
How to Solve any Protocol Problemby Oded Goldreich, Silvio Micali and Avi Wigderson.Remark: A version identical in contents, but very di�erent in form has appeared in the proceedingsof the 19th STOC, pp. 218{229, 1987. This version was produced, from an old draft (dating to1986), by automatic convertion of a old troff �le into a latex �le. The output was not carefullychecked; hopefully, it does not contain too many typos.ABSTRACT:This extended abstract present a general theorem in the �eld of fault tolerant distributed com-puting. Following is a simpli�ed description of a special case of this theorem. Loosely speaking,a protocol problem is a multi-argument function f and its solution is a multi-party fault-tolerantprotocol having the following two properties:(1) Correctness: The protocol allows each party to obtain the value of the function on argu-ments scattered among all the parties. Namely, the local input of party Pi is xi, and his localoutput (obtained by execution of the protocol) is f(x1; x2; :::; xn).(2) Privacy: Whatever a party (Pi) can e�ciently compute after participating in the protocol,he can also e�ciently compute from his local input (xi) and his local output (i.e. f(x1; x2; :::; xn)).In other words, participating in the protocol is equivalent to getting f(x1; x2; :::; xn) from a trustedoracle. For example, if f(x1; x2; :::; xn) =Pni=1 xi then a solution is a protocol at the end of whicheach party gets the sum of the xi's without gaining any additional knowledge as to how theresidual sum is partitioned among his counterparts.Assuming the existence of secure encryption functions, it will be shown that every protocolproblem has a solution with complexity polynomial in the complexity of the problem. Further-more, we present an e�cient algorithm that, on input a Turing machine description of a function,outputs an e�cient solution for this problem.

1. IntroductionThe general goal of distributed computing is to develop protocols for computing (distribu-tively) functions of local inputs scattered among the processors. If all processors follow theirpredetermined programs then the existence of such protocols follows immediately from the spec-i�cation of the corresponding function, and the only challenge is in improving the (message andtime) complexities of these protocols. However, the situation is much more complex if some ofthe processors may deviate from their predetermined program in certain ways. A natural modelof such misbehaviour allows faulty processors to deviate from their predetemined program in anarbitrary, but polynomial-time manner. When faults are present, it is no longer clear if thereexist protocols that are correct in the sense that they terminate with each of the non-faulty pro-cessors having the value of the function. Furthermore, it is not clear whether correct protocolscan o�er the maximum possible privacy of local inputs allowed by the function (i.e. whether it ispossible to restrict what the faulty processors learn about the values of the non-faulty processors,by executing the protocol, to the value of the function).The main result of this paper is an absulote a�ermative resolution of the above problem.If secure trapdoor encryption functions exist and as long as more than half of the processorsremain non-faulty, every function has a correct fault-tolerant protocol that o�ers the maximumdegree of privacy. The complexity of the protocol is polynomial in the time-complexity of thefunction. Furthermore, there exist a polynomial-time algorithm that on input a Turing-Machinespeci�cation of the function outputs such a protocol.1.1 Formal SettingFor the sake of simplicity, we consider the special case in which the task is to compute onecommon output as a function of all local inputs. Let n be an integer, N = f1; 2; :::; ng, f be ann-ary function computable in polynomial-time, and P be a protocol for n parties the programsof which require only probabilistic polynomial-time computations. In the sequel, we will considerexecutions of P during which some of the processors become faulty. Faulty processors maydeviate from P in an arbitrary, but (probabilistic) polynomial-time manner. Furthermore, faultyprocessors may collaborate with each other. We assume that the set of faulty processors is �xedbeforehand (though it is not \known" to the non-faulty processors).De�nition (- sketch): We say that P is a correct fault-tolerant protocol for computing f , if forevery set T � N of less than n=2 faulty processors either all non-faulty processors locally outputf(x1; x2; :::; xn) or they all output a special symbol denoted ?. In case the non-faulty processorsoutput ? the following holds: there exists a probabilistic polynomial-time algorithm that on inputfxi : i 2 Tg outputs a probability distribution which is polynomially-indistinguishable from theoutput of the faulty processors in such executions.Intuitively, P is a correct fault-tolerant protocol for computing f if the (non-faulty) majoritycan obtain f(x1; :::; xn), except for cases in which a minority T based only on the values of itslocal inputs (fxi : i 2 Tg) descides not to take any part in the execution. In this latter case, thenon-faulty majority will detect the existence of such a minority (and its identity!). We believethat this notion of \correctness" is the strongest possible one.De�nition (- sketch): We say that the protocol P o�ers the maximum degree of privacy al-lowed by f , if for every set T � N of less than n=2 faulty processors there exist a probabilis-tic polynomial-time algorithm such that on input f(x1; x2; :::; xn) and fxi : i 2 Tg outputs a

probability distribution which is polynomially-indistinguishable from the probability distributionconsisting of concatenating the outputs of the faulty processors after participating in the protocolP . Intuitively, P o�ers the maximum degree of privacy, if whatever a (faulty) minority can com-pute after participating in an execution of P it could have computed from its local inputs andthe value f(x1; :::; xn).1.2 An ExampleBefore going any further let us provide an example to the notions presented above. Considerthe sum function f(x1; :::; xn) =Pni=1 xiA correct fault-tolerant protocol for computing f will not allow faulty parties to \tailor" the sumto their liking by \changing their inputs" after seeing the accumalative sum. Such parties haveonly the choice to either participat in the protocol or not participat and be detected as faultyparties. This choice has to be made without any knowledge of the local inputs of non-faultyparties.Using the notion of veri�able secret sharing [CGMA], it is easy to present a correct fault-tolerant protocol for computing the sum function. Let each party veri�ably share his input withall other parties, and next (if this phase is completed to the satisfaction of all parties) let eachparty broadcast his input. The inputs of parties which did not broacast properly are revealed bythe honest share holders. However, this protocol does not o�er any privacy.A correct fault-tolerant protocol which o�ers the maximum degree of privacy allowed by thesum function was recently presented by Cohen [Coh]. In the case of the sum function \maximumprivacy" means that all that a coalition T of faulty processors can e�ciently compute afterparticipating in the protocol, can be e�ciently computed from their local inputs (fxi : i 2 Tg)and the sum of all local inputs (i.e. Pi2N xi). Equivalently, all they learnt about the local inputsof the other processors is their sum Pi2N xi, and this of course can not be avoided.The ideas suggested by Cohen [Coh] do not extend to any other function (except multiplica-tion), since they heavily rely on the homomorphism of the secret sharing scheme with respect tothe function f . To the best of our knowledge, no other non-trivial protocols which are correctand o�er maximum privacy were know until now.1.3 Our ResultIn this paper we show that all polynomially computable functionsd have correct polynomial-time fault-tolerant protocols which o�er the maximum possible privacy. Furthermore, these pro-tocols can be e�ciently generated from the Turing-Machine description of the function. Namely,Main Theorem: Assume that there exists a secure public-key encryption scheme. Then thereexists a polynomial-time algorithm that on input a Turing machine program for polynomially-computable function f, outputs a correct (polynomial-time) fault-tolerant protocol for computing fin a manner o�ering the maximum degree of privacy allowed by f.

The result extends to the generation of probability distributions (i.e. the input may be aprobabilistic polynomial-time program), to the computation of di�erent values by each party, andto playing any recursive partial information game. For more details see section 4.1.4 The ConstructionThe proof of the Main Theorem is constructive. The construction is in two steps. First, weshow how, given a Turing-Machine speci�cation of the function f , one can e�ciently generate aprotocol for semi-honest parties that o�ers the maximum degree of privacy allowed by f . Thesemi-honest parties may deviate in their internal computation from the protocol, but the messagesthey send are in accordance with the protocol. Next, we show how to e�ciently compile protocolsfor semi-honest parties into fault-tolerant protocols, in a manner which preserves both correctnessand privacy (as long as the number of faulty processors is smaller than n=2).The core of the �rst step of our construction is a method for computing through a Booleancircuit, while manipulating the intermediate values distributively in a secret sharing manner. Animportant ingredient in this method is a generalization of a Theorem due to Yao [Y2]. Thisgeneralization states that, for every polynomial-time computable function f , there exist a two-party cryptographic protocol for correctly computing f in a manner which o�ers the maximumdegree of privacy allowed by f , as long as the parties are semi-honest.The second step of our construction makes primary use of the result that all NP languages havezero-knowledge interactive proofs and that the prover in these interactions may be a probabilisticpolynomial-time machine which gets a \witness for membership" as an auxiliary input [GMW].Other essential ingredients are the notions of veri�able secret sharing and simultaneous broadcastproposed and �rst implemented by Chor, Goldwasser, Micali and Awerbuch [CGMA].2. How to Generate Maximum Privacy Protocols for Semi-Honest PartiesGiven a Turing Machine program and its inputs, we can easily constract an functionallyequivalent polynomial-size Boolean circuit. Without loss of generality, we assume that this circuithas maximum fanin 2, and contains only AND and NOT gates.Our original construction made use of Barrington's result [Bar] that Boolean circuits can besimulated by straightline programs in permutation groups. The construction was carried outon such straightline programs. Instead, using ideas of Stuart Haber, we present here a simplerconstruction which views Boolean circuits as straightline programs over GF (2). An AND gate issimulated by multiplication, while aNOT gate is simulated by adding the constant 1. Throughoutthe rest of this section arithmetic will be in GF (2).We now present a protocol by which n semi-honest parties can evaluate a straightline programover GF (2) with each of the inputs known only to one party. The protocol will o�er the maximumdegree of privacy allowed by the original function (Turing Machine) f . That is, for each coalisionC of a subset of the parties, whatever C can compute e�ciently after the termination of theprotocol, can be e�ciently computed from fxi : i 2 Cg and f(x1; x2; :::; xn). Note that here wedo not require that jCj < n=2.The protocol starts by each party sharing each of his input bits with all other parties, usinga secret sharing scheme in which exactly n pieces are needed in order to reconstract the secret.More speci�cally, to share his bit b, the \owner" chooses at random n bits b1; b2; :::; bn satisfyingb = Pni=1 bi. Next, the \owner" uses the public-key of each party to sends to him secretly the

corresponding piece of b (i.e. party i gets Ei(bi), where Ei is ith public encryption function).At this point, the parties hold pieces allowing to obtain the values of all the input lines inthe straightline program. Our purpose is to allow the parties to hold pieces allowing to obtainthe value of all output lines in the straigthline program. To this end, the parties will scan thestraightline program sequentially, generating pieces for a new line from the pieces of the previouslines. We distinguish between three cases:1) The new line is an input line. In this case, the parties already have the pieces allowing toobtain the value of this line.2) The new line is obtained by adding the costant 1 to some previous line (say line L). Inthis case, one of the parties (say the �rst party) adds the constant 1 to his piece of line L,resulting in his piece of the current line. All other parties let their piece of line L be theirpiece of the current line.3) The new line is obtained by multiplying two lines, denoted L1 and L2. This case is themost complex one. Let ci be ith piece of line L1, and di be his piece of line L2. We need tocompute pieces of (Pni=1 ci) � (Pnj=1 dj). The idea is to let each party i compute by himselfbI;i = ci �di, and each pair i < j of parties execute a two-party protocol such that guaranteesthe following:(1) Party i ends with bi;j and party j ends with bj;i.(2) bi;j + bj;i = ci � dj + cj � di(3) The protocol does not leak knowledge about bi;j + bj;i.Now party i lets Pnj=1 bi;j be his piece of the current line. Note that(nXi=1 ci) � (nXj=1 dj) = (nXi=1 ci � di) + X1�i<j�n(ci � dj + cj � di) = nXi=1 nXj=1 bi;jAssuming that factoring is intractable, a protocol satisfying the above three conditions is implicitin Yao's work [Y2]. In fact, using a new \Oblivious Transfer" protocol (which in turn uses ideasfrom [EGL]), a protocol satisfying the above conditions exists under more general condition: theexistence of trapdoor encryption functions.The proof that the above n party protocol o�ers the maximum possible privacy, is omittedfrom this extended abstract.3. The Preserving Compiler: from Semi-Honest to Fault-Tolerant ProtocolsWe now present a compiler, that on input a protocol for n semi-honest parties, outputs a fault-tolerant protocol preserving the correctness and privacy of the original protocol. The protocoloutput by the compiler consists of two phases. In the �rst phase, each of the parties veri�ablyshares his private input in a way allowing only a majority of the parties to reconstruct it. Thesecond phase consists of a simulation of the execution of the original protocol, using zero-knowledgeproofs to convince that the simulation is proper. If a party stops responding in the second phasethe non-faulty parties will detect this, reconstruct his private input, and continue on his behalf.Thus, faulty parties may \suspend" the execution of the protocol only during the �rst phase.But in such a case, they do so obliviously of the private inputs of the non-faulty parties, andfurthermore they will be detected.

The notion of a veri�able secret sharing, presented by Chor, Goldwasser, Micali and Awerbuch[CGMA], plays a central role in phase one of our protocols. Loosely speaking, a veri�able secretsharing is a n+1-party protocol through which a sender (S) can distribute to the receivers (Ri's)pieces of a secret s recognizable through an a-priori known \encryption" g(s). The n pieces shouldsatisfy the following three conditions (with respect to 1 � lu � n):1) It is infeasible to obtain any knowledge about the secret from any l pieces;2) Given any u messages the entire secret can be easily computed;3) Given a piece it is easy to verify that it belongs to a set satisfying condition (2).The notion of a veri�able secret sharing di�ers from Shamir's secret sharing [Sha], in that thesecret is recognizable and that the pieces should be veri�able as authentic (i.e. condition (3)).Assuming the existence of arbitrary one-way permutations, a conceptually simple solution allowingu = l+ 1 � n was presented in [GMW].During the �rst phase of the compiled protocol each party will generate a \certi�ed randominput" and will use veri�able secret sharing with a threshold of n=2 to share both his privateinput and his certi�ed random input. The certi�ed random input is generated using a distributivecoin ip protocol. Such a protocol is easily constructable using the abstraction of simultanousbroadcast (see Chor, Goldwasser, Micali and Awerbuch [CGMA]). As long as a majority of theprocessors are non-faulty, the string generated so are guaranteed to be indistinguishable fromtruely random strings. Implementing simultanous broadcast was reduced to veri�able secretsharing in [CGMA].The second phase of the compiled protocol consists of a \certi�ed simulation" of the originalprotocol. Note that the messages sent in the original protocol are computed in polynomial-timewhen given the private and random inputs of their sender and all the messages he has received.Using the result in [GMW], the sender can prove in zero-knowledge that the message he sendswas properly computed.The proof that the compiled protocol preserves the correctness and privacy of the originalprotocol, is omitted from this extended abstract.

4. Concluding RemarksIn the previous sections, we have restricted ourself to the special case where the parties wish tocompute one common output. More generally, they may wish to compute simultaneously variousdi�erent functions of the local inputs. That is, there are n predetermined functions, denoted f1,f2,..., fn; and party i wishes to have fi(x1; x2; :::; xn). Letting f(x1; x2; :::; xn) be the concatenationof Ei(fi(x1; x2; :::; xn)), for 1 � i � n, the general case reduces to the special case discussed inthe previous sections. Another generalization of our result is for the generation of probabilitydistributions parametrized by the sequence of local inputs, instead of functions of this sequence.Throughout the previous sections, we have restricted the functions to be computed in polynomial-time. The reason for this was that twofold: we wanted to end with a polynomial-time protocol,and we wanted to defeat all polynomial-time adversaries. It is obvious that a stronger result holdsfor all functions, when allowing the protocol to run in time polynomial in the complexity of thefunction and requiring that it defeats all adversaries running in time polynomial in the run-timeof the protocol.An even more general result, which we obtain using essentially the same techniques, can bephrased as demonstrating "how to play any mental game". In the rest of this abstract we explainwhat we mean by this.How to Play any Mental Game (from the Introduction to the STOC version)Many actions in life such as negotiating a contract, casting a vote in a ballot, playing cards,bargaining in the market, submitting a STOC abstract, driving a car and simply living, may beviewed as participating with others in a game with payo�s/penalties associated with its results.This is not only true for individuals, but also for companies, governments, armies etc. that areengaged in �nancial, political and physical struggles. Despite the diversity of these games, allof them can be described in the elegant mathematical framework laid out by Von Neumann andMorgenstern earlier in this century. Game theory, however, exhibits a "gap", in that it does notstudy whether, or how, or under which conditions, games can be implemented. That is, it neveraddressed the question of whether, given the description of a game, a method existes for physicallyor mentally playing it. We do �ll this gap by showing that, in a complexity theoretic sense, allgames can be played.Essentially, a game consists of a set S of possible states, representing all possible instantaneousdescriptions of the game, a set M of possible moves, describing all possible ways to change thecurrent state of the game, a set fK1; K2; :::; Kng of knowledge functions, where Ki(�) representsthe partial information about state � possessed by player i, and a function p, the payo� function,that, evaluated on the �nal state, tells the outcome of the game. Without loss of generality, theplayers make moves in cyclic order and the set of possible moves in any state are the same forall states. With little restriction we do assume that the players make use of recursive strategiesfor selecting their moves. (The classical model does not rule out selecting moves according to anin�nite table.)Let us now see how a game evolves using, in parenthesis, poker as an example. The game startsby having a transcenndental entity select an initial state �1. (For poker, �1 is a randomly selectedpermutation of the 52 cards; the �rst 5n cards of the permutation representing the players initialhands and the remaining ones the deck.) Player 1 moves �rst. He does not know �1 but ratherknows K1(�1), which is his partial information of the state �1 (In poker the �rst player initially

knows his own hand: the �rst 5 elements of permutation �1.) Based solely on K1(�1), player 1will select a move � (e.g. he changes 3 of his cards with the �rst 3 cards of the deck). This moveautomatically updates the (unknown to player 1) current state to �2 (The new state consists ofthe cards currently possessed by each player, the sequence of cards in the deck and which cardswere discarded by player 1. K1(�2) consists of the new hand of player 1 and the cards he justdiscarded.) Now it is the turn of player 2. He also does not know the current state �2 he onlyknows K2(�2). Based solely on this information, he selects his move, which updates the currentstate, and so on. After the prescribed number of moves, the payo� function p is evaluated at the�nal state is the result of the game. (In poker the result consists of who has won, how much hehas won and how much everyone else has individually lost.)Note that a general multi-party protocol falls into this framework as a very special case. Itis a game in which the initial state is empty and each player moves only once. State �i consistsof the sequence of the �rst i moves. Each player has no knowledge about the current state andchooses his move to be the string xi, his own private input. The payo� function M is then run on�n, where M is the Turing machine computing the function f that for which the parties which tocompute f(x1; :::; xn). From this brief description, it is immediately apparent that, by properlyselecting the knowledge functions, one can enforce any desired privacy constraints in a game. Inparticular, maximum privacy is enforced by having Ki(�) be f(�) if � is a sequence of n stringsand ? otherwise.Game theory, besides an elegant formulation, also suggests to the players strategies satisfyingsome desired property (e.g. optimality). That is, game theory's primary concern is how to selectmoves well. However, and ironically, it never addressed the question of how to play; namely howwill the modi�cation of the global state by the move be e�ected. For a general n-player game, allwe can say is that we need n + 1 parties to properly play it; the extra party being the "trustedparty". The trusted party communicates privately with all players. At step t, he knows thecurrent state �t of the game. He kindly computes � = Ktmod n(�t), communicates � to playert mod n, receives from him a move �, secretely computes the new state St+1 = �(St), and soon. At the end, the trusted party will evaluate the payo� function on the �nal state and declarethe outcome of the game. Clearly, playing with the trusted party achieves exactly the privacyconstraints of the game description, and at the end each player will get the correct outcome.Now, the fact that, in general, a n-person game requires n+1 people to be played, not only isgrotesque, but it also diminishes the otherwise wide applicability of game theory! In fact, in reallife situations, we may simply not have any trusted parties, whether men or public computers.Recently, complaints have been raised about �nantial transactions in the stock market. Thecomplaints were about the fact that some parties were enjoying knowledge that was considered"extra" before choosing their move, i.e. before buying stocks. The stock market is indeed just agame, but one in which you may desire trusting no one!We are thus led to consider the notion of a (purely) playable game. This is a n-person gamethat can be implemented by the n players without invoking any trusted parties. In general,however, given the speci�cation of a game with complicated knowledge functions, it is not atall easy to decide whether it is playable in some meaningful way. Here, among the "meaningfulways", we also include non-mathematical methods. Yet, the decision may still not be easy.Poker, for instance, has simple enough knowledge functions (i.e. privacy constraints) thatmakes it playable in a "physical" way. In it we use cards with equal "back" and "opaque", tableswhose top does not reect light too much, we shu�e the deck "a lot", and we hand cards "facingdown". All this is satisfactory as in our physical model (world) we only see along straight lines.

However, assume we de�ne newpoker as follows. A player may select his move not only basedon his own hand, but also based on whether combining the current hands of all players, resultsin a set of cards containing a royal ush. The knowledge functions are de�ned in a minimalmanner allowing such moves; namely, a party only knows his own hand and whether a royalush is contained in the cards held by all players. newpoker is certainly a game in the VonNeumann's framework but it is no longer apparent whether any physical realization of the gameexists, particularly if some of the players may be cheaters.This is what we perceive lacking in game theory: the attention to the notion of playability.At this point a variety of interesting questions naturally arises:Is there a model (physical or mathematical) which makes all games playable?Or at least,Does every game have a model in which it is playable, or should we restrict our attention tothe subclass of playable game?We show that the �rst question can be a�rmatively answered in a computational complexitymodel. Namely, every game in which the players make computable moves is playable.ACKNOWLEDGEMENTSWe are very grateful to Shimon Even, Mike Merritt, Dick Karp, Albert Meyer and YoramMoses for questioning the "completeness" of our preliminary results. In particular, Dick Karpsuggested games with incomplete information as (probably?) the most general formulation forour results. We are also grateful to Benny Chor and Sha� Goldwasser for helpful discussionsconcerning the issues of this paper. Finally, we wish to thank Stuart Haber for suggesting asimpli�cation to our original construction.

REFERENCES[Bar] Barrington, D.A., \Bounded-Width Polynomial-Size Branching Programs Recognize Ex-actly Those Languages in NC1", Proc. 18th STOC, 1986, pp. 1-5.[Blu] Blum, M., \Coin Flipping by Phone", IEEE Spring COMPCOM, pp. 133-137, February1982.[BD] Broder, A.Z., and D. Dolev, \Flipping Coins in Many Pockets (Byzantine Agreement onUniformly Random Values", Proc. 25th FOCS, 1984, pp. 157-170.[CGMA] Chor, B., S. Goldwasser, S. Micali, and B. Awerbuch, \Veri�able Secret Sharing and Achiev-ing Simultaneity in the Presence of Faults", Proc. 26th FOCS, 1985, pp. 383-395.[Coh] Cohen, J.D., \Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret", technicalreport YALEU/DCS/TR-453, Yale University, Dept. of Computer Science, Feb. 1986.Presented in Crypto86, 1986.[DH] Di�e, W., and M.E. Hellman, \New Directions in Cryptography", IEEE Trans. on Inform.Theory, Vol. IT-22, No. 6, November 1976, pp. 644-654.[EGL] Even, S., O. Goldreich, and A. Lempel, \A Randomized Protocol for Signing Contracts",CACM, Vol. 28, No. 6, 1985, pp. 637-647.[GMW] Goldreich, O., S. Micali, and A. Wigderson, \Proofs that Yield Nothing But their Validityand a Methodology of Cryptographic Protocol Design", Proc. 27th FOCS, 1986, pp. 174-187.[GM] Goldwasser, S., and S. Micali, \Probabilistic Encryption", JCSS, Vol. 28, No. 2, 1984, pp.270-299.[GMR] Goldwasser, S., S. Micali, and C. Racko�, \Knowledge Complexity of Interactive Proofs",Proc. 17th STOC, 1985, pp. 291-304.[R] Rabin, M.O., \How to Exchange Secrets by Oblivious Transfer", unpublished manuscript,1981.[Y1] Yao, A.C., \Theory and Applications of Trapdoor Functions", Proc. of the 23rd IEEESymp. on Foundation of Computer Science, 1982, pp. 80-91.[Y2] Yao, A.C., \How to Generate and Exchange Secrets", Proc. 27th FOCS, 1986, pp. 162-167.

