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Abstract

We show how to construct length-preserving 1-1 one-way functions based on popular in-
tractability assumptions (e.g., RSA, DLP). Such 1-1 functions should not be confused with
(infinite) families of (finite) one-way permutations. What we want and obtain is a single
(infinite) 1-1 one-way function.
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1 Introduction

Given any one-way permutation (i.e., a length preserving 1-1 one-way function), one can easily
construct an efficient pseudorandom generator. The construction follows the scheme given by
Blum and Micali [3], using the fact that every one-way function has a hard-core bit [5]. Specif-

ically, assume that f is such a function and let b be a hard core-bit for it (i.e., starting with a

function f’ we define f(z,r) % (f/(x),r) and b(z,7) as the inner-product mod 2 of the strings x

and r when viewed as binary vectors of length |z| = |r|). Then, the pseudorandom generator G,
on input a seed s outputs the sequence b(s),b(f(s)),b(f(f(s))),b(f3(s)), ...

Pseudorandom generators can be constructed also based on arbitrary one-way functions [8];
yet, the known construction is very complex and inefficient. In fact, it is of no practical value.
The construction in [6], which uses arbitrary regular one-way functions is more attractive in
these respects, yet it is far less attractive than the simple construction outlined above. A similar
situation occurs with respect to the construction of digital signature schemes (cf., [10] vs [15]). In
general, 1-1 one-way functions currently offer simpler and more practical constructions (of more
complex primitives) than offered by general one-way functions.

These facts were our initial motivation for trying to construct length-preserving 1-1 one-way
functions. Such functions should not be confused with what is commonly referred to (especially
in the “Crypto Community”) as “one-way permutations” and which are actually infinite sets of
finite functions — see definitions below. What we want is a single infinite function, which is both
length-preserving and 1-1 (and needless to say one-way). We show how to construct such 1-1
one-way functions based on popular intractability assumptions such as the intractability of DLP
and inverting RSA.

Indeed, some (but not all) of the constructions which use length-preserving 1-1 one-way
functions can be modified so that families of one-way permutations can be used instead. Still the
question of whether the former exists is of both theoretical and practical importance.

2 One-Way Functions and Families

Definition 1 (one-way functions): Let f:{0,1}*+—{0,1}* be a length preserving function which
s polynomial-time computable.
e (strongly one-way): f is called (strongly) one-way if for any probabilistic polynomial-time
algorithm A, any positive polynomial p and all sufficiently large n’s
1
Prob(A(f(z)) € 7' f(2)) < —
(A(f(2)) (2)) o0
where the probability is taken uniformly over x € {0,1}", and the internal coin tosses of
algorithm A.

o (weakly one-way): f is called weakly one-way if there exists a positive polynomial p so that
for any probabilistic polynomial-time algorithm A and all sufficiently large n’s

_1 1
Prob(A(f(x)) ¢ /(@) > o

where the probability is as above.



(Note that f:{0,1}*—{0,1}* is 1-1 if f(x) # f(y) for all z # y). In case f(z) # f(y) for all
but a negligible fraction of the pairs (x,y) we say that f is almost 1-1. Namely, an almost 1-1
function f satisfies, for every positive polynomial p and all sufficiently large n’s,

Prob(f(z)=f(y)) < ]ﬁ

where the probability is taken uniformly and indepedently over all 2,y € {0,1}".

Definition 2 (family of one-way permutations — simplified version): A set of finite permutations,

F={f:D; 1|;>1Di}i61, is called a family of one-way permutations if the following conditions hold

o (efficient evaluation): there exists a polynomial-time algorithm that on input an indez (of a
permutation) ¢ € I and a domain element x € D; returns fi(z).

o (efficient index selection): there exists a probabilistic algorithm S that on input n, runs
for poly(n) time and returns a uniformly distributed index of length n (i.e., an ¢ uniformly
distributed in 1 N{0,1}").

o (efficient domain sampling): there exists a probabilistic polynomial-time algorithm D that
on input an index t € I, returns a uniformly distributed element of D;.

e (one-wayness): For any probabilistic polynomial-time algorithm A, any positive polynomial
p and all sufficiently large n’s

1

Prob(A(e, fi(z)) = 2) < —

(Al f2)) = 2) < =

where the probability is taken uniformly over i € I N {0,1}*, € D;, and the internal coin
tosses of algorithm A.

In the non-simplified version, both probabilistic algorithms mentioned above (i.e., S and D) are al-
lowed to produce output with only non-negligible probability (i.e., probability at least 1/poly(n)).
Furthermore, given these algorithms have produced an output, the output is allowed to be wrong
(i.e., out of the target set or non-uniformly distributed) with negligible probability (e.g., with
probability at most 277).

Analogously to Definition 1, families of permutations can be defined to be weakly one-way,
rather than (strongly) one-way.

3 Transforming One-Way Families into Functions

Clearly, any family of one-way permutations can be converted into a single one-way function;
namely, f(r,s) Lt fi(z), where i = S(n,r) is the index selected using coin-tosses r and z =
D(i,s) € D; is the element selected on input ¢ and coin-tosses s. (Padding can be applied, if
necessary, to make f length preserving.) However, this procedure does not necessarily yield a 1-1
function; furthermore, for most natural examples such as RSA, DLP, etc., the resulting function
will be many-to-one.



An alternative construction, which does yield a 1-1 one-way function, is possible under some
additional conditions, as demonstrated below. In fact, the conditions are defined to make this
natural construction work and the thrust of this paper is in demonstrating that these conditions
can be met under reasonable and popular assumptions (see next section).

3.1 The Conditions

Let F be a family of one-way permutations and that let ¢(n) denote the number of coins flipped
by the index selection algorithm S on input n. We consider the following conditions that F may
satisfy

Definition 3 (additional conditions)

e augmented one-wayness: For any probabilistic polynomial-time algorithm A, any positive

polynomial p and all sufficiently large n’s
1
Prob(A(r, fsgnr(z)) = 2) < ——
(ACr fiton(@) = 2) <~

where the probability is taken uniformly over r € {0,1}10"), 2 € Dsnry, and the internal
coin tosses of algorithm A.

(Namely, the permutations are hard to invert even when the inverting algorithm is given
the random coins used to generate the index of the permutation.)

e canonical domain sampling: The domain-sampling algorithm may consist of uniformly se-
lecting a string of specific (easy to determine) length and testing whether the string resides
in the domain. In other words, we require

— (recognizable domain): There exists a polynomial-time algorithm that on input an
index 1 € I and a string x decides if x € D;.

— (non-negligible domain): There exists a polynomial-time computable function|:N — N
and a positive polynomial p(-) so that D; C {0,1}™) and |D;| > zﬁ -2l
3.2 The Construction

Given a family of one-way permutations that satisfies the additional conditions, we explicitly
construct a 1-1 one-way function as follows.

Construction 1 (simple version): Let F be a family of permutations with an index selection
algorithm S that uses q(-) coins and having domains D;’s which are subsets of {0,131 for
some function l(-). We construct the function f as follows

fr,s) def { (r, fi(s)) ifs € D;, wherei ! S(n,r)

] (ry9) otherwise

where v € {0,1}7") and s € {0, 1},



Proposition 1 : The function f is 1-1 and length preserving. If F is a family of one-way
permutations satisfying the additional conditions of Definition 3 then f is weakly one-way. The
latter holds even if F is only weakly one-way (and satisfies the additional conditions).

proof: By definition f is length-preserving. Let G, be the set of pairs (r,s) € {0, 1}9")x {0, 1}(*)
sothat s € Dgy ) holds and let B, be the set of the other pairs (i.e., B, = ({0, 1} % {0, 1}0))—
G/n). The key observation is that if (r,s) € G, then, letting i = S(n,r), s € D; holds and
fi(s) € D; (and f(r,s) € G),) follows. On the other hand, if (v, s) € B, then f(r,s) = (r,s) € B,.
Thus, f maps G, (resp., B,,) to itself and furthermore the mapping induced on G,, (rep., B, ) is
1-1. It follows that f is 1-1.

The function f is polynimal-time computable by virtue of the first two efficiency conditions of
F and the additional ‘recognizable domain’ condition. By the additional ‘non-negligible domain’
condition we know that (7, forms a non-negligible fraction of G,, U B,, and by the ‘augmented
one-wayness’ condition we infer that f is hard to invert on G,. Thus, we conclude that f is
weakly one-way. In fact, the latter conclusion remain valid even if the family of permutations F
is only weakly one-way. O

Remark: The function f (constructed above) may be only weakly one-way since it equals the
identity transformation for a part of its domain and this part may have non-negligible measure.
To get a (strongly) one-way function, one may apply the transformation in [4] to the function f.
(In fact, degenerate versions of the transformation in [4] suffice for this purpose.)

The above construction is stated with respect to the simplified definition of a family of one-way
permutations. Recall that in the non-simplified version, the index-selecting algorithm, .5, is only
required to have an output with non-negligible probability (i.e., the probability is bounded below
by 1/p(n) where p is some fixed positive polynomial). Furthermore, S is allowed to err (i.e., have
output not in /) with a negligible probability. For the general case, we redefine the function f as
follows

Construction 2 (complex version): Let F = {f;: D; HDi}iej be a family of permutations with
an indezx-selecting algorithm, S, which produces output with non-negligible probability and errs
with negligible probability. We construct the function [ as follows

f(r,5) :{ (r, fi(s)) if i S(n,r) # L and s € D,

(r,s) otherwise

where the convention is that in case, on input n and coin tosses v € {0,1}), the algorithm S
halts with no output then S(n,r) ¢ {o0,1}

Proposition 2 : The function f is length preserving and almost 1-1, and in case S never errs f
1s 1-1. If F is a family of one-way permutations satisfying the additional conditions of Definition 3
then f is weakly one-way. The latter holds even if F is only weakly one-way (and satisfies the
additional conditions).

proof: In case algorithm 5 never errs, the proof is similar to the proof of the previous proposition
(i.e., G, is defined as the set of all pairs (r,s) so that i © S(n,r) # L and s € D;). Otherwise,
we observe that the collision probability of f is bouded above by the probability that S errs (and
outputs a string not in I). Since this happens with negligible probability, we are done. O



4 Applying the Transformation

Using the transformation specified in the previous section, we show how to construct a 1-1 one-
way function based on one of several popular intractability assumptions. To this end, we use
these intractability assumptions in order to construct families of one-way permutations satisfying
the additional conditions of Definition 3. Before presenting these constructions, we wish to stress
an important aspect regarding them; namely, their “security”.

Security

The security of a one-way function f is a function, s:IN — N, specifying the amount of “work”
required to invert f on inputs of given length. The work of an algorithm is defined as the
product of the running-time (of the inverting algorithm) and the inverse of its success probability;

namely, w4(n) < t4(n) where t4(n) is the running time of A on f-images of length n and

pa(n) Probyeqo11+(A(f(2)) € f~1 f(x)) is its success probability.

Typical cryptographic constructions, and in particular our constructions, transform one object
(in our case a family of one-way permutations) of security s(-) into another object (in our case
a single 1-1 one-way function) of related security s'(-). The relation between s and s is of key
importance. A weak relation, which is usually easier to obtain, is that s'(poly(n)) > s(n)/poly(n).
Although this relation translates any super-polynomial security s into a superpolynomial security
s’ it is of limited practical value. In order to use the resulting object of security s’ one may needs
to use very big instances. For example, if '(n°) = s(n) and the original object is “secure in
reality” for instance size 100 (bits) then the resulting object (of security s') will be “secure in
reality” only for instances of size 10*°, and is thus unlikely to be of practical value. Thus, stronger
relation between the security s of the original object and the security s’ of the resulting object
are of more value. In particular, it is desirable to have s/(O(n)) > s(n)/poly(n), in which case
we say that the transformation preserves the security.

Getting back to the constructions of the previous section, we note that the security of the
resulting one-way 1-1 function f, on f-images of length ¢(n)4I(n), is at least a polynomial fraction
of the security of the family of one-way permutations on f;-images of length I(n). (Recall, n
denotes the length of the index of the permutation, I(n) the length of the description of elements
in the domain of the permutation and ¢(n) the randomness complexity of the index-selecting
algorithm.) Namely, s'(¢(n) 4+ {(n)) > s({(n))/poly(n), where s denotes the security of the
family F and s’ the security of the function f. Therefore, the smaller the polynomial ¢(-) is, the
better security one gets. It is particularly desirable to keep ¢(n) linear in {(n). All the constructions
presented below achieve this goal. Consequently, the one-way functions constructed below preserve
the security of the intractability assumption on which they are based. We remark that the (weak
to strong one-way) transformation of [4] (mentioned in the Remark above) preserves security too.

Preliminaries: selecting prime numbers

Prime numbers play a key role in all our constructions and so efficient algorithms for selecting
such numbers are of key importance to us. We will use two algorithms due to Bach [1, 2]. The
first algorithm [2] is merely a very efficient (problem-specific) “deterministic amplification” of the



Miller-Rabin primality tester [9, 13]. The second algorithm [1] produces uniformly distributed
integers together with their prime factorization.

Theorem 1 (randonmess efficient primality tester [2]): There exists a probabilistic polynomial
time algorithm that on input P uses |P| random bits so that if P is prime then the algorithm

always accepts, and otherwise (i.e., P is composite) the algorithm accepts with probability at most
1 —|P|/2

1 o-IPl/2

VP

Theorem 2 (space efficient generation of integers with known prime factorization [1]): There
exists a probabilistic polynomial time algorithm that uses linear space and on input 1™ uniformly
generates a number N in the interval [2"~1,2" — 1] and outputs the prime factorization of N.

The above two algorithms are reasonablly efficient. We are reluctant to use the primality certifier
of Goldwasser and Kilian which for all but a negligible fraction of the primes finds in probabilistic
polynomial-time a certificate of primality [7]. Interestingly, this algorithm can be implemented
within linear space and so applying the transforamtion of Nisan and Zuckerman [11] we get an
implementation which uses linear randomness.

Theorem 3 (randonmess efficient primality certifier [7, 11]): There exists a probabilistic polyno-
mial time algorithm that on input P uses O(|P|) random bits and for all but a negligible fraction of
the primes finds a certificate of primality (i.e., a witness/proof with respect to some NP-relation).

4.1 A construction based on RSA

The standard presentation of RSA [14] yields a family of permutations which is believed to be
one-way, but is certainly not one-way in the augmented sense of Definition 3. (Here we refer
to a family in which the indices are pairs (N, e), where N is the product of two primes of equal
length and e is relatively prime to ¢(N). The index is generated by randomly selecting these two
primes, multiplying them and next selecting a proper e. Thus, giving these random choices away
compromises the security of RSA, since given the prime factors it is easy to invert the function.)

We consider, instead, the following family of weak one-way permutations. The indices in this
family are pairs of integers (N, P) so that P is a prime and | P| = |N|. For each such pair we define

a permutation over ZYy, the multiplicative group modulo N; specifically, fy p(2) Lf 2P mod N.
Note that we do not insist that N is a product of two primes of the same length. Yet, a non-
negligible fraction of the possible N’s will have this form. Thus, if the standard RSA family is
strongly one-way (for random exponent) then it is also (strongly) one-way for a prime exponent
and consequently the above (non-standard) family of functions will be weakly one-way (due to the
non-negligible fraction of composites of the standard form). Since P is relatively-prime to ¢(N),
the functions in this family are in fact permutations over Z},. (Note that the index-selecting
algorithm does not know ¢(N) and so relative-primality of P and ¢(N) is imposed by requiring
that P is prime.)

We now show that the above family satisfies the non-simplified requirements (from a family
of one-way permutations) as well as the additional conditions in Definition 3. Of the efficiency
conditions only the index selection is problematic, yet it does hold when allowing negligible error
and requiring that output is produced only with non-negligible probability (i.e., just select two n-
bit integers at random and check if the second is prime — producing an output only if the answer is



in the affirmative). Also, Z} is easily recognizable and is non-negligible with respect to {0, 1}Vl
Furthermore, this family is one-way in the augmented sense (under the “RSA assumption”) since
the modulus is generated via an identity transformation from the coins of the index-selecting
algorithm (and thus these coins add no knowledge to the inverter). It follows that we can apply
Proposition 2 and derive an almost 1-1 one-way function.

Definition 4 (standard RSA Assumption): We say that inverting RSA is intractable with security
s(+) if any algorithm for the inverting task uses work greater than s(-). The inverting task consists
of finding x such that y = x° mod N, when given N, e and y, where N is uniformly selected
among all composites which are the product of two (n/2)-bit long primes, e is uniformly selected
among the elements of the multiplicative group modulo ¢(N), and y is uniformly selected among
the elements of the multiplicative group modulo N .

To justify our claim that security (of the RSA Assumption) is preserved we have to note that
pairs (N, P) as required can be selected using O(|(N, P)|) random bits. To this end, we use the
algorithm guaranteed in Theorem 1. Thus, we get

Corollary 1 : Suppose that inverting RSA is intractable with security s(n). Then, there exists

de

an almost 1-1 one-way function with security s'(O(n)) < s(n)/poly(n).

The possible colisions in the one-way function are due to the error probability of the index
selection algorithm which in turn is due to the probability that a composite passes the primality
test. Using Theorem 3 we can get rid of this error (i.e., if we fail to generate a certificate then we
treat the integer, which is possibly a prime, as if it were found to be composite). Thus, assuming

that inverting RSA is intractable (with security s(n)), there exists a 1-1 one-way function (with
ef

security s'(0(n)) < s(n)/poly(n)).

4.2 A construction based on a restricted DLP

Here we rely on the assumption that the Discrete Logarithm Problem (DLP) in the multiplicative
group modulo P is hard also for the special case of primes of the form P = 2¢) + 1, where @)
is a prime. We also use the assumption that such primes form a non-negligible fraction of the
integers of the same length. Based on these assumptions, the following family of permutations
is one-way. The indices in the family are pairs (P, g), where P is a prime of the above form and
g is a primitive element modulo P. The index is selected by first selecting a prime of the above
form and next using the known factorization of ¢(P) = 2Q to test candidates for primitivity (see
details below). For each index, (P, g), we define a permutation over Z}, the multiplicative group

modulo P; specifically, fp,(z) Lt ¢” mod P. Noting that Z% is both ‘non-negligible’ and easy to
recognize, we can apply Proposition 2.

To justify our claim that the resulting 1-1 one-way function preserves the security of the
family, we note that pairs (P, g) can be selected using O(|P|) random bits. On input n we
uniformly select an (n — 1)-bit integer, @, and test @ and P = 2¢) + 1 for primality. In case
we are successful, we uniformly select ¢ € Z% and test if it is primitive (mod P) by computing
g”7 ' mod P, g9 mod P and ¢g? mod P. (If the first expression evaluates to 1 whereas the other
two don’t, then ¢ is a primitive element modulo P.) We get



Corollary 2 : Suppose that the restricted DLP is intractable with security s(n) (see definition
below), and that the set of n-bit primes, P, for which ¢(P)/2 is prime, constitute a 1/poly(n)
fraction of the n-bit long integers. Then, there exists an almost 1-1 one-way function with security

S(0(n)) % s(n)/poly(n).
Again, the one-way function can be made 1-1 by using Theorem 3 (as above).

Definition 5 (restricted DLP Assumption): We say that the restricted DLP is intractable with
security s(-) if any algorithm for the following inverting task uses work greater than s(-). The
inverting task consists of finding © such that y = ¢* mod P, when given P, g and y, where P
is uniformly selected among all n-bit primes for which ¢(P)/2 is prime, g is uniformly selected
among the primitive elements modulo P, and y is uniformly selected among the elements of the
multiplicative group modulo P.

4.3 A construction based on the general DLP

Here we rely on a seemingly weaker assumption concerning the DLP. Specifically, we assume that
the Discrete Logarithm Problem (DLP) in the multiplicative group modulo a prime P is hard
also when given the factorization of ¢(P). Making this assumption, we can waive the assumption
made in the previous subsection concerning the density of primes of special form P = 2¢) + 1,
where ) is a prime. (Note that for primes of the special form P = 2@ + 1 the factorization of
d(P)=2-Q is always known.)

Based on the above intractability assumption, the following family of permutations is one-
way. The indices in the family are pairs (P, g), where P is a prime and ¢ is a primitive element
modulo P. The index is chosen by first generating a random prime P with known factorization
of ¢(P) (see details below), and next using this factorization to test candidates for primitivity.

For each index, (P, g), we define a permutation over Z} as before (i.e., fp () Lt g” mod P).
Again, we can apply Proposition 2.

We have postponed the discussion of how to randomly generate primes P with known fac-
torization of ¢(P). Here, a different algorithm of Bach comes to the rescue. This algorithm,
uniformly generates composites with their factorization [1]. Having produced a factored compos-
ite N, we test N + 1 for primality and are done if the answer is in the affirmative. Actually, the
algorithm produces a certificate for the primality of P = N + 1 in probabilistic polynomail-time
using the (certified) factorization of P — 1 (produced by Bach’s algorithm). A straightforward
implementation of Bach’s algorithm requires a super-linear number of coin tosses. Yet, it is
possible to implement an approximation of the algorithm using only a linear number of coin
tosses (i.e., linear in the length of the composite being generated). The details are quite tedious.
Instead, we prefer to invoke a general result of Nisan and Zuckerman [11] by which any proba-
bilistic polynomial-time algorithm, which uses linear space, can be approximated using a linear
number of coin tosses. It is very easy to see that Bach’s algorithm falls into this category (and
this is stated in Theorem 2 above). This yields an index selecting algorithm which selects pairs
(P, g) using O(|( P, g)|) random bits, justifying our claim that the resulting 1-1 one-way function
preserves the security of the family. We stress that the index selecting algorithm never errs (and
furthermore it produces a certificante for membership in the index set). Thus, we get



Corollary 3 : Suppose that DLP is intractable with security s(n), even when the factorization of

the order of the group is given (see definition below). Then, there exists a 1-1 one-way function

with security s'(O(n)) = s(n)/poly(n).

Definition 6 (DLP Assumption): We say that the DLP is intractable with security s(-) if any
algorithm for the following inverting task uses work greater than s(-). The inverting task consists
of finding x such that y = g" mod P, when given P, the factorization of ¢(P), g and y, where P
s uniformly selected among all n-bit primes, g is uniformly selected among the primitive elements
modulo P, and y is uniformly selected among the elements of the multiplicative group modulo P.

5 Conclusions and Open Problems

We have presented a method for constructing (strongly) one-way permutations. The method
consists of three steps.

Step (1) using well-known intractability assumptions to construct families of one-way permu-
tations satisfying the additional properties specified in Definition 3;

Step (2) using such a family to construct a weak one-way function;
Step (3) transforming the resulting function into a strongly one-way function.

We consider the identification of the conditions in Definition 3 and the construction of families of
one-way permutations satisfying these conditions to be the most important contributions of the
current paper. Thus, most of the paper is dedicated to the implementation of Step (1), whereas
Step (2) is obtained by Construction 1 and Step (3) is obtained by referring to [4].

Regarding Step (3), we remark that applying the general (“weak to strong”) transformation
of [4] seems an over-kill since in our case the weakly one-way function f has a special structure
(e.g., it is hard to invert almost on all points on which it is not the identity transformation).
Furthermore, it seems that ad-hoc methods may be applicable to the function f resulting from a
specific transformation. However, in our attempts to avoid using [4], we were not able to avoid
using random walks on expander graphs (and since expander graphs are the only non-elementary
component of [4] we see no point in presenting these alternatives here). Certainly, it will be
better to the use of expander graphs and perform Step (3) in a more efficient manner.

Another obvious open problem is to construct one-way 1-1 functions based on the intractability
of factoring. To achieve this goal using our method one will need to construct a family of one-
way permutations satisfying the additional properties specified in Definition 3. (The standard
construction of a family of one-way permutations based on factoring [12] does not satisfy the
augmented one-wayness condition.)
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