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1 Introdution and PreliminariesIt is possible to build a abin with no foundations,but not a lasting building.Eng. Isidor Goldreih (1906{1995)1.1 IntrodutionModern ryptography is onerned with the onstrution of systems that are robust against ma-liious attempts to make these systems deviate from their presribed funtionality. Indeed, thesope of modern ryptography is very broad, and stands in ontrast to \lassial" ryptography,whih has been assoiated with the single problem of providing seret ommuniation over inseureommuniation media.The design of ryptographi shemes is a very diÆult task. One annot rely on intuitionsregarding the \typial" state of the environment in whih the system operates. For sure, theadversary attaking the system will try to manipulate the environment into \untypial" states.Nor an one be ontent with ounter-measures designed to withstand spei� attaks, sine theadversary (whih ats after the design of the system is ompleted) will try to attak the shemesin ways that are di�erent from the ones the designer had envisioned. The validity of the aboveassertions seems self-evident, still some people hope that in pratie ignoring these tautologies willnot result in atual damage. Experiene shows that these hopes rarely ome true; ryptographishemes based on make-believe are broken, typially sooner than later.In view of the foregoing, we believe that it makes little sense to make assumptions regarding thespei� strategy that the adversary may use. The only assumptions that an be justi�ed refer tothe omputational abilities of the adversary. Furthermore, the design of ryptographi systems hasto be based on �rm foundations; whereas ad-ho approahes and heuristis are a very dangerousway to go. A heuristi may make sense when the designer has a very good idea regarding theenvironment in whih a sheme is to operate, yet a ryptographi sheme has to operate in amaliiously seleted environment whih typially transends the designer's view.This survey is aimed at presenting the foundations for ryptography. The foundations of ryp-tography are the paradigms, approahes and tehniques used to oneptualize, de�ne and providesolutions to natural \seurity onerns". We will present some of these paradigms, approahes andtehniques as well as some of the fundamental results obtained using them. Our emphasis is on thelari�ation of fundamental onepts and on demonstrating the feasibility of solving several entralryptographi problems.Solving a ryptographi problem (or addressing a seurity onern) is a two-stage proess on-sisting of a de�nitional stage and a onstrutive stage. First, in the de�nitional stage, the funtion-ality underlying the natural onern is to be identi�ed, and an adequate ryptographi problem hasto be de�ned. Trying to list all undesired situations is infeasible and prone to error. Instead, oneshould de�ne the funtionality in terms of operation in an imaginary ideal model, and require aandidate solution to emulate this operation in the real, learly de�ned, model (whih spei�es theadversary's abilities). One the de�nitional stage is ompleted, one proeeds to onstrut a systemthat satis�es the de�nition. Suh a onstrution may use some simpler tools, and its seurity isproven relying on the features of these tools. In pratie, of ourse, suh a sheme may need tosatisfy also some spei� eÆieny requirements.This survey fouses on several arhetypial ryptographi problems (e.g., enryption and sig-nature shemes) and on several entral tools (e.g., omputational diÆulty, pseudorandomness,1



and zero-knowledge proofs). For eah of these problems (resp., tools), we start by presenting thenatural onern underlying it (resp., its intuitive objetive), then de�ne the problem (resp., tool),and �nally demonstrate that the problem may be solved (resp., the tool an be onstruted). Inthe latter step, our fous is on demonstrating the feasibility of solving the problem, not on provid-ing a pratial solution. As a seondary onern, we typially disuss the level of pratiality (orimpratiality) of the given (or known) solution.Computational DiÆultyThe spei� onstruts mentioned above (as well as most onstruts in this area) an exist onlyif some sort of omputational hardness exists. Spei�ally, all these problems and tools require(either expliitly or impliitly) the ability to generate instanes of hard problems. Suh ability isaptured in the de�nition of one-way funtions. Thus, one-way funtions are the very minimumneeded for doing most sorts of ryptography. As we shall see, one-way funtions atually suÆefor doing muh of ryptography (and the rest an be done by augmentations and extensions of theassumption that one-way funtions exist).Our urrent state of understanding of eÆient omputation does not allow us to prove thatone-way funtions exist. In partiular, the existene of one-way funtions implies that NP is notontained in BPP � P (not even \on the average"), whih would resolve the most famous openproblem of omputer siene. Thus, we have no hoie (at this stage of history) but to assume thatone-way funtions exist. As justi�ation to this assumption we may only o�er the ombined believesof hundreds (or thousands) of researhers. Furthermore, these believes onern a simply statedassumption, and their validity follows from several widely believed onjetures whih are entralto various �elds (e.g., the onjeture that fatoring integers is hard is entral to omputationalnumber theory).Sine we need assumptions anyhow, why not just assume what we want (i.e., the existene ofa solution to some natural ryptographi problem)? Well, �rst we need to know what we want:as stated above, we must �rst larify what exatly we want; that is, go through the typiallyomplex de�nitional stage. But one this stage is ompleted, an we just assume that the de�nitionderived an be met? Not really: one a de�nition is derived, how an we know that it an at allbe met? The way to demonstrate that a de�nition is viable (and so the intuitive seurity onernan be satis�ed at all) is to onstrut a solution based on a better understood assumption (i.e.,one that is more ommon and widely believed). For example, looking at the de�nition of zero-knowledge proofs, it is not a-priori lear that suh proofs exist at all (in a non-trivial sense). Thenon-triviality of the notion was �rst demonstrated by presenting a zero-knowledge proof system forstatements, regarding Quadrati Residuosity, whih are believed to be hard to verify (without extrainformation). Furthermore, in ontrary to prior beliefs, it was later shown in that the existene ofone-way funtions implies that any NP-statement an be proven in zero-knowledge. Thus, fats thatwere not known at all to hold (and even believed to be false), where shown to hold by redution towidely believed assumptions (without whih most of modern ryptography ollapses anyhow). Tosummarize, not all assumptions are equal, and so reduing a omplex, new and doubtful assumptionto a widely-believed simple (or even merely simpler) assumption is of great value. Furthermore,reduing the solution of a new task to the assumed seurity of a well-known primitive typiallymeans providing a onstrution that, using the known primitive, solves the new task. This meansthat we do not only know (or assume) that the new task is solvable but rather have a solutionbased on a primitive that, being well-known, typially has several andidate implementations.2



Prerequisites and StrutureOur aim is to present the basi onepts, tehniques and results in ryptography. As stated above,our emphasis is on the lari�ation of fundamental onepts and the relationship among them. Thisis done in a way independent of the partiularities of some popular number theoreti examples.These partiular examples played a entral role in the development of the �eld and still o�erthe most pratial implementations of all ryptographi primitives, but this does not mean thatthe presentation has to be linked to them. On the ontrary, we believe that onepts are bestlari�ed when presented at an abstrat level, deoupled from spei� implementations. Thus, themost relevant bakground for this survey is provided by basi knowledge of algorithms (inludingrandomized ones), omputability and elementary probability theory.The survey is organized in two main parts orresponding to Basi Tools and Basi Appliations,whih are preeeded by preliminaries (regarding eÆient omputation). The Basi Tools onsist ofomputational diÆulty (one-way funtions), pseudorandomness and zero-knowledge proofs. Thesebasi tools are used for the Basi Appliations, whih in turn onsist of Enryption Shemes,Signature Shemes, and General Cryptographi Protools.Suggestions for Further ReadingThis survey is a brief summary of the author's two-volume work on the subjet [67, 68℄. Further-more, Part I orresponds to [67℄, whereas Part II orresponds to [68℄. Needless to say, the readeris referred to these textbooks for further detail.Current researh on the foundations of ryptography appears in general omputer siene on-ferenes (e.g., FOCS and STOC), in ryptography onferenes (e.g., Crypto and EuroCrypt) aswell as in the newly established Theory of Cryptography Conferene (TCC).The aim of this survey is to introdue the reader to the theoretial foundations of ryptography.As argued above, suh foundations are neessary for sound pratie of ryptography. Indeed,pratie requires more than theoretial foundations, whereas the urrent work makes no attempt toprovide anything beyond the latter. However, given a sound foundation, one an learn and evaluatevarious pratial suggestions that appear elsewhere (e.g., in [98℄). On the other hand, lak of soundfoundations results in inability to ritially evaluate pratial suggestions, whih in turn leads tounsound deisions. Nothing ould be more harmful to the design of shemes that need to withstandadversarial attaks than misoneptions about suh attaks.Among other things, this survey reviews zero-knowledge proofs (whih are probabilisti) andpseudorandom generators (and funtions). A wider perspetive on probabilisti proof systems andpseudorandomness is provided in [66℄.Non-ryptographi referenes: Some \non-ryptographi" works were referened for sake ofwider perspetive. Examples inlude [3, 4, 5, 6, 57, 71, 79, 97, 121℄.1.2 PreliminariesModern Cryptography, as surveyed here, is onerned with the onstrution of eÆient shemes forwhih it is infeasible to violate the seurity feature. Thus, we need a notion of eÆient omputationsas well as a notion of infeasible ones. The omputations of the legitimate users of the sheme oughtbe eÆient, whereas violating the seurity features (by an adversary) ought to be infeasible.EÆient omputations are ommonly modeled by omputations that are polynomial-time in theseurity parameter. The polynomial bounding the running-time of the legitimate user's strategy is3



�xed and typially expliit (and small). Here (i.e., when referring to the omplexity of the legitimateusers) we are in the same situation as in any algorithmi setting. Things are di�erent when referringto our assumptions regarding the omputational resoures of the adversary. A ommon approah isto postulate that the latter are polynomial-time too, where the polynomial is not a-priori spei�ed.In other words, the adversary is restrited to the lass of eÆient omputations and anything beyondthis is onsidered to be infeasible. Although many de�nitions expliitly refer to this onvention,this onvention is inessential to any of the results known in the area. In all ases, a more generalstatement an be made by referring to adversaries of running-time bounded by any super-polynomialfuntion (or lass of funtions). Still, for sake of onreteness and larity, we shall use the formeronvention in our formal de�nitions.Randomized omputations play a entral role in ryptography. One fundamental reason for thisfat is that randomness is essential for the existene (or rather the generation) of serets. Thus,we must allow the legitimate users to employ randomized omputations, and ertainly (sine ran-domization is feasible) we must onsider also adversaries that employ randomized omputations.This brings up the issue of suess probability: typially, we require that legitimate users su-eed (in ful�lling their legitimate goals) with probability 1 (or negligibly lose to this), whereasadversaries sueed (in violating the seurity features) with negligible probability. Thus, the no-tion of a negligible probability plays an important role in our exposition. One requirement of thede�nition of negligible probability is to provide a robust notion of rareness: A rare event shouldour rarely even if we repeat the experiment for a feasible number of times. That is, in ase weonsider any polynomial-time omputation to be feasible, any funtion � : N ! N that satis�es1� (1��(n))p(n) < 0:01, for every polynomial p and suÆiently big n, is onsidered negligible (i.e.,� is negligible if for every positive polynomial p0 the funtion �(�) is upper-bounded by 1=p0(�)).However, if we onsider the funtion T (n) to provide our notion of infeasible omputation thenfuntions bounded above by 1=T (n) are onsidered negligible (in n).We will also refer to the notion of notieable probability. Here the requirement is that events thatour with notieable probability, will our almost surely (i.e., exept with negligible probability)if we repeat the experiment for a polynomial number of times. Thus, a funtion � :N!N is allednotieable if for some positive polynomial p0 the funtion �(�) is lower-bounded by 1=p0(�).

4



Part IBasi ToolsIn this part we survey three basi tools used in Modern Cryptography. The most basi tool is om-putational diÆulty, whih in turn is aptured by the notion of one-way funtions. Next, we surveythe notion of omputational indistinguishability, whih underlies the theory of pseudorandomnessas well as muh of the rest of ryptography. In partiular, pseudorandom generators and funtionsare important tools that will be used in later setions. Finally, we survey zero-knowledge proofs,and their use in the design of ryptographi protools. For more details regarding the ontents ofthe urrent part, see our textbook [67℄.2 Computational DiÆulty and One-Way FuntionsModern Cryptography is onerned with the onstrution of shemes that are easy to operate(properly) but hard to foil. Thus, a omplexity gap (i.e., between the omplexity of proper usage andthe omplexity of defeating the presribed funtionality) lies in the heart of Modern Cryptography.However, gaps as required for Modern Cryptography are not known to exist; they are only widelybelieved to exist. Indeed, almost all of Modern Cryptography rises or falls with the question ofwhether one-way funtions exist. We note that the existene of one-way funtions implies that NPontains searh problems that are hard to solve on the average, whih in turn implies that NP isnot ontained in BPP (i.e., a worst-ase omplexity onjeture).
x f(x)

easy

HARDFigure 1: One way funtions { an illustration.2.1 One-Way FuntionsOne-way funtions are funtions that are easy to evaluate but hard (on the average) to invert.That is, a funtion f : f0; 1g�!f0; 1g� is alled one-way if there is an eÆient algorithm that oninput x outputs f(x), whereas any feasible algorithm that tries to �nd a preimage of f(x) under5



f may sueed only with negligible probability (where the probability is taken uniformly over thehoies of x and the algorithm's oin tosses). Assoiating feasible omputations with probabilistipolynomial-time algorithms, we obtain the following de�nition.De�nition 2.1 (one-way funtions): A funtion f :f0; 1g�!f0; 1g� is alled one-way if the follow-ing two onditions hold:1. easy to evaluate: There exist a polynomial-time algorithm A suh that A(x) = f(x) for everyx 2 f0; 1g�.2. hard to invert: For every probabilisti polynomial-time algorithm A0, every polynomial p, andall suÆiently large n, Pr[A0(f(x); 1n) 2 f�1(f(x))℄ < 1p(n)where the probability is taken uniformly over all the possible hoies of x 2 f0; 1gn and all thepossible outomes of the internal oin tosses of algorithm A0.Algorithm A0 is given the auxiliary input 1n so to allow it to run in time polynomial in the length ofx, whih is important in ase f drastially shrinks its input (e.g., jf(x)j = O(log jxj)). Typially, fis length preserving, in whih ase the auxiliary input 1n is redundant. Note that A0 is not requiredto output a spei� preimage of f(x); any preimage (i.e., element in the set f�1(f(x))) will do.(Indeed, in ase f is 1-1, the string x is the only preimage of f(x) under f ; but in general there maybe other preimages.) It is required that algorithm A0 fails (to �nd a preimage) with overwhelmingprobability, when the probability is also taken over the input distribution. That is, f is \typially"hard to invert, not merely hard to invert in some (\rare") ases.Some of the most popular andidates for one-way funtions are based on the onjetured in-tratability of omputational problems in number theory. One suh onjeture is that it is infeasibleto fator large integers. Consequently, the funtion that takes as input two (equal length) primesand outputs their produt is widely believed to be a one-way funtion. Furthermore, fatoringsuh omposites is infeasible if and only if squaring modulo suh omposite is a one-way funtion(see [111℄). For ertain omposites (i.e., produts of two primes that are both ongruent to 3 mod 4),the latter funtion indues a permutation over the set of quadrati residues modulo this ompos-ite. A related permutation, whih is widely believed to be one-way, is the RSA funtion [115℄:x 7! xe mod N , where N = P �Q is a omposite as above, e is relatively prime to (P � 1) � (Q� 1),and x 2 f0; :::; N � 1g. The latter examples (as well as other popular suggestions) are better ap-tured by the following formulation of a olletion of one-way funtions (whih is indeed related toDe�nition 2.1):De�nition 2.2 (olletions of one-way funtions and additional properties): A olletion of fun-tions, ffi : Di ! f0; 1g�gi2I , is alled one-way if there exists three probabilisti polynomial-timealgorithms, I, D and F , so that the following two onditions hold1. easy to sample and ompute: The output of algorithm I, on input 1n, is distributed over theset I \ f0; 1gn (i.e., is an n-bit long index of some funtion). The output of algorithm D, oninput (an index of a funtion) i 2 I, is distributed over the set Di (i.e., over the domain ofthe funtion). On input i 2 I and x 2 Di, algorithm F always outputs fi(x).
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2. hard to invert:1 For every probabilisti polynomial-time algorithm, A0, every positive polyno-mial p(�), and all suÆiently large n'sPr hA0(i; fi(x))2f�1i (fi(x))i < 1p(n)where i I(1n) and x D(i).The olletion is said to be of permutations if eah of the fi's is a permutation over the orrespondingDi and D(i) is almost uniformly distributed in Di. Suh a olletion is all a trapdoor permutationif in addition to the above there are two probabilisti polynomial-time algorithms I 0 and F�1 suhthat (1) the distribution I 0(1n) ranges over pairs of strings so that the �rst string is distributed asin I(1n), and (2) for every (i; t) in the range of I 0(1n) it holds that F�1(t; fi(x)) = x. (That is, tis a trapdoor that allows to invert fi.)Strong versus weak one-way funmtions. Reall that the above de�nitions require that anyfeasible algorithm sueeds in inverting the funtion with negligible probability. A weaker notiononly requires that any feasible algorithm fails to invert the funtion with notieable probability. Itturns out that the existene of suh weak one-way funtions implies the existene of strong one-wayfuntions (as de�ned above). The onstrution itself is straightfoward: one just parses the argu-ment to the new funtion into suÆiently many bloks, and applies the weak one-way funtion onthe individual bloks. We warn that the hardness of the resulting funtion is not established bymere \ombinatoris" (i.e., one may not assume that the potential inverting algorithm works inde-pendently on eah blok).2 Instead, a \reduibility argument" is used, showing that an intertingalgorithm for the resulting funtion an be used to onstrut an inverting algorithm for the originalfuntion. The proof, presented in [67, Se. 2.3℄, demonstrates that ampli�ation of omputationaldiÆulty is muh more involved than ampli�ation of an analogous probabilisti event. An alter-native demonstration of the diÆulty of reasoning about omputational diÆulty (in omparisonto an analogous purely probabilisti situation) as well as a disussion of reduibility arguments isprovided in the proof of Theorem 2.4.2.2 Hard-Core PrediatesLoosely speaking, saying that a funtion f is one-way implies that given y (in the range of f) itis infeasible to �nd a preimage of y under f . This does not mean that it is infeasible to �nd outpartial information about the preimage(s) of y under f . Spei�ally it may be easy to retrievehalf of the bits of the preimage (e.g., given a one-way funtion f onsider the funtion g de�nedby g(x; r) def= (f(x); r), for every jxj = jrj). The fat that one-way funtions do not neessarilyhide partial information about their preimage limits their \diret appliability" to tasks as seureenryption. Fortunately, assuming the existene of one-way funtions, it is possible to onstrutone-way funtions that hide spei� partial information about their preimage (whih is easy toompute from the preimage itself). This partial information an be onsidered as a \hard ore" ofthe diÆulty of inverting f . Loosely speaking, a polynomial-time prediate b, is alled a hard-ore1Note that this ondition refers to the distributions I(1n) and D(i), whih are merely required to range overI \ f0; 1gn and Di, respetively. (Typially, the distributions I(1n) and D(i) are (almost) uniform over I \ f0; 1gnand Di, respetively.)2Indeed this assumption seems reasonable, but we should not assume that the adversary behaves in a reasonableway (unless we an atually prove that it gains nothing by behaving in ways that seem unreasonable to us).7



of a funtion f if no feasible algorithm, given f(x), an guess b(x) with suess probability that isnon-negligibly better than one half.De�nition 2.3 (hard-ore prediates [32℄): A polynomial-time omputable prediate b : f0; 1g� !f0; 1g is alled a hard-ore of a funtion f if for every probabilisti polynomial-time algorithm A0,every positive polynomial p(�), and all suÆiently large n'sPr �A0(f(x))=b(x)� < 12 + 1p(n)where the probability is taken uniformly over all the possible hoies of x 2 f0; 1gn and all thepossible outomes of the internal oin tosses of algorithm A0.Note that for every b : f0; 1g� ! f0; 1g and f : f0; 1g� ! f0; 1g�, there exist obvious algorithms thatguess b(x) from f(x) with suess probability at least one half (e.g., the algorithm that, obliviously ofits input, outputs a uniformly hosen bit). Also, if b is a hard-ore prediate (for any funtion) thenb must be almost unbiased (i.e., for a uniformly hosen x, the di�erene jPr[b(x)=0℄�Pr[b(x)=1℄jmust be a negligible funtion in n). Finally, if b is a hard-ore of a 1-1 funtion f that is polynomial-time omputable then f is a one-way funtion.Theorem 2.4 ([74℄, see simpler proof in [67, Se. 2.5.2℄): For any one-way funtion f , the inner-produt mod 2 of x and r is a hard-ore of f 0(x; r) = (f(x); r).The proof is by a so-alled \reduibility argument" (whih is used to prove all onditional resultsin the area). Spei�ally, we redue the task of inverting f to the task of prediting the hard-oreof f 0, while making sure that the redution generates a distribution as in the atual de�nition ofthe onlusion (when applied to input distributed as in the hypothesis). Thus, a ontraditionto the onlusion yields a ontradition to the hypothesis. Note that this argument is far moreomplex than analyzing the probabilisti behavior of b(X;Un) given Un, where Un denotes theuniform distribution over f0; 1gn, b(u; v) denotes the inner-produt mod 2 of u and v, and X is arandom variable with super-logarithmi min-entropy.3Proof sketh: The atual proof refers to an arbitrary algorithm B that, when given (f(x); r),tries to guess b(x; r). Suppose that this algorithm sueeds with probability 12 + �, when theprobability is taken over the random hoies of x and r (as well as the internal oin tosses of B).By an averaging argument, we �rst identify a fration �=2 of the possible oin tosses of B suh thatusing any of these oin sequenes B sueeds with probability at least 12 + �=2. Similarly, we anidentify a �=4 fration of the x's suh that B sueeds (in guessing b(x; r)) with probability at least12 + �=4, where now the probability is taken only over the r's. We will show how to use B in orderto invert f , on input f(x), provided that x is in the good set (whih has density �=4).As a warm-up, suppose for a moment that, for the aforementioned x's, algorithm B sueedswith probability p > 34 + 1=poly(jxj) (rather than at least 12 + �=4). In this ase, retrieving x fromf(x) is quite easy: To retrieve the ith bit of x, denoted xi, we randomly selet r 2 f0; 1gjxj, andobtain B(f(x); r) and B(f(x); r � ei), where ei = 0i�110jxj�i and v � u denotes the addition mod2 of the binary vetors v and u. (The proess is atually repeated polynomially-many times, usingindependent random hoies of suh r's, and xi is determined by a majority vote.) Note that if both3The min-entropy of X is de�ned as minvflog2(1=Pr[X = v℄)g; that is, if X has min-entropym then maxvfPr[X =v℄g = 2�m. The Leftover Hashing Lemma [123, 23, 89℄ implies that, in this ase, Pr[b(X;Un) = 1jUn℄ = 12 � 2�
(m).8



B(f(x); r) = b(x; r) and B(f(x); r� ei) = b(x; r� ei) indeed hold, then B(f(x); r)�B(f(x); r� ei)equals b(x; r) � b(x; r � ei) = b(x; ei) = xi. The probability that both B(f(x); r) = b(x; r) andB(f(x); r � ei) = b(x; r � ei) hold, for a random r, is at least 1 � 2 � (1 � p) > 12 + 1poly(jxj) .Hene, repeating the above proedure suÆiently many times and ruling by majority, we retrievexi with very high probability. Similarly, we an retrieve all the bits of x, and hene invert f on f(x).However, the entire analysis was onduted under (the unjusti�able) assumption that p > 34+ 12p(jxj) ,whereas we only know that p > 12+ �4 (for � > 1=poly(jxj)).The problem with the above proedure is that it doubles the original error probability of algo-rithm B on inputs of the form (f(x); �). Under the unrealisti assumption, that B's average error onsuh inputs is non-negligibly smaller than 14 , the \error-doubling" phenomenon raises no problems.However, in general (and even in the speial ase where B's error is exatly 14 ) the above proedureis unlikely to invert f . Note that the average error probability of B (whih is averaged over allpossible inputs of the form (f(x); �)) an not be dereased by repeating B several times (e.g., B mayalways answer orretly on three quarters of the inputs, and always err on the remaining quarter).What is required is an alternative way of using the algorithm B, a way that does not double theoriginal error probability of B. The key idea is to generate the r's in a way that allows to applyalgorithm B only one per eah r (and i), instead of twie. Spei�ally, we will use algorithm Bto obtain a \guess" for b(x; r � ei), and obtain b(x; r) in a di�erent way. The good news is thatthe error probability is no longer doubled, sine we only use B to get a \guess" of b(x; r� ei). Thebad news is that we still need to know b(x; r), and it is not lear how we an know b(x; r) withoutapplying B. The answer is that we an guess b(x; r) by ourselves. This is �ne if we only need toguess b(x; r) for one r (or logarithmially in jxj many r's), but the problem is that we need to know(and hene guess) the value of b(x; r) for polynomially many r's. An obvious way of guessing theseb(x; r)'s yields an exponentially vanishing suess probability. Instead, we generate these polyno-mially many r's suh that, on one hand they are \suÆiently random" whereas, on the other hand,we an guess all the b(x; r)'s with notieable suess probability. Spei�ally, generating the r's ina partiular pairwise independent manner will satisfy both (seemingly ontraditory) requirements.We stress that in ase we are suessful (in our guesses for all the b(x; r)'s), we an retrieve x withhigh probability. Hene, we retrieve x with notieable probability.A word about the way in whih the pairwise independent r's are generated (and the orrespond-ing b(x; r)'s are guessed) is indeed in plae. To generate m = poly(jxj) many r's, we uniformly (andindependently) selet ` def= log2(m+ 1) strings in f0; 1gjxj. Let us denote these strings by s1; :::; s`.We then guess b(x; s1) through b(x; s`). Let us denote these guesses, whih are uniformly (andindependently) hosen in f0; 1g, by �1 through �`. Hene, the probability that all our guesses forthe b(x; si)'s are orret is 2�` = 1poly(jxj) . The di�erent r's orrespond to the di�erent non-emptysubsets of f1; 2; :::; `g. Spei�ally, we let rJ def= �j2Jsj. The reader an easily verify that the rJ 'sare pairwise independent and eah is uniformly distributed in f0; 1gjxj. The key observation is thatb(x; rJ) = b(x;�j2Jsj) = �j2Jb(x; sj). Hene, our guess for b(x; rJ) is �j2J�j, and with notieableprobability all our guesses are orret.3 PseudorandomnessIn pratie \pseudorandom" sequenes are often used instead of truly random sequenes. Theunderlying belief is that if an (eÆient) appliation performs well when using a truly randomsequene then it will perform essentially as well when using a \pseudorandom" sequene. However,this belief is not supported by ad-ho notions of \pseudorandomness" suh as passing the statistial9



tests in [94℄ or having large linear-omplexity (as in [85℄). In ontrast, the above belief is an easyorollary of de�ning pseudorandom distributions as ones that are omputationally indistinguishablefrom uniform distributions.3.1 Computational Indistinguishability Indistinguishable things are idential(or should be onsidered as idential).The Priniple of Identity of IndiserniblesG.W. Leibniz (1646{1714)(Leibniz admits that ounterexamples to this priniple are oneivable but will not our in reallife beause God is muh too benevolent.)A entral notion in Modern Cryptography is that of \e�etive similarity" (introdued by Gold-wasser, Miali and Yao [82, 126℄). The underlying thesis is that we do not are whether or notobjets are equal, all we are is whether or not a di�erene between the objets an be observed bya feasible omputation. In ase the answer is negative, the two objets are equivalent as far as anypratial appliation is onerned. Indeed, in the sequel we will often interhange suh (omputa-tionally indistinguishable) objets. Let X = fXngn2N and Y = fYngn2N be probability ensemblessuh that eah Xn and Yn is a distribution that ranges over strings of length n (or polynomial inn). We say that X and Y are omputationally indistinguishable if for every feasible algorithm A thedi�erene dA(n) def= jPr[A(Xn)=1℄� Pr[A(Yn)=1℄j is a negligible funtion in n. That is:De�nition 3.1 (omputational indistinguishability [82, 126℄): We say that X = fXngn2N and Y =fYngn2N are omputationally indistinguishable if for every probabilisti polynomial-time algorithm Devery polynomial p, and all suÆiently large n,jPr[D(Xn)=1℄ � Pr[D(Yn)=1℄j < 1p(n)where the probabilities are taken over the relevant distribution (i.e., either Xn or Yn) and over theinternal oin tosses of algorithm D.That is, think of D as of somebody who wishes to distinguish two distributions (based on a samplegiven to it), and think of 1 as of D's verdit that the sample was drawn aording to the �rstdistribution. Saying that the two distributions are omputationally indistinguishable means that ifD is an eÆient proedure then its verdit is not really meaningful (beause the verdit is almostas often 1 when the input is drawn from the �rst distribution as when the input is drawn from theseond distribution).We omment that, for \eÆiently onstrutible" distributions, indistinguishability by a singlesample (as de�ned above) implies indistinguishability by multiple samples (see [67, Se. 3.2.3℄).The proof of this fat provides a simple demonstration of a entral proof tehnique, known as ahybrid argument, whih we briey present next. To prove that two sequenes of independentlydrawn samples are indistinguishable, we onsider hybrid sequenes suh that the ith hybrid onsistsof i samples taken from the �rst distribution and the rest taken from the seond distribution.The \homogeneous" sequenes (whih we wish to prove to be omputational indistinguishable)are the extreme hybrids (i.e., the �rst and last hybrids onsidered above). Thus, distinguishing10



them (towards the ontradition hypothesis) yields a proedure for distinguishing the ith hybridfrom the i + 1st hybrid, for a randomly seleted i. The latter distinguisher yields a distinguisherof single samples (i.e., given a single sample, selet i at random, generate i samples from the �rstdistribution and the rest from the seond, and feed the original distinguisher with the orrespondingsequene, while plaing the input sample in loation i + 1 in the sequene). We stress that theoriginal distinguisher (arising from the ontradition hypothesis) was only supposed to work forthe extreme hybrids, still we an onsider its performane on any distribution that we please anddraw adequate onlusions (as we have done).
Gen

seed output  sequence

a  truly random  sequence

?

Figure 2: Pseudorandom generators { an illustration.3.2 Pseudorandom GeneratorsLoosely speaking, a pseudorandom generator is an eÆient (deterministi) algorithm that on inputa short random seed outputs a (typially muh) longer sequene that is omputationally indistin-guishable from a uniformly hosen sequene. Pseudorandom generators were introdued by Blum,Miali and Yao [32, 126℄, and are formally de�ned as follows.De�nition 3.2 (pseudorandom generator [32, 126℄): Let ` :N!N satisfy `(n) > n, for all n 2 N .A pseudorandom generator, with streth funtion `, is a (deterministi) polynomial-time algorithmG satisfying the following:1. For every s 2 f0; 1g�, it holds that jG(s)j = `(jsj).2. fG(Un)gn2N and fU`(n)gn2N are omputationally indistinguishable, where Um denotes theuniform distribution over f0; 1gm.Thus, pseudorandom sequenes an replae truly random sequenes not only in \ordinary" ompu-tations but also in ryptographi ones. That is, any ryptographi appliation that is seure whenthe legitimate parties use truly random sequenes, is also seure when the legitimate parties usepseudorandom sequenes. The bene�t in suh a substitution (of random sequenes by pseudoran-dom ones) is that the latter sequenes an be eÆiently generated using muh less true randomness.Furthermore, in an interative setting, it is possible to eliminate all random steps from the on-lineexeution of a program, by replaing them with the generation of pseudorandom bits based on arandom seed seleted and �xed o�-line (or at set-up time).Various ryptographi appliations of pseudorandom generators will be presented in the sequel,but �rst let us show a onstrution of pseudorandom generators based on the simpler notion of a one-way funtion. Using Theorem 2.4, we may atually assume that suh a funtion is aompaniedby a hard-ore prediate. We start with a simple onstrution that suÆes for the ase of 1-1funtions. 11



Theorem 3.3 ([32, 126℄, see [67, Se. 3.4℄): Let f be a 1-1 funtion that is length-preserving and ef-�iently omputable, and b be a hard-ore prediate of f . Then G(s) = b(s)�b(f(s)) � � � b(f `(jsj)�1(s))is a pseudorandom generator (with streth funtion `), where f i+1(x) def= f(f i(x)) and f0(x) def= xAs a onrete example, onsider the permutation x 7! x2 mod N , where N is the produt of twoprimes eah ongruent to 3 (mod 4), and x is a quadrati residue modulo N . Then, we haveGN (s) = lsb(s) � lsb(s2 mod N) � � � lsb(s2`(jsj)�1 mod N), where lsb(x) is the least signi�ant bit ofx (whih is a hard-ore of the modular squaring funtion [2℄).Proof sketh of Theorem 3.3: We use the fundamental fat that asserts that the following twoonditions are equivalent:1. The distribution X (in our ase fG(Un)gn2N) is pseudorandom (i.e., is omputationally in-distinguishable from a uniform distribution (on fU`(n)gn2N)).2. The distribution X is unpreditable in polynomial-time; that is, no feasible algorithm, givena pre�x of the sequene, an guess its next bit with a non-negligible advantage over one half.Clearly, pseudorandomness implies polynomial-time unpreditability (i.e., polynomial-time pre-ditability violates pseudorandomness). The onverse is shown using a hybrid argument, whihrefers to hybrids onsisting of a pre�x of X followed by truly random bits (i.e., a suÆx of the uni-form distribution). Thus, we fous on proving that G0(Un) is polynomial-time unpreditable, whereG0(s) = b(f `(jsj)�1(s)) � � � b(f(s)) � b(s) is the reverse of G(s). Suppose towards the ontraditionthat, for some j < ` def= `(n), given the j-bit long pre�x of G0(Un) an algorithm A0 an predit thej + 1st bit of G0(Un). That is, given b(f `�1(s)) � � � b(f `�j(s)), algorithm A0 predits b(f t�(j+1)(s)),where s is uniformly distributed in f0; 1gn. Then, for x uniformly distributed in f0; 1gn, giveny = f(x) one an predit b(x) by invoking A0 on input b(f j�1(y)) � � � b(y) = b(f j(x)) � � � b(f(x)),whih in turn is polynomial-time omputable from y = f(x). In the analysis, we use the hypothesisthat f indues a permutation over f0; 1gn, and assoiate x with f `�(j+1)(s).We onlude this setion by mentioning that pseudorandom generators an be onstruted fromany one-way funtions (rather than merely from one-way permutations, as above). On the otherhand, the existene of one-way funtions is a neessary ondition to the existene of pseudorandomgenerators. That is:Theorem 3.4 [87℄: Pseudorandom generators exist if and only if one-way funtions exist.3.3 Pseudorandom FuntionsPseudorandom generators provide a way to eÆiently generate long pseudorandom sequenes fromshort random seeds. Pseudorandom funtions, introdued and onstruted by Goldreih, Gold-wasser and Miali [70℄, are even more powerful: they provide eÆient diret aess to bits of a hugepseudorandom sequene (whih is not feasible to san bit-by-bit). More preisely, a pseudorandomfuntion is an eÆient (deterministi) algorithm that given an n-bit seed, s, and an n-bit argument,x, returns an n-bit string, denoted fs(x), so that it is infeasible to distinguish the responses of fs, fora uniformly hosen s 2 f0; 1gn, from the responses of a truly random funtion F : f0; 1gn ! f0; 1gn.That is, the (feasible) testing proedure is given orale aess to the funtion (but not its expliitdesription), and annot distinguish the ase it is given orale aess to a pseudorandom funtionfrom the ase it is given orale aess to a truly random funtion.12



One key feature of the above de�nition is that pseudorandom funtions an be generated andshared by merely generating and sharing their seed; that is, a \random looking" funtion fs :f0; 1gn ! f0; 1gn, is determined by its n-bit seed s. Parties wishing to share a \random looking"funtion fs (determining 2n-many values), merely need to generate and share among themselves then-bit seed s. (For example, one party may randomly selet the seed s, and ommuniate it, via aseure hannel, to all other parties.) Sharing a pseudorandom funtion allows parties to determine(by themselves and without any further ommuniation) random-looking values depending on theirurrent views of the environment (whih need not be known a priori). To appreiate the potentialof this tool, one should realize that sharing a pseudorandom funtion is essentially as good asbeing able to agree, on the y, on the assoiation of random values to (on-line) given values, wherethe latter are taken from a huge set of possible values. We stress that this agreement is ahievedwithout ommuniation and synhronization: Whenever some party needs to assoiate a randomvalue to a given value, v 2 f0; 1gn, it will assoiate v the same random value rv 2 f0; 1gn (bysetting rv = fs(v), where fs is a pseudorandom funtion agreed upon beforehand).Theorem 3.5 ([70℄, see [67, Se. 3.6.2℄): Pseudorandom funtions an be onstruted using anypseudorandom generator.Proof sketh: Let G be a pseudorandom generator that strethes its seed by a fator of two (i.e.,`(n) = 2n), and let G0(s) (resp., G1(s)) denote the �rst (resp., last) jsj bits in G(s). De�neG�jsj����2�1(s) def= G�jsj(� � �G�2(G�1(s)) � � �)We laim that the funtion ensemble ffs : f0; 1gjsj ! f0; 1gjsjgs2f0;1g� , where fs(x) def= Gx(s), ispseudorandom. The proof uses the hybrid tehnique: The ith hybrid, Hin, is a funtion ensembleonsisting of 22i�n funtions f0; 1gn ! f0; 1gn, eah de�ned by 2i random n-bit strings, denotedhs�i�2f0;1gi . The value of suh funtion at x = ��, with j�j = i, is G�(s�). The extreme hybridsorrespond to our indistinguishability laim (i.e., H0n � fUn and Hnn is a truly random funtion),and neighboring hybrids orrespond to our indistinguishability hypothesis (spei�ally, to the in-distinguishability of G(Un) and U2n under multiple samples).Appliations and a generi methodology. Pseudorandom funtions are a very useful ryp-tographi tool: One may �rst design a ryptographi sheme assuming that the legitimate usershave blak-box aess to a random funtion, and next implement the random funtion using apseudorandom funtion. The usefulness of this tool stems from the fat that having (blak-box)aess to a random funtion gives the legitimate parties a potential advantage over the adversary(whih does not have free aess to this funtion).4 The seurity of the resulting implementation(whih uses a pseudorandom funtion) is established in two steps: First one proves the seurity ofan idealized sheme that uses a truly random funtion, and next one argues that the atual imple-mentation (whih uses a pseudorandom funtion) is seure (as otherwise one obtains an eÆientorale mahine that distinguishes a pseudorandom funtion from a truly random one).4The aforementioned methodology is sound provided that the adversary does not get the desription of thepseudorandom funtion in use, but rather only (possibly limited) orale aess to it. This is di�erent from theso-alled Random Orale Methodology formulated in [22℄ and ritiized in [39℄.
13



4 Zero-KnowledgeZero-knowledge proofs, introdued by Goldwasser, Miali and Rako� [83℄, provide a powerfultool for the design of ryptographi protools. Loosely speaking, zero-knowledge proofs are proofsthat yield nothing beyond the validity of the assertion. That is, a veri�er obtaining suh a proofonly gains onvition in the validity of the assertion (as if it was told by a trusted party thatthe assertion holds). This is formulated by saying that anything that is feasibly omputable froma zero-knowledge proof is also feasibly omputable from the (valid) assertion itself. The latterformulation follows the simulation paradigm, whih is disussed next.
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Figure 3: Zero-knowledge proofs { an illustration.4.1 The Simulation ParadigmA key question regarding the modeling of seurity onerns is how to express the intuitive require-ment that an adversary \gains nothing substantial" by deviating from the presribed behavior ofan honest user. Our approah is that the adversary gains nothing if whatever it an obtain by unre-strited adversarial behavior an also be obtained within essentially the same omputational e�ortby a benign behavior. The de�nition of the \benign behavior" aptures what we want to ahievein terms of seurity, and is spei� to the seurity onern to be addressed. For example, in theprevious paragraph, we said that a proof is zero-knowledge if it yields nothing beyond the validityof the assertion (i.e., the benign behavior is any omputation that is based (only) on the assertionitself, while assuming that the latter is valid). Other examples are disussed in Setions 5.1 and 7.1.A notable property of the aforementioned simulation paradigm, as well as of the entire approahsurveyed here, is that this approah is overly liberal with respet to its view of the abilities ofthe adversary as well as to what might onstitute a gain for the adversary. Thus, the approahmay be onsidered overly autious, beause it prohibits also \non-harmful" gains of some \farfethed" adversaries. We warn against this impression. Firstly, there is nothing more dangerous inryptography than to onsider \reasonable" adversaries (a notion whih is almost a ontraditionin terms): typially, the adversaries will try exatly what the system designer has disarded as \farfethed". Seondly, it seems impossible to ome up with de�nitions of seurity that distinguish\breaking the sheme in a harmful way" from \breaking it in a non-harmful way": what is harmfulis appliation-dependent, whereas a good de�nition of seurity ought to be appliation-independent(as otherwise using the sheme in any new appliation will require a full re-evaluation of its seurity).14



Furthermore, even with respet to a spei� appliation, it is typially very hard to lassify the setof \harmful breakings".4.2 The Atual De�nition A proof is whatever onvines me.Shimon Even (1935{2004)Before de�ning zero-knowledge proofs, we have to de�ne proofs. The standard notion of stati (i.e.,non-interative) proofs will not do (beause stati zero-knowledge proofs exist only for sets thatare easy to deide (i.e, are in BPP) [77℄, whereas we are interested in zero-knowledge proofs forarbitrary NP-sets). Instead, we use the notion of an interative proof (introdued exatly for thatreason in [83℄). That is, here a proof is a (multi-round) randomized protool for two parties, alledveri�er and prover, in whih the prover wishes to onvine the veri�er of the validity of a givenassertion. Suh an interative proof should allow the prover to onvine the veri�er of the validityof any true assertion, whereas no prover strategy may fool the veri�er to aept false assertions.Both the above ompleteness and soundness onditions should hold with high probability (i.e., anegligible error probability is allowed). The presribed veri�er strategy is required to be eÆient.No suh requirement is made with respet to the prover strategy; yet we will be interested in\relatively eÆient" prover strategies (see below).Zero-knowledge is a property of some prover-strategies. More generally, we onsider intera-tive mahines that yield no knowledge while interating with an arbitrary feasible adversary on aommon input taken from a predetermined set (in our ase the set of valid assertions). A strategyA is zero-knowledge on (inputs from) the set S if, for every feasible strategy B�, there exists afeasible omputation C� suh that the following two probability ensembles are omputationallyindistinguishable5:1. f(A;B�)(x)gx2S def= the output of B� after interating with A on ommon input x 2 S; and2. fC�(x)gx2S def= the output of C� on input x 2 S.We stress that the �rst ensemble represents an atual exeution of an interative protool, whereasthe seond ensemble represents the omputation of a stand-alone proedure (alled the \simulator"),whih does not interat with anybody.The above de�nition does not aount for auxiliary information that an adversary may haveprior to entering the interation. Aounting for suh auxiliary information is essential for usingzero-knowledge proofs as subprotools inside larger protools (see [73, 77℄). This is taken are ofby a more strit notion alled auxiliary-input zero-knowledge.5Here we refer to a natural extension of De�nition 3.1: Rather than referring to ensembles indexed by N , we referto ensembles indexed by a set S � f0; 1g�. Typially, for an ensemble fZ�g�2S, it holds that Z� ranges over stringsof length that is polynomially-related to the length of �. We say that fX�g�2S and fY�g�2S are omputationallyindistinguishable if for every probabilisti polynomial-time algorithm D every polynomial p, and all suÆiently long� 2 S, jPr[D(�;X�)=1℄� Pr[D(�; Y�)=1℄j < 1p(j�j)where the probabilities are taken over the relevant distribution (i.e., either X� or Y�) and over the internal oin tossesof algorithm D. 15



De�nition 4.1 (zero-knowledge [83℄, revisited [77℄): A strategy A is auxiliary-input zero-knowledgeon inputs from S if for every probabilisti polynomial-time strategy B� and every polynomial p thereexists a probabilisti polynomial-time algorithm C� suh that the following two probability ensemblesare omputationally indistinguishable:1. f(A;B�(z))(x)gx2S ; z2f0;1gp(jxj) def= the output of B� when having auxiliary-input z and inter-ating with A on ommon input x 2 S; and2. fC�(x; z)gx2S ; z2f0;1gp(jxj) def= the output of C� on inputs x 2 S and z 2 f0; 1gp(jxj).Almost all known zero-knowledge proofs are in fat auxiliary-input zero-knowledge. As hintedabove, auxiliary-input zero-knowledge is preserved under sequential omposition [77℄. A simulatorfor the multiple-session protool an be onstruted by iteratively invoking the single-session simu-lator that refers to the residual strategy of the adversarial veri�er in the given session (while feedingthis simulator with the transript of previous sessions). Indeed, the residual single-session veri�ergets the transript of the previous sessions as part of its auxilary input (i.e., z in De�nition 4.1).(For details, see [67, Se. 4.3.4℄.)4.3 Zero-Knowledge Proofs for all NP-assertions and their appliationsA question avoided so far is whether zero-knowledge proofs exist at all. Clearly, every set in P (orrather in BPP) has a \trivial" zero-knowledge proof (in whih the veri�er determines membershipby itself); however, what we seek is zero-knowledge proofs for statements that the veri�er annotdeide by itself.Assuming the existene of ommitment shemes, whih in turn exist if one-way funtions ex-ist [102, 87℄, there exist (auxiliary-input) zero-knowledge proofs of membership in any NP-set (i.e.,sets having eÆiently veri�able stati proofs of membership). These zero-knowledge proofs, �rstonstruted by Goldreih, Miali and Wigderson [75℄ (and depited in Figure 4), have the followingimportant property: the presribed prover strategy is eÆient, provided it is given as auxiliary-inputan NP-witness to the assertion (to be proven).6 That is:Theorem 4.2 ([75℄, using [87, 102℄): If one-way funtions exist then every set S 2 NP has azero-knowledge interative proof. Furthermore, the presribed prover strategy an be implemented inprobabilisti polynomial-time, provided it is given as auxiliary-input an NP-witness for membershipof the ommon input in S.Theorem 4.2 makes zero-knowledge a very powerful tool in the design of ryptographi shemesand protools (see below). We omment that the intratability assumption used in Theorem 4.2seems essential; see [107, 125℄.Analyzing the protool of Figure 4. Let us onsider a single exeution of the main loop (andrely on the preservation of zero-knowledge under sequential omposition). Clearly, the presribedprover is implemented in probabilisti polynomial-time, and always onvines the veri�er (providedthat it is given a valid 3-oloring of the ommon input graph). In ase the graph is not 3-olorable6The auxiliary-input given to the presribed prover (in order to allow for an eÆient implementation of its strategy)is not to be onfused with the auxiliary-input that is given to maliious veri�ers (in the de�nition of auxiliary-inputzero-knowledge). The former is typially an NP-witness for the ommon input, whih is available to the user thatinvokes the prover strategy (f. the generi appliation disussed below). In ontrast, the auxiliary-input that is givento maliious veri�ers models arbitrary possible partial information that may be available to the adversary.16



Commitment shemes are digital analogies of sealed envelopes (or, better, loked boxes). Sending a om-mitment means sending a string that binds the sender to a unique value without revealing this value to thereeiver (as when getting a loked box). Deommitting to the value means sending some auxiliary informationthat allows to read the uniquely ommitted value (as when sending the key to the lok).Common Input: A graph G(V;E). Suppose that V � f1; :::; ng for n def= jV j.Auxiliary Input (to the prover): A 3-oloring � : V ! f1; 2; 3g.The following 4 steps are repeated t � jEj many times so to obtain soundness error exp(�t).Prover's �rst step (P1): Selet uniformly a permutation � over f1; 2; 3g. For i = 1 to n, send the veri�era ommitment to the value �(�(i)).Veri�er's �rst step (V1): Selet uniformly an edge e 2 E and send it to the prover.Prover's seond step (P2): Upon reeiving e = (i; j) 2 E, deommit to the i-th and j-th values sent inStep (P1).Veri�er's seond step (V2): Chek whether or not the deommitted values are di�erent elements off1; 2; 3g and whether or not they math the ommitments reeived in Step (P1).Figure 4: The zero-knowledge proof of Graph 3-Colorability (of [75℄). Zero-knowledge proofsfor other NP-sets an be obtained using the standard redutions.then, no matter how the prover behaves, the veri�er will rejet with probability at least 1=jEj(beause at least one of the edges must be improperly olored by the prover). We stress that theveri�er selets uniformly whih edge to inspet after the prover has ommitted to the olors of allverties. Thus, Figure 4 depits an interative proof system for Graph 3-Colorability (with errorprobability exp(�t)). As the reader might have guessed, the zero-knowledge property is the hardestto establish, and we will on�ne ourselves to presenting an adequate simulator (whih we hope willonvine the reader without a detailed analysis). We start with three simplifying onventions (whihare useful in general):1. Without loss of generality, we may assume that the heating veri�er strategy is implementedby a deterministi polynomial-time algorithm with an auxiliary input. This is justi�ed by�xing any outome of the veri�er's oins (as part of the auxiliary input), and observing thatour (uniform) simulation of the various (residual) deterministi strategies yields a simulationof the original probabilisti strategy.2. Without loss of generality, it suÆes to onsider heating veri�ers that (only) output theirview of the interation (i.e., their input, oin tosses, and the messages they reeived). This isjusti�ed by observing that the output of the original veri�er an be omputed by an algorithmof omparable omplexity that is given the veri�er's view of the interation. Thus, it suÆesto simulate the view of that heating veri�ers have of the real interation.3. Without loss of generality, it suÆes to onstrut a \weak simulator" that produes outputwith some notieable probability. This is the ase beause, by repeatedly invoking this weaksimulator (polynomially) many times, we may obtain a simulator that fails to produe anoutput with negligible probability, whereas the latter yields a simulator that never fails (asrequired). 17



Our simulator starts by seleting uniformly and independently a random olor (i.e., element off1; 2; 3g) for eah vertex, and feeding the veri�er strategy with random ommitments to theserandom olors. Indeed, the simulator feeds the veri�er with a distribution that is very di�erentfrom the distribution that the veri�er sees in a real interation with the prover. However, beingomputationally-restrited the veri�er annot tell these distributions apart (or else we obtain aontradition to the seurity of the ommitment sheme in use). Now, if the veri�er asks to inspetan edge that is properly olored then the simulator performs the proper deommitment ation andoutputs the transript of this interation. Otherwise, the simulator halts prolaiming failure. Welaim that failure ours with probability approximately 1=3 (or else we obtain a ontradition tothe seurity of the ommitment sheme in use). Furthermore, based on the same hypothesis (butvia a more omplex proof (f. [67, Se. 4.4.2.3℄)), onditioned on not failing, the output of thesimulator is omputationally indistinguishable from the veri�er's view of the real interation.Commitment shemes. Loosely speaking, ommitment shemes are two-stage (two-party) pro-tools allowing for one party to ommit itself (at the �rst stage) to a value while keeping thevalue seret. In a (seond) latter stage, the ommitment is \opened" and it is guaranteed that the\opening" an yield only a single value determined in the ommitting phase. Thus, the (�rst stageof the) ommitment sheme is both binding and hiding. A simple (uni-diretional ommuniation)ommitment sheme an be onstruted based on any one-way 1-1 funtion f (with a orrespondinghard-ore b). To ommit to a bit �, the sender uniformly selets s 2 f0; 1gn, and sends the pair(f(s); b(s)� �). Note that this is both binding and hiding. An alternative onstrution, whih anbe based on any one-way funtion, uses a pseudorandom generator G that strethes its seed by afator of three (f. Theorem 3.4). A ommitment is established, via two-way ommuniation, asfollows (f. [102℄): The reeiver selets uniformly r 2 f0; 1g3n and sends it to the sender, whihselets uniformly s 2 f0; 1gn and sends r �G(s) if it wishes to ommit to the value one and G(s)if it wishes to ommit to zero. To see that this is binding, observe that there are at most 22nvalues r that satisfy G(s0) = r �G(s1) for some pair (s0; s1). The hiding property follows by thepseudorandomness of G.Zero-knowledge proofs for other NP-sets. By using the standard Karp-redutions to 3-Colorability, the protool of Figure 4 an be used for onstruting zero-knowledge proofs for anyset in NP . We omment that this is probably the �rst time that an NP-ompleteness result wasused in a \positive" way (i.e., in order to onstrut something rather than in order to derive ahardness result).7EÆieny onsiderations. The protool in Figure 4 alls for invoking some onstant-roundprotool for a non-onstant number of times (and its analysis relies on the preservation of zero-knowledge under sequential omposition). At �rst glane, it seems that one an derive a onstant-round zero-knowledge proof system (of negligible soundness error) by performing these invoationsin parallel (rather than sequentially). Unfortunately, as demonstrated in [73℄, it is not lear thatthe resulting interative proof is zero-knowledge. Still, under standard intratability assumptions(e.g., the intratability of fatoring), onstant-round zero-knowledge proofs (of negligible soundnesserror) do exist for every set inNP (f. [72℄). We omment that the number of rounds in a protool is7Subsequent positive uses of ompleteness results have appeared in the ontext of interative proofs [97, 121℄,probabilistially hekable proofs [5, 57, 4, 3℄, \hardness versus randomness trade-o�s" [6℄, and statistial zero-knowledge [119℄. 18



ommonly onsidered the most important eÆieny riteria (or omplexity measure), and typiallyone desires to have it be a onstant.A generi appliation. As mentioned above, Theorem 4.2 makes zero-knowledge a very powerfultool in the design of ryptographi shemes and protools. This wide appliability is due to twoimportant aspets regarding Theorem 4.2: Firstly, Theorem 4.2 provides a zero-knowledge proof forevery NP-set, and seondly the presribed prover an be implemented in probabilisti polynomial-time when given an adequate NP-witness. We now turn to a typial appliation of zero-knowledgeproofs. In a typial ryptographi setting, a user U has a seret and is supposed to take some ationdepending on its seret. The question is how an other users verify that U indeed took the orretation (as determined by U 's seret and publily known information). Indeed, if U disloses itsseret then anybody an verify that U took the orret ation. However, U does not want to revealits seret. Using zero-knowledge proofs we an satisfy both oniting requirements (i.e., havingother users verify that U took the orret ation without violating U 's interest in not revealingits seret). That is, U an prove in zero-knowledge that it took the orret ation. Note that U 'slaim to having taken the orret ation is an NP-assertion (sine U 's legal ation is determinedas a polynomial-time funtion of its seret and the publi information), and that U has an NP-witness to its validity (i.e., the seret is an NP-witness to the laim that the ation �ts the publiinformation). Thus, by Theorem 4.2, it is possible for U to eÆiently prove the orretness of itsation without yielding anything about its seret. Consequently, it is fair to ask U to prove (inzero-knowledge) that it behaves properly, and so to fore U to behave properly. Indeed, \foringproper behavior" is the anonial appliation of zero-knowledge proofs (see [76, 65℄).This paradigm (i.e., \foring proper behavior" via zero-knowledge proofs), whih in turn isbased on the fat that zero-knowledge proofs an be onstruted for any NP-set, has been utilizedin numerous di�erent settings. Indeed, this paradigm is the basis for the wide appliability ofzero-knowledge protools in Cryptography.Zero-knowledge proofs for all IP. For the sake of elegany, we mention that under the sameassumption used in ase of NP, it holds that any set that has an interative proof also has azero-knowledge interative proof (f. [90, 25℄).4.4 Variants and IssuesA fundamental variant on the notion of interative proofs was introdued by Brassard, Chaum andCr�epeau [33℄, who relaxed the soundness ondition so that it only refers to feasible ways of tryingto fool the veri�er (rather than to all possible ways). Spei�ally, the soundness ondition wasreplaed by a omputational soundness ondition that asserts that it is infeasible to fool the veri�erinto aepting false statements. We warn that although the omputational-soundness error analways be redued by sequential repetitions, it is not true that this error an always be reduedby parallel repetitions (f. [21℄). Protools that satisfy the omputational-soundness ondition arealled arguments.8 We mention that argument systems may be more eÆient than interative proofs(see [92℄ vs. [71, 79℄) as well as provide stronger zero-knowledge guarantees (see [33℄ vs. [61, 1℄).8A related notion (not disussed here) is that of CS-proofs, introdued by Miali [100℄.
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4.4.1 De�nitional variationsWe onsider several de�nitional issues regarding the notion of zero-knowledge (as de�ned in De�-nition 4.1).Universal and blak-box simulation. Further strengthening of De�nition 4.1 is obtained byrequiring the existene of a universal simulator, denoted C, that is given the program of the veri�er(i.e., B�) as an auxiliary-input; that is, in terms of De�nition 4.1, one should replae C�(x; z) byC(x; z; hB�i), where hB�i denotes the desription of the program of B� (whih may depend on xand on z). That is, we e�etively restrit the simulation by requiring that it be a uniform (feasible)funtion of the veri�er's program (rather than arbitrarily depend on it). This restrition is verynatural, beause it seems hard to envision an alternative way of establishing the zero-knowledgeproperty of a given protool. Taking another step, one may argue that sine it seems infeasibleto reverse-engineer programs, the simulator may as well just use the veri�er strategy as an orale(or as a \blak-box"). This reasoning gave rise to the notion of blak-box simulation, whih wasintrodued and advoated in [73℄ and further studied in numerous works (see, e.g., [41℄). Thebelief was that impossibility results regarding blak-box simulation represent inherent limitationsof zero-knowledge itself. However, this belief has been refuted reently by Barak [7℄. For furtherdisussion, see Setion 4.4.3.Honest veri�er versus general heating veri�er. De�nition 4.1 refers to all feasible veri�erstrategies, whih is most natural (in the ryptographi setting) beause zero-knowledge is sup-posed to apture the robustness of the prover under any feasible (i.e., adversarial) attempt to gainsomething by interating with it. A weaker and still interesting notion of zero-knowledge refersto what an be gained by an \honest veri�er" (or rather a semi-honest veri�er)9 that interatswith the prover as direted, with the exeption that it may maintain (and output) a reord of theentire interation (i.e., even if direted to erase all reords of the interation). Although suh aweaker notion is not satisfatory for standard ryptographi appliations, it yields a fasinatingnotion from a oneptual as well as a omplexity-theoreti point of view. Furthermore, as shownin [78, 125℄, every proof system that is zero-knowledge with respet to the honest-veri�er an betransformed into a standard zero-knowledge proof (without using intratability assumptions and inase of publi-oin proofs this is done without signi�antly inreasing the prover's omputationale�ort).Statistial versus Computational Zero-Knowledge. Reall that De�nition 4.1 postulatesthat for every probability ensemble of one type (i.e., representing the veri�er's output after in-teration with the prover) there exists a \similar" ensemble of a seond type (i.e., representingthe simulator's output). One key parameter is the interpretation of \similarity". Three interpreta-tions, yielding di�erent notions of zero-knowledge, have been ommonly onsidered in the literature(f., [83, 61℄):1. Perfet Zero-Knowledge (PZK) requires that the two probability ensembles be idential.109The term \honest veri�er" is more appealing when onsidering an alternative (equivalent) formulation of Def-inition 4.1. In the alternative de�nition (see [67, Se. 4.3.1.3℄), the simulator is \only" required to generate theveri�er's view of the real interation, when the veri�er's view inludes its inputs, the outome of its oin tosses, andall messages it has reeived.10The atual de�nition of PZK allows the simulator to fail (while outputting a speial symbol) with negligibleprobability, and the output distribution of the simulator is onditioned on its not failing.20



2. Statistial Zero-Knowledge (SZK) requires that these probability ensembles be statistiallylose (i.e., the variation distane between them is negligible).3. Computational (or rather general) Zero-Knowledge (CZK) requires that these probability en-sembles be omputationally indistinguishable.Indeed, Computational Zero-Knowledge (CZK) is the most liberal notion, and is the notion on-sidered in De�nition 4.1. We note that the lass SZK ontains several problems that are onsideredintratable. The interested reader is referred to [124℄.Strit versus expeted probabilisti polynomial-time. So far, we did not speify what weexatly mean by the term probabilisti polynomial-time. Two ommon interpretations are:1. Strit probabilisti polynomial-time. That is, there exist a (polynomial in the length of theinput) bound on the number of steps in eah possible run of the mahine, regardless of theoutome of its oin tosses.2. Expeted probabilisti polynomial-time. The standard approah is to look at the running-time as a random variable and bound its expetation (by a polynomial in the length of theinput). As observed by Levin (f. [67, Se. 4.3.1.6℄ and [12℄), this de�nitional approahis quite problemati (e.g., it is not model-independent and is not losed under algorithmiomposition), and an alternative treatment of this random variable is preferable.Consequently, the notion of expeted polynomial-time raises a variety of oneptual and tehnialproblems. For that reason, whenever possible, one should prefer the more robust (and restrited)notion of strit (probabilisti) polynomial-time. Thus, with the exeption of onstant-round zero-knowledge protools, whenever we talked of a probabilisti polynomial-time veri�er (resp., simula-tor) we mean one in the strit sense. In ontrast, with the exeption of [7, 12℄, all results regardingonstant-round zero-knowledge protools refer to a strit polynomial-time veri�er and an expetedpolynomial-time simulator, whih is indeed a small heat. For further disussion, the reader isreferred to [12℄.4.4.2 Related notions: POK, NIZK, and WIWe briey disuss the notions of proofs of knowledge (POK), non-interative zero-knowledge(NIZK), and witness indistinguishable proofs (WI).Proofs of Knowledge. Loosely speaking, proofs of knowledge (f. [83℄) are interative proofsin whih the prover asserts \knowledge" of some objet (e.g., a 3-oloring of a graph), and notmerely its existene (e.g., the existene of a 3-oloring of the graph, whih in turn is equivalentto the assertion that the graph is 3-olorable). Before larifying what we mean by saying thata mahine knows something, we point out that \proofs of knowledge", and in partiular zero-knowledge \proofs of knowledge", have many appliations to the design of ryptographi shemesand ryptographi protools. One famous appliation of zero-knowledge proofs of knowledge is tothe onstrution of identi�ation shemes (e.g., the Fiat-Shamir sheme [60℄).What does it mean to say that a mahine knows something? Any standard ditionarysuggests several meanings for the verb to know, whih are typially phrased with refer-ene to awareness, a notion whih is ertainly inappliable in the ontext of mahines.21



We must look for a behavioristi interpretation of the verb to know. Indeed, it is rea-sonable to link knowledge with ability to do something (e.g., the ability to write downwhatever one knows). Hene, we will say that a mahine knows a string � if it an out-put the string �. But this seems as total non-sense too: a mahine has a well de�nedoutput { either the output equals � or it does not. So what an be meant by sayingthat a mahine an do something? Loosely speaking, it may mean that the mahinean be easily modi�ed so that it does whatever is laimed. More preisely, it may meanthat there exists an eÆient mahine that, using the original mahine as a blak-box(or given its ode as an input), outputs whatever is laimed.So muh for de�ning the \knowledge of mahines". Yet, whatever a mahine knows or does notknow is \its own business". What an be of interest and referene to the outside is the question ofwhat an be dedued about the knowledge of a mahine after interating with it. Hene, we areinterested in proofs of knowledge (rather than in mere knowledge). For sake of simpliity let usonsider a onrete question: how an a mahine prove that it knows a 3-oloring of a graph? Anobvious way is just to send the 3-oloring to the veri�er. Yet, we laim that applying the protool inFigure 4 (i.e., the zero-knowledge proof system for 3-Colorability) is an alternative way of provingknowledge of a 3-oloring of the graph.Loosely speaking, we may say that an interative mahine, V , onstitutes a veri�er for knowledgeof 3-oloring if the probability that the veri�er is onvined by a mahine P (to aept the graphG) is inversely proportional to the omplexity of extrating a 3-oloring of G when using mahineP as a \blak box".11 Namely, the extration of the 3-oloring is done by an orale mahine, alledan extrator, that is given aess to a funtion speifying the behavior P (i.e., the messages it sendsin response to partiular messages it may reeive). We require that the (expeted) running time ofthe extrator, on input G and aess to an orale speifying P 's messages, be inversely related (bya fator polynomial in jGj) to the probability that P onvines V to aept G. In ase P alwaysonvines V to aept G, the extrator runs in expeted polynomial-time. The same holds in aseP onvines V to aept with notieable probability. (We stress that the latter speial ases do notsuÆe for a satisfatory de�nition; see disussion in [67, Se. 4.7.1℄.)Non-Interative Zero-Knowledge. The model of non-interative zero-knowledge proof sys-tems, introdued in [30℄, onsists of three entities: a prover, a veri�er and a uniformly seletedreferene string (whih an be thought of as being seleted by a trusted third party). Both veri-�er and prover an read the referene string, and eah an toss additional oins. The interationonsists of a single message sent from the prover to the veri�er, who then is left with the �naldeision (whether to aept or not). The (basi) zero-knowledge requirement refers to a simula-tor that outputs pairs that should be omputationally indistinguishable from the distribution (ofpairs onsisting of a uniformly seleted referene string and a random prover message) seen in thereal model.12 Non-interative zero-knowledge proof systems have numerous appliations (e.g., tothe onstrution of publi-key enryption and signature shemes, where the referene string maybe inorporated in the publi-key). Several di�erent de�nitions of non-interative zero-knowledgeproofs were onsidered in the literature.� In the basi de�nition, one onsiders proving a single assertion of a-priori bounded length,where this length may be smaller than the length of the referene string.11Indeed, one may onsider also non-blak-box extrators as done in [12℄.12Note that the veri�er does not e�et the distribution seen in the real model, and so the basi de�nition of zero-knowledge does not refer to it. The veri�er (or rather a proess of adaptively seleting assertions to be proved) willbe referred to in the adaptive variants of the de�nition. 22



� A natural extension, required in many appliations, is the ability to prove multiple assertionsof varying length, where the total length of these assertions may exeed the length of thereferene string (as long as the total length is polynomial in the length of the referenestring). This de�nition is sometimes referred to as the unbounded de�nition, beause thetotal length of the assertions to be proved is not a-priori bounded.� Other natural extensions refer to the preservation of seurity (i.e., both soundness and zero-knowledge) when the assertions to be proved are seleted adaptivity (based on the referenestring and possibly even based on previous proofs).� Finally, we mention the notion of simulation-soundness, whih is related to non-malleability.This extension, whih mixes the zero-knowledge and soundness onditions, refers to the sound-ness of proofs presented by an adversary after it obtains proofs of assertions of its own hoie(with respet to the same referene string). This notion is important in appliations of non-interative zero-knowledge proofs to the onstrution of publi-key enryption shemes seureagainst hosen iphertext attaks (see [68, Se. 5.4.4.4℄).Construting non-interative zero-knowledge proofs seems more diÆult than onstruting intera-tive zero-knowledge proofs. Still, based on standard intratability assumptions (e.g., intratabilityof fatoring), it is known how to onstrut a non-interative zero-knowledge proof (even in theadaptive and non-malleable sense) for any NP-set (f. [58, 50℄).Witness Indistinguishability and the FLS-Tehnique. The notion of witness indistinguisha-bility was suggested in [59℄ as a meaningful relaxation of zero-knowledge. Loosely speaking, for anyNP-relation R, a proof (or argument) system for the orresponding NP-set is alled witness indistin-guishable if no feasible veri�er may distinguish the ase in whih the prover uses one NP-witness tox (i.e., w1 suh that (x;w1) 2 R) from the ase in whih the prover is using a di�erent NP-witnessto the same input x (i.e., w2 suh that (x;w2) 2 R). Clearly, any zero-knowledge protool is witnessindistinguishable, but the onverse does not neessarily hold. Furthermore, it seems that witnessindistinguishable protools are easier to onstrut than zero-knowledge ones. (We mention thatwitness indistinguishable protools are losed under parallel omposition [59℄, whereas this doesnot hold in general for zero-knowledge protools [73℄.)Feige, Lapidot and Shamir [58℄ introdued a tehnique for onstruting zero-knowledge proofs(and arguments) based on witness indistinguishable proofs (resp., arguments). Following is askethy desription of a speial ase of their tehnique, often referred to as the FLS-tehnique.On ommon input x 2 L, where L is the NP-set de�ned by the witness relation R, the followingtwo steps are performed:1. The parties generate an instane x0 for an auxiliary NP-set L0, where L0 is de�ned by a witnessrelation R0. The generation protool in use must satisfy the following two onditions:(a) If the veri�er follows its presribed strategy then no matter whih strategy is used bythe prover, with high probability, the protool's outome is a no-instane of L0.(b) Loosely speaking, there exists an eÆient (non-interative) proedure for produing a(random) transript of the generation protool along with an NP-witness for the orre-sponding outome suh that the produed transript is omputationally indistinguishablefrom the transript of a real exeution of the protool.23



For example, L0 may onsist of all possible outomes of a pseudorandom generator thatstrethes its seed by a fator of two, and the generation protool may onsist of the twoparties iteratively invoking a oin tossing protool to obtain a random string. Note that theoutome of a real exeution will be an almost uniformly distributed string, whih is mostlikely a no-instane of L0, whereas it is easy to generate a (random) transript orrespondingto any desired outome (provided that the parties use an adequate oin tossing protool).2. The parties exeute a witness indistinguishable proof for the NP-set L00 de�ned by the witnessrelation R00 = f((�; �0); (�; �0)) : (�; �) 2 R _ (�0; �0) 2 R0g. The sub-protool is suh thatthe orresponding prover an be implemented in probabilisti polynomial-time given any NP-witness for (�; �0) 2 L00. The sub-protool is invoked on ommon input (x; x0), where x0 isthe outome of Step 1, and the sub-prover is invoked with the orresponding NP-witness asauxiliary input (i.e., with (w; �), where w is the NP-witness for x (given to the main prover)).The soundness of the above protool follows by Property (a) of the generation protool (i.e., withhigh probability x0 62 L0, and so x 2 L follows by the soundness of the protool used in Step 2).To demonstrate the zero-knowledge property, we �rst generate a simulated transript of Step 1(with outome x0 2 L0) along with an adequate NP-witness (i.e., w0 suh that (x0; w0) 2 R0), andthen emulate Step 2 by feeding the sub-prover strategy with the NP-witness (�;w0). CombiningProperty (b) of the generation protool and the witness indistinguishability property of the protoolused in Step 2, the simulation is indistinguishable from the real exeution.4.4.3 Two basi problems: omposition and blak-box simulationWe onlude this setion by onsidering two basi problems regarding zero-knowledge, whih atu-ally arise also with respet to the seurity of other ryptographi primitives.Composition of protools. The �rst question refers to the preservation of seurity (i.e., zero-knowledge in our ase) under various types of omposition operations. We reall the main fatsregarding sequential, parallel and onurrent exeution of (arbitrary and/or spei�) zero-knowledgeprotools:� As shown above, Zero-knowledge (with respet to auxiliary inputs) is losed under sequentialomposition.� In general, zero-knowledge is not losed under parallel omposition [73℄. Yet, some zero-knowledge proofs (for NP) preserve their seurity when many opies are exeuted in parallel.Furthermore, some of these protool use a onstant number of rounds (f. [69℄).� Some zero-knowledge proofs (for NP) preserve their seurity when many opies are exeutedonurrently, but suh a result is not known for onstant-round protools (f. [114, 93, 109℄).The latter refers to a model allowing arbitrary sheduling (or full asynroniity). In ontrast,onstant-round zero-knowledge proofs (for NP) are known (f. [55, 69℄) in a model of naturally-limited asynhronousness, where eah party holds a loal lok suh that the relative lokrates are bounded by an a-priori known onstant and the protools may employ time-drivenoperations (i.e., time-out in-oming messages and delay out-going messages).The study of zero-knowledge in the onurrent setting provides a good test ase for the study ofonurrent seurity of general protools. In partiular, the results in [73, 41℄ point out inherentlimitations of the \standard proof methods" (used to establish zero-knowledge) when applied to24



the onurrent setting, where [73℄ treats the synhronous ase and [41℄ unovers muh strongerlimitations for the asynhronous ase. By \standard proof methods" we refer to the establishmentof zero-knowledge via a single simulator that obtains only orale (or \blak-box") aess to theadversary proedure.Blak-box proofs of seurity. The seond basi question regarding zero-knowledge refers tothe usage of the adversary's program within the proof of seurity (i.e., demonstration of the zero-knowledge property). For 15 years, all known proofs of seurity used the adversary's program asa blak-box (i.e., a universal simulator was presented using the adversary's program as an orale).Furthermore, it was believed that there is no advantage in having aess to the ode of the adver-sary's program (f. [73℄). Consequently it was onjetured that negative results regarding blak-boxsimulation represent an inherent limitation of zero-knowledge. This belief has been refuted reentlyby Barak [7℄ who onstruted a zero-knowledge argument (for NP) that has important propertiesthat are unahievable by blak-box simulation. For example, this zero-knowledge argument uses aonstant number of rounds and preserves its seurity when an a-priori �xed (polynomial) numberof opies are exeuted onurrently.13Barak's results (f. [7℄ and also [8℄) all for the re-evaluation of many ommon beliefs. Mostonretely, they say that results regarding blak-box simulators do not reet inherent limitationsof zero-knowledge (but rather an inherent limitation of a natural way of demonstrating the zero-knowledge property). Most abstratly, they say that there are meaningful ways of using a programother than merely invoking it as a blak-box. Does this means that a method was found to \reverseengineer" programs or to \understand" them? We believe that the answer is negative. Barak [7℄is using the adversary's program in a signi�ant way (i.e., more signi�ant than just invoking it),without \understanding" it.The key idea underlying Barak's protool [7℄ is to have the prover prove that either the originalNP-assertion is valid or that he (i.e., the prover) \knows the veri�er's residual strategy" (in the sensethat it an predit the next veri�er message). Indeed, in a real interation (with the honest veri�er),it is infeasible for the prover to predit the next veri�er message, and so omputational-soundnessof the protool follows. However, a simulator that is given the ode of the veri�er's strategy (andnot merely orale aess to that ode), an produe a valid proof of the disjuntion by properlyexeuting the sub-protool using its knowledge of an NP-witness for the seond disjuntive. Thesimulation is omputationally indistinguishable from the real exeution, provided that one annotdistinguish an exeution of the sub-protool in whih one NP-witness (i.e., an NP-witness for theoriginal assertion) is used from an exeution in whih the seond NP-witness (i.e., an NP-witnessfor the auxiliary assertion) is used. That is, the sub-protool should be a witness indistinguishableargument system, and the entire onstrution uses the FLS tehnique (desribed in Setion 4.4.2).We warn the reader that the atual implementation of the above idea requires overoming severaltehnial diÆulties (f. [7, 10℄).
13This result falls short of ahieving a fully onurrent zero-knowledge argument, beause the number of onurrentopies must be �xed before the protool is presented. Spei�ally, the protool uses messages that are longer thanthe allowed number of onurrent opies. However, even preservation of seurity under an a priori bounded numberof exeutions goes beyond the impossibility results of [73, 41℄ (whih refers to blak-box simulations).25



Part IIBasi AppliationsEnryption and signature shemes are the most basi appliations of Cryptography. Their main util-ity is in providing seret and reliable ommuniation over inseure ommuniation media. Looselyspeaking, enryption shemes are used to ensure the serey (or privay) of the atual informationbeing ommuniated, whereas signature shemes are used to ensure its reliability (or authentiity).In this part we survey these basi appliations as well as the onstrution of general seure ryp-tographi protools. For more details regarding the ontents of the urrent part, see our reenttextbook [68℄.5 Enryption ShemesThe problem of providing seret ommuniation over inseure media is the traditional and mostbasi problem of ryptography. The setting of this problem onsists of two parties ommuniatingthrough a hannel that is possibly tapped by an adversary. The parties wish to exhange informa-tion with eah other, but keep the \wire-tapper" as ignorant as possible regarding the ontents ofthis information. The anonial solution to the above problem is obtained by the use of enryptionshemes. Loosely speaking, an enryption sheme is a protool allowing these parties to ommu-niate seretly with eah other. Typially, the enryption sheme onsists of a pair of algorithms.One algorithm, alled enryption, is applied by the sender (i.e., the party sending a message), whilethe other algorithm, alled deryption, is applied by the reeiver. Hene, in order to send a message,the sender �rst applies the enryption algorithm to the message, and sends the result, alled theiphertext, over the hannel. Upon reeiving a iphertext, the other party (i.e., the reeiver) appliesthe deryption algorithm to it, and retrieves the original message (alled the plaintext).In order for the above sheme to provide seret ommuniation, the ommuniating parties (atleast the reeiver) must know something that is not known to the wire-tapper. (Otherwise, thewire-tapper an derypt the iphertext exatly as done by the reeiver.) This extra knowledge maytake the form of the deryption algorithm itself, or some parameters and/or auxiliary inputs usedby the deryption algorithm. We all this extra knowledge the deryption-key. Note that, withoutloss of generality, we may assume that the deryption algorithm is known to the wire-tapper, andthat the deryption algorithm operates on two inputs: a iphertext and a deryption-key. We stressthat the existene of a seret key, not known to the wire-tapper, is merely a neessary ondition forseret ommuniation. The above desription impliitly presupposes the existene of an eÆientalgorithm for generating (random) keys.Evaluating the \seurity" of an enryption sheme is a very triky business. A preliminary taskis to understand what is \seurity" (i.e., to properly de�ne what is meant by this intuitive term).Two approahes to de�ning seurity are known. The �rst (\lassi") approah, introdued byShannon [122℄, is information theoreti. It is onerned with the \information" about the plaintextthat is \present" in the iphertext. Loosely speaking, if the iphertext ontains information aboutthe plaintext then the enryption sheme is onsidered inseure. It has been shown that suh high(i.e., \perfet") level of seurity an be ahieved only if the key in use is at least as long as the totalamount of information sent via the enryption sheme [122℄. This fat (i.e., that the key has to belonger than the information exhanged using it) is indeed a drasti limitation on the appliabilityof suh (perfetly-seure) enryption shemes.The seond (\modern") approah, followed in the urrent text, is based on omputational om-26



plexity. This approah is based on the thesis that it does not matter whether the iphertext ontainsinformation about the plaintext, but rather whether this information an be eÆiently extrated.In other words, instead of asking whether it is possible for the wire-tapper to extrat spei� infor-mation, we ask whether it is feasible for the wire-tapper to extrat this information. It turns outthat the new (i.e., \omputational omplexity") approah an o�er seurity even when the key ismuh shorter than the total length of the messages sent via the enryption sheme.
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eÆiently from the a-priori information alone. This de�nition (alled semanti seurity) turns outto be equivalent to saying that, for any two messages, it is infeasible to distinguish the enryptionof the �rst message from the enryption of the seond message, also when given the enryption-key.Both de�nitions were introdued by Goldwasser and Miali [82℄.De�nition 5.1 (semanti seurity (following [82℄, revisited [64℄)): A publi-key enryption sheme(G;E;D) is semantially seure if for every probabilisti polynomial-time algorithm, A, there existsa probabilisti polynomial-time algorithm B so that for every two funtions f; h : f0; 1g�!f0; 1g�suh that jh(x)j = poly(jxj), and all probability ensembles fXngn2N, where Xn is a random variableranging over f0; 1gn, it holds thatPr[A(e;Ee(x); h(x))=f(x)℄ < Pr[B(1n; h(x))=f(x)℄ + �(n)where the plaintext x is distributed aording to Xn, the enryption-key e is distributed aordingto G(1n), and � is a negligible funtion.That is, it is feasible to predit f(x) from h(x) as suessfully as it it to predit f(x) from h(x) and(e;Ee(x)), whih means that nothing is gained by obtaining (e;Ee(x)). Note that no omputationalrestritions are made regarding the funtions h and f , and in partiular it may be that h(x) =(zjxj; h0(x)), where the sequene of zn's is possibly non-uniform. We stress that the above de�nition(as well as the next one) refers to publi-key enryption shemes, and in ase of private-key shemesalgorithm A is not given the enryption-key e.A good disguise should not allow a mother to distinguish her own hildren.Sha� Goldwasser and Silvio Miali, 1982The following tehnial interpretation of seurity states that it is infeasible to distinguish theenryptions of two plaintexts (of the same length).De�nition 5.2 (indistinguishability of enryptions (following [82℄)): A publi-key enryption sheme(G;E;D) has indistinguishable enryptions if for every probabilisti polynomial-time algorithm, A,and all sequenes of triples, (xn; yn; zn)n2N, where jxnj = jynj = n and jznj = poly(n),jPr[A(e;Ee(xn); zn)=1℄� Pr[A(e;Ee(yn); zn)=1℄j = �(n)Again, e is distributed aording to G(1n), and � is a negligible funtion.In partiular, zn may equal (xn; yn). Thus, it is infeasible to distinguish the enryptions of any two�xed messages (suh as the all-zero message and the all-ones message).Equivalene of De�nitions 5.1 and 5.2 { proof ideas. Intuitively, indistinguishability ofenryptions (i.e., of the enryptions of xn and yn) is a speial ase of semanti seurity; spei�ally,the ase thatXn is uniform over fxn; yng, f indiates one of the plaintexts and h does not distinguishthem (i.e., f(w) = 1 i� w = xn and h(xn) = h(yn)). The other diretion is proved by onsideringthe algorithm B that, on input (1n; v) where v = h(x), generates (e; d)  G(1n) and outputsA(e;Ee(1n); v), where A is as in De�nition 5.1. Indistinguishability of enryptions is used to provethat B performs as well as A (i.e., for every h; f and fXngn2N, it holds that Pr[B(1n; h(Xn)) =f(Xn)℄ = Pr[A(e;Ee(1n); h(Xn))=f(Xn)℄ approximately equals Pr[A(e;Ee(Xn); h(Xn))=f(Xn)℄).29



Probabilisti Enryption: It is easy to see that a seure publi-key enryption sheme mustemploy a probabilisti (i.e., randomized) enryption algorithm. Otherwise, given the enryption-key as (additional) input, it is easy to distinguish the enryption of the all-zero message from theenryption of the all-ones message.15 This explains the linkage between the above robust seurityde�nitions and probabilisti enryption.Further disussion: We stress that (the equivalent) De�nitions 5.1 and 5.2 go way beyondsaying that it is infeasible to reover the plaintext from the iphertext. The latter statement isindeed a minimal requirement from a seure enryption sheme, but is far from being a suÆientrequirement: Typially, enryption shemes are used in appliations where even obtaining partialinformation on the plaintext may endanger the seurity of the appliation. When designing anappliation-independent enryption sheme, we do not know whih partial information endangersthe appliation and whih does not. Furthermore, even if one wants to design an enryption shemetailored to a spei� appliation, it is rare (to say the least) that one has a preise haraterizationof all possible partial information that endanger this appliation. Thus, we need to require that itis infeasible to obtain any information about the plaintext from the iphertext. Furthermore, inmost appliations the plaintext may not be uniformly distributed and some a-priori informationregarding it is available to the adversary. We require that the serey of all partial information ispreserved also in suh a ase. That is, even in presene of a-priori information on the plaintext, itis infeasible to obtain any (new) information about the plaintext from the iphertext (beyond whatis feasible to obtain from the a-priori information on the plaintext). The de�nition of semantiseurity postulates all of this. The equivalent de�nition of indistinguishability of enryptions isuseful in demonstrating the seurity of andidate onstrutions as well as for arguing about theire�et as part of larger protools.Seurity of multiple messages: De�nitions 5.1 and 5.2 refer to the seurity of an enryptionsheme that is used to enrypt a single plaintext (per generated key). Sine the plaintext maybe longer than the key16, these de�nitions are already non-trivial, and an enryption sheme sat-isfying them (even in the private-key model) implies the existene of one-way funtions. Still, inmany ases, it is desirable to enrypt many plaintexts using the same enryption-key. Looselyspeaking, an enryption sheme is seure in the multiple-message setting if analogous de�nitions(to De�nitions 5.1 and 5.2) hold when polynomially-many plaintexts are enrypted using the sameenryption-key (f. [68, Se. 5.2.4℄). It is easy to see that in the publi-key model, seurity in thesingle-message setting implies seurity in the multiple-message setting. We stress that this is notneessarily true for the private-key model.5.2 ConstrutionsIt is ommon pratie to use \pseudorandom generators" as a basis for private-key enryptionshemes. We stress that this is a very dangerous pratie when the \pseudorandom generator" iseasy to predit (suh as the linear ongruential generator or some modi�ations of it that output15The same holds for (stateless) private-key enryption shemes, when onsidering the seurity of enrypting severalmessages (rather than a single message as done above). For example, if one uses a deterministi enryption algorithmthen the adversary an distinguish two enryptions of the same message from the enryptions of a pair of di�erentmessages.16Reall that for sake of simpliity we have onsidered only messages of length n, but the general de�nitions referto messages of arbitrary (polynomial in n) length. We omment that, in the general form of De�nition 5.1, one shouldprovide the length of the message as an auxiliary input to both algorithms (A and B).30



a onstant fration of the bits of eah resulting number). However, this ommon pratie beomessound provided one uses pseudorandom generators (as de�ned in Setion 3.2). An alternative andmore exible onstrution follows.Private-Key Enryption Sheme based on Pseudorandom Funtions: We present a sim-ple onstrution that uses pseudorandom funtions as de�ned in Setion 3.3. The key generationalgorithm onsists of seleting a seed, denoted s, for a (pseudorandom) funtion, denoted fs. Toenrypt a message x 2 f0; 1gn (using key s), the enryption algorithm uniformly selets a stringr 2 f0; 1gn and produes the iphertext (r; x � fs(r)), where � denotes the exlusive-or of bitstrings. To derypt the iphertext (r; y) (using key s), the deryption algorithm just omputesy � fs(r). The proof of seurity of this enryption sheme onsists of two steps (suggested as ageneral methodology in Setion 3.3):1. Prove that an idealized version of the sheme, in whih one uses a uniformly seleted funtionF :f0; 1gn!f0; 1gn, rather than the pseudorandom funtion fs, is seure.2. Conlude that the real sheme (as presented above) is seure (beause, otherwise one oulddistinguish a pseudorandom funtion from a truly random one).Note that we ould have gotten rid of the randomization (in the enryption proess) if we hadallowed the enryption algorithm to be history dependent (e.g., use a ounter in the role of r). Thisan be done provided that either only one party uses the key for enryption or that all parties thatenrypt, using the same key, oordinate their ations (i.e., maintain a joint state (e.g., ounter)).Indeed, when using a private-key enryption sheme, a ommon situation is that the same key isonly used for ommuniation between two spei� parties, whih update a joint ounter during theirommuniation. Furthermore, if the enryption sheme is used for fifo ommuniation betweenthe parties and both parties an reliably maintain the ounter value, then there is no need (for thesender) to send the ounter value.We omment that the use of a ounter (or any other state) in the enryption proess is notreasonable in ase of publi-key enryption shemes, beause it is inompatible with the anonialusage of suh shemes (i.e., allowing all parties to send enrypted messages to the \owner of theenryption-key" without engaging in any type of further oordination or ommuniation). Further-more, as disussed before, probabilisti enryption is essential for a seure publi-key enryptionsheme even in the ase of enrypting a single message (unlike in the ase of private-key shemes).Following Goldwasser and Miali [82℄, we now demonstrate the use of probabilisti enryption inthe onstrution of a publi-key enryption sheme.Publi-Key Enryption Sheme based on Trapdoor Permutations: We present two on-strutions that employ a olletion of trapdoor permutations, as de�ned in De�nition 2.2. Letffi : Di ! Digi be suh a olletion, and let b be a orresponding hard-ore prediate. The keygeneration algorithm onsists of seleting a permutation fi along with a orresponding trapdoort, and outputting (i; t) as the key-pair. To enrypt a (single) bit � (using the enryption-key i),the enryption algorithm uniformly selets r 2 Di, and produes the iphertext (fi(r); � � b(r)).To derypt the iphertext (y; �) (using the deryption-key t), the deryption algorithm omputes� � b(f�1i (y)) (using the trapdoor t of fi). Clearly, (� � b(r))� b(f�1i (fi(r))) = �. Indistinguisha-bility of enryptions an be easily proven using the fat that b is a hard-ore of fi. We ommentthat the above sheme is quite wasteful in bandwidth; however, the paradigm underlying its on-strution (i.e., applying the trapdoor permutation to a randomized version of the plaintext rather31



than to the atual plaintext) is valuable in pratie. A more eÆient onstrution of a publi-keyenryption sheme, whih uses the same key-genration algorithm, follows. To enrypt an `-bit longstring x (using the enryption-key i), the enryption algorithm uniformly selets r 2 Di, om-putes y  b(r) � b(fi(r)) � � � b(f `�1i (r)) and produes the iphertext (fì (r); x � y). To derypt theiphertext (u; v) (using the deryption-key t), the deryption algorithm �rst reovers r = f�`i (u)(using the trapdoor t of fi), and then obtains v � b(r) � b(fi(r)) � � � b(f `�1i (r)). Note the similarityto the onstrution in Theorem 3.3, and the fat that the proof an be extended to establish theomputational indisdtinguishability of (b(r) � � � b(f `�1i (r)); fì (r)) and (r0; fì (r)), for random andindependent r 2 Di and r0 2 f0; 1g`. Indistinguishability of enryptions follows, and thus theaforementioned sheme is seure.Key-generation on seurity parameter n:1. Selet at random two n-bit primes, P and Q, eah ongruent to 3 mod 4.2. Compute dP = ((P + 1)=4)`(n) mod P � 1, dQ = ((Q + 1)=4)`(n) mod Q� 1, P = Q �(Q�1 mod P ), and Q = P � (P�1 mod Q).The output key-pair is (N; T ), where N = PQ and T = (P;Q;N; P ; dP ; Q; dQ).(Note: for every s, it holds that (s2)(P+1)=4 � s (mod P ), and so (s2`(n) )dP � s (mod P ). Thus,raising to the dP -th power modulo P is equivalent to taking the 2`-th root modulo P . To reover rootsmodulo N , we use the Chinese Remainder Theorem with the orresponding oeÆients P and Q.)Enryption of message x 2 f0; 1g`(n) using the enryption-key N :1. Uniformly selet s0 2 f1; :::; Ng.2. For i = 1; ::; `(n) + 1, ompute si  s2i�1 mod N and �i = lsb(si).The iphertext is (s`(n)+1; y), where y = x� �1�2 � � ��`(n).(Note: s1 plays the role played by r in the general sheme.)Deryption of the iphertext (r; y) using the enryption-key T = (P;Q;N; P ; dP ; Q; dQ):1. Let s0  rdP mod P , and s00  rdQ mod Q.2. Let s1  P � s0 + Q � s00 mod N .3. For i = 1; ::; `(n), ompute �i = lsb(si) and si+1  s2i mod N .The plaintext is y � �1�2 � � ��`(n).Note: lsb is a hard-ore of the modular squaring funtion [2℄.Figure 7: The Blum{Goldwasser Publi-Key Enryption Sheme [31℄. For simpliity weassume that `, whih is polynomially bounded (e.g., `(n) = n), is known at key-generationtime.Conrete implementations of the aforementioned publi-key enryption shemes: Forthe �rst sheme, we are going to use the RSA sheme [115℄ as a trapdoor permutation (ratherthan using it diretly as an enryption sheme).17 The RSA sheme has an instane-generatingalgorithm that randomly selets two primes, p and q, omputes their produt N = p � q, and seletsat random a pair of integers (e; d) suh that e �d � 1 (mod �(N)), where �(N) def= (p� 1) � (q� 1).17Reall that RSA itself is not semantially seure, beause it employs a deterministi enryption algorithm. Thesheme presented here an be viewed as a \randomized version" of RSA.32



(The \plain RSA" operations are raising to power e or d modulo N .) We onstrut a publi-keyenryption sheme as follows: The key-generation algorithm is idential to the instane-generatoralgorithm of RSA, and the enryption-key is set to (N; e) (resp., the deryption-key is set to (N; d)),just as in \plain RSA". To enrypt a single bit � (using the enryption-key (N; e)), the enryptionalgorithm uniformly selets an element, r, in the set of residues mod N , and produes the iphertext(re mod N;� � lsb(r)), where lsb(r) denotes the least signi�ant bit of r (whih is a hard-ore ofthe RSA funtion [2℄). To derypt the iphertext (y; �) (using the deryption-key (N; d)), thederyption algorithm just omputes � � lsb(yd mod N). Turning to the seond sheme, we assumethe intratability of fatoring large integers, and use squaring modulo a omposite as a trapdoorpermutation over the orresponding quadrati residues (while using omposites that are the produtof two primes, eah ongruent to 3 modulo 4). The resulting seure publi-key enryption sheme,depited in Figure 7, has eÆieny omparable to that of (plain) RSA. We omment that speialproperties of modular sqauring were only used (in Figure 7) to speed-up the omputation of f�`i(i.e., rather than interatively extrating modular square roots ` times, we extrated the modular2`-th root).5.3 Beyond eavesdropping seurityThe above de�nitions refer only to \passive" attaks in whih the adversary merely eavesdrops theline over whih iphertexts are being sent. Stronger types of attaks, ulminating in the so-alledChosen Ciphertext Attak, may be possible in various appliations. Loosely speaking, in suh anattak, the adversary may obtain the deryption of any iphertexts of its hoie, and is deemedsuessful if it learns something regarding the plaintext that orresponds to some other iphertext(see [91, 19℄ and [68, Se. 5.4.4℄). Private-key and publi-key enryption shemes seure against suhattaks an be onstruted under (almost) the same assumptions that suÆe for the onstrutionof the orresponding passive shemes. Spei�ally:Theorem 5.3 (folklore, see [68, Se. 5.4.4℄): Assuming the existene of one-way funtions, thereexist private-key enryption shemes that are seure against hosen iphertext attak.Theorem 5.4 ([105, 52℄ and [30, 58℄, see [118℄ or [68, Se. 5.4.4℄): Assuming the existene ofenhaned18 trapdoor permutations, there exist publi-key enryption shemes that are seure againsthosen iphertext attak.Seurity against hosen iphertext attak is related to the notion of non-malleability of the enryp-tion sheme (f. [52℄). Loosely speaking, in a non-malleable enryption sheme it is infeasible foran adversary, given a iphertext, to produe a valid iphertext for a related plaintext (e.g., givena iphertext of a plaintext 1x, for an unknown x, it is infeasible to produe a iphertext to theplaintext 0x). For further disussion see [52, 19, 91℄.6 Signature and Message Authentiation ShemesBoth signature shemes and message authentiation shemes are methods for \validating" data; thatis, verifying that the data was approved by a ertain party (or set of parties). The di�erene betweensignature shemes and message authentiation shemes is that signatures should be \universallyveri�able", whereas authentiation tags are only required to be veri�able by parties that are alsoable to generate them.18Loosely speaking, the enhanement refers to hardness ondition of De�nition 2.2 and requires that it be hard toreover f�1i (y) also when given the oins used to sample y (rather than merely y itself). See [68, Apdx. C.1℄.33



Signature Shemes: The need to disuss \digital signatures" [51, 110℄ has arise with the intro-dution of omputer ommuniation to the business environment (in whih parties need to ommitthemselves to proposals and/or delarations that they make). Disussions of \unforgeable signa-tures" did take plae also in previous enturies, but the objets of disussion were handwrittensignatures (and not digital ones), and the disussion was not pereived as related to \ryptogra-phy". Loosely speaking, a sheme for unforgeable signatures should satisfy the following:� eah user an eÆiently produe its own signature on douments of its hoie;� every user an eÆiently verify whether a given string is a signature of another (spei�) useron a spei� doument; but� it is infeasible to produe signatures of other users to douments they did not sign.We note that the formulation of unforgeable digital signatures provides also a lear statement ofthe essential ingredients of handwritten signatures. The ingredients are eah person's ability tosign for itself, a universally agreed veri�ation proedure, and the belief (or assertion) that it isinfeasible (or at least hard) to forge signatures in a manner that pass the veri�ation proedure.It is not lear to what extent do handwritten signatures meet these requirements. In ontrast, ourdisussion of digital signatures provides preise statements onerning the extent to whih digitalsignatures meet the above requirements. Furthermore, unforgeable digital signature shemes anbe onstruted based on some reasonable omputational assumptions (i.e., the existene of one-wayfuntions).Message authentiation shemes: Message authentiation is a task related to the settingonsidered for enryption shemes; that is, ommuniation over an inseure hannel. This time, weonsider an ative adversary that is monitoring the hannel and may alter the messages sent on it.The parties ommuniating through this inseure hannel wish to authentiate the messages theysend so that their ounterpart an tell an original message (sent by the sender) from a modi�edone (i.e., modi�ed by the adversary). Loosely speaking, a sheme for message authentiation shouldsatisfy the following:� eah of the ommuniating parties an eÆiently produe an authentiation tag to any messageof its hoie;� eah of the ommuniating parties an eÆiently verify whether a given string is an authen-tiation tag of a given message; but� it is infeasible for an external adversary (i.e., a party other than the ommuniating parties)to produe authentiation tags to messages not sent by the ommuniating parties.Note that in ontrast to the spei�ation of signature shemes we do not require universal ver-i�ation: only the designated reeiver is required to be able to verify the authentiation tags.Furthermore, we do not require that the reeiver an not produe authentiation tags by itself (i.e.,we only require that external parties an not do so). Thus, message authentiation shemes annotonvine a third party that the sender has indeed sent the information (rather than the reeiverhaving generated it by itself). In ontrast, signatures an be used to onvine third parties: in fat,a signature to a doument is typially sent to a seond party so that in the future this party may(by merely presenting the signed doument) onvine third parties that the doument was indeedgenerated (or sent or approved) by the signer. 34



6.1 De�nitionsFormally speaking, both signature shemes and message authentiation shemes onsist of threeeÆient algorithms: key generation, signing and veri�ation. As in ase of enryption shemes, thekey-generation algorithm is used to generate a pair of orresponding keys, one is used for signingand the other is used for veri�ation. The di�erene between the two types of shemes is reetedin the de�nition of seurity. In ase of signature sheme, the adversary is given the veri�ation-key, whereas in ase of message authentiation sheme the veri�ation-key (whih may equal thesigning-key) is not given to the adversary. Thus, shemes for message authentiation an be viewedas a private-key version of signature shemes. This di�erene yields di�erent funtionality (evenmore than in the ase of enryption): In typial use of a signature sheme, eah user generates apair of signing and veri�ation keys, publiizes the veri�ation-key and keeps the signing-key seret.Subsequently, eah user may sign douments using its own signing-key, and these signatures areuniversally veri�able with respet to its publi veri�ation-key. In ontrast, message authentiationshemes are typially used to authentiate information sent among a set of mutually trusting partiesthat agree on a seret key, whih is being used both to produe and verify authentiation-tags.(Indeed, it is assumed that the mutually trusting parties have generated the key together or haveexhanged the key in a seure way, prior to the ommuniation of information that needs to beauthentiated.)We fous on the de�nition of seure signature shemes. Following Goldwasser, Miali andRivest [84℄, we onsider very powerful attaks on the signature sheme as well as a very liberalnotion of breaking it. Spei�ally, the attaker is allowed to obtain signatures to any message ofits hoie. One may argue that in many appliations suh a general attak is not possible (beausemessages to be signed must have a spei� format). Yet, our view is that it is impossible to de�nea general (i.e., appliation-independent) notion of admissible messages, and thus a general/robustde�nition of an attak seems to have to be formulated as suggested here. (Note that at worst, ourapproah is overly autious.) Likewise, the adversary is said to be suessful if it an produe avalid signature to any message for whih it has not asked for a signature during its attak. Again,this refers to the ability to form signatures to possibly \nonsensial" messages as a breaking ofthe sheme. Yet, again, we see no way to have a general (i.e., appliation-independent) notion of\meaningful" messages (so that only forging signatures to them will be onsider a breaking of thesheme).De�nition 6.1 (seure signature shemes { a sketh): A hosen message attak is a proess that,on input a veri�ation-key, an obtain signatures (relative to the orresponding signing-key) tomessages of its hoie. Suh an attak is said to sueeds (in existential forgery) if it outputsa valid signature to a message for whih it has not requested a signature during the attak. Asignature sheme is seure (or unforgeable) if every feasible hosen message attak sueeds with atmost negligible probability, where the probability is taken over the initial hoie of the key-pair aswell as over the adversary's ations.We stress that plain RSA (alike plain versions of Rabin's sheme [111℄ and the DSS [106℄) is notseure under the above de�nition. However, it may be seure if the message is \randomized" beforeRSA (or the other shemes) is applied.6.2 ConstrutionsSeure message authentiation shemes an be onstruted using pseudorandom funtions [70℄.Spei�ally, the key-generation algorithm onsists of seleting a seed s 2 f0; 1gn for suh a funtion,35



denoted fs, and the (only valid) tag of message x with respet to the key s is fs(x). As in the aseof our private-key enryption sheme, the proof of seurity of the urrent message authentiationsheme onsists of two steps:1. Prove that an idealized version of the sheme, in whih one uses a uniformly seleted funtionF :f0; 1gn!f0; 1gn, rather than the pseudorandom funtion fs, is seure (i.e., unforgeable).2. Conlude that the real sheme (as presented above) is seure (beause, otherwise one oulddistinguish a pseudorandom funtion from a truly random one).We omment that an extensive usage of pseudorandom funtions seem an overkill for ahievingmessage authentiation, and more eÆient shemes may be obtained based on other ryptographiprimitives (f., e.g., [17℄).Construting seure signature shemes seems more diÆult than onstruting message authen-tiation shemes. Nevertheless, seure signature shemes an be onstruted based on any one-wayfuntion. Furthermore:Theorem 6.2 ([104, 117℄, see [68, Se. 6.4℄): The following three onditions are equivalent.1. One-way funtions exist.2. Seure signature shemes exist.3. Seure message authentiation shemes exist.We stress that, unlike in the ase of publi-key enryption shemes, the onstrution of signatureshemes (whih may be viewed as a publi-key analogue of message authentiation) does not usea trapdoor property. Three entral paradigms in the onstrution of signature shemes are the\refreshing" of the \e�etive" signing-key, the usage of an \authentiation tree", and the \hashingparadigm" (all to be disussed in the sequel). In addition to being used in the proof of Theorem 6.2,all three paradigms are also of independent interest.The refreshing paradigm, introdued in [84℄, is aimed at limiting the potential dangers of hosenmessage attaks. This is ahieved by signing the atual doument using a newly (randomly) gen-erated instane of the signature sheme, and authentiating (the veri�ation-key of) this randominstane relative to the �xed publi-key. That is, onsider a basi signature sheme (G;S; V ) usedas follows. Suppose that the user U has generated a key-pair, (s; v)  G(1n), and has plaed theveri�ation-key v on a publi-�le. When a party asks U to sign some doument �, the user Ugenerates a new (fresh) key-pair, (s0; v0)  G(1n), signs v0 using the original signing-key s, signs� using the new (fresh) signing-key s0, and presents (Ss(v0); v0; Ss0(�)) as a signature to �. Analleged signature, (�1; v0; �2), is veri�ed by heking whether both Vv(v0; �1) = 1 and Vv0(�; �2) = 1hold. Intuitively, the gain in terms of seurity is that a full-edged hosen message attak annotbe launhed on a �xed instane of (G;S; V ) (i.e., on the �xed veri�ation-key that resides in thepubli-�le and is known to the attaker). All that an attaker may obtain (via a hosen mes-sage attak on the new sheme) is signatures, relative to the original signing-key s of (G;S; V ), torandomly strings (distributed aording to G(1n)) as well as additional signatures that are eahrelative to a random and independently distributed signing-key.A more dramati e�et is obtained by using authentiation trees, as introdued in [99℄. The ideais to use the publi veri�ation-key in order to authentiate several (e.g., two) fresh instanes of thesignature sheme, use eah of these instanes to authentiate several additional fresh instanes, andso on. We obtain a tree of fresh instanes of the basi signature sheme, where eah internal nodeauthentiates its hildren. We an now use the leaves of this tree in order to sign atual douments,36



where eah leaf is used at most one. Thus, a signature to an atual doument onsists of (1) asignature to this doument authentiated with respet to the veri�ation-key assoiated with someleaf, and (2) a sequene of veri�ation-keys assoiated with the nodes along the path from the rootto this leaf, where eah suh veri�ation-key is authentiated with respet to the veri�ation-keyof its parent. We stress that eah instane of the signature sheme is used to sign at most onestring (i.e., a single sequene of veri�ation-keys if the instane resides in an internal node, andan atual doument if the instane resides in a leaf). Thus, it suÆes to use a signature shemethat is seure as long as it is used to legitimately sign a single string. Suh signature shemes,alled one-time signature shemes and introdued in [110℄, are easier to onstrut than standardsignature shemes, espeially if one only wishes to sign strings that are signi�antly shorter thanthe signing-key (resp., than the veri�ation-key). For example, using a one-way funtion f , we maylet the signing-key onsist of a sequene of n pairs of strings, let the orresponding veri�ation-keyonsist of the orresponding sequene of images of f , and sign an n-bit long message by revealingthe adequate pre-images.19Note, however, that in the aforementioned authentiation-tree, the instanes of the signaturesheme (assoiated with internal nodes) are used to sign a pair of veri�ation-keys. Thus, weneed a one-time signature sheme that an be used for signing messages that are longer than theveri�ation-key (or at least as long as it). Here is where the hashing paradigm omes into play. Thisparagigm refers to the ommon pratie of signing douments via a two stage proess: First theatual doument is hashed to a (relatively) short bit string, and next the basi signature shemeis applied to the resulting string. This pratie (as well as other usages of the hashing paradigm)is sound provided that the hashing funtion belongs to a family of ollision-free hashing (f. [48℄).(A variant of the hashing paradigm uses the weaker notion of a family of Universal One-Way HashFuntions (f. [104℄), whih in turn an be onstruted using any one-way funtion [104, 117℄.)Note that in order to implement the aforementioned (full-edged) signature sheme one needsto store in (seure) memory all the instanes of the basi (one-time) signature sheme that aregenerated throughout the entire signing proess (whih refers to numerous douments). This an bedone by extending the model so to allow for memory-dependent signature shemes. Alternatively,we note that all that we need to store are the random-oins used for generating eah of theseinstanes, and the former an be determined by a pseudorandom funtion (applied to the name ofthe oreresponding vertex in the tree). Indeed, the seed of this pseudorandom funtion will be partof the signing-key of the resulting (full-edged) signature sheme.6.3 Publi-Key InfrastrutureThe standard use of publi-key enryption shemes (resp., signature shemes) in real-life ommuni-ation requires a mehanism for providing the sender (resp., signature veri�er) with the reeiver'sauthenti enryption-key (resp., signer's authenti veri�ation-key). Spei�ally, this problem arisesin large-sale systems, where typially the sender (resp., veri�er) does not have a loal reord ofthe reeiver's enryption-key (resp., signer's veri�ation-key), and so must obtain this key in a\reliable" way (i.e., typially, erti�ed by some trusted authority). In most theoretial work, oneassumes that the keys are posted on and an be retrieved from a publi-�le that is maintained bya trusted party (whih makes sure that eah user an post only keys bearing its own identity). Inpratie, maintaining suh a publi-�le is a major problem, and mehanisms that implement thisabstration are typially referred to by the generi term \publi-key infrastruture (PKI)". For a19That is, the signing-key onsist of a sequene ((s01; s11); :::; (s0n; s1n)) 2 f0; 1g2n2 , the orresponding veri�ation-keyis (f(s01); f(s11)); :::; (f(s0n); f(s1n))), and the signature of the message �1 � � � �n is (s�11 ; :::; s�nn ).37



disussion of the pratial problems regarding PKI deployment see, e.g., [98, Chap. 13℄.7 Cryptographi ProtoolsA general framework for asting (m-party) ryptographi (protool) problems onsists of speifyinga random proess that maps m inputs to m outputs.20 The inputs to the proess are to be thoughtof as loal inputs of m parties, and the m outputs are their orresponding (desired) loal outputs.The random proess desribes the desired funtionality. That is, if the m parties were to trust eahother (or trust some external party), then they ould eah send their loal input to the trusted party,who would ompute the outome of the proess and send to eah party the orresponding output.A pivotal question in the area of ryptographi protools is to what extent an this (imaginary)trusted party be \emulated" by the mutually distrustful parties themselves.

REAL   MODEL IDEAL   MODELFigure 8: Seure protools emulate a trusted party { an illustration.The results surveyed below desribe a variety of models in whih suh an \emulation" is possible.The models vary by the underlying assumptions regarding the ommuniation hannels, numerousparameters relating to the extent of adversarial behavior, and the desired level of emulation of thetrusted party (i.e., level of \seurity").7.1 The De�nitional Approah and Some ModelsBefore desribing these results, we further disuss the notion of \emulating a trusted party", whihunderlies the de�nitional approah to seure multi-party omputation (as initiated and developedin [81, 101, 13, 14, 35, 36℄) The approah an be traed bak to the de�nition of zero-knowledge(f. [83℄), and even to the de�nition of seure enryption (f. [64℄, rephrasing [82℄). The underlyingparadigm (alled the simulation paradigm (f. Setion 4.1)) is that a sheme is seure if whatevera feasible adversary an obtain after attaking it, is also feasibly attainable \from srath". Inase of zero-knowledge this amounts to saying that whatever a (feasible) veri�er an obtain after20That is, we onsider the seure evaluation of randomized funtionalities, rather than \only" the seure evaluationof funtions. Spei�ally, we onsider an arbitrary (randomized) proess F that on input (x1; :::; xm), �rst seletsat random (depending only on ` def= Pmi=1 jxij) an m-ary funtion f , and then outputs the m-tuple f(x1; :::; xm) =(f1(x1; :::; xm); :::; fm(x1; :::; xm)). In other words, F (x1; :::; xm) = F 0(r; x1; :::; xm), where r is uniformly seleted inf0; 1g`0 (with `0 depending on `), and F 0 is a funtion mapping (m+ 1)-long sequenes to m-long sequenes.38



interating with the prover on a presribed valid assertion, an be (feasibly) omputed from theassertion itself. In ase of multi-party omputation we ompare the e�et of adversaries thatpartiipate in the exeution of the atual protool to the e�et of adversaries that partiipate in animaginary exeution of a trivial (ideal) protool for omputing the desired funtionality with thehelp of a trusted party. If whatever adversaries an feasibly obtain in the former real setting analso be feasibly obtained in the latter ideal setting then the protool \emulates the ideal setting"(i.e., \emulates a trusted party"), and so is deemed seure. This basi approah an be applied ina variety of models, and is used to de�ne the goals of seurity in these models.21 We �rst disusssome of the parameters used in de�ning various models, and next demonstrate the appliation ofthis approah in two important models. For further details, see [36℄ or [68, Se. 7.2 and 7.5.1℄.7.1.1 Some parameters used in de�ning seurity modelsThe following parameters are desribed in terms of the atual (or real) omputation. In some ases,the orresponding de�nition of seurity is obtained by some restritions or provisions applied tothe ideal model. In all ases, the desired notion of seurity is de�ned by requiring that for anyadequate adversary in the real model, there exist a orresponding adversary in the orrespondingideal model that obtains essentially the same impat (as the real-model adversary).� The ommuniation hannels: The standard assumption in ryptography is that the adversarymay tap all ommuniation hannels (between honest parties). In ontrast, one may postulatethat the adversary annot obtain messages sent between a pair of honest parties, yielding theso-alled private-hannel model (f. [26, 43℄). In addition, one may postulate the existeneof a broadast hannel (f. [113℄). Eah of these postulates may be justi�ed in some settings.Furthermore, eah postulate may be viewed as a useful abstration that provide a lean modelfor the study and development of seure protools. In this respet, it is important to mentionthat, in a variety of settings of the other parameters, both types of hannels an be easilyemulated by ordinary \tapped hannels".The standard assumption in the area is that the adversary annot modify, dupliate, orgenerate messages sent over the ommuniation hannels (between honest parties). Again,this assumption an be justi�ed in some settings and emulated in others (f., [18, 37℄).Most work in the area assume that ommuniation is synhronous and that point-to-pointhannels exist between every pair of proessors. However, one may also onsider asynhronousommuniation (f. [24℄) and arbitrary networks of point-to-point hannels (f. [53℄).� Set-up assumptions: Unless stated di�erently, we make no set-up assumptions (exept for theobvious assumption that all parties have idential opies of the protool's program). However,in some ases it is assumed that eah party knows a veri�ation-key orresponding to eahof the other parties (or that a publi-key infrastruture is available). Another assumption,made more rarely, is that all parties have aess to some ommon (trusted) random string.21A few tehnial omments are in plae. Firstly, we assume that the inputs of all parties are of the same length.We omment that as long as the lengths of the inputs are polynomially related, the above onvention an be enforedby padding. On the other hand, some length restrition is essential for the seurity results, beause in general it isimpossible to hide all information regarding the length of the inputs to a protool. Seondly, we assume that thedesired funtionality is omputable in probabilisti polynomial-time, beause we wish the seure protool to run inprobabilisti polynomial-time (and a protool annot be more eÆient than the orresponding entralized algorithm).Clearly, the results an be extended to funtionality that are omputable within any given (time-onstrutible) timebound, using adequate padding. 39



� Computational limitations: Typially, we onsider omputationally-bounded adversaries (e.g.,probabilisti polynomial-time adversaries). However, the private-hannel model allows for the(meaningfully) onsideration of omputationally-unbounded adversaries.We stress that, also in the latter ase, seurity should be de�ned by requiring that for everyreal adversary, whatever the adversary an ompute after partiipating in the exeution of theatual protool is omputable within omparable time by an imaginary adversary partiipatingin an imaginary exeution of the trivial ideal protool (for omputing the desired funtionalitywith the help of a trusted party). Thus, results in the omputationally-unbounded adversarymodel trivially imply results for omputationally-bounded adversaries.� Restrited adversarial behavior: The most general type of an adversary onsidered in theliterature is one that may orrupt parties to the protool while the exeution goes on, and doso based on partial information it has gathered so far (f., [38℄). A somewhat more restritedmodel, whih seems adequate in many setting, postulates that the set of dishonest partiesis �xed (arbitrarily) before the exeution starts (but this set is, of ourse, not known to thehonest parties). The latter model is alled non-adaptive as opposed to the adaptive adversarydisussed �rst.An orthogonal parameter of restrition refers to whether a dishonest party takes ative stepsto disrupt the exeution of the protool (i.e., sends messages that di�er from those spei�edby the protool), or merely gathers information (whih it may latter share with the otherdishonest parties). The latter adversary has been given a variety of names suh as semi-honest,passive, and honest-but-urious. This restrited model may be justi�ed in ertain settings,and ertainly provides a useful methodologial lous (f., [75, 76, 65℄ and Setion 7.3). Belowwe refer to the adversary of the unrestrited model as to ative; another ommonly used nameis maliious.� Restrited notions of seurity: One example is the willingness to tolerate \unfair" protools inwhih the exeution an be suspended (at any time) by a dishonest party, provided that it isdeteted doing so. We stress that in ase the exeution is suspended, the dishonest party doesnot obtain more information than it ould have obtained when not suspending the exeution.(What may happen is that the honest parties will not obtain their desired outputs, but ratherwill detet that the exeution was suspended.)� Upper bounds on the number of dishonest parties: In some models, seure multi-party ompu-tation is possible only if a majority of the parties are honest (f., [26, 45℄). Sometimes even aspeial majority (e.g., 2/3) is required. General \(resilient) adversarial-strutures" have beenonsidered too (f. [88℄).� Mobile adversary: In most works, one a party is said to be dishonest it remains so throughoutthe exeution. More generally, one may onsider transient adversarial behavior (e.g., anadversary seizes ontrol of some site and later withdraws from it). This model, introduedin [108℄, allows to onstrut protools that remain seure even in ase the adversary may seizeontrol of all sites during the exeution (but never ontrol onurrently, say, more than 10%of the sites). We omment that shemes seure in this model were later termed \proative"(f., [40℄).
40



7.1.2 Example: Multi-party protools with honest majorityHere we onsider an ative, non-adaptive, omputationally-bounded adversary, and do not assumethe existene of private hannels. Our aim is to de�ne multi-party protools that remain seureprovided that the honest parties are in majority. (The reason for requiring a honest majority willbe disussed at the end of this subsetion.)Consider any multi-party protool. We �rst observe that eah party may hange its loal inputbefore even entering the exeution of the protool. However, this is unavoidable also when theparties utilize a trusted party. Consequently, suh an e�et of the adversary on the real exeution(i.e., modi�ation of its own input prior to entering the atual exeution) is not onsidered a breahof seurity. In general, whatever annot be avoided when the parties utilize a trusted party, is notonsidered a breah of seurity. We wish seure protools (in the real model) to su�er only fromwhatever is unavoidable also when the parties utilize a trusted party. Thus, the basi paradigmunderlying the de�nitions of seure multi-party omputations amounts to requiring that the onlysituations that may our in the real exeution of a seure protool, are those that an also ourin a orresponding ideal model (where the parties may employ a trusted party). In other words,the \e�etive malfuntioning" of parties in seure protools is restrited to what is postulated inthe orresponding ideal model.When de�ning seure multi-party protools with honest majority, we need to pin-point whatannot be avoided in the ideal model (i.e., when the parties utilize a trusted party). This is easy,beause the ideal model is very simple. Sine we are interested in exeutions in whih the majorityof parties are honest, we onsider an ideal model in whih any minority group (of the parties) mayollude as follows:1. Firstly this dishonest minority shares its original inputs and deided together on replaedinputs to be sent to the trusted party. (The other parties send their respetive original inputsto the trusted party.)2. Upon reeiving inputs from all parties, the trusted party determines the orresponding outputsand sends them to the orresponding parties. (We stress that the information sent betweenthe honest parties and the trusted party is not seen by the dishonest olluding minority.)3. Upon reeiving the output-message from the trusted party, eah honest party outputs itloally, whereas the dishonest olluding minority may determine their outputs based on allthey know (i.e., their initial inputs and their reeived outputs).Note that the above behavior of the minority group is unavoidable in any exeution of any protool(even in presene of trusted parties). This is the reason that the ideal model was de�ned as above.Now, a seure multi-party omputation with honest majority is required to emulate this ideal model.That is, the e�et of any feasible adversary that ontrols a minority of the parties in a real exeutionof the atual protool, an be essentially simulated by a (di�erent) feasible adversary that ontrolsthe orresponding parties in the ideal model. That is:De�nition 7.1 (seure protools { a sketh): Let f be an m-ary funtionality and � be an m-partyprotool operating in the real model.� For a real-model adversary A, ontrolling some minority of the parties (and tapping all om-muniation hannels), and an m-sequene x, we denote by real�;A(x) the sequene of moutputs resulting from the exeution of � on input x under attak of the adversary A.41



� For an ideal-model adversary A0, ontrolling some minority of the parties, and an m-sequenex, we denote by idealf;A0(x) the sequene of m outputs resulting from the ideal proess de-sribed above, on input x under attak of the adversary A0.We say that � seurely implements f with honest majority if for every feasible real-model adversaryA, ontrolling some minority of the parties, there exists a feasible ideal-model adversary A0, on-trolling the same parties, so that the probability ensembles freal�;A(x)gx and fidealf;A0(x)gx areomputationally indistinguishable (as in Footnote 5).Thus, seurity means that the e�et of eah minority group in a real exeution of a seure protoolis \essentially restrited" to replaing its own loal inputs (independently of the loal inputs of themajority parties) before the protool starts, and replaing its own loal outputs (depending onlyon its loal inputs and outputs) after the protool terminates. (We stress that in the real exeutionthe minority parties do obtain additional piees of information; yet in a seure protool they gainnothing from these additional piees of information, beause they an atually reprodue those bythemselves.)The fat that De�nition 7.1 refers to a model without private hannels is due to the fat thatour (skethy) de�nition of the real-model adversary allowed it to tap the hannels, whih in turne�ets the set of possible ensembles freal�;A(x)gx. When de�ning seurity in the private-hannelmodel, the real-model adversary is not allowed to tap hannels between honest parties, and thisagain e�ets the possible ensembles freal�;A(x)gx. On the other hand, when we wish to de�neseurity with respet to passive adversaries, both the sope of the real-model adversaries and thesope of the ideal-model adversaries hanges. In the real-model exeution, all parties follow theprotool but the adversary may alter the output of the dishonest parties arbitrarily depending onall their intermediate internal stated (during the exeution). In the orresponding ideal-model, theadversary is not allowed to modify the inputs of dishonest parties (in Step 1), but is allowed tomodify their outputs (in Step 3).We omment that a de�nition analogous to De�nition 7.1 an be presented also in ase thedishonest parties are not in minority. In fat, suh a de�nition seems more natural, but the problemis that suh a de�nition annot be satis�ed. That is, most natural funtionalities do not have aprotool for omputing them seurely in ase at least half of the parties are dishonest and employan adequate adversarial strategy. This follows from an impossibility result regarding two-partyomputation, whih essentially asserts that there is no way to prevent a party from prematurelysuspending the exeution [47℄. On the other hand, seure multi-party omputation with dishonestmajority is possible if premature suspension of the exeution is not onsidered a breah of seurity(f. Setion 7.1.3).7.1.3 Another example: Two-party protools allowing abortIn light of the last paragraph, we now onsider multi-party omputations in whih prematuresuspension of the exeution is not onsidered a breah of seurity. For onreteness, we fous hereon the speial ase of two-party omputations.22Intuitively, in any two-party protool, eah party may suspend the exeution at any point intime, and furthermore it may do so as soon as it learns the desired output. Thus, in ase theoutput of eah parties depends on both inputs, it is always possible for one of the parties to obtainthe desired output while preventing the other party from fully-determining its own output. Thesame phenomenon ours even in ase the two parties just wish to generate a ommon random22As in Setion 7.1.2, we onsider a non-adaptive, ative, omputationally-bounded adversary.42



value. Thus, when onsidering ative adversaries in the two-party setting, we do not onsider suhpremature suspension of the exeution a breah of seurity. Consequently, we onsider an idealmodel where eah of the two parties may \shut-down" the trusted (third) party at any point intime. In partiular, this may happen after the trusted party has supplied the outome of theomputation to one party but before it has supplied it to the other. That is, an exeution in theideal model proeeds as follows:1. Eah party sends its input to the trusted party, where the dishonest party may replae itsinput or send no input at all (whih an be treated as sending a default value).2. Upon reeiving inputs from both parties, the trusted party determines the orrespondingoutputs, and sends the �rst output to the �rst party.3. In ase the �rst party is dishonest, it may instrut the trusted party to halt, otherwise italways instruts the trusted party to proeed. If instruted to proeed, the trusted partysends the seond output to the seond party.4. Upon reeiving the output-message from the trusted party, the honest party outputs it loally,whereas the dishonest party may determine its output based on all it knows (i.e., its initialinput and its reeived output).A seure two-party omputation allowing abort is required to emulate this ideal model. That is,as in De�nition 7.1, seurity is de�ned by requiring that for every feasible real-model adversaryA, there exists a feasible ideal-model adversary A0, ontrolling the same party, so that the prob-ability ensembles representing the orresponding (real and ideal) exeutions are omputationallyindistinguishable. This means that eah party's \e�etive malfuntioning" in a seure protool isrestrited to supplying an initial input of its hoie and aborting the omputation at any point intime. (Needless to say, the hoie of the initial input of eah party may not depend on the inputof the other party.)We mention that an alternative way of dealing with the problem of premature suspension ofexeution (i.e., abort) is to restrit attention to single-output funtionalities; that is, funtionalitiesin whih only one party is supposed to obtain an output. The de�nition of seure omputation ofsuh funtionalities an be idential to the De�nition 7.1, with the exeption that no restrition ismade on the set of dishonest parties (and in partiular one may onsider a single dishonest partyin ase of two-party protools). For further details, see [68, Se. 7.2.3℄.7.2 Some Known ResultsWe next list some of the models for whih general seure multi-party omputation is known to beattainable (i.e., models in whih one an onstrut seure multi-party protools for omputing anydesired funtionality). We mention that the �rst results of this type were obtained by Goldreih,Miali, Wigderson and Yao [75, 127, 76℄.� Assuming the existene of enhaned23 trapdoor permutations, seure multi-party omputationis possible in the following models (f. [75, 127, 76℄ and details in [65, 68℄):1. Passive adversary, for any number of dishonest parties (f. [68, Se. 7.3℄).2. Ative adversary that may ontrol only a minority of the parties (f. [68, Se. 7.5.4℄).23See Footnote 18. 43



3. Ative adversary, for any number of bad parties, provided that suspension of exeutionis not onsidered a violation of seurity (i.e., as disussed in Setion 7.1.3). (See [68,Se. 7.4 and 7.5.5℄.)In all these ases, the adversary is omputationally-bounded and non-adaptive. On the otherhand, the adversary may tap the ommuniation lines between honest parties (i.e., we donot assume \private hannels" here). The results for ative adversaries assume a broadasthannel. Indeed, the latter an be implemented (while tolerating any number of bad parties)using a signature sheme and assuming a publi-key infrastruture (or that eah party knowsthe veri�ation-key orresponding to eah of the other parties).� Making no omputational assumptions and allowing omputationally-unbounded adversaries,but assuming private hannels, seure multi-party omputation is possible in the followingmodels (f. [26, 43℄):1. Passive adversary that may ontrol only a minority of the parties.2. Ative adversary that may ontrol only less than one third of the parties.24In both ases the adversary may be adaptive (f. [26, 38℄).� Seure multi-party omputation is possible against an ative, adaptive and mobile adversarythat may ontrol a small onstant fration of the parties at any point in time [108℄. Thisresult makes no omputational assumptions, allows omputationally-unbounded adversaries,but assumes private hannels.� Assuming the existene of trapdoor permutations, seure multi-party omputation is possiblein a model allowing an ative and adaptive omputationally-bounded adversary that mayontrol only less than one third of the parties [38, 49℄. We stress that this result does notassume \private hannels".Results for asynhronous ommuniation and arbitrary networks of point-to-point hannels werepresented in [24, 27℄ and [53℄, respetively.Note that the implementation of a broadast hannel an be asted as a ryptographi protoolproblem (i.e., for the funtionality (v; �; :::; �) 7! (v; v; :::; v)). Thus, it is not surprising that theresults regarding ative adversaries either assume the existene of suh a hannel or require a settingin whih the latter an be implemented.Seure reative omputation: All the above results (easily) extend to a reative model of om-putation in whih eah party interats with a high-level proess (or appliation). The high-levelproess supplies eah party with a sequene of inputs, one at a time, and expet to reeive orre-sponding outputs from the parties. That is, a reative system goes through (a possibly unboundednumber of) iterations of the following type:� Parties are given inputs for the urrent iteration.� Depending on the urrent inputs, the parties are supposed to ompute outputs for the urrentiteration. That is, the outputs in iteration j are determined by the inputs of the jth iteration.24Fault-tolerane an be inreased to a regular minority if broadast hannels exists [113℄.44



A more general formulation allows the outputs of eah iteration to depend also on a global state,whih is possibly updated in eah iteration. The global state may inlude all inputs and outputsof previous iterations, and may only be partially known to individual parties. (In a seure reativeomputation suh a global state may be maintained by all parties in a \seret sharing" manner.)For further disussion, see [68, Se. 7.7.1℄.EÆieny onsiderations: One important eÆieny measure regarding protools is the numberof ommuniation rounds in their exeution. The results mentioned above were originally obtainedusing protools that use an unbounded number of rounds. In some ases, subsequent works obtainedseure onstant-round protools: for example, in ase of multi-party omputations with honestmajority (f. [15℄) and in ase of two-party omputations allowing abort (f. [95℄). Other importanteÆieny onsiderations inlude the total number of bits sent in the exeution of a protool, andthe loal omputation time. The (ommuniation and omputation) omplexities of the protoolsestablishing the above results are related to the omputational omplexity of the omputation, butalternative relations (e.g., referring to the (inseure) ommuniation omplexity of the omputation)may be possible (f. [103℄).Theory versus pratie (or general versus spei�): This survey is foused on presentinggeneral notions and general feasibility results. Needless to say, pratial solutions to spei� prob-lems (e.g., voting [86℄, seure payment systems [16℄, and threshold ryptosystems [62℄) are typiallyderived by spei� onstrutions (and not by applying general results of the abovementioned type).Still, the (abovementioned) general results are of great importane to pratie beause they hara-terize a wide lass of seurity problems that are solvable in priniple, and provide tehniques thatmay be useful also towards onstruting reasonable solutions to spei� problems.7.3 Constrution ParadigmsWe briey sketh a ouple of paradigms used in the onstrution of seure multi-party protools. Wefous on the onstrution of seure protools for the model of omputationally-bounded and non-adaptive adversaries [75, 127, 76℄. These onstrutions proeed in two steps (see details in [65, 68℄).First a seure protool is presented for the model of passive adversaries (for any number of dishonestparties), and next suh a protool is \ompiled" into a protool that is seure in one of the twomodels of ative adversaries (i.e., either in a model allowing the adversary to ontrol only a minorityof the parties or in a model in whih premature suspension of the exeution is not onsidered aviolation of seurity).Reall that in the model of passive adversaries, all parties follow the presribed protool, butat termination the adversary may alter the outputs of the dishonest parties depending on all theirintermediate internal states (during the exeution). Below, we refer to protools that are seurein the model of passive (resp., general or ative) adversaries by the term passively-seure (resp.,atively-seure).7.3.1 Compilation of passively-seure protools into atively-seure onesWe show how to transform any passively-seure protool into a orresponding atively-seure pro-tool. The ommuniation model in both protools onsists of a single broadast hannel. Notethat the messages of the original protool may be assumed to be sent over a broadast hannel,beause the adversary may see them anyhow (by tapping the point-to-point hannels), and beausea broadast hannel is trivially implementable in ase of passive adversaries. As for the resulting45



atively-seure protool, the broadast hannel it uses an be implemented via an (authentiated)Byzantine Agreement protool [54, 96℄, thus providing an emulation of this model on the standardpoint-to-point model (in whih a broadast hannel does not exist). Reall that authentiatedByzantine Agreement is typially implemented using a signature sheme (and assuming that eahparty knows the veri�ation-key orresponding to eah of the other parties).Turning to the transformation itself, the main idea is to use zero-knowledge proofs (as desribedin Setion 4.3) in order to fore parties to behave in a way that is onsistent with the (passively-seure) protool. Atually, we need to on�ne eah party to a unique onsistent behavior (i.e.,aording to some �xed loal input and a sequene of oin tosses), and to guarantee that a partyannot �x its input (and/or its oins) in a way that depends on the inputs of honest parties. Thus,some preliminary steps have to be taken before the step-by-step emulation of the original protoolmay start. Spei�ally, the ompiled protool (whih like the original protool is exeuted over abroadast hannel) proeeds as follows:1. Prior to the emulation of the original protool, eah party ommits to its input (using aommitment sheme [102℄). In addition, using a zero-knowledge proof-of-knowledge [83, 20,75℄, eah party also proves that it knows its own input; that is, that it an deommit to theommitment it sent. (These zero-knowledge proof-of-knowledge are onduted sequentially toprevent dishonest parties from setting their inputs in a way that depends on inputs of honestparties; a more round-eÆient method was presented in [46℄.)2. Next, all parties jointly generate a sequene of random bits for eah party suh that onlythis party knows the outome of the random sequene generated for it, but everybody getsa ommitment to this outome. These sequenes will be used as the random-inputs (i.e.,sequene of oin tosses) for the original protool. Eah bit in the random-sequene generatedfor Party X is determined as the exlusive-or of the outomes of instanes of an (augmented)oin-tossing protool (f. [28℄ and [68, Se. 7.4.3.5℄) that Party X plays with eah of the otherparties.3. In addition, when ompiling (the passively-seure protool to an atively-seure protool) forthe model that allows the adversary to ontrol only a minority of the parties, eah party sharesits input and random-input with all other parties using a Veri�able Seret Sharing protool(f. [44℄ and [68, Se. 7.5.5.1℄). This will guarantee that if some party prematurely suspendsthe exeution, then all the parties an together reonstrut all its serets and arry-on theexeution while playing its role.4. After all the above steps were ompleted, we turn to the main step in whih the new protoolemulates the original one. In eah step, eah party augments the message determined by theoriginal protool with a zero-knowledge that asserts that the message was indeed omputedorretly. Reall that the next message (as determined by the original protool) is a funtionof the sender's own input, its random-input, and the messages it has reeived so far (where thelatter are known to everybody beause they were sent over a broadast hannel). Furthermore,the sender's input is determined by its ommitment (as sent in Step 1), and its random-input is similarly determined (in Step 2). Thus, the next message (as determined by theoriginal protool) is a funtion of publily known strings (i.e., the said ommitments as wellas the other messages sent over the broadast hannel). Moreover, the assertion that thenext message was indeed omputed orretly is an NP-assertion, and the sender knows aorresponding NP-witness (i.e., its own input and random-input as well as the orrespondingdeommitment information). Thus, the sender an prove in zero-knowledge (to eah of the46



other parties) that the message it is sending was indeed omputed aording to the originalprotool.The above ompilation was �rst outlined in [75, 76℄. A detailed desription and full proofs appearin [65, 68℄.7.3.2 Passively-seure omputation with sharesFor any m � 2, suppose that m parties, eah having a private input, wish to obtain the valueof a predetermined m-argument funtion evaluated at their sequene of inputs. Further supposethat the parties hold a iruit that omputes the value of the funtion on inputs of the adequatelength, and that the iruit ontains only and and not gates. The idea is to have eah party\seretly share" its input with everybody else, and \seretly transform" shares of the top wiresof the iruit into shares of the bottom wires, thus obtaining shares of the outputs (whih allowsfor the reonstrution of the atual outputs). The value of eah wire in the iruit is shared in away suh that all shares yield the value, whereas laking even one of the shares keeps the valuetotally undetermined. That is, we use a simple seret sharing sheme (f. [120℄) suh that a bit bis shared by a random sequene of m bits that sum-up to b mod 2. First, eah party shares eahof its input bits with all parties (by seretly sending eah party a random value and setting itsown share aordingly). Next, all parties jointly san the iruit from its input wires to the outputwires, proessing eah gate as follows:� When enountering a gate, the parties already hold shares of the values of the wires enteringthe gate, and their aim is to obtain shares of the value of the wire exiting the gate.� For a not-gate this is easy: the �rst party just ips the value of its share, and all other partiesmaintain their shares.� Sine an and-gate orresponds to multipliation modulo 2, the parties need to seurely om-pute the following randomized funtionality (in whih the xi's denote shares of one entry-wire,the yi's denote shares of the seond entry-wire, the zi's denote shares of the exit-wire, andthe shares indexed by i belongs to Party i):((x1; y1); :::; (xm; ym)) 7! (z1; :::; z2) (1)where Pmi=1 zi = (Pmi=1 xi) � (Pmi=1 yi). (2)That is, the zi's are random subjet to Eq. (2).Finally, the parties send their shares of eah iruit-output wire to the designated party, whihreonstruts the value of the orresponding bit. Thus, the parties have propagated shares of theinput wires into shares of the output wires, by repeatedly onduting privately-seure omputationof the m-ary funtionality of Eq. (1)& (2). That is, seurely evaluating the entire (arbitrary) iruit\redues" to seurely onduting a spei� (very simple) multi-party omputation. But things geteven simpler: the key observation is that mXi=1 xi! �  mXi=1 yi! = mXi=1 xiyi + X1�i<j�m (xiyj + xjyi) (3)Thus, the m-ary funtionality of Eq. (1)& (2) an be omputed as follows (where all arithmetioperations are mod 2): 47



1. Eah Party i loally omputes zi;i def= xiyi.2. Next, eah pair of parties (i.e., Parties i and j) seurely ompute random shares of xiyj+yixj .That is, Parties i and j (holding (xi; yi) and (xj ; yj), respetively), need to seurely omputethe randomized two-party funtionality ((xi; yi); (xj ; yj)) 7! (zi;j ; zj;i), where the z's are ran-dom subjet to zi;j + zj;i = xiyj + yixj. Equivalently, Party j uniformly selets zj;i 2 f0; 1g,and Parties i and j seurely ompute the deterministi funtionality ((xi; yi); (xj ; yj; zj;i)) 7!(zj;i + xiyj + yixj ; �).The latter simple two-party omputation an be seurely implemented using (a 1-out-of-4)Oblivious Transfer (f. [80℄ and [68, Se. 7.3.3℄), whih in turn an be implemented usingenhaned trapdoor permutations (f. [56℄ and [68, Se. 7.3.2℄). Loosely speaking, a 1-out-of-kOblivious Transfer is a protool enabling one party to obtain one of k serets held by anotherparty, without the seond party learning whih seret was obtained by the �rst party. Thatis, we refer to the two-party funtionality(i; (s1; :::; sk)) 7! (si; �) (4)Note that any funtion f : [k℄ � f0; 1g� ! f0; 1g� an be privately-omputed by invoking a1-out-of-k Oblivious Transfer on inputs i and (f(1; y); :::; f(k; y)), where i (resp., y) is theinitial input of the �rst (resp., seond) party.3. Finally, for every i = 1; :::;m, summing-up all the zi;j's yields the desired share of Party i.The above onstrution is analogous to a onstrution that was briey desribed in [76℄. A detaileddesription and full proofs appear in [65, 68℄.We mention that an analogous onstrution has been subsequently used in the private hannelmodel and withstands omputationally unbounded ative (resp., passive) adversaries that ontrolless than one third (resp., a minority) of the parties [26℄. The basi idea is to use a more sophisti-ated seret sharing sheme; spei�ally, via a low degree polynomials [120℄. That is, the Booleaniruit is viewed as an arithmeti iruit over a �nite �eld having more than m elements, and aseret element s of the �eld is shared by seleting uniformly a polynomial of degree d = b(m� 1)=3(resp., degree d = b(m� 1)=2) having a free-term equal to s, and handing eah party the value ofthis polynomial evaluated at a di�erent (�xed) point (e.g., party i is given the value at point i).Addition is emulated by (loal) point-wise addition of the (seret sharing) polynomials represent-ing the two inputs (using the fat that for polynomials p and q, and any �eld element e (and inpartiular e = 0; 1; :::;m), it holds that p(e) + q(e) = (p + q)(e)). The emulation of multipliationis more involved and requires interation (beause the produt of polynomials yields a polynomialof higher degree, and thus the polynomial representing the output annot be the produt of thepolynomials representing the two inputs). Indeed, the aim of the interation is to turn the sharesof the produt polynomial into shares of a degree d polynomial that has the same free-term as theprodut polynomial (whih is of degree 2d). This an be done using the fat that the oeÆients ofa polynomial are a linear ombination of its values at suÆiently many arguments (and the otherway around), and the fat that one an privately-ompute any linear ombination (of seret values).For details see [26, 63℄.7.4 Conurrent exeution of protoolsThe de�nitions and results surveyed so far refer to a setting in whih, at eah time, only a singleexeution of a ryptographi protool takes plae (or only one exeution may be ontrolled by48



the adversary). In ontrast, in many distributed settings (e.g., the Internet), many exeutionsare taking plae onurrently (and several of them may be ontrolled by the same adversary).Furthermore, it is undesirable (and sometimes even impossible) to oordinate these exeutions (soto e�etively enfore a single-exeution setting). Still, the de�nitions and results obtained in thesingle-exeution setting serves as a good starting point for the study of seurity in the setting ofonurrent exeutions.As in ase of stand-alone seurity, the notion of zero-knowledge provides a good test asefor the study of onurrent seurity. Indeed, in order to demonstrate the seurity issues arisingfrom onurrent exeution of protools, we onsider the onurrent exeution of zero-knowledgeprotools. Spei�ally, we onsider a party P holding a random (or rather pseudorandom) funtionf : f0; 1g2n!f0; 1gn, and willing to partiipate in the following protool (with respet to seurityparameter n).25 The other party, alled A for adversary, is supposed to send P a binary valuev 2 f1; 2g speifying whih of the following ases to exeute:For v = 1: Party P uniformly selets � 2 f0; 1gn, and sends it to A, whih is supposed to replywith a pair of n-bit long strings, denoted (�; ). Party P heks whether or not f(��) = .In ase equality holds, P sends A some seret information (e.g., the seret-key orrespondingto P 's publi-key).For v = 2: Party A is supposed to uniformly selet � 2 f0; 1gn, and sends it to P , whih seletsuniformly � 2 f0; 1gn, and replies with the pair (�; f(��)).Observe that P 's strategy is zero-knowledge (even w.r.t auxiliary-inputs as de�ned in De�nition 4.1):Intuitively, if the adversary A hooses the ase v = 1, then it is infeasible for A to guess a passingpair (�; ) with respet to a random � seleted by P . Thus, exept with negligible probability (whenit may get seret information), A does not obtain anything from the interation. On the other hand,if the adversary A hooses the ase v = 2, then it obtains a pair that is indistinguishable from auniformly seleted pair of n-bit long strings (beause � is seleted uniformly by P , and for any �the value f(��) looks random to A). In ontrast, if the adversary A an ondut two onurrentexeutions with P , then it may learn the desired seret information: In one session, A sends v = 1while in the other it sends v = 2. Upon reeiving P 's message, denoted �, in the �rst session, Asends it as its own message in the seond session, obtaining a pair (�; f(��)) from P 's exeutionof the seond session. Now, A sends the pair (�; f(��)) to the �rst session of P , this pair passesthe hek, and so A obtains the desired seret.An attak of the above type is alled a relay attak: During suh an attak the adversary justinvokes two exeutions of the protool and relays messages between them (without any modi�a-tion). However, in general, the adversary in a onurrent setting is not restrited to relay attaks.For example, onsider a minor modi�ation to the above protool so that in ase v = 2 partyP replies with (say) the pair (�; f(��)), where � = � � 1j�j, rather than with (�; f(��)). Themodi�ed strategy P is zero-knowledge and it also withstands a relay attak, but it an be \abused"easily by a more general onurrent attak.The above example is merely the tip of an ieberg, but it suÆes for introduing the mainlesson: an adversary attaking several onurrent exeutions of the same protool may be able toause more damage than by attaking a single exeution (or several sequential exeutions) of thesame protool. One may say that a protool is onurrently seure if whatever the adversary mayobtain by invoking and ontrolling parties in real onurrent exeutions of the protool is also25In fat, assuming that P shares a pseudorandom funtion f with his friends (as explained in Setion 3.3), theabove protool is an abstration of a natural \mutual identi�ation" protool. (The example is adapted from [73℄.)49



obtainable by a orresponding adversary that ontrols orresponding parties making onurrentfuntionality alls to a trusted party (in a orresponding ideal model).26 More generally, one mayonsider onurrent exeutions of many sessions of several protools, and say that a set of protoolsis onurrently seure if whatever the adversary may obtain by invoking and ontrolling suh realonurrent exeutions is also obtainable by a orresponding adversary that invokes and ontrolsonurrent alls to a trusted party (in a orresponding ideal model). Consequently, a protoolis said to be seure with respet to onurrent ompositions if adding this protool to any set ofonurrently seure protools yields a set of onurrently seure protools.A muh more appealing approah was reently suggested by Canetti [37℄. Loosely speaking,Canetti suggests to onsider a protool to be seure (alled environmentally-seure (or UniversallyComposable seure [37℄)) only if it remains seure when exeuted within any (feasible) environment.Following the simulation paradigm, we get the following de�nition:De�nition 7.2 (environmentally-seure protools [37℄ { a rough sketh): Let f be an m-ary fun-tionality and � be an m-party protool, and onsider the following real and ideal models.In the real model the adversary ontrols some of the parties in an exeution of � and all partiesan ommuniate with an arbitrary probabilisti polynomial-time proess, whih is alled anenvironment (and possibly represents other exeutions of various protools that are taking plaeonurrently). Honest parties only ommuniate with the environment before the exeutionstarts and when it ends; they merely obtain their inputs from the environment and pass theiroutputs to it. In ontrast, dishonest parties may ommuniate freely with the environment,onurrently to the entire exeution of �.In the ideal model the (simulating) adversary ontrols the same parties, whih use an ideal (trusted-party) that behaves aording to the funtionality f (as in Setion 7.1.2). All parties an om-muniate with the (same) environment (as in the real model). Indeed, the dishonest partiesmay ommuniate extensively with the environment before and after their single ommunia-tion with the trusted party.We say that � is an environmentally-seure protool for omputing f if for every probabilisti polynomial-time adversary A in the real model there exists a probabilisti polynomial-time adversary A0 on-trolling the same parties in the ideal model suh that no probabilisti polynomial-time environmentan distinguish the ase in whih it is aessed by the parties in the real exeution from the ase itis aessed by parties in the ideal model.As hinted above, the environment may aount for other exeutions of various protools that aretaking plae onurrently to the main exeution being onsidered. The de�nition requires thatsuh environments annot distinguish the real exeution from an ideal one. This means thatanything that the real adversary (i.e., operating in the real model) gains from the exeution andany environment, an be also obtained by an adversary operating in the ideal model and havingaess to the same environment. Indeed, Canetti proves that environmentally-seure protools areseure with respet to onurrent ompositions [37℄.26One spei� onern (in suh a onurrent setting) is the ability of the adversary to \non-trivially orrelatethe outputs" of onurrent exeutions. This ability, alled malleability, was �rst investigated by Dolev, Dwork andNaor [52℄. We omment that providing a general de�nition of what \orrelated outputs" means seems very hallenging(if at all possible). Indeed the fous of [52℄ is on several important speial ases suh as enryption and ommitmentshemes. 50



It is known is that environmentally-seure protools for any funtionality an be onstrutedfor settings in whih more than two-thirds of the ative parties are honest [37℄. This holds un-onditionally for the private hannel model, and under standard assumptions (e.g., allowing theonstrution of publi-key enryption shemes) for the standard model (i.e., without private han-nel). The immediate onsequene of this result is that general environmentally-seure multi-partyomputation is possible, provided that more than two-thirds of the parties are honest.In ontrast, general environmentally-seure two-party omputation is not possible (in the stan-dard sense).27 Still, one an salvage general environmentally-seure two-party omputation in thefollowing reasonable model: Consider a network that ontains servers that are willing to partiipate(as \helpers", possibly for a payment) in omputations initiated by a set of (two or more) users.Now, suppose that two users wishing to ondut a seure omputation an agree on a set of serversso that eah user believes that more than two-thirds of the servers (in this set) are honest. Then,with the ative partiipation of this set of servers, the two users an ompute any funtionality inan environmentally-seure manner.Other reasonable models where general environmentally-seure two-party omputation is possi-ble inlude the ommon random-string (CRS) model [42℄ and variants of the publi-key infrastru-ture (PKI) model [9℄. In the CRS model, all parties have aess to a universal random string (oflength related to the seurity parameter). We stress that the entity trusted to post this universalrandom string is not required to take part in any exeution of any protool, and that all exeutionsof all protools may use the same universal random string. The PKI models onsidered in [9℄require that eah party deposits a publi-key with a trusted enter, while proving knowledge of aorresponding private-key. This proof may be onduted in zero-knowledge during speial epohsin whih no other ativity takes plae.

27Of ourse, some spei� two-party omputations do have environmentally-seure protools. See [37℄ for severalimportant examples (e.g., key exhange). 51
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