Quantitative Analysis of Dynamic Network
Protocols*

Oded Goldreich' Amir Herzberg* Adrian Segall ®

January 3, 1994

Abstract

We present a quantitative approach to the analysis of dynamic net-
work protocols. Dynamic networks, extensively studied in the last
decade, are asynchronous communication networks in which links re-
peatedly fail and recover. Loosely speaking, we quantify the reliability
of a link at a given moment as the time since the link last recovered.
This corresponds to the intuition that a link 1s ‘useful’ only after some
‘warming up’ period since 1t recovered.

To compare the quantitative approach to the existing (qualitative)
approaches, we consider the broadcast task, used extensively in actual
networks. The existing formulations of broadcast seem too difficult
for dynamic networks. In particular, protocols with bounded storage
must have unbounded time complexity. Our quantitative formulation
of broadcast seems to be closer to the realistic requirements, and es-
capes such difficulties.

We present a protocol for the quantitative formulation of broadcast.
Namely, this broadcast protocol operates in networks which satisfy a
weak, quantified reliability assumption. The protocol is efficient, with
linear message complexity and high throughput.

*This work was partially supported by the Fund for the Promotion of Research in the
Technion. This manuscript continues and improves our work in PODC 90.

"Dept. of Computer Science, Technion, Haifa, Israel. E-mail:
oded@csa.cs.technion.ac.il.

qIBM T. J. Watson Research Center, POB 704, Yorktown Heights, NY 10598. E-
mail: amir@watson.ibm.com. Part of this work was done while this author was with the
Computer Science Dept., Technion, Israel

SDept. of Computer Science, Technion, Haifa, Israel. E-mail:
segall@csa.cs.technion.ac.il.

broad:broad update:January 3, 1994 IWIpX:August 26, 1996 2

Comment by Oded (21/8/96): This is a working draft of a paper which,
being a continuation of work by Awerbuch, Goldreich and Herzberg (pre-
sented in PODCY0), was supposed to provide a jouranl version for the latter.
It seems that this intensions will never materialize.

broad:Intro update:July 16 1993 INTpX:August 26, 1996 3

1 Introduction

The modeling and evaluation of protocols for communication networks is
among the most evasive issues in computer science. The need for such models
and evaluation criteria is evident in view of the increasing importance of
communication in the modern society. Precise evaluation criteria are needed
in order to compare alternative solutions to communication problems. These
evaluation criteria should properly reflect reality. Namely, there should be
correspondence between methods that work well in practice, and solutions
judged reliable and efficient according to the criteria.

Communication protocols are difficult to model and evaluate, since com-
munication networks exhibit a variety of phenomena that are hard to an-
alyze. There are many factors to consider, and these factors interact in
a complex manner. In particular, the delays and failures involved in the
transmission of information through the network are critical factors which
are difficult to deal with. In this paper we investigate dynamic networks
[AAGS87, AES6], where the communication is asynchronous and where links
may fail and recover.

Most works about dynamic networks assume some ‘reliability’, in order
to avoid banal impossibilities due to extreme unreliability. For example, we
wish to exclude the absurd scenario where all links are always faulty. It is
desirable that different works will use the same assumptions, or comparable
assumptions, to enable comparison and composition of results.

Most theoretical works on dynamic networks use either the ‘eventual con-
nectivity’ assumption or the ‘eventual stability” assumption (see §1.1). Each
of these assumptions is the weakest sufficient assumption for an important
and general class of tasks. In [AAGS87, Fin79] it was shown that ‘eventual
stability’ is sufficient for tasks whose output depends on the topology of the
network. In [AG91, AES86, AMS89, Vis83] it was shown that ‘eventual con-
nectivity’ is sufficient for tasks whose output is independent of the topology.
Both assumptions are also the weakest possible for the corresponding classes
of tasks, and may hold even for extremely unreliable networks, where parts
of the network fail frequently for an unbounded duration.

In practice, networks are much more reliable, i.e. almost always the
entire network is operational, or at least most of the network is operational.
The average time between failures of each link and processor is very large.
Of course, in a very large network failures may occur perpetually, simply due
to the huge number of components. However, in practice it usually suffices
to communicate between two processors via a single path, with a single

broad:Intro update:July 16 1993 INTpX:August 26, 1996 4

alternative path to be used if the main path fails. Networks are designed
with sufficient redundancy (alternative paths) so that it is easy to ensure
reliable communication. Accordingly, protocols employed in actual networks
usually make strong reliability assumptions [BGG*85, LR90, Per83, Her92].
These ‘practical’ protocols are simple and efficient. In particular, these
protocols do not wait for ‘eventual’ conditions, and in this sense are more
efficient than the best possible solutions under the ‘eventual connectivity’
or ‘eventual stability’ assumptions.

However, if the network satisfies only the ‘eventual’ assumptions, then
the ‘practical’ protocols are incorrect. Hence, a protocol may work well
in practice, yet seem incorrect under the ‘eventual’ assumptions. It seems
that these assumptions are too much concerned with fault tolerance, while
the practical intuition is more concerned with efficiency. Furthermore, the
‘eventual’ assumptions are qualitative. Namely, these assumptions are not
quantified by some numeric parameter corresponding to the reliability. In
reality, reliability is determined by a multitude of factors. Hence, it is de-
sirable to have an assumption that allows a continuity from more reliable
networks to less reliable networks. In particular, this would allow tradeoffs
between efficiency and fault tolerance.

We propose a quantitative reliability assumption, parameterized by the
degree of reliability assumed. 1t seems safe to assume a rather large degree
of reliability for most actual networks. This assumption could be used,
however, also for less reliable networks, by assuming a smaller degree of
reliability. Solutions using different degrees of reliability may be compared,
since the degree of reliability assumed by a solution becomes simply an
additional measure of the solution.

We illustrate our quantitative approach by presenting an efficient broad-
cast protocol that assumes a small degree of reliability. The protocol ensures
bounded delay, high throughput and bounded storage. In contradiction, un-
der the ‘eventual’ assumptions, it is impossible to bound the delay of the
solutions, and high throughput implies unbounded storage. Our concepts
of delay, throughput and communication complexity formalize the notions
used in ‘practical’ works.

1.1 The Qualitative Approaches

The two main known formal approaches to evaluating protocols for dynamic
networks have qualitative nature. Fach of them takes a radically different at-
titude towards failures. In the eventual-stability approach [AAG87, AweS88,

broad:Intro update:July 16 1993 INTpX:August 26, 1996 5

AS88, BGS88, CR87, Fin79, Gal76, Segl3], failures are assumed to cease
at some unknown moment. This, of course, is not meant literally, but it is
rather assumed that from that moment on, an entire execution of the pro-
tocol can be completed within a period containing no new failures. In the
eventual-connectivity approach [AG91, AE86, AMSR9, Vis83], the only re-
striction on the nature of failures is that they do not disconnect the network
forever.

Both approaches are elegant and gave rise to interesting research prob-
lems and important techniques. However, there are severe limitations to the
application of these approaches to actual networks. We believe that these
limitations are due to the fact that both approaches consider only proper-
ties of the link which do not change during the execution. In the eventual
connectivity approach, the only relevant property of a link is whether it is
‘viable’, i.e. if it does not fail forever. In the eventual stability approach,
the only relevant property of a link is whether it eventually stabilizes as up
or as down. These properties, although dealing with dynamic behavior, are
nevertheless static.

We believe that the investigation of dynamic networks should focus on
dynamic properties of the links. Indeed, in a large actual network, it may
be overly optimistic to assume eventual stability, since quite often some link
fails or recovers in some part of the network. Namely, the frequency of fail-
ures in the entire network is the number of links times the average frequency
of failures in each link. Indeed, many large practical networks have taken
special precautions to prevent frequent failures and recoveries from degrad-
ing the performance of the network by excessive overhead of topology update
message and reroutings [MRR&0, LR90, RS91]. Doubtlessly, in these net-
works, we cannot use protocols which restart most or all of the computation
at every new failure or recovery, as most ‘eventually stable’ works do.

On the other hand, actual networks are designed with highly reliable
links and sufficient redundancy, to ensure that they remain connected in
spite of failures. Obviously this results in much higher reliability than just
eventual connectivity. Therefore, it is wasteful to assume only eventual
connectivity. Indeed, many formalizations of ‘practical’ tasks, following both
these approaches, give rise to impossibility results, that contradict successful
experience with protocols for the same tasks.

A good example is the broadcast task, that is a useful service for network
applications and control. Loosely speaking, broadcast is the transmission of
a sequence of messages from a predetermined processor called source to all
other processors in the network. All processors would eventually accept a

broad:Intro update:July 16 1993 INTpX:August 26, 1996 6

complete copy of the sequence. Suppose that we assume eventual connec-
tivity. Consider a processor that is disconnected from the source when the
protocol starts. Every broadcast message must be stored in the network
until this processor reconnects. If the source bounds the number of mes-
sages broadcasted until the processor reconnects, then the throughput may
be arbitrarily small. Hence, assuming only eventual connectivity, broad-
cast with high throughput requires unbounded storage. Indeed, the solution
of [AES6] uses unbounded storage. Furthermore, in any protocol the de-
lay is unbounded, since there is no bound on the time until the processor
reconnects. (The delay is the interval from the time when a message is
broadcasted and until it is delivered to the last processor.)

Essentially the same problem exists if we assume eventual stability. Con-
sider again a processor that is disconnected from the source for a very long
period. Obviously, the delay is unbounded. Furthermore, all broadcast mes-
sages sent by the source while the processor is disconnected should be stored,
so that they may be delivered if the processor reconnects. If the source sends
only a bounded number of messages until the processor reconnects, then the
‘throughput’ is unboundedly small.

We find that assuming either eventual connectivity or eventual stability,
broadcast has, in the worst case, unbounded delay, and for throughput that
is bounded away from 0, unbounded storage as well.

1.2 The Quantitative Approach

The gquantitative approach is based on a dynamic quantity associated with
each link at any moment. Loosely speaking, this is the amount of time since
the link has last recovered if the link is up, or zero if the link is down.

This quantity is intended to capture the ability of the protocol to utilize
the link. Typically, protocols cannot efficiently utilize a link instantaneously
after the link recovers, but only after some ‘warming up’ period. Protocols
need the ‘warming up’ period in order to exchange messages for different
purposes. Messages may be needed to compare the state of the end-points
of the link, or to exchange information between them. Other messages may
be required to inform other processors that the link has recovered. The
link becomes useful if it passed, without failures, this ‘warming up’ period;
namely, if it was ‘up’ for sufficiently long.

We present a broadcast protocol that assumes that the network is con-
nected at all times by ‘sufficiently up’ links. In this way we can prove
bounded delay and throughput even for the worst case, independently of

broad:Intro update:July 16 1993 INTpX:August 26, 1996 7

the failures, and with bounded storage.

The ‘sufficient up’ amount required from the links may change from
protocol to protocol. For example, in this exposition we present a broad-
cast protocol that requires less reliability than the protocols in an earlier
version [AGH90a]. Hence, we may quantitatively compare the reliability re-
quirements of different protocols. It is plausible that there will be tradeoffs
between the reliability requirements and the efficiency of protocols. The
network designer can pick the most efficient protocol that requires no more
than the reliability which is assumed to hold for her network.

Our protocol requires that at any moment, every two processors are
connected by some path the links of which were up during the last 3n time
units, where n is the number of processors. This requires an entire path
to be up simultaneously for some time, which is obviously stronger than
requiring eventual connectivity. Awerbuch et al. [AMS89] observed, that if
the failure probability of each individual link is constant, then the “failure
probability” of the path becomes exponentially close to 1 as a function of
the length of the path. They conclude that the requirement that the entire
path is up is too strong. We disagree with this conclusion, for both practical
and theoretical considerations:

Practice: Actual networks [BGG*85, LR90] are designed and implemented
so that the probability of a failure along a path is quite small. As a
result, many networks use only a small number of the possible alter-
native paths between each two processors [LR90]. These networks still
operate successfully and are considered fault-tolerant, since the proba-
bility that there will be a failure in several disjoint paths at about the
same time is negligible. Also, many networks perform end-to-end com-
munication by sending messages over a single, efficient path connecting
the two end stations [Her92, BGG*85]. Furthermore, it seems that the
technological improvements in link reliability are growing faster than
the growth of the networks.

Theory: the analysis where the failure probability is constant and only
the length of the path grows is misleading. It is reasonable to expect
that as networks grow, processors would be connected mostly by links
which are highly reliable. It is easy to see that the analysis of [AMS89]
fails, for example, if the failure probability of each link is inversely
proportional to the length of the path.

We conclude that for most actual networks, the quantified formaliza-

broad:Intro update:July 16 1993 INTpX:August 26, 1996 8

tions are sufficient, and the eventual connectivity formalizations are too pes-
simistic.

1.3 Complexity Measures for Broadcast

The traditional definitions of time and communication complexities are tai-
lored to tasks where the output is a result of some computation to a given
input. Such definitions are inappropriate for the analysis of ‘online’ tasks,
such as broadcast, where the inputs are given and outputs are produced dur-
ing the (possibly infinite) execution. Furthermore, we consider broadcast in
a dynamic network, where links fail and recover during the execution.

We give definitions for throughput and communication complexity for
broadcast, which address the ‘online’ nature of the task and the dynamic
nature of the network. Our definitions could be modified easily for other
‘online’ tasks.

The throughput measures, intuitively, the rate by which messages are
accepted for broadcast, i.e. average number of broadcast messages per time
unit. This rate is limited by the capacity of the network and by the time
that it takes the protocol to remove messages from the network.

Throughput, in this sense, is a very practical measure. For example, the
advantage of [CR87] over [Fin79] is exactly in improving the throughput.
However, it is difficult to define the throughput since it cannot be measured
for a single message accepted. As stated above, throughput is related to the
average time used to broadcast messages over the number of messages. The
problem is to select the right interval over which to average. Short intervals
may deliver no (or few) messages, while long intervals may ‘hide’ bursty
behavior. The crux of our definition, presented in section 5.3, is that the
selection of the intervals is left as a parameter.

It is similarly difficult to define communication complexity for broadcast
(and other ‘online’ tasks). We cannot truly measure the communication
‘per message accepted’, and on the other hand amortization may ignore
“short-term” disastrous effects. Again, the crux of the solution is to allow
the selection of intervals for amortization to be a parameter.

Time and Congestion. When defining time complexity, it is com-
monly postulated that in case m packets are sent concurrently, over the
same link, the last arrives within m time units. An alternative convention
postulates that all m packets arrive within one time unit. We believe that,
as long as the protocol limits itself to a ‘reasonable’ number of concurrent
messages (i.e., ‘reasonable’ congestion), the second alternative better reflects

broad:Intro update:July 16 1993 INTpX:August 26, 1996 9

reality. (See justification in Section 2.1). We analyze our protocol using the
second convention, while bounding the congestion (i.e., the maximal num-
ber of packets in transit concurrently) by O(n). It seems that our protocol
maintains all its complexities, up to a constant, even when using the first
convention for time complexity.

1.4 Our protocol

We present a broadcast protocol, i.e. a protocol which delivers a sequence
of messages accepted at a source processor to all of the processors in the
network. The protocol operates in the presence of an arbitrary schedule of
link failures, provided that the network satisfies a weak, quantified reliability
assumption. Loosely speaking, the assumption is that at any time, every
pair of processors is connected by a sufficiently reliable path.

The protocol is highly efficient in communication (O(1) message per
link), throughput (£2(1)) and delay (O(n)), and uses O(n) storage, where n
is the number of processors. In fact, by combining high throughput with
bounded (O(n)) storage, our protocol improves upon the known, ‘classical’
broadcast protocols, Echo, PIF and Intelligent Flood, used in many actual
networks. (Details follow.) Furthermore, these classical protocols work only
for static asynchronous networks.

The Echo and PIF protocols [Cha82, DS80, Seg83] have lower through-
put. Namely, the maximal time required between broadcasting two messages
using Fcho is proportional to the diameter of the network, compared to a
constant in our protocol It is simple to improve the throughput of PIF using
a window, however this seems to increase the worst case delay to O(n?).

The Intelligent Flood protocol [Per83, Seg83] require unbounded® stor-
age, both due to ‘infinite counters’ and to unbounded link capacity require-
ments. Our protocol is almost as simple as these ‘classical’ protocols, espe-
cially the version for static networks presented in §3.1. The known fault-
tolerant broadcast protocols [AER6] are variations of the Flood protocol,
and also require unbounded storage.

We develop and analyse the protocol in a modular manner. We begin
with a simple version, which has poor throughput and unbounded storage.
This simple version is built as a combination of two complementing mecha-
nisms: a progress mechanism, which guarantees that messages are delivered,

! Actual implementations of Intelligent Flood are bounded; they store only the last k
messages, where k is a large number, selected experimentally and by bounds on the delays.

broad:Intro update:July 16 1993 INTpX:August 26, 1996 10

and a synchronization mechanism, which ensures that the number of mes-
sages delivered by different processors is always roughly the same. We later
improve by a series of simple reductions, providing optimal throughput and
bounded storage.

The protocol we present is quite simple. Indeed, it may be regarded
as a combination of several techniques which are well known, and widely
used in practical protocols. Namely, the protocol combines a simple flow
control mechanism with the well known flooding mechanism. Failures and
recoveries are dealt with, by using standard techniques. We bound the space
requirements and the length of messages by using modular counters, as done
in practical protocols. Finally, to improve the throughput we use a window
mechanism, which is also used in many practical protocols.

The value of these techniques is well recognized in practice. However,
there has been limited use of these techniques in previous theoretical works
on dynamic networks. The quantitative approach allowed us to formally
analyse contributions of these techniques, instead of applying them based
only on heuristic arguments. We hope that this indicates that the quantita-
tive approach is more realistic than previous formal approaches to dynamic
networks.

Organization

Section 2 contains the definitions of basic dynamic the model, the quantita-
tive reliability assumptions, the broadcast task and the complexity measures.
Section 3 presents a simplified version of our protocol, having unbounded
storage and low throughput. The analysis of the simplified version is
presented in section 4. Section 5 contains enhancements to the simplified
protocol, yielding the final version, which achieves bounded storage and
optimal (©(1)) throughput.

broad:def update:July 15, 1993 INTpX:August 26, 1996 11

2 Definitions

2.1 The Dynamic Networks Model

We consider the dynamic network model of [AAG87, AES86, BS88]. The net-
work is represented by an undirected graph, with n vertices corresponding
to the processors and m edges corresponding to communication links be-
tween some pairs of processors (neighbors). There is no assumption about
the topology of the graph, and the topology is a-priori not known to the pro-
cessors. However, the processors know? n and each processor has a distinct
identity.

The model is asynchronous in that the processors do not have clocks
and the delays are finite but unbounded. Hence, some events are concur-
rent, and events are only partially ordered. Like previous authors [AAGS87,
AE86, BS88, GHS83], we find it easier to consider a total order between
events. This total order should be interpreted as an arbitrary extension of
the actual partial order. This extension is unknown to the processors, and
our results hold for any such extension. It is possible to obtain equivalent
results without assuming total order (see [AGH90D]).

We now make a further important simplification, again following [AAGS87,
AES86, BS88, GHS83]. Namely, we associate a positive number time(e) with
each event e. The number time(e) represents the ‘normalized time’ of event
e. The time is ‘normalized’ in the sense that for complexity analysis pur-
poses, one time unit is defined as the maximal transmission delay. The
definition of the maximal transmission delay is given later, when discussing
time complexity measures.

At first sight, this simplification seems to introduce some synchroniza-
tion. However, like the total order itself, the association of the time to the
events is only for the sake of analysis, and is completely transparent to the
protocol. In particular, the processors are not aware of the ‘time’ of events
during the execution. Hence, the model remains completely asynchronous.
Namely, associating time to events simplifies the formalization, but is not
essential (see again [AGHI0b]).

We consider send, receive, fail and recover events, each referring to a
specific processor and link of that processor and having the natural mean-
ings. The send event is an output event; the other events are input events.
Additional task specific events are described in subsection 2.3. Each send

?In fact a reasonable upper bound for n is enough, since the protocol needs to know n
only for allocation of storage and sizing of counters.

broad:def update:July 15, 1993 INTpX:August 26, 1996 12

and receive event is associated to a specific packet®, which is the information
sent or received.

We use the natural notions of a link being up or down at a processor,
and of an up interval, following [AAG87, AER6, BS88]. Messages are sent
and received only when the link is up.

Definition 1 A time interval [t,,t5] is an up interval of link (u,v) at pro-
cessor v if (u,v) recovers at processor v at time t,, and does not fail at v
during [ti,t3). A link (u,v) is up at processor v at any time during an up
interval of (u,v) at v, and down at any other time.

We assume that the events satisfy DLC (Data Link Control) reliability.
This is guaranteed by using a reliable DLC procedure as a lower layer on all
links. DLC reliability is defined in [BS88, GS92], and is restated below in
Definition 2.

Normally, the DLC procedure ensures that all packets sent are received
at the other end of the link, in the correct sequence. However, if the link be-
comes inoperational for too long, it is declared faulty and the DLC procedure
throws away any undelivered packets. Namely, a reliable DLC procedure en-
sures that the sequence of packets received is the same as the sequence sent
from the other end, except that some subsequences sent prior to failures
may be missing.

Definition 2 A set of events with associated times satisfy DLC reliability if
the following properties holds for any link (u,v):

1. Processor u sends and receives packets over (u, v) only during up intervals.

2. Follow-up: If (u,v) fails at u while up at v, then it would also fail in v
within finite time.

3. Delivery: If (u,v) is up at u at ¢ and u sends a packet to v at ¢, then
within finite time this packet is received by v or the link fails.

4. Crossing: If (u,v) fails at u at some time ¢, there is a time ¢, after ¢
but before (u, v) recovers at u such that (u,v) is also down in v at ¢, and
no packet sent over (u,v) from either end before time ¢, can be received
by the other end after time ..

*The term packetis used for the control messages sent by the protocol. This convention
is intended to avoid confusion between packets, i.e. control messages sent by the protocol,
and messages accepted from the higher layer.

broad:def update:July 15, 1993 INTpX:August 26, 1996 13

5. FIFO: Suppose u receives at time ¢, a packet which was sent at time 7,
by v over (u,v). Let ¢, denote the last time before ¢, when (u,v) went
up at u. Similarly, let ¢/ denote the last time before ¢, when (u,v) went
up at v. Then the sequence of packets sent by v to u during [t/,%,] is
identical to the sequence of packets received by u from v during [/ ,1,].

The last two properties ensure a reliable one-to-one correspondence be-
tween up intervals. The Crossing property ensures that the link is cleared
of old messages following each failure. The FIFO property ensures that the
packets in two ‘corresponding’ intervals are delivered in the same order, with
no gaps or duplicates.

We restrict our attention to the case where the delays of the Follow-up
and Delivery properties are at most one time unit. Namely, there is at most
one time unit between a failure at one end and the corresponding failure at
the other end, or between a send event and the corresponding receive (or
failure) event. In this case we say that the link satisfies normalized DLC
reliability.

We stress that with this normalization, the delay does not depend on the
number of packets in transit concurrently. Namely, we allow an unbounded
number of packets to be transmitted at the same time unit over a link.
This is a simplification of reality, where links have a specific capacity and
therefore the delay grows when there are many packets in transit. However,
for a reasonable amounts of concurrent transmissions by the protocol, the
changes in the delay caused by packets sent by the protocol itself are negli-
gible, as the delay is mostly dominated by the packets sent concurrently by
other protocols running in the network. The reason being that the delay of
a packet is determined by the total number of packets already queued for
transmission, counting all packets independent of the protocols which have
placed them. Hence, in case it is guaranteed that only one protocol sends
packets on a link, the actual link delay could have been determined by the
protocol. Typically, when the asynchronous model is used, it is believed that
a significant part of the communication is caused by other (unknown) proto-
cols running concurrently in the network. Indeed, the belief that the delay
is determined by the other (unknown) protocols, is the very justification for
the use of the asynchronous model.

We now define our model of an execution, called a timed dynamic exe-
cution. Where no ambiguity may arise, we sometimes say simply ezecution,
meaning a timed dynamic execution. This definition is simplified, e.g. by
ignoring local processing. For a more precise definition, see [ADLS90].

broad:def update:July 15, 1993 INTpX:August 26, 1996 14

Definition 3 An algorithm 11 is a mapping from a state and a set of input
events to a (new) state and a set of output events. A timed dynamic execution
of algorithm 1l is a sequence of tuples {(t;,p;,si,1;,n;,0;)} where t; are
monotonously increasing positive real numbers (representing time), p; is a
processor identity from 1,...n, s; is the state, n; is the new state, I; is the
set of input events and O; is the set of output events, such that for every ¢
holds (n;,0;) = ll(s;,I;) and the s; = ny where k < i is the last tuple before
v of processor p;, and where the events on each link satisfy normalized DLC
reliability.

Throughout the rest of this section, we consider a specific timed dynamic
execution a.

2.2 Quantitative Connectivity Assumptions

We now present the main conceptual contribution of this paper: quantitative
assumptions of connectivity. The assumptions are, basically, extensions of
the (qualitative) assumption that the network is ‘always connected’. The
extensions are based on the observation that for many natural protocols,
connectivity at any moment is not enough, since it takes some time for the
protocol to utilize a new path between two processors. More specifically,
it usually takes some time since a link recovers and until the protocol can
‘really use it’ as if it never failed. This time may be used, for example, to
synchronize across the link or to notify other processors of the recovery.
Essentially, a link is [—Up if it is up during the last [time units. Note
that [time units are sufficient for transmission of a packet over a path of

length 1.

Definition 4 We say that link (u,v) is [=Up at time t > 0, if link (u,v) is
up at both v and u during the entire interval [max(t — [,0),¢].

Note that » knows, at any moment, if (u,v) is up at v. However, pro-
cessor v does not know if (u,v) is currently /—Up. One reason is that the
network is asynchronous and hence v cannot detect when [time units have
elapsed. Another reason is that processor v does not know if (u,v) is up at
.

A path is [-=Up at time ¢ if all of its links have been up during the [time
units before ¢, i.e. if all of its links are [—Up at t.

Definition 5 A path is [—Up at time t, if all of its links are [— Up at t.

broad:def update:July 15, 1993 INTpX:August 26, 1996 15

Usually, we are not interested in the reliability of a specific path, but
rather about the existence of some reliable path between the processors,
i.e. reliable connectivity. Up-connected processors are processors connected
by a path of links which have been up for sufficiently long time. This is
formalized as follows.

Definition 6 Processors u and v are [—Up-Connected at time t if there
exists a path connecting u and v that is [— Up at time t.

Two processors may be [—Up-Connected during a long time interval,
without having any path connecting them for the entire interval. For ex-
ample, suppose there are two different paths p, ¢ between processors v and
v. Suppose further that p is [—Up at [t;,?,] and that ¢ is [—Up at [t,, t5].
Then w and v are [—Up-Connected during the entire [{;,73]. Note that all
the links in p should be up during [t; — [, ;] and all the links in ¢ should be
up during [ty — [, 13].

A natural reliability assumption, which will be used in this paper, is that
every two processors in the network are reliably connected at any time. In
other words, the network is [-Up at any time.

Definition 7 A network is [—Up at time t if every two processors are [— Up-
Connected at time t.

2.3 The Broadcast Task

All broadcast messages are accepted from the ‘higher layer’ at a single pro-
cessor, called the source and denoted by s. The interaction between the
broadcast protocol and the ‘higher layer’ that uses it consists of the follow-
ing events:

accept The protocol accepts a new message from the ‘higher layer’ (at
processor s).

deliver The protocol delivers a message to the ‘higher layer’.

ready The protocol is ready to accept a new message from the ‘higher layer’
(at processor s).

The ready event is essential in order to bound the storage required in the
source to hold messages which were accepted and are still being broadcasted.
Namely, the higher layer is required to wait for a ready event between every

broad:def update:July 15, 1993 INTpX:August 26, 1996 16

two accept events. Formally, we assume that every two accept events at s
are interleaved by a ready event at s.

The goal of the broadcast protocol is to deliver the exact sequence of
messages accepted at s to the higher layer at each processor.

Definition 8 FErecution « is a correct broadcast from s if at any time the
sequence of messages delivered at any processor to the higher layer is a prefix
of the sequence of messages accepted from the higher layer at the source s.

Note that we define above only correctness, i.e. it is possible to satisfy
this definition in an empty manner by never delivering any message. The
‘liveness’ requirement is implied by the throughput and delay complexity
measures, defined in the next subsection.

2.4 Complexity Measures

We now present complexity measures for broadcast. We begin by suggesting
refined complexity measures for the communication and the throughput. We
then formalize the notion of congestion (over links), i.e. the maximal number
of packets in transit over a link at the same time. Finally, we define delay
and space complexity.

2.4.1 Communication Complexity Measures

The communication complexity should reflect the amount of network band-
width consumed by the protocol. Most works measure the amount of com-
munication per message accepted from the higher layer. Namely, the com-
munication complexity in these works is often defined as the ratio of the
number of packet transmissions over the number of accept events, both
counted during an entire execution or any prefix of an execution. This is
natural in protocols where each packet sent may be easily associated with a
single corresponding message, as in most protocols using infinite counters,
e.g. [AES6], [JBS86].

However, in many works the same packet may serve several accept events.
In fact, many protocols improve complexities by performing some tasks pe-
riodically, instead of doing them for each message, thereby amortizing their
costs over many messages. For example, in [AGH90a] we suggested an end-
to-end protocol which transmitted an exponential number of packets for a
‘clean-up’ task which was performed once per an exponentially long period
of time. The amortized communication complexity, i.e. the ratio of packets

broad:def update:July 15, 1993 INTpX:August 26, 1996 17

sent to messages accepted during prefizes of the execution, was only O(m).
However, in the ‘bursty’ intervals, the ratio between packets transmissions
and messages accepted was exponential.

These short ‘bursty’ intervals may cause congestion in the network. It
seems desirable to reflect such ‘bursty’ intervals, i.e. the congestion caused
by the protocol, in a refined measure of communication complexity. In
particular, there seems no apparent reason for considering only prefixes of
the execution and not any interval.

Possibly with this motivation, the communication complexity of [AGI1,
AMSB89] is defined as the maximal number of packet transmissions between
two accept events. Namely, [AG91, AMS89] measure the number of packet
transmissions in intervals with exactly one accept event, instead of amortiz-
ing the ratio of sends to accepts over prefixes of the execution. Therefore, a
protocol with low complexity as defined in [AG91, AMS89] would not cause
congestion by ‘bursty’ intervals.

However, we believe that in most realistic scenarios, performing some
tasks periodically, once for several messages, is useful and would not cause
congestion. Unfortunately, the measure of [AMS89] does not amortize such
periodic tasks at all. Furthermore, even a protocol which transmits the
same number of packets for each message may have higher complexity with
the measure of [AMSR9], if it may transmit packets due to a message even
after accepting a new message (pipeline). As a result, this measure seems
to be artificially high for many protocols that do not cause congestion in
practice. For example, under this measure, the communication complexity of
the Intelligent Flood protocol is O(nm) instead of O(m) when amortization
is for prefixes [AG91].

We therefore propose a new complexity measure. Qur goal is to iden-
tify the ‘bursty’ congestion caused by some protocols, but to allow some
amortization and pipeline operation. Instead of defining the amortization
intervals explicitly, we define the communication complexity with respect to
a given predicate P(a,t,l). This predicate determines if interval (¢,7 4] in
execution « is an amortization interval. Note that the previous complexity
measures become special cases. Another simple and natural special case is
sufficient for our work, namely when the predicate is simply a bound on the
length [of the interval; this is defined in subsection 2.4.3 below.

Definition 9 Consider a broadcast protocol, a predicate P(a,t,l) where o
is an execution and t,l are positive real numbers, and a function C' : N x
NxNXxNxN — N. We say that C' is the communication complexity of

broad:def update:July 15, 1993 INTpX:August 26, 1996 18

the protocol over intervals satisfying P, if for every execution a and t,1 such
that P(a,t,1) holds, the number of receive events during (t,t + 1] is at most

Clnym, A([t— Lt + 1), F([t = Lt + 1), R([t— 1, + 1))

where:
A(ft =1t +1) Y The number of Accept events (in s) during [t — [,t + 1).
F([t=1,t+ 1) Y The number of Fail events during [t — I,t + 1).
R([t—1,t+1) < The number of Recover events during [t — 1,1 +1).

There are two subtle issues with the definition:

e Since we deal with dynamic networks, we allow for some communica-
tion overhead per failures and recoveries. Furthermore, we count the
number of packets received, and not of the packets sent. In dynamic
networks, the distinction is meaningful, since some packets sent just
before a failure may not be received. In particular, our protocol sends
O(n) packets per recovery, but receives only O(1) packets per recovery;
the potential large difference is due to messages which were sent but
not received (lost) due to a failure. The justification for counting re-
ceive events rather than send events is that the protocol cannot utilize
packets sent but not received.

e We amortize over the number of accept, fail and recover events not
only in [t,7+ 1), but also in the [preceding time units. This is needed
since some of the messages during [t,t+[) may be due to events before
[t,t 4 1). In the extreme case, there may be no accept, fail or recover
events in [t,t41), but packets may be transmitted to deal with previous
events. To minimize notations, we use [also for the length of the
interval before ¢t where we count accept, fail and recover events.

Definition 9 defines the communication complexity as a function of five
arguments. This general form seems necessary, and hopefully sufficient as
well, to allow us to express correctly the communication complexity of any
algorithm. However, it is inconvenient. We next define a simple special case
of the definition, which is sufficient for this paper and seems sufficient for
many protocols.

Works following the eventual stability approach usually consider com-
munication complexity as directly proportional to the number of topology
changes. This implies the simplified form C(n,m,a, f,r) = f-C(n,m,a),

broad:def update:July 15, 1993 INTpX:August 26, 1996 19

where (' is the amortized communication complexity [AAGST7]. Expressing
the communication complexity in this way is justified when the actual com-
munication is indeed linear in the number of failures. This is indeed the case
in many of these works, where every failure or recovery may cause the proto-
col to restart operating from the beginning. Many eventual-stability proto-
cols work in this ‘blast-away’ technique [Gal76], [Fin79], [Seg83], [AAGS8T].

However, the ‘blast-away’ technique is wasteful; it is desirable, and often
possible, to recover from a failure at a cost much smaller than restarting the
task. In particular, our protocol recovers from failures with a small fixed
cost, independent of the number of broadcasts done so far. There have been
several previous works which featured a smaller cost per recovery than the
‘blast-away’ approach [ACK90], [Awe88], [AS88],[BGSKS], [MS79],[SS81].

We therefore propose another simplified form for the communication
complexity. This communication complexity consists of fixed cost per each
accept, failure and recovery event. The cost depends on the kind of the
event.

Definition 10 Consider functions C4 : NXN — N, Cr : NxN — N and
Cr: N XN — N and broadcast protocol with communication complexity C'
over intervals satisfying some predicate P. We say that the communication
complexity over intervals satisfying P is C'y per accept, Cp per fail and Cg
per recovery if for every m,m,a, f and r, the following holds:

C(nv m,a, fv T) =a- CA(nv m) +r- CR(nv m) + f : CF(nv m)

Length of Packets

In the definition of the communication complexities measures above we ig-
nored the length of the packets. This allows protocols to use extremely long
packets or packets whose length is not bounded as a function of the size
of the network. For example, the classical fault tolerant versions of the
Intelligent Flood protocol use packets with unbounded length. The final
version of our protocol uses only short packets, as defined below. Note that
we allow a packet to contain a message accepted from the higher layer.

Definition 11 Let M be the maximal number of bits in messages accepted.
We say that a protocol uses only short packets if the mazimal number of bits
in any packet sent in any execution of the protocol over networks with n
processors is O(M + log(n)).

broad:def update:July 15, 1993 INTpX:August 26, 1996 20

2.4.2 Throughput

We now define the throughput of a protocol. Intuitively, the throughput is
the worst-case bound on the rate in which messages may be accepted from
the higher layer. For simplicity, assume that the higher layer always has
packets to broadcast. (This assumption does not effect our results.)

Like communication complexity, the throughput is traditionally mea-
sured for the worst case prefix of an execution of the protocol. As for
communication complexity, we see no apparent reason to consider only pre-
fixes of executions, which may hide important transient effects. Instead, we
propose to consider the throughput of any interval of an execution of the
protocol.

Definition 12 Consider a broadcast protocol, a predicate P(a,t,l) where
a is an execution and t,l are positive real numbers, and a function T :
N x N — R. We say that T is the throughput of the protocol over intervals
satisfying P, if for every execution a and t,l such that P(a,t,l) holds, the
number of accept events during (t,t +] is at least | - T'(n, m).

This definition seems to formalize practical notions of the throughput of
protocols. In particular, this definition allows to analyse the advantage of
window mechanisms. Such mechanisms are used, to enhance throughput, in
many protocols, e.g. [CR87]. In fact, we also improve the throughput of our
protocol by using a window mechanism.

2.4.3 Predicate defined by length of interval.

Typically, and in this work, the predicate P of definitions 9, 10 and 12
would be the length of the interval in time units. Namely, P(«a,t,{) = TRUE
if | = L(n, m), for some function L. In this case, we will talk about intervals
of length L(n,m), instead of ‘intervals satisfying P’.

Note that replacing [> L(n,m) instead of [= L(n, m) would at most
double the communication complexity and reduce the throughput by half.
This is the motivation for using the (slightly) simpler [= L(n,m).

2.4.4 Congestion over links

Our definition of the normalized DLC reliability says that the maximal de-
lay of a message is one time unit, regardless of the number of messages
concurrently in transit. This convention has been justified by noting that

broad:def update:July 15, 1993 INTpX:August 26, 1996 21

as long as the number of messages sent concurrently by the protocol is not
‘too large’, it is reasonable to expect that the delay would be mostly deter-
mined by the number of concurrent messages generated by other protocols.
Using the same reasoning, we do not count the storage used for (data-link)
queueing of the message after it has been sent, since this storage is shared
among many protocols. Both simplifications seem justified provided that
the protocol does not send an excessive number of concurrent messages on
any link, namely the protocol is not the cause of congestion on any link.
We now define the congestion of the protocol; i.e., the maximal number of
packets (of the protocol) which are concurrently in transit over any link.

Definition 13 The congestion of a protocol is an upper bound to the num-
ber of messages sent by any processor u to neighbor v during an operating
interval [t,t'] of (u,v) at u, but not received by v until t'.

2.4.5 Delay

The delay of a protocol is the maximal delay over all possible executions of
the protocol. We now formalize the notion of the delay of a given execution
a of a broadcast protocol.

Definition 14 (Delay) Consider a timed dynamicexecution a = {(¢;, p;, i, I;, n;, O;)}.
For every j € N, let t,(i) be the value of t; where (t;,p;, s;, 1;,ni,0;) is the
J" event in a where I; includes an accept event (with p; = s), and oo
if there is no such event. Similarly, let t,(v,i) be the value of t; where
(tiypis iy Liymiy O;) is the j'* event in o where O; includes a deliver event
and with p; = v, and oo if there is no such event.

The delay of execution a of a broadcast protocol is:

sup{tq(v,1) — t,(0)[(Vv € V) (£,() < 00)}.

The delay is measured in the worst case, since it may be important to
bound the maximal time since a message is accepted from the higher layer, at
the source, and until it is delivered to the higher layer at the last processor.

2.4.6 Space Complexity

We use the standard measure of space complexity used in most works deal-
ing with dynamic networks [AAGS87, AES86]. Namely, the space complexity
includes the maximal number of words stored by the processor, where every

broad:def update:July 15, 1993 INTpX:August 26, 1996 22

word contains O(M + logn) bits, where M is the maximal number of bits
in a message accepted from the higher layer.

Definition 15 (Space) Consider a broadcast protocol and a function S :
N x N — N. The space complexity of the protocol is bounded by 5, if in
every execution the number of allocated bits at every processor and at any

time is O(S(n,m)- (M +logn)).

broad:prot update:January 3, 1994 INTpX:August 26, 1996 23

3 Simplified Broadcast Protocol

In this section we present a broadcast protocol for O(n)—Up dynamic net-
works which uses unbounded storage and has low throughput. This is a
simplified version of our main protocol. In the next section we analyse this
(simplified) version of the protocol. The enhancements to bounded storage
and optimal (€(1)) throughput are given in Section 5. The advantage in
describing and analyzing the simplified version is that its analysis is much
simpler. Furthermore, the analysis of the enhancements in Section 5 is done
by reducing executions of the enhanced versions to executions of the simpli-
fied version, and using properties from the analysis of the simpler version.

We first describe the protocol informally, beginning with the basic mech-
anisms and gradually augmenting them. A concise description is given in
Fig. 1, and the formal code is presented in the appendix (Figs. 8-11). To
refer to line [in the code described in figures 10 and 11, we use the notation
<l >.

The protocol contains three main components, each using a different
type of packets. The first component uses sync packets and its goal is to
ensure synchronization of the delivery of messages. Namely, it ensures that
the number of messages delivered by a processor would be the same, up to
one, as that of a neighbor connected by a link which is up for ‘enough time’.
This component is described informally in §3.1, and formally by the lines
in the code marked by S in the right margin. The second component uses
recover and update packets and its goal is to deal with link failures and
recoveries. This component is described informally in §3.2, and formally by
the unmarked lines in the code. The third component uses flood packets
and its goal is to speed up the delivery of messages. This component is
described informally in §3.3 and formally by the lines in the code marked
by F in the right margin.

3.1 Operation in Static Networks

We first try to give some intuition to the design goals and the main ideas of
the protocol. On one hand, the protocol should have high throughput (rate).
To achieve this, the source does not wait for network-wide progress, before
enabling a new accept event. Instead, the source waits only for progress of
its immediate neighbors. This should be contrasted with the Fcho and PIF
protocols [DS80, Cha82, MRR80, Seg83], that wait before accepting a new
message until an entire spanning tree converges.

broad:prot update:January 3, 1994 INTpX:August 26, 1996 24

On the other hand, the protocol should not cause high congestion on
links. High congestion may be caused, for example, by the Intelligent Flood
protocol and its variants [Per83, Seg83, AES6], since the source may issue
messages much faster than some links can transfer them. Hence, these mes-
sages must be stored in the source (resulting in unbounded space complexity)
or in the links (resulting in unbounded link concurrency).

Our protocol prevents high congestion by limiting the number of mes-
sages in transit over any link. This is achieved by synchronizing between
each pair of neighbors. This synchronization resembles synchronizer a of
[Awe85] and the minimal hop protocol of [Gal76, Seg83].

In the rest of this subsection we informally describe this synchronization
mechanism, which is the core of the protocol, and suffices for operation
in static networks. In the code, appearing in Figs. 8-11, the lines which
implement this mechanism are marked by 5 in the right margin.

The basic idea is that a processor sends message ¢ to all of its neighbors
together <H5>, after receiving message (¢ — 1) from all neighbors <H7>.
Since this condition is observed by all the neighbors of the processor, a
processor would not receive message ¢ + 1 from any neighbor before sending
message 1. Hence, at most two messages are in transit over any link at any
moment. This prevents congestion over links.

To implement this mechanism, the protocol sends each message together
with its index in the sequence of accepted messages. The pair of a message
and its index is called a sync packet. We denote the sync packet which
contains message m the index of which is ¢ by sync(m,1).

In static networks, once a packet has been sent to the neighbors, it may
be discarded (to free memory). Since a message is sent to a neighbor only
after the neighbor sent (and discarded) the previous message, it follows that
all processors except the source have to store at most one message. The
source has also to store the messages accepted but not sent yet. In order to
prevent congestion at the source, the protocol must control the rate of accept
events. The solution is to use the assumption that the message accept events
are interleaved with ready events at the source. The source enables a ready
event for a message only after having received a sync packet containing the
previous message from all of its neighbors <H7> and therefore discarding
this previous message. Hence, the source will not accept a message before
sending to its neighbors the previous message. This ensures that at any
time, there is at most one message accepted by the source but not yet sent
to its neighbors. Namely, the storage required in the source is bounded (in
fact just one message is stored).

broad:prot update:January 3, 1994 INTpX:August 26, 1996 25

The protocol also synchronizes the number of messages delivered to the
higher layer by any two neighbors. This is achieved by delivering a message
to the higher layer simultaneously to sending a sync packet containing that
message to all neighbors. Hence, the number of messages delivered by any
processor v is at most one more than the number of messages delivered by
any of the neighbors of v. Since every processor is connected to the source,
it follows that at any time, in static networks, any processor has delivered
all but at most the last n messages accepted from the higher layer in the
source. In the final protocol, for dynamic networks, similar properties hold
when considering 3n—Up links and assuming that the network is connected
via 3n—Up paths (see Lemma 23). Namely, the protocol ensures that the
following two conditions hold at any time:

Definition 16 Link Synchronization: We say that the link synchroniza-
tion condition holds at time t if for every link (u,v) which is 3n—Up at
time t, processor v delivers until t at most one message more than u
delivers until t.

Synchronization: We say that the synchronization condition holds at time
t if the number of messages accepted by the source until t is at most n
more than the number of messages delivered by any processor.

Note that if the network is connected via 3n—Up paths at time ¢, then
link synchronization at ¢ implies the synchronization condition at ¢, due to
the interleaving of accept, deliver and ready events in the source.

As described in this section, the protocol uses infinite counters. How-
ever, we show later that if the network is always 3n—Up, and in particular
if the network is static, then it suffices to use (finite length) modular coun-
ters instead. Essentially, this follows from proving that the synchronization
condition holds.

3.2 Dealing with Topology Changes

When a processor v detects a failure on the link to its neighbor w, it stops
waiting for messages from u. Namely, while (u,v) is down, v behaves as if
(u,v) never existed. The challenge is to obtain the complementing situation:
that ‘soon’ after (u,v) recovers, it would appear as if it never failed.

After processor v detects the recovery of the link to u, two types of
actions are taken in order to simulate the situation as if (u,v) never failed:
updating and re-synchronizing. Updating is needed if processor v received

broad:prot update:January 3, 1994 INTpX:August 26, 1996 26

more messages than «, and in this case processor v sends to v the messages
that u may have not received yet. This updating action is a standard practice
[MRR80, Per83, JBS86].

Our protocol requires precise synchronization between the messages de-
livered by two neighbors connected by a 3n—Up link. The update opera-
tion cannot achieve such precise synchronization; in particular, it does not
prevent v from delivering more messages. This is dealt with by the re-
synchronization action, whose goal is to reach a state where the number of
messages delivered by w and » differ at most by one, like the situation over
a link which has never failed.

To re-synchronize, processor v delivers a new message following the re-
covery only when it ‘knows’ (from a sync packet, or from update packet to
be described) that u has delivered the previous message. However, there
is an exception: v may deliver one message after (u,v) recovered, without
waiting to ‘know’ that u has delivered the previous message. This exception
is necessary to avoid (unlikely) ‘livelock’ situations where v does not deliver
messages due to a long sequence of alternating failures and recoveries in two
or more of its neighbors. Details follow.

To understand the possible ‘livelock’, suppose for a moment that pro-
cessor v, with neighbors w and w, waits before delivering messages until it
‘knows’ that all of the neighbors whose link is up have delivered the pre-
vious message. Consider time ¢ when links (u,v) and (w,v) are both up,
and processor v waits for both u and w to deliver the previous message in
order to deliver a new message. We will show a (very unlikely) sequence of
frequent repeated failures and recoveries of (u,v) and (w,v), which are fur-
thermore interleaved (in an unlikely manner) so that at any moment either
(u,v) is up or (u,w) is up. Yet, the failures would be so frequent that v
will not receive messages from either « or w and hence v never learns that
u or w delivered the last message delivered by v. (Note that such scenario
is impossible to achieve by frequent failures and recoveries on a single link
e.g. (u,v), since upon its failure v would immediately be able to deliver the
message.) During the entire scenario, v does not receive any message from
either u or w.

The sequence begins with (u,v) failing at ¢+ .25 and recovering at t 4 .5.
During this time, v does not deliver messages since it waits for response from
w. From the DLC properties, this response should arrive before t+1 or (w, v)
must fail. Indeed assume that it fails at t+.75 and recovers at t+ 1. During
this period, v does not deliver messages since it waits for response from wu.
Again from DLC, this response should arrive before ¢ + 1.5 (since (u,v) is

broad:prot update:January 3, 1994 INTpX:August 26, 1996 27

up since t +.5). However, (u,v) will fail again during [t 4+ 1.25,7+ 1.5], and
this alternating sequence of failures and recoveries could continue forever.
This problem is easily prevented by allowing v to deliver one message after
recovery and before re-synchronization.

To allow the updating and re-synchronization, the processors connected
by the link should exchange the indices of the last message received and
the last message delivered. There could be a substantial difference between
the number of messages received and the number of messages delivered by
a processor, since the processor may receive a ‘bunch’ of several messages
following a recovery, and only then it would deliver them one by one, syn-
chronizing with its neighbors. (In static networks, each processor receives
at most one message more than it had delivered.)

Technically, this exchange is performed by sending over a link, upon its
recovery, an update packet containing the indices of the last delivered and
received messages by this processor <F2>. The fields containing the indices
are called the deliver-counter and the receive-counter of the update packet,
and are denoted by ¢4, ¢, respectively. The update packet is different from
the sync packets and hence ignored by the mechanisms described in §3.1.

The deliver-counter ¢, is used to let v ‘know’ the index of the last message
delivered by u until the recovery. Even if v has not delivered these messages
yet, processor v does not wait for sync packets with these indices from
u. This is important, since # has already sent these sync packets when
delivering the messages, and therefore would not send these sync packets to
V.

The receive-counter ¢, is used to identify the situation where v have
received more messages than u. Processor v should send these messages
to u, to ensure that u would receive them. In this case, v sends to u the
messages received which are numbered more than the value of ¢, received
from u.

However, from the synchronization condition follows that, assuming that
the network is connected by 3n—Up paths, then w is guaranteed to have
delivered (and certainly received) all but the last n messages accepted by the
source. Hence, u has certainly received all but at most the last n messages
received by v. We therefore modify the rule above; if v received more than
¢, + n messages upon receiving the update packet from u, then v sends to
u only the last n messages received. Essentially, if the ¢, received from u
is very small (compared to the number of messages received by v), than v
‘knows’ that both v and u received messages after u sent the update packet
containing ¢,. Hence, it always suffices to send at most the last n messages

broad:prot update:January 3, 1994 INTpX:August 26, 1996 28

received. In section 5.2 we show that this implies that the protocol has to
store only the n last messages received.

3.3 Improving Complexities by Using Flood

It can be shown that the protocol presented so far is correct. Furthermore, if
the network is always O(n?)—Up, then the delay is O(n?). We now present
a modification that achieves O(n) delay in O(n)—Up networks.

The improvement is by adding a flooding mechanism. In the code, ap-
pearing in Figs. 8-11, the lines which implement the flood mechanism are
marked by F' on the right margin.

The flood mechanism is an application of the Intelligent Flood protocol
[Per83] or PI protocol [Seg83]. The flood mechanism uses a new type of
packets, called flood packets. A flood packet, like a sync packet, consists of
a pair of a message and its index.

The flood packets are generated by the source. Whenever the source
accepts message number ¢, it sends a flood packet containing the message
and number 7 to all of its neighbors <I5>. This is in addition to the sync
packet with the same message and number, which is sent as before <H5>.

Whenever a processor v receives a flood packet whose number is one
more than the highest number in a flood packet sent by v <I2>, then this
processor sends this flood packet to all neighbors <I5>. (This is exactly the
operation of the Intelligent Flood protocol.)

The idea is that flood packets normally propagate much faster than sync
packets. Therefore, we use the flood packets for fast dissemination of the
messages to the processors. Once the messages are accepted at a processor,
they may be used to construct new sync packets. In this way, the flood
packets may speed up the sync mechanism.

More specifically, recall that by the sync mechanism, a processor delivers
message ¢ + 1 to the higher layer, and at the same time sends sync packet
number ¢+ 1 to its neighbors, only after having received sync packet ¢ from
all neighbors and message ¢ 4+ 1 from some neighbor. In the absence of flood
packets, message ¢ + 1 would be received only in a sync packet; therefore in
order for v to send sync packet 141, and deliver message ¢+ 1, it has to receive
sync packet ¢4+1 from some neighbor u. But in order for u to send sync packet
1+ 1, it must first receive sync packet ¢ from all of its neighbors... The flood
mechanism allows u to send message ¢ + 1 to v immediately upon receiving
it, in a flood packet, without delaying and waiting for other neighbors of .
In this manner, the flood mechanism speeds-up the protocol. Of course, u

broad:prot update:January 3, 1994 INTpX:August 26, 1996 29

would still send v sync packet ¢ + 1 after receiving sync packet ¢ from all of
its neighbors.

We now describe how the flood mechanism deals with recoveries. As
described in §3.2, whenever a link recovers, the two processors connected to
it exchange an update packet. The update packet contains two counters:
the deliver-counter ¢; and the receive-counter ¢,. The flood mechanism is
concerned only with the receive counter ¢,, i.e. the number of messages
received by the processor. When a processor receives an update packet from
a neighbor, it sends back any flood packet received with number higher than
the receive-counter ¢, in the packet <G2>. (There is no need to send also
sync packets with the same numbers, as in the original description; indeed
the code does not send them in this case.)

3.4 Towards Bounded Congestion, Counters and Storage

The protocol as described so far is correct, when implemented with un-
bounded counters in the packets and in the program. However, recall that
in Section 5 we intend to present enhancements to the protocol which achieve
bounded storage and counter. The analysis of these enhancements is sim-
plified by reducing executions to executions of the ‘simplified’ protocol de-
scribed in this section. We now present two minor modifications to the
protocol as presented so far, the aim of which is to facilitate the reductions
in Section 5. In addition, the second modification below is required to ensure
bounded congestion.

In order to use modular counters in its internal computations, the max-
imal difference between two values compared must be bounded. One of the
values kept by the protocol at v, for every neighbor u, is D/ (u): the highest
number of sync packet or deliver counter in an update packet received from
. Under ‘normal’ conditions, when u and » are connected by a 3n—Up link,
this value is the actual number of packets delivered by u, possibly minus one.
However, while u is disconnected, v would not receive sync or update pack-
ets from u, and therefore this value could become ‘outdated’ - much smaller
than the actual number of messages delivered by u or v.

In order to be sure that we do not compare this ‘outdated’ value to other
values in v, e.g. to the number of messages delivered by v denoted D,, we
modify the protocol slightly. When the link to u falls, we set the value of
D! (u) to a special value, denoted undef. This ensures that processors never
keep ‘outdated’ values.

The second modification deals with a subtle aspect of the data link con-

broad:prot update:January 3, 1994 INTpX:August 26, 1996 30

trol protocol. This aspect is due to the counter-intuitive fact that the link
does not recover at both ends at the same time. Therefore, the end of the
link where recovery occurred earlier, say u, may start sending packets to the
other end, say v, before the link (u,v) recovered at v. These messages would
be received by v after the link (w,v) recovers. The problem is that, due to
the asynchronous model, there is no bound on the number of packets which
may be thus buffered in the link. In principle, the rest of the network may
operate much faster than this recovering link, so that while the link has still
not recovered at v, processor u would send an unbounded number of packets
over the link. This appears to require unbounded link capacity, and also v
should be able to deal, after recovery, with ‘old’ packets - e.g., sync packets
numbered much less than the number of deliveries in « at that time.

The solution is simple: we ensure that (update, sync or flood) packets
received by v following a recovery of (u, v) at time ¢, were also sent by u after
t. This additional ‘data-link’ property is natural and useful, and allows us
to guarantee certain relations between the contents of the packets received
after a recovery and the state of the processor at the recovery.

To ensure that update, sync and flood packets were not sent before
the recovery (time ¢ above), we introduce another kind of packet, called
recover packet. This packet would be sent (only) immediately upon recovery.
Furthermore, no update, sync or flood packet would be sent to the neighbor
until receiving the recover packet from it. In the analysis (Lemma 9) we
show that this ensures that any packet, except recover, received following a
recovery at time t was also sent after ¢.

Note that the new property essentially defines a new state for the link:
‘partially operational (real only)’ or ‘recovery in progress’. In order to
achieve the new property, the link is first declared to be in this new state -
partially operative - where packets may only be received. Ounly later (after
the other end is known to have recovered) the link is declared fully opera-
tional (allowing the processor to send packets to the other end). Therefore,
if we wanted to add this property to the data link protocol, we would be
forced to (slightly) modify its interface.

We note that the fact that the protocol has bounded congestion - con-
current number of messages sent over a link - follows from the modification
above, which bounds the number of messages in transit during link recovery,
and from the fact that at most n ‘old’ messages are sent upon recovery (as
justified at the end of subsection 3.2).

broad:prot update:January 3, 1994 INTpX:August 26, 1996 31

R, number of messages received by v, or accepted for v = s

Variables: { D, number of messages delivered by vto the higher layer

WHEN: (only in s) Accepting a new message, THEN: Send the new message
and its number to all neighbors, in both sync and flood packets.

WHEN: (only in s) Holds R, < D,, THEN: Enable a ready event.

WHEN: Holds D, < R,, and for every neighbor u of » such that the link to
u is up at v since the last deliver event at v holds that v has received
from wu, after (w,v) has last recovered at v, an update packet with
deliver-counter > D,, or a sync packet numbered D,, THEN: Deliver
message D, + 1 and send it in a sync packet to all neighbors w such
that a recover packet was received from w since (v, w) has last failed.

WHEN: Receiving a flood packet with number R, + 1, THEN: Send this
packet to all neighbors w such that a recover packet was received from
w since (v, w) last failed.

WHEN: Link to u recovers, THEN: Send to u a recover packet.

WHEN: Receiving a recover packet from w, THEN: Send to u an update
packet, with receive-counter R, and deliver-counter D,.

WHEN: Receiving an update packet from neighbor u, THEN: If the receive-
counter < R,, then send to u flood packets containing the messages
numbered between the receive-counter and R, ; if the gap is larger than
n, send only the last n messages.

Figure 1: Concise description of the algorithm at processor v.

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 32

4 Analysis of the Protocol

We now analyse the protocol of Figs. 8-11. The following theorem states
the properties of the protocol, as proved in the rest of this section. Note
that the complexities are guaranteed only if the network is always 3n—Up,
i.e. if at any time ¢ there is a spanning tree whose links were up during the
entire interval [t — 3n,].

Theorem 1 FEvery execution of the protocol in Figs. 8-11 is a correct broad-
cast from s. Furthermore, if the network is 3n—Up at all times, then the
following holds:

o The delay is at most 3n.
o The congestion is O(n).

o The communication complexity over intervals of length 3n+3 is C4 =
4m per accept, Cp = 0 per fail and C'g = 2 per recovery.

Note that the communication complexity bounds the number of packets
sent for each message accepted and for each link recovery, when averaged
over intervals of length at least 3n+ 3. Namely, it may be possible, although
improbable, that all of the packets would be sent at the same instance in
the 3n + 3 interval. Also note that the messages are not short, in fact they
contain counters which are unbounded in the size of the network. (This
would be fixed in the next section.)

Theorem 1 above does not yield good bounds on the space complexity
or throughput?, and also does not claim that the protocol uses only short
messages. We claim these properties only in section 5, for a slightly modified
version of the protocol.

Organization of the proof. The proof begins with local properties of
the protocol, which concern only one processor or one link. We then prove
the correctness of the protocol. The rest of the analysis proves the stated
complexities.

The complexities are based on the combination of two complementing
mechanisms of the protocol. First, we analyse the progress mechanism in the
protocol, which guarantees that messages are delivered. Then, we analyse
the synchronization mechanism, which ensures that the number of messages

*A trivial bound for the throughput is that it is one over the delay, i.e. ﬁ However

this is a rather low throughput; in Section 5 we achieve an (1) throughput.

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 33

delivered by different processors is always roughly the same. Finally, we
combine the analysis of the two mechanisms, and prove Theorem 1.

Notations: We denote the value of variable X, in processor v at time
t by X,(t). For example, R,(¢) is the value of R, at time {. We denote
the value of variable X, in processor v just before (after) time ¢ by X,(¢—)
(respectively, X, (t+)).

4.1 Local Properties.

In this subsection we present several properties of the protocol, which are
‘local’ to one processor or link. These properties are later used in the rest of
the analysis. The following Lemma shows the validity of most descriptions
of the variables given in Fig. 9.

Lemma 2 The following hold at any time and at any processor v:

A) The value of D, is the number of messages delivered by processor v to
the higher layer, and it is also the number of sync packets sent by v.

B) The value of A, is the number of messages accepted from the higher
layer.

C) The set G, contains the neighbors u of v such that (u,v) is up at v.

D) The set GP contains the neighbors u of v such that (u,v) is up at v
stnce v last delivered a message.

E) The set GE contains the neighbors uw of v such that (u,v) is up at v
and v received a recover packet from u and sent an update packet to u
since the last recovery of (u,v) at v.

Proof: All properties follow immediately by considering the statements in
the protocol which modify the relevant variables. [

The next Lemma states that the values of R,,D, and A, are non-
decreasing. We later show that the value of D/[u] is also non-decreasing.

Lemma 3 For any processor v, the values of the variables R, and D,
are non-decreasing. The variable A, of the source processor is also non-
decreasing.

Proof: The values of R,, D, and A, change only when incremented in
<I3>, <H3> and <A2> respectively. [
We next observe that D, < R,.

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 34

Lemma 4 For any processor v and at any time holds D, < R,,.

Proof: Variable D, changes only when incremented by one in <H3>. The
claim follows from the condition D, < R, in <H2>. O

We now analyze the recover mechanism. The following two Lemmas
observe that the first (second) packet received at every up interval is always
a recover (respective, update) packet.

Lemma 5 The first packet received at processor v from link (u,v) during
any up interval of (u,v) at v is always a recover packet.

Proof: From the FIFO property, the first packet received by v during an up
interval of (u,v) at v is the first packet sent by u to v at some up interval
of (u,v) at u. The first packet sent by u to v at some up interval of (u,v)
at u is always a recover packet <E2>. The claim follows. [

Lemma 6 The second packet received at processor v during any up interval
of link (u,v) at v is always an update packet. Furthermore, from the time
when u sends this packet and until the link (u, v) next fails at u holds v € GE.

Proof: Let p be the second packet received by v from u during some up
interval of link (u,v) at v. From the FIFO property, p was sent by u to v
during some up interval of (u,v) at u. We show that p must be an update
packet. Obviously, p cannot be a recover packet, since a recover packet is
sent only upon recovery. It remains to show that p cannot be a sync or flood
packet.

Sync packets are sent in <H5> and flood packets are sent in <I5> and
<G2>. We first show that p is not sent by u to » in <H5> or <I5>. A
necessary condition for p to be sent by either <H5> or <I5> is v € G at
the time. We show that when p is sent v ¢ GF. Lemma 2 E) shows that
v € GF only if u sent an update packet to v during the same up interval
of (u,v) at u. But since p is the second packet sent by u during this up
interval, and the first packet is always a recover packet, it follows that p is
not sent by <H5> or <IH>.

It remains to show that p is not sent by <G2>. Processor « sends flood
packet to v by <G2> upon receiving an update packet from ». From Lemma
5, previously during this up interval, processor u received a recover packet
from ». Upon receiving a recover packet from v, processor u sends an update
packet to v <F2>. Hence, p cannot be sent by <G2>. O

We conclude that the value of D][u] increases by exactly one whenever
v receives a sync packet from u.

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 35

Lemma 7 Whenever a processor v receives a sync packet from its neighbor
u then the value of D) [u] increases exactly by one.

Proof: Suppose that v receives a sync packet from u at time ¢; we want to
show that D![u](t4+) = D![u](t—) 4 1. Let ¢, be the time when v received
the last update packet from u before ¢, and let ¢; be the value of the deliver-
counter in this packet. Let ¢ be the number of sync packets which » received
from u during (¢,,t]. We prove by induction on ¢ that D/ [u](t4+) = cq + ¢;
the Lemma follows.

From <G3> follows that D/[u](t,+) = c4. Therefore, it suffices to show
that if D/[u](t—) = cq + 17— 1 then D![u](t+) = ¢4 + i. From <H3> and
<H5>, the i** sync packet sent by u to v since ¢, is numbered c; + . The
claim follows from the FIFO property. [

The following Lemma shows that at most two time units since a link
(u,v) recovers at v, it either fails or v receives the recover and update packets
from u.

Lemma 8 Suppose that link (u,v) recovers at processor v at time t and
stays up until t +2. Then during [t,t + 2] processor v receives a recover and
an update packet from u.

Proof: Upon recovery at time ¢, processor v sends a recover packet to u
<E2>. Since the delay is at most one time unit and link (u,v) stays up at
v until ¢ + 2, follows that u receives this recover packet during [¢,1 4 1].

Upon receiving the recover packet from v, processor u sends to v an
update packet <F2>. Again, since the delay of the recover packet is at
most one time unit and since (u,v) stays up at v till ¢ + 2, follows that v
receives this update packet during [t, ¢ + 2].

From Lemma 5, the first packet received after a link recovers is always
a recover packet. Hence, during [t,t + 2] and before v receives the update
packet, processor v receives also a recover packet from u. U

The purpose of the recover packet is to ensure that the other packets
received from u has been sent by u after the time when link (u,v) has last
recovered at v (see Fig. 2). Namely, we want to ensure that both processors
are aware of the recovery before either one of them sends any (non-recover)
packet over the link. This property, while natural, is not guaranteed by
the data link protocol (compare to the crossing property), and therefore we
prove it below.

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 36

Recover

L, Lup

t/

Figure 2: The operation of the recover mechanism.

Lemma 9 Suppose that processor v receives some packetl other than recover
from neighbor u at time t. Then link (u,v) is up at v continuously since this
packet was sent by u and until time t.

Proof: Let ¢, denote the time when link (u, v) has last recovered at v before
t. Namely, link (u,v)is up at v during [¢,,¢]. From Lemmas 5 and 6, at
some time t,, during [¢,,1], processor v receives an update packet from u.
Denote the time when processor u sent the packet received by v at time
t (tup) by t' (respectively,). From the FIFO property of the link holds
b, <.

Update packets are sent only upon receiving a recover packet <F2>, and
recover packets are sent only upon recovery <kF2>. Hence, from the crossing
property of the link at time ¢, processor u received the recover packet sent
by v at ¢,. Thus, ¢, <1, (see Fig. 2). Since t,,, <t and (u,v)is up at v
during [t,,1], the claim follows. O

The next several Lemmas show that D’ [u] is indeed a lower bound esti-
mate for D,, as stated in Fig. 9. We first show that D/[u] is the value of

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 37

D, at the time when u has sent to v the last sync or accept packet received
by v from wu.

Lemma 10 Consider any link (u,v) and time t. Lett, denote the last time
before t when processor v receives an update or sync packet from neighbor
u. Let t), denote the time when processor u has sent the packet received by
v at time t,. Then either D![u](t) = D,(t,) or D.[u](t) = undef and (u,v)
failed at v during [t,,1].

Proof: The value of D/[u] changes only in <D3>,<B2> and <G3>. If
(u,v) fails at v during [t,,?] then D![u] is last changed in <D3> to undef,
and the claim follows. Otherwise, the value of D/[u] does not change during
(ty,t], namely D![ul(t) = D[u](t,+). It remains to show that in this case
Dul(tu+) = Dul(tl).

Either a sync or an update packet is received at ¢,. Sync packets are
sent only in <H5>. 7 = D,(¢,). Therefore, if the packet received at ¢, is a
sync packet, then it was sent with ¢ = D, (). In this case the claim follows
from <B2>.

Update packets are sent only in <F2>. Therefore, if the packet received
at , is an update packet, then it was sent with ¢; = D,(¢,). In this case
the claim follows from <G3>. O

We conclude that at any time either D/[u] < D, or D![u] = undef.
Furthermore, as long as (u,v) does not fail in v, the value of D/ [u] is non-
decreasing.

Lemma 11 For any link (u,v) and at any time, either D)[u] < D, or
D! [u] = undef. Furthermore, D![u] is non-decreasing during up intervals of
(u,v) at v.

Proof: The claims are immediate from Lemma 10, in view of the fact that
packets are received in the order in which they were sent. U
We next observe that:

D![u] # undef = D, (t — 1) < D! [u](t). (1)

This shows that D[u] is a meaningful estimate of D, whenever D![u] #

undef.

Lemma 12 At any time t, either D, (t—1) < D, [u](t) or D,[u](t) = undef.

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 38

Proof: Suppose that D! [u](t) # undef. Hence, at some time ¢,,, < t proces-
sor v receives an update packet from w and (w,v) is up at v during [t,,,]
(see Fig. 3). Let t, denote the time when u has sent the update packet
received by v at time ¢,,. From Lemma 9, link (u,v) is up at v during
[t1p> tup)- Hence (u,v) is up at v during [t,,,,1].

Lup 1—1 !
= e e
| | |
1 1 1

v

updat syne
sync
: Deliver Deliver
7
tup

Figure 3: Proof that if D/ [u] # undef then D,(t — 1) < D![u](t).

From Lemma 10 holds D, () = D, [u](t.,). Since D;[u]is non-decreasing
during up intervals of (u,v) at v (Lemma 11), holds D/ [u](t,,) < D, [ul(t).
Ift—-1< t;p, then the claim follows since D, is non-decreasing and hence
holds D, (t — 1) < Dy(t,,) < D, [u](tu,) < Dy [u](t). Assume, therefore, that
typ <t —1.

From the follow-up property, link (u,v) is up at u during [t,,t — 1],
since it is up at v during [t,,,?]. From Lemma 6 follows that v € G'}¥ during
[t.,-t — 1]. Hence processor u sends sync(-,D,) to v at any time when
D, is increased during [t ,t — 1] <H3>. From the deliver property of the
link, processor v receives these sync packets before time . In particular, if

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 39

D,(t,,) < Dy(t—1), then processor v receives sync(-, D,(t—1)) before time .
From <B2> and since D] [u] is non-decreasing, holds D, (¢t — 1) < D/ [u](%),
i.e. the claim holds. The claim also holds if D,(t,,) = D,(t — 1) since
Da(tl,) < Diful(tay) < Difu)(t). O

We now conclude that if link (u,v) is up at v during [t — 2,], then Eq.
(1) holds at time t.

Lemma 13 If link (u,v) is up at v during [t — 2,t] then D,(t — 1) <
D! ul(t) # undef.

Proof: From Lemma 12, it suffices to show that D/[u](t) # undef. Let ¢,
denote the last recovery of link (u,v) at v prior to ¢ — 2. Namely, link (u,v)
recovers at processor v at time ¢, and stays up until ¢, where ¢, <t — 2.
From Lemma 8, within two time units after recovery either the link fails
or an update packet is received. Since the link does not fail until ¢, + 2,
processor v receives an update packet from u between ¢, and ¢, 4+ 2, which
is before ¢. The claim follows from <G3>. O

We now state the relation between R, and the indices in sent and received
packets.

Lemma 14

A) Just before processor v sends either sync(m,i) or flood(m,1), the fol-
lowing holds: M,[i] = m and R, > 1.

B) If i < R,(t) then one of the following holds:
1. v has received before t packet sync(M,[t],1) or packet flood(M,[i],?).

2. v = s and before time t message M,[i] was accepted in the i'* accept
event.

Proof: Lemma 14 A) follows immediately from the fact that sync packets
are sent only in <H5H> and flood packets are sent only in <I5> and <G2>.

We now prove Lemma 14 B). The variable R, is incremented only
in procedure message <I3>, when called at some time t with parameter
R,(t—) + 1. Procedure message is called only in <B3>, <C2> or <A3>.
In Statement <B3> and <C2>, message(m,) is called only after s has re-
ceived a packet with index number 7, and thus the claim follows. Therefore
it suffices to consider the case where message is called in <A3>. In this
case, the claim follows from Lemma 2 B), which says that A; is the number
of accept events. U

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 40

4.2 Correctness

The correctness of the protocol is based on the simple mechanism of associ-
ating indices to messages and including them in sync and flood packets. We
now show formally that the association is correct.

Lemma 15 If processor v receives sync(m,t) or flood(m,1), then m was
the 1" message accepted by the source s.

Proof: Every packet received by some processor was previously sent by
some other processor. Consider the first send event, at some processor u, of
a packet containing message m and counter . Let ¢ denote the time of this
send event. From Lemma 14 A) holds R,(t—) > ¢ and M,[¢:] = m. From
Lemma 14 B) either u = s and m was the " message accepted, or processor
u has received before ¢t a packet containing m and <. However, processor u
could not have received such a packet before ¢, since then the packet must
have been sent before ¢, and ¢ is the time of the first send event of packets
containing m and 7. 0
It is now easy to prove the correctness of the protocol.

Lemma 16 FEvery execution of the protocol, as specified in Figs. 8-11, is a
correct broadcast from s.

Proof: Messages are delivered to the higher layer only in <H3>. Hence,
the ' message delivered by processor v is the contents of M,[i], and when
the latter is delivered, holds ¢ = D,,. From Lemma 4 holds D, < R,. Hence,
from Lemma 14 B) either v = s and M, [7] is indeed the i message accepted
by the source, or v has previously received sync(M,[i],7) or flood(M,[?],1).
The correctness follows from Lemma 15. U

Lemma 15 allows us also to show that R, = A, and that for every
processor v, we have R, < A,. These relations are useful in the rest of the
analysis.

Lemma 17 At any time R, = A, holds, and R, < A, holds for everyv € V.

Proof: The fact that R, < A, follows since v sets R, to ¢ only after hav-
ing received sync(-,1), which can happen only after the time when the 7'
message is accepted at the source s.

The claim R, = A, follows by induction on the events. Obviously, the
claim holds before the first event. Consider some event e at time ¢, and
assume that for any ¢ < ¢ holds R,(t') = A,(t'). If e is an accept event, then

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 41

A; is incremented in <A2> and procedure message(m,i)is called in <A3>,
with m the accepted message and ¢ = A,(t4) = R,(t—)+1. The claim holds
after e since R; is incremented as well, in <I5>, since ¢ = R (t—)+ 1 as
required by <I2>.

It remains to consider the case when e is not an accept event. In this
case, the value of A, does not change. We now show that the value of R,
also does not change. The value of R, changes only when <I5> is executed
at s, as a result of a call to message(m, R;+1) <I2>. Such a call is possible
only if s has previously received either sync(m, R, + 1) or flood(m, R, +1),
by <B3> or <C2>. From Lemma 15 above, this occurs only after the R, +1
accept event. The claim follows since A, is the number of messages accepted
(Lemma 2 B)). O

4.3 The progress mechanism.

The complexities of the protocol are ensured by two complementing mech-
anisms. The synchronization mechanism ensures that no processor is deliv-
ering ‘much more’ messages than other processors, i.e. it delays the delivery
of messages in the ‘faster’ processors to ensure that processors are loosely
synchronized. The progress mechanism ensures that each message is in-
deed delivered by all processors within finite time after it is accepted by the
source.

It is trivial to achieve either synchronization or progress; the difficulty
is to achieve both properties together. Synchronization alone is trivially
achieved, for example, if no messages are delivered, or by the PIF protocol.
Progress alone is achieved by the intelligent flood protocol [AES6, Per83,
Seg83].

We begin by presenting a weak progress property, that does not use the
flood mechanism. Namely, we show that if processor v receives bhefore t at
least one message more than the number of messages delivered by the slowest
processor, then v delivers before ¢ + 2 more messages than these delivered
by the slowest processor at t.

Lemma 18 For every processor v and time t, if R,(t) > mingev Dy(2),
then D,(t +2) > mingev Dy (1).

Proof: We prove the claim by contradiction. Let » be a processor such
that D,(t + 2) < mingev Dy (?). Since D, is non-decreasing, it follows
that D, (¢t +2) = D,(t) = mingey Dy (t). We show that R,(t) < D,(t) =

min D, (), from which the claim follows.

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 42

Consider some u € GP(t 4 2) (if GP(t 4 2) is not empty). Namely,
link (u,v) is up at v from the time when v has last delivered a message
prior to ¢ + 2 and until time ¢ + 2 (Lemma 2 D)). Since D, does not
change between t and t4 2, processor v delivers no messages during [t, 14 2].
Hence, link (u,v) was up at v during [¢,¢ + 2]. From Lemma 13 follows that
Diul(t+2) > Dy(t+ 1) and D} [u](t + 2) # undef. Also, since R, is non-
decreasing, R,(t) < R,(t+ 2). Counsider the first time ¢ such that during
(t',t + 2] none of G?, D![u] or R, changes. (Note that ¢ may be before or
after ¢.) Namely:

e Lor every t” € (¢',t+2], holds R,(t) < R,(t"), and for every processor
win GP(t") holds D! [u](t") # undef and D} [u](t") > D,(t+ 1).

e Fither R,(¥'—) < R,(t + 2) or there is some u in G?(#—) such that
Di[u](t'—) < Dy(t+ 1) or D,[u](t'—) = undef.

By definition of ¢/, one of the following holds:
e The value of R, increases at t'. This can happen only in <I3>.
e A processor is removed from G at ¢'. This can happen only in <D2>.

e The value of D][u] is increased at #'. This can happen in either <B2>
or <G3>.

It is easy to see that in all cases, procedure proceed is executed at t'. The
second condition of <H2> holds at #4+. Hence, after ¢/, the first condition
of <H2> does not hold. Namely, D,(t'+) > R,(t'+). Since ¢’ < t+ 2, holds
D,(t'+) = D,(t+2) = D,(t). On the other hand, R,(t) < R,(t'+). Hence
R,(1) < D,(t). U

We now extend Lemma 18 to longer time periods.

Lemma 19 For every processor v, time t and 1 > 1:
D,(t) > min{D,(t — 2¢) + ¢, IIIEI‘I} R, (t—2i)} (2)

Proof: Lemma 18 shows that the claim holds for : = 1, since D, < R,. The
induction step follows by another application of Lemma 18. O

The stronger progress properties, to be proven later, hold in conjunction
with the synchronization mechanism. As shown later, this combination of
the progress mechanism and the synchronization mechanism ensures that
the synchronization condition (Def. 16) holds at any time. Namely, A;(t) <

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 43

D,(t) 4+ n for any time t. The progress properties stated below require the
synchronization condition to hold at certain times.

We now prove a simple property of the flood mechanism used in the
protocol. This property shows that messages are indeed ‘flooded’. Namely,
if uy and ug are O(k)—Up-Connected at time ¢, then every flood packet sent
by u; at t — k is received by uy before t.

Lemma 20 (Flood) Consider the path uwy —u; — -+ —up_y — up consisting
of k links. If the path is (k+2)— Up at some time t, and the synchronization
condition holds during [t — (k4 2),t], then R, (t) > R,,(t — k).

Proof: This Lemma extends Theorem PI-1 of [Seg83] to deal with recoveries.
We first prove the Lemma for k£ = 1. Namely, we assume that link (ug,u,)
is 3—Up at t, and prove that R, (t — 1) < R,,(1).

Lup tup + 1

Uy

Ug

Figure 4: The flood mechanism.

From Lemma 8, processor u; receives an update packet from wu, at some
time t,, before t — 1. Let t;p denote the time when wug sends this update
packet to u; (see Fig. 4).

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 44

Upon receiving the update packet, processor u; executes <G2> with
¢, = Run(t;p). Hence, at time %,,, processor u; sends to uy flood packets
numbered max{R,,(t,,) + 1, Ry, (tu,) — n + 1} to Ry, (t,,) <G2>. Since
(g, uy) does not fail until ¢, and the delay is at most one time unit, processor
uy receives these packets before ¢,, + 1 < ¢. From the Synchronization
condition (Def. 16) holds Ry, (tup) > As(tup) —n > Ry, (ty,) — n. Hence,
from <I3> follows that R, (ty, + 1) > Ry, (tup)-

Since R, increases only in <I3>, then processor u; sends to wuy flood
packets numbered R, (t,,)+ 1,..., Ry, (t — 1) between t,, and ¢ — 1. Since
the link does not fail until £ and the delay is at most one, all of these packets
are received by ug before t. From <I3>, and the fact that R, (¢, + 1) >
Ry, (ty,), follows that R, (¢t — 1) < R,,(t). This proves the claim for k = 1.

By repeating the inequality R,,(t —1) < R, (1), we get

R (t—k) < ... < Ru(t—1) < Ruy(1)

which proves the Lemma. U

Recall that the synchronization condition holds at time ¢ if the number of
messages accepted by the source until ¢ is at most n more than the number of
messages delivered by any processor (Def. 16). We now prove the Progress
Lemma based on the Flood Lemma, assuming that the Synchronization
Condition holds. Later we show that this condition is always satisfied.

Lemma 21 (Progress) Assume that the network is (n+1)—Up at (t —2n)
and that the synchronization condition holds during [t —3n—1,t—2n]. Then

every processor delivers until time t every message accepted until (t — 3n),
i.e. for every v € V holds A (t —3n) < D,(t).

Proof: The proof consists of two parts. We first show, using the Flood
Lemma, that every processor receives until time (¢ — 2n) flood packets con-
taining every message accepted until time (¢ — 3n). Namely, A,(t — 3n) <
mingey Ry(t — 2n). Second, we use Lemma 19 to show that until ¢, every
processor delivers each of these messages. Namely, R,(t — 2n) < D,(t).

The network is (n+1)—Up at time ({—2n). Hence, thereis an (n+1)—Up
path consisting of at most (n — 1) links from s to every other processor v
at time (¢ — 2n). Also, we have assumed that the synchronization condition
holds during [t — 3n — 1, — 2n]. Hence, from the Flood Lemma, for every
processor w € V holds R, (t —2n) > R,(t — 3n). The first part of the proof
follows since always holds A, = R, (Lemma 17).

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 45

From Lemma 19, for every processor v holds D, (t) > min{D,(t —2n) +
n, Mingey Ry (t —2n)}. Since A (¢t — 3n) < mingey Ry(t — 2n) and A (t —
3n) < A, (t —2n) < D,(t —2n) + n, follows that for every processor v holds
A (t—3n) < D,(t). U

4.4 The synchronization mechanism.

We now analyze the synchronization mechanism. We begin with a simple
synchronization property, which shows, loosely speaking, that a processor
delivers new messages only after all neighbors in G? deliver the previous
message. Recall that neighbor w is in G if the link (u, v) is up at v since v
has last delivered a message to the higher layer.

Lemma 22 Assume that link (u,v) is up at v during [t,,t.]. If processor v
delivers more than one message during [t,,1s], then D,(t2) < D} [u](t2) + 1.

Proof: The intuition behind the proof is that at some time before the
(D,(t3))" deliver event in v, processor v has already received sync packet
number D, () — 1 from wu.

Let ¢ be the time when v last delivers a message before t,. Holds ¢; <
t' < 'ty. Since v delivers at least two messages during [¢,, ¢,], then v delivers
at least one message during [t;,#]. Link (u,v) is up at v during [¢;, 2],
hence u € G?(#'—). From the second condition of <H2> holds D,('—) <
D! ul(t'—). Also D,(t'+) = D,(t'—) + 1, and D, does not change between
t'4 and t5. Thus, since D/ [u] is non-decreasing, holds D,(t,) < D! [u](t2)+1.
O

The synchronization mechanism ensures that the synchronization con-
dition and the link synchronization condition, both of Def. 16, hold at any
time t. We prove both synchronization properties together with the progress
property of Lemma 21.

Lemma 23 (Synchronization and Progress) Assume that the network
15 3n—Up at any time. Then the following properties hold at any time t:

Link Synchronization: The Link Synchronization condition holds. Namely,
if link (u,v) is 3n—Up at time t, then processor v delivers until t
at most one more message than wu delivers until t. In other words,
D,(t) < Dy(t)+ 1.

Synchronization: The Synchronization condition holds. Namely, (Vv €

V) A1) — n < Dy(1).

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 46

Progress: Fuvery processor delivers until time t every message accepted until

t—3n. Namely, (Yv € V) A(t —3n) < D,(1).

Proof: The proof is based on three main observations. First, from Lemma
21, the Progress property for time ¢ follows from the synchronization con-
dition until ¢ — 2n. Second, the Link Synchronization property for time ¢
follows from the Progress property for time ¢ and from Lemma 22. Last, the
synchronization condition for time ¢ follows easily from the Link Synchro-
nization condition for time t. We now proceed with the proof.

The properties hold trivially for ¢ < 0. We show that they hold for every
t by assuming that they hold until some time ¢y, and proving that they hold
until time ¢, + 2n.

Consider any time t’ between ¢y and ¢y + 2n. First, from Lemma 21, and
since the synchronization condition holds until ¢y, the progress property
holds for time ¢'. Namely, A (¢’ —3n) < D,(t') for all v € V. We now prove
that the Link Synchronization property holds at time ¢'.

Consider some link (w,v) which is 3n—Up at ¢’. From the Progress
property for time t' follows that A,(¢ — 3n) < D,(¢'). Since D, < A,
always, follows that D, (¢ — 3n) < D,(¢') holds.

If D,(t') < D,(t —3n)+ 1, the Link Synchronization property for ¢
follows. On the other hand, if D,(¢') > D,(t' — 3n) + 1, then v delivers
between (¢ — 3n) and ¢ more than one message. Thus Lemma 22 implies
that D,(¢) < D)[u](¢) + 1. From Lemma 11 holds D![u](t) < D,(t').
Hence, the Link Synchronization property holds at ¢'.

It remains to prove that the Synchronization condition holds at ' as
well, i.e. that for every processor v holds D,(t') > A (¥') — n. In the state-
ment of the Lemma we have assumed that the network is 3n—Up. Hence,
there is a 3n—Up path from » to s at any time. From the Link Synchroniza-
tion condition, applied at time ¢’ to each link along this path, follows that
D,(t') < D,(t') 4+ (n — 1), since this 3n—Up path contains at most n — 1
links. The Synchronization condition follows since A, < D, +1 <H7>. O

4.5 Bounded Congestion

In the following Lemmas we show that at any time, any link contains O(n)
packets in each direction. We begin by bounding the number of sync packets
in transit. We first bound the number of sync packets in transit from u to
v, if u has received at least two sync packets from v since (u,v) had last
recovered at u (see Fig. 5).

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 47

Lemma 24 Consider any link (u,v) and time t, and let t, denote the time
of the last recovery of (u,v) at u before t. Assume that processor u receives
at least two sync packets from v during [t.,t]. Then all but at most two sync
packets sent by u to v during [t,,t] are received by v before time t.

Proof: Let ¢, :+1 denote the sequence numbers of the last two sync packets
received by u from v during [¢.,]. Namely, D, [v](t) =i + 1.

The idea of the proof is that ¢ < D! [u](t) and D,(t) < D, [v]+1=1i+2.
Hence, at most two sync packets are in transit from u to v at time ¢, with
sequence numbers ¢ + 1 and 7 + 2. (See Fig. 5).

Recover
vy F

\ TGCOUGT/ .

Vo
\

\/ j.update:
[\ 1
t
Recover

Figure 5: Number of sync-packets in transit if « received two or more sync
packets during [¢,,1].

From the FIFO property, link (u,v) did not fail or recover at processor
v from the time when v sends sync packet ¢ to w and until v sends sync

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 48

packet ¢ + 1 to u. Hence, when processor v sends sync packet ¢ + 1 to u,
executing <H5>, holds v € GP. From <H2>, at that time holds ¢ < D! [u].
Since D![u] is non-decreasing during operating intervals (Lemma 11), holds
i < D [ul(t).

The claim is trivial if u sends less than two sync packets to v during
[t,,1]. Assume that u sends two or more sync-packets during [¢,,1], and we
show that D,(t) < Di[v]+1=1i+2.

Whenever u sends a sync-packet, in <H5>, then u also delivers a mes-
sage in <H4>. Hence before u sends the last sync packet to v until ¢,
holds v € GP. From <H2>, at that time holds D, < D! [v]. Since D/ [v]
is non-decreasing and D, changes only when wu delivers messages, holds
D, (t) < Dj[v](t)+1 =14 2. Since ¢ < D][u](t), it follows that at most two
sync-packets are in transit from u to v at time ¢, namely sync(-,7+ 1) and
sync(-,i+2). O

It remains to consider intervals where u receives less than two sync pack-
ets from ». We first prove some useful synchronization properties between
the number of messages received and delivered in v and w.

Lemma 25 If the network is always 3n—Up, then the following holds at
any time t:

(Vo e V) R,(t) < Dy(t)+n (3)
(Vo,ue V) Dy(t) < Dy(t)+n (4)
(Vo,u e V) (Dylul(t) < D,(t)+n) Vv (D,[u](t) = undef) (5)

v

Proof: From Lemma 23 follows that A, —n < D,. From Lemma 17 holds
R, < A,. This proves that R, < D, + n.

From Lemma 4, for every processor u holds D, < R,. Again from
Lemma 17 holds R, < A,. Hence D, < D, + n. Equation (5) holds as well,
since either D! [u] < D, or D![u] = undef, from Lemma 11. O

We now bound the number of sync packets sent by u to v during intervals
where u does not receive an update packet from v.

Lemma 26 Assume that the network is 3n— Up at any time. Consider any
link (u,v) which is up at processor u during some interval [t,ts]. Assume
that processor u does not receive update packets from v during [ti,1.]. Let i
denote the number of sync packets received by u from v during [t1,t5]. Then
processor u sends to v during [ty,t.] at most i + n+ 1 sync packets.

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 49

Proof: The proof is based on three observations. First, D! [v](t2) < D/ [v](t1)+
?, as we show later. Second, if processor u delivers more than one message
during [t1,1s], then D, (t2) < Di[v](t2) + 1 (Lemma 22). Third, D/ [v](t;) <
Dy(t1) +n (Eq. (5) of Lemma 25). The claim follows since the number of
sync packets sent by u during [t1, 5] is exactly D, (t2) — Dy (#1).

It remains to show that D! [v]increases during [t;,?s] by at most ¢. Since
processor u does not receive update packets from v during [t,,], then D] [v]
changes during [t;,t,] only when u receives sync packets from v». From
Lemma 7, during [¢,,1,] the value of D/[u] increases exactly by ¢. [

We now conclude that at any time there are at most 2n 4 3 sync packets
in transit from u to v.

Lemma 27 Assume that the network is always 3n— Up. Consider any link
(u,v) and time t, and let t, denote the time of the last recovery of (u,v)
at w before t. Then at most 2n + 3 sync packets which were sent by u to v
between t, and t are not received by v until t.

Proof: If processor u receives during [t,,?] two or more sync packets from v
then the claim follows from Lemma 24. Assume, therefore, that u receives
at most one sync packet from v during [¢,,1].

The rest of the proof is organized as follows. We first show that processor
u receives at most one update packet from v during [t,,t], say at time t,.
Then we apply Lemma 26 twice: first for the period [t,,?,] and second for
the period [t,,1].

Update packets are sent only when receiving a recover packet by <F2>.
Recover packets are sent only upon recovery <k2>. Hence, from the FIFO
property, processor u receives at most one update packet during [t,,1], say
at time %,.

From Lemma 26, the number of sync packets sent by u to v during [¢,, 1]
([tu,t]) is at most n 4+ 1 more than the number of sync packets received by
u from v during [¢,,,] (respectively, [t,,?]). Since u receives from v at most
one sync packet during [¢,,1], the claim follows. U

We now proceed to show that the maximal number of flood packets in
transit over a link is also O(n).

Lemma 28 Assume that the network is always 3n— Up. Consider any link
(u,v) and time t, and let t, denote the last recover of (u,v) in u before t.
Then at most 4n+6 flood packets sent by u between t, andt are not received
by v until t.

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 50

Proof: The proof is based on Lemma 27, which shows that at most 2n + 3
sync packet are in transit from u to v at ¢, and on the following two relations,
proven below, between the numbers of sync packets and flood packets in
transit:

1. Let 45yne (¢7100a) be the sequence number of the last sync (respectively,
flood) packet sent by u to v before ¢. Then

iflood S (isync + 1) + n.

2. Let 7}, (741,,4) be the sequence number of the first sync (respectively,
flood) packet sent by u to v between ¢, and ¢, which was not received

by v until £. Then

i;‘lood 2 (Z;ync - 1) - n.

We first show that ¢s04 < (4550 + 1) + n. Intuitively, this means that
u does not send flood packets with numbers ‘much higher’ than sync pack-
ets. Processor u sends flood packet number i¢;,,4 before delivering 4,y,. 4+ 1
messages. From the Synchronization Lemma, at most (¢s,,. + 1) + n mes-
sages are accepted before the time when w sent sync packet 7,,,. + 1 to
v, i.e. A; < (tgyne + 1) + n. Since the message in the flood packet if,04
is accepted before the time when w sends sync packet ¢,,,. + 1, holds
i f100d < (Tsyne + 1) + 7.

We now prove the second relation, i};,,4 > (7,,. — 1) — n. Processor u
sends flood packet 1%;,,, after sync packet 7{, . — 1. Namely, when u sends
flood packet i%;,,4, then D, > 4, — 1. Since R, > D, from Lemma 4,
follows that at that time R, > ¢ _— 1. Since R, is non-decreasing, holds

sync
R, >, — 1 also when flood packet number ,;,,; is sent. Hence if the
flood packet was sent in <I5> then 1%;,,, = R, > 7}, — 1. Also, if the flood
packet was sent in <G2>, then i},,4 > Ry —n > 1, — 1 —n.

We conclude that (i, — 1) =1 <@ ,00 < ii00a < (Zsyne + 1) + 1. But
Lemma 27 shows that at most 2n + 3 sync packets sent by u between ¢,
and ¢ are not received by v until ¢. Namely, tgyn. — 74,,. < 2n + 3. Hence,
Uflood — i}lood < 4n + 5. Namely, at most 4n + 6 flood packets sent by u
between ¢, and t are not received by v until t+. U

We now use Lemmas 27 and 28 to show that the number of packets in

transit over a link is O(n).

Lemma 29 Assume that the network is always 3n— Up. Consider any link
(u,v) and time t, and let t, denote the time of the last recovery of (u,v) at u

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 51

before t. Then only O(n) packets sent by u between t, andt are not received
by v until t.

Proof: The claim holds for sync packets from Lemma 27, and for flood
packets from Lemma 28. It remains to consider update and recover packets.

Recover packets are sent only in <E2>, i.e. once after each recovery.
From the FIFO property, at most one recover packet is received from a
link while a link is up. In particular, at most one recover packet sent by u
between t, and t is not received by v until ¢.

Similarly, update packets are sent only in <F2>, upon receiving a recover
packet. Since at most one recover packet is received from a link while the
link is up, then at most one update packet is sent over a link while it is up.
The claim follows as for recover packets. U

4.6 Communication Complexity

We now show that Theorem 1 holds for the protocol shown in Figs. 8-11.
The correctness follows from Lemma 16. The delay follows directly from the
Progress property of Lemma 23. The congestion follows from Lemma 29.
It remains to prove the communication complexity.

Lemma 30 Consider an execution where the network is 3n— Up at all times.
Then the communication complexity over intervals of length 3n+ 3 is C'y =
4m per accept, C'p = 0 per fail and C'g = 2 per recovery.

Proof: Consider times ¢, 1, and t3 according to Def. 9. Namely:
L <ts<ty : lo—1,>3043 ; tz3—t>3n+3
We wish to show that the number of receive events during (¢,, 3] is at most
A([ti,t3)) -4m + R([t1,13)) -2

Where A([t1,13)) (R([t1,t3))) is the number of accept (respectively, recover)
events during [t;,13).

From Defs. 9 and 10 follows that if the number of receive events during
[ta,13) is bounded by the expression above, then the message amortized
complexity is 4m and the fail amortized complexity is 2, both for intervals
of length 3n.

We first show that at most one recover packet is received during [ts,3)
per each recover event during [¢;,?3). Since the transmission delay is at most

broad:Ana update:June 11, 1993 INTpX:August 26, 1996 52

one time unit, any packet received during [ts,t3) was sent during [t2 — 1, 13).
Since recover packets are sent only upon recovery, it follows that at most
one recover packet is received during [ts,?3) per each recover event during
[ta — 1,13).

We now show that at most one update packet is received during [ts,13)
per each recover event during [t;,73). Update packets are sent only upon
receiving a recover packet <F2>. By the same argument as above, at most
one recover packet is received during [t;—1,¢3) per each recover event during
[tz — 2,t3). Hence, at most one update packet is received during [t2,13) per
each recover event during [t, — 2, 13).

We now show that at most 2m sync packets and 2m flood packets are re-
ceived during [ts, t3) per each accept event during [¢1,?3). From the protocol,
processors send each sync and flood packet at most once to each neighbor.
Hence, it suffices to show that every sync and flood packet received during
(t2,13] contains a message accepted during [t;,%3]. Since the transmission
delay is at most one time unit, it suffices to show that every sync and flood
packet sent during [t; — 1,3) contains a message accepted during [t,13).
From the progress condition and since ¢; < t, — 1 —3n follows that the claim
holds for packets sent in <H5> or <I5>.

It remains to prove that every flood packet sent in <G2> during [t, —
1,13) contains a message accepted during [t;,%3]. Update packets received
during [ty — 1,%3) were sent during [ty — 2,t3). Therefore, the flood packets
sent in <G2> after ¢, — 1 have indices at least min,ev{D,(t2—2)+1}. From
the progress property, and since ¢, < (t; — 2) — 3n, follows that A (¢;) <
min, ey {D,(ts — 2)}. The claim follows. [

broad:imp update:June 11, 1993 IWIpX:August 26, 1996 53

5 The Enhanced Broadcast Protocol

In this section we present three minor enhancements to the protocol, and
prove the properties of each enhanced version by reduction arguments to
the previous version. In the first subsection we show how to use only short
packets, by using modular counters instead of unbounded counters. In the
second subsection we bound the space, by observing that it suffices to store
only the last n messages received. In the third subsection we improve the
throughput, by using a ‘window’ of messages in the source.

5.1 Using Bounded Counters.

We now show that modular counters can be used in the protocol, instead
of the unbounded counters. Modular counters suffices, intuitively, since
the maximal difference between counter values compared in the protocol
is always bounded. From the synchronization condition, until any given
moment all processors deliver roughly the same number of messages. On
the other hand, there is a difference of at most O(n) between the counters
compared by the protocol and the number of messages delivered by this
processor or by one of its neighbors. We formalize this intuition in the
following Lemmas.

There are two kinds of comparison operations in the protocol: compar-
ison of two numeric variables (counters) and comparison of a counter to a
value in an incoming packet. We begin by showing that the whenever the
protocol compares two counters, the difference between them is bounded by
O(n). Later we bound the difference between counters and the values they
are compared to from incoming packets.

From Lemmas 4 and 25 it follows immediately that if the network is
3n—Up at any time, then:

R,—n<D,<R,.

There are only two places in the protocol where variables other than R,
and D, are compared, in <H2> and in <H7>. In <H7>, the values of A,
and D, are compared. However, D, < A, < D, + 1. It remains to consider
<H2>, which compares D,[u] to D,.

Lemma 31 Assume that the network is 3n—Up at any time. Then either
D,(t)—n—1<D[u](t) < D,(t)+ n+ 1 or D,[u](t) = undef.

broad:imp update:June 11, 1993 IWIpX:August 26, 1996 54

Proof: From Eq. (5) of Lemma 25 holds either D/ [u] = undef or D! [u](t) <
D,(t) + n. It remains to show that either D,(t) — n — 1 < D/[u](t) or
D! ul(t) = undef. Assume that D/ [u](t) # undef.

Since D][u](t) # undef follows that at some time ¢,, < ¢ processor v
receives an update packet from u, and (u,v) is up at v during [t,,,?]. Let
t,, denote the time when processor u sent this update packet (see Fig. 6).

Lup 1

update(-,-)

up

Figure 6: Proof that either D, —n — 1 < D/ [u] or D/ [u] = undef.

The idea of the proof is that if v delivers two or more messages between
t,, and t then D,(t) < Dj[u](t) + 1 and the claim holds. Otherwise, the
claim holds since Dj[u](t,,+) = Du(t,,) and D,(t,,) < Dyu(t,,) + n.

From Lemma 9, link (u,v)is up at v during [t;,t,,]. Hence, link (u,v)
is up at v during [t; ,t]. From Lemma 18, if v delivers two or more messages
during [t;,,t] then D,(t) — 1 < D;[u](t) and the claim follows.

Assume, therefore, that v delivers at most one message during [t ,1].
Namely:

D,(t) < Dy(t,,)+1 (6)

From Eq. (4) of Lemma 25 holds

Do(t,)) < Du(t) +n (7)

broad:imp update:June 11, 1993 IWIpX:August 26, 1996 55

From Lemma 10 holds:

Dylu](tup) = Du(t,,) (8)

Since D;[u] is non-decreasing while (u,v) is up at v (Lemma 11) follows
that:
Dy [u](tup) < Dy [ul(?) (9)

The claim follows from Egs. (6-9). U

We now show that the difference between a counter and a value from an
incoming packet to which it is compared is at most O(n). We first note that
a processor never receives at most O(n) messages more than it had delivered
to the higher layer.

Lemma 32 Assume that the network is always 3n— Up and that processor
v receives a packet containing number i at time t. Then i < D,(t) + n.

Proof: If v receives a packet numbered ¢, then one of its neighbors, say wu,
has previously sent this packet. From Lemma 17, holds R, < A,. Since A, is
non-decreasing, then ¢ < A,(¢). The claim follows since the Synchronization
Lemma shows that D,(t) > A,(t) —n. U

We now show that the dual claim also holds: whenever a processor
receives a packet numbered 7, then 7 is not much smaller than the number
of deliveries in this processor.

Lemma 33 Assume that the network is always 3n— Up, and that processor
v receives a packet containing number i at time t. Then D,(t) < i+ 2n.

Proof: Let u be the neighbor from which v receives the packet at time ¢,
and let ¢ denote the time when u has sent the packet to v. From Lemma 9
follows that link (u,v)is up at v during [¢/, ¢].

If processor v delivers more than one message during [¢,¢], then from
Lemma 22 holds D, (¢)—1 < Dj}[u](t). From Lemma 10, processor v receives
from u before ¢ either sync packet number D,(¢) — 1 or update packet with
deliver-counter at least D,(¢) — 1. From the FIFO property of the link, u
sends this sync or update packet before t. Namely, at that time, before t',
the value of D, is D,(t) — 1. Since D, is non-decreasing (Lemma 3), we
know that in this case D, (') > D,(t) — 1.

In the other case, when v delivers at most one message during [t',?],
then immediately from Lemma 2 A) follows D,(¢) < D,(t') + 1. We have
therefore bounded D,(t) in both cases:

broad:imp update:June 11, 1993 IWIpX:August 26, 1996 56

Dy(t) < max{D, (') + 1, Du(t') + 1}. (10)

From Eq. (4) of Lemma 25, holds D,(t') < D,(t') + n. Therefore, from
Eq. (10) follows that D,(t) < D,(t')+n+ 1. The claim follows immediately
if the packet is a sync, update or recover packet. The claim holds also for
flood packets, since the number of a flood packet sent by u is either R, in
<I5> or in the range R, —n + 1 to R, in <G2>, and by Lemma 4 holds
D, <R, O

We now conclude that the difference between numbers compared during
any execution of the protocol is bounded by O(n).

Lemma 34 The difference between two numbers compared by the protocol
n a timed dynamic execution where the network is always 3n— Up is bounded
by 3n + 1.

Proof: The protocol compares values in statements <G2>, <H7>, <H2>
and <I2>. We now consider each of these statements. The claim is trivial
for <H7>, since D, < A, < D, + 1.

In <G2> the received value of ¢, is compared to R,. From Lemma 32
holds ¢, < D, + n, and from Lemma 4 holds D, < R,. Hence, ¢, < R, + n.
On the other hand, from Lemma 33 holds D, < ¢, +2n, and from Lemma 25
holds R, < D, +n. Hence R, < ¢, + 3n. Namely, the claim holds regarding
<G2>. A similar argument holds for <I2>, where the received value of ¢ is
compared to R, + 1.

In <H2>, the value of D, is compared to D/[u]. The claim holds in this
case from Lemma 31. Also, in <H2>, the value of D, is compared with R,.
In this case the claim holds from Lemmas 4 and 25. O

From Lemma 34 it follows that it suffices to use numeric variables re-
duced modulo 6n + 3 (or more), when the comparisons are performed in the
standard manner when using a cyclic counter [Per83]. Namely, z is larger
than y if | — y| < 3n 4+ 1. By performing this modification, the protocol
uses only short messages. The properties of this version of the protocol are
summarized in the following Theorem.

Theorem 35 Consider the protocol in Figs. 8-11, when all arithmetics and
comparisons are performed modulo 6n + 3. This protocol uses only short
packets. Furthermore, if the network is 3n-Up at all times, then this proto-
col is correct, with delay at most 3n, congestion O(n) and communication
complexity C'y = 4m per accept, Cp = 0 per fail and Cr = 2 per recovery
over intervals of length 3n + 3.

broad:imp update:June 11, 1993 IWIpX:August 26, 1996 57

Proof: It is obvious that the modified protocol uses only short packets; it
remains to show that correctness and efficiency are not lost. Consider any
timed dynamic execution («, time) of the modified protocol.

From Theorem 1, it suffices to prove that there is a corresponding ex-
ecution (o', time’) of the original (non-modular) protocol, s.t. the two ex-
ecutions are identical except for the use of modular counters. Namely, let
a=e€p,65,...6, and o/ = €], ¢€,,...e/. We show that for every ¢, the event
e; is identical to e} except that all values are reduced modulo 6n + 3, and
that time(e;) = time’(e}).

Suppose to the contrary that there is no such o'. Consider the shortest
prefix ey, ..., ep of @ which does not have a corresponding prefix of an exe-
cution of the original protocol. Let €/, ..., e} _; be the prefix of an execution
of the original protocol corresponding to ey,...,ex_;. By considering all
possible event types for ey, it follows from Lemma 34 that it is possible to
select e}, which corresponds to e; and such that €,... €} is a prefix of an
execution of the original protocol. [

5.2 Bounded Storage

The previous subsection shows a minor fix to the protocol, which maintains
all of the properties of Theorem 1 but uses only short packets. We now
observe that from Eq. 3 of Lemma 25 follows that the protocol always uses
only the last n messages received. This suggests an additional minor fix:
store only the last n messages received. It easily follows that the combination
of these two simple fixes gives O(n) space complexity.

Theorem 36 Consider the protocol in Figs. 8-11, when all arithmetics and
comparisons are performed module 6n + 3 and where processors store only
the last n messages received. This protocol has O(n) space complexity and
uses only short packets. Furthermore, if the network is 3n-Up at all times,
then this protocol is correct, with delay at most 3n, congestion O(n) and
communication complexity C'y = 4m per accept, Cr = 0 per fail and Cr = 2
per recovery over intervals of length 3n + 3.

Proof Sketch: The proof follows like that of Theorem 35, by observing that
the protocol uses the stored messages in two ways. First, the protocol sends,
upon receiving an update packet, at most n flood packets, each containing a
message not received yet by the neighbor <G2>. Obviously, for this purpose
it is sufficient to store only the last n received messages. The second use of

broad:imp update:June 11, 1993 IWIpX:August 26, 1996 58

messages in the protocol is to deliver them to the higher layer. The protocol
in processor v delivers messages whose sequence number is higher than D,.
Eq. 3 of Lemma 25 shows that storing the n last received messages suffices
for this purpose as well. U

5.3 Improving Throughput Using a Window

In the protocol as presented so far, the throughput is bounded by one over
the delay, namely Q(%) It is possible to show that the throughput is not
better than O(—=). We now show how the protocol may be modified to
achieve (1) throughput.

As described so far, the source performs a ready event, i.e. enable the
higher layer to broadcast another message, only after receiving from all
neighbors the sync packet containing the last message accepted.

We change the operation of the source processor by implementing a
window of n 4+ 1 messages. Namely, the source processor enables a ready
event whenever A, < D, +n. This condition replaces the existing condition
in <H7>, which is: A, < D,.

This is a typical implementation of the window technique, which is of-
ten used to improve throughput while avoiding excessive congestion. The
window does involve some overheads: it requires the source to store n mes-
sages, and, as we shortly show, the rest of the network operates as if there
are additional n processors. In our case, all complexities are linear in the
number of processors, namely all complexities are at most doubled by the
use of a window of size n.

To distinguish between the two versions of the protocol, we refer in this
section to the protocol as described before this section as the ‘non-window
version’ and to the protocol with the modification described above as the
‘window version’. The window version preserves all the properties we proved
for the non-window version, up to a constant. This is in addition to the
substantial improvement in the throughput.

Theorem 37 Consider the protocol in Figs. 8-11 with the modification de-
scribed above in this section (window of n messages and arithmetics modulo
12n+3). This protocol has O(n) space complexity and uses only short pack-
ets. Furthermore, if the network is 6n—Up at all times, then this protocol
s correct, with throughput at least % for intervals of length 6n + 1, delay at
most 6n, congestion O(n) and communication complexity Cy = 4(m + n)
per accept, C'p = 0 per fail and Cr = 2 per recovery over intervals of length

6n + 3.

broad:imp update:June 11, 1993 IWIpX:August 26, 1996 59

Proof: We first prove that the protocol still has all of the properties of
the previous versions. We map every timed dynamic execution (o, time) of
the window protocol into a timed dynamic execution (o, time’) of the non-
window version. The execution (a,?ime) is in an arbitrary network (V, E)
containing n processors and m links; execution (a’,time’) is in a fictitious
network (V’, E’) containing 2n processors and n + m links. The mapping is
shown in Fig. 7. Namely, if we assume that processor names sy,..., s, are
not used in V:

o V=V U{sy,....,5,}
o '=FU{(s,s1)}U{(si,s; + D)]i=1,...,n}

The links added in the non-window execution operate without failures and
with zero delay. The source processor of («, time) is, as usual, processor s.
The source processor of (&, time’) is s,.

The sequence of events and their timing in (o, %ime’) is the same as in
(a,time). In particular, if at time ¢ the network in («,time) is 6n—Up,
then the network in (o/, time’) is also 6n—Up at t. As |V'| = 2|V| = 2n, the
properties stated in Theorem 37 follow from the corresponding properties
proved for the non-window version in Theorem 36.

We now prove the assertion concerning the throughput. This part of the
proof does not use the mapping to o’. Recall that the throughput is defined
over executions where there is never a delay from the time of a ready event
and until the following accept event. Namely, the higher layer always has
additional messages for broadcast.

Since accept events immediately follow each ready events, and the capac-
ity in the source is limited, it follows from the modified <H7> that at any
time ¢ holds A,(t) > Dy(t) + n.

We now prove that at least n4+1 messages are accepted in every interval of
length 6n+1; hence the throughput is at least % Consider any interval [t,t+
6n + 1]. From the first part of the proof, the delay is at most 6n. Therefore,
after (4 6n) all processors have delivered every message accepted until time
t. Namely, for every processor v holds D, ((t+6n)+) > A,(¢). In particular,
D((t46n)+) > As(t). By substituting A,(t46n+) > D,(t+6n+)+n, we
get A (t 4+ 6n+) > A,(t) + n. The proof follows since A; is non-decreasing.
O

broad:imp update:June 11, 1993 IWIpX:August 26, 1996 60

accept ready

Vo

The actual network, on which the

window version is executed.

The ‘mapped’ network, on which the

non-window version 1s executed. accept ready

Vo

\ /
i;@\—@OU
—()

Figure 7: The mapping from the window version to the non-window version.

broad:end update:Feb 2, 1994 INIpX:August 26, 1996 61

6 Concluding Remarks

We have presented a quantitative approach to dynamic networks, and illus-
trated this approach by analyzing a new, efficient broadcast protocol. Qur
objective was to enable realistic evaluation of protocols. Namely, the practi-
cal value of protocols and ideas should be reflected by the formal evaluation
within a theoretical framework.

We have also suggested new complexity measures, especially for the
throughput and the communication complexities. The main idea is that
the complexities are amortized but only over intervals which satisfy certain
minimal requirements, e.g. intervals which are not ‘too short’. These mea-
sures might be useful for analysis of other interactive tasks as well, and even
without failures. In particular, the advantage of the window mechanism is
revealed by our definition of throughput.

Further research is required in several directions. It is interesting to find
if we can reduce the reliability requirements of broadcast. In particular,
the assumption that the network is reliable is too strong for some networks,
which may be disconnected for substantial amounts of time. Is it possible
to solve ® such problems, using bounded resources, and allowing cuts in the
network, or processor crashes? Also, it is interesting to try to combine the
approach of this work with a more realistic approach to time complexity
which permits ‘timeouts’ such as suggested in [Her88, HK89].

The broadcast task addressed in this work is closely related to practical
broadcast and multicast problems of audio and video data streams, such
as video-conferencing and radio/video broadcasts over computer networks.
It appears that the protocol described here deals with aspects which so far
found little reflection in the protocols proposed and used in experiments
for such tasks. Namely, the protocol deals with allowing the broadcast to
flow over a dynamic graph which may contain cycles. This could be very
helpful in some realistic scenarios, where specific links or gateways may
be temporary congested; a protocol which allows redundant connectivity
(cycles) may be able to route around the congested areas.

Another challenge is to apply the quantitative approach to additional
tasks. In [Her91] we have briefly discussed how the protocol presented in
this paper may be adapted to end to end communication and to implement
a fault-tolerant synchronizer. In [Her92] we used the quantitative approach

®The construction of [AGH90a] does not require that the entire network would be
reliable, and allowed crashes. However, a full proof did not appear.

broad:end update:Feb 2, 1994 INIpX:August 26, 1996 62

to analyze and improve connection-based communication schemes.

Acknowledgments

We thank Baruch Awerbuch for collaborating with us in earlier stages of
this research [AGHO90a]. Special thanks to Hagit Attiya, who made a sub-
stantial contribution to the present definitions of reliability, and for other
encouraging and helpful remarks. We thank Shimon Even for discussing
shortcomings of the eventual stability approach, and thereby planting the
seeds of the quantitative approach. We also thank Benny Chor, Israel Cidon,
Shlomi Dolev, Guy Even, Shlomo Moran, David Peleg, Benny Pinkas, and
Sergio Rajsbaum for their comments.

References

[AAG87] Yehuda Afek, Baruch Awerbuch, and Eli Gafni. Applying static
network protocols to dynamic networks. In 28" Annual Sympo-
sium on Foundations of Computer Science. IEEE, October 1987.

[ACK90] Baruch Awerbuch, Israel Cidon, and Shay Kutten. Optimal
maintenance of replicated information. In Proc. 315" Symp. on
Foundations of Computer Science, October 1990.

[ADLS90] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stock-
meyer. Bounds on the time to reach agreement in the presence
of timing uncertainty. In STOC 1991, 1990.

[AES6] Baruch Awerbuch and Shimon Even. Reliable broadcast pro-
tocols in unreliable networks. Networks, 16(4):381-396, Winter
1986.

[AGI1] Yehuda Afek and Eli Gafni. Bootstrap network resynchroniza-
tion. In Proceedings of the 10" Annual ACM Symposium on

Principles of Distributed Computing, Montreal, Quebec, Canada,
pages 295-307. ACM SIGACT and SIGOPS, ACM, August 1991.

[AGH90a] Baruch Awerbuch, Oded Goldreich, and Amir Herzberg. A quan-
titative approach to dynamic networks. In Proceedings of the 9"
Annual ACM Symposium on Principles of Distributed Comput-
ing, pages 189-204, August 1990.

broad:end update:Feb 2, 1994 INIpX:August 26, 1996 63

[AGH90D)]

[AMSS9]

[ASSS]

[Awe85]

[Awe88]

[BGG*85]

[BGSSS]

[BSSS]

[Cha82]

[CRST]

Baruch Awerbuch, Oded Goldreich, and Amir Herzberg. A quan-
titative approach to dynamic networks (version without global
time). Technical Report 624, Computer Science Dept., Technion,
May 1990.

Baruch Awerbuch, Yishay Mansour, and Nir Shavit. Polynomial
end-to-end communication. In Proc. of the 30th IEEF Symp. on
Foundations of Computer Science, pages 358-363, October 1989.

Baruch Awerbuch and Michael Sipser. Dynamic networks are as
fast as static networks. In 29" Annual Symposium on Founda-
tions of Computer Science, pages 206-220. IEEE, October 1988.

Baruch Awerbuch. Complexity of network synchronization. .J.
ACM, 32(4):804-823, October 1985.

Baruch Awerbuch. On the effect of feedback in dynamic network
protocols. In Proc. 29th IEEF Symp. on Foundation of Computer
Science, pages 231-245, October 1988.

A. E. Baratz, J. P. Gray, P. E. Green Jr., J. M. Jaffe, and D. P.
Pozefsky. SNA networks of small systems. IFEFE Journal on
Selected Areas in Comm., SAC-3(3):416-426, May 1985.

Alan E. Baratz, Inder Gopal, and Adrian Segall. Fault tolerant
queries in computer networks. In J. van Leeuwen, editor, Dis-
tributed Algorithms: Second International Workshop. Springer-
Verlag, 1988. Lecure notes in computer science number 312.

Alan E. Baratz and Adrian Segall. Reliable link initialization
procedures. IEFFE Trans. on Communication, COM-36:144-152,
February 1988.

Ernest J. H. Chang. Echo algorithms: Depth parallel operations
on general graphs. [EEFE Trans. Software Eng., 8(4):391-401,
July 1982.

Israel Cidon and Raphael Rom. Failsafe end-to-end protocols
in computer networks with changing topology. IEFFE Trans.
Comm., COM-35(4):410-413, April 1987.

broad:end update:Feb 2, 1994 INIpX:August 26, 1996 64

[DS80]

[Fin79]

[Gal76]

[GHSS3]

[GS92]

[Her88]

[Her91]

[Her92]

[HKS89]

[TBSS6]

W. Dijkstra and C. S. Scholten. Termination detection for dif-
fusing computations. Information Processing Letters, 11(1):1-4,
August 1980.

S. G. Finn. Resynch procedures and a failsafe network protocol.
IEEE Tran. Comm., COM-27(6):840-846, June 1979.

Robert G. Gallager. A shortest path routing algorithm with
automatic resynch. unpublished note, March 1976.

Robert G. Gallager, Pierre A. Humblet, and P. M. Spira. A
distributed algorithm for minimum-weight spanning trees. ACM
Trans. Prog. Lang. and Syst., 5(1):66-77, January 1983.

George Grover and Adrian Segall. A full duplex dlc protocol
on two links. IEFE Transactions on Communications, COM-
40(1):210-223, January 1992.

Amir Herzberg. Network management in the presence of faults.
In Ninth International Conference on Computers and Communi-
cation (ICCC), October 1988. Updated version: ‘Early Termina-
tion in Unreliable Communication Networks’ is technical report
TR-650 of computer science dept., Technion, September 1990.

Amir Herzberg. Communication Networks in the Presence of
Faults. PhD thesis, Computer Science Faculty, Technion, Israel,
1991. In Hebrew.

Amir Herzberg. Connection-based communication in dynamic
networks. In Proceedings of the Fleventh Annual ACM Sym-
posium on Principles of Distributed Computing (PODC), pages
13-24, August 1992.

Amir Herzberg and Shay Kutten. Efficient detection of message
forwarding faults. In Proceedings of the 8" Annual ACM Sym-
posium on Principles of Distributed Computing, pages 339-353,
August 1989.

Jeff Jaffe, Alan . Baratz, and Adrian Segall. Subtle design issues
in the implementation of distributed dynamic routing algorithms.
Computer networks and ISDN systems, 12(3):147-158, 1986.

broad:end update:Feb 2, 1994 INIpX:August 26, 1996 65

[LR90] K. Lougheed and Yacov Rekhter. A border gateway protocol.
Internet RFC 1163, Network Working Group, June 1990.

[MRR80] John M. McQuillan, Ira Richer, and Eric C. Rosen. The new
routing algorithm for the ARPANET. [FEE Trans. Comm.,
28(5):711-719, May 1980.

[MST79] P. Merlin and A. Segall. Failsafe distributed routing protocol.
IEEFE Trans. Comm., COM-27:1280-1288, September 1979.

[Per83] Radia Perlman. Fault tolerant broadcast of routing information.
Computer Networks, December 1983.

[RS91] T. L. Rodeheffer and M. D. Schroeder. Automatic reconfigura-
tion in autonet. In Symp. on Principles of Operating Systems,
1991.

[Seg83] A. Segall. Distributed network protocols. IEEE Trans. on In-
formation Theory, IT-29(1), January 1983.

[SS81] A. Segall and M. Sidi. A failsafe distributed protocol for mini-
mum delay routing. I[FEFE Trans. Comm., COM-29(5):689-695,
May 1981.

[Vis83] Uzi Vishkin. A distributed orientation algorithm. IEEE Trans.
Info. Theory, June 1983.

A Code of the simplified protocol

A high-level concise description of the algorithm is given in Figure 1. A more
complete and formal description is given in Figures 8-11. The formal description
(code) contains labels, of the form 3.2, which refers to a particular line (number)
within a particular block of the code (letter). These labels would be used for
detailed proofs.

broad:end update:Feb 2, 1994 INIpX:August 26, 1996 66

e Sync-packet syne(m, i), where m is a message and ¢ is its index. This packet
is used to synchronize neighboring processors.

o Update-packet update(cg, c,), where ¢q is the deliver-counter and ¢, is the
recewwe-counter. Namely, ¢g is the highest index of messages delivered by
the processor to the higher layer and ¢, is the number of the last message
received by the processor. This packet is used to re-synchronize between two
processors upon recovery of the link connecting them.

e Recover-packet recover. This packet is used to signal to the neighbor that
the link has recovered at both ends.

e Flood-packet flood(m, i), where m is a message and ¢ is its index. This
packet is used to distribute the message to the processors in the network.

Figure 8: Types of packets used in the protocol.

M, (i): Buffer for the 7" message, initially empty. It suffices to store only the last
n Mmessages.

R,: The highest index of messages placed in M, . Initially 0.

Dy: Counts the number of messages delivered by v to the higher layer (which equals
the number of sync packets sent by v). Initially 0.

D! (u): A lower bound estimate for Dy, i.e. for the number of messages delivered
by neighbor w. Initially, and after (u,v) fails at v, has the value undef.

Ag: The number of accept events in the source s. Initially 0.
Gyt The set of neighbors u of v such that (u,v) is up at v.

GP: The set of neighbors u of v such that (u, v) is up at v since v has last delivered
a message.

GE: The set of neighbors u of v such that (u,v) is up at v and v has received a
recover packet from w since the last recovery of (u,v) at v.

Figure 9: Variables at processor v.

broad:end update:Feb 2, 1994 INIpX:August 26, 1996 67
<a1> (for v = s) When accepting a message m from the higher layer: S
<az> { increment Ag; S
<A3> call procedure message(m, Ay); S
<A4> call procedure proceed(); S

}
<B1> When receiving sync(m, i) from u: S
<m2> { Du] — ¢ S
<B3> call procedure message(m,i); S
<Ba> call procedure proceed(); S
}
<c1> When receiving flood(m, i): F
<c2> | call procedure message(m,i); F
<Cc3> call procedure proceed(); F
}
<p1> When the link to u fails:
<p2> { remove u from G,, GP and GE;
<D3> D! [u] < undef;
<Di> call procedure proceed();
}
<B1> When the link to u recovers:
<E2> { send recover to u;
<E3> add u to Gy;
}
<F1> When receiving recover from u:
<F2> | send update(D,, Ry) to u;
<F3> add u to GE;
}
<a1> When receiving update(cg, ¢y) from wu:
<G> { if ¢, < R, then for r = max{¢, + 1, R, — n+ 1} to R, do:
send flood(M,[r], r) to u; F

<G3>
<G4>

Dy, [u] — ca;
call procedure proceed();

Figure 10: Algorithm at processor v.

broad:end update:Feb 2, 1994 INIpX:August 26, 1996 68

<mi> procedure proceed()comment: tries to cause ready (for v = s) or deliver (fop v # s).
<wo> { while (D, < R,) A (Yu € GP) (D! [u] # undef) A (D, < D/ [u])) S
<H3> do { increment D,; S
<Hi> deliver M, [D,] to the higher layer; S
<H5> send sync(M,[D,], D,) to all u € GE; S
<H6> GUD — Gy
<HT> if (U = 5) A (As < Ds) S
<H8> then signal ready to the higher layer; S
}
<n> procedure message(m,i) comment: deals with message m numbered i.
<I2> { ifi=R, +1 S
<13> then { increment Ry; S
<Ia> My [Ry] — m; S
<I5> send flood(m, R,) to all u € GE; SF
}
}

Figure 11: Procedures at processor v.

