
Quantitative Analysis of Dynamic NetworkProtocols�Oded Goldreichy Amir Herzbergz Adrian Segall xJanuary 3, 1994AbstractWe present a quantitative approach to the analysis of dynamic net-work protocols. Dynamic networks, extensively studied in the lastdecade, are asynchronous communication networks in which links re-peatedly fail and recover. Loosely speaking, we quantify the reliabilityof a link at a given moment as the time since the link last recovered.This corresponds to the intuition that a link is `useful' only after some`warming up' period since it recovered.To compare the quantitative approach to the existing (qualitative)approaches, we consider the broadcast task, used extensively in actualnetworks. The existing formulations of broadcast seem too di�cultfor dynamic networks. In particular, protocols with bounded storagemust have unbounded time complexity. Our quantitative formulationof broadcast seems to be closer to the realistic requirements, and es-capes such di�culties.We present a protocol for the quantitative formulation of broadcast.Namely, this broadcast protocol operates in networks which satisfy aweak, quanti�ed reliability assumption. The protocol is e�cient, withlinear message complexity and high throughput.�This work was partially supported by the Fund for the Promotion of Research in theTechnion. This manuscript continues and improves our work in PODC 90.yDept. of Computer Science, Technion, Haifa, Israel. E-mail:oded@csa.cs.technion.ac.il.zIBM T. J. Watson Research Center, POB 704, Yorktown Heights, NY 10598. E-mail: amir@watson.ibm.com. Part of this work was done while this author was with theComputer Science Dept., Technion, IsraelxDept. of Computer Science, Technion, Haifa, Israel. E-mail:segall@csa.cs.technion.ac.il. 1

broad:broad update:January 3, 1994 LaTEX:August 26, 1996 2Comment by Oded (21/8/96): This is a working draft of a paper which,being a continuation of work by Awerbuch, Goldreich and Herzberg (pre-sented in PODC90), was supposed to provide a jouranl version for the latter.It seems that this intensions will never materialize.

broad:Intro update:July 16 1993 LaTEX:August 26, 1996 31 IntroductionThe modeling and evaluation of protocols for communication networks isamong the most evasive issues in computer science. The need for such modelsand evaluation criteria is evident in view of the increasing importance ofcommunication in the modern society. Precise evaluation criteria are neededin order to compare alternative solutions to communication problems. Theseevaluation criteria should properly re
ect reality. Namely, there should becorrespondence between methods that work well in practice, and solutionsjudged reliable and e�cient according to the criteria.Communication protocols are di�cult to model and evaluate, since com-munication networks exhibit a variety of phenomena that are hard to an-alyze. There are many factors to consider, and these factors interact ina complex manner. In particular, the delays and failures involved in thetransmission of information through the network are critical factors whichare di�cult to deal with. In this paper we investigate dynamic networks[AAG87, AE86], where the communication is asynchronous and where linksmay fail and recover.Most works about dynamic networks assume some `reliability', in orderto avoid banal impossibilities due to extreme unreliability. For example, wewish to exclude the absurd scenario where all links are always faulty. It isdesirable that di�erent works will use the same assumptions, or comparableassumptions, to enable comparison and composition of results.Most theoretical works on dynamic networks use either the `eventual con-nectivity' assumption or the `eventual stability' assumption (see x1.1). Eachof these assumptions is the weakest su�cient assumption for an importantand general class of tasks. In [AAG87, Fin79] it was shown that `eventualstability' is su�cient for tasks whose output depends on the topology of thenetwork. In [AG91, AE86, AMS89, Vis83] it was shown that `eventual con-nectivity' is su�cient for tasks whose output is independent of the topology.Both assumptions are also the weakest possible for the corresponding classesof tasks, and may hold even for extremely unreliable networks, where partsof the network fail frequently for an unbounded duration.In practice, networks are much more reliable, i.e. almost always theentire network is operational, or at least most of the network is operational.The average time between failures of each link and processor is very large.Of course, in a very large network failures may occur perpetually, simply dueto the huge number of components. However, in practice it usually su�cesto communicate between two processors via a single path, with a single

broad:Intro update:July 16 1993 LaTEX:August 26, 1996 4alternative path to be used if the main path fails. Networks are designedwith su�cient redundancy (alternative paths) so that it is easy to ensurereliable communication. Accordingly, protocols employed in actual networksusually make strong reliability assumptions [BGG+85, LR90, Per83, Her92].These `practical' protocols are simple and e�cient. In particular, theseprotocols do not wait for `eventual' conditions, and in this sense are moree�cient than the best possible solutions under the `eventual connectivity'or `eventual stability' assumptions.However, if the network satis�es only the `eventual' assumptions, thenthe `practical' protocols are incorrect. Hence, a protocol may work wellin practice, yet seem incorrect under the `eventual' assumptions. It seemsthat these assumptions are too much concerned with fault tolerance, whilethe practical intuition is more concerned with e�ciency. Furthermore, the`eventual' assumptions are qualitative. Namely, these assumptions are notquanti�ed by some numeric parameter corresponding to the reliability. Inreality, reliability is determined by a multitude of factors. Hence, it is de-sirable to have an assumption that allows a continuity from more reliablenetworks to less reliable networks. In particular, this would allow tradeo�sbetween e�ciency and fault tolerance.We propose a quantitative reliability assumption, parameterized by thedegree of reliability assumed. It seems safe to assume a rather large degreeof reliability for most actual networks. This assumption could be used,however, also for less reliable networks, by assuming a smaller degree ofreliability. Solutions using di�erent degrees of reliability may be compared,since the degree of reliability assumed by a solution becomes simply anadditional measure of the solution.We illustrate our quantitative approach by presenting an e�cient broad-cast protocol that assumes a small degree of reliability. The protocol ensuresbounded delay, high throughput and bounded storage. In contradiction, un-der the `eventual' assumptions, it is impossible to bound the delay of thesolutions, and high throughput implies unbounded storage. Our conceptsof delay, throughput and communication complexity formalize the notionsused in `practical' works.1.1 The Qualitative ApproachesThe two main known formal approaches to evaluating protocols for dynamicnetworks have qualitative nature. Each of them takes a radically di�erent at-titude towards failures. In the eventual-stability approach [AAG87, Awe88,

broad:Intro update:July 16 1993 LaTEX:August 26, 1996 5AS88, BGS88, CR87, Fin79, Gal76, Seg83], failures are assumed to ceaseat some unknown moment. This, of course, is not meant literally, but it israther assumed that from that moment on, an entire execution of the pro-tocol can be completed within a period containing no new failures. In theeventual-connectivity approach [AG91, AE86, AMS89, Vis83], the only re-striction on the nature of failures is that they do not disconnect the networkforever.Both approaches are elegant and gave rise to interesting research prob-lems and important techniques. However, there are severe limitations to theapplication of these approaches to actual networks. We believe that theselimitations are due to the fact that both approaches consider only proper-ties of the link which do not change during the execution. In the eventualconnectivity approach, the only relevant property of a link is whether it is`viable', i.e. if it does not fail forever. In the eventual stability approach,the only relevant property of a link is whether it eventually stabilizes as upor as down. These properties, although dealing with dynamic behavior, arenevertheless static.We believe that the investigation of dynamic networks should focus ondynamic properties of the links. Indeed, in a large actual network, it maybe overly optimistic to assume eventual stability, since quite often some linkfails or recovers in some part of the network. Namely, the frequency of fail-ures in the entire network is the number of links times the average frequencyof failures in each link. Indeed, many large practical networks have takenspecial precautions to prevent frequent failures and recoveries from degrad-ing the performance of the network by excessive overhead of topology updatemessage and reroutings [MRR80, LR90, RS91]. Doubtlessly, in these net-works, we cannot use protocols which restart most or all of the computationat every new failure or recovery, as most `eventually stable' works do.On the other hand, actual networks are designed with highly reliablelinks and su�cient redundancy, to ensure that they remain connected inspite of failures. Obviously this results in much higher reliability than justeventual connectivity. Therefore, it is wasteful to assume only eventualconnectivity. Indeed, many formalizations of `practical' tasks, following boththese approaches, give rise to impossibility results, that contradict successfulexperience with protocols for the same tasks.A good example is the broadcast task, that is a useful service for networkapplications and control. Loosely speaking, broadcast is the transmission ofa sequence of messages from a predetermined processor called source to allother processors in the network. All processors would eventually accept a

broad:Intro update:July 16 1993 LaTEX:August 26, 1996 6complete copy of the sequence. Suppose that we assume eventual connec-tivity. Consider a processor that is disconnected from the source when theprotocol starts. Every broadcast message must be stored in the networkuntil this processor reconnects. If the source bounds the number of mes-sages broadcasted until the processor reconnects, then the throughput maybe arbitrarily small. Hence, assuming only eventual connectivity, broad-cast with high throughput requires unbounded storage. Indeed, the solutionof [AE86] uses unbounded storage. Furthermore, in any protocol the de-lay is unbounded, since there is no bound on the time until the processorreconnects. (The delay is the interval from the time when a message isbroadcasted and until it is delivered to the last processor.)Essentially the same problem exists if we assume eventual stability. Con-sider again a processor that is disconnected from the source for a very longperiod. Obviously, the delay is unbounded. Furthermore, all broadcast mes-sages sent by the source while the processor is disconnected should be stored,so that they may be delivered if the processor reconnects. If the source sendsonly a bounded number of messages until the processor reconnects, then the`throughput' is unboundedly small.We �nd that assuming either eventual connectivity or eventual stability,broadcast has, in the worst case, unbounded delay, and for throughput thatis bounded away from 0, unbounded storage as well.1.2 The Quantitative ApproachThe quantitative approach is based on a dynamic quantity associated witheach link at any moment. Loosely speaking, this is the amount of time sincethe link has last recovered if the link is up, or zero if the link is down.This quantity is intended to capture the ability of the protocol to utilizethe link. Typically, protocols cannot e�ciently utilize a link instantaneouslyafter the link recovers, but only after some `warming up' period. Protocolsneed the `warming up' period in order to exchange messages for di�erentpurposes. Messages may be needed to compare the state of the end-pointsof the link, or to exchange information between them. Other messages maybe required to inform other processors that the link has recovered. Thelink becomes useful if it passed, without failures, this `warming up' period;namely, if it was `up' for su�ciently long.We present a broadcast protocol that assumes that the network is con-nected at all times by `su�ciently up' links. In this way we can provebounded delay and throughput even for the worst case, independently of

broad:Intro update:July 16 1993 LaTEX:August 26, 1996 7the failures, and with bounded storage.The `su�cient up' amount required from the links may change fromprotocol to protocol. For example, in this exposition we present a broad-cast protocol that requires less reliability than the protocols in an earlierversion [AGH90a]. Hence, we may quantitatively compare the reliability re-quirements of di�erent protocols. It is plausible that there will be tradeo�sbetween the reliability requirements and the e�ciency of protocols. Thenetwork designer can pick the most e�cient protocol that requires no morethan the reliability which is assumed to hold for her network.Our protocol requires that at any moment, every two processors areconnected by some path the links of which were up during the last 3n timeunits, where n is the number of processors. This requires an entire pathto be up simultaneously for some time, which is obviously stronger thanrequiring eventual connectivity. Awerbuch et al. [AMS89] observed, that ifthe failure probability of each individual link is constant, then the \failureprobability" of the path becomes exponentially close to 1 as a function ofthe length of the path. They conclude that the requirement that the entirepath is up is too strong. We disagree with this conclusion, for both practicaland theoretical considerations:Practice: Actual networks [BGG+85, LR90] are designed and implementedso that the probability of a failure along a path is quite small. As aresult, many networks use only a small number of the possible alter-native paths between each two processors [LR90]. These networks stilloperate successfully and are considered fault-tolerant, since the proba-bility that there will be a failure in several disjoint paths at about thesame time is negligible. Also, many networks perform end-to-end com-munication by sending messages over a single, e�cient path connectingthe two end stations [Her92, BGG+85]. Furthermore, it seems that thetechnological improvements in link reliability are growing faster thanthe growth of the networks.Theory: the analysis where the failure probability is constant and onlythe length of the path grows is misleading. It is reasonable to expectthat as networks grow, processors would be connected mostly by linkswhich are highly reliable. It is easy to see that the analysis of [AMS89]fails, for example, if the failure probability of each link is inverselyproportional to the length of the path.We conclude that for most actual networks, the quanti�ed formaliza-

broad:Intro update:July 16 1993 LaTEX:August 26, 1996 8tions are su�cient, and the eventual connectivity formalizations are too pes-simistic.1.3 Complexity Measures for BroadcastThe traditional de�nitions of time and communication complexities are tai-lored to tasks where the output is a result of some computation to a giveninput. Such de�nitions are inappropriate for the analysis of `online' tasks,such as broadcast, where the inputs are given and outputs are produced dur-ing the (possibly in�nite) execution. Furthermore, we consider broadcast ina dynamic network, where links fail and recover during the execution.We give de�nitions for throughput and communication complexity forbroadcast, which address the `online' nature of the task and the dynamicnature of the network. Our de�nitions could be modi�ed easily for other`online' tasks.The throughput measures, intuitively, the rate by which messages areaccepted for broadcast, i.e. average number of broadcast messages per timeunit. This rate is limited by the capacity of the network and by the timethat it takes the protocol to remove messages from the network.Throughput, in this sense, is a very practical measure. For example, theadvantage of [CR87] over [Fin79] is exactly in improving the throughput.However, it is di�cult to de�ne the throughput since it cannot be measuredfor a single message accepted. As stated above, throughput is related to theaverage time used to broadcast messages over the number of messages. Theproblem is to select the right interval over which to average. Short intervalsmay deliver no (or few) messages, while long intervals may `hide' burstybehavior. The crux of our de�nition, presented in section 5.3, is that theselection of the intervals is left as a parameter.It is similarly di�cult to de�ne communication complexity for broadcast(and other `online' tasks). We cannot truly measure the communication`per message accepted', and on the other hand amortization may ignore\short-term" disastrous e�ects. Again, the crux of the solution is to allowthe selection of intervals for amortization to be a parameter.Time and Congestion. When de�ning time complexity, it is com-monly postulated that in case m packets are sent concurrently, over thesame link, the last arrives within m time units. An alternative conventionpostulates that all m packets arrive within one time unit. We believe that,as long as the protocol limits itself to a `reasonable' number of concurrentmessages (i.e., `reasonable' congestion), the second alternative better re
ects

broad:Intro update:July 16 1993 LaTEX:August 26, 1996 9reality. (See justi�cation in Section 2.1). We analyze our protocol using thesecond convention, while bounding the congestion (i.e., the maximal num-ber of packets in transit concurrently) by O(n). It seems that our protocolmaintains all its complexities, up to a constant, even when using the �rstconvention for time complexity.1.4 Our protocolWe present a broadcast protocol, i.e. a protocol which delivers a sequenceof messages accepted at a source processor to all of the processors in thenetwork. The protocol operates in the presence of an arbitrary schedule oflink failures, provided that the network satis�es a weak, quanti�ed reliabilityassumption. Loosely speaking, the assumption is that at any time, everypair of processors is connected by a su�ciently reliable path.The protocol is highly e�cient in communication (O(1) message perlink), throughput (
(1)) and delay (O(n)), and uses O(n) storage, where nis the number of processors. In fact, by combining high throughput withbounded (O(n)) storage, our protocol improves upon the known, `classical'broadcast protocols, Echo, PIF and Intelligent Flood, used in many actualnetworks. (Details follow.) Furthermore, these classical protocols work onlyfor static asynchronous networks.The Echo and PIF protocols [Cha82, DS80, Seg83] have lower through-put. Namely, the maximal time required between broadcasting two messagesusing Echo is proportional to the diameter of the network, compared to aconstant in our protocol It is simple to improve the throughput of PIF usinga window, however this seems to increase the worst case delay to O(n2).The Intelligent Flood protocol [Per83, Seg83] require unbounded1 stor-age, both due to `in�nite counters' and to unbounded link capacity require-ments. Our protocol is almost as simple as these `classical' protocols, espe-cially the version for static networks presented in x3.1. The known fault-tolerant broadcast protocols [AE86] are variations of the Flood protocol,and also require unbounded storage.We develop and analyse the protocol in a modular manner. We beginwith a simple version, which has poor throughput and unbounded storage.This simple version is built as a combination of two complementing mecha-nisms: a progress mechanism, which guarantees that messages are delivered,1Actual implementations of Intelligent Flood are bounded; they store only the last kmessages, where k is a large number, selected experimentally and by bounds on the delays.

broad:Intro update:July 16 1993 LaTEX:August 26, 1996 10and a synchronization mechanism, which ensures that the number of mes-sages delivered by di�erent processors is always roughly the same. We laterimprove by a series of simple reductions, providing optimal throughput andbounded storage.The protocol we present is quite simple. Indeed, it may be regardedas a combination of several techniques which are well known, and widelyused in practical protocols. Namely, the protocol combines a simple
owcontrol mechanism with the well known
ooding mechanism. Failures andrecoveries are dealt with, by using standard techniques. We bound the spacerequirements and the length of messages by using modular counters, as donein practical protocols. Finally, to improve the throughput we use a windowmechanism, which is also used in many practical protocols.The value of these techniques is well recognized in practice. However,there has been limited use of these techniques in previous theoretical workson dynamic networks. The quantitative approach allowed us to formallyanalyse contributions of these techniques, instead of applying them basedonly on heuristic arguments. We hope that this indicates that the quantita-tive approach is more realistic than previous formal approaches to dynamicnetworks.OrganizationSection 2 contains the de�nitions of basic dynamic the model, the quantita-tive reliability assumptions, the broadcast task and the complexity measures.Section 3 presents a simpli�ed version of our protocol, having unboundedstorage and low throughput. The analysis of the simpli�ed version ispresented in section 4. Section 5 contains enhancements to the simpli�edprotocol, yielding the �nal version, which achieves bounded storage andoptimal (�(1)) throughput.

broad:def update:July 15, 1993 LaTEX:August 26, 1996 112 De�nitions2.1 The Dynamic Networks ModelWe consider the dynamic network model of [AAG87, AE86, BS88]. The net-work is represented by an undirected graph, with n vertices correspondingto the processors and m edges corresponding to communication links be-tween some pairs of processors (neighbors). There is no assumption aboutthe topology of the graph, and the topology is a-priori not known to the pro-cessors. However, the processors know2 n and each processor has a distinctidentity.The model is asynchronous in that the processors do not have clocksand the delays are �nite but unbounded. Hence, some events are concur-rent, and events are only partially ordered. Like previous authors [AAG87,AE86, BS88, GHS83], we �nd it easier to consider a total order betweenevents. This total order should be interpreted as an arbitrary extension ofthe actual partial order. This extension is unknown to the processors, andour results hold for any such extension. It is possible to obtain equivalentresults without assuming total order (see [AGH90b]).We now make a further important simpli�cation, again following [AAG87,AE86, BS88, GHS83]. Namely, we associate a positive number time(e) witheach event e. The number time(e) represents the `normalized time' of evente. The time is `normalized' in the sense that for complexity analysis pur-poses, one time unit is de�ned as the maximal transmission delay. Thede�nition of the maximal transmission delay is given later, when discussingtime complexity measures.At �rst sight, this simpli�cation seems to introduce some synchroniza-tion. However, like the total order itself, the association of the time to theevents is only for the sake of analysis, and is completely transparent to theprotocol. In particular, the processors are not aware of the `time' of eventsduring the execution. Hence, the model remains completely asynchronous.Namely, associating time to events simpli�es the formalization, but is notessential (see again [AGH90b]).We consider send, receive, fail and recover events, each referring to aspeci�c processor and link of that processor and having the natural mean-ings. The send event is an output event; the other events are input events.Additional task speci�c events are described in subsection 2.3. Each send2In fact a reasonable upper bound for n is enough, since the protocol needs to know nonly for allocation of storage and sizing of counters.

broad:def update:July 15, 1993 LaTEX:August 26, 1996 12and receive event is associated to a speci�c packet3, which is the informationsent or received.We use the natural notions of a link being up or down at a processor,and of an up interval, following [AAG87, AE86, BS88]. Messages are sentand received only when the link is up.De�nition 1 A time interval [t1; t2] is an up interval of link (u; v) at pro-cessor v if (u; v) recovers at processor v at time t1, and does not fail at vduring [t1; t2). A link (u; v) is up at processor v at any time during an upinterval of (u; v) at v, and down at any other time.We assume that the events satisfy DLC (Data Link Control) reliability.This is guaranteed by using a reliable DLC procedure as a lower layer on alllinks. DLC reliability is de�ned in [BS88, GS92], and is restated below inDe�nition 2.Normally, the DLC procedure ensures that all packets sent are receivedat the other end of the link, in the correct sequence. However, if the link be-comes inoperational for too long, it is declared faulty and the DLC procedurethrows away any undelivered packets. Namely, a reliable DLC procedure en-sures that the sequence of packets received is the same as the sequence sentfrom the other end, except that some subsequences sent prior to failuresmay be missing.De�nition 2 A set of events with associated times satisfy DLC reliability ifthe following properties holds for any link (u; v):1. Processor u sends and receives packets over (u; v) only during up intervals.2. Follow-up: If (u; v) fails at u while up at v, then it would also fail in vwithin �nite time.3. Delivery: If (u; v) is up at u at t and u sends a packet to v at t, thenwithin �nite time this packet is received by v or the link fails.4. Crossing: If (u; v) fails at u at some time t, there is a time tc after tbut before (u; v) recovers at u such that (u; v) is also down in v at tc andno packet sent over (u; v) from either end before time tc can be receivedby the other end after time tc.3The term packet is used for the control messages sent by the protocol. This conventionis intended to avoid confusion between packets, i.e. control messages sent by the protocol,and messages accepted from the higher layer.

broad:def update:July 15, 1993 LaTEX:August 26, 1996 135. FIFO: Suppose u receives at time tu a packet which was sent at time tvby v over (u; v). Let t0u denote the last time before tu when (u; v) wentup at u. Similarly, let t0v denote the last time before tv when (u; v) wentup at v. Then the sequence of packets sent by v to u during [t0v; tv] isidentical to the sequence of packets received by u from v during [t0u; tu].The last two properties ensure a reliable one-to-one correspondence be-tween up intervals. The Crossing property ensures that the link is clearedof old messages following each failure. The FIFO property ensures that thepackets in two `corresponding' intervals are delivered in the same order, withno gaps or duplicates.We restrict our attention to the case where the delays of the Follow-upand Delivery properties are at most one time unit. Namely, there is at mostone time unit between a failure at one end and the corresponding failure atthe other end, or between a send event and the corresponding receive (orfailure) event. In this case we say that the link satis�es normalized DLCreliability.We stress that with this normalization, the delay does not depend on thenumber of packets in transit concurrently. Namely, we allow an unboundednumber of packets to be transmitted at the same time unit over a link.This is a simpli�cation of reality, where links have a speci�c capacity andtherefore the delay grows when there are many packets in transit. However,for a reasonable amounts of concurrent transmissions by the protocol, thechanges in the delay caused by packets sent by the protocol itself are negli-gible, as the delay is mostly dominated by the packets sent concurrently byother protocols running in the network. The reason being that the delay ofa packet is determined by the total number of packets already queued fortransmission, counting all packets independent of the protocols which haveplaced them. Hence, in case it is guaranteed that only one protocol sendspackets on a link, the actual link delay could have been determined by theprotocol. Typically, when the asynchronous model is used, it is believed thata signi�cant part of the communication is caused by other (unknown) proto-cols running concurrently in the network. Indeed, the belief that the delayis determined by the other (unknown) protocols, is the very justi�cation forthe use of the asynchronous model.We now de�ne our model of an execution, called a timed dynamic exe-cution. Where no ambiguity may arise, we sometimes say simply execution,meaning a timed dynamic execution. This de�nition is simpli�ed, e.g. byignoring local processing. For a more precise de�nition, see [ADLS90].

broad:def update:July 15, 1993 LaTEX:August 26, 1996 14De�nition 3 An algorithm � is a mapping from a state and a set of inputevents to a (new) state and a set of output events. A timed dynamic executionof algorithm � is a sequence of tuples f(ti; pi; si; Ii; ni; Oi)g where ti aremonotonously increasing positive real numbers (representing time), pi is aprocessor identity from 1; : : :n, si is the state, ni is the new state, Ii is theset of input events and Oi is the set of output events, such that for every iholds (ni; Oi) = �(si; Ii) and the si = nk where k < i is the last tuple beforei of processor pi, and where the events on each link satisfy normalized DLCreliability.Throughout the rest of this section, we consider a speci�c timed dynamicexecution �.2.2 Quantitative Connectivity AssumptionsWe now present the main conceptual contribution of this paper: quantitativeassumptions of connectivity. The assumptions are, basically, extensions ofthe (qualitative) assumption that the network is `always connected'. Theextensions are based on the observation that for many natural protocols,connectivity at any moment is not enough, since it takes some time for theprotocol to utilize a new path between two processors. More speci�cally,it usually takes some time since a link recovers and until the protocol can`really use it' as if it never failed. This time may be used, for example, tosynchronize across the link or to notify other processors of the recovery.Essentially, a link is l�Up if it is up during the last l time units. Notethat l time units are su�cient for transmission of a packet over a path oflength l.De�nition 4 We say that link (u; v) is l�Up at time t � 0, if link (u; v) isup at both v and u during the entire interval [max(t� l; 0); t].Note that v knows, at any moment, if (u; v) is up at v. However, pro-cessor v does not know if (u; v) is currently l�Up. One reason is that thenetwork is asynchronous and hence v cannot detect when l time units haveelapsed. Another reason is that processor v does not know if (u; v) is up atu. A path is l�Up at time t if all of its links have been up during the l timeunits before t, i.e. if all of its links are l�Up at t.De�nition 5 A path is l�Up at time t, if all of its links are l�Up at t.

broad:def update:July 15, 1993 LaTEX:August 26, 1996 15Usually, we are not interested in the reliability of a speci�c path, butrather about the existence of some reliable path between the processors,i.e. reliable connectivity. Up-connected processors are processors connectedby a path of links which have been up for su�ciently long time. This isformalized as follows.De�nition 6 Processors u and v are l�Up-Connected at time t if thereexists a path connecting u and v that is l�Up at time t.Two processors may be l�Up-Connected during a long time interval,without having any path connecting them for the entire interval. For ex-ample, suppose there are two di�erent paths p; q between processors u andv. Suppose further that p is l�Up at [t1; t2] and that q is l�Up at [t2; t3].Then u and v are l�Up-Connected during the entire [t1; t3]. Note that allthe links in p should be up during [t1� l; t2] and all the links in q should beup during [t2 � l; t3].A natural reliability assumption, which will be used in this paper, is thatevery two processors in the network are reliably connected at any time. Inother words, the network is l-Up at any time.De�nition 7 A network is l�Up at time t if every two processors are l�Up-Connected at time t.2.3 The Broadcast TaskAll broadcast messages are accepted from the `higher layer' at a single pro-cessor, called the source and denoted by s. The interaction between thebroadcast protocol and the `higher layer' that uses it consists of the follow-ing events:accept The protocol accepts a new message from the `higher layer' (atprocessor s).deliver The protocol delivers a message to the `higher layer'.ready The protocol is ready to accept a new message from the `higher layer'(at processor s).The ready event is essential in order to bound the storage required in thesource to hold messages which were accepted and are still being broadcasted.Namely, the higher layer is required to wait for a ready event between every

broad:def update:July 15, 1993 LaTEX:August 26, 1996 16two accept events. Formally, we assume that every two accept events at sare interleaved by a ready event at s.The goal of the broadcast protocol is to deliver the exact sequence ofmessages accepted at s to the higher layer at each processor.De�nition 8 Execution � is a correct broadcast from s if at any time thesequence of messages delivered at any processor to the higher layer is a pre�xof the sequence of messages accepted from the higher layer at the source s.Note that we de�ne above only correctness, i.e. it is possible to satisfythis de�nition in an empty manner by never delivering any message. The`liveness' requirement is implied by the throughput and delay complexitymeasures, de�ned in the next subsection.2.4 Complexity MeasuresWe now present complexity measures for broadcast. We begin by suggestingre�ned complexity measures for the communication and the throughput. Wethen formalize the notion of congestion (over links), i.e. the maximal numberof packets in transit over a link at the same time. Finally, we de�ne delayand space complexity.2.4.1 Communication Complexity MeasuresThe communication complexity should re
ect the amount of network band-width consumed by the protocol. Most works measure the amount of com-munication per message accepted from the higher layer. Namely, the com-munication complexity in these works is often de�ned as the ratio of thenumber of packet transmissions over the number of accept events, bothcounted during an entire execution or any pre�x of an execution. This isnatural in protocols where each packet sent may be easily associated with asingle corresponding message, as in most protocols using in�nite counters,e.g. [AE86], [JBS86].However, in many works the same packet may serve several accept events.In fact, many protocols improve complexities by performing some tasks pe-riodically, instead of doing them for each message, thereby amortizing theircosts over many messages. For example, in [AGH90a] we suggested an end-to-end protocol which transmitted an exponential number of packets for a`clean-up' task which was performed once per an exponentially long periodof time. The amortized communication complexity, i.e. the ratio of packets

broad:def update:July 15, 1993 LaTEX:August 26, 1996 17sent to messages accepted during pre�xes of the execution, was only O(m).However, in the `bursty' intervals, the ratio between packets transmissionsand messages accepted was exponential.These short `bursty' intervals may cause congestion in the network. Itseems desirable to re
ect such `bursty' intervals, i.e. the congestion causedby the protocol, in a re�ned measure of communication complexity. Inparticular, there seems no apparent reason for considering only pre�xes ofthe execution and not any interval.Possibly with this motivation, the communication complexity of [AG91,AMS89] is de�ned as the maximal number of packet transmissions betweentwo accept events. Namely, [AG91, AMS89] measure the number of packettransmissions in intervals with exactly one accept event, instead of amortiz-ing the ratio of sends to accepts over pre�xes of the execution. Therefore, aprotocol with low complexity as de�ned in [AG91, AMS89] would not causecongestion by `bursty' intervals.However, we believe that in most realistic scenarios, performing sometasks periodically, once for several messages, is useful and would not causecongestion. Unfortunately, the measure of [AMS89] does not amortize suchperiodic tasks at all. Furthermore, even a protocol which transmits thesame number of packets for each message may have higher complexity withthe measure of [AMS89], if it may transmit packets due to a message evenafter accepting a new message (pipeline). As a result, this measure seemsto be arti�cially high for many protocols that do not cause congestion inpractice. For example, under this measure, the communication complexity ofthe Intelligent Flood protocol is O(nm) instead of O(m) when amortizationis for pre�xes [AG91].We therefore propose a new complexity measure. Our goal is to iden-tify the `bursty' congestion caused by some protocols, but to allow someamortization and pipeline operation. Instead of de�ning the amortizationintervals explicitly, we de�ne the communication complexity with respect toa given predicate P (�; t; l). This predicate determines if interval (t; t+ l] inexecution � is an amortization interval. Note that the previous complexitymeasures become special cases. Another simple and natural special case issu�cient for our work, namely when the predicate is simply a bound on thelength l of the interval; this is de�ned in subsection 2.4.3 below.De�nition 9 Consider a broadcast protocol, a predicate P (�; t; l) where �is an execution and t; l are positive real numbers, and a function C : IN �IN � IN � IN � IN ! IN. We say that C is the communication complexity of

broad:def update:July 15, 1993 LaTEX:August 26, 1996 18the protocol over intervals satisfying P , if for every execution � and t; l suchthat P (�; t; l) holds, the number of receive events during (t; t+ l] is at mostC(n;m;A([t� l; t+ l)); F ([t� l; t+ l)); R([t� l; t+ l)))where: A([t� l; t+ l)) def= The number of Accept events (in s) during [t � l; t+ l).F ([t � l; t+ l)) def= The number of Fail events during [t� l; t+ l).R([t� l; t+ l)) def= The number of Recover events during [t� l; t+ l).There are two subtle issues with the de�nition:� Since we deal with dynamic networks, we allow for some communica-tion overhead per failures and recoveries. Furthermore, we count thenumber of packets received, and not of the packets sent. In dynamicnetworks, the distinction is meaningful, since some packets sent justbefore a failure may not be received. In particular, our protocol sendsO(n) packets per recovery, but receives only O(1) packets per recovery;the potential large di�erence is due to messages which were sent butnot received (lost) due to a failure. The justi�cation for counting re-ceive events rather than send events is that the protocol cannot utilizepackets sent but not received.� We amortize over the number of accept, fail and recover events notonly in [t; t+ l), but also in the l preceding time units. This is neededsince some of the messages during [t; t+ l) may be due to events before[t; t+ l). In the extreme case, there may be no accept, fail or recoverevents in [t; t+l), but packets may be transmitted to deal with previousevents. To minimize notations, we use l also for the length of theinterval before t where we count accept, fail and recover events.De�nition 9 de�nes the communication complexity as a function of �vearguments. This general form seems necessary, and hopefully su�cient aswell, to allow us to express correctly the communication complexity of anyalgorithm. However, it is inconvenient. We next de�ne a simple special caseof the de�nition, which is su�cient for this paper and seems su�cient formany protocols.Works following the eventual stability approach usually consider com-munication complexity as directly proportional to the number of topologychanges. This implies the simpli�ed form C(n;m; a; f; r) = f � �C(n;m; a),

broad:def update:July 15, 1993 LaTEX:August 26, 1996 19where �C is the amortized communication complexity [AAG87]. Expressingthe communication complexity in this way is justi�ed when the actual com-munication is indeed linear in the number of failures. This is indeed the casein many of these works, where every failure or recovery may cause the proto-col to restart operating from the beginning. Many eventual-stability proto-cols work in this `blast-away' technique [Gal76], [Fin79], [Seg83], [AAG87].However, the `blast-away' technique is wasteful; it is desirable, and oftenpossible, to recover from a failure at a cost much smaller than restarting thetask. In particular, our protocol recovers from failures with a small �xedcost, independent of the number of broadcasts done so far. There have beenseveral previous works which featured a smaller cost per recovery than the`blast-away' approach [ACK90], [Awe88], [AS88],[BGS88], [MS79],[SS81].We therefore propose another simpli�ed form for the communicationcomplexity. This communication complexity consists of �xed cost per eachaccept, failure and recovery event. The cost depends on the kind of theevent.De�nition 10 Consider functions CA : IN� IN ! IN, CF : IN� IN! IN andCR : IN� IN! IN and broadcast protocol with communication complexity Cover intervals satisfying some predicate P . We say that the communicationcomplexity over intervals satisfying P is CA per accept, CF per fail and CRper recovery if for every n;m; a; f and r, the following holds:C(n;m; a; f; r) = a � CA(n;m) + r �CR(n;m) + f �CF (n;m):Length of PacketsIn the de�nition of the communication complexities measures above we ig-nored the length of the packets. This allows protocols to use extremely longpackets or packets whose length is not bounded as a function of the sizeof the network. For example, the classical fault tolerant versions of theIntelligent Flood protocol use packets with unbounded length. The �nalversion of our protocol uses only short packets, as de�ned below. Note thatwe allow a packet to contain a message accepted from the higher layer.De�nition 11 Let M be the maximal number of bits in messages accepted.We say that a protocol uses only short packets if the maximal number of bitsin any packet sent in any execution of the protocol over networks with nprocessors is O(M + log(n)).

broad:def update:July 15, 1993 LaTEX:August 26, 1996 202.4.2 ThroughputWe now de�ne the throughput of a protocol. Intuitively, the throughput isthe worst-case bound on the rate in which messages may be accepted fromthe higher layer. For simplicity, assume that the higher layer always haspackets to broadcast. (This assumption does not e�ect our results.)Like communication complexity, the throughput is traditionally mea-sured for the worst case pre�x of an execution of the protocol. As forcommunication complexity, we see no apparent reason to consider only pre-�xes of executions, which may hide important transient e�ects. Instead, wepropose to consider the throughput of any interval of an execution of theprotocol.De�nition 12 Consider a broadcast protocol, a predicate P (�; t; l) where� is an execution and t; l are positive real numbers, and a function T :IN� IN! IR. We say that T is the throughput of the protocol over intervalssatisfying P , if for every execution � and t; l such that P (�; t; l) holds, thenumber of accept events during (t; t+ l] is at least l � T (n;m).This de�nition seems to formalize practical notions of the throughput ofprotocols. In particular, this de�nition allows to analyse the advantage ofwindow mechanisms. Such mechanisms are used, to enhance throughput, inmany protocols, e.g. [CR87]. In fact, we also improve the throughput of ourprotocol by using a window mechanism.2.4.3 Predicate de�ned by length of interval.Typically, and in this work, the predicate P of de�nitions 9, 10 and 12would be the length of the interval in time units. Namely, P (�; t; l) = trueif l = L(n;m), for some function L. In this case, we will talk about intervalsof length L(n;m), instead of `intervals satisfying P '.Note that replacing l � L(n;m) instead of l = L(n;m) would at mostdouble the communication complexity and reduce the throughput by half.This is the motivation for using the (slightly) simpler l = L(n;m).2.4.4 Congestion over linksOur de�nition of the normalized DLC reliability says that the maximal de-lay of a message is one time unit, regardless of the number of messagesconcurrently in transit. This convention has been justi�ed by noting that

broad:def update:July 15, 1993 LaTEX:August 26, 1996 21as long as the number of messages sent concurrently by the protocol is not`too large', it is reasonable to expect that the delay would be mostly deter-mined by the number of concurrent messages generated by other protocols.Using the same reasoning, we do not count the storage used for (data-link)queueing of the message after it has been sent, since this storage is sharedamong many protocols. Both simpli�cations seem justi�ed provided thatthe protocol does not send an excessive number of concurrent messages onany link, namely the protocol is not the cause of congestion on any link.We now de�ne the congestion of the protocol; i.e., the maximal number ofpackets (of the protocol) which are concurrently in transit over any link.De�nition 13 The congestion of a protocol is an upper bound to the num-ber of messages sent by any processor u to neighbor v during an operatinginterval [t; t0] of (u; v) at u, but not received by v until t0.2.4.5 DelayThe delay of a protocol is the maximal delay over all possible executions ofthe protocol. We now formalize the notion of the delay of a given execution� of a broadcast protocol.De�nition 14 (Delay) Consider a timed dynamic execution � = f(ti; pi; si; Ii; ni; Oi)g.For every j 2 IN, let ta(i) be the value of ti where (ti; pi; si; Ii; ni; Oi) is thejth event in � where Ii includes an accept event (with pi = s), and 1if there is no such event. Similarly, let td(v; i) be the value of ti where(ti; pi; si; Ii; ni; Oi) is the jth event in � where Oi includes a deliver eventand with pi = v, and 1 if there is no such event.The delay of execution � of a broadcast protocol is:supftd(v; i)� ta(i)j(8v 2 V) (ta(i) <1)g:The delay is measured in the worst case, since it may be important tobound the maximal time since a message is accepted from the higher layer, atthe source, and until it is delivered to the higher layer at the last processor.2.4.6 Space ComplexityWe use the standard measure of space complexity used in most works deal-ing with dynamic networks [AAG87, AE86]. Namely, the space complexityincludes the maximal number of words stored by the processor, where every

broad:def update:July 15, 1993 LaTEX:August 26, 1996 22word contains O(M + logn) bits, where M is the maximal number of bitsin a message accepted from the higher layer.De�nition 15 (Space) Consider a broadcast protocol and a function S :IN � IN ! IN. The space complexity of the protocol is bounded by S, if inevery execution the number of allocated bits at every processor and at anytime is O(S(n;m) � (M + log n)).

broad:prot update:January 3, 1994 LaTEX:August 26, 1996 233 Simpli�ed Broadcast ProtocolIn this section we present a broadcast protocol for O(n)�Up dynamic net-works which uses unbounded storage and has low throughput. This is asimpli�ed version of our main protocol. In the next section we analyse this(simpli�ed) version of the protocol. The enhancements to bounded storageand optimal (
(1)) throughput are given in Section 5. The advantage indescribing and analyzing the simpli�ed version is that its analysis is muchsimpler. Furthermore, the analysis of the enhancements in Section 5 is doneby reducing executions of the enhanced versions to executions of the simpli-�ed version, and using properties from the analysis of the simpler version.We �rst describe the protocol informally, beginning with the basic mech-anisms and gradually augmenting them. A concise description is given inFig. 1, and the formal code is presented in the appendix (Figs. 8-11). Torefer to line l in the code described in �gures 10 and 11, we use the notation< l >.The protocol contains three main components, each using a di�erenttype of packets. The �rst component uses sync packets and its goal is toensure synchronization of the delivery of messages. Namely, it ensures thatthe number of messages delivered by a processor would be the same, up toone, as that of a neighbor connected by a link which is up for `enough time'.This component is described informally in x3.1, and formally by the linesin the code marked by S in the right margin. The second component usesrecover and update packets and its goal is to deal with link failures andrecoveries. This component is described informally in x3.2, and formally bythe unmarked lines in the code. The third component uses flood packetsand its goal is to speed up the delivery of messages. This component isdescribed informally in x3.3 and formally by the lines in the code markedby F in the right margin.3.1 Operation in Static NetworksWe �rst try to give some intuition to the design goals and the main ideas ofthe protocol. On one hand, the protocol should have high throughput (rate).To achieve this, the source does not wait for network-wide progress, beforeenabling a new accept event. Instead, the source waits only for progress ofits immediate neighbors. This should be contrasted with the Echo and PIFprotocols [DS80, Cha82, MRR80, Seg83], that wait before accepting a newmessage until an entire spanning tree converges.

broad:prot update:January 3, 1994 LaTEX:August 26, 1996 24On the other hand, the protocol should not cause high congestion onlinks. High congestion may be caused, for example, by the Intelligent Floodprotocol and its variants [Per83, Seg83, AE86], since the source may issuemessages much faster than some links can transfer them. Hence, these mes-sages must be stored in the source (resulting in unbounded space complexity)or in the links (resulting in unbounded link concurrency).Our protocol prevents high congestion by limiting the number of mes-sages in transit over any link. This is achieved by synchronizing betweeneach pair of neighbors. This synchronization resembles synchronizer � of[Awe85] and the minimal hop protocol of [Gal76, Seg83].In the rest of this subsection we informally describe this synchronizationmechanism, which is the core of the protocol, and su�ces for operationin static networks. In the code, appearing in Figs. 8-11, the lines whichimplement this mechanism are marked by S in the right margin.The basic idea is that a processor sends message i to all of its neighborstogether <H5>, after receiving message (i � 1) from all neighbors <H7>.Since this condition is observed by all the neighbors of the processor, aprocessor would not receive message i+ 1 from any neighbor before sendingmessage i. Hence, at most two messages are in transit over any link at anymoment. This prevents congestion over links.To implement this mechanism, the protocol sends each message togetherwith its index in the sequence of accepted messages. The pair of a messageand its index is called a sync packet. We denote the sync packet whichcontains message m the index of which is i by sync(m; i).In static networks, once a packet has been sent to the neighbors, it maybe discarded (to free memory). Since a message is sent to a neighbor onlyafter the neighbor sent (and discarded) the previous message, it follows thatall processors except the source have to store at most one message. Thesource has also to store the messages accepted but not sent yet. In order toprevent congestion at the source, the protocol must control the rate of acceptevents. The solution is to use the assumption that the message accept eventsare interleaved with ready events at the source. The source enables a readyevent for a message only after having received a sync packet containing theprevious message from all of its neighbors <H7> and therefore discardingthis previous message. Hence, the source will not accept a message beforesending to its neighbors the previous message. This ensures that at anytime, there is at most one message accepted by the source but not yet sentto its neighbors. Namely, the storage required in the source is bounded (infact just one message is stored).

broad:prot update:January 3, 1994 LaTEX:August 26, 1996 25The protocol also synchronizes the number of messages delivered to thehigher layer by any two neighbors. This is achieved by delivering a messageto the higher layer simultaneously to sending a sync packet containing thatmessage to all neighbors. Hence, the number of messages delivered by anyprocessor v is at most one more than the number of messages delivered byany of the neighbors of v. Since every processor is connected to the source,it follows that at any time, in static networks, any processor has deliveredall but at most the last n messages accepted from the higher layer in thesource. In the �nal protocol, for dynamic networks, similar properties holdwhen considering 3n�Up links and assuming that the network is connectedvia 3n�Up paths (see Lemma 23). Namely, the protocol ensures that thefollowing two conditions hold at any time:De�nition 16 Link Synchronization: We say that the link synchroniza-tion condition holds at time t if for every link (u; v) which is 3n�Up attime t, processor v delivers until t at most one message more than udelivers until t.Synchronization: We say that the synchronization condition holds at timet if the number of messages accepted by the source until t is at most nmore than the number of messages delivered by any processor.Note that if the network is connected via 3n�Up paths at time t, thenlink synchronization at t implies the synchronization condition at t, due tothe interleaving of accept, deliver and ready events in the source.As described in this section, the protocol uses in�nite counters. How-ever, we show later that if the network is always 3n�Up, and in particularif the network is static, then it su�ces to use (�nite length) modular coun-ters instead. Essentially, this follows from proving that the synchronizationcondition holds.3.2 Dealing with Topology ChangesWhen a processor v detects a failure on the link to its neighbor u, it stopswaiting for messages from u. Namely, while (u; v) is down, v behaves as if(u; v) never existed. The challenge is to obtain the complementing situation:that `soon' after (u; v) recovers, it would appear as if it never failed.After processor v detects the recovery of the link to u, two types ofactions are taken in order to simulate the situation as if (u; v) never failed:updating and re-synchronizing. Updating is needed if processor v received

broad:prot update:January 3, 1994 LaTEX:August 26, 1996 26more messages than u, and in this case processor v sends to u the messagesthat umay have not received yet. This updating action is a standard practice[MRR80, Per83, JBS86].Our protocol requires precise synchronization between the messages de-livered by two neighbors connected by a 3n�Up link. The update opera-tion cannot achieve such precise synchronization; in particular, it does notprevent v from delivering more messages. This is dealt with by the re-synchronization action, whose goal is to reach a state where the number ofmessages delivered by u and v di�er at most by one, like the situation overa link which has never failed.To re-synchronize, processor v delivers a new message following the re-covery only when it `knows' (from a sync packet, or from update packet tobe described) that u has delivered the previous message. However, thereis an exception: v may deliver one message after (u; v) recovered, withoutwaiting to `know' that u has delivered the previous message. This exceptionis necessary to avoid (unlikely) `livelock' situations where v does not delivermessages due to a long sequence of alternating failures and recoveries in twoor more of its neighbors. Details follow.To understand the possible `livelock', suppose for a moment that pro-cessor v, with neighbors u and w, waits before delivering messages until it`knows' that all of the neighbors whose link is up have delivered the pre-vious message. Consider time t when links (u; v) and (w; v) are both up,and processor v waits for both u and w to deliver the previous message inorder to deliver a new message. We will show a (very unlikely) sequence offrequent repeated failures and recoveries of (u; v) and (w; v), which are fur-thermore interleaved (in an unlikely manner) so that at any moment either(u; v) is up or (u; w) is up. Yet, the failures would be so frequent that vwill not receive messages from either u or w and hence v never learns thatu or w delivered the last message delivered by v. (Note that such scenariois impossible to achieve by frequent failures and recoveries on a single linke.g. (u; v), since upon its failure v would immediately be able to deliver themessage.) During the entire scenario, v does not receive any message fromeither u or w.The sequence begins with (u; v) failing at t+ :25 and recovering at t+ :5.During this time, v does not deliver messages since it waits for response fromw. From the DLC properties, this response should arrive before t+1 or (w; v)must fail. Indeed assume that it fails at t+ :75 and recovers at t+1. Duringthis period, v does not deliver messages since it waits for response from u.Again from DLC, this response should arrive before t + 1:5 (since (u; v) is

broad:prot update:January 3, 1994 LaTEX:August 26, 1996 27up since t+ :5). However, (u; v) will fail again during [t+ 1:25; t+ 1:5], andthis alternating sequence of failures and recoveries could continue forever.This problem is easily prevented by allowing v to deliver one message afterrecovery and before re-synchronization.To allow the updating and re-synchronization, the processors connectedby the link should exchange the indices of the last message received andthe last message delivered. There could be a substantial di�erence betweenthe number of messages received and the number of messages delivered bya processor, since the processor may receive a `bunch' of several messagesfollowing a recovery, and only then it would deliver them one by one, syn-chronizing with its neighbors. (In static networks, each processor receivesat most one message more than it had delivered.)Technically, this exchange is performed by sending over a link, upon itsrecovery, an update packet containing the indices of the last delivered andreceived messages by this processor <F2>. The �elds containing the indicesare called the deliver-counter and the receive-counter of the update packet,and are denoted by cd; cr respectively. The update packet is di�erent fromthe sync packets and hence ignored by the mechanisms described in x3.1.The deliver-counter cd is used to let v `know' the index of the last messagedelivered by u until the recovery. Even if v has not delivered these messagesyet, processor v does not wait for sync packets with these indices fromu. This is important, since u has already sent these sync packets whendelivering the messages, and therefore would not send these sync packets tov. The receive-counter cr is used to identify the situation where v havereceived more messages than u. Processor v should send these messagesto u, to ensure that u would receive them. In this case, v sends to u themessages received which are numbered more than the value of cr receivedfrom u.However, from the synchronization condition follows that, assuming thatthe network is connected by 3n�Up paths, then u is guaranteed to havedelivered (and certainly received) all but the last n messages accepted by thesource. Hence, u has certainly received all but at most the last n messagesreceived by v. We therefore modify the rule above; if v received more thancr + n messages upon receiving the update packet from u, then v sends tou only the last n messages received. Essentially, if the cr received from uis very small (compared to the number of messages received by v), than v`knows' that both v and u received messages after u sent the update packetcontaining cr. Hence, it always su�ces to send at most the last n messages

broad:prot update:January 3, 1994 LaTEX:August 26, 1996 28received. In section 5.2 we show that this implies that the protocol has tostore only the n last messages received.3.3 Improving Complexities by Using FloodIt can be shown that the protocol presented so far is correct. Furthermore, ifthe network is always O(n2)�Up, then the delay is O(n2). We now presenta modi�cation that achieves O(n) delay in O(n)�Up networks.The improvement is by adding a
ooding mechanism. In the code, ap-pearing in Figs. 8-11, the lines which implement the
ood mechanism aremarked by F on the right margin.The
ood mechanism is an application of the Intelligent Flood protocol[Per83] or PI protocol [Seg83]. The
ood mechanism uses a new type ofpackets, called
ood packets. A
ood packet, like a sync packet, consists ofa pair of a message and its index.The
ood packets are generated by the source. Whenever the sourceaccepts message number i, it sends a
ood packet containing the messageand number i to all of its neighbors <I5>. This is in addition to the syncpacket with the same message and number, which is sent as before <H5>.Whenever a processor v receives a
ood packet whose number is onemore than the highest number in a
ood packet sent by v <I2>, then thisprocessor sends this
ood packet to all neighbors <I5>. (This is exactly theoperation of the Intelligent Flood protocol.)The idea is that
ood packets normally propagate much faster than syncpackets. Therefore, we use the
ood packets for fast dissemination of themessages to the processors. Once the messages are accepted at a processor,they may be used to construct new sync packets. In this way, the
oodpackets may speed up the sync mechanism.More speci�cally, recall that by the sync mechanism, a processor deliversmessage i+ 1 to the higher layer, and at the same time sends sync packetnumber i+ 1 to its neighbors, only after having received sync packet i fromall neighbors and message i+1 from some neighbor. In the absence of
oodpackets, message i+ 1 would be received only in a sync packet; therefore inorder for v to send sync packet i+1, and deliver message i+1, it has to receivesync packet i+1 from some neighbor u. But in order for u to send sync packeti+1, it must �rst receive sync packet i from all of its neighbors... The
oodmechanism allows u to send message i+ 1 to v immediately upon receivingit, in a
ood packet, without delaying and waiting for other neighbors of u.In this manner, the
ood mechanism speeds-up the protocol. Of course, u

broad:prot update:January 3, 1994 LaTEX:August 26, 1996 29would still send v sync packet i+ 1 after receiving sync packet i from all ofits neighbors.We now describe how the
ood mechanism deals with recoveries. Asdescribed in x3.2, whenever a link recovers, the two processors connected toit exchange an update packet. The update packet contains two counters:the deliver-counter cd and the receive-counter cr. The
ood mechanism isconcerned only with the receive counter cr, i.e. the number of messagesreceived by the processor. When a processor receives an update packet froma neighbor, it sends back any
ood packet received with number higher thanthe receive-counter cr in the packet <G2>. (There is no need to send alsosync packets with the same numbers, as in the original description; indeedthe code does not send them in this case.)3.4 Towards Bounded Congestion, Counters and StorageThe protocol as described so far is correct, when implemented with un-bounded counters in the packets and in the program. However, recall thatin Section 5 we intend to present enhancements to the protocol which achievebounded storage and counter. The analysis of these enhancements is sim-pli�ed by reducing executions to executions of the `simpli�ed' protocol de-scribed in this section. We now present two minor modi�cations to theprotocol as presented so far, the aim of which is to facilitate the reductionsin Section 5. In addition, the second modi�cation below is required to ensurebounded congestion.In order to use modular counters in its internal computations, the max-imal di�erence between two values compared must be bounded. One of thevalues kept by the protocol at v, for every neighbor u, is D0v(u): the highestnumber of sync packet or deliver counter in an update packet received fromu. Under `normal' conditions, when u and v are connected by a 3n�Up link,this value is the actual number of packets delivered by u, possibly minus one.However, while u is disconnected, v would not receive sync or update pack-ets from u, and therefore this value could become `outdated' - much smallerthan the actual number of messages delivered by u or v.In order to be sure that we do not compare this `outdated' value to othervalues in v, e.g. to the number of messages delivered by v denoted Dv, wemodify the protocol slightly. When the link to u falls, we set the value ofD0v(u) to a special value, denoted undef. This ensures that processors neverkeep `outdated' values.The second modi�cation deals with a subtle aspect of the data link con-

broad:prot update:January 3, 1994 LaTEX:August 26, 1996 30trol protocol. This aspect is due to the counter-intuitive fact that the linkdoes not recover at both ends at the same time. Therefore, the end of thelink where recovery occurred earlier, say u, may start sending packets to theother end, say v, before the link (u; v) recovered at v. These messages wouldbe received by v after the link (u; v) recovers. The problem is that, due tothe asynchronous model, there is no bound on the number of packets whichmay be thus bu�ered in the link. In principle, the rest of the network mayoperate much faster than this recovering link, so that while the link has stillnot recovered at v, processor u would send an unbounded number of packetsover the link. This appears to require unbounded link capacity, and also vshould be able to deal, after recovery, with `old' packets - e.g., sync packetsnumbered much less than the number of deliveries in u at that time.The solution is simple: we ensure that (update, sync or
ood) packetsreceived by v following a recovery of (u; v) at time t, were also sent by u aftert. This additional `data-link' property is natural and useful, and allows usto guarantee certain relations between the contents of the packets receivedafter a recovery and the state of the processor at the recovery.To ensure that update, sync and
ood packets were not sent beforethe recovery (time t above), we introduce another kind of packet, calledrecover packet. This packet would be sent (only) immediately upon recovery.Furthermore, no update, sync or
ood packet would be sent to the neighboruntil receiving the recover packet from it. In the analysis (Lemma 9) weshow that this ensures that any packet, except recover, received following arecovery at time t was also sent after t.Note that the new property essentially de�nes a new state for the link:`partially operational (real only)' or `recovery in progress'. In order toachieve the new property, the link is �rst declared to be in this new state -partially operative - where packets may only be received. Only later (afterthe other end is known to have recovered) the link is declared fully opera-tional (allowing the processor to send packets to the other end). Therefore,if we wanted to add this property to the data link protocol, we would beforced to (slightly) modify its interface.We note that the fact that the protocol has bounded congestion - con-current number of messages sent over a link - follows from the modi�cationabove, which bounds the number of messages in transit during link recovery,and from the fact that at most n `old' messages are sent upon recovery (asjusti�ed at the end of subsection 3.2).

broad:prot update:January 3, 1994 LaTEX:August 26, 1996 31
Variables:(Rv number of messages received by v, or accepted for v = sDv number of messages delivered by vto the higher layerWhen: (only in s) Accepting a new message, Then: Send the new messageand its number to all neighbors, in both sync and
ood packets.When: (only in s) Holds Rs � Ds, Then: Enable a ready event.When: Holds Dv < Rv, and for every neighbor u of v such that the link tou is up at v since the last deliver event at v holds that v has receivedfrom u, after (u; v) has last recovered at v, an update packet withdeliver-counter � Dv, or a sync packet numbered Dv, Then: Delivermessage Dv + 1 and send it in a sync packet to all neighbors w suchthat a recover packet was received from w since (v; w) has last failed.When: Receiving a
ood packet with number Rv + 1, Then: Send thispacket to all neighbors w such that a recover packet was received fromw since (v; w) last failed.When: Link to u recovers, Then: Send to u a recover packet.When: Receiving a recover packet from u, Then: Send to u an updatepacket, with receive-counter Rv and deliver-counter Dv.When: Receiving an update packet from neighbor u, Then: If the receive-counter < Rv, then send to u
ood packets containing the messagesnumbered between the receive-counter and Rv; if the gap is larger thann, send only the last n messages.Figure 1: Concise description of the algorithm at processor v.

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 324 Analysis of the ProtocolWe now analyse the protocol of Figs. 8-11. The following theorem statesthe properties of the protocol, as proved in the rest of this section. Notethat the complexities are guaranteed only if the network is always 3n�Up,i.e. if at any time t there is a spanning tree whose links were up during theentire interval [t� 3n; t].Theorem 1 Every execution of the protocol in Figs. 8-11 is a correct broad-cast from s. Furthermore, if the network is 3n�Up at all times, then thefollowing holds:� The delay is at most 3n.� The congestion is O(n).� The communication complexity over intervals of length 3n+3 is CA =4m per accept, CF = 0 per fail and CR = 2 per recovery.Note that the communication complexity bounds the number of packetssent for each message accepted and for each link recovery, when averagedover intervals of length at least 3n+3. Namely, it may be possible, althoughimprobable, that all of the packets would be sent at the same instance inthe 3n+ 3 interval. Also note that the messages are not short, in fact theycontain counters which are unbounded in the size of the network. (Thiswould be �xed in the next section.)Theorem 1 above does not yield good bounds on the space complexityor throughput4, and also does not claim that the protocol uses only shortmessages. We claim these properties only in section 5, for a slightly modi�edversion of the protocol.Organization of the proof. The proof begins with local properties ofthe protocol, which concern only one processor or one link. We then provethe correctness of the protocol. The rest of the analysis proves the statedcomplexities.The complexities are based on the combination of two complementingmechanisms of the protocol. First, we analyse the progress mechanism in theprotocol, which guarantees that messages are delivered. Then, we analysethe synchronization mechanism, which ensures that the number of messages4A trivial bound for the throughput is that it is one over the delay, i.e. 13n . Howeverthis is a rather low throughput; in Section 5 we achieve an
(1) throughput.

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 33delivered by di�erent processors is always roughly the same. Finally, wecombine the analysis of the two mechanisms, and prove Theorem 1.Notations: We denote the value of variable Xv in processor v at timet by Xv(t). For example, Rv(t) is the value of Rv at time t. We denotethe value of variable Xv in processor v just before (after) time t by Xv(t�)(respectively, Xv(t+)).4.1 Local Properties.In this subsection we present several properties of the protocol, which are`local' to one processor or link. These properties are later used in the rest ofthe analysis. The following Lemma shows the validity of most descriptionsof the variables given in Fig. 9.Lemma 2 The following hold at any time and at any processor v:A) The value of Dv is the number of messages delivered by processor v tothe higher layer, and it is also the number of sync packets sent by v.B) The value of As is the number of messages accepted from the higherlayer.C) The set Gv contains the neighbors u of v such that (u; v) is up at v.D) The set GDv contains the neighbors u of v such that (u; v) is up at vsince v last delivered a message.E) The set GRv contains the neighbors u of v such that (u; v) is up at vand v received a recover packet from u and sent an update packet to usince the last recovery of (u; v) at v.Proof: All properties follow immediately by considering the statements inthe protocol which modify the relevant variables. 2The next Lemma states that the values of Rv; Dv and As are non-decreasing. We later show that the value of D0v[u] is also non-decreasing.Lemma 3 For any processor v, the values of the variables Rv and Dvare non-decreasing. The variable As of the source processor is also non-decreasing.Proof: The values of Rv; Dv and As change only when incremented in<I3>, <H3> and <A2> respectively. 2We next observe that Dv � Rv.

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 34Lemma 4 For any processor v and at any time holds Dv � Rv.Proof: Variable Dv changes only when incremented by one in <H3>. Theclaim follows from the condition Dv < Rv in <H2>. 2We now analyze the recover mechanism. The following two Lemmasobserve that the �rst (second) packet received at every up interval is alwaysa recover (respective, update) packet.Lemma 5 The �rst packet received at processor v from link (u; v) duringany up interval of (u; v) at v is always a recover packet.Proof: From the FIFO property, the �rst packet received by v during an upinterval of (u; v) at v is the �rst packet sent by u to v at some up intervalof (u; v) at u. The �rst packet sent by u to v at some up interval of (u; v)at u is always a recover packet <E2>. The claim follows. 2Lemma 6 The second packet received at processor v during any up intervalof link (u; v) at v is always an update packet. Furthermore, from the timewhen u sends this packet and until the link (u; v) next fails at u holds v 2 GRu .Proof: Let p be the second packet received by v from u during some upinterval of link (u; v) at v. From the FIFO property, p was sent by u to vduring some up interval of (u; v) at u. We show that p must be an updatepacket. Obviously, p cannot be a recover packet, since a recover packet issent only upon recovery. It remains to show that p cannot be a sync or
oodpacket.Sync packets are sent in <H5> and
ood packets are sent in <I5> and<G2>. We �rst show that p is not sent by u to v in <H5> or <I5>. Anecessary condition for p to be sent by either <H5> or <I5> is v 2 GRu atthe time. We show that when p is sent v 62 GRu . Lemma 2 E) shows thatv 2 GRu only if u sent an update packet to v during the same up intervalof (u; v) at u. But since p is the second packet sent by u during this upinterval, and the �rst packet is always a recover packet, it follows that p isnot sent by <H5> or <I5>.It remains to show that p is not sent by <G2>. Processor u sends
oodpacket to v by <G2> upon receiving an update packet from v. From Lemma5, previously during this up interval, processor u received a recover packetfrom v. Upon receiving a recover packet from v, processor u sends an updatepacket to v <F2>. Hence, p cannot be sent by <G2>. 2We conclude that the value of D0v[u] increases by exactly one wheneverv receives a sync packet from u.

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 35Lemma 7 Whenever a processor v receives a sync packet from its neighboru then the value of D0v[u] increases exactly by one.Proof: Suppose that v receives a sync packet from u at time t; we want toshow that D0v[u](t+) = D0v[u](t�) + 1. Let tu be the time when v receivedthe last update packet from u before t, and let cd be the value of the deliver-counter in this packet. Let i be the number of sync packets which v receivedfrom u during (tu; t]. We prove by induction on i that D0v[u](t+) = cd + i;the Lemma follows.From <G3> follows that D0v[u](tu+) = cd. Therefore, it su�ces to showthat if D0v[u](t�) = cd + i � 1 then D0v[u](t+) = cd + i. From <H3> and<H5>, the ith sync packet sent by u to v since tu is numbered cd + i. Theclaim follows from the FIFO property. 2The following Lemma shows that at most two time units since a link(u; v) recovers at v, it either fails or v receives the recover and update packetsfrom u.Lemma 8 Suppose that link (u; v) recovers at processor v at time t andstays up until t+2. Then during [t; t+2] processor v receives a recover andan update packet from u.Proof: Upon recovery at time t, processor v sends a recover packet to u<E2>. Since the delay is at most one time unit and link (u; v) stays up atv until t + 2, follows that u receives this recover packet during [t; t+ 1].Upon receiving the recover packet from v, processor u sends to v anupdate packet <F2>. Again, since the delay of the recover packet is atmost one time unit and since (u; v) stays up at v till t + 2, follows that vreceives this update packet during [t; t+ 2].From Lemma 5, the �rst packet received after a link recovers is alwaysa recover packet. Hence, during [t; t + 2] and before v receives the updatepacket, processor v receives also a recover packet from u. 2The purpose of the recover packet is to ensure that the other packetsreceived from u has been sent by u after the time when link (u; v) has lastrecovered at v (see Fig. 2). Namely, we want to ensure that both processorsare aware of the recovery before either one of them sends any (non-recover)packet over the link. This property, while natural, is not guaranteed bythe data link protocol (compare to the crossing property), and therefore weprove it below.

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 36
�������������

���
�������������

���SSSSSSSSSSSSSSSw.. update(�; �) t0
trecover tup

t0up
trRecoverv

u Figure 2: The operation of the recover mechanism.Lemma 9 Suppose that processor v receives some packet other than recoverfrom neighbor u at time t. Then link (u; v) is up at v continuously since thispacket was sent by u and until time t.Proof: Let tr denote the time when link (u; v) has last recovered at v beforet. Namely, link (u; v) is up at v during [tr ; t]. From Lemmas 5 and 6, atsome time tup during [tr ; t], processor v receives an update packet from u.Denote the time when processor u sent the packet received by v at timet (tup) by t0 (respectively, t0up). From the FIFO property of the link holdst0up � t0.Update packets are sent only upon receiving a recover packet <F2>, andrecover packets are sent only upon recovery <E2>. Hence, from the crossingproperty of the link at time t0up processor u received the recover packet sentby v at tr . Thus, tr � t0up (see Fig. 2). Since t0up � t0 and (u; v) is up at vduring [tr ; t], the claim follows. 2The next several Lemmas show that D0v[u] is indeed a lower bound esti-mate for Du, as stated in Fig. 9. We �rst show that D0v[u] is the value of

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 37Du at the time when u has sent to v the last sync or accept packet receivedby v from u.Lemma 10 Consider any link (u; v) and time t. Let tu denote the last timebefore t when processor v receives an update or sync packet from neighboru. Let t0u denote the time when processor u has sent the packet received byv at time tu. Then either D0v[u](t) = Du(t0u) or D0v[u](t) = undef and (u; v)failed at v during [tu; t].Proof: The value of D0v[u] changes only in <D3>,<B2> and <G3>. If(u; v) fails at v during [tu; t] then D0v[u] is last changed in <D3> to undef,and the claim follows. Otherwise, the value of D0v[u] does not change during(tu; t], namely D0v[u](t) = D0v[u](tu+). It remains to show that in this caseD0v[u](tu+) = Du(t0u).Either a sync or an update packet is received at tu. Sync packets aresent only in <H5>. i = Du(t0u). Therefore, if the packet received at tu is async packet, then it was sent with i = Du(t0u). In this case the claim followsfrom <B2>.Update packets are sent only in <F2>. Therefore, if the packet receivedat tu is an update packet, then it was sent with cd = Du(t0u). In this casethe claim follows from <G3>. 2We conclude that at any time either D0v[u] � Du or D0v[u] = undef.Furthermore, as long as (u; v) does not fail in v, the value of D0v[u] is non-decreasing.Lemma 11 For any link (u; v) and at any time, either D0v[u] � Du orD0v[u] = undef. Furthermore, D0v[u] is non-decreasing during up intervals of(u; v) at v.Proof: The claims are immediate from Lemma 10, in view of the fact thatpackets are received in the order in which they were sent. 2We next observe that:D0v[u] 6= undef) Du(t� 1) � D0v[u](t): (1)This shows that D0v[u] is a meaningful estimate of Du whenever D0v[u] 6=undef.Lemma 12 At any time t, either Du(t�1) � D0v[u](t) or D0v[u](t) = undef.

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 38Proof: Suppose that D0v[u](t) 6= undef. Hence, at some time tup � t proces-sor v receives an update packet from u and (u; v) is up at v during [tup; t](see Fig. 3). Let t0up denote the time when u has sent the update packetreceived by v at time tup. From Lemma 9, link (u; v) is up at v during[t0up; tup]. Hence (u; v) is up at v during [t0up; t].
�������������

���
�������������

���
�������������

��7
..t0up

tt� 1tup sync syncupdate DeliverDeliver
v
u Figure 3: Proof that if D0v[u] 6= undef then Du(t� 1) � D0v[u](t).From Lemma 10 holdsDu(t0up) = D0v[u](tup). SinceD0v[u] is non-decreasingduring up intervals of (u; v) at v (Lemma 11), holds D0v[u](tup) � D0v[u](t).If t � 1 � t0up, then the claim follows since Du is non-decreasing and henceholds Du(t� 1) � Du(t0up) � D0v[u](tup) � D0v[u](t). Assume, therefore, thatt0up < t � 1.From the follow-up property, link (u; v) is up at u during [t0up; t � 1],since it is up at v during [t0up; t]. From Lemma 6 follows that v 2 GRv during[t0up; t � 1]. Hence processor u sends sync(�; Du) to v at any time whenDu is increased during [t0up; t � 1] <H3>. From the deliver property of thelink, processor v receives these sync packets before time t. In particular, if

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 39Du(t0up) < Du(t�1), then processor v receives sync(�; Du(t�1)) before time t.From <B2> and since D0v[u] is non-decreasing, holds Du(t� 1) � D0v[u](t),i.e. the claim holds. The claim also holds if Du(t0up) = Du(t � 1) sinceDu(t0up) � D0v[u](tup) � D0v[u](t). 2We now conclude that if link (u; v) is up at v during [t � 2; t], then Eq.(1) holds at time t.Lemma 13 If link (u; v) is up at v during [t � 2; t] then Du(t � 1) �D0v[u](t) 6= undef.Proof: From Lemma 12, it su�ces to show that D0v[u](t) 6= undef. Let trdenote the last recovery of link (u; v) at v prior to t� 2. Namely, link (u; v)recovers at processor v at time tr and stays up until t, where tr � t � 2.From Lemma 8, within two time units after recovery either the link failsor an update packet is received. Since the link does not fail until tr + 2,processor v receives an update packet from u between tr and tr + 2, whichis before t. The claim follows from <G3>. 2We now state the relation between Rv and the indices in sent and receivedpackets.Lemma 14A) Just before processor v sends either sync(m; i) or flood(m; i), the fol-lowing holds: Mv[i] = m and Rv � i.B) If i � Rv(t) then one of the following holds:1. v has received before t packet sync(Mv[i]; i) or packet flood(Mv[i]; i).2. v = s and before time t message Ms[i] was accepted in the ith acceptevent.Proof: Lemma 14 A) follows immediately from the fact that sync packetsare sent only in <H5> and
ood packets are sent only in <I5> and <G2>.We now prove Lemma 14 B). The variable Rv is incremented onlyin procedure message <I3>, when called at some time t with parameterRv(t�) + 1. Procedure message is called only in <B3>, <C2> or <A3>.In Statement <B3> and <C2>, message(m; i) is called only after s has re-ceived a packet with index number i, and thus the claim follows. Thereforeit su�ces to consider the case where message is called in <A3>. In thiscase, the claim follows from Lemma 2 B), which says that As is the numberof accept events. 2

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 404.2 CorrectnessThe correctness of the protocol is based on the simple mechanism of associ-ating indices to messages and including them in sync and
ood packets. Wenow show formally that the association is correct.Lemma 15 If processor v receives sync(m; i) or flood(m; i), then m wasthe ith message accepted by the source s.Proof: Every packet received by some processor was previously sent bysome other processor. Consider the �rst send event, at some processor u, ofa packet containing message m and counter i. Let t denote the time of thissend event. From Lemma 14 A) holds Ru(t�) � i and Mv[i] = m. FromLemma 14 B) either u = s and m was the ith message accepted, or processoru has received before t a packet containing m and i. However, processor ucould not have received such a packet before t, since then the packet musthave been sent before t, and t is the time of the �rst send event of packetscontaining m and i. 2It is now easy to prove the correctness of the protocol.Lemma 16 Every execution of the protocol, as speci�ed in Figs. 8-11, is acorrect broadcast from s.Proof: Messages are delivered to the higher layer only in <H3>. Hence,the ith message delivered by processor v is the contents of Mv[i], and whenthe latter is delivered, holds i = Dv. From Lemma 4 holds Dv � Rv. Hence,from Lemma 14 B) either v = s andMv[i] is indeed the ith message acceptedby the source, or v has previously received sync(Mv[i]; i) or flood(Mv[i]; i).The correctness follows from Lemma 15. 2Lemma 15 allows us also to show that Rs = As and that for everyprocessor v, we have Rv � As. These relations are useful in the rest of theanalysis.Lemma 17 At any time Rs = As holds, and Rv � As holds for every v 2 V .Proof: The fact that Rv � As follows since v sets Rv to i only after hav-ing received sync(�; i), which can happen only after the time when the ithmessage is accepted at the source s.The claim Rs = As follows by induction on the events. Obviously, theclaim holds before the �rst event. Consider some event e at time t, andassume that for any t0 < t holds Rs(t0) = As(t0). If e is an accept event, then

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 41As is incremented in <A2> and procedure message(m; i) is called in <A3>,with m the accepted message and i = As(t+) = Rs(t�)+1. The claim holdsafter e since Rs is incremented as well, in <I5>, since i = Rs(t�) + 1 asrequired by <I2>.It remains to consider the case when e is not an accept event. In thiscase, the value of As does not change. We now show that the value of Rsalso does not change. The value of Rs changes only when <I5> is executedat s, as a result of a call to message(m;Rs+1) <I2>. Such a call is possibleonly if s has previously received either sync(m;Rs+1) or flood(m;Rs+1),by <B3> or <C2>. From Lemma 15 above, this occurs only after the Rs+1accept event. The claim follows since As is the number of messages accepted(Lemma 2 B)). 24.3 The progress mechanism.The complexities of the protocol are ensured by two complementing mech-anisms. The synchronization mechanism ensures that no processor is deliv-ering `much more' messages than other processors, i.e. it delays the deliveryof messages in the `faster' processors to ensure that processors are looselysynchronized. The progress mechanism ensures that each message is in-deed delivered by all processors within �nite time after it is accepted by thesource.It is trivial to achieve either synchronization or progress; the di�cultyis to achieve both properties together. Synchronization alone is triviallyachieved, for example, if no messages are delivered, or by the PIF protocol.Progress alone is achieved by the intelligent
ood protocol [AE86, Per83,Seg83].We begin by presenting a weak progress property, that does not use the
ood mechanism. Namely, we show that if processor v receives before t atleast one message more than the number of messages delivered by the slowestprocessor, then v delivers before t + 2 more messages than these deliveredby the slowest processor at t.Lemma 18 For every processor v and time t, if Rv(t) > minw2V Dw(t),then Dv(t+ 2) > minw2V Dw(t).Proof: We prove the claim by contradiction. Let v be a processor suchthat Dv(t + 2) � minw2V Dw(t). Since Dv is non-decreasing, it followsthat Dv(t + 2) = Dv(t) = minw2V Dw(t). We show that Rv(t) � Dv(t) =minDw(t), from which the claim follows.

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 42Consider some u 2 GDv (t + 2) (if GDv (t + 2) is not empty). Namely,link (u; v) is up at v from the time when v has last delivered a messageprior to t + 2 and until time t + 2 (Lemma 2 D)). Since Dv does notchange between t and t+2, processor v delivers no messages during [t; t+2].Hence, link (u; v) was up at v during [t; t+2]. From Lemma 13 follows thatD0v[u](t+ 2) � Du(t + 1) and D0v[u](t + 2) 6= undef. Also, since Rv is non-decreasing, Rv(t) � Rv(t + 2). Consider the �rst time t0 such that during(t0; t+ 2] none of GDv ; D0v[u] or Rv changes. (Note that t0 may be before orafter t.) Namely:� For every t00 2 (t0; t+2], holds Rv(t) � Rv(t00), and for every processoru in GDv (t00) holds D0v[u](t00) 6= undef and D0v[u](t00) � Du(t+ 1).� Either Rv(t0�) < Rv(t + 2) or there is some u in GDv (t0�) such thatD0v[u](t0�) < Du(t+ 1) or D0v[u](t0�) = undef.By de�nition of t0, one of the following holds:� The value of Rv increases at t0. This can happen only in <I3>.� A processor is removed from GDv at t0. This can happen only in <D2>.� The value of D0v[u] is increased at t0. This can happen in either <B2>or <G3>.It is easy to see that in all cases, procedure proceed is executed at t0. Thesecond condition of <H2> holds at t0+. Hence, after t0, the �rst conditionof <H2> does not hold. Namely, Dv(t0+) � Rv(t0+). Since t0 � t+2, holdsDv(t0+) = Dv(t+ 2) = Dv(t). On the other hand, Rv(t) � Rv(t0+). HenceRv(t) � Dv(t). 2We now extend Lemma 18 to longer time periods.Lemma 19 For every processor v, time t and i � 1:Dv(t) � minfDv(t� 2i) + i;minw2V Rw(t� 2i)g (2)Proof: Lemma 18 shows that the claim holds for i = 1, since Dv � Rv. Theinduction step follows by another application of Lemma 18. 2The stronger progress properties, to be proven later, hold in conjunctionwith the synchronization mechanism. As shown later, this combination ofthe progress mechanism and the synchronization mechanism ensures thatthe synchronization condition (Def. 16) holds at any time. Namely, As(t) �

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 43Dv(t) + n for any time t. The progress properties stated below require thesynchronization condition to hold at certain times.We now prove a simple property of the
ood mechanism used in theprotocol. This property shows that messages are indeed `
ooded'. Namely,if uk and u0 are O(k)�Up-Connected at time t, then every
ood packet sentby uk at t � k is received by u0 before t.Lemma 20 (Flood) Consider the path u0�u1�� � ��uk�1�uk consistingof k links. If the path is (k+2)�Up at some time t, and the synchronizationcondition holds during [t � (k + 2); t], then Ru0(t) � Ruk(t � k).Proof: This Lemma extends Theorem PI-1 of [Seg83] to deal with recoveries.We �rst prove the Lemma for k = 1. Namely, we assume that link (u0; u1)is 3�Up at t, and prove that Ru1(t� 1) � Ru0(t). AAAAAAAAAAAAAAAU
AAAAAAAAAAAAAAAU
CCCCCCCCCCCCCCCW�������������

���.................
..................

.floodupdate tup + 1tup
t0up t� 2 t� 1 tu0

u1
Figure 4: The
ood mechanism.From Lemma 8, processor u1 receives an update packet from u0 at sometime tup before t � 1. Let t0up denote the time when u0 sends this updatepacket to u1 (see Fig. 4).

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 44Upon receiving the update packet, processor u1 executes <G2> withcr = Ru0(t0up). Hence, at time tup, processor u1 sends to u0
ood packetsnumbered maxfRu0(t0up) + 1; Ru1(tup) � n + 1g to Ru1(tup) <G2>. Since(u0; u1) does not fail until t, and the delay is at most one time unit, processoru0 receives these packets before tup + 1 � t. From the Synchronizationcondition (Def. 16) holds Ru0(tup) � As(tup) � n � Ru1(tup) � n. Hence,from <I3> follows that Ru0(tup + 1) � Ru1(tup).Since Ru1 increases only in <I3>, then processor u1 sends to u0
oodpackets numbered Ru1(tup) + 1; : : : ; Ru1(t� 1) between tup and t� 1. Sincethe link does not fail until t and the delay is at most one, all of these packetsare received by u0 before t. From <I3>, and the fact that Ru0(tup + 1) �Ru1(tup), follows that Ru1(t� 1) � Ru0(t). This proves the claim for k = 1.By repeating the inequality Ru1(t� 1) � Ru0(t), we getRuk(t� k) � : : :� Ru1(t� 1) � Ru0(t)which proves the Lemma. 2Recall that the synchronization condition holds at time t if the number ofmessages accepted by the source until t is at most nmore than the number ofmessages delivered by any processor (Def. 16). We now prove the ProgressLemma based on the Flood Lemma, assuming that the SynchronizationCondition holds. Later we show that this condition is always satis�ed.Lemma 21 (Progress) Assume that the network is (n+1)�Up at (t�2n)and that the synchronization condition holds during [t�3n�1; t�2n]. Thenevery processor delivers until time t every message accepted until (t � 3n),i.e. for every v 2 V holds As(t� 3n) � Dv(t).Proof: The proof consists of two parts. We �rst show, using the FloodLemma, that every processor receives until time (t� 2n)
ood packets con-taining every message accepted until time (t � 3n). Namely, As(t � 3n) �minw2V Rw(t � 2n). Second, we use Lemma 19 to show that until t, everyprocessor delivers each of these messages. Namely, Rv(t� 2n) � Dv(t).The network is (n+1)�Up at time (t�2n). Hence, there is an (n+1)�Uppath consisting of at most (n � 1) links from s to every other processor vat time (t� 2n). Also, we have assumed that the synchronization conditionholds during [t � 3n � 1; t� 2n]. Hence, from the Flood Lemma, for everyprocessor w 2 V holds Rw(t� 2n) � Rs(t� 3n). The �rst part of the prooffollows since always holds As = Rs (Lemma 17).

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 45From Lemma 19, for every processor v holds Dv(t) � minfDv(t� 2n) +n;minw2V Rw(t � 2n)g. Since As(t � 3n) � minw2V Rw(t � 2n) and As(t �3n) � As(t� 2n) � Dv(t� 2n) + n, follows that for every processor v holdsAs(t� 3n) � Dv(t). 24.4 The synchronization mechanism.We now analyze the synchronization mechanism. We begin with a simplesynchronization property, which shows, loosely speaking, that a processordelivers new messages only after all neighbors in GDv deliver the previousmessage. Recall that neighbor u is in GDv if the link (u; v) is up at v since vhas last delivered a message to the higher layer.Lemma 22 Assume that link (u; v) is up at v during [t1; t2]. If processor vdelivers more than one message during [t1; t2], then Dv(t2) � D0v[u](t2) + 1.Proof: The intuition behind the proof is that at some time before the(Dv(t2))th deliver event in v, processor v has already received sync packetnumber Dv(t2)� 1 from u.Let t0 be the time when v last delivers a message before t2. Holds t1 <t0 � t2. Since v delivers at least two messages during [t1; t2], then v deliversat least one message during [t1; t0]. Link (u; v) is up at v during [t1; t2],hence u 2 GDv (t0�). From the second condition of <H2> holds Dv(t0�) �D0v[u](t0�). Also Dv(t0+) = Dv(t0�) + 1, and Dv does not change betweent0+ and t2. Thus, since D0v[u] is non-decreasing, holds Dv(t2) � D0v[u](t2)+1.2 The synchronization mechanism ensures that the synchronization con-dition and the link synchronization condition, both of Def. 16, hold at anytime t. We prove both synchronization properties together with the progressproperty of Lemma 21.Lemma 23 (Synchronization and Progress) Assume that the networkis 3n�Up at any time. Then the following properties hold at any time t:Link Synchronization: The Link Synchronization condition holds. Namely,if link (u; v) is 3n�Up at time t, then processor v delivers until tat most one more message than u delivers until t. In other words,Dv(t) � Du(t) + 1.Synchronization: The Synchronization condition holds. Namely, (8v 2V) As(t)� n � Dv(t).

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 46Progress: Every processor delivers until time t every message accepted untilt� 3n. Namely, (8v 2 V) As(t� 3n) � Dv(t).Proof: The proof is based on three main observations. First, from Lemma21, the Progress property for time t follows from the synchronization con-dition until t � 2n. Second, the Link Synchronization property for time tfollows from the Progress property for time t and from Lemma 22. Last, thesynchronization condition for time t follows easily from the Link Synchro-nization condition for time t. We now proceed with the proof.The properties hold trivially for t � 0. We show that they hold for everyt by assuming that they hold until some time t0, and proving that they holduntil time t0 + 2n.Consider any time t0 between t0 and t0+2n. First, from Lemma 21, andsince the synchronization condition holds until t0, the progress propertyholds for time t0. Namely, As(t0� 3n) � Dv(t0) for all v 2 V . We now provethat the Link Synchronization property holds at time t0.Consider some link (u; v) which is 3n�Up at t0. From the Progressproperty for time t0 follows that As(t0 � 3n) � Du(t0). Since Dv � Asalways, follows that Dv(t0 � 3n) � Du(t0) holds.If Dv(t0) � Dv(t0 � 3n) + 1, the Link Synchronization property for t0follows. On the other hand, if Dv(t0) > Dv(t0 � 3n) + 1, then v deliversbetween (t0 � 3n) and t0 more than one message. Thus Lemma 22 impliesthat Dv(t0) � D0v[u](t0) + 1. From Lemma 11 holds D0v[u](t0) � Du(t0).Hence, the Link Synchronization property holds at t0.It remains to prove that the Synchronization condition holds at t0 aswell, i.e. that for every processor v holds Dv(t0) � As(t0)� n. In the state-ment of the Lemma we have assumed that the network is 3n�Up. Hence,there is a 3n�Up path from v to s at any time. From the Link Synchroniza-tion condition, applied at time t0 to each link along this path, follows thatDs(t0) � Dv(t0) + (n � 1), since this 3n�Up path contains at most n � 1links. The Synchronization condition follows since As � Ds + 1 <H7>. 24.5 Bounded CongestionIn the following Lemmas we show that at any time, any link contains O(n)packets in each direction. We begin by bounding the number of sync packetsin transit. We �rst bound the number of sync packets in transit from u tov, if u has received at least two sync packets from v since (u; v) had lastrecovered at u (see Fig. 5).

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 47Lemma 24 Consider any link (u; v) and time t, and let tr denote the timeof the last recovery of (u; v) at u before t. Assume that processor u receivesat least two sync packets from v during [tr ; t]. Then all but at most two syncpackets sent by u to v during [tr; t] are received by v before time t.Proof: Let i; i+1 denote the sequence numbers of the last two sync packetsreceived by u from v during [tr ; t]. Namely, D0u[v](t) = i+ 1.The idea of the proof is that i � D0v[u](t) and Du(t) � D0u[v]+1 = i+2.Hence, at most two sync packets are in transit from u to v at time t, withsequence numbers i+ 1 and i+ 2. (See Fig. 5).
6.....6.

?......?......
�������������

���
�������������

���
�������������

���CCCCCCCCCCCCCCCW
CCCCCCCCCCCCCCCW

CCCCCCCCCCCCCCCW
CCCCCCCCCCCCCCCW
�

.
. . .
W

.................
CC CC CC CC CC CCW

�
�������������

���
�� �� �� �� ��

���
.recover update i+ 2i+ 1 i+ 1

Du � D0u[v] + 1
Dv � D0v[u] + 1Recover

Recovertr
v
u i tFigure 5: Number of sync-packets in transit if u received two or more syncpackets during [tr; t].From the FIFO property, link (u; v) did not fail or recover at processorv from the time when v sends sync packet i to u and until v sends sync

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 48packet i + 1 to u. Hence, when processor v sends sync packet i + 1 to u,executing <H5>, holds u 2 GDv . From <H2>, at that time holds i � D0v[u].Since D0v[u] is non-decreasing during operating intervals (Lemma 11), holdsi � D0v[u](t).The claim is trivial if u sends less than two sync packets to v during[tr ; t]. Assume that u sends two or more sync-packets during [tr; t], and weshow that Du(t) � D0u[v] + 1 = i+ 2.Whenever u sends a sync-packet, in <H5>, then u also delivers a mes-sage in <H4>. Hence before u sends the last sync packet to v until t,holds v 2 GDu . From <H2>, at that time holds Du � D0u[v]. Since D0u[v]is non-decreasing and Du changes only when u delivers messages, holdsDu(t) � D0u[v](t)+ 1 = i+2. Since i � D0v[u](t), it follows that at most twosync-packets are in transit from u to v at time t, namely sync(�; i+ 1) andsync(�; i+ 2). 2It remains to consider intervals where u receives less than two sync pack-ets from v. We �rst prove some useful synchronization properties betweenthe number of messages received and delivered in v and u.Lemma 25 If the network is always 3n�Up, then the following holds atany time t: (8v 2 V) Rv(t) � Dv(t) + n (3)(8v; u 2 V) Du(t) � Dv(t) + n (4)(8v; u 2 V) (D0v[u](t) � Dv(t) + n) _ (D0v[u](t) = undef) (5)Proof: From Lemma 23 follows that As � n � Dv. From Lemma 17 holdsRv � As. This proves that Rv � Dv + n.From Lemma 4, for every processor u holds Du � Ru. Again fromLemma 17 holds Ru � As. Hence Du � Dv+ n. Equation (5) holds as well,since either D0v[u] � Du or D0v[u] = undef, from Lemma 11. 2We now bound the number of sync packets sent by u to v during intervalswhere u does not receive an update packet from v.Lemma 26 Assume that the network is 3n�Up at any time. Consider anylink (u; v) which is up at processor u during some interval [t1; t2]. Assumethat processor u does not receive update packets from v during [t1; t2]. Let idenote the number of sync packets received by u from v during [t1; t2]. Thenprocessor u sends to v during [t1; t2] at most i+ n+ 1 sync packets.

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 49Proof: The proof is based on three observations. First,D0u[v](t2) � D0u[v](t1)+i, as we show later. Second, if processor u delivers more than one messageduring [t1; t2], then Du(t2) � D0u[v](t2) + 1 (Lemma 22). Third, D0u[v](t1) �Du(t1) + n (Eq. (5) of Lemma 25). The claim follows since the number ofsync packets sent by u during [t1; t2] is exactly Du(t2)�Du(t1).It remains to show that D0u[v] increases during [t1; t2] by at most i. Sinceprocessor u does not receive update packets from v during [t1; t2], then D0u[v]changes during [t1; t2] only when u receives sync packets from v. FromLemma 7, during [t1; t2] the value of D0v[u] increases exactly by i. 2We now conclude that at any time there are at most 2n+3 sync packetsin transit from u to v.Lemma 27 Assume that the network is always 3n�Up. Consider any link(u; v) and time t, and let tr denote the time of the last recovery of (u; v)at u before t. Then at most 2n + 3 sync packets which were sent by u to vbetween tr and t are not received by v until t.Proof: If processor u receives during [tr ; t] two or more sync packets from vthen the claim follows from Lemma 24. Assume, therefore, that u receivesat most one sync packet from v during [tr; t].The rest of the proof is organized as follows. We �rst show that processoru receives at most one update packet from v during [tr; t], say at time tu.Then we apply Lemma 26 twice: �rst for the period [tr ; tu] and second forthe period [tu; t].Update packets are sent only when receiving a recover packet by <F2>.Recover packets are sent only upon recovery <E2>. Hence, from the FIFOproperty, processor u receives at most one update packet during [tr ; t], sayat time tu.From Lemma 26, the number of sync packets sent by u to v during [tr ; tu]([tu; t]) is at most n + 1 more than the number of sync packets received byu from v during [tr; tu] (respectively, [tu; t]). Since u receives from v at mostone sync packet during [tr; t], the claim follows. 2We now proceed to show that the maximal number of
ood packets intransit over a link is also O(n).Lemma 28 Assume that the network is always 3n�Up. Consider any link(u; v) and time t, and let tr denote the last recover of (u; v) in u before t.Then at most 4n+6
ood packets sent by u between tr and t are not receivedby v until t.

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 50Proof: The proof is based on Lemma 27, which shows that at most 2n+ 3sync packet are in transit from u to v at t, and on the following two relations,proven below, between the numbers of sync packets and
ood packets intransit:1. Let isync (iflood) be the sequence number of the last sync (respectively,
ood) packet sent by u to v before t. Theniflood � (isync+ 1) + n:2. Let i0sync (i0flood) be the sequence number of the �rst sync (respectively,
ood) packet sent by u to v between tr and t, which was not receivedby v until t. Then i0flood � (i0sync� 1)� n:We �rst show that iflood � (isync + 1) + n. Intuitively, this means thatu does not send
ood packets with numbers `much higher' than sync pack-ets. Processor u sends
ood packet number iflood before delivering isync+ 1messages. From the Synchronization Lemma, at most (isync + 1) + n mes-sages are accepted before the time when u sent sync packet isync + 1 tov, i.e. As � (isync + 1) + n. Since the message in the
ood packet ifloodis accepted before the time when u sends sync packet isync + 1, holdsiflood � (isync+ 1) + n.We now prove the second relation, i0flood � (i0sync � 1)� n. Processor usends
ood packet i0flood after sync packet i0sync � 1. Namely, when u sends
ood packet i0flood , then Du � i0sync � 1. Since Ru � Du from Lemma 4,follows that at that time Ru � i0sync � 1. Since Ru is non-decreasing, holdsRu � i0sync � 1 also when
ood packet number i0flood is sent. Hence if the
ood packet was sent in <I5> then i0flood = Ru � i0sync�1. Also, if the
oodpacket was sent in <G2>, then i0flood � Ru � n � i0sync � 1� n.We conclude that (i0sync� 1)� n � i0flood � iflood � (isync + 1) + n. ButLemma 27 shows that at most 2n + 3 sync packets sent by u between trand t are not received by v until t. Namely, isync � i0sync � 2n+ 3. Hence,iflood � i0flood � 4n + 5. Namely, at most 4n + 6
ood packets sent by ubetween tr and t are not received by v until t. 2We now use Lemmas 27 and 28 to show that the number of packets intransit over a link is O(n).Lemma 29 Assume that the network is always 3n�Up. Consider any link(u; v) and time t, and let tr denote the time of the last recovery of (u; v) at u

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 51before t. Then only O(n) packets sent by u between tr and t are not receivedby v until t.Proof: The claim holds for sync packets from Lemma 27, and for
oodpackets from Lemma 28. It remains to consider update and recover packets.Recover packets are sent only in <E2>, i.e. once after each recovery.From the FIFO property, at most one recover packet is received from alink while a link is up. In particular, at most one recover packet sent by ubetween tr and t is not received by v until t.Similarly, update packets are sent only in <F2>, upon receiving a recoverpacket. Since at most one recover packet is received from a link while thelink is up, then at most one update packet is sent over a link while it is up.The claim follows as for recover packets. 24.6 Communication ComplexityWe now show that Theorem 1 holds for the protocol shown in Figs. 8-11.The correctness follows from Lemma 16. The delay follows directly from theProgress property of Lemma 23. The congestion follows from Lemma 29.It remains to prove the communication complexity.Lemma 30 Consider an execution where the network is 3n�Up at all times.Then the communication complexity over intervals of length 3n+ 3 is CA =4m per accept, CF = 0 per fail and CR = 2 per recovery.Proof: Consider times t1; t2 and t3 according to Def. 9. Namely:t1 � t2 � t3 ; t2 � t1 � 3n+ 3 ; t3 � t2 � 3n + 3 ;We wish to show that the number of receive events during (t2; t3] is at mostA([t1; t3)) � 4m + R([t1; t3)) � 2Where A([t1; t3)) (R([t1; t3))) is the number of accept (respectively, recover)events during [t1; t3).From Defs. 9 and 10 follows that if the number of receive events during[t2; t3) is bounded by the expression above, then the message amortizedcomplexity is 4m and the fail amortized complexity is 2, both for intervalsof length 3n.We �rst show that at most one recover packet is received during [t2; t3)per each recover event during [t1; t3). Since the transmission delay is at most

broad:Ana update:June 11, 1993 LaTEX:August 26, 1996 52one time unit, any packet received during [t2; t3) was sent during [t2� 1; t3).Since recover packets are sent only upon recovery, it follows that at mostone recover packet is received during [t2; t3) per each recover event during[t2 � 1; t3).We now show that at most one update packet is received during [t2; t3)per each recover event during [t1; t3). Update packets are sent only uponreceiving a recover packet <F2>. By the same argument as above, at mostone recover packet is received during [t2�1; t3) per each recover event during[t2 � 2; t3). Hence, at most one update packet is received during [t2; t3) pereach recover event during [t2 � 2; t3).We now show that at most 2m sync packets and 2m
ood packets are re-ceived during [t2; t3) per each accept event during [t1; t3). From the protocol,processors send each sync and
ood packet at most once to each neighbor.Hence, it su�ces to show that every sync and
ood packet received during(t2; t3] contains a message accepted during [t1; t3]. Since the transmissiondelay is at most one time unit, it su�ces to show that every sync and
oodpacket sent during [t2 � 1; t3) contains a message accepted during [t1; t3).From the progress condition and since t1 < t2�1�3n follows that the claimholds for packets sent in <H5> or <I5>.It remains to prove that every
ood packet sent in <G2> during [t2 �1; t3) contains a message accepted during [t1; t3]. Update packets receivedduring [t2 � 1; t3) were sent during [t2 � 2; t3). Therefore, the
ood packetssent in <G2> after t2�1 have indices at least minv2V fDv(t2�2)+1g. Fromthe progress property, and since t1 < (t2 � 2) � 3n, follows that As(t1) �minv2V fDv(t2 � 2)g. The claim follows. 2

broad:imp update:June 11, 1993 LaTEX:August 26, 1996 535 The Enhanced Broadcast ProtocolIn this section we present three minor enhancements to the protocol, andprove the properties of each enhanced version by reduction arguments tothe previous version. In the �rst subsection we show how to use only shortpackets, by using modular counters instead of unbounded counters. In thesecond subsection we bound the space, by observing that it su�ces to storeonly the last n messages received. In the third subsection we improve thethroughput, by using a `window' of messages in the source.5.1 Using Bounded Counters.We now show that modular counters can be used in the protocol, insteadof the unbounded counters. Modular counters su�ces, intuitively, sincethe maximal di�erence between counter values compared in the protocolis always bounded. From the synchronization condition, until any givenmoment all processors deliver roughly the same number of messages. Onthe other hand, there is a di�erence of at most O(n) between the counterscompared by the protocol and the number of messages delivered by thisprocessor or by one of its neighbors. We formalize this intuition in thefollowing Lemmas.There are two kinds of comparison operations in the protocol: compar-ison of two numeric variables (counters) and comparison of a counter to avalue in an incoming packet. We begin by showing that the whenever theprotocol compares two counters, the di�erence between them is bounded byO(n). Later we bound the di�erence between counters and the values theyare compared to from incoming packets.From Lemmas 4 and 25 it follows immediately that if the network is3n�Up at any time, then: Rv � n � Dv � Rv:There are only two places in the protocol where variables other than Rvand Dv are compared, in <H2> and in <H7>. In <H7>, the values of Asand Ds are compared. However, Ds � As � Ds + 1. It remains to consider<H2>, which compares D0v[u] to Dv.Lemma 31 Assume that the network is 3n�Up at any time. Then eitherDv(t)� n� 1 � D0v[u](t) � Dv(t) + n+ 1 or D0v[u](t) = undef.

broad:imp update:June 11, 1993 LaTEX:August 26, 1996 54Proof: From Eq. (5) of Lemma 25 holds either D0v[u] = undef or D0v[u](t) �Dv(t) + n. It remains to show that either Dv(t) � n � 1 � D0v[u](t) orD0v[u](t) = undef. Assume that D0v[u](t) 6= undef.Since D0v[u](t) 6= undef follows that at some time tup � t processor vreceives an update packet from u, and (u; v) is up at v during [tup; t]. Lett0up denote the time when processor u sent this update packet (see Fig. 6).
�������������

���
.. update(�; �)

ttup
t0up

v
u Figure 6: Proof that either Dv � n � 1 � D0v[u] or D0v[u] = undef.The idea of the proof is that if v delivers two or more messages betweent0up and t then Dv(t) � D0v[u](t) + 1 and the claim holds. Otherwise, theclaim holds since D0v[u](tup+) = Du(t0up) and Dv(t0up) � Du(t0up) + n.From Lemma 9, link (u; v) is up at v during [t0up; tup]. Hence, link (u; v)is up at v during [t0up; t]. From Lemma 18, if v delivers two or more messagesduring [t0up; t] then Dv(t)� 1 � D0v[u](t) and the claim follows.Assume, therefore, that v delivers at most one message during [t0up; t].Namely: Dv(t) � Dv(t0up) + 1 (6)From Eq. (4) of Lemma 25 holdsDv(t0up) � Du(t0up) + n (7)

broad:imp update:June 11, 1993 LaTEX:August 26, 1996 55From Lemma 10 holds: D0v[u](tup) = Du(t0up) (8)Since D0v[u] is non-decreasing while (u; v) is up at v (Lemma 11) followsthat: D0v[u](tup) � D0v[u](t) (9)The claim follows from Eqs. (6-9). 2We now show that the di�erence between a counter and a value from anincoming packet to which it is compared is at most O(n). We �rst note thata processor never receives at most O(n) messages more than it had deliveredto the higher layer.Lemma 32 Assume that the network is always 3n�Up and that processorv receives a packet containing number i at time t. Then i � Dv(t) + n.Proof: If v receives a packet numbered i, then one of its neighbors, say u,has previously sent this packet. From Lemma 17, holds Ru � As. Since As isnon-decreasing, then i � As(t). The claim follows since the SynchronizationLemma shows that Dv(t) > As(t)� n. 2We now show that the dual claim also holds: whenever a processorreceives a packet numbered i, then i is not much smaller than the numberof deliveries in this processor.Lemma 33 Assume that the network is always 3n�Up, and that processorv receives a packet containing number i at time t. Then Dv(t) � i+ 2n.Proof: Let u be the neighbor from which v receives the packet at time t,and let t0 denote the time when u has sent the packet to v. From Lemma 9follows that link (u; v) is up at v during [t0; t].If processor v delivers more than one message during [t0; t], then fromLemma 22 holds Dv(t)�1 � D0v[u](t). From Lemma 10, processor v receivesfrom u before t either sync packet number Dv(t)� 1 or update packet withdeliver-counter at least Dv(t) � 1. From the FIFO property of the link, usends this sync or update packet before t0. Namely, at that time, before t0,the value of Du is Dv(t) � 1. Since Du is non-decreasing (Lemma 3), weknow that in this case Du(t0) � Dv(t)� 1.In the other case, when v delivers at most one message during [t0; t],then immediately from Lemma 2 A) follows Dv(t) � Dv(t0) + 1. We havetherefore bounded Dv(t) in both cases:

broad:imp update:June 11, 1993 LaTEX:August 26, 1996 56Dv(t) � maxfDv(t0) + 1; Du(t0) + 1g: (10)From Eq. (4) of Lemma 25, holds Dv(t0) � Du(t0) + n. Therefore, fromEq. (10) follows that Dv(t) � Du(t0)+n+1. The claim follows immediatelyif the packet is a sync, update or recover packet. The claim holds also for
ood packets, since the number of a
ood packet sent by u is either Ru in<I5> or in the range Ru � n + 1 to Ru in <G2>, and by Lemma 4 holdsDu � Ru. 2We now conclude that the di�erence between numbers compared duringany execution of the protocol is bounded by O(n).Lemma 34 The di�erence between two numbers compared by the protocolin a timed dynamic execution where the network is always 3n�Up is boundedby 3n + 1.Proof: The protocol compares values in statements <G2>, <H7>, <H2>and <I2>. We now consider each of these statements. The claim is trivialfor <H7>, since Ds � As � Ds + 1.In <G2> the received value of cr is compared to Rv. From Lemma 32holds cr � Dv + n, and from Lemma 4 holds Dv � Rv. Hence, cr � Rv + n.On the other hand, from Lemma 33 holds Dv � cr+2n, and from Lemma 25holds Rv � Dv+n. Hence Rv � cr +3n. Namely, the claim holds regarding<G2>. A similar argument holds for <I2>, where the received value of i iscompared to Rv + 1.In <H2>, the value of Dv is compared to D0v[u]. The claim holds in thiscase from Lemma 31. Also, in <H2>, the value of Dv is compared with Rv.In this case the claim holds from Lemmas 4 and 25. 2From Lemma 34 it follows that it su�ces to use numeric variables re-duced modulo 6n+3 (or more), when the comparisons are performed in thestandard manner when using a cyclic counter [Per83]. Namely, x is largerthan y if jx � yj � 3n + 1. By performing this modi�cation, the protocoluses only short messages. The properties of this version of the protocol aresummarized in the following Theorem.Theorem 35 Consider the protocol in Figs. 8-11, when all arithmetics andcomparisons are performed modulo 6n + 3. This protocol uses only shortpackets. Furthermore, if the network is 3n-Up at all times, then this proto-col is correct, with delay at most 3n, congestion O(n) and communicationcomplexity CA = 4m per accept, CF = 0 per fail and CR = 2 per recoveryover intervals of length 3n+ 3.

broad:imp update:June 11, 1993 LaTEX:August 26, 1996 57Proof: It is obvious that the modi�ed protocol uses only short packets; itremains to show that correctness and e�ciency are not lost. Consider anytimed dynamic execution (�; time) of the modi�ed protocol.From Theorem 1, it su�ces to prove that there is a corresponding ex-ecution (�0; time0) of the original (non-modular) protocol, s.t. the two ex-ecutions are identical except for the use of modular counters. Namely, let� = e1; e2; : : :en and �0 = e01; e02; : : :e0n. We show that for every i, the eventei is identical to e0i except that all values are reduced modulo 6n + 3, andthat time(ei) = time0(e0i).Suppose to the contrary that there is no such �0. Consider the shortestpre�x e1; : : : ; ek of � which does not have a corresponding pre�x of an exe-cution of the original protocol. Let e01; : : : ; e0k�1 be the pre�x of an executionof the original protocol corresponding to e1; : : : ; ek�1. By considering allpossible event types for ek, it follows from Lemma 34 that it is possible toselect e0k which corresponds to ek and such that e01; : : : ; e0k is a pre�x of anexecution of the original protocol. 25.2 Bounded StorageThe previous subsection shows a minor �x to the protocol, which maintainsall of the properties of Theorem 1 but uses only short packets. We nowobserve that from Eq. 3 of Lemma 25 follows that the protocol always usesonly the last n messages received. This suggests an additional minor �x:store only the last nmessages received. It easily follows that the combinationof these two simple �xes gives O(n) space complexity.Theorem 36 Consider the protocol in Figs. 8-11, when all arithmetics andcomparisons are performed module 6n + 3 and where processors store onlythe last n messages received. This protocol has O(n) space complexity anduses only short packets. Furthermore, if the network is 3n-Up at all times,then this protocol is correct, with delay at most 3n, congestion O(n) andcommunication complexity CA = 4m per accept, CF = 0 per fail and CR = 2per recovery over intervals of length 3n+ 3.Proof Sketch: The proof follows like that of Theorem 35, by observing thatthe protocol uses the stored messages in two ways. First, the protocol sends,upon receiving an update packet, at most n
ood packets, each containing amessage not received yet by the neighbor <G2>. Obviously, for this purposeit is su�cient to store only the last n received messages. The second use of

broad:imp update:June 11, 1993 LaTEX:August 26, 1996 58messages in the protocol is to deliver them to the higher layer. The protocolin processor v delivers messages whose sequence number is higher than Dv.Eq. 3 of Lemma 25 shows that storing the n last received messages su�cesfor this purpose as well. 25.3 Improving Throughput Using a WindowIn the protocol as presented so far, the throughput is bounded by one overthe delay, namely
(1n). It is possible to show that the throughput is notbetter than O(1pn). We now show how the protocol may be modi�ed toachieve
(1) throughput.As described so far, the source performs a ready event, i.e. enable thehigher layer to broadcast another message, only after receiving from allneighbors the sync packet containing the last message accepted.We change the operation of the source processor by implementing awindow of n + 1 messages. Namely, the source processor enables a readyevent whenever As � Dv+n. This condition replaces the existing conditionin <H7>, which is: As � Ds.This is a typical implementation of the window technique, which is of-ten used to improve throughput while avoiding excessive congestion. Thewindow does involve some overheads: it requires the source to store n mes-sages, and, as we shortly show, the rest of the network operates as if thereare additional n processors. In our case, all complexities are linear in thenumber of processors, namely all complexities are at most doubled by theuse of a window of size n.To distinguish between the two versions of the protocol, we refer in thissection to the protocol as described before this section as the `non-windowversion' and to the protocol with the modi�cation described above as the`window version'. The window version preserves all the properties we provedfor the non-window version, up to a constant. This is in addition to thesubstantial improvement in the throughput.Theorem 37 Consider the protocol in Figs. 8-11 with the modi�cation de-scribed above in this section (window of n messages and arithmetics modulo12n+3). This protocol has O(n) space complexity and uses only short pack-ets. Furthermore, if the network is 6n�Up at all times, then this protocolis correct, with throughput at least 16 for intervals of length 6n+ 1, delay atmost 6n, congestion O(n) and communication complexity CA = 4(m + n)per accept, CF = 0 per fail and CR = 2 per recovery over intervals of length6n+ 3.

broad:imp update:June 11, 1993 LaTEX:August 26, 1996 59Proof: We �rst prove that the protocol still has all of the properties ofthe previous versions. We map every timed dynamic execution (�; time) ofthe window protocol into a timed dynamic execution (�0; time0) of the non-window version. The execution (�; time) is in an arbitrary network (V;E)containing n processors and m links; execution (�0; time0) is in a �ctitiousnetwork (V 0; E 0) containing 2n processors and n+m links. The mapping isshown in Fig. 7. Namely, if we assume that processor names s1; : : : ; sn arenot used in V :� V 0 = V [fs1; : : : ; sng� E 0 = E [f(s; s1)g [f(si; si + 1)ji = 1; : : : ; ngThe links added in the non-window execution operate without failures andwith zero delay. The source processor of (�; time) is, as usual, processor s.The source processor of (�0; time0) is sn.The sequence of events and their timing in (�0; time0) is the same as in(�; time). In particular, if at time t the network in (�; time) is 6n�Up,then the network in (�0; time0) is also 6n�Up at t. As jV 0j = 2jV j = 2n, theproperties stated in Theorem 37 follow from the corresponding propertiesproved for the non-window version in Theorem 36.We now prove the assertion concerning the throughput. This part of theproof does not use the mapping to �0. Recall that the throughput is de�nedover executions where there is never a delay from the time of a ready eventand until the following accept event. Namely, the higher layer always hasadditional messages for broadcast.Since accept events immediately follow each ready events, and the capac-ity in the source is limited, it follows from the modi�ed <H7> that at anytime t holds As(t) > Ds(t) + n.We now prove that at least n+1 messages are accepted in every interval oflength 6n+1; hence the throughput is at least 16 . Consider any interval [t; t+6n+1]. From the �rst part of the proof, the delay is at most 6n. Therefore,after (t+6n) all processors have delivered every message accepted until timet. Namely, for every processor v holds Dv((t+6n)+) � As(t). In particular,Ds((t+6n)+) � As(t). By substituting As(t+6n+) > Ds(t+6n+)+n, weget As(t+ 6n+) > As(t) + n. The proof follows since As is non-decreasing.2

broad:imp update:June 11, 1993 LaTEX:August 26, 1996 60

��������'& $%������������
"!# "!# "!

"!#
"!# "!# "!# CCCCCC W �� �� ���

�� ���CCCC W
LLLLLhhhhhhhhh,,,,,,XXXXXX
AAAAhhhhhhhhh����ZZZZ

non-window version is executed.
window version is executed.The `mapped' network, on which the snsn�1s s1
The actual network, on which the

readyaccept
s readyaccept

Figure 7: The mapping from the window version to the non-window version.

broad:end update:Feb 2, 1994 LaTEX:August 26, 1996 616 Concluding RemarksWe have presented a quantitative approach to dynamic networks, and illus-trated this approach by analyzing a new, e�cient broadcast protocol. Ourobjective was to enable realistic evaluation of protocols. Namely, the practi-cal value of protocols and ideas should be re
ected by the formal evaluationwithin a theoretical framework.We have also suggested new complexity measures, especially for thethroughput and the communication complexities. The main idea is thatthe complexities are amortized but only over intervals which satisfy certainminimal requirements, e.g. intervals which are not `too short'. These mea-sures might be useful for analysis of other interactive tasks as well, and evenwithout failures. In particular, the advantage of the window mechanism isrevealed by our de�nition of throughput.Further research is required in several directions. It is interesting to �ndif we can reduce the reliability requirements of broadcast. In particular,the assumption that the network is reliable is too strong for some networks,which may be disconnected for substantial amounts of time. Is it possibleto solve 5 such problems, using bounded resources, and allowing cuts in thenetwork, or processor crashes? Also, it is interesting to try to combine theapproach of this work with a more realistic approach to time complexitywhich permits `timeouts' such as suggested in [Her88, HK89].The broadcast task addressed in this work is closely related to practicalbroadcast and multicast problems of audio and video data streams, suchas video-conferencing and radio/video broadcasts over computer networks.It appears that the protocol described here deals with aspects which so farfound little re
ection in the protocols proposed and used in experimentsfor such tasks. Namely, the protocol deals with allowing the broadcast to
ow over a dynamic graph which may contain cycles. This could be veryhelpful in some realistic scenarios, where speci�c links or gateways maybe temporary congested; a protocol which allows redundant connectivity(cycles) may be able to route around the congested areas.Another challenge is to apply the quantitative approach to additionaltasks. In [Her91] we have brie
y discussed how the protocol presented inthis paper may be adapted to end to end communication and to implementa fault-tolerant synchronizer. In [Her92] we used the quantitative approach5The construction of [AGH90a] does not require that the entire network would bereliable, and allowed crashes. However, a full proof did not appear.

broad:end update:Feb 2, 1994 LaTEX:August 26, 1996 62to analyze and improve connection-based communication schemes.AcknowledgmentsWe thank Baruch Awerbuch for collaborating with us in earlier stages ofthis research [AGH90a]. Special thanks to Hagit Attiya, who made a sub-stantial contribution to the present de�nitions of reliability, and for otherencouraging and helpful remarks. We thank Shimon Even for discussingshortcomings of the eventual stability approach, and thereby planting theseeds of the quantitative approach. We also thank Benny Chor, Israel Cidon,Shlomi Dolev, Guy Even, Shlomo Moran, David Peleg, Benny Pinkas, andSergio Rajsbaum for their comments.References[AAG87] Yehuda Afek, Baruch Awerbuch, and Eli Gafni. Applying staticnetwork protocols to dynamic networks. In 28th Annual Sympo-sium on Foundations of Computer Science. IEEE, October 1987.[ACK90] Baruch Awerbuch, Israel Cidon, and Shay Kutten. Optimalmaintenance of replicated information. In Proc. 31st Symp. onFoundations of Computer Science, October 1990.[ADLS90] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stock-meyer. Bounds on the time to reach agreement in the presenceof timing uncertainty. In STOC 1991, 1990.[AE86] Baruch Awerbuch and Shimon Even. Reliable broadcast pro-tocols in unreliable networks. Networks, 16(4):381{396, Winter1986.[AG91] Yehuda Afek and Eli Gafni. Bootstrap network resynchroniza-tion. In Proceedings of the 10th Annual ACM Symposium onPrinciples of Distributed Computing, Montreal, Quebec, Canada,pages 295{307. ACMSIGACT and SIGOPS, ACM, August 1991.[AGH90a] Baruch Awerbuch, Oded Goldreich, and Amir Herzberg. A quan-titative approach to dynamic networks. In Proceedings of the 9thAnnual ACM Symposium on Principles of Distributed Comput-ing, pages 189{204, August 1990.

broad:end update:Feb 2, 1994 LaTEX:August 26, 1996 63[AGH90b] Baruch Awerbuch, Oded Goldreich, and Amir Herzberg. A quan-titative approach to dynamic networks (version without globaltime). Technical Report 624, Computer Science Dept., Technion,May 1990.[AMS89] Baruch Awerbuch, Yishay Mansour, and Nir Shavit. Polynomialend-to-end communication. In Proc. of the 30th IEEE Symp. onFoundations of Computer Science, pages 358{363, October 1989.[AS88] Baruch Awerbuch and Michael Sipser. Dynamic networks are asfast as static networks. In 29th Annual Symposium on Founda-tions of Computer Science, pages 206{220. IEEE, October 1988.[Awe85] Baruch Awerbuch. Complexity of network synchronization. J.ACM, 32(4):804{823, October 1985.[Awe88] Baruch Awerbuch. On the e�ect of feedback in dynamic networkprotocols. In Proc. 29th IEEE Symp. on Foundation of ComputerScience, pages 231{245, October 1988.[BGG+85] A. E. Baratz, J. P. Gray, P. E. Green Jr., J. M. Ja�e, and D. P.Pozefsky. SNA networks of small systems. IEEE Journal onSelected Areas in Comm., SAC-3(3):416{426, May 1985.[BGS88] Alan E. Baratz, Inder Gopal, and Adrian Segall. Fault tolerantqueries in computer networks. In J. van Leeuwen, editor, Dis-tributed Algorithms: Second International Workshop. Springer-Verlag, 1988. Lecure notes in computer science number 312.[BS88] Alan E. Baratz and Adrian Segall. Reliable link initializationprocedures. IEEE Trans. on Communication, COM-36:144{152,February 1988.[Cha82] Ernest J. H. Chang. Echo algorithms: Depth parallel operationson general graphs. IEEE Trans. Software Eng., 8(4):391{401,July 1982.[CR87] Israel Cidon and Raphael Rom. Failsafe end-to-end protocolsin computer networks with changing topology. IEEE Trans.Comm., COM-35(4):410{413, April 1987.

broad:end update:Feb 2, 1994 LaTEX:August 26, 1996 64[DS80] W. Dijkstra and C. S. Scholten. Termination detection for dif-fusing computations. Information Processing Letters, 11(1):1{4,August 1980.[Fin79] S. G. Finn. Resynch procedures and a failsafe network protocol.IEEE Tran. Comm., COM-27(6):840{846, June 1979.[Gal76] Robert G. Gallager. A shortest path routing algorithm withautomatic resynch. unpublished note, March 1976.[GHS83] Robert G. Gallager, Pierre A. Humblet, and P. M. Spira. Adistributed algorithm for minimum-weight spanning trees. ACMTrans. Prog. Lang. and Syst., 5(1):66{77, January 1983.[GS92] George Grover and Adrian Segall. A full duplex dlc protocolon two links. IEEE Transactions on Communications, COM-40(1):210{223, January 1992.[Her88] Amir Herzberg. Network management in the presence of faults.In Ninth International Conference on Computers and Communi-cation (ICCC), October 1988. Updated version: `Early Termina-tion in Unreliable Communication Networks' is technical reportTR-650 of computer science dept., Technion, September 1990.[Her91] Amir Herzberg. Communication Networks in the Presence ofFaults. PhD thesis, Computer Science Faculty, Technion, Israel,1991. In Hebrew.[Her92] Amir Herzberg. Connection-based communication in dynamicnetworks. In Proceedings of the Eleventh Annual ACM Sym-posium on Principles of Distributed Computing (PODC), pages13{24, August 1992.[HK89] Amir Herzberg and Shay Kutten. E�cient detection of messageforwarding faults. In Proceedings of the 8th Annual ACM Sym-posium on Principles of Distributed Computing, pages 339{353,August 1989.[JBS86] Je� Ja�e, Alan E. Baratz, and Adrian Segall. Subtle design issuesin the implementation of distributed dynamic routing algorithms.Computer networks and ISDN systems, 12(3):147{158, 1986.

broad:end update:Feb 2, 1994 LaTEX:August 26, 1996 65[LR90] K. Lougheed and Yacov Rekhter. A border gateway protocol.Internet RFC 1163, Network Working Group, June 1990.[MRR80] John M. McQuillan, Ira Richer, and Eric C. Rosen. The newrouting algorithm for the ARPANET. IEEE Trans. Comm.,28(5):711{719, May 1980.[MS79] P. Merlin and A. Segall. Failsafe distributed routing protocol.IEEE Trans. Comm., COM-27:1280{1288, September 1979.[Per83] Radia Perlman. Fault tolerant broadcast of routing information.Computer Networks, December 1983.[RS91] T. L. Rodehe�er and M. D. Schroeder. Automatic recon�gura-tion in autonet. In Symp. on Principles of Operating Systems,1991.[Seg83] A. Segall. Distributed network protocols. IEEE Trans. on In-formation Theory, IT-29(1), January 1983.[SS81] A. Segall and M. Sidi. A failsafe distributed protocol for mini-mum delay routing. IEEE Trans. Comm., COM-29(5):689{695,May 1981.[Vis83] Uzi Vishkin. A distributed orientation algorithm. IEEE Trans.Info. Theory, June 1983.A Code of the simpli�ed protocolA high-level concise description of the algorithm is given in Figure 1. A morecomplete and formal description is given in Figures 8-11. The formal description(code) contains labels, of the form 3.2, which refers to a particular line (number)within a particular block of the code (letter). These labels would be used fordetailed proofs.

broad:end update:Feb 2, 1994 LaTEX:August 26, 1996 66� Sync-packet sync(m; i), where m is a message and i is its index. This packetis used to synchronize neighboring processors.� Update-packet update(cd; cr), where cd is the deliver-counter and cr is thereceive-counter. Namely, cd is the highest index of messages delivered bythe processor to the higher layer and cr is the number of the last messagereceived by the processor. This packet is used to re-synchronize between twoprocessors upon recovery of the link connecting them.� Recover-packet recover. This packet is used to signal to the neighbor thatthe link has recovered at both ends.� Flood-packet flood(m; i), where m is a message and i is its index. Thispacket is used to distribute the message to the processors in the network.Figure 8: Types of packets used in the protocol.Mv(i): Bu�er for the ith message, initially empty. It su�ces to store only the lastn messages.Rv: The highest index of messages placed in Mv. Initially 0.Dv: Counts the number of messages delivered by v to the higher layer (which equalsthe number of sync packets sent by v). Initially 0.D0v(u): A lower bound estimate for Du, i.e. for the number of messages deliveredby neighbor u. Initially, and after (u; v) fails at v, has the value undef.As: The number of accept events in the source s. Initially 0.Gv: The set of neighbors u of v such that (u; v) is up at v.GDv : The set of neighbors u of v such that (u; v) is up at v since v has last delivereda message.GRv : The set of neighbors u of v such that (u; v) is up at v and v has received arecover packet from u since the last recovery of (u; v) at v.Figure 9: Variables at processor v.

broad:end update:Feb 2, 1994 LaTEX:August 26, 1996 67<A1> (for v = s) When accepting a message m from the higher layer: S<A2> f increment As; S<A3> call procedure message(m;As); S<A4> call procedure proceed(); Sg<B1> When receiving sync(m; i) from u: S<B2> f D0v[u] i; S<B3> call procedure message(m; i); S<B4> call procedure proceed(); Sg<C1> When receiving flood(m; i): F<C2> f call procedure message(m; i); F<C3> call procedure proceed(); Fg<D1> When the link to u fails:<D2> f remove u from Gv; GDv and GRv ;<D3> D0v[u] undef;<D4> call procedure proceed();g<E1> When the link to u recovers:<E2> f send recover to u;<E3> add u to Gv;g<F1> When receiving recover from u:<F2> f send update(Dv; Rv) to u;<F3> add u to GRv ;g<G1> When receiving update(cd; cr) from u:<G2> f if cr < Rv then for r = maxfcr + 1; Rv � n+ 1g to Rv do:send flood(Mv [r]; r) to u; F<G3> D0v[u] cd;<G4> call procedure proceed();g Figure 10: Algorithm at processor v.

broad:end update:Feb 2, 1994 LaTEX:August 26, 1996 68
<H1> procedure proceed()comment: tries to cause ready (for v = s) or deliver (for v 6= s).<H2> f while (Dv < Rv) ^ (8u 2 GDv) ((D0v [u] 6= undef) ^ (Dv � D0v[u])) S<H3> do f increment Dv; S<H4> deliver Mv[Dv] to the higher layer; S<H5> send sync(Mv [Dv]; Dv) to all u 2 GRv ; S<H6> GDv Gv;g<H7> if (v = s) ^ (As � Ds) S<H8> then signal ready to the higher layer; Sg<I1> procedure message(m; i) comment: deals with message m numbered i.<I2> f if i = Rv + 1 S<I3> then f increment Rv; S<I4> Mv[Rv] m; S<I5> send flood(m;Rv) to all u 2 GRv ; SFgg Figure 11: Procedures at processor v.

