Extracts from

Modern Cryptography, Probabilistic Proofs and
Pseudorandomness

Oded Goldreich

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

March 25, 1998

1 The context

Loosely speaking, a polynomial-time function f is called one-way if any efficient algorithm
can invert it only with negligible success probability. For simplicity we consider throughout
this section only length preserving one-way functions.

Definition 1 (one-way function): A one-way function, f, is a polynomial-time computable
function such that for every probabilistic polynomial-time algorithm A’, every positive poly-
nomial p(-), and all sufficiently large k’s

1
P A/ -1 -
r[A(f(U) € T (f(UR))] < o)
We stress that both occurrences of Uy, refer to the same random variable. That is, the above
asserts that

xe{zo;l}k 278 Pr[A(f(a)) e fH(f(2)] < —

Popular candidates for one-way functions are based on the conjectured intractability of
Integer Factorization (cf., [0factor] for state of the art), the Discrete Logarithm Problem
(cf., [0dlp] analogously), and decoding of random linear code [GKL]. The infeasibility of
inverting f yields a weak notion of unpredictability: For every probabilistic polynomial-time

algorithm A (and sufficiently large k), it must be the case that Pr;[A(4, f(Uz)) # b;(Uz)] >
1/2k, where the probability is taken uniformly over i € {1, ..., k} (and Uy), and b;(x) denotes
the ¢ bit of z. A stronger (and in fact strongest possible) notion of unpredictability is
that of a hard-core predicate. Loosely speaking, a polynomial-time predicate b is called a
hard-core of a function f if all efficient algorithm, given f(z), can guess b(x) only with
success probability which is negligible better than half.

Definition 2 (hard-core predicate [BM]): A polynomial-time computable predicate b : {0,1}* —
{0, 1} is called a hard-core of a function f if for every probabilistic polynomial-time algorithm
A’, every polynomial p(-), and all sufficiently large k’s

PECHT =) < 3 4

Clearly, if b is a hard-core of a 1-1 polynomial-time computable function f then f must be
one-way.! It turns out that any one-way function can be slightly modified so that it has a
hard-core predicate.

Theorem 3 (A generic hard-core [GL]): Let f be an arbitrary one-way function, and let g

def

be defined by g(z,r) = (f(x),r), where |x|=|r|. Let b(x,r) denote the inner-product mod 2
of the binary vectors x and r. Then the predicate b is a hard-core of the function g.

A proof is presented below. Our presentation of the proof of Theorem 3 differs from what
appears in the original text [GL].

2 Proof of Theorem 3

Theorem 3, due to Goldreich and Levin [GL], relates two computational tasks: The first task
is inverting a function f; namely given y find an « so that f(2) = y. The second task is
predicting, with non-negligible advantage, the exclusive-or of a subset of the bits of when
only given f(z). More precisely, it has been proved that if f cannot be efficiently inverted
then given f(z) and r it is infeasible to predict the inner-product mod 2 of # and r better
than obvious.

The proof presented here is not the original one presented in [GL] (see generalization
in [GRS]), but rather an alternative suggested by Charlie Rackoff. The alternative proof,
inspired by [ACGS], has two main advantages over the original one: It is simpler to explain,
and it provides better security (i.e., a more efficient reduction of inverting f to predicting
the inner-product).

! Functions which are not 1-1 may have hard-core predicates of information theoretic nature; but these
are of no use to us here. For example, for o € {0,1}, f(o,2) = 0f'(z) has an “information theoretic”
hard-core predicate b(s, z) = 0.

Theorem 4 (Theorem 3 — restated): Suppose we have oracle access to a random process

b, : {0,1}" — {0, 1}, so that

1
Pr,eq0,1y0[ba(r) = b(z,7)] > g te

where the probability is taken uniformly over the internal coin tosses of b, and all possible
choices of 1 € {0,1}", and b(z,r) denote the inner-product mod 2 of the binary vectors x
and r. Then, we can in time polynomial in n/e output a list of strings which with probability
at least % contains x.

Theorem 3 is derived from the above by using standard arguments. We prove this fact first.
Proposition 5 Theorem 4 implies Theorem 3.

Proof: The proof uses a “reducibility argument” — inverting the function f is reduced to
predicting b(z,r) from (f(x),r). Hence, we assume (for contradiction) the existence of an
efficient algorithm predicting the inner-product with advantage which is not negligible, and
derive an algorithm that inverts f with related (i.e., not negligible) success probability. This
contradicts the hypothesis that f is a one-way function.

Let G be a (probabilistic polynomial-time) algorithm that on input f(z) and r tries to
predict the inner-product (mod 2) of z and r. Denote by ez(n) the (overall) advantage of
algorithm G in predicting b(z,r) from f(x) and r, where z and r are uniformly chosen in
{0,1}". Namely,

co(n) & Pr(G(f(X,), Ra) = b(X, Ry)) — %

where here and in the sequel X,, and R, denote two independent random variables, each
uniformly distributed over {0,1}". Assuming, to the contradiction, that b is not a hard-core
of ¢ means that exists an efficient algorithm G, a polynomial p(-) and an infinite set N so
that for every n€ N it holds that e¢z(n) > zﬁ' We restrict our attention to this algorithm
G and to »’s in this set V. In the sequel we shorthand ¢; by .

Our first observation is that, on at least an %ﬂl fraction of the 2’s of length n, algorithm
G has an 2 advantage in predicting b(z, R,) from f(z) and R,. Namely,

2

Claim: There exists a set 5, C {0,1}" of cardinality at least @ - 2" such that for every
x €5, it holds that

e 1 €en
(e) S Pr(G (). B)=b(r. B,) > &+ O
This time the probability is taken over all possible values of R,, and all internal coin tosses
of algorithm (7, whereas z is fixed.

Proof: The observation follows by an averaging argument. Namely, write Exp(s(X,)) =
 + ¢(n), and apply Markov Inequality.0

Thus, we restrict our attention to z’s in 5,,. For each such z, the conditions of Theorem 4

hold, and so within time poly(n/e(n)) and with probability at least 1/2 we retrieve a list of

strings containing xz. Contradiction to the one-wayness of f follows, since the probability
€(n)

we invert f on uniformly selected z is at least £ - Pr(U,€5,) > <. W

2.1 A motivating discussion

Let s(z) = Pr[b,(r) = b(z,r)], where 7 is uniformly distributed in {0,1}/*l. Then, by the
hypothesis of Theorem 4, s(x) > 1+e¢. Suppose, for a moment, that s(z) > 24¢. In
this case, retrieving x by querying the oracle b, is quite easy. To retrieve the ** bit of z,
denoted z;, we uniformly select r € {0,1}", and obtain b,(r) and b,(r & €'), where €' is an
n-dimensional binary vector with 1 in the :*® component and 0 in all the others, and v & u
denotes the addition mod 2 of the binary vectors v and u. Clearly, if both b.(r) = b(z,r)
and b,(r & e') = b(xz,r @ €e') then

be(r) D b(r®de’) = blz,r)Dbla,r®e)
b(z,e')

= xi

The probability that both equalities hold (i.e., both b,(r) = b(z,r) and b,(r @& e') = b(z,r&®
")) is at least 1 — 2 (3 — €) = 1 + 2¢. Hence, repeating the above procedure sufficiently
many times and ruling by majority we retrieve z; with very high probability. Similarly, we
can retrieve all the bits of z, and hence obtain z itself. However, the entire analysis was
conducted under (the unjustifiable) assumption that s(z) > 2+¢, whereas we only know
that s(z) > ++e.

The problem with the above procedure is that it doubles the original error probability
of the oracle b, on random queries. Under the unrealistic assumption, that the b,’s error
on such inputs is significantly smaller than i, the “error-doubling” phenomenon raises no
problems. However, in general (and even in the special case where b,’s error is exactly
i) the above procedure is unlikely to yield z. Note that the error probability of b, can
not be decreased by querying b, several times on the same instance (e.g., b, may always
answer correctly on three quarters of the inputs, and always err on the remaining quarter).
What is required is an alternative way of using b, — a way which does not double the
original error probability of b,. The key idea is to generate the r’s in a way which requires
querying b, only once per each r (and z;), instead of twice. The good news are that the
error probability is no longer doubled, since we will only use b, to get an “estimate” of
b(z,7 @ €'). The bad news are that we still need to know b(z,r), and it is not clear how we

can know b(z,r) without querying b,. The answer is that we can guess b(z,r) by ourselves.
This is fine if we only need to guess b(z,r) for one r (or logarithmically in |z| many 7’s),
but the problem is that we need to know (and hence guess) b(x,r) for polynomially many
r’s. An obvious way of guessing these b(x,r)’s yields an exponentially vanishing success
probability. The solution is to generate these polynomially many r’s so that, on one hand
they are “sufficiently random” whereas on the other hand we can guess all the b(z,r)’s with
non-negligible success probability. Specifically, generating the r’s in a particular pairwise
independent manner will satisfy both (seemingly contradictory) requirements. We stress
that in case we are successful (in our guesses for the b(x,r)’s), we can retrieve 2 with high
probability. Hence, we retrieve z with non-negligible probability.

A word about the way in which the pairwise independent 7’s are generated (and the
corresponding b(z,r)’s are guessed) is indeed in place. To generate m = poly(n/€) many
r’s, we uniformly (and independently) select [! log,(m + 1) strings in {0,1}". Let us
denote these strings by s',...,s. We then guess b(z,s') through b(z,s'). Let use denote
these guesses, which are uniformly (and independently) chosen in {0,1}, by o' through o'.
Hence, the probability that all our guesses for the b(z,s')’s are correct is 27! = L

poly(n/e)*
The different r’s correspond to the different non-empty subsets of {1,2,...,{}. We compute
= M®jess’. The reader can easily verify that the r/’s are pairwise independent and each

is uniformly distributed in {0, 1}". The key observation is that
b($,7"]) = b(wv@jEJ‘Sj) = ®jEJb($78j)

Hence, our guess for the b(z,r”)’s is P;es07, and with non-negligible probability all our
guesses are correct.

2.2 Back to the formal argument

Following is a formal description of the recovering algorithm, denoted A. On input n and ¢
(and oracle access to b,), algorithm A sets [%< [log,(n-e=2+1)]. Algorithm A uniformly and
independently select s!,...,s" € {0,1}", and o', ...,0' € {0,1}. Tt then computes, for every
non-empty set J C {1,2,...,l}, a string v/ — @;c;¢ and a bit p/ — P;c;07/. For every
i€{l,...,n}and every non-empty J C {1,..,{},algorithm A computes z/ — p/ ®b,(r’ He').
Finally, algorithm A sets z; to be the majority of the 2/ values, and outputs z = 21 -+ - 2,,.

Comment: An alternative implementation of the above ideas results in an algorithm,
denoted A’, which fits the conclusion of the theorem. Rather than selecting at random a
setting of o', ...,0' € {0,1}, algorithm A’ tries all possible values for o', ..., o'. It outputs a
list of 2! candidates z’s, one per each of the possible settings of o',...,¢' € {0,1}.

Clearly, A makes n -2' = n?/e® oracle calls to b,, and the same amount of other el-
ementary computations. Algorithm A’ makes the same queries, but conducts a total of
(n/e*)-(n?/€e*) elementary computations.

Following is a detailed analysis of the success probability of algorithm A. We start by
showing that, in case the ¢’’s are correct, then with constant probability, z; = z; for all
i€{l,...,n}. This is proven by bounding from below the probability that the majority of
the z7’s equals ;.

Claim: For every 1<i<mn,

Pr <|{J:b(x,rj)@bx(rj@ei):xi}| > %-(2’—1)) > 1- i

where r/ < Mjess and the s/’s are independently and uniformly chosen in {0,1}".

Proof: For every .J, define a 0-1 random variable (7, so that ¢’/ equals 1 if and only if
b(z, 77)Bb, (1! @ e') = x;. The reader can easily verify that each r/ is uniformly distributed
in {0,1}". Tt follows that each {/ equals 1 with probability %—I—G We show that the (/’s are
pairwise independent by showing that the r/’s are pairwise independent. For every J # K
we have, without loss of generality, j € J and k € K \ J. Hence, for every a, 5 € {0,1}",
we have

Pr(r®=p|r"=a) = Pr(s"=p|s=a)
~ Pr(sh=p)
= Pr(r®=p)
and pairwise independence of the r/’s follows. Let m Lot 1. Using Chebyshev’s Inequal-
ity, we get
1
(ZC 5") < ((0.54€)-m| > €- m)
Var(¢1))
<
€2 (n/€e)
< L
dn

The claim now follows. O

Recall that if o/ = b(z,s’), for all j’s, then p/ = b(x,r’) for all non-empty J’s. In this
case z output by algorithm A equals z, with probability at least 3/4. However, the first

event happens with probability 27/ = n/152 independently of the events analyzed in the

Claim. Hence, algorithm A recovers with probability at least % . ;—2 (whereas, the modified
algorithm, A’, succeeds with probability at least %) Theorem 4 follows. W

2.3 Improved Implementation of Algorithm A’

In continuation to the proof of Theorem 4, we present guidelines for a more efficient im-
plementation of Algorithm A’. In the sequel it will be more convenient to use arithmetic
of reals instead of that of Boolean values. Hence, we denote b'(z,7) = (—1)"™®) and

bilr) = (=10,

1. Prove that Exp,(0/(z,r)-b.(r+e€')) = 2¢-(—1)", where € = Pr,(b,(r) = b(x,r))—0.5.

2. Let v be an [-dimensional Boolean vector, and let R be a uniformly chosen [-by-n
Boolean matrix. Prove that for every v # u € {0,1}'\ {0} it holds that vR and uR
are pairwise independent and uniformly distributed in {0, 1}".

(Note that each such vR corresponds to a v/ above, with J = {j : v; =1}.)

3. Prove that b'(z,vR) = b'(z RT ,v), for every z € {0,1}" and v € {0, 1}".
(This enables to compute the ¥'(z,vR)’s via the ¥'(z RT,v)’s.)

4. Prove that, with probability at least % over the choices of R, there exists v € {0,1}/
so that for every 1 <4 <n the sign of 3°,co 130 0'(u, v)b,(vR 4 ¢€')) equals the sign of
(—1)

(Hint: Re-do the proof of the Claim of subsection 2.2, using u o tRT.)

5. Let B be a fixed 2'-by-2' matrix with the (u,v)-entry being '(u,v), and denote by &'
an 2'-dimensional vector with the v™ entry equal b, (vR + ¢'). Consider an algorithm
that computes Z; — Bo', for all i’s, and forms a 2'-by-n matrix Z in which the columns
are the z;’s. The output is the list of rows in Z.

(Notice that the algorithm makes 2 - n queries to obtain all entries in the o'’s, that all
these queries can be computed within 2'n time, and so all that remains is to multiply
the fixed matrix B by n vectors.)

(a) Using Item 4, evaluate the success probability of the algorithm (i.e., the proba-
bility that x is in the output list). .

(b) Using the special structure of the fixed matrix B, show that the product Bo' can
be computed in time /- 2.

Hint: B is the Sylvester matrix, which can be written recursively as

St Si-s
Sy =
’ (Sk_lsk_l)

where S, = +1 and M means flipping the 41 entries of M to —1 and vice versa.

It follows that algorithm A’ can be implemented in time n - (2!, which is O(n?/€?).

Further Improvement. We may further improve algorithm A’ by observing that it suf-
fices to let 2! = O(1/€?) rather than 2' = O(n/€e?). Under the new setting, with constant
probability, we recover correctly a constant fraction of the bits of z rather than all of
them. If were an encoding of some w, s.t. || = O(|w|), under an asymptotically good
error-correcting code, this would suffice. To remove this assumption, we may modify the
hardcore so that b(w,r) is the inner-product of the encoding of w, denoted C'(w), and r
(where || = |C(w)]). Furthermore, using a linear error-correcting code C'(w) = Aw, we can
write b(w, r) = b(Aw,r) = b(w, ATr), and so the entire algorithm can be emulated in terms
of an oracle b, which is e-correlated with b(w,-). Thus, given such an oracle b,, and an
additional oracle y,, so that x,(y) = 1 iff y = w, we can recover w using O(|w|/e*) oracle
queries (and a similar amount of other elementary operations). This is optimal in the sense
that each oracle answer provides only O(e?) bits of information.

