Increasing the Expansion of Pseudorandom Generators

(Extracts from a book on Cryptography)1

Oded Goldreich
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, Israel.

February 24, 1996

LCopyright (©) 1995 by Oded Goldreich. Permission to make copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that new copies bear this notice and the full citation on the first page.
Abstracting with credit is permitted.

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS 1

Preface: The purpose of the following extract is to provide an accessible source to an
unpublished result of Goldreich and Micali (1984) by which the expansion of pseudo-
random generators can be increased; see Theorem 3 (below).

3.3 Definitions of Pseudorandom Generators

Pseudorandom ensembles, defined above, can be used instead of uniform ensemble in any efficient
application without noticeable degradation in performance (otherwise the efficient application can
be transformed into an efficient distinguisher of the supposedly-pseudorandom ensemble from
the uniform one). Such a replacement is useful only if we can generate pseudorandom ensembles
at a cheaper cost than required to generate a uniform ensemble. The cost of generating an
ensemble has several aspects. Standard cost considerations are reflected by the time and space
complexities. However, in the context of randomized algorithms, and in particular in the context
of generating probability ensembles, a major cost consideration is the quantity and quality of the
randomness source used by the algorithm. In particular, in many applications (and especially in
cryptography), it is desirable to generate pseudorandom ensembles using as little randomness as
possible. This leads to the definition of a pseudorandom generator.

3.3.1 Standard Definition of Pseudorandom Generators

Definition 1 (pseudorandom generator - standard definition): A pseudorandom generator is a
deterministic polynomial-time algorithm, G, satisfying the following two conditions:

1. expansion: there exists a function l : N — N so that l[(n) > n for alln € N, and |G(s)| =
[(|s]) for all s € {0,1}*.
The function l is called the expansion factor of (5.

2. pseudorandomness (as above): the ensemble {G(U,)}nen is pseudorandom.

Again, we call the input to the generator a seed. The expansion condition requires that the
algorithm G' maps n-bit long seeds into I(n)-bit long strings, with {(n) > n. The pseudoran-
domness condition requires that the output distribution, induced by applying algorithm G to
a uniformly chosen seed, is polynomial-time indistinguishable from uniform (although it is not
statistically close to uniform - see justification in previous subsection).

The above definition says little about the expansion factor /: N+ N. We merely know that
for every n it holds that I(n) > n + 1, that I(n) < poly(n), and that I(n) can be computed in
time polynomial in n. Clearly, a pseudorandom generator with expansion factor [(n) = n + 1
is of little value in practice, since it offers no significant saving in coin tosses. Fortunately, as
shown in the subsequent subsection, even pseudorandom generators with such small expansion
factor can be used to construct pseudorandom generators with any polynomial expansion factor.
Hence, for every two expansion factors, [; : N — N and [, : N — N, that can be computed in

poly(n)-time, there exists a pseudorandom generator with expansion factor /; if and only if there

exists a pseudorandom generator with expansion factor l5. This statement is proven by using a
pseudorandom generator with expansion factor [;(n) Lt 1to construct, for every polynomial
p(-), a pseudorandom generator with expansion factor p(n). Note that a pseudorandom generator

with expansion factor [,(n) L' 5 4+ 1 can be derived from any pseudorandom generator.

3.3.2 Increasing the Expansion Factor of Pseudorandom Generators

Given a pseudorandom generator, (1, with expansion factor [;(n) = n + 1, we construct a
pseudorandom generator G with polynomial expansion factor, as follows.

Construction 2 Let Gy a deterministic polynomial-time algorithm mapping strings of length
n into strings of length n 4 1, and let p(-) be a polynomial. Define G(s) = oy -+ -0p(s)), where
s0 e s, the bit o; is the first bit of G1(s;_1), and s; is the |s|-bit long suffiz of G1(s;_1), for every

1<i<p(|s]). (i.e., i85, = G1(si_1))

Hence, on input s, algorithm G applies Gy for p(]s|) times, each time on a new seed. Applying
(i1 to the current seed yields a new seed (for the next iteration) and one extra bit (which is being
output immediately). The seed in the first iteration is s itself. The seed in the i*® iteration is the
|s|-long suffix of the string obtained from G in the previous iteration. Algorithm G outputs the
concatenation of the “extra bits” obtained in the p(|s|) iterations. Clearly, GG is polynomial-time
computable and expands inputs of length n into output strings of length p(n).

Theorem 3 Let Gy, p(+), and G be as in Construction 2 (above). Then, if G, is a pseudorandom
generator then so is G.

Intuitively, the pseudorandomness of G follows from that of Gy by replacing each application of
G by a random process which on input s outputs os, where o is uniformly chosen in {0,1}.
Loosely speaking, the indistinguishability of a single application of the random process from a
single application of GG implies that polynomially many applications of the random process are
indistinguishable from polynomially many applications of G;. The actual proof uses the hybrid

technique.

Proof: The proof is by a “reducibility argument” . Suppose, to the contradiction, that G is not
a pseudorandom generator. It follows that the ensembles {G(U,)}nen and {Uyen)}nen are not
polynomial-time indistinguishable. We will show that it follows that the ensembles {G'1(U,)}nen
and {U,11}.en are not polynomial-time indistinguishable, in contradiction to the hypothesis that
(7 is a pseudorandom generator with expansion factor /;(n) = n 4 1. The implication is proven,
using the hybrid technique.

For every k, 0 <k <p(n), we define a hybrid Hﬁ(n) as follows. First we define, for every k,

a function ¢¥:{0,1}"+—{0,1}* by letting ¢°(x) DY (the empty string) and gf*'(z) = ogf(y),

where o is the first bit of G1(2) and y is the n-bit long suffix of G1(2) (i.e., oy = G1(2)). Namely,
for every k < p(|z|), the string gf(z) equals the k-bit long prefix of G(z). Define the random

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS 3
variable H;f(n) resulting by concatenating a uniformly chosen k-bit long string and the random
variable ¢gP(")=#(J,). Namely

€ U g ULR)

p(n)

where U,gl) and U{* are independent random variables (the first uniformly distributed over {0, 1}*
and the second uniformly distributed over {0, 1}"). Intuitively, the hybrid H;f(n) consists of the
k-bit long prefix of U,(,) and the (p(n) — k)-bit long suffix of G(X,,), where X,, is obtained from
U, by applying G; for k times each time to the n-bit long suffix of the previous result. However,
the later way of looking at the hybrids is less convenient for our purposes.

At this point it is clear that H;f(n) equals G(U,), whereas Hf:((:)) equals Up,). It follows that if
an algorithm D can distinguish the extreme hybrids then D can also distinguish two neighbouring
hybrids, since the total number of hybrids is polynomial in » and a non-negligible gap between
the extreme hybrids translates into a non-negligible gap between some neighbouring hybrids.
The punch-line is that, using the structure of neighbouring hybrids, algorithm D can be easily
modified to distinguish the ensembles {G'1(U,)}nen and {U,41}nen. Details follow.

The core of the argument is the way in which the distinguishability of neighbouring hybrids
relates to the distinguishability of G(U,) from U,,,. As stated, this relation stems from the
structure of neighbouring hybrids. Let us, thus, take a closer look at the hybrids Hﬁ(n) and Hzlf(:%,
for some 0 <k < p(n) — 1. To this end, define a function f™ :{0,1}"*' — {0,1}™ by letting
fo(2) L'\ and fmi(z) Lt 0g™(y), where z = oy with 0 €{0,1}.

Claim 3.1:
1. H*

p(n

y = Ulgl)fp(n)—k(Xn_l_l), where Xo = Gl(Ur(zz))-

2. Hk+1 = Ulgl)fp(n)_k(yn+1)v where Yn+1 = Ur(z?-)l-)l

p(n)

Proof:

1. By definition of the functions g™ and f™, we have g™ () = f”(G1(2)). Using the definition
of the hybrid HY, ,, it follows that

n)’

i, = U g U = U =G (0))

P
2. On the other hand, by definition f™*!(oy)= 0¢™(y), and using the definition of the hybrid
Hzlf(:%, we get
Hy = Udhg™ ™™ U = U0 (03
O

Hence distinguishing G1(U,) from U, 4, is reduced to distinguishing the neighbouring hybrids
(ie. HJ,
uniformly chosen string of length &, and applying the hybrid-distinguisher to the resulting string.

Further details follow.

) and H;“(‘;%), by applying fPU"~* to the input, padding the outcome (in front of) by a

We assume, to the contrary of the theorem, that GG is not a pseudorandom generators. Suppose
that D is a probabilistic polynomial-time algorithm so that for some polynomial ¢(-) and for
infinitely many n’s it holds that

A(n) ™ [Prob(D(G(U,)=1) = Prob(D(Uy)= 1) > ——

We derive a contradiction by constructing a probabilistic polynomial-time algorithm, D', that
distinguishes G (U,) from U, 4.

Algorithm D’ uses algorithm D as a subroutine. On input a € {0,1}"*! algorithm D’
operates as follows. First, D’ selects an integer k uniformly in the set {0,1,...,p(n)— 1}, next D’
selects 3 uniformly in {0,1}*, and finally D’ halts with output D(BfP")~*(a)), where frir)=F ig
as defined above.

Clearly, D' can be implemented in probabilistic polynomial-time (in particular fri?)=*
computed by applying GG; polynomially many times). It is left to analyze the performance of D’
on each of the distributions G'(U,) and U, 4.

Claim 3.2:

(n)-
1
Prob(D'(G(U,))=1) = o) Z Prob(D(H,,.))=1)
k:
and p(n)-1
Prob(D'(Upy1) = Z Prob(D(H)+))=1)

Proof: By construction of D’ we get, for every a € {0, 1}t

()=
Prob(D'(a)= :(L Z_: Prob(D(U f™ ™" (a))=1)

Using Claim 3.1, our claim follows. O

Let d*(n) denote the probability that D outputs 1 on input taken from the hybrid H;f(n) (i.e.,
d*(n) ' Prob(D(H Ny =1)). Recall that H,,, equals G(U,), whereas Hf:((n)) equals Up(,). Hence,
&(n) = Prob(D(G(U,)) = 1), &™) (n) = Prob(D(Uym) = 1), and A(n) = |d°(n) — d"™) ().
Combining these facts with Claim 3.2, we get,

p(n)-1
R RAGRAN Q]
Ido()—d”(”()|

p(n)
A(n)

p(n)

|Prob(D'(G1(U,))=1) — Prob(D'(Upy1)=1)]

Recall that by our (contradiction) hypothesis A(n) >
diction to the pseudorandomness of G| follows. |l

ﬁ, for infinitely many n’s. Contra-

