
Extracts fromModern Cryptography, Probabilistic Proofs andPseudorandomnessOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.March 25, 19981 The contextLoosely speaking, a polynomial-time function f is called one-way if any e�cient algorithmcan invert it only with negligible success probability. For simplicity we consider throughoutthis section only length preserving one-way functions.De�nition 1 (one-way function): A one-way function, f , is a polynomial-time computablefunction such that for every probabilistic polynomial-time algorithm A0, every positive poly-nomial p(�), and all su�ciently large k'sPr �A0(f(Uk))2f�1(f(Uk))� < 1p(k)We stress that both occurrences of Uk refer to the same random variable. That is, the aboveasserts that Xx2f0;1gk 2�k � Pr �A0(f(x))2f�1(f(x))� < 1p(k)Popular candidates for one-way functions are based on the conjectured intractability ofInteger Factorization (cf., [Ofactor] for state of the art), the Discrete Logarithm Problem(cf., [Odlp] analogously), and decoding of random linear code [GKL]. The infeasibility ofinverting f yields a weak notion of unpredictability: For every probabilistic polynomial-time1



algorithm A (and su�ciently large k), it must be the case that Pri[A(i; f(Uk)) 6= bi(Uk)] >1=2k, where the probability is taken uniformly over i 2 f1; :::; kg (and Uk), and bi(x) denotesthe ith bit of x. A stronger (and in fact strongest possible) notion of unpredictability isthat of a hard-core predicate. Loosely speaking, a polynomial-time predicate b is called ahard-core of a function f if all e�cient algorithm, given f(x), can guess b(x) only withsuccess probability which is negligible better than half.De�nition 2 (hard-core predicate [BM]):A polynomial-time computable predicate b : f0; 1g� 7!f0; 1g is called a hard-core of a function f if for every probabilistic polynomial-time algorithmA0, every polynomial p(�), and all su�ciently large k'sPr (A0(f(Uk))=b(Uk)) < 12 + 1p(k)Clearly, if b is a hard-core of a 1-1 polynomial-time computable function f then f must beone-way.1 It turns out that any one-way function can be slightly modi�ed so that it has ahard-core predicate.Theorem 3 (A generic hard-core [GL]): Let f be an arbitrary one-way function, and let gbe de�ned by g(x; r) def= (f(x); r), where jxj= jrj. Let b(x; r) denote the inner-product mod 2of the binary vectors x and r. Then the predicate b is a hard-core of the function g.A proof is presented below. Our presentation of the proof of Theorem 3 di�ers from whatappears in the original text [GL].2 Proof of Theorem 3Theorem 3, due to Goldreich and Levin [GL], relates two computational tasks: The �rst taskis inverting a function f ; namely given y �nd an x so that f(x) = y. The second task ispredicting, with non-negligible advantage, the exclusive-or of a subset of the bits of x whenonly given f(x). More precisely, it has been proved that if f cannot be e�ciently invertedthen given f(x) and r it is infeasible to predict the inner-product mod 2 of x and r betterthan obvious.The proof presented here is not the original one presented in [GL] (see generalizationin [GRS]), but rather an alternative suggested by Charlie Racko�. The alternative proof,inspired by [ACGS], has two main advantages over the original one: It is simpler to explain,and it provides better security (i.e., a more e�cient reduction of inverting f to predictingthe inner-product).1 Functions which are not 1-1 may have hard-core predicates of information theoretic nature; but theseare of no use to us here. For example, for � 2 f0; 1g, f(�; x) = 0f 0(x) has an \information theoretic"hard-core predicate b(�; x) = �. 2



Theorem 4 (Theorem 3 { restated): Suppose we have oracle access to a random processbx : f0; 1gn 7! f0; 1g, so that Prr2f0;1gn [bx(r) = b(x; r)]� 12 + �where the probability is taken uniformly over the internal coin tosses of bx and all possiblechoices of r 2 f0; 1gn, and b(x; r) denote the inner-product mod 2 of the binary vectors xand r. Then, we can in time polynomial in n=� output a list of strings which with probabilityat least 12 contains x.Theorem 3 is derived from the above by using standard arguments. We prove this fact �rst.Proposition 5 Theorem 4 implies Theorem 3.Proof: The proof uses a \reducibility argument" { inverting the function f is reduced topredicting b(x; r) from (f(x); r). Hence, we assume (for contradiction) the existence of ane�cient algorithm predicting the inner-product with advantage which is not negligible, andderive an algorithm that inverts f with related (i.e., not negligible) success probability. Thiscontradicts the hypothesis that f is a one-way function.Let G be a (probabilistic polynomial-time) algorithm that on input f(x) and r tries topredict the inner-product (mod 2) of x and r. Denote by �G(n) the (overall) advantage ofalgorithm G in predicting b(x; r) from f(x) and r, where x and r are uniformly chosen inf0; 1gn. Namely, �G(n) def= Pr (G(f(Xn); Rn) = b(Xn; Rn))� 12where here and in the sequel Xn and Rn denote two independent random variables, eachuniformly distributed over f0; 1gn. Assuming, to the contradiction, that b is not a hard-coreof g means that exists an e�cient algorithm G, a polynomial p(�) and an in�nite set N sothat for every n2N it holds that �G(n) > 1p(n) . We restrict our attention to this algorithmG and to n's in this set N . In the sequel we shorthand �G by �.Our �rst observation is that, on at least an �(n)2 fraction of the x's of length n, algorithmG has an �(n)2 advantage in predicting b(x;Rn) from f(x) and Rn. Namely,Claim: There exists a set Sn � f0; 1gn of cardinality at least �(n)2 � 2n such that for everyx 2Sn, it holds that s(x) def= Pr(G(f(x); Rn)=b(x;Rn)) � 12 + �(n)2This time the probability is taken over all possible values of Rn and all internal coin tossesof algorithm G, whereas x is �xed. 3



Proof: The observation follows by an averaging argument. Namely, write Exp(s(Xn)) =12 + �(n), and apply Markov Inequality.2Thus, we restrict our attention to x's in Sn. For each such x, the conditions of Theorem 4hold, and so within time poly(n=�(n)) and with probability at least 1=2 we retrieve a list ofstrings containing x. Contradiction to the one-wayness of f follows, since the probabilitywe invert f on uniformly selected x is at least 12 � Pr(Un2Sn) � �(n)4 .2.1 A motivating discussionLet s(x) def= Pr[bx(r) = b(x; r)], where r is uniformly distributed in f0; 1gjxj. Then, by thehypothesis of Theorem 4, s(x) � 12 + �. Suppose, for a moment, that s(x) > 34 + �. Inthis case, retrieving x by querying the oracle bx is quite easy. To retrieve the ith bit of x,denoted xi, we uniformly select r 2 f0; 1gn, and obtain bx(r) and bx(r� ei), where ei is ann-dimensional binary vector with 1 in the ith component and 0 in all the others, and v � udenotes the addition mod 2 of the binary vectors v and u. Clearly, if both bx(r) = b(x; r)and bx(r� ei) = b(x; r� ei) thenbx(r)� bx(r� ei) = b(x; r)� b(x; r� ei)= b(x; ei)= xiThe probability that both equalities hold (i.e., both bx(r) = b(x; r) and bx(r� ei) = b(x; r�ei)) is at least 1 � 2 � (14 � �) = 12 + 2�. Hence, repeating the above procedure su�cientlymany times and ruling by majority we retrieve xi with very high probability. Similarly, wecan retrieve all the bits of x, and hence obtain x itself. However, the entire analysis wasconducted under (the unjusti�able) assumption that s(x) > 34+�, whereas we only knowthat s(x) > 12+�.The problem with the above procedure is that it doubles the original error probabilityof the oracle bx on random queries. Under the unrealistic assumption, that the bx's erroron such inputs is signi�cantly smaller than 14 , the \error-doubling" phenomenon raises noproblems. However, in general (and even in the special case where bx's error is exactly14) the above procedure is unlikely to yield x. Note that the error probability of bx cannot be decreased by querying bx several times on the same instance (e.g., bx may alwaysanswer correctly on three quarters of the inputs, and always err on the remaining quarter).What is required is an alternative way of using bx { a way which does not double theoriginal error probability of bx. The key idea is to generate the r's in a way which requiresquerying bx only once per each r (and xi), instead of twice. The good news are that theerror probability is no longer doubled, since we will only use bx to get an \estimate" ofb(x; r� ei). The bad news are that we still need to know b(x; r), and it is not clear how we4



can know b(x; r) without querying bx. The answer is that we can guess b(x; r) by ourselves.This is �ne if we only need to guess b(x; r) for one r (or logarithmically in jxj many r's),but the problem is that we need to know (and hence guess) b(x; r) for polynomially manyr's. An obvious way of guessing these b(x; r)'s yields an exponentially vanishing successprobability. The solution is to generate these polynomially many r's so that, on one handthey are \su�ciently random" whereas on the other hand we can guess all the b(x; r)'s withnon-negligible success probability. Speci�cally, generating the r's in a particular pairwiseindependent manner will satisfy both (seemingly contradictory) requirements. We stressthat in case we are successful (in our guesses for the b(x; r)'s), we can retrieve x with highprobability. Hence, we retrieve x with non-negligible probability.A word about the way in which the pairwise independent r's are generated (and thecorresponding b(x; r)'s are guessed) is indeed in place. To generate m = poly(n=�) manyr's, we uniformly (and independently) select l def= log2(m + 1) strings in f0; 1gn. Let usdenote these strings by s1; :::; sl. We then guess b(x; s1) through b(x; sl). Let use denotethese guesses, which are uniformly (and independently) chosen in f0; 1g, by �1 through �l.Hence, the probability that all our guesses for the b(x; si)'s are correct is 2�l = 1poly(n=�) .The di�erent r's correspond to the di�erent non-empty subsets of f1; 2; :::; lg. We computerJ def= �j2Jsj . The reader can easily verify that the rJ 's are pairwise independent and eachis uniformly distributed in f0; 1gn. The key observation is thatb(x; rJ) = b(x;�j2Jsj) = �j2Jb(x; sj)Hence, our guess for the b(x; rJ)'s is �j2J�j , and with non-negligible probability all ourguesses are correct.2.2 Back to the formal argumentFollowing is a formal description of the recovering algorithm, denoted A. On input n and �(and oracle access to bx), algorithm A sets l def= dlog2(n���2+1)e. Algorithm A uniformly andindependently select s1; :::; sl 2 f0; 1gn, and �1; :::; �l 2 f0; 1g. It then computes, for everynon-empty set J � f1; 2; :::; lg, a string rJ  �j2Jsj and a bit �J  �j2J�j. For everyi2f1; :::; ng and every non-empty J � f1; ::; lg, algorithm A computes zJi  �J�bx(rJ�ei).Finally, algorithm A sets zi to be the majority of the zJi values, and outputs z = z1 � � �zn.Comment: An alternative implementation of the above ideas results in an algorithm,denoted A0, which �ts the conclusion of the theorem. Rather than selecting at random asetting of �1; :::; �l 2 f0; 1g, algorithm A0 tries all possible values for �1; :::; �l. It outputs alist of 2l candidates z's, one per each of the possible settings of �1; :::; �l 2 f0; 1g.Clearly, A makes n � 2l = n2=�2 oracle calls to bx, and the same amount of other el-ementary computations. Algorithm A0 makes the same queries, but conducts a total of(n=�2) � (n2=�2) elementary computations. 5



Following is a detailed analysis of the success probability of algorithm A. We start byshowing that, in case the �j's are correct, then with constant probability, zi = xi for alli2 f1; :::; ng. This is proven by bounding from below the probability that the majority ofthe zJi 's equals xi.Claim: For every 1� i�n,Pr�jfJ : b(x; rJ)�bx(rJ � ei) = xigj > 12 � (2l � 1)� > 1� 14nwhere rJ def= �j2Jsj and the sj 's are independently and uniformly chosen in f0; 1gn.Proof: For every J , de�ne a 0-1 random variable �J , so that �J equals 1 if and only ifb(x; rJ)�bx(rJ � ei) = xi. The reader can easily verify that each rJ is uniformly distributedin f0; 1gn. It follows that each �J equals 1 with probability 12+�. We show that the �J 's arepairwise independent by showing that the rJ 's are pairwise independent. For every J 6= Kwe have, without loss of generality, j 2 J and k 2 K n J . Hence, for every �; � 2 f0; 1gn,we have Pr �rK=� j rJ=�� = Pr �sk=� j sj=��= Pr �sk=��= Pr �rK=��and pairwise independence of the rJ 's follows. Let m def= 2l� 1. Using Chebyshev's Inequal-ity, we get Pr XJ �J � 12 �m! � Pr �����XJ �J � (0:5+�) �m����� � � �m!< Var(�f1g)��2 � (n=�2)< 14nThe claim now follows. 2Recall that if �j = b(x; sj), for all j's, then �J = b(x; rJ) for all non-empty J 's. In thiscase z output by algorithm A equals x, with probability at least 3=4. However, the �rstevent happens with probability 2�l = 1n=�2 independently of the events analyzed in theClaim. Hence, algorithm A recovers x with probability at least 34 � �2n (whereas, the modi�edalgorithm, A0, succeeds with probability at least 34). Theorem 4 follows.6



2.3 Improved Implementation of Algorithm A0In continuation to the proof of Theorem 4, we present guidelines for a more e�cient im-plementation of Algorithm A0. In the sequel it will be more convenient to use arithmeticof reals instead of that of Boolean values. Hence, we denote b0(x; r) = (�1)b(r;x) andb0x(r) = (�1)bx(r).1. Prove that Expr(b0(x; r) � b0x(r+ei)) = 2� � (�1)xi , where � = Prr(bx(r) = b(x; r))�0:5.2. Let v be an l-dimensional Boolean vector, and let R be a uniformly chosen l-by-nBoolean matrix. Prove that for every v 6= u 2 f0; 1gl n f0gl it holds that vR and uRare pairwise independent and uniformly distributed in f0; 1gn.(Note that each such vR corresponds to a rJ above, with J = fj : vj=1g.)3. Prove that b0(x; vR) = b0(xRT ; v), for every x 2 f0; 1gn and v 2 f0; 1gl.(This enables to compute the b0(x; vR)'s via the b0(xRT ; v)'s.)4. Prove that, with probability at least 12 over the choices of R, there exists u 2 f0; 1glso that for every 1� i�n the sign of Pv2f0;1gl b0(u; v)b0x(vR+ ei)) equals the sign of(�1)xi.(Hint: Re-do the proof of the Claim of subsection 2.2, using u def= xRT .)5. Let B be a �xed 2l-by-2l matrix with the (u; v)-entry being b0(u; v), and denote by oian 2l-dimensional vector with the vth entry equal b0x(vR+ ei). Consider an algorithmthat computes zi  Boi, for all i's, and forms a 2l-by-n matrix Z in which the columnsare the zi's. The output is the list of rows in Z.(Notice that the algorithm makes 2l �n queries to obtain all entries in the oi's, that allthese queries can be computed within 2ln time, and so all that remains is to multiplythe �xed matrix B by n vectors.)(a) Using Item 4, evaluate the success probability of the algorithm (i.e., the proba-bility that x is in the output list). .(b) Using the special structure of the �xed matrix B, show that the product Boi canbe computed in time l � 2l.Hint: B is the Sylvester matrix, which can be written recursively asSk =  Sk�1Sk�1Sk�1Sk�1 !where S0 = +1 and M means ipping the +1 entries of M to �1 and vice versa.It follows that algorithm A0 can be implemented in time n � l2l, which is eO(n2=�2).7



Further Improvement. We may further improve algorithm A0 by observing that it suf-�ces to let 2l = O(1=�2) rather than 2l = O(n=�2). Under the new setting, with constantprobability, we recover correctly a constant fraction of the bits of x rather than all ofthem. If x were an encoding of some w, s.t. jxj = O(jwj), under an asymptotically gooderror-correcting code, this would su�ce. To remove this assumption, we may modify thehardcore so that b(w; r) is the inner-product of the encoding of w, denoted C(w), and r(where jrj = jC(w)j). Furthermore, using a linear error-correcting code C(w) = Aw, we canwrite b(w; r) = b(Aw; r) = b(w;ATr), and so the entire algorithm can be emulated in termsof an oracle bw which is �-correlated with b(w; �). Thus, given such an oracle bw, and anadditional oracle �w so that �w(y) = 1 i� y = w, we can recover w using O(jwj=�2) oraclequeries (and a similar amount of other elementary operations). This is optimal in the sensethat each oracle answer provides only O(�2) bits of information.

8


