i.e., by invoking Theorem 10 (or rather its zero-knowledge version { Theorem 8)).The foregoing idea can also be applied to the general setting of secure multi-party computation,but additional care is needed to deal with the extra complexities of this setting (as described next).Speci�cally, the so-called sequential composition theorem of Canetti [C00] (see also [G04, Sec. 7.4.2])refers to an oracle-aided (or \hybrid") protocol � that uses oracle calls to a functionality14 f , whichcan be securely computed by a protocol �. (Note that the corresponding oracle-aided protocol wasnot mentioned in the context of zero-knowledge, because it is trivial (i.e., it merely invokes thebasic protocol several times).) The theorem asserts that the security of � (with respect to aspeci�c functionality unmentioned here) is preserved when � uses subroutine calls to � rather thanoracle calls to f . This result refers to security with respect to strict probabilistic polynomial-timeadversaries that is demonstrated by strict probabilistic polynomial-time simulators. One point tonotice is that the proof of security of the resulting protocol, denoted �0, proceeds by incorporatingthe simulator of � into an adversary for �. Thus, if the simulator of � runs in expected polynomial-time then so does the resulting adversary (for �), and thus the simulator for � has to handle expectedpolynomial-time adversaries (even if we only care of strict polynomial-time adversaries attacking11Note that Katz and Lindell [KL05] showed that the simulator presented in [GK96] fails (w.r.t expected polynomial-time under the previous de�nitions). Their work implies that, if strongly hiding commitment schemes are used in theprotocol, then an alternative simulator does work. In contrast, my result applies to the simulator presented in [GK96]and does not require strengthening the commitment scheme used in the protocol. Furthermore, the running-time ispreserved also for no-instances (cf., in contrast, [KL05, Sec. 3.3]).12Indeed, the running-time analysis relies on the hypothesis that the simulator is normal, whereas the analysis ofits output only relies on the hypothesis that the simulator is black-box. In contrast, for the claim itself to make senseat all it su�ces to have a universal simulator (as otherwise it is not clear what we mean by saying that a simulatorthat handles any A 2 C can handle any A0 2 C0).13The original proof (of [GO94]) refers to strict polynomial-time simulators, but it extends easily to expectedpolynomial-time simulators.14A functionality is a randomized version of a multi-input multi-output function (cf. [G04, Sec. 7.2.1]).7



�0). Indeed, having a simulator for � that handles any expected polynomial-time adversariessu�ces for a partial result that refers to strict probabilistic polynomial-time adversaries for theresulting protocol �0 and to expected polynomial-time simulators (for �, �, and �0). The general(sequential) composition theorem for the case of expected polynomial-time (which refers to expectedpolynomial-time adversaries and simulators) follows by applying Theorem 10.An important corollary to the foregoing extendability and composition theorems (i.e., Theo-rem 10 and 11) asserts that it is possible to compose secure protocols, when security is demonstratedvia expected polynomial-time simulators but refers only to strict probabilistic polynomial-time ad-versaries. In such a case, the extendability theorem allows to use these simulators with respect toexpected polynomial-time adversaries, whereas the composition theorem applies to the latter. Thus,one may freely use expected polynomial-time simulators, and be assured that the corresponding se-cure protocols can be composed (just as in the case that their security is demonstrated via strictpolynomial-time simulators).Turning to the concurrent composition theorem of Canetti [C01], recall that it evolves aroundthe notion of environmental security (a.k.a UC-security [C01]). Speci�cally, Canetti proved thatany protocol that is environmentally secure preserves security under arbitrary concurrent execu-tions, where the adversaries, simulators, and environments are all modeled as strict probabilisticpolynomial-time strategies (with non-uniform auxiliary inputs for the environments). He then sug-gested the methodology of establishing environmental-security as a way of obtaining security underconcurrent composition. Consequently, an extension of Canetti's methodology to the expectedpolynomial-time setting requires (1) verifying that Canetti's proof extends to this setting, and(2) obtaining environmental security for expected polynomial-time adversaries and environments.Using the new de�nitions of expected polynomial-time strategies, the �rst requirement follows anal-ogously to the proof of the sequential composition theorem, while the second requirement followsby generalizing Theorem 10 (which may be viewed as referring to trivial environments).The bottom-line is that, for normal black-box simulators, the new de�nitions of expectedpolynomial-time strategies provide a \free" transformation from the strict probabilistic polynomial-time model to the expected polynomial-time model. In particular, normal black-box simulators thatwork in the strict model extend to the expected model, and the most famous composition theoremsextend similarly.1.5 Why deal with expected polynomial-time at all?In light of the di�culties discussed in Section 1.1, one may ask why do we need this headache (ofdealing with expected polynomial-time) at all? This question is further motivated by my views(expressed in Section 1.2) by which we should not care about expected polynomial-time adversariesper se. The answer, as hinted in Section 1.1, is that we do care about expected polynomial-timesimulators.Speci�cally, some natural protocols are known to be secure (or zero-knowledge) only when thede�nition of security allows expected polynomial-time simulators. A notable example, already men-tioned several times is the constant-round zero-knowledge proof system of [GK96]. Furthermore, asproved in [BL02], constant-round proof system for sets outside BPP do not have strict polynomial-time black-box simulators (although they do have such non-black-box simulators [B01], which areless preferable for reasons discussed below).In general, expected polynomial-time simulators seem to allow more e�cient protocols and/ortighter security analysis. Whereas various notions of protocol e�ciency are well-understood, afew words about the tightness of various security analyses are in place. Loosely speaking, security8



tightness15 refers to the ratio between the running-time of the adversary and the (expected) running-time of the simulator that handles it. The security tightness of a protocol is a lower-bound on thisratio that holds for every probabilistic polynomial-time adversary.16 Indeed, in many cases (alsowhen strict polynomial-time simulators exist), the expected running-time of the simulator providesa better bound than the worst-case running-time of the simulator.In my opinion, security tightness should serve as a major consideration in the evaluation ofalternative protocols, and claims about protocol e�ciency are almost meaningless without referringto their security tightness. For example, in many cases, modest parallelization can be achieved atthe cost of a deterioration in the security tightness (cf. [G01, Sec. 4.4.4.2]). Let me stress that, byde�nition, black-box simulators always yield a noticeable17 bound on the security tightness (and insome cases they o�er a constant bound), whereas non-black-box simulators may fail to have suchbound (e.g., indeed, that's the case with Barak's simulators [B01]).Thus, I suggest the following methodology: When designing your protocol and proving itssecurity, allow yourself expected polynomial-time simulations. To assist the design and analysis, usethe \extendability results" (e.g., Theorem 10) provided in this work as well as relevant compositiontheorems (e.g., Theorem 11). Finally, when obtaining the desired protocol with a security analysisthat refers to an expected polynomial-time simulator, you may interpret it as providing a trade-o� between the simulation time and the corresponding deviation (from the real interaction). Butactually, a �nal claim that refers to expected simulation time may be as appealing when stated interms of security tightness (e.g., the e�ect of any strict polynomial-time adversary can be achievedby a simulation that is expected to run three times as long).Indeed, my opinion is that there is no contradiction between not caring about expected polynomial-time adversaries and providing security guarantees that refer to the expected simulation time:Whereas (at least potentially) the adversary is a real entity, its simulation is (always) a mentalexperiment. Furthermore, I believe that the foregoing methodology may yield the best trade-o�sbetween the e�ciency of the protocol and the tightness of its security.Finally, let me note that there are alternative ways of handling the problems that motivate theintroduction of expected polynomial-time to Cryptography (i.e., the failure of strict polynomial-timesimulation in some cases). These alternatives are based on di�erent measures that are applicableto \varying" running-time (i.e., running-time that is expressed as a random variable). In eachcase, one should start with a de�nition that refers to standard algorithms, and extend it to ade�nition that refers to interactive machines. For details, see Section 5. Indeed, the issues arisingin such extensions are the same as the ones discussed throughout the rest of this paper. It is mybelief, however, that expected running-time (as treated in the rest of this paper) provides the besttrade-o�s between the e�ciency of the protocol and the tightness of its security.1.6 OrganizationSection 2 provides formal statements of the aforementioned (old and new) de�nitions as well asa demonstration of a hierarchy among them. Since the special case of zero-knowledge protocolsprovides a good benchmark for the general case of secure protocols, the main results are �rstpresented in that setting (see Section 3). This simpli�es things, because in that special case15In the special case of zero-knowledge, the corresponding notion is called knowledge tightness [G01, Sec. 4.4.4.2].Note a minor technicality: here tightness is de�ne as the reciprocal of the ratio in [G01, Sec. 4.4.4.2].16Thus, if there exists a polynomial q such that, for every polynomial p, every p-time adversary is simulated in timeq � p then the protocol has (noticeable) security tightness 1=q. But if the simulation of p-time adversaries requirestime p3 then the protocol does not have a noticeable security tightness.17As usual, a noticeable function is one that decreases slower than the reciprocal of some positive polynomial.9



the simulators are standard algorithms rather than interactive strategies (for the so-called \ideal-model"; see, e.g., [G04, Sec. 7.2]). Nevertheless, I believe that the main ideas are already present inthe zero-knowledge setting, and that this belief is supported by the treatment of general protocols(provided in Section 4). Section 5 discusses the applicability of the main approach to alternativesmeasures of \varying" running-time. Section 6 contains conclusions and open problems.2 The De�nitionsWe adopt the standard terminology of interactive machines, while occasionally identifying strategies(which specify the next message to be sent by an interactive machine given its view so far) with theinteractive machines that activate them. We use the shorthand PPT for probabilistic polynomial-time whenever using the full term is too cumbersome; typically, we do so when contrasting strictPPT and expected PPT. For simplicity, we only consider the two-party case. We denote by x thecommon (part of the) input, and denote by y and z the corresponding private inputs of the twoparties. The reader may ignore y and z, which model (possibly non-uniform) auxiliary information.2.1 Known de�nitionsWe start by formulating the two known de�nitions that were mentioned in Section 1.1.De�nition 1 (Feige [F90]): The strategy � is expected PPT w.r.t a speci�c interactive machine M0if, for some polynomial p and every x; y; z, the expected number of steps taken by �(x; z) duringan interaction with M0(x; y) is upper-bounded by p(jxj), where the expectation is taken over theinternal coin tosses of both machines.We stress that � may be expected PPT with respect to some interactive machines but not withrespect to others.De�nition 2 (attributed to Goldreich, e.g., in [KL05]): The strategy � is expected PPT w.r.t anyinteractive machine if, for some polynomial p, every interactive machine M , and every x; y; z, theexpected number of steps taken by �(x; z) during an interaction with M(x; y) is upper-bounded byp(jxj).Here we may assume, without loss of generality, that M (which is computationally unbounded) isdeterministic, and thus the expectation is only taken over the internal coin tosses of �. The sameconvention is applied also in De�nition 4 (but not in De�nition 3; see discussion there).2.2 New de�nitionsIn the �rst new de�nition, we refer to the notion of a reset attack as put forward in [CGGM]. Suchan attack proceeds as follows. First, we uniformly select and �x a sequence of internal coin tosses,denoted !, for the attacked strategy �, obtaining a residual deterministic strategy �!. Next, weallow the attacker to interact with �! numerous times (rather than a single time). Speci�cally, foreach possible value of !, the expected number of times that attacker interacts with �! is upper-bounded by a polynomial.1818Indeed, the restriction on the number of interactions is a hybrid of the spirit of De�nitions 1 and 2. We areupper-bounding the (expected) number of interactions initiated by the attacker (rather than its running-time), butdo so not with respect to the designated � but rather with respect to each of the residual �!. Note that a simpli�ed10



Note that the attacker is not given ! explicitly, but its ability to (sequentially) interact withthe residual strategy �! for several times provides it with additional power (beyond interactingwith � itself for several times, where in each interaction � uses a fresh sequence of coin tosses). Asshown in [CGGM], such an attack is equivalent to a single interaction in which the attacker may(repeatedly) \rewind" � (or rather �!) to any prior point in the interaction and ask to resume theinteraction from that point. Indeed, such an attack is reminiscent of the way that a (black-box)simulator uses an adversary strategy.De�nition 3 (tailored for simulation): A q-reset attack on � is an attack that, for every x; y; z and!, interacts with �! for an expected number of times that is upper-bounded by q(jxj).19 The strategy� is expected PPT w.r.t any reset attack if, for some polynomial p, every polynomial q, every q-resetattack on �, and every x; y; z, the expected total number of steps taken by �(x; z) during this attackis upper-bounded by q(jxj) � p(jxj).20We stress that the number of invocations of � (like the total number of steps taken by �) is a randomvariable de�ned over the probability space consisting of all possible interactions of the attacker and�. Here (unlike in De�nition 2), allowing the potential attacker to be probabilistic increases itspower (and thus adds restrictions on strategies satisfying the de�nition). The reason is that, foreach �xed !, the number of invocations of �! is allowed to be an arbitrary random variable witha polynomially bounded expectation (rather than being strictly bounded by a polynomial).In the next (and last) de�nition, we consider a \magical" attacker that is given the outcome ofthe strategy's internal coin tosses as side information. That is, such an attack proceeds as follows.First, we uniformly select and �x a sequence of internal coin tosses, denoted !, for the attackedstrategy �, obtaining a residual deterministic strategy �!. Next, we provide the attacker with !(as well as with z) and allow it a single interaction with �!. We stress that this attacker is merelya mental experiment used for determining whether or not � is expected polynomial-time (underthe following de�nition).De�nition 4 (seemingly most restrictive): The strategy � is expected PPT w.r.t any magical ma-chine if, for some polynomial p, every interactive machine M 0 that is provided with the internalcoin tosses of � as side information, and every x; y; z, the expected number of steps taken by �(x; z)during an interaction with M 0 is upper-bounded by p(jxj). That is, for a randomly selected !, theexpected number of steps taken by �!(x; z) during its interaction with M 0(x; y; z; !) is upper-boundedby p(jxj).21Here as in De�nition 2, we may assume, without loss of generality, that M 0 (which is computa-tionally unbounded) is deterministic, and thus the expectation is only taken over the internal cointosses of �. Thus, De�nition 4 refers to the expectation, taken uniformly over all choices of !, of thenumber of steps taken by (the residual deterministic strategy) �!(x; z) during an interaction withversion that refers to the expected number of interactions with � (i.e., the expectation is taken also over the coinsof �) yield a \bad" de�nition. (For example, suppose that �! sends ! and makes 2j!j steps if ! = 1j!j and haltimmediately otherwise. Then, intuitively � is expected PPT (and in fact it even satis�es De�nition 4), but the resetattack that, upon receiving ! in the �rst interaction, invokes �! for 2j!j additional times if and only if ! = 1j!j,causes � to make an expected exponential number of steps.)19As in De�nitions 1 and 2, such an attack is given x and y as its input.20The upper-bounded of q(jxj) � p(jxj) seems natural; however, an upper-bounded of p(jxj+ q(jxj)) would work justas well (for all results stated in this work), but would yield weaker quantitative bounds.21Note that, unlike in De�nitions 1-3, the attacker is given �'s auxiliary input (i.e., z). This is most natural in thecontext of the current attack, which is also given �'s internal coin tosses (i.e., !).11



(the deterministic strategy) M 0(x; y; z; !). Indeed, a strategy � that satis�es De�nition 4 runs inexpected polynomial-time even if each of the incoming messages is selected to maximize its running-time, when this selection may depend on the internal coin tosses of � (and its auxiliary-input z).This formulation is closest in spirit to the standard de�nition of strict PPT strategies.2.3 Relating the de�nitionsIt is easy to see that, for i = 1; 2; 3, De�nition i+1 implies De�nition i. In fact, it is not hard to seethat the converses do not hold. That is:Proposition 5 For i = 1; 2; 3, the set of strategies that satisfy De�nition i+1 is strictly containedin the set of the strategies that satisfy De�nition i.Proof: The �rst two containments (i.e., for i = 1; 2) are plainly syntactic. Intuitively, the factthat De�nition 4 implies De�nition 3 follows by noting that a reset attack does not add powerto a computationally unbounded machine that gets �'s internal coin tosses. Formally, �xing anarbitrary q-reset attack A, denote by TA(r)(!) the total time spent by �! when attacked by A,which in turn uses coins r. Likewise, denote by nA(r)(!) the number of interactions of A with�!, when A uses coins r. By the hypothesis that A is a q-reset attack, for every value of !, itholds that Er[nA(r)(!)] is upper-bounded by q(). On the other hand, tA(r)(!) def= TA(r)(!)=nA(r)(!)corresponds to the (average) time spend by �! in a single iteration with A(r). Thus, if � satis�esDe�nition 4 then E![maxrftA(r)(!)g] is upper-bounded by some polynomial p(). Noting22 thatEr;![TA(r)(!)] is upper-bounded by the product of max!fEr[nA(r)(!)]g and E![maxrftA(r)(!)g],and using the foregoing upper-bounds, it follows that � satis�es De�nition 3.To show that the foregoing containments are strict we present corresponding strategies thatwitness the separations. The following examples are rather minimal, but they can be augmentedinto strategies that make sense (even for natural protocols). For example, a strategy that haltsimmediately upon receiving the message 0 and runs forever upon receiving the message 1 witnessesthe separation between De�nition 1 and De�nition 2. Note that this example has nothing to dowith the issue of expected polynomial-time (although an example that does relate to the latterissue can be constructed similarly).To separate De�nition 3 from De�nition 4 consider a strategy that uniformly selects an n-bitlong string r, and upon receiving a message s halts immediately if s 6= r and halts after making 2nsteps otherwise. Clearly, this strategy does not satisfy De�nition 4, but it does satisfy De�nition 3.A small twist on the foregoing example can be used to separate De�nition 2 from De�nition 3:Suppose that upon receiving s, the strategy �rst sends r, and then halts immediately if s 6= r andhalts after making 2n steps otherwise. In this case a 2-reset attack can cause this strategy to alwaysrun for 2n steps, while no ordinary interactive machine can do so.Discussion: Consider a restriction of all four de�nitions such that each bound on an expectationis replaced by a corresponding strict bound. Then the resulting (strict) versions of De�nition 2{4coincide (because a standard interactive machine may just guess at random the internal coin tossesof �), but remain separated from the (strict) version of De�nition 1 (as actually shown in the proofabove). We believe that this fact speaks against De�nition 1.22We use the fact that Ei;j [ai;jbi;j ] is upper-bounded by maxjfEi[ai;j ]g � Ej [maxifbi;jg]. This fact can be provedby noting that Ej [Ei[ai;jbi;j ]] � Ej [maxifbi;jg � Ei[ai;j ]], letting Bj = maxifbi;jg and Aj = Ei[ai;j ], and usingEj [BjAj ] � maxjfAjg � Ej [Bj ]. 12



3 Results for Zero-KnowledgeThe setting of zero-knowledge provides a good warm-up for the general study of secure protocols.Recall that, in the context of zero-knowledge, simulators are used to establish the security ofpredetermined prover strategies with respect to attacks by adversarial veri�ers. We start by showingthat (normal black-box) simulators that handle strict PPT adversaries also handle adversaries thatare expected PPT (under De�nitions 3 and 4). We next turn to an expected PPT version ofthe standard sequential composition theorem. (In Section 4, analogous results are proved forgeneral secure protocols.) To shorthand the text, when we say that some quantity (referring to aninteraction) is polynomial, we mean that it is polynomial in the length of the common input.Since the notion of normal black-box simulators is pivotal to our results, let us start by brie
yrecalling the standard de�nition of black-box simulators (see, e.g., [G01, Def. 4.5.10]). Looselyspeaking, a black-box simulator is a universal machine that is given oracle access to a deterministicstrategy and provides a simulation of the interaction of this strategy with the party attacked by thisstrategy.23 In extending this notion to randomized strategies, we refer to providing the simulatorwith oracle access to a residual (deterministic) strategy obtained by �xing random coin tosses tothe given randomized strategy.Typically, one considers the execution of black-box simulator when given oracle access to any(strict or expected) PPT adversary. In that case, one sometimes states both the complexity andthe quality of the simulation when referring only to the case that the oracle is a PPT strategy.24While the restriction of the quality requirement to the said case is often essential, this is typicallynot the case with respect to the complexity requirement. Indeed, it is more natural to formulatethe complexity requirement when referring to any possible oracle. We adopt this convention below,but in order to avoid possible confusion (with di�erent views) we refer to simulators that satisfythis convention as normal.De�nition 6 (normal black-box simulators): A black-box simulator is called normal if, on anyinput and when given oracle access to any strategy, it make an expected number of steps that isupper-bounded by a polynomial in the length of the input, where each oracle call is counted as asingle step.Although it is possible to construct black-box simulators that are not normal (e.g., they run foreverif the black-box manages to solve a hard problem), the standard black-box simulators (e.g., the ones23In typical use of a black-box simulator one refers to the quality of this simulation. Speci�cally, it is require thatif the former strategy is e�cient (in some adequate sense) then the simulation is computationally indistinguishablefrom the real corresponding interaction. Since the notion of e�ciency will vary (i.e., from strict PPT to expectedPPT), we shall not couple the operational aspect of the black-box simulator with the quality of the output that itproduces, but rather separate the two.24Even in the case that the complexity requirement is con�ned to the case that the simulator accesses an arbitrary(strict or expected) PPT adversary one may distinguish between two requirements. The more liberal requirementonly mandates that, for any such adversary, the total simulation time (see below) must be feasible. This means thatthe total simulation time may be bounded by an arbitrary polynomial that is not necessarily linearly related to the(polynomial) running-time of the adversary. Typically, a more restricted formulation is used by referring only tothe number of steps taken by the simulator itself and/or considering oracle calls as single steps (i.e., counting themat unit cost). Speci�cally, the number of steps of the black-box simulator itself is bounded by a �xed polynomial,regardless of the (polynomial) complexity of the strategy to which it is given oracle access. (Indeed, in such a case,the total simulation time is linearly related to the running-time of the adversary.) De�nition 6 takes this approach toits logical conclusion by requiring that, given oracle access to any strategy (regardless of its complexity), the numberof steps taken by the black-box simulator itself is bounded by a �xed polynomial. Note that the gap between theforegoing restricted formulation and De�nition 6 can be easily bridged if the number of steps taken by the black-boxsimulator itself is strictly polynomial (rather than having expectation that is bounded by a polynomial).13



of [GMR, GMW, GK96]) are all normal. Furthermore, normality seems a very natural propertyand it is easy to verify. For example, if the running-time analysis of a simulator (unlike the analysisof the quality of its output) does not rely on any intractability assumptions, then it is probably thecase that the simulator is normal.25The total simulation time. We will often refer to the (total) simulation time of the combinedsimulator SV � , which consists of a normal black-box simulator S that is given oracle access to anadversarial veri�er V �. Needless to say, for any normal simulator S, if V � is strict PPT then theexpected (total) simulation time of SV � is polynomial. As observed by Katz and Lindell [KL05],this is not necessarily the case if V � is expected PPT w.r.t De�nition 2. The key observation, whichmotivates De�nition 3, is that the desired bound on the expected (total) simulation time of SV �does hold if V � is expected PPT w.r.t any reset attack.Observation 7 If S is a normal black-box simulator and V � is expected polynomial-time w.r.tDe�nition 3 then the expected total simulation time of SV � is polynomial.Proof: Since S is a normal black-box simulator, there exists a polynomial q such that, for everysetting of coins ! for V �, it holds that the expected number of times that S invokes the residualstrategy V �! is upper-bound by q(). Thus, S is a q-reset attack on V �. Since V � satis�es De�nition 3,it follows that the expected (total) number of steps taken by V � during the entire simulation isupper-bound by a polynomial. The claim follows.3.1 Simulating expected PPT adversariesBearing in mind that (in the context of zero-knowledge) the simulator is a standard algorithm, itsu�ces to state the following result with respect to De�nition 3, and its applicability to De�nition 4follows as a special case.Theorem 8 (extendability of normal black-box simulators, the zero-knowledge case): Let (P; V )be an interactive proof (or argument) system for a set L, and hP; V �i(x) denote the output of theadversarial veri�er strategy V � on input x after interacting with the prescribed prover P . Let M bea normal black-box simulator that, on input in L and when given access to any strict PPT strategyV �, produces output that is computational indistinguishable from hP; V �i. Then, when M is givenoracle access to any strategy V � that is expected PPT w.r.t any reset attack, the expected simulationtime of MV � is polynomial and the output is computational indistinguishable from hP; V �i.Note that the hypothesis allows the simulator to run in expected PPT while simulating a strictPPT adversary. This makes the hypothesis weaker and the theorem stronger; that is, the theoremcan be applied to a wider class of protocols (including protocols that are not known to have strictPPT simulators such as, e.g., the constant-round zero-knowledge proof of [GK96]).Proof: Fixing any expected PPT w.r.t De�nition 3 strategy V �, we �rst note that (by Ob-servation 7) the expected simulation time of MV � is polynomial. To analyze the quality of thissimulation, suppose towards the contradiction that D distinguishes between the simulation and thereal interaction, and let p be a polynomial such that the distinguishing gap of D for in�nitely many25The word \probably" indicates that the said implication is not claimed as a fact but rather suggested as aconjecture regarding any natural case. 14



x 2 L is at least �(jxj) def= 1=p(jxj). Let t�(x) denote the total (over all invocations) expected num-ber of steps taken by V � when invoked by M . Note that t�(x) is upper-bounded by a polynomialin jxj, and assume (without loss of generality) that t�(x) also upper-bounds the expected runningtime of V � in the real interaction (with P ). Now, consider a strict PPT V �� that emulates V �,while truncating the emulation as soon as 3t�=� steps are emulated. Then, the variation distance(a.k.a statistical di�erence) between MV �(x) and MV ��(x) is at most �(jxj)=3, because �=3 upper-bounds the probability that the total number of steps taken by V � during all invocations by Mexceeds 3t�=� (and otherwise V �� perfectly emulates all these invocations, since none exceeds 3t�=�steps). Similarly, the variation distance between hP; V �i(x) and hP; V ��i(x) is upper-bounded by�(jxj)=3. It follows that D distinguishes the simulation MV �� from the real interaction hP; V ��iwith a gap that exceeds �=3, on in�nitely many inputs in L, in contradiction to the hypothesis thatM simulates all strict PPT veri�ers.Discussion: We believe that the fact that the proof of Theorem 8 is rather straightforward shouldnot be counted against De�nition 3, but rather the other way around. That is, we believe that theclaim that the simulation of strict PPT adversaries extends (without modi�cations) to expectedPPT adversaries is natural, and as such a good de�nition of expected PPT adversaries shouldsupport it. It may be that Theorem 8 can be generalized also to arbitrary black-box simulators andeven to arbitrary universal simulators, but the current proof fails to show this: the running-timeanalysis relies on the hypothesis that the simulator is normal, whereas the output-quality analysisrelies on the hypothesis that the simulator is black-box.26Note that the combined simulator resulting from Theorem 8 is trivially expected PPT underreset attacks (and also under De�nition 4), because it is a non-interactive machine (which runsin expected polynomial-time). Things are not as simple when we move to the setting of secureprotocols, where the simulator is an interactive strategy (which operates in a so-called ideal-model).See Section 4.1.3.2 Sequential compositionThe following Theorem 9 is an expected PPT version of the standard result (of [GO94]) that refersto strict PPT adversaries and simulators (see also [G01, Lem. 4.3.11]). Note that the standardresult does not require the simulator to be black-box (let alone normal). The reason for the extrarequirement will become clear in the proof.Theorem 9 (expected PPT version of sequential composition for zero-knowledge:) In this theoremzero-knowledge means the existence of a normal black-box simulator that handles any expected PPTw.r.t De�nition 3 (resp., w.r.t De�nition 4) adversarial veri�er, where handling means that the cor-responding combined simulator runs in expected PPT and produces output that is computationallyindistinguishable from the real interaction. Suppose that (P; V ) is a zero-knowledge protocol. Then,26Recall that a universal simulator obtains the code of the adversary's strategy rather than a black-box access toit. Thus, it may be the case that such a simulator can distinguish the code of V � from the code of V �� (i.e., thetimed version of V �), and produce bad output in the latter case. Indeed, a \natural" simulator will not do so, butwe cannot rely on this. Turning to a more natural example, we note that the known non-black-box simulator ofBarak [B01] (as well as its modi�cation [BG02]) may fail to simulate expected PPT veri�ers, because the randomvariable representing its simulation time is polynomially related (rather than linearly related) to the running-timeof the veri�er. Recall that it may be the case that t(x) has expectation that is upper-bounded by a polynomial injxj while t(x)2 has expectation that is lower-bounded by exp(jxj); for example, consider t : f0; 1g� !N such thatPr[t(x) = 2jxj] = 2�jxj and Pr[t(x) = jxj2] = 1� 2�jxj. 15



sequentially invoking (P; V ) for a polynomial number of times yields a protocol, denoted (P 0; V 0),that is zero-knowledge.Proof: The proof of the strict PPT version (see [G01, Sec. 4.3.4]) proceeds in two steps: First,any veri�er V � that attacks the composed protocol (or rather the prover P 0) is transformed into anveri�er V �� that attacks the basic protocol (or actually the prover P ). This transformation is quitestraightforward; that is, V �� handles a single interaction with P (while receiving the transcript ofprevious interactions as auxiliary input). Let M denote a simulator for (P; V ��). Then, a simulatorfor the composed protocol (or rather for the attack of V � on P 0) is obtained by invoking M for anadequate number of times (using a correspondingly adequate auxiliary input in each invocation).Wishing to pursue the foregoing route, we merely need to check that any veri�er V � thatis expected PPT w.r.t De�nition 3 (resp., De�nition 4) is transformed into a veri�er V �� that isexpected PPT w.r.t De�nition 3 (resp., De�nition 4). Unfortunately, this is not necessarily the case.Indeed, the expected running-time of V �� when given a random auxiliary input (i.e., one producedat random by prior interactions) is polynomial, but this does not mean that the expected running-time of V �� on each possible value of the auxiliary input is polynomial. For example, it may bethe case that, with probability 2�jxj over the history of prior interactions, the current interactionof V � (i.e., V �� with the corresponding auxiliary input) runs for 2jxj steps. The bottom-line isthat V �� may not be expected PPT w.r.t any reasonable de�nition (let alone w.r.t De�nition 3 orDe�nition 4).In view of the forgoing, we take an alternative route. We only use the hypothesis that somenormal black-box simulator M can handle all strict PPT veri�ers that attack the basic proverP . Next, we observe that the proof of [G01, Lem. 4.3.11] (i.e., the strict PPT version) can beextended to the case that the simulation of the basic protocol (w.r.t strict PPT adversaries) runsin expected PPT. The key observation is that in this case V �� is strict PPT, although it will be fedwith auxiliary inputs that are produced in expected PPT (by the simulation of prior interactions ofV �� with P ). Thus, we obtain an expected PPT simulation that handles any strict PPT attack onP 0. Furthermore, the simulation amounts to invoking M for a polynomial number of times (whileproviding it with black-box access to V ��, which in turn is implemented by a black-box accessto V �). It follows that the simulation of (P 0; V �) is performed by a normal black-box simulator(because M is normal). Hence, we have obtained a normal black-box simulator that can handleany strict PPT attack on the composed protocol (or rather on the prover P 0). The current theoremfollows by applying Theorem 8 to the latter simulator.Discussion: The proof of Theorem 9 is somewhat disappointing because it does not use thehypothesis that P is zero-knowledge w.r.t expected PPT veri�ers. Instead, Theorem 8 is used tobridge the gap between strict and expected PPT veri�ers. A similar (but not identical) phenomenonwill occur in the sequential composition theorem for general protocols, presented in Section 4.2.4 Results for General Secure ProtocolsIn this section we extend the treatment of zero-knowledge (provided in Section 3) to a treatmentof arbitrary secure protocols. The extension is quite straightforward, once the key notions areproperly extended. The main issue that deserves attention is that, in the context of arbitrarysecure protocols, simulators are not standard algorithms but rather interactive strategies (for acorresponding ideal-model { to be discussed next). Consequently, notions such as normal (black-16



box) simulators and expected PPT simulators will have to be clari�ed. For simplicity, we focus onthe two-party case.Recall that the standard (\simulation-based") de�nitions of secure protocols call for comparingthe real execution of the protocol (when certain parties are controlled by an adversary) to thea�ect of a corresponding adversary in an ideal model (see, e.g., [G04, Sec. 7.2]). The ideal modelconsists of the parties sending their inputs to a trusted party that provides each party with its cor-responding output, where the trusted party computes these outputs according to the predeterminedfunctionality that the protocol is supposed to securely compute. Thus, the actions of the adversaryin the ideal model are con�ned to selecting the messages sent to the trusted party (by the partiescontrolled by the adversary) and computing its �nal output based on the messages it received fromthe trusted party (i.e., the messages received by the parties controlled by the adversary). In thetwo-party case, this adversary sends a single message to the trusted party and receives a singlemessage in return. Note that this adversary is an interactive machine, although its interaction isvery minimal, and thus the various de�nitions of expected PPT strategies should and can be appliedto it.Another point to note is that the ideal-model adversary is viewed as a simulator of the real-model adversary, and that (as in the case of zero-knowledge) the simulator is typically describedas a universal machine that is given black-box access to the real-model adversary that it simulates.For simplicity, we shall refer to the ideal-model adversary as the simulator and to the real-modeladversary as the adversary.Turning to the notion of normal black-box simulators, let us �rst restate De�nition 6 (whichrefers to non-interactive simulators). For any black-box simulator S and any adversary A, weconsider an imaginary machine I that emulates SA such that each oracle call to A is emulated inunit time. Then, De�nition 6 mandates that for every adversary A the corresponding I is expectedPPT. In our context, the simulator itself is an interactive machine and thus the imaginary machineswill also be interactive. For i = 1; 2; 3; 4, we say that a black-box simulator S is normal w.r.tDe�nition i if, for every adversary A, the corresponding I = SA is expected PPT w.r.t De�nition i.We note that natural simulators used in security proofs are normal. This holds for simulators ofsimple protocols (cf., e.g., [G04, Sec. 7.4.3.1-7.4.3.3]) as well as for simulators of complex protocolsobtained by composition (cf., e.g., [G04, Sec. 7.4.4]).4.1 Simulating expected PPT adversariesIn continuation to Section 3.1, we prove that normal black-box simulation of strict PPT adversariescan be extended to expected PPT adversaries. Unlike in Theorem 8, here the result (i.e., Theo-rem 10) is stated for both the new de�nitions, because the combined simulator is an interactivemachine (and thus De�nitions 3 and 4 do not necessarily coincide when applied to it).Theorem 10 (extendability of normal black-box simulators, the case of general two-party proto-cols): Let � be a two-party protocol and realA(x) denote the output of its execution, on inputtuple x, under an attack of the adversary A. Let S be a normal w.r.t De�nition 3 (resp., De�ni-tion 4) simulator and idealAF (x) denote the output of its execution, on input tuple x, oracle accessto the strategy A, and when the trusted party answers according to the functionality F . Supposethat for every strict PPT strategy A, it holds that idealAF is computational indistinguishable fromrealA. Then, for every strategy A that is expected PPT w.r.t De�nition 3 (resp., De�nition 4),the total simulation time of the combined simulator SA is expected PPT w.r.t De�nition 3 (resp.,De�nition 4) and idealAF is computational indistinguishable from realA.17



As in case of zero-knowledge, Theorem 10 asserts that known simulators that handle strict PPTadversaries can also handle adversaries that run in expected polynomial-time under the new de�-nition(s). (Again, this holds even if the former simulators run in expected PPT.)Proof: The current proof is analogous to the proof of Theorem 8, except that the veri�cation ofthe expected total running-time of the combined simulation is slightly less evident. The key pointis that a de�nitional attack (i.e., as in De�nitions 3 and 4) on the combined simulator SA yields acorresponding attack on A, whereas A satis�es De�nition 3 (resp. De�nition 4) by the hypothesis.Details follow.We can focus on the total time spent by A in all its invocations by S, since the number ofsteps of S itself is upper-bounded by the normality hypothesis. Let us �rst consider the versionthat refers to De�nition 4, denoting by n!A(!S) the maximum number of invocations of A by S,when A (resp., S) uses coins !A (resp., !S) and the maximization is over all possible messages(supposedly by the trusted party) that can be provided to the simulator (maximized for thesechoices of !A and !S). By the normality hypothesis (applied to the residual adversaries A!A),it follows that max!AfE!S [n!A(!S)]g is upper-bounded by a polynomial. Denoting by t(!A) themaximum running time of A when the maximization is over all possible messages sent to A (againmaximized for this choice of !A), it follows that E!A [t(!A)] is upper-bounded by a polynomial(since A is PPT w.r.t De�nition 4). Now, the total time spent by A when SA interacts with amagical machine (as in De�nition 4) is upper-bounded byE!S ;!A [n!A(!S) � t(!A)] = E!A [E!S [n!A(!S)] � t(!A)]� E!A [max! fE!S [n!(!S)]g � t(!A)]= max! fE!S [n!(!S)]g � E!A [t(!A)]This establishes the claim for De�nition 4. Turning to the version that refers to De�nition 3,we apply an analogous analysis. Speci�cally, �xing any reset attack on the simulator SA, we letnr(!S; !A) denotes the number of invocations of A(!A) by S(!S) when SA(!A)(!S) is invoked bythe reset attack that uses coins r. The admissibility of this reset attack on SA means that, for any!A and !S, the expected number of invocations of SA(!A)(!S) by this attack is upper-bounded by apolynomial. By the normality hypothesis regarding S (applied to the residual strategy A!A , for any�xed !A), it follows that max!AfEr;!S [nr(!S ; !A)]g is upper-bounded by a polynomial (denoted q).This means that the corresponding reset attack on A (i.e., obtained by combining the reset attackon SA with S itself) is admissible (i.e., is a q-reset attack). Thus, by De�nition 3 (applied to A), itfollows that the expected total amount of time spent by A in these interactions is upper-boundedby a polynomial.4.2 Sequential compositionIn continuation to Section 3.2, we turn to discuss the preservation of the security of general protocolsunder sequential composition. The formulation is more complex in the current setting, because se-quential composition of general protocols refers to a model of oracle-aided protocols (a.k.a \hybrid"model). Thus, we need to extend our de�nitional treatment of expected PPT to that model.Recall that an oracle-aided protocol � that uses oracle calls to a functionality f , is a protocolaugmented by special instructions by which the (two) parties may invoke the functionality f (severaltimes). Each invocation is performed by sending inputs to f , via special (imaginary) channels, and18



receiving corresponding outputs (again via special channels).27 Thus, in the various de�nitionsof expected PPT we need to refer also to the distribution of the messages obtained through theaforementioned special channels. Speci�cally, when considering a strategy in the oracle-aided model,the (de�nitional) attack28 on this strategy controls both the ordinary channels (on which thestrategy expects to get messages from other parties) and the special channels (on which the strategyexpects to get outputs from the functionality). We stress that only under (the natural extensionof) De�nition 1, it is the case that the messages delivered over the special channels must �t thedesignated functionality f .A sequential composition theorem refers to an oracle-aided protocol that uses oracle calls tosome functionality, and to the e�ect of replacing these oracle calls by invocations of a secure protocolfor the said functionality. In the standard results of this type (cf. [C00]), it is assumed that theproof of security of the sub-protocol (which replaces the oracle calls to the functionality) is via astrict PPT simulator. The di�culty addressed here is that allowing an expected PPT simulator forthis sub-protocol requires considering expected PPT adversaries for the oracle-aided protocol (evenif we only care about strict PPT adversaries for the composed protocol). But if the oracle-aidedprotocol is secure also with respect to expected PPT adversaries then we are �ne (as far as strictPPT adversaries for the composed protocol are concerned). As in the proof of Theorem 9, if allthe simulators guaranteed by the hypothesis are normal, then we can extend the result to expectedPPT adversaries.Theorem 11 (expected PPT version of the standard sequential composition theorem29:) In thistheorem security means the existence of normal black-box simulators that can handle30 any ex-pected PPT adversary, where normality and expected PPT are de�ned as in either De�nition 3 orDe�nition 4. Suppose that F can be securely computed by an oracle-aided protocol � that is givenoracle access to the functionality f , which can be securely computed by a standard protocol �. Then,F can be securely computed by a standard protocol �0, which is composed of � and �.Note that, by Theorem 10, it su�ces to have in the hypothesis expected PPT (normal black-box) simulators that can simulate any strict PPT adversary. Actually, the following proof invokesTheorem 10 anyhow, which in turn is the reason that the de�nition of security refers to simulatorsthat operate in a black-box and normal fashion.Proof: As in the proof of Theorem 9, the �rst idea that comes to mind is adapting the standardproof of the corresponding result (i.e., [G04, Thm. 7.4.3]) that refers to strict PPT. Speci�cally,the standard proof (as presented, say, in [G04, Sec. 7.4.2]) proceeds as follows: First, any adversarythat attacks the standard protocol �0 is transformed into an adversary that attacks the standardprotocol �. Next, the former adversary (i.e., of �0) as well as a simulator for the latter adversary(i.e., of �) are combined and transformed into an adversary that attacks the oracle-aided protocol� (which uses oracle calls to f). A simulator of this adversary of � yields the desired simulation.27We stress that each invocation of f is performed instantaneously and no other protocol activity (i.e., neitheran ordinary communication nor another invocation of f) is performed concurrently. As usual, towards the timecomplexity, each invocation is considered a single step.28Note that here we refer to the attacks used (as a mental experiment) in the various de�nitions of expected PPTstrategies (especially in De�nitions 3 and 4).29This is an expected PPT version of the Sequential Composition Theorem of [C00] (see also [G04, Thm. 7.4.3]),which refers to security as the existence of strict PPT simulators that handle any strict PPT adversary. As inTheorem 9, our expected PPT version requires that the simulators in the hypothesis operate in a black-box (andnormal) manner.30As in Theorem 9, handling means that the corresponding combined simulator runs in expected PPT under therelevant de�nition and produces output that is computationally indistinguishable from the real interaction.19



However, as in the proof of Theorem 9, it is not necessarily the case that if the adversaryattacking �0 is expected PPT then the adversary obtained for � is also expected PPT. Thus, again,we take an alternative route, starting by establishing the current theorem for strict PPT adversariesattacking �0 and next applying Theorem 10 to extend the result to adversaries that are expectedPPT w.r.t De�nition 3 (resp., De�nition 4). Now there is no problem with the �rst transformation(which transforms any strict PPT adversary attacking �0 into a strict PPT adversary attacking�). Hence, we obtain a simulator for �, which runs in expected PPT w.r.t De�nition 3 (resp.,De�nition 4). Combining this simulator with the former adversary (for �0), we obtain an adversaryattacking � that runs in expected PPT according to De�nition 3 (resp., De�nition 4).The key point is that (by the hypothesis) we do have a (normal black-box) simulator thatcan handle any expected PPT adversary attacking �. Thus, proceeding as in the proof of [G04,Thm. 7.4.3], we obtain a simulator for �0, which is expected PPT w.r.t De�nition 3 (resp., De�-nition 4). Using the fact that both simulators we used are normal black-box simulators (and so isthe construction presented in the proof of [G04, Thm. 7.4.3]), we infer that the simulator obtainedfor �0 is a normal black-box simulator. This allows invoking Theorem 10, and thus extendingthe simulation to adversaries that are expected PPT w.r.t De�nition 3 (resp., De�nition 4). Thetheorem follows.Discussion: Note that the partial result by which �0 is secure w.r.t strict PPT adversaries (viaan expected PPT simulator) was established using the following two hypotheses: (1) the simulatorfor � can handle expected PPT adversaries, and (2) the (expected PPT) simulator for � can handlestrict PPT adversaries. That is, this partial result neither uses the hypothesis that the simulatorfor � can handle expected PPT adversaries nor the hypothesis that both simulators operate ina black-box (and normal) fashion. The latter hypothesis is used in order to guarantee that thesimulator constructed for �0 is a normal black-box simulator, which in turn is used for extendingthe partial result to the general result stated in Theorem 11. The hypothesis that the simulatorfor � can handle expected PPT adversaries is never used.Recall that, as a direct corollary to Theorems 10 and 11, we obtain the following result, whichsu�ces in many (if not all)31 applications. This result refers to the composition of protocols thatare proved secure with respect to strict PPT adversaries by using expected PPT simulators.Corollary 12 (sequential composition for the mixed strict/expected model:) Here security meansthe existence of normal black-box simulators that can handle any strict PPT adversary, wherenormality is de�ned as in either De�nition 3 or De�nition 4, and allows expected PPT simulators.Suppose that F can be securely computed by an oracle-aided protocol � that is given oracle accessto the functionality f , which can be securely computed by a standard protocol �. Then, F can besecurely computed by a standard protocol �0, which is composed of � and �.Actually, the simulator for � need not be black-box, because Corollary 12 can be derived as anconsequence of the aforementioned partial result, which only requires the simulator of � to handleexpected PPT adversaries. The latter condition is guaranteed by applying Theorem 10 to thenormal black-box simulator that can handle any strict PPT adversary for �.4.3 Concurrent compositionTurning to concurrent composition theorems, we recall the pivotal role of environmental security(a.k.a UC-security [C01]) in that context. Speci�cally, Canetti [C01] put forward a robust notion of31The stronger statement relies on the opinions expressed in Section 1.5.20



security (i.e., environmental security), and proved that any protocol that satis�es this notion alsopreserves security under arbitrary concurrent executions. Since environmental security refers to asingle execution, an appealing methodology for providing protocols that are secure under arbitraryconcurrent executions emerged: design your protocol to be environmentally secure and obtain (forfree) security under concurrent executions. Our goal is to extend this methodology, which wasdeveloped for the strict PPT setting, to the expected PPT setting. This requires (1) showing thatenvironmental security in the strict PPT setting implies environmental security in the expectedPPT setting, and (2) verifying that Canetti's proof extends to the expected PPT setting. But letus start by recalling Canetti's notion of environmental security [C01] (see also [G04, Sec. 7.7.2]),while con�ning ourselves to standard (non-reactive) functionalities.32A brief introduction to environmental security. Loosely speaking, environmental security33is aimed at representing the preservation of the protocol's security when executed within any(feasible) environment. The notion of an environment is a generalization of the notion of anauxiliary-input; that is, the environment is an auxiliary oracle (or rather a state-dependent oracle)that the adversary may access. In particular, the environment may represent other executions ofvarious protocols that are taking place concurrently (with the execution that we consider). Westress that the environment is not supposed to assist the proper execution of the protocol (and, infact, honest parties merely obtain their inputs from it and return their outputs to it). In contrast,the environment may assist the adversary in attacking the protocol. Following the simulationparadigm, we say that a protocol (for computing a functionality F ) is environmentally-secure if anyfeasible real-model adversary attacking the protocol, with the assistance of any feasible environment,can be simulated by a corresponding ideal-model adversary that uses the same environment (andcommunicates with a trusted party that represents F ). We stress that both adversaries interactwith an environment that is selected after they are �xed (i.e., they \use" the environment in ablack-box manner). For sake of simplicity, the environment is also responsible for providing theparties with inputs and for trying to distinguish the real-model execution from the ideal-modelexecution. In the standard formulation (see [G04, Sec. 7.7.2]), the environment is implemented bya (non-uniform) family of polynomial-size circuits (or, equivalently, by strict PPT with arbitraryauxiliary inputs). As usual, the real-model and ideal-model adversaries are modeled as strict PPTinteractive machines.The expected PPT version. Firstly, we apply our de�nitions of expected PPT (i.e., De�ni-tions 3 and 4) to the real-model and ideal-model adversaries, hereafter referred to as adversariesand simulators respectively. Note that the (de�nitional) attacks on these strategies control boththe ordinary channels (on which such a strategy expects to get messages from other parties) andthe channels used for communication with the environment. Secondly, we apply our de�nitionsof expected PPT (i.e., De�nitions 3 and 4) to the environment itself, which after all is merely a32Recall that a (non-reactive) functionality is a randomized version of a multi-input multi-output function (cf. [G04,Sec. 7.2.1]). In contrast, Canetti's exposition of environmental security [C01] is dominate by reactive functionalities,which are of natural (secondary) interest also when the basic notion of (stand-alone) security is concerned (cf. [G04,Sec. 7.7.1.3]). We see no reason to couple environmental security with reactive functionalities.33The term used by Canetti [C01] is Universally Composable, abbreviated UC-secure, but we believe that a reason-able sense of \universal composability" is merely a corollary of the suggested de�nition. Furthermore, as indicated bysubsequent research (e.g., [L03]), it is bene�cial to distinguish the desired \universal composability" property fromthe speci�c way it is formulated. 21



strategy.34 Lastly, we extend the notion of normal black-box simulators such that its \net" timebound (i.e., counting only its own steps) refers to interaction with any environment.Theorem 13 (extendability of simulators, the case of environmental security): In this theorem,an expected PPT strategy is one that satis�es De�nition 3 (resp., De�nition 4). Suppose that �is environmentally secure in the sense for every strict PPT adversary there exists an expectedPPT simulator such that, for every strict PPT environment, the corresponding real-model andideal-model executions are computationally indistinguishable. Further suppose that the simulatorruns in expected PPT even when interacting with an arbitrary environment. Then, there exists anormal black-box simulator such that, for every expected PPT adversary and every expected PPTenvironment, the following holds:1. The expected total simulation time is polynomial, where the total simulation time includes thesteps taken by the simulator itself, the steps taken by the black-box adversary in all invocations,and all steps taken by the environment.2. The corresponding real-model and ideal-model executions are computationally indistinguish-able.Note that the hypothesis allows the simulator to run in expected PPT while simulating a strictPPT adversary and that the simulation is guaranteed to be computationally indistinguishable withrespect to strict PPT environments. Unlike in the previous extendability theorems (i.e., Theorems 8and 10), here we did require the simulator to use the adversary in a black-box manner, becausewithout loss of generality (in the environmental setting) it su�ces to consider a �xed (and rathertrivial) adversary (cf. [C01]). We did require, however, that the simulator of that adversary runsin expected PPT when interacting with any environment.Proof: By the last comment, the hypothesis actually yields a normal black-box simulator thathandles any strict PPT adversary and any strict PPT environment. Proceeding as in the proofof Theorem 10, which in turn builds on the proof of Theorem 8, we note that the same simulatorcan handle any expected PPT adversary and any expected PPT environment. The current theoremfollows.Security under concurrent executions. For any protocol �, we wish to consider numerousexecutions of � that take place concurrently, where the scheduling of messages in the variousexecutions is up to the adversary.35 In addition, other numerous executions of other protocols(sometimes referred to as \arbitrary network activity") can take place concurrently, but our concernis with the security of the copies of �. Loosely speaking, this should mean that these actualexecutions of � can be simulated in a corresponding ideal-model (where a trusted party answersaccording to the desired functionality). Needless to say, the simulator control the same partiesthat are controlled by the adversary in the real-model. For simplicity, consider the case that allexecutions of the (two-party) protocol � are played by the same pair of parties (and that theadversary controls a single party).34In fact, since the simulator cannot \rewind" the environment, we may allow the environment to be expected PPTaccording to De�nition 2. However, in the main application (i.e., Theorem 14) we shall only use environments thatare expected PPT according to De�nition 3 (resp. De�nition 4).35Note that this di�ers from sequential composition (treated in Section 4.2) in that these executions take placeconcurrently rather than sequentially. Furthermore, additional activity (which is referred to next) takes place con-currently rather than before and/or after these executions.22



Canetti [C01] prove that if � is environmentally secure then the concurrent execution of multiplecopies of � is secure, where security refers to strict PPT adversaries and simulators (as well as suchenvironments when relevant). Loosely speaking, Canetti's proof consists of simultaneously replacingall the (real-model) concurrent executions by copies of the simulator (of the environmental securityhypothesis) while emulating the adversary's attack on the concurrent system by using the channelsof the corresponding environments. (A hybrid argument that refers to partial replacements of realexecutions by simulations is used for showing that the behavior is maintained.) Here we claim anexpected PPT version of Canetti's result.Theorem 14 (environmental security implies concurrent composability, an expected PPT version(roughly stated)): Suppose that � is environmentally secure with respect to adversaries, simulatorsand environments that are expected PPT w.r.t De�nition 3 (resp., De�nition 4). Further supposethat the simulator runs in expected PPT even when interacting with an arbitrary environment.Then the concurrent execution of polynomially many copies of � is secure with respect to adversariesand simulators that are expected PPT w.r.t De�nition 3 (resp., De�nition 4).The proof is analogous to the proof of Theorem 11. For clarity, we start by de�ning an imaginaryprotocol �0 that consists of polynomially many concurrent copies of �, each initiated by any partyat any time and proceeding at arbitrary pace (i.e., at each time, each party decides whether toinitiate a new copy or advance an active copy by sending a corresponding message). Next, adaptingthe proof of Canetti [C01], we �rst prove a partial result in which we only consider an arbitrarystrict PPT adversary that attacks �0 (i.e., polynomially many copies of �). We note that thesimulator constructed by Canetti (for �0) uses the simulator for environmental security of � in ablack-box and normal manner. Thus, the former simulator runs in expected PPT provided thatthe latter simulator runs in expected PPT, which is de�nitely the case when simulating residualadversaries and environments that are derived from the strict PPT adversary that attacks �0.Finally, proceeding as in the proof of Theorem 11, we extend the result to any expected PPTadversary that attacks �0. Theorem 14 follows.5 Alternatives to expected PPTIn standard algorithmic settings, strict PPT captures the intuitive notion of e�cient probabilisticcomputations. However, as explained in Section 1.5, in some cases strict PPT is slightly too rigidand one may seek a more 
exible alternative. Expected PPT provides such a 
exible alternative,and in fact it is the �rst such alternative that comes to mind. Throughout this work, we ignoredthe question of what is a good 
exible de�nition of \e�cient probabilistic" algorithms. We merelyassumed that it is provided by expected PPT, and focused on extending this notion to interactivemachines. In this section we discuss several alternatives to the association of e�cient probabilisticalgorithms with expected PPT.Recall that expected PPT refers to the expected running-time and requires that this expecta-tion be upper-bounded by a polynomial (in the length of the input). However, as advocated byLevin [L86] in a somewhat di�erent context (see [G97]), a better de�nition of \
exible probabilistice�ciency" is obtained by requiring that the running-time itself, as a random variable, be upper-bounded by a polynomial in a random variable that has expectation that is at most linear (in thelength of the input). In particular, Levin's de�nitional approach eliminates the technical di�cultiesexempli�ed at the end of Footnote 26, and provides a robust de�nition of probabilistic e�ciency;that is, if a probabilistic algorithm is deemed \e�cient" then also a modi�cation that squares its23



running time will yield an \e�cient" algorithm.36 In Section 5.1 we extend Levin's de�nitionalapproach to interactive strategies, pursuing the same alternatives as those presented in Section 2,and establishing analogous extendability and composition results.In general, the question of how to de�ne 
exible probabilistic e�ciency for non-interactivealgorithms is quite orthogonal to the issues discussed in the current paper (i.e., how to extendsuch a de�nition to interactive strategies). Indeed, it seems that any reasonable de�nition foralgorithms can be extended in analogous ways to interactive strategies. For example, in the contextof zero-knowledge, it was suggested (cf. [DNS]) to use simulators that, for every desired noticeabledeviation � (from the real interaction), run in time that is strictly bounded by a polynomial in1=�. An alternative suggestion (of Vadhan [V06]) is allowing (standard) simulation with varyingrunning-time such that the probability that the simulation takes more than t steps is upper-boundedby poly() � t�
(1) + �(), where � is a negligible function. Note that, in both cases, the de�nition(stated here for standard algorithms) will have to be extended to interactive machines, and theissues and approaches presented in this paper will apply. For details see Section 5.2.Before discussing these alternatives in greater detail, we note that all these alternative de�-nitions of \
exible probabilistic e�ciency" are more permissive than the standard de�nition (i.e.,expected PPT). We believe that in the current context, where expected PPT is reluctantly intro-duced to account for \probabilistic e�ciency" that goes beyond strict PPT, the opposite approachof restricting probabilistic e�ciency to expected PPT is more adequate.5.1 Extending Levin's approachLet us �rst spell out Levin's suggestion (which was loosely stated above). This suggestion is rootedin the realization that an important aspect of (deterministic and strict probabilistic) polynomial-time as a model of e�cient computation is the closure of polynomial-time under natural algorithmiccompositions. This feature, in turn, boils down to closure properties of the set of polynomials (i.e.,their closure to addition, multiplication, and composition). The problem is that, in the case of\
exible e�cient probabilistic computation", directly upper-bounding the expected running-time(as underlying the de�nition of expected PPT) does not provide closure under natural algorithmiccompositions. But upper-bounding the expectation of a root of the running-time does deliver thedesired property. Speci�cally, we obtain the following de�nition.De�nition 15 (
exible probabilistic e�ciency, following Levin [L86]): For a probabilistic algorithmA and any string x, let TA(x) denote a random variable representing the running-time of A on inputx. Such an algorithm is said to be e�cient if there exists a constant 
 > 0 such that for every x itholds that E[TA(x)
 ] = O(jxj).Although this de�nition looks peculiar, note that it is quite similar to the naive de�nition, which canbe reformulated as asserting E[TA(x)]
 = O(jxj): the di�erent is merely in the order of applying theexpectation and powering operations. De�nition 15 re
ects a better understanding of the nature ofthe expectation operator (with respect to its interaction with other operations), and is preferable forthe purpose of introducing a robust theory of e�cient probabilistic algorithms. Indeed, De�nition 15implies the standard de�nition of expected PPT, but the fact that De�nition 15 goes beyondexpected PPT is of some concern in the current setting. Furthermore, keeping track of the actual36Indeed, this guarantees that Barak's non-black-box simulator [B01] (when applied to \e�cient" veri�ers) remains\e�cient" and an extension of Barak's result to \e�cient" strategies follows as in the proof of Theorem 8 (whilenoting that this speci�c simulator is not a�ected by replacing of the code of V � with the code of V ��). For details,see Section 5.1. 24



expected running-time (as in the standard notion of expected PPT) seems better for the purpose ofactually analyzing the running-time of simulators (especially, because our aim is comparing these tothe running time of corresponding adversaries). For that reason, we performed our main treatmentin terms of expected PPT, and only comment here on how it can be adapted to De�nition 15.Indeed, let us turn to our own business. For simplicity of exposition, note that De�nition 15remains intact if we require that E[TA(x)
 ] = poly(jxj) (rather than E[TA(x)
 ] = O(jxj)).37 Next,note that the de�nition presented in Section 2 can be adapted by merely replacing the randomvariable that represents the running-time (or the number of interactions) by its 
-th power, forsome constant 
 > 0. Let us demonstrate this adaptation for the most complicated case, where weuse the related formulation of saying that the running-time is polynomial in a quantity that haspolynomial expectation.De�nition 16 (De�nition 3, revisited): A q-reset attack on � is an attack that, for every x; y; zand !, interacts with �! for an number of times that is upper-bounded by q(Xx;y;z;!) such thatE[Xx;y;z;!] � poly(jxj). The strategy � is e�cient w.r.t any reset attack if, for some polynomial p,every polynomial q, every q-reset attack on �, and every x; y; z, the total number of steps taken by�(x; z) during this attack is upper-bounded by q(Yx;y;z) � p(Yx;y;z) such that E[Yx;y;z] � poly(jxj).The analogues of De�nitions 1, 2, and 4 are easier to obtain. We similarly adapt the de�nitionof normal (black-box) simulator (i.e., De�nition 6). It is left to verify that the analogous resultsremain valid.Proposition 5, revisited. With the exception of the proof that De�nition 4 implies De�nition 3,all the claims are highly insensitive to the speci�c notion of e�cient probabilistic computation.When proving the remaining analogue (and referring to notations as in the said proof), note thatEr;![TA(r)(!)
 ] is upper-bounded by the product of max!fEr[nA(r)(!)
 ]g and E![maxrftA(r)(!)
g].Thus, upper-bounds on the latter factors38 yield the desired upper-bound, which implies that anystrategy that satis�es the analogue of De�nition 4 also satis�es the analogue of De�nition 3.Theorem 8, revisited. Noting that Observation 7 extends to the current setting, we infer thatso does the running-time analysis of the simulator. Thus, it remains to consider the analysisof the quality of the simulator's output. Let T �(x) be a random variable representing the totalnumber of steps taken by V � during all its invocations by M (rather than the expected valueof this number, which was considered in the proof of Theorem 8). By the foregoing, for some
 > 0, it holds that � def= E[(T �(x))
 ] = poly(jxj). Thus, Pr[(T �(x))
 > 3�=�(jxj)] < �(jxj)=3and Pr[T �(x) > (3�=�)1=
 ] < �=3 follows. Truncating runs of V � once (poly(jxj)=�)1=
 steps arecompleted, we obtain a strict PPT V �� and continue as in the original analysis.On the extendability of Barak's non-black-box simulation. We claim that Barak's simu-lator [B01] (as well as its modi�cation [BG02]) can handle adversaries that satisfy De�nition 16 (oractually even a corresponding version of De�nition 2). This claim can be proved by noting that thissimulator can be applied to any deterministic adversary, while running in time that is polynomialin the running-time of the adversary. Thus, we may apply this simulator to a residual deterministic37This follows by observing that, for every c � 1 and X � 0, it holds that E[Xc] � E[X]c. Hence, E[TA(x)
 ] =O(jxj)c implies E[TA(x)
=c] = O(jxj).38Note that we may need to use the fact that E[X
 ] � E[X
0 ] for every 
 � 
0.25



adversary obtained by �xing (at random) the coins of the given probabilistic adversary. It followsthat the simulator makes a number of steps that satis�es De�nition 15 (because its running-time ispolynomial in a quantity that satis�es De�nition 15). As for the quality of this simulation, it canbe analyzed as the foregoing version of Theorem 8, while noting that this speci�c simulator is nota�ected by replacing of the code of V � with the code of V ��.Note that Theorem 9 as well as the other composition theorems are highly insensitive to the spe-ci�c notion of e�cient probabilistic computation in use. Their proof merely invokes the correspond-ing composition theorem for strict PPT and the relevant extendability theorem (e.g., Theorem 8).We thus conclude this section by considering the extendability theorem for general protocols.Theorems 10, revisited. The issue again is the analysis of the running-time of the combinedsimulator (which in this context is an interactive machine). For the analogue of De�nition 4, itsu�ces to relate to powers of the quantities appearing in the proof of Theorem 10 (rather thanto the quantities themselves), indeed as done in the proof of the revisited Proposition 5. For theanalogue of De�nition 3 the modi�cation is even more transparent.5.2 Extending other approachesWe consider a relaxation of De�nition 15 suggested by Vadhan [V06] as well as a generalization ofthe notion of epsilon-knowledge (used in, e.g., [DNS]).5.2.1 Extending Vadhan's relaxation of Levin's approachLet us start by noting that an equivalent formulation of De�nition 15 asserts that, for some constant
 > 0, it holds that Pr[TA(x) > t] = O(jxj=t
) for every x and t. Clearly, E[TA(x)
 ] = O(jxj)implies Pr[TA(x)
 > t
 ] = O(jxj)=t
 (for every t). On the other hand, if for some constant 
 > 0it holds that Pr[TA(x)
 > t
 ] = O(jxj)=t
 (for every t), then, for every 
0 < 
, it holds thatE[TA(x)
0 ] = O(jxj).The foregoing equivalent form of De�nition 15 is the starting point for further relaxation,suggested by Vadhan [V06]. According to this relaxation it is only requires that for some negligiblefunction � : f0; 1g� ! [0; 1] it holds that Pr[TA(x) > t] = O(jxj=t
) + �(jxj). This relaxation isconceptually appealing, because a negligible deviation of various probabilities is allowed throughoutthe theory of cryptography.Extending Vadhan's approach. Again, the de�nitional treatment provided in Section 2 andDe�nition 6 is easily adapted to the current notion of probabilistic e�ciency. As for the analogousresults, they all hold. This can be proved by noting that, for each relevant probabilistic process,all but a negligible measure of the probability space behaves analogously to De�nition 15. Thus,the analysis used in Section 5.1 can be applied to the non-exceptional part of the probability space,and the negligible part can be ignored (or rather accounted for by the negligible error probabilityallowed in the �nal result). We stress that this decomposition of the probability space is only amental experiment performed in the analysis, while the various strategies and algorithms remainexactly as described in Section 5.1.5.2.2 Extending the epsilon-knowledge approachOur starting point is an approach that was used in the context of zero-knowledge, where it iscalled epsilon-knowledge. In this approach the simulator is provided with a non-negligible deviation26



parameter, denoted �. The simulator is required to run in (strict) poly(jxj=�)-time and should outputa transcript that is �-indistinguishable from the real interaction (i.e., the probability gap observedby any PPT distinguisher is at most � (rather than negligible)). We stress that the running-time ofthe simulator may depend on �. Intuitively, when the simulator is required to produced an outputof higher quality (i.e., corresponding to a smaller �), it is allowed more time.From epsilon-knowledge to epsilon-security. Although (to the best of our knowledge) thisapproach has only been applied in the context of zero-knowledge, it can be applied to general secureprotocol yielding a corresponding notion of epsilon-security.39 That is, we consider arbitrary (non-interactive (and later interactive)) probabilistic machines that are given a parameter �, and alwaysrun for at most poly(jxj=�) steps; both the adversary and its simulator will be modeled as suchmachines, but they may use di�erent values of the deviation parameter (e.g., when given theparameter �, the simulator may invoke the adversary with parameter �0). Hence, epsilon-securitymeans that for every such adversary there exists a corresponding simulator that, when given theparameter �, yields an ideal execution that is �-indistinguishable from the real one.Note that in the foregoing paragraph we postulated that the relevant interactive (probabilistic)machine always run for at most poly(jxj=�) steps. The straightforward meaning of this requirementis as in De�nition 4; indeed, exactly as is the case of strict PPT. Thus, it seems the notion ofepsilon-security is actually unrelated to the issues discussed in this paper (since epsilon-securityrefers to strict bounds on the running-time rather than to expected (or varying) bounds).40On the composition of epsilon-secure protocols. We seize the opportunity to pointing outan important detail regarding the composition of epsilon-secure protocols. Suppose that we arecomposing an oracle-aided protocol � with a protocol �, obtaining a protocol �0. Recall that whenconstructing a simulator for �0, we use a simulator for � that refers to an adversary A, whereA itself incorporates a simulator for �, which is being invoked t(jxj) times. Thus, the deviationof the combined simulator (for �0) is upper-bounded by � + n�(jxj) � t(jxj) � ��, where � (resp., ��)is the deviation of the simulator of � (resp., of �), and n� is an upper-bound on the number ofinvocations of A (by the simulator for �). Note that n� is upper-bounded by the running-time ofthe simulator of �, which in turn may depend on its own deviation parameter (i.e., �); that is,we may have n�(jxj) = poly(jxj=�). Thus, the total deviation of the combined simulator (for �0)may take the form �+ poly(jxj=�) � ��. This means that, when given a deviation parameter �0, thecombined simulator should invoke the two simulators with su�ciently small deviation parameters(e.g., setting � = �0=2 and �� = poly(�=jxj) will do).6 Conclusions and Open ProblemsWe believe that the new de�nitions of expected PPT (i.e., De�nitions 3 and 4) are satisfactory.Indeed, our belief is supported by the results presented in this paper; that is, by the fact that normal39In fact, a related notion of security has appeared in the context of password-based security (cf. [GL06]), but there� is not a free parameter but rather represents the noticeable a priori probability of guessing the correct password,and the running-time of the simulator is independent of �.40Still, one can present relaxed de�nitions in which the running-time of the simulator (or some other interactivemachines) is only evaluated with respect to attacks such as in De�nition 3 (or even only with respect to interactivemachines), rather than with respect to De�nition 4. We note that the version that relates to De�nition 3 also supportsthe composition result discuss below, but we see little motivation to consider this version.27



black-box simulators that handle strict PPT adversaries also handle adversaries that satisfy ourde�nitions, and that these de�nitions support various natural composition theorems.We note that both de�nitions arise naturally. As we saw, De�nition 3 arises as the naturalanswer to the problem caused by dealing with adversaries that are expected PPT under De�nition 2.As for De�nition 4 it is simplest to state, and, contrary to our initial feeling, it works just as well.A natural question that arises is which de�nition is preferable: De�nition 3 or De�nition 4? Atthis point we feel no urge to address this question. In our opinion, a choice will have to be madeonly once we reach applications that work with one de�nition but not with the other.We note that normal black-box simulators are pivotal to our main results. It may be thatthe same results (or equally satisfactory modi�cations of them) hold also for arbitrary black-boxsimulators and even for any universal simulators, but the current proofs fail to show this (seeFootnote 26). We leave the resolution of this issue as an open problem. A good place to start maybe getting rid of the normality condition.AcknowledgmentsI am grateful to Salil Vadhan for a discussion that inspired this work (and in particular De�nition 3).I should be equally grateful to Yehuda Lindell for a discussion that inspired De�nition 4, but I onlyunderstood this in retrospect. In addition, I wish to thank Salil and Yehuda for many insightfuldiscussions and helpful comments on earlier drafts of this write-up. Finally, I wish to thank thereviewers of TCC'07 for their comments, although I disagree with most comments.
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